IT202100015206A1 - METHOD OF CONTROLLING A ROAD VEHICLE WITH INDEPENDENT ENGINES ACTING ON WHEELS ON THE SAME AXLE AND RELATED ROAD VEHICLE - Google Patents
METHOD OF CONTROLLING A ROAD VEHICLE WITH INDEPENDENT ENGINES ACTING ON WHEELS ON THE SAME AXLE AND RELATED ROAD VEHICLE Download PDFInfo
- Publication number
- IT202100015206A1 IT202100015206A1 IT102021000015206A IT202100015206A IT202100015206A1 IT 202100015206 A1 IT202100015206 A1 IT 202100015206A1 IT 102021000015206 A IT102021000015206 A IT 102021000015206A IT 202100015206 A IT202100015206 A IT 202100015206A IT 202100015206 A1 IT202100015206 A1 IT 202100015206A1
- Authority
- IT
- Italy
- Prior art keywords
- driving wheel
- torque
- road vehicle
- speed
- delivered
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 34
- 230000001133 acceleration Effects 0.000 claims description 7
- 230000005484 gravity Effects 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 4
- 238000012544 monitoring process Methods 0.000 claims 1
- 230000006870 function Effects 0.000 description 14
- 239000006096 absorbing agent Substances 0.000 description 7
- 230000035939 shock Effects 0.000 description 7
- 230000008901 benefit Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 201000009482 yaws Diseases 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2036—Electric differentials, e.g. for supporting steering vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D15/00—Steering not otherwise provided for
- B62D15/02—Steering position indicators ; Steering position determination; Steering aids
- B62D15/021—Determination of steering angle
- B62D15/0235—Determination of steering angle by measuring or deriving directly at the electric power steering motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/10—Indicating wheel slip ; Correction of wheel slip
- B60L3/102—Indicating wheel slip ; Correction of wheel slip of individual wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K23/00—Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
- B60K23/04—Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for differential gearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/32—Control or regulation of multiple-unit electrically-propelled vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/10—Indicating wheel slip ; Correction of wheel slip
- B60L3/104—Indicating wheel slip ; Correction of wheel slip by indirect measurement of vehicle speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/10—Indicating wheel slip ; Correction of wheel slip
- B60L3/106—Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/08—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
- B60W40/09—Driving style or behaviour
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
- B60W40/114—Yaw movement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K23/00—Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
- B60K23/04—Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for differential gearing
- B60K2023/043—Control means for varying left-right torque distribution, e.g. torque vectoring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/40—Electrical machine applications
- B60L2220/42—Electrical machine applications with use of more than one motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/40—Electrical machine applications
- B60L2220/46—Wheel motors, i.e. motor connected to only one wheel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/14—Acceleration
- B60L2240/16—Acceleration longitudinal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/14—Acceleration
- B60L2240/18—Acceleration lateral
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/14—Acceleration
- B60L2240/20—Acceleration angular
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/22—Yaw angle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/44—Drive Train control parameters related to combustion engines
- B60L2240/441—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/46—Drive Train control parameters related to wheels
- B60L2240/465—Slip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2250/00—Driver interactions
- B60L2250/26—Driver interactions by pedal actuation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/20—Steering systems
- B60W2510/205—Steering speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/26—Wheel slip
- B60W2520/266—Slip values between left and right wheel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Automation & Control Theory (AREA)
- Mathematical Physics (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Arrangement And Driving Of Transmission Devices (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Description
D E S C R I Z I O N E DESCRIPTION
del brevetto per invenzione industriale dal titolo: of the patent for industrial invention entitled:
?METODO DI CONTROLLO DI UN VEICOLO STRADALE CON MOTORI INDIPENDENTI AGENTI SU RUOTE DI UNO STESSO ASSE E RELATIVO VEICOLO STRADALE? ?METHOD FOR CHECKING A ROAD VEHICLE WITH INDEPENDENT ENGINES ACTING ON WHEELS ON THE SAME AXLE AND RELATED ROAD VEHICLE?
SETTORE DELLA TECNICA TECHNICAL SECTOR
La presente invenzione ? relativa ad un metodo di controllo di un veicolo stradale con motori indipendenti agenti su ruote di uno stesso asse e ad un relativo veicolo stradale. The present invention ? relating to a method of controlling a road vehicle with independent motors acting on wheels of the same axle and to a related road vehicle.
ARTE ANTERIORE EARLIER ART
Sono noti differenziali autobloccanti configurati per variare la distribuzione di coppia in modo da favorire la trasmissione di potenza verso la ruota che gira pi? lentamente (evitando stalli o slittamenti dovuti, ad esempio, al sollevamento di una ruota o al pattinamento della stessa su una superficie ad attrito ridotto, ad esempio bagnata). Tali dispositivi prevedono generalmente un sistema a frizione configurato per limitare la coppia trasmessa alla ruota motrice che gira pi? velocemente a vantaggio di quella che gira pi? lentamente. Self-locking differentials are known which are configured to vary the distribution of torque so as to favor the transmission of power towards the wheel which rotates faster. slowly (avoiding stalls or skids due, for example, to lifting a wheel or slipping on a low-friction surface, such as a wet one). These devices generally include a clutch system configured to limit the torque transmitted to the fastest rotating drive wheel. quickly to the advantage of the one that runs pi? slowly.
Negli ultimi anni, per aumentare la stabilit?, la sicurezza o le prestazioni del veicolo, sono stati inoltre sviluppati diversi tipi di differenziale autobloccante a controllo elettronico. In recent years, various types of electronically controlled limited-slip differentials have also been developed to increase the stability, safety or performance of the vehicle.
Nella domanda di brevetto WO2004087453A1 ? descritto un veicolo stradale provvisto di un differenziale autobloccante a controllo elettronico, la cui percentuale di bloccaggio ? controllata da una centralina di controllo per cercare di stabilizzare (ovvero rendere pi? stabile e quindi sicuro) il veicolo stradale. In the patent application WO2004087453A1 ? described a road vehicle equipped with an electronically controlled limited slip differential, whose locking percentage? controlled by a control unit to try to stabilize (or make more stable and therefore safe) the road vehicle.
Secondo quanto descritto nella domanda di brevetto WO2004087453A1, durante la percorrenza di una curva la centralina di controllo aumenta progressivamente la percentuale di bloccaggio del differenziale autobloccante (ovvero ?chiude? la frizione del differenziale autobloccante per trasferire una maggiore quantit? di coppia motrice verso la ruota motrice che ruota pi? lentamente, ovvero verso la ruota interna alla curva) in caso di rilascio del pedale dell?acceleratore per stabilizzare il veicolo stradale. According to what is described in the patent application WO2004087453A1, while going through a bend, the control unit progressively increases the locking percentage of the self-locking differential (that is, it ?closes? the clutch of the self-locking differential to transfer a greater quantity of driving torque towards the wheel engine that rotates more slowly, i.e. towards the wheel inside the curve) when the accelerator pedal is released to stabilize the road vehicle.
Secondo quanto descritto nella domanda di brevetto WO2004087453A1, durante la percorrenza di una curva la centralina di controllo riduce progressivamente la percentuale di bloccaggio del differenziale autobloccante (ovvero ?apre? la frizione del differenziale autobloccante per trasferire una maggiore quantit? di coppia motrice verso la ruota motrice che ruota pi? velocemente, ovvero verso la ruota esterna alla curva) in caso di pressione (affondata) del pedale dell?acceleratore per migliorare sia la stabilit? del veicolo stradale, sia le prestazioni di accelerazione in curva; in particolare, la riduzione della percentuale di bloccaggio del differenziale autobloccante ? proporzionale all?accelerazione laterale del veicolo stradale, alla velocit? di avanzamento del veicolo stradale, alla coppia motrice erogata dal motore, e/o alla marcia inserita nel cambio. According to what is described in the patent application WO2004087453A1, while cornering, the control unit progressively reduces the locking percentage of the self-locking differential (that is, it ?opens? the clutch of the self-locking differential to transfer a greater quantity of driving torque towards the wheel drive that rotates faster, or towards the external wheel of the curve) in the event of pressure (sunk) of the accelerator pedal to improve both stability? of the road vehicle, both acceleration performance in corners; in particular, the reduction of the locking percentage of the limited slip differential ? proportional to the lateral acceleration of the road vehicle, to the speed? of progress of the road vehicle, to the drive torque delivered by the engine, and/or to the gear engaged in the gearbox.
