IT202000007948A1 - COPPER AND ANTIMONY BASED MATERIAL AND ELECTRODE FOR THE SELECTIVE CONVERSION OF CARBON DIOXIDE TO CARBON MONOXIDE - Google Patents
COPPER AND ANTIMONY BASED MATERIAL AND ELECTRODE FOR THE SELECTIVE CONVERSION OF CARBON DIOXIDE TO CARBON MONOXIDE Download PDFInfo
- Publication number
- IT202000007948A1 IT202000007948A1 IT102020000007948A IT202000007948A IT202000007948A1 IT 202000007948 A1 IT202000007948 A1 IT 202000007948A1 IT 102020000007948 A IT102020000007948 A IT 102020000007948A IT 202000007948 A IT202000007948 A IT 202000007948A IT 202000007948 A1 IT202000007948 A1 IT 202000007948A1
- Authority
- IT
- Italy
- Prior art keywords
- antimony
- electrode
- copper
- carbon
- electrocatalyst
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims description 57
- 229910052787 antimony Inorganic materials 0.000 title claims description 28
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 title claims description 19
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title description 76
- 239000001569 carbon dioxide Substances 0.000 title description 38
- 229910002092 carbon dioxide Inorganic materials 0.000 title description 38
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 title description 29
- 229910002091 carbon monoxide Inorganic materials 0.000 title description 29
- 238000006243 chemical reaction Methods 0.000 title description 13
- 239000000203 mixture Substances 0.000 claims description 27
- 239000010411 electrocatalyst Substances 0.000 claims description 23
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 21
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 18
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(i) oxide Chemical compound [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 claims description 18
- 230000009467 reduction Effects 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 15
- 