ITBA20130032A1 - GEOTHERMAL PROBE WITH CIRCULAR PLATES - Google Patents
GEOTHERMAL PROBE WITH CIRCULAR PLATES Download PDFInfo
- Publication number
- ITBA20130032A1 ITBA20130032A1 IT000032A ITBA20130032A ITBA20130032A1 IT BA20130032 A1 ITBA20130032 A1 IT BA20130032A1 IT 000032 A IT000032 A IT 000032A IT BA20130032 A ITBA20130032 A IT BA20130032A IT BA20130032 A1 ITBA20130032 A1 IT BA20130032A1
- Authority
- IT
- Italy
- Prior art keywords
- aforementioned
- geothermal probe
- circular
- groundwater
- plate
- Prior art date
Links
- 239000000523 sample Substances 0.000 title claims description 15
- 239000003673 groundwater Substances 0.000 claims description 12
- 239000012530 fluid Substances 0.000 claims description 9
- 238000005086 pumping Methods 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims 2
- 239000011810 insulating material Substances 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000035699 permeability Effects 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 230000002547 anomalous effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T10/10—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
- F24T10/13—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
- F24T10/17—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0012—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form
- F28D9/0018—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form without any annular circulation of the heat exchange media
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Description
DESCRIZIONE DESCRIPTION
Dell'invenzione industriale dal SONDA GEOTERMICA A PIASTRE CIRCOLARI Of the industrial invention of the CIRCULAR PLATE GEOTHERMAL PROBE
Campo Tecnologico Technological field
La presente invenzione è relativa ad una sonda geotermica a piastre circolari utilizzabile nel contesto dello sfruttamento della falde acquifere come risorsa geotermica a bassa entalpia. The present invention relates to a circular plate geothermal probe that can be used in the context of the exploitation of the aquifers as a low enthalpy geothermal resource.
Stato dell'arte State of the art
Nel campo dello sfruttamento delle energie rinnovabili la geotermia a bassa entalpia rappresenta una valida opportunità applicabile in numerosi contesti ambientali. Si parla di energia idrotermica allorquando vi è la presenza di acqua di falda che aumenta notevolmente il calore specifico delle formazioni geologiche che aumentare, in funzione della circolazione idrica, la quantità di calore estraibile o cedibile. Anche in assenza di gradienti geotermici anomali, le temperature del sottosuolo rientrano nell'ordine dei 10 - 18 °C. pertanto è possibile sfruttare le risorse energetiche del sottosuolo anche in zone non interessate da particolari condizioni geotermiche. A tal riguardo si osserva che le risorse idriche sotterranee risultano particolarmente adatte allo scopo. In the field of the exploitation of renewable energies, low enthalpy geothermal energy represents a valid opportunity applicable in numerous environmental contexts. We talk about hydrothermal energy when there is the presence of groundwater which significantly increases the specific heat of the geological formations which increase, depending on the water circulation, the quantity of extractable or transferable heat. Even in the absence of anomalous geothermal gradients, the subsoil temperatures are in the order of 10 - 18 ° C. therefore it is possible to exploit the energy resources of the subsoil even in areas not affected by particular geothermal conditions. In this regard, it is noted that groundwater resources are particularly suitable for the purpose.
Gli impianti idrotermici allo sfruttamento dell'energia rinnovabile sotto forma di acqua a bassa entalpia contenuta negli acquiferi possono comprendere due configurazioni : a (closed- loop ) e circuito aperto (open - loop). Hydrothermal plants for the exploitation of renewable energy in the form of low enthalpy water contained in aquifers can include two configurations: a (closed-loop) and open-loop (open - loop).