Secondo quanto descritto nella domanda di brevetto WO2004087453A1, durante la percorrenza a velocit? sostanzialmente costante di una curva la centralina di controllo stima lo stato di aderenza delle ruote motrici al fondo stradale, e di conseguenza annulla la percentuale di bloccaggio del differenziale autobloccante quando lo stato di aderenza delle ruote motrici al fondo stradale ? lontano dal limite di aderenza, aumenta progressivamente la percentuale di bloccaggio del differenziale autobloccante quando lo stato di aderenza delle ruote motrici al fondo stradale si avvicina al limite di aderenza ed infine riduce la percentuale di bloccaggio del differenziale autobloccante fino al valore nullo quando lo stato di aderenza delle ruote motrici al fondo stradale ? molto prossimo al limite di aderenza. According to what is described in the patent application WO2004087453A1, during travel at speed? substantially constant of a curve, the control unit estimates the state of adherence of the drive wheels to the road surface, and consequently cancels the locking percentage of the self-locking differential when the state of adherence of the drive wheels to the road surface ? far from the grip limit, progressively increases the locking percentage of the self-locking differential when the state of grip of the drive wheels to the road surface approaches the grip limit and finally reduces the locking percentage of the self-locking differential down to zero value when the state of grip of the drive wheels to the road surface? very close to the adhesion limit.
Con l?avvento delle auto elettriche, il concetto di differenziale ? stato mantenuto anche nei casi in cui vi siano pi? motorizzazioni, ad esempio una per l?asse anteriore e una per l?asse posteriore. In alcuni casi, inoltre, nei casi in cui le ruote motrici di uno stesso asse siano azionate da attuatori diversi, sono stati implementati dei software che imitano il comportamento di un differenziale autobloccante a controllo elettronico. With the advent of electric cars, the concept of differential? been maintained even in cases where there are pi? engines, for example one for the front axle and one for the rear axle. Furthermore, in some cases, where the driving wheels of the same axle are operated by different actuators, software has been implemented which imitates the behavior of an electronically controlled limited slip differential.
Tutti gli esempi sopra descritti, facendo uso di un differenziale fisico, a controllo elettronico o simulato tramite software, determinano o definiscono un vincolo tra la differenza di velocit? angolare delle ruote motrici appartenenti allo stesso asse. In particolare, questi vincoli sono causa di mancate ottimizzazioni dal punto di vista delle prestazioni (una parte della coppia di trazione viene comunque trasmessa alla ruota con velocit? angolare maggiore) o del comfort, evitando inoltre di potere opporre a delle imbardate non volute dovute a condizioni sfavorevoli del terreno o generate dal fallimento di un attuatore. All the examples described above, making use of a physical differential, electronically controlled or simulated by software, determine or define a constraint between the speed difference? angle of the driving wheels belonging to the same axle. In particular, these constraints are the cause of lack of optimization from the point of view of performance (a part of the traction torque is in any case transmitted to the wheel with greater angular speed) or comfort, also avoiding being able to oppose unwanted yaws due to unfavorable ground conditions or generated by the failure of an actuator.
DESCRIZIONE DELLA INVENZIONE DESCRIPTION OF THE INVENTION
Scopo della presente invenzione ? di fornire un metodo di controllo di un veicolo stradale con motori indipendenti agenti su ruote di uno stesso asse e ad un relativo veicolo stradale, il quale metodo di controllo sia esente dagli inconvenienti sopra descritti, sia di facile ed economica realizzazione, ed in particolare permetta di massimizzare le prestazioni durante la percorrenza di una pista senza rendere il veicolo stradale instabile. Purpose of the present invention? to provide a control method of a road vehicle with independent motors acting on wheels of the same axle and to a related road vehicle, which control method is free from the drawbacks described above, is easy and cheap to implement, and in particular allows to maximize performance when traveling on a track without making the road vehicle unstable.
Secondo la presente invenzione viene fornito un metodo di controllo di un veicolo stradale con motori indipendenti agenti su ruote di uno stesso semiasse e ad un relativo veicolo stradale, secondo quanto rivendicato dalle rivendicazioni allegate. According to the present invention a method is provided for controlling a road vehicle with independent motors acting on wheels of the same axle shaft and a related road vehicle, according to what is claimed in the attached claims.
BREVE DESCRIZIONE DEI DISEGNI BRIEF DESCRIPTION OF THE DRAWINGS
La presente invenzione verr? ora descritta con riferimento ai disegni annessi, che ne illustrano un esempio di attuazione non limitativo, in cui: This invention will come now described with reference to the attached drawings, which illustrate a non-limiting embodiment thereof, in which:
? la figura 1 ? una vista schematica ed in pianta di un veicolo stradale provvisto di due motori separati ed indipendenti che vengono controllati in accordo con la presente invenzione; ? figure 1 ? a schematic plan view of a road vehicle provided with two separate and independent engines which are controlled in accordance with the present invention;
? la figura 2 ? una vista schematica del veicolo stradale della figura 1 durante la percorrenza di una curva con in evidenza la traiettoria, la velocit? di avanzamento e l?angolo di assetto; ? figure 2 ? a schematic view of the road vehicle of figure 1 during a curve, highlighting the trajectory, the speed? advancement and trim angle;
? la figura 3 ? un diagramma schematico che mostra la struttura logica di un controllo in accordo con la presente invenzione; e ? figure 3 ? a schematic diagram showing the logical structure of a control in accordance with the present invention; And
? la figura 4 mostra un diagramma schematico che illustra la struttura di un controllore illustrato nella figura 3. ? figure 4 shows a schematic diagram illustrating the structure of a controller shown in figure 3.
FORME DI ATTUAZIONE PREFERITE DELL?INVENZIONE PREFERRED EMBODIMENTS OF THE INVENTION
Nella figura 1, con il numero 1 ? indicato nel suo complesso un veicolo stradale provvisto di due ruote 2 anteriori e di due ruote 3 posteriori motrici (appartenenti quindi ad uno stesso asse, quello posteriore) che ricevono la coppia motrice da un sistema 4 di motopropulsione. In figure 1, with the number 1 ? indicates as a whole a road vehicle provided with two front wheels 2 and two rear driving wheels 3 (therefore belonging to the same axle, the rear one) which receive the drive torque from a motor propulsion system 4.
Il sistema 4 di motopropulsione comprende almeno due motori 5 elettrici, ciascuno dei quali aziona indipendentemente una rispettiva ruota 3 motrice. I motori 5 elettrici sono preferibilmente disposti in posizione posteriore longitudinale e trasversalmente centrale. Ciascuno dei detti motori 5 elettrici ? meccanicamente collegato (per mezzo di elementi 6 riduttori o di trasmissione) alla rispettiva ruota 3 tramite un rispettivo semiasse 7, solidale ad una rispettiva ruota 3 posteriore motrice. The motor propulsion system 4 comprises at least two electric motors 5, each of which independently drives a respective drive wheel 3. The electric motors 5 are preferably arranged in a rear longitudinal and transversely central position. Each of said electric motors 5 ? mechanically connected (by means of reduction or transmission elements 6) to the respective wheel 3 by means of a respective axle shaft 7, integral with a respective rear driving wheel 3.
In alcuni casi non limitativi e non illustrati, ciascuna ruota 3 motrice ? azionata indipendentemente da un rispettivo semiasse 7. In particolare, il metodo di controllo comprende la fase di controllare la coppia TL, TR erogata a ciascun rispettivo semiasse verso la prima ruota 3 motrice o verso la seconda ruota 3 motrice in funzione di una coppia richiesta dal guidatore ed in modo indipendente dalla differenza di velocit? angolare tra la prima e la seconda ruota 3. Pi? precisamente, la coppia erogata ai semiassi 7 pu? essere erogata da un singolo attuatore (endotermico o elettrico) del sistema 4 di propulsione. In some non-limiting and not illustrated cases, each driving wheel 3 ? independently driven by a respective semi-axle 7. In particular, the control method comprises the step of controlling the torque TL, TR delivered to each respective semi-axle towards the first driving wheel 3 or towards the second driving wheel 3 according to a torque required by the driver and independently of the difference in speed? angular between the first and second wheel 3. Pi? precisely, the torque delivered to the drive shafts 7 pu? be delivered by a single actuator (endothermic or electric) of the propulsion system 4.
Ciascuna ruota 2 o 3 ? meccanicamente collegata ad un telaio del veicolo 1 stradale mediante una sospensione 8 (parzialmente illustrata nella figura 1), la quale ? provvista di un ammortizzatore 9 a controllo elettronico, ovvero provvisto di un attuatore elettrico che permette di variare (ovvero aumentare o diminuire) lo smorzamento dell?ammortizzatore 9 a controllo elettronico. A titolo di esempio, l?attuatore elettrico di ciascun ammortizzatore 9 a controllo elettronico potrebbe comprendere una o pi? elettrovalvole che modulano la dimensione di fori di passaggio dell'olio all?interno dell?ammortizzatore 9 a controllo elettronico, oppure potrebbe comprendere un fluido magneto-reologico che modifica le sue propriet? fisiche in funzione di un campo magnetico applicato. Each wheel 2 or 3 ? mechanically connected to a chassis of the road vehicle 1 by means of a suspension 8 (partially shown in figure 1), which ? provided with an electronically controlled shock absorber 9, or rather provided with an electric actuator which allows the damping of the electronically controlled shock absorber 9 to be varied (or increased or decreased). By way of example, the electric actuator of each electronically controlled shock absorber 9 could comprise one or more? solenoid valves which modulate the size of the oil passage holes inside the electronically controlled shock absorber 9, or could it comprise a magneto-rheological fluid which modifies its properties? physics as a function of an applied magnetic field.
Il veicolo 1 stradale comprende una unit? 10 di controllo elettronica (?ECU?) che, tra le altre cose, regola il comportamento del veicolo 1 stradale sia in rettilineo, sia durante la percorrenza di una curva intervenendo, come meglio descritto in seguito, sulla coppia erogata dai motori 5 elettrici verso le ruote 3 motrici ed eventualmente in collaborazione con gli ammortizzatori 9 delle sospensioni 8. Fisicamente, l?unit? 10 di controllo pu? essere composta da un solo dispositivo oppure da pi? dispositivo tra loro separati e comunicanti attraverso la rete CAN del veicolo 1 stradale. The road vehicle 1 includes a unit? 10 for electronic control (?ECU?) which, among other things, regulates the behavior of the road vehicle 1 both on a straight line and when traveling around a curve by intervening, as better described below, on the torque delivered by the electric motors 5 towards the 3-wheel drive and possibly in collaboration with the shock absorbers 9 of the suspensions 8. Physically, the unit? 10 control pu? be composed of a single device or more? devices separated from each other and communicating through the CAN network of the road vehicle 1.
Nei veicoli noti, come accennato in precedenza, ? presente o simulato un differenziale autobloccante a controllo elettronico. In questo tipo di dispositivi, quando la frizione di bloccaggio ? completamente aperta (ovvero la percentuale di bloccaggio ? pari a zero), il differenziale autobloccante ? completamente libero e la coppia motrice viene equamente ripartita tra le due ruote posteriori motrici (ovvero ciascuna ruota posteriore motrice ricevere il 50% della coppia motrice complessiva indipendentemente dalla sua velocit? di rotazione); diversamente, chiudendo la frizione di bloccaggio (ovvero aumentando la percentuale di bloccaggio), il differenziale autobloccante inizia a bloccare e viene progressivamente aumentata la coppia motrice verso la ruota posteriore motrice che ruota pi? lentamente (ovvero la ruota posteriore motrice che ruota pi? lentamente riceve pi? coppia motrice rispetto alla ruota posteriore motrice che ruota pi? velocemente). In questo tipo di dispositivi la differenza di coppia erogabile verso ciascuna ruota motrice ? funzione della differenza di velocit? angolare delle ruote motrici stesse. Inoltre, il differenziale tende a ristabilire l?equilibrio summenzionato nella suddivisione della coppia tra le due ruote motrici, impedendo quindi di differenziare la coppia tra le due ruote motrici in caso di pari velocit? angolare di rotazione delle ruote motrici stesse. In known vehicles, as mentioned above, ? present or simulated an electronically controlled limited slip differential. In this type of device, when is the locking clutch? completely open (that is, the locking percentage ? equal to zero), the self-locking differential ? completely free and the driving torque is equally distributed between the two driving rear wheels (that is, each driving rear wheel receives 50% of the total driving torque regardless of its rotation speed); otherwise, by closing the locking clutch (or by increasing the locking percentage), the self-locking differential begins to lock and the driving torque towards the rear driving wheel which rotates faster is progressively increased. slowly (ie the slower rotating rear drive wheel receives more drive torque than the faster rotating rear drive wheel). In this type of device, the difference in torque that can be delivered to each driving wheel? function of the speed difference? angle of the drive wheels themselves. Furthermore, the differential tends to re-establish the balance mentioned above in the division of the torque between the two driving wheels, thus preventing the differentiation of the torque between the two driving wheels in the event of equal speed? angle of rotation of the driving wheels themselves.
Diversamente, secondo il metodo di controllo di seguito descritto, l?unit? 10 di controllo, in particolare un controllore CTR interno ad essa, ? configurata per controllare la coppia erogata da ciascun motore 5 elettrico verso la rispettiva ruota 3 motrice in funzione di una coppia Cin richiesta dal guidatore (ad esempio tramite un pedale acceleratore) ed in modo indipendente dalla differenza di velocit? angolare tra le ruote 3 motrici. In tal modo, ad esempio in base ad una modalit? di guida selezionata dal guidatore per favorire le ?performance? o la ?facilit? di guida?, ? possibile differenziare la coppia erogata dai motori 5 verso le ruote 3 a prescindere da quelle che sono le condizioni di velocit? angolare delle ruote 3 motrici. In particolare, grazie all?eliminazione del suddetto vincolo tra la differenza di velocit? angolare e la differenza di coppia erogata alle ruote 3, ? possibile migliorare il mantenimento di una traiettoria rettilinea su strada sconnessa o non in piano. Otherwise, according to the control method described below, the unit? 10 of control, in particular a CTR controller internal to it, ? configured to control the torque delivered by each electric motor 5 to the respective driving wheel 3 as a function of a torque Cin requested by the driver (for example via an accelerator pedal) and independently of the difference in speed? angular between the 3 drive wheels. In this way, for example on the basis of a modality? of driving selected by the driver to favor the ?performance? or the ?ease? driving?, ? Is it possible to differentiate the torque supplied by the motors 5 towards the wheels 3 regardless of what are the speed conditions? angle of the 3 drive wheels. In particular, thanks to the elimination of the aforementioned constraint between the difference in speed? angle and the difference in torque delivered to the wheels 3, ? It is possible to improve the maintenance of a straight trajectory on a bumpy or uneven road.
Secondo quanto illustrato nella figura 2, durante la percorrenza di una curva l?unit? 10 di controllo determina in modo noto la variazione ?? di un angolo ? di assetto del veicolo 1 stradale (ovvero l?angolo compreso fra l?asse x longitudinale del veicolo 1 stradale e la direzione della velocit? V di avanzamento del veicolo 1 stradale nel baricentro B). ? importante osservare che l?angolo ? di assetto ? diverso dall'angolo di imbardata (ovvero l'angolo compreso tra l?asse x longitudinale del veicolo 1 stradale ed un riferimento fisso a terra), in quanto il veicolo 1 stradale pu? assumere il medesimo angolo di imbardata nel piano assumendo angoli ? di assetto anche molto diversi e viceversa. According to what is illustrated in figure 2, during the journey of a curve the unit? control 10 determines in a known way the variation ?? of an angle? of attitude of the road vehicle 1 (that is the angle included between the longitudinal x axis of the road vehicle 1 and the direction of the forward speed V of the road vehicle 1 in the center of gravity B). ? important to note that the? angle ? trim? different from the yaw angle (ie the angle included between the longitudinal axis x of the road vehicle 1 and a fixed reference on the ground), since the road vehicle 1 can? assume the same yaw angle in the plane assuming angles ? even very different trim levels and vice versa.
In particolare, l?unit? 10 di controllo determina la variazione ??dell?angolo ? di assetto e calcola la coppia da erogare verso ciascuna ruota 3 motrice in funzione della variazione ?? dell?angolo di assetto. In particular, the unit? 10 control determines the variation ??of the angle ? trim and calculates the torque to be delivered to each driving wheel 3 as a function of the variation ?? of the trim angle.