Negli impianti closed - loop lo scambio di calore tra la superficie ed il sottosuolo avviene per mezzo di sonde geotermiche. La più comune tipologia di installazione prevede di tubi in polietilene collegati con un raccordo a "U" alla loro estremità inferiore dopo aver realizzato una perforazione verticale eseguita nel suolo. Oltre alle classiche configurazioni geometriche ad "U" esistono le sonde a geometria elicoidale, a geometria coassiale, e forme più complesse che mirano ad incrementare energetica (particolari geometrie sono mostrate nel brevetto US 7.370.488 ). All'interno della sonda viene fatto un fluido operativo che rappresenta il mezzo con cui lo scambio di calore. Il fluido è quindi poi convogliato ad una pompa di calore che ne innalza o abbassa la temperatura per poterlo infine trasferire ai terminali di riscaldamento o raffrescamento. Negli impianti open - loop, l'acqua di falda, che in questo caso è anche il fluido operativo, è prelevata direttamente dall'ambiente per mezzo di pompe di prelievo ed ivi reimmesso una volta avvenuto lo scambio termico. L'acqua emunta va direttamente nella pompa di calore oppure si utilizza uno scambiatore di calore interposto tra il circuito acqua di falda e il circuito del fluido operativo che circola nella pompa di calore. In closed - loop systems, the heat exchange between the surface and the subsoil takes place by means of geothermal probes. The most common type of installation involves polyethylene pipes connected with a "U" fitting at their lower end after making a vertical perforation made in the ground. In addition to the classic "U" geometric configurations, there are probes with helical geometry, coaxial geometry, and more complex shapes that aim to increase energy (particular geometries are shown in US patent 7,370,488). Inside the probe is made an operating fluid which represents the means by which the heat exchange. The fluid is then conveyed to a heat pump which raises or lowers its temperature in order to finally be able to transfer it to the heating or cooling terminals. In open - loop systems, the groundwater, which in this case is also the operating fluid, is taken directly from the environment by means of sampling pumps and reintroduced there once the heat exchange has taken place. The water discharged goes directly into the heat pump or a heat exchanger is used between the ground water circuit and the operating fluid circuit that circulates in the heat pump.
Nel contesto dei sistemi idrotermici che sfruttano le acque sotterranee gli impianti open — loop presentano una resa termica più alta rispetto agli impianti closed - loop trasportano calore per convezione forzata. Per contro essi richiedono una falda acquifera in grado di fornire una portata adeguata e devono sostenere i costi energetici non trascurabili connessi al pompaggio delle acque sotterranee fino a superare la quota del piano campagna Inoltre occorre superare le problematiche connesse allo smaltimento legale delle acque. Gli impianti a circuito chiuso, pur avendo una resa termica minore, risolvono le problematiche dello smaltimento delle acque e hanno dei costi energetici ridotti, Comunque quest'ultimi possono perdere in il beneficio arrecato dalla presenza di falda in funzione del contesto idrogeologico. In acquiferi fratturati o in acquiferi stratificati in cui vi è di zone ad alta permeabilità idraulica (fratture negli acquiferi fratturati o depositi ghiaiosi - sabbiosi negli acquiferi stratificati) e zone a bassa permeabilità idraulica (roccia compatta negli acquiferi fratturali o depositi limosi — In the context of hydrothermal systems that exploit groundwater, open - loop systems have a higher thermal output than closed - loop systems transport heat by forced convection. On the other hand, they require an aquifer capable of providing an adequate flow rate and must bear the non-negligible energy costs associated with pumping groundwater up to exceeding the level of the ground level. Furthermore, the problems associated with the legal disposal of water must be overcome. Closed-circuit systems, despite having a lower thermal yield, solve the problems of water disposal and have reduced energy costs, however the latter can lose the benefit caused by the presence of groundwater depending on the hydrogeological context. In fractured aquifers or in stratified aquifers in which there are areas with high hydraulic permeability (fractures in fractured aquifers or gravelly - sandy deposits in stratified aquifers) and areas with low hydraulic permeability (compact rock in fractural aquifers or silty deposits -