Secondo la preferita forma di attuazione illustrata nelle figure 3 e 4, l?unit? 10 di controllo rileva, in particolare tramite una o pi? unit? di misura inerziali (di per s? note e quindi non maggiormente dettagliate) la velocit? ?? di imbardata (yaw rate) del veicolo 1 stradale. Preferibilmente, il controllore CTR calcola la coppia TR, TL erogata da ciascun motore 5 verso la rispettiva ruota 3 motrice in funzione della velocit? ?? di imbardata. According to the preferred embodiment illustrated in figures 3 and 4, the unit? 10 of control detects, in particular through one or more? unit? measure inertial (per se? known and therefore not more detailed) the speed? ?? of yaw rate of the road vehicle 1. Preferably, the CTR controller calculates the torque TR, TL delivered by each motor 5 towards the respective driving wheel 3 as a function of the speed? ?? of yaw.
Vantaggiosamente ma non necessariamente, la variazione ?? dell?angolo ? di assetto ? calcolata senza ricorrere ad una derivata numerica dell?angolo ? di assetto del veicolo, bens? tramite una combinazione non lineare di velocit? ?? di imbardata (yaw rate), accelerazione laterale (rilevata o determinata tramite modelli noti del veicolo 1 stradale) e velocit? Vx lineare del veicolo 1. Advantageously but not necessarily, the variation ?? of the corner ? trim? calculated without resorting to a numerical derivative of the angle ? of trim of the vehicle, bens? through a non-linear combination of speeds? ?? of yaw (yaw rate), lateral acceleration (detected or determined by known models of the vehicle 1 road) and speed? Linear vx of vehicle 1.
Secondo le preferite ma non limitative forme di attuazione delle figure 3 e 4, l?unit? 10 di controllo rileva tramite metodi noti (misurate con appositi sensori o stimate tramite modellazione del veicolo 1 stradale) le forze Fz verticali agenti sulle ruote 3 motrici, in particolare posteriori. In tal modo, il controllore CTR calcola la coppia TR, TL erogata da ciascun motore 5 verso la rispettiva ruota 3 motrice in funzione della distribuzione Fz% delle forze verticali tra le ruote 3 motrici (si veda, ad esempio, la figura 4). According to the preferred but non-limiting embodiments of figures 3 and 4, the unit? The control 10 detects by means of known methods (measured with suitable sensors or estimated by modeling the road vehicle 1) the vertical forces Fz acting on the driving wheels 3, in particular the rear ones. In this way, the controller CTR calculates the torque TR, TL delivered by each motor 5 towards the respective driving wheel 3 as a function of the distribution Fz% of the vertical forces between the driving wheels 3 (see, for example, figure 4).
Vantaggiosamente ma non necessariamente, l?unit? 10 di controllo, in particolare il controllore CTR, limita (tramite un apposito controllo SLC di slittamento) l?erogazione della coppia TR, TL da ciascun motore 5 verso la rispettiva ruota 3 motrice nel caso in cui un?erogazione desiderata (data dalla somma di un contributo ?TNL imbardante e un contributo ?TLIN controimbardante come meglio descritto in seguito) superi un limite determinato dall?aderenza di un rispettivo pneumatico installato su una delle ruote 3 motrici. In particolare, il detto limite ? calcolato secondo tecniche note in funzione delle propriet? dello pneumatico, della velocit? Vx longitudinale del veicolo 1 e delle velocit? angolari VRR e VRL rispettivamente della ruota 3 motrice destra e della ruota 3 motrice sinistra (figura 4). In tal modo ? possibile mantenere i vantaggi derivati dalla presenza di un differenziale (ovvero evitare che una ruota giri eccessivamente in assenza di aderenza) senza tuttavia vincolare l?erogazione di coppia dell?altra ruota motrice e senza obbligatoriamente tendere a distribuire equamente la coppia. Advantageously but not necessarily, the unit? 10, in particular the CTR controller, limits (by means of a suitable slip control SLC) the delivery of the torque TR, TL from each motor 5 towards the respective driving wheel 3 in the event that a desired delivery (given by the sum of a yawing ?TNL contribution and a counter-yawing ?TLIN contribution as better described below) exceeds a limit determined by the adherence of a respective tire installed on one of the 3-wheel drive wheels. In particular, the said limit ? calculated according to known techniques as a function of the properties? of the tyre, of the speed? Vx longitudinal of the vehicle 1 and of the speeds? angular angles VRR and VRL respectively of the right driving wheel 3 and of the left driving wheel 3 (figure 4). Thereby ? It is possible to maintain the advantages deriving from the presence of a differential (ie to prevent one wheel from turning excessively in the absence of grip) without, however, constraining the torque delivery of the other drive wheel and without necessarily tending to distribute the torque equally.
Come accennato in precedenza, vantaggiosamente ma non necessariamente, il controllore CTR elabora la coppia TR, TL da erogare a ciascuna ruota motrice (rispettivamente destra e sinistra) sommando tra loro il contributo ?TLIN controimbardante (in particolare lineare) e un contributo ?TNL imbardante (in particolare non lineare). In particolare, il contributo ?TLIN controimbardante e il contributo ?TNL imbardante indicano ciascuno una differenza di coppia tra le due ruote 3 motrici appartenenti allo stesso asse RA (posteriore). Pi? precisamente i contributi ?TLIN controimbardante ?TNL imbardante sono dei valori in Nm che indicano, di una coppia FZM entrante totale dell?asse posteriore quanta differenza fare nell?erogazione della coppia tra la ruota 3 motrice destra e la ruota 3 motrice sinistra. As previously mentioned, advantageously but not necessarily, the CTR controller processes the torque TR, TL to be delivered to each driving wheel (respectively right and left) by adding together the counter yaw contribution ?TLIN (in particular linear) and a yaw contribution ?TNL (especially non-linear). In particular, the counter-yawing contribution ?TLIN and the yawing contribution ?TNL each indicate a torque difference between the two driving wheels 3 belonging to the same RA (rear) axle. Pi? precisely the contributions ?TLIN counter yaw ?TNL yaw are values in Nm which indicate, of a total FZM torque entering the rear axle, how much difference there is in the delivery of the torque between the right driving wheel 3 and the left driving wheel 3.
Vantaggiosamente ma non necessariamente, il contributo ?TLIN controimbardante ? calcolato (dal controllore CTR) in funzione della variazione ?' dell?angolo ? di assetto del veicolo 1 stradale, della velocit? ?? di imbardata e della velocit? Vx longitudinale del veicolo 1 stradale stesso. Advantageously but not necessarily, the contribution ?TLIN counter yaw ? calculated (by the CTR controller) as a function of the variation ?' of the corner ? of trim of the vehicle 1 road, of the speed? ?? of yaw and speed? Longitudinal Vx of the road vehicle 1 itself.
In particolare, il contributo ?TLIN controimbardante ? dato dalla somma di un contributo RT basato sulla variazione ?' dell?angolo di assetto ed un contributo SL basato sullo yaw rate ?'. Pi? precisamente, il contributo RT fornisce un contributo controimbardante all?output di controllo finale che si oppone alle variazioni pi? repentine di traiettoria. Tipicamente, tali variazioni sono causate dal disturbo d di input stradale o da dinamiche transitorie sia lineari che non lineari. In altre parole, il contributo RT ? relativo all?area di comportamento dinamico del veicolo 1 stradale relativa a rettilineit? e transitori. In particular, the contribution ?TLIN counter yaw ? given by the sum of a RT contribution based on the variation ?' attitude angle and a SL contribution based on the yaw rate ?'. Pi? precisely, the RT contribution provides a counter-yawing contribution to the final control output which opposes the most? sudden trajectory. Typically, such variations are caused by road input noise or by both linear and non-linear transient dynamics. In other words, the RT contribution ? relating to the area of dynamic behavior of the road vehicle 1 relating to rectilinearity? and transient.
Diversamente, il contributo SL basato sullo yaw rate ?' fornisce un contributo controimbardante all?output finale utile per modulare la risposta laterale stazionaria del veicolo 1 stradale rispetto a degli input di sterzo (SW) forniti dal guidatore. Tramite questo tipo di controllo, ? dunque possibile modificare anche la coppia volante percepita dal guidatore. Nel modulare (calibrare) la risposta laterale stazionaria del veicolo, il coefficiente moltiplicativo dello yaw rate ?' ? dipendente dalla velocit? longitudinale Vx ed ? dipendente dalle richieste del guidatore tramite la tabella LUT (lookup table). Otherwise, the SL contribution based on the yaw rate ?' provides a counter-yaw contribution to the final output useful for modulating the stationary lateral response of the road vehicle 1 with respect to the steering inputs (SW) provided by the driver. Through this type of control, ? therefore it is also possible to modify the steering torque perceived by the driver. In modulating (calibrating) the stationary lateral response of the vehicle, the multiplicative factor of the yaw rate ?' ? speed dependent? longitudinal Vx and ? dependent on the driver's requests via the LUT table (lookup table).
Vantaggiosamente ma non necessariamente, il contributo ?TNL imbardante ? calcolato (dal controllore CTR) in funzione della dinamica VDL laterale del veicolo (figura 3), a sua volta funzione della differenza TR-TL di coppia erogata da ciascun rispettivo motore 5 dello stesso asse RA, preferibilmente mediante una relazione geometrica funzione di carreggiata del detto asse RA e raggio delle ruote 3 motrici. Advantageously but not necessarily, the contribution ?TNL yawing ? calculated (by the CTR controller) as a function of the lateral dynamics VDL of the vehicle (figure 3), in turn a function of the difference TR-TL of torque delivered by each respective motor 5 of the same axle RA, preferably by means of a geometric relation function of track of the said RA axis and radius of the 3 drive wheels.
In particolare, preferibilmente, la relazione tra TR-TL e MZ ? determinata univocamente dalle equazioni della dinamica del veicolo (ovvero non dal controllo CTR). In dettaglio, tale relazione si esplica in un guadagno moltiplicativo dato da carreggiata vettura t e raggio ruota R, in cui MZ = 0.5*(TR-TL)/R*t. In particular, preferably, the relationship between TR-TL and MZ ? uniquely determined by the vehicle dynamics equations (i.e. not by the CTR control). In detail, this relationship is expressed in a multiplicative gain given by vehicle track t and wheel radius R, where MZ = 0.5*(TR-TL)/R*t.
In particolare, il contributo ?TNL imbardante ? dato dal prodotto tra la distribuzione FZ% delle forze verticali tra le ruote 3 motrici e la coppia FZM entrante totale all?asse posteriore. In dettaglio, la distribuzione FZ% delle forze verticali tra le ruote 3 motrici indica la percentuale di forza verticale che agisce sulle ruote 3 motrici destra e sinistra rispetto al totale agente sull?asse RA posteriore. Il blocco % indicato in figura 4 indica un semplice calcolo percentuale in cui le forze verticali di ciascuna ruota 3 motrice vengono divise per il totale delle forze FZ agenti sull?asse RA. Pi? precisamente, la coppia FZM ? comandata dal guidatore tramite un apposito pedale e corrisponde sostanzialmente ad una coppia Ti di ingresso (figura 3), ovvero la richiesta di coppia di trazione o frenatura fornita in base alla condizione di almeno un pedale (ad esempio acceleratore). In tal modo, pur dovendo rispettare tale richiesta di coppia da parte del guidatore, la stessa pu? essere suddivisa liberamente tra le ruote 3 motrici in base alle condizioni veicolari, senza sottostare ai limiti dovuti alla differenza di velocit? tra le ruote motrici dei sistemi di arte nota. In particular, the contribution ?TNL yawing ? given by the product between the FZ% distribution of the vertical forces between the 3 drive wheels and the total incoming FZM torque at the rear axle. In detail, the distribution FZ% of the vertical forces between the 3 drive wheels indicates the percentage of vertical force acting on the right and left 3 drive wheels with respect to the total acting on the rear axle RA. The block % indicated in figure 4 indicates a simple percentage calculation in which the vertical forces of each driving wheel 3 are divided by the total forces FZ acting on the axis RA. Pi? precisely, the couple FZM ? controlled by the driver via a suitable pedal and substantially corresponds to an input torque Ti (figure 3), i.e. the traction or braking torque request supplied on the basis of the condition of at least one pedal (for example accelerator). In this way, while having to respect this request for torque from the driver, the same pu? be divided freely between the 3-wheel drive based on the vehicle conditions, without being subject to the limits due to the difference in speed? between the driving wheels of prior art systems.
In alcuni casi non limitativi, la centralina 10 di controllo ? configurata per controllare la coppia TR erogata dal rispettivo motore 5 verso ruota 3 motrice destra in modo da compensare un eventuale fallimento del motore 5 agente sulla ruota 3 motrice sinistra e viceversa. In some non-limiting cases, the control unit 10 ? configured to control the torque TR delivered by the respective motor 5 towards the right driving wheel 3 so as to compensate for any failure of the motor 5 acting on the left driving wheel 3 and vice versa.
Vantaggiosamente ma non necessariamente, in alternativa o in aggiunta, la centralina 10 di controllo ? configurata per monitorare uno o pi? attuatori diversi dai motori 5 (ad esempio le sospensioni 8, in particolare gli ammortizzatori 9) e controllare le coppie TR, TL erogate verso la ruota 3 motrice destra e/o la ruota 3 motrice sinistra in modo da compensare eventuali fallimenti dell?uno o pi? attuatori in modo da mantenere la traiettoria T desiderata del veicolo 1 stradale. Advantageously but not necessarily, as an alternative or in addition, the control unit 10 ? configured to monitor one or more? actuators other than the motors 5 (for example the suspensions 8, in particular the shock absorbers 9) and control the torques TR, TL delivered to the right driving wheel 3 and/or the left driving wheel 3 so as to compensate for any failures of one or more actuators so as to maintain the desired trajectory T of the road vehicle 1.
Secondo una forma di attuazione non limitativa, l?unit? 10 di controllo stima la traiettoria T seguita del veicolo 1 stradale utilizzando le misure fornite in tempo reale da un giroscopio tri-assiale e da un posizionatore satellitare; in particolare, la traiettoria T viene determinata integrando due volte nel tempo le accelerazioni misurate dal giroscopio tri-assiale e le misure fornite dal posizionatore satellitare vengono utilizzate per annullare ciclicamente gli errori di posizione che si verificano nel processo di integrazione. Inoltre, l?unit? 10 di controllo stima la velocit? V di avanzamento del veicolo 1 stradale nel baricentro B utilizzando le misure fornite in tempo reale dal giroscopio tri-assiale; in particolare, la velocit? V del veicolo 1 stradale nel baricentro B viene determinata integrando una volta nel tempo le accelerazioni misurate dal giroscopio tri-assiale (verificando che la velocit? V di avanzamento del veicolo 1 stradale nel baricentro B sia effettivamente tangente alla traiettoria T seguita del veicolo 1 stradale, altrimenti, in caso di scostamento significativo, viene compiuta almeno una ulteriore iterazione del calcolo apportando delle correzioni ai parametri utilizzati). According to a non-limiting embodiment, the unit? the control 10 estimates the trajectory T followed by the road vehicle 1 using the measurements provided in real time by a tri-axial gyroscope and by a satellite positioner; in particular, the trajectory T is determined by integrating the accelerations measured by the tri-axial gyroscope twice over time and the measurements provided by the satellite positioner are used to cyclically cancel the position errors which occur in the integration process. Furthermore, the unit? 10 control estimates the speed? V of progress of the road vehicle 1 in the center of gravity B using the measurements provided in real time by the tri-axial gyroscope; in particular, the speed? V of road vehicle 1 in the center of gravity B is determined by integrating once in time the accelerations measured by the tri-axial gyroscope (verifying that the forward speed V of road vehicle 1 in the center of gravity B is actually tangent to the trajectory T followed by road vehicle 1 otherwise, in the event of a significant deviation, at least one further iteration of the calculation is performed by making corrections to the parameters used).
Durante la percorrenza di una curva, l?unit? 10 di controllo determina in tempo reale (ad esempio come descritto in precedenza) la variazione ?' dell?angolo ? di assetto effettivo (reale) del veicolo 1 stradale. During the course of a curve, the unit? 10 of control determines in real time (for example as previously described) the variation ?' of the corner ? of effective (real) attitude of the road vehicle 1.