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| IT000032A ITBA20130032A1 (en) | 2013-04-29 | 2013-04-29 | GEOTHERMAL PROBE WITH CIRCULAR PLATES |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| IT000032A ITBA20130032A1 (en) | 2013-04-29 | 2013-04-29 | GEOTHERMAL PROBE WITH CIRCULAR PLATES |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| ITBA20130032A1 true ITBA20130032A1 (en) | 2014-10-30 |
Family
ID=48951481
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| IT000032A ITBA20130032A1 (en) | 2013-04-29 | 2013-04-29 | GEOTHERMAL PROBE WITH CIRCULAR PLATES |
Country Status (1)
| Country | Link |
|---|---|
| IT (1) | ITBA20130032A1 (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003014387A (en) * | 2001-06-27 | 2003-01-15 | Hitachi Plant Eng & Constr Co Ltd | Installation method of underground heat exchanger and underground heat exchanger |
| US20070151591A1 (en) * | 2005-12-30 | 2007-07-05 | Schlumberger Technology Corporation | Downhole thermoelectric power generation |
| WO2009043548A1 (en) * | 2007-09-28 | 2009-04-09 | Geo-En Energy Technologies Gmbh | Groundwater well |
-
2013
- 2013-04-29 IT IT000032A patent/ITBA20130032A1/en unknown
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003014387A (en) * | 2001-06-27 | 2003-01-15 | Hitachi Plant Eng & Constr Co Ltd | Installation method of underground heat exchanger and underground heat exchanger |
| US20070151591A1 (en) * | 2005-12-30 | 2007-07-05 | Schlumberger Technology Corporation | Downhole thermoelectric power generation |
| WO2009043548A1 (en) * | 2007-09-28 | 2009-04-09 | Geo-En Energy Technologies Gmbh | Groundwater well |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU2015377012B2 (en) | Method for thermal-displacement-type strengthened extraction in drill hole | |
| WO2016082188A1 (en) | Hot dry rock multi-cycle heating system and production method therefor | |
| CN103790552B (en) | A kind of method of the lock that dewaters for high temperature solution in oil-gas mining process | |
| PH12016501591B1 (en) | Boiling-water-type geothermal heat exchanger and boiling-water-type geothermal power generation equipment | |
| CN108087013A (en) | A kind of mine cooling utilizes system with heat evil | |
| ITMO20100333A1 (en) | GEOTHERMAL PROBE WITH CLOSED CIRCUIT | |
| CN206477824U (en) | Equipment for developing geothermal energy | |
| ITUA20164379A1 (en) | GEOTHERMAL WELL TO COMMUNICATING VASES. | |
| DE4437124C2 (en) | Use of a probe from a double tube tour closed at the bottom | |
| CN106767008A (en) | Double helix well heat exchanger | |
| JP6937794B2 (en) | Geothermal exchange segment and geothermal exchange device and its assembly method | |
| WO2015132404A1 (en) | Geothermal plant using hot dry rock fissured zone | |
| ITBA20130032A1 (en) | GEOTHERMAL PROBE WITH CIRCULAR PLATES | |
| DE102014104992A1 (en) | A method of constructing a geothermal probe and arrangement for introducing heat into and extracting heat from a geothermal probe | |
| DE212015000177U1 (en) | Columnar heat transfer device and pipe for heat transfer of the fluid substances | |
| CN205156415U (en) | Xeothermic rock heat exchanger of many U type tubular | |
| CN202013040U (en) | Geothermal water individual well staging draining back equipment | |
| CH704547A2 (en) | System to extract heat from hot rocks and geometric layout. | |
| CN103161428B (en) | Method for improving oil temperature at outlet of oil well and oil well structure | |
| KR101612905B1 (en) | Pile Assembly for Heat Storage | |
| JP2015148415A (en) | Groundwater resource recovery system | |
| HK1232281A1 (en) | Geothermal plant using hot dry rock fissured zone | |
| CN207989013U (en) | A kind of residential quarters mid-deep strata geothermal energy resources utilize well-pattern system | |
| CN206419940U (en) | A kind of burner hearth of the heated cellular construction of square combination formula coiled pipe burner hearth and its composition | |
| CN105134202A (en) | Layered water pumping method |