Secondo una possibile (ma non vincolante) forma di attuazione, l?unit? 10 di controllo ciclicamente (ad esempio con una frequenza almeno di alcune decine di Hz) stima (in modo noto) una aderenza delle ruote 2 e 3 al fondo stradale, determina un raggio di curvatura della traiettoria T del veicolo 1 stradale (ovvero determina un grado di curvatura della traiettoria T), e determina una velocit? V di avanzamento del veicolo 1 stradale. In funzione dell?aderenza delle ruote 2 e 3 (quindi della stabilit? del veicolo 1 stradale), del raggio di curvatura della traiettoria T, e della velocit? V di avanzamento l?unit? 10 di controllo ciclicamente determina la variazione ?? dell?angolo di assetto. According to a possible (but not binding) embodiment, the unit? The control 10 cyclically (for example with a frequency of at least a few tens of Hz) estimates (in a known way) adhesion of the wheels 2 and 3 to the road surface, determines a radius of curvature of the trajectory T of the road vehicle 1 (that is, it determines a degree of curvature of the trajectory T), and determines a speed? V of progress of the road vehicle 1. As a function of the adhesion of wheels 2 and 3 (therefore of the stability of the road vehicle 1), of the radius of curvature of the trajectory T, and of the speed? V of progress l?unit? 10 control cyclically determines the variation ?? of the trim angle.
L?unit? 10 di controllo rileva o calcola la velocit? ?? di variazione dell?angolo ? di assetto e varia la coppia erogata verso le ruote 3 motrici dai rispettivi motori 5 elettrici. The unit 10 control detects or calculates the speed? ?? of variation of the angle ? attitude and varies the torque delivered to the driving wheels 3 by the respective electric motors 5.
Nella non limitativa forma di attuazione della figura 3, l?unit? 10 di controllo elabora un modello VDL della dinamica laterale del veicolo 1 stradale, in particolare in funzione di input SW di sterzo forniti dal guidatore (ad esempio angolo e sue derivate nel tempo) e di un momento Mz imbardante, il quale ? direttamente proporzionale (tramite un fattore G di proporzionalit?) alla differenza TR-TL di coppia erogata dai motori 5 elettrici. In particolare, il fattore G di proporzionalit? tiene conto della suddetta relazione geometrica funzione della carreggiata posteriore e del raggio delle ruote 3 motrici. Per il calcolo della dinamica laterale del veicolo 1 stradale viene inoltre considerato, in accordo con algoritmi noti, un disturbo d relativo alle condizioni stradali. In the non-limiting embodiment of figure 3, the unit? 10 processes a model VDL of the lateral dynamics of the road vehicle 1, in particular as a function of the steering input SW supplied by the driver (for example angle and its derivatives over time) and of a yawing moment Mz, which ? directly proportional (by means of a G factor of proportionality) to the difference TR-TL of torque supplied by the electric motors 5. In particular, the G factor of proportionality? takes into account the aforementioned geometric relationship as a function of the rear track and the radius of the 3-drive wheels. For the calculation of the lateral dynamics of the road vehicle 1, a disturbance d relating to the road conditions is also considered, in accordance with known algorithms.
A seguito dell?elaborazione del modello VDL, l?unit? 10 controllo invia in ingresso al controllore CTR una pluralit? di input, tra i quali: Following the elaboration of the VDL model, the unit? 10 control sends in input to the CTR controller a plurality? of inputs, including:
- la variazione ?' dell?angolo ? di assetto, ovvero la derivata dell?angolo ? d?assetto calcolata, come precedentemente indicato, da una combinazione non lineare di accelerazione laterale, yaw rate ?' e velocit? V (tutti segnali disponibili da sensori noti a bordo del veicolo 1 stradale); - The variation ?' of the corner ? attitude, or the derivative of? angle? d?attitude calculated, as previously indicated, from a non-linear combination of lateral acceleration, yaw rate ?' and speed? V (all signals available from known sensors on board the road vehicle 1);
- lo yaw rate ?', ovvero la velocit? di imbardata vettura (disponibile da piattaforma inerziale di tipo noto); - the yaw rate ?', or the speed? vehicle yaw (available from a known type of inertial platform);
- le forze Fz verticali agenti sulle ruote 3 motrici, in particolare sulle ruote posteriori (misurate con sensori appositi o stimate tramite modellazione vettura). - the vertical forces Fz acting on the 3-drive wheels, in particular on the rear wheels (measured with special sensors or estimated through car modelling).
Inoltre, al controllore CTR viene fornita in ingresso la coppia Ti di ingresso, ovvero la richiesta di coppia di trazione o frenatura fornita in base alla condizione di almeno un pedale (ad esempio acceleratore). Furthermore, the input torque Ti is supplied to the CTR controller, ie the request for traction or braking torque supplied on the basis of the condition of at least one pedal (for example accelerator).
Il controllore CTR fornisce in uscita verso i motori 5 dell?asse RA motorizzato (posteriore) le coppie TR, TL da erogare, inviando al fattore G di proporzionalit? la loro differenza TR-TL.The CTR controller supplies the TR, TL torques to be supplied at the output towards the motors 5 of the motorized RA axis (rear), sending to the proportionality G factor? their difference TR-TL.
Nella forma di attuazione della figura 4 ? illustrata in forma di diagramma una preferita, ma non limitativa, forma di attuazione della struttura del controllore CTR. In the embodiment of Figure 4 ? illustrated in diagram form a preferred, but non-limiting, embodiment of the structure of the CTR controller.
In particolare, come accennato in precedenza, l?output finale del controllo (prima della verifica del controllo SLC di slittamento) viene calcolato come una somma dei contributi che gestiscono ciascuna area di comportamento dinamico della vettura (imbardante e controimbardante). In particular, as previously mentioned, the final output of the control (before checking the slip SLC control) is calculated as a sum of the contributions which manage each area of dynamic behavior of the car (yawing and counter-yawing).
Riassumendo, la coppia FZM totale richiesta (o Ti), grazie al controllo fin qui descritto, viene suddivisa tra le coppie TR e TL dirette alle ruote 3 motrici senza vincoli legati alla differenza di velocit? angolare delle stesse. In summary, the total FZM torque required (or Ti), thanks to the control described up to now, is divided between the TR and TL torques directed to the 3-wheel drive without constraints related to the speed difference? angle of the same.
? inoltre prevista una calibrazione del controllore CTR elaborando i giusti guadagni, soglie, tabelle saturazioni, ecc. (ad esempio K per ?', o la tabella LUT per Vx o nel controllo di slittamento SCL), tale da inseguire una dinamica vettura desiderata che massimizzi indicatori noti di performance (tempo sul giro in pista) e di piacevolezza di guida. Tale calibrazione consente, in ciascun momento, in base alle condizioni della vettura, di far prevalere il contributo ?TNL, ?TLIN pi? importante. ? moreover, a calibration of the CTR controller is foreseen, elaborating the right gains, thresholds, saturation tables, etc. (for example K for ?', or the LUT table for Vx or in slip control SCL), such as to pursue a desired vehicle dynamics which maximizes known performance indicators (lap time on the track) and driving pleasure. This calibration allows, at any time, based on the conditions of the car, to make the contribution ?TNL, ?TLIN plus? important.
Il metodo di controllo sopra descritto presenta numerosi vantaggi. The control method described above has several advantages.
In primo luogo, il vantaggio rispetto a un sistema con differenziale meccanico consiste nella rimozione del vincolo tra coppie e velocit? angolari delle ruote dello stesso asse. In the first place, the advantage over a system with mechanical differential consists in the removal of the constraint between torque and speed? angles of the wheels of the same axis.
Inoltre, il suddetto metodo consente di mantenere la capacit? stabilizzante di un differenziale meccanico a slittamento limitato, sfruttando al contempo le potenzialit? offerte dalla libert? di erogare liberamente coppie diverse tra le ruote motrici anche in condizioni in cui le stesse hanno la stessa velocit? angolare (ci? non avviene con i sistemi noti). Furthermore, the aforementioned method allows you to maintain the capacity? stabilizer of a mechanical limited slip differential, while exploiting the potential? offered by freedom to freely deliver different torques between the driving wheels even in conditions in which they have the same speed? angular (this does not happen with known systems).
In aggiunta, il controllo sopra descritto permette di mantenere facilmente una traiettoria rettilinea anche su strada sconnessa o inclinata, cos? come di gestire, ad esempio in funzione della posizione di un manettino o delle richieste del guidatore, i contributi imbardante e controimbardante in modo da, ad esempio, favorire il primo in caso l?obiettivo siano le performance, ed il secondo in caso l?obiettivo sia la guidabilit? semplificata del veicolo. In addition, the control described above makes it possible to easily maintain a straight trajectory even on a bumpy or inclined road, as well as how to manage, for example according to the position of a manettino or the requests of the driver, the yawing and counter-yawing contributions in order to, for example, favor the first in case the objective is the performance, and the second in case l? the goal is the driveability? vehicle simplified.
Inoltre, il metodo di controllo sopra descritto ? particolarmente sicuro, in quanto permette di opporsi ad un?imbardata non voluta dal driver, ma causata da eventuali fallimenti rilevati su altri attuatori, intervenendo rapidamente ed efficacemente in caso di necessit?. Furthermore, the control method described above ? particularly safe, as it allows to oppose an unwanted yaw by the driver, but caused by possible failures detected on other actuators, intervening quickly and effectively in case of need.
Infine, il metodo di controllo sopra descritto ? di semplice ed economica implementazione in un veicolo 1 stradale provvisto di un motore per ciascuna ruota motrice, in quanto non richiede l?aggiunta di alcun componente fisico (anzi, ? possibile rimuovere i differenziali facilitando quindi la manutenzione e la flessibilit? del veicolo 1) ed ? completamente realizzabile via software. ? importante osservare che il metodo di controllo sopra descritto non impegna n? una elevata capacit? di calcolo, n? una estesa quantit? di memoria e quindi la sua implementazione ? possibile in una unit? di controllo nota senza necessit? di aggiornamenti o potenziamenti. Finally, the control method described above ? simple and cheap to implement in a road vehicle 1 equipped with a motor for each driving wheel, as it does not require the addition of any physical component (on the contrary, it is possible to remove the differentials thus facilitating maintenance and the flexibility of the vehicle 1) and ? completely feasible via software. ? important to note that the control method described above does not commit nor? a high capacity? of calculation, n? a large amount? of memory and therefore its implementation ? possible in a unit? control note without the need? of updates or upgrades.
ELENCO DEI NUMERI DI RIFERIMENTO DELLE FIGURE LIST OF FIGURE REFERENCE NUMBERS
1 veicolo stradale 1 road vehicle
2 ruote anteriori 2 front wheels
3 ruote posteriori 3 rear wheels
4 sistema di motopropulsione 4 powertrain system
5 motori elettrici 5 electric motors
6 riduttore 6 reducer
7 semiasse 7 axle shaft
8 sospensione 8 suspension
9 ammortizzatore 9 shock absorber
10 unit? di controllo 10 units? control
B baricentro B center of gravity
CTR controllore Controller CTR
d disturbo d disturbance
FZ forze verticali FZ vertical forces
FZ% distribuzione forze verticali FZ% distribution of vertical forces
FZM coppia entrante totale asse posteriore G fattore di proporzionalit? FZM total incoming torque rear axle G factor of proportionality?
K guadagno K gain
LUT look up table LUT look up table
MZ momento imbardante MZ yawing moment
RA Asse posteriore RA Rear axle
RT contributo RT contribution
SL contributo SL contribution
SLC controllo slittamento SLC slip control
SW angolo di sterzo SW steering angle
T traiettoria T trajectory
Ti coppia input You couple inputs
TL coppia ruota sinistra TL left wheel pair
TR coppia ruota destra TR right wheel pair
Vx velocit? longitudinale Vx speed? longitudinal
x asse longitudinale x longitudinal axis
y asse laterale y lateral axis
? angolo di assetto ? trim angle
?' variazione angolo di assetto ?' trim angle variation
?TLIN contributo controimbardante ?TLIN counter yaw contribution
?TNL contributo imbardante ?TNL yawing contribution
?' yaw rate ?' yaw rate
Claims (14)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT102021000015206A IT202100015206A1 (en) | 2021-06-10 | 2021-06-10 | METHOD OF CONTROLLING A ROAD VEHICLE WITH INDEPENDENT ENGINES ACTING ON WHEELS ON THE SAME AXLE AND RELATED ROAD VEHICLE |
US17/831,501 US20220396312A1 (en) | 2021-06-10 | 2022-06-03 | Control method for a road vehicle with independent engines acting on the wheels of the same axle and relative road vehicle |
EP22177462.3A EP4101682A1 (en) | 2021-06-10 | 2022-06-07 | Control method for a road vehicle with independent engines acting on the wheels of the same axle and relative road vehicle |
CN202210652159.6A CN115465114A (en) | 2021-06-10 | 2022-06-09 | Method for controlling a road vehicle having independent engines acting on wheels of the same axle and related road vehicle |
JP2022093465A JP2022189780A (en) | 2021-06-10 | 2022-06-09 | Control method of road vehicle having independent engine acting on wheels of same axle and relevant road vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT102021000015206A IT202100015206A1 (en) | 2021-06-10 | 2021-06-10 | METHOD OF CONTROLLING A ROAD VEHICLE WITH INDEPENDENT ENGINES ACTING ON WHEELS ON THE SAME AXLE AND RELATED ROAD VEHICLE |
Publications (1)
Publication Number | Publication Date |
---|---|
IT202100015206A1 true IT202100015206A1 (en) | 2022-12-10 |
Family
ID=77627342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
IT102021000015206A IT202100015206A1 (en) | 2021-06-10 | 2021-06-10 | METHOD OF CONTROLLING A ROAD VEHICLE WITH INDEPENDENT ENGINES ACTING ON WHEELS ON THE SAME AXLE AND RELATED ROAD VEHICLE |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220396312A1 (en) |
EP (1) | EP4101682A1 (en) |
JP (1) | JP2022189780A (en) |
CN (1) | CN115465114A (en) |
IT (1) | IT202100015206A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11904878B2 (en) * | 2020-08-18 | 2024-02-20 | Ford Global Technologies, Llc | System and method for off-road driving assistance for a vehicle |
IT202100015206A1 (en) * | 2021-06-10 | 2022-12-10 | Ferrari Spa | METHOD OF CONTROLLING A ROAD VEHICLE WITH INDEPENDENT ENGINES ACTING ON WHEELS ON THE SAME AXLE AND RELATED ROAD VEHICLE |
IT202100021065A1 (en) * | 2021-08-04 | 2023-02-04 | Ferrari Spa | METHOD FOR DETERMINING AN OPTIMIZED TORQUE DISTRIBUTION AT THE DRIVE WHEELS OF A ROAD VEHICLE AND RELATED ROAD VEHICLE |
US12101042B2 (en) * | 2021-08-23 | 2024-09-24 | GM Global Technology Operations LLC | System and method for controlling electric motors to function as a virtual electronic locking differential |
CN117446010B (en) * | 2023-12-21 | 2024-04-16 | 中国第一汽车股份有限公司 | Vehicle torque compensation method, system, vehicle and storage medium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004087453A1 (en) | 2003-04-04 | 2004-10-14 | Ferrari S.P.A. | Rear-drive vehicle with an electronically controlled self-locking differential |
WO2015146445A1 (en) * | 2014-03-28 | 2015-10-01 | Toyota Jidosha Kabushiki Kaisha | Motor drive control device |
EP3153382B1 (en) * | 2015-10-07 | 2020-05-06 | FERRARI S.p.A. | Method to control a road vehicle with steering rear wheels when driving along a curve |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2280157B (en) * | 1991-04-26 | 1995-08-09 | Fuji Heavy Ind Ltd | Torque distribution control system for a four-wheel drive motor vehicle |
US5259476A (en) * | 1991-04-26 | 1993-11-09 | Fuji Jukogyo Kabushiki Kaisha | Torque distribution control system for a four-wheel drive motor vehicle |
FR2916717A3 (en) * | 2007-05-30 | 2008-12-05 | Renault Sas | Yawing moment application controlling device for motor vehicle, has front axle with wheels, where device emits setpoint towards piloting unit and control system respectively for applying brake and motor torques on wheels |
US8718897B2 (en) * | 2010-03-29 | 2014-05-06 | Wrightspeed, Inc. | Vehicle dynamics control in electric drive vehicles |
US8626389B2 (en) * | 2010-10-28 | 2014-01-07 | GM Global Technology Operations LLC | Method and system for determining a reference yaw rate for a vehicle |
JP5229341B2 (en) * | 2011-02-28 | 2013-07-03 | 株式会社デンソー | Accelerator pedal misoperation device and program for accelerator pedal misoperation device |
US20160090005A1 (en) * | 2014-03-10 | 2016-03-31 | Dean Drako | Distributed Torque Generation System and Method of Control |
US20160236589A1 (en) * | 2014-03-10 | 2016-08-18 | Shivinder Singh Sikand | Four motor propulsion system and yaw vectoring control circuit |
US11121650B2 (en) * | 2019-11-17 | 2021-09-14 | Michael L Froelich | Direct current motor combinations for electric vehicles |
US10697528B2 (en) * | 2016-03-23 | 2020-06-30 | Shaun Chu | Regenerative differential for differentially steered and front-wheel steered vehicles |
US9709148B1 (en) * | 2016-04-20 | 2017-07-18 | Shaun Chu | Differential system with differential rate governed by variable speed motor and associated method of operation |
US10773708B2 (en) * | 2017-12-12 | 2020-09-15 | Ford Global Technologies, Llc | Hybrid vehicle drift control system and method |
US10814727B2 (en) * | 2018-01-15 | 2020-10-27 | Ford Global Technologies, Llc | Regenerative vehicle braking with wheel slip control and yaw stability control |
JP7038971B2 (en) * | 2018-02-19 | 2022-03-22 | マツダ株式会社 | Vehicle control method, vehicle system and vehicle control device |
US10793124B2 (en) * | 2018-03-07 | 2020-10-06 | Ford Global Technologies, Llc | Vehicle wheel torque control systems and methods |
PL3625075T3 (en) * | 2018-03-12 | 2021-06-28 | Gkn Automotive Limited | Method for controlling a drive torque and drive train assembly for carrying out the method |
DE102018212031A1 (en) * | 2018-07-19 | 2020-01-23 | Robert Bosch Gmbh | Method for operating a motor vehicle, control device and motor vehicle |
JP7031565B2 (en) * | 2018-11-27 | 2022-03-08 | トヨタ自動車株式会社 | Control device for four-wheel drive vehicles |
JP7063258B2 (en) * | 2018-12-17 | 2022-05-09 | トヨタ自動車株式会社 | Vehicle driving force control device |
GB2580392B (en) * | 2019-01-09 | 2021-02-03 | Jaguar Land Rover Ltd | Vehicle stability controller |
US11052757B2 (en) * | 2019-04-05 | 2021-07-06 | GM Global Technology Operations LLC | Methods of controlling axle torque distribution |
US11318946B2 (en) * | 2019-04-10 | 2022-05-03 | Ford Global Technologies, Llc | Methods and system for super positioning torque vectoring on a differential |
US20190351895A1 (en) * | 2019-04-30 | 2019-11-21 | Jacob Ben-Ari | INTEGRATED PROPULSION & STEERING For Battery Electric Vehicles (BEV), Hybrid Electric Vehicles (HEV), Fuel Cell Electric Vehicles (FCEV), AV (Autonomous Vehicles); Electric Trucks, Buses and Semi-Trailers |
US10960882B2 (en) * | 2019-06-18 | 2021-03-30 | Ford Global Technologies, Llc | Method and system for creep torque control |
US11833713B2 (en) * | 2020-03-06 | 2023-12-05 | Oshkosh Corporation | Axle pressure setting systems and methods |
JP7310702B2 (en) * | 2020-05-14 | 2023-07-19 | トヨタ自動車株式会社 | four wheel drive vehicle |
JP7371576B2 (en) * | 2020-06-08 | 2023-10-31 | トヨタ自動車株式会社 | four wheel drive vehicle |
US11584225B2 (en) * | 2020-06-29 | 2023-02-21 | Ford Global Technologies, Llc | One-pedal speed control for off-road driving |
US11505176B2 (en) * | 2020-06-30 | 2022-11-22 | Rivian Ip Holdings, Llc | Systems and methods for controlling torque induced yaw in a vehicle |
US20220111895A1 (en) * | 2020-10-13 | 2022-04-14 | Continental Automotive Systems, Inc. | Method of Using Brakes to Steer a Vehicle |
US11713043B2 (en) * | 2020-12-22 | 2023-08-01 | Ford Global Technologies, Llc | All-wheel drive electric vehicle with simulated axle lock |
US12024160B2 (en) * | 2021-06-09 | 2024-07-02 | Rivian Ip Holdings, Llc | Systems and methods for performing vehicle yaw in an electric vehicle |
IT202100015206A1 (en) * | 2021-06-10 | 2022-12-10 | Ferrari Spa | METHOD OF CONTROLLING A ROAD VEHICLE WITH INDEPENDENT ENGINES ACTING ON WHEELS ON THE SAME AXLE AND RELATED ROAD VEHICLE |
CN114559925A (en) * | 2022-02-23 | 2022-05-31 | 浙江吉利控股集团有限公司 | Four-wheel drive control method of multi-motor plug-in hybrid electric vehicle |
KR20230134021A (en) * | 2022-03-10 | 2023-09-20 | 현대자동차주식회사 | Apparatus for controlling torque vectoring and method |
-
2021
- 2021-06-10 IT IT102021000015206A patent/IT202100015206A1/en unknown
-
2022
- 2022-06-03 US US17/831,501 patent/US20220396312A1/en active Pending
- 2022-06-07 EP EP22177462.3A patent/EP4101682A1/en active Pending
- 2022-06-09 CN CN202210652159.6A patent/CN115465114A/en active Pending
- 2022-06-09 JP JP2022093465A patent/JP2022189780A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004087453A1 (en) | 2003-04-04 | 2004-10-14 | Ferrari S.P.A. | Rear-drive vehicle with an electronically controlled self-locking differential |
WO2015146445A1 (en) * | 2014-03-28 | 2015-10-01 | Toyota Jidosha Kabushiki Kaisha | Motor drive control device |
EP3153382B1 (en) * | 2015-10-07 | 2020-05-06 | FERRARI S.p.A. | Method to control a road vehicle with steering rear wheels when driving along a curve |
Also Published As
Publication number | Publication date |
---|---|
JP2022189780A (en) | 2022-12-22 |
EP4101682A1 (en) | 2022-12-14 |
CN115465114A (en) | 2022-12-13 |
US20220396312A1 (en) | 2022-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
IT202100015206A1 (en) | METHOD OF CONTROLLING A ROAD VEHICLE WITH INDEPENDENT ENGINES ACTING ON WHEELS ON THE SAME AXLE AND RELATED ROAD VEHICLE | |
Velenis et al. | Steady-state drifting stabilization of RWD vehicles | |
US8670909B2 (en) | Automotive vehicle | |
JP3882116B2 (en) | Method for controlling running stability of vehicle | |
JP5039451B2 (en) | Driving torque distribution method | |
US8886410B2 (en) | Methods of controlling four-wheel steered vehicles | |
CN101395025B (en) | Stability-enhanced traction and yaw control using electronically controlled limited-slip differential | |
US7647148B2 (en) | Roll stability control system for an automotive vehicle using coordinated control of anti-roll bar and brakes | |
CN105936273B (en) | Between automobile-used active torque wheel, between centers distribution method | |
CN101175655B (en) | Electric stabilizing system for tricycle | |
ITUB20154207A1 (en) | METHOD OF CONTROL OF A ROAD VEHICLE WITH REAR STEERING WHEELS DURING THE TRAVEL OF A CURVE | |
JP6543393B1 (en) | Steering control device and steering device | |
US20080015754A1 (en) | System for estimating and compensating for lateral disturbances using controlled steering and braking | |
IT202000002746A1 (en) | CONTROL METHOD WHILE TRAVELING A ROAD VEHICLE BEND WITH VARIABLE STIFFNESS AND STEERING REAR WHEELS | |
JP2002114140A (en) | Vehicular rolling behavior control system | |
IT202100015170A1 (en) | METHOD OF CHECKING THE ACTIVE SHOCK ABSORBERS OF A ROAD VEHICLE INVOLVING THE LOWERING OF THE CENTER OF GRAVITY | |
CN110920605B (en) | Vehicle control method and device | |
US6923514B1 (en) | Electronic brake control system | |
Miège et al. | Active roll control of an experimental articulated vehicle | |
KR20210081401A (en) | How to make the vehicle follow the desired curvature path | |
CN111231940A (en) | Vehicle motion control system | |
IT202100021065A1 (en) | METHOD FOR DETERMINING AN OPTIMIZED TORQUE DISTRIBUTION AT THE DRIVE WHEELS OF A ROAD VEHICLE AND RELATED ROAD VEHICLE | |
US20180281603A1 (en) | Method for operating a motor vehicle, control unit and motor vehicle | |
WO2013141787A1 (en) | Method and arrangement for estimating height of center of gravity for a trailer | |
Jilek et al. | The adhesion force change of an experimental road vehicle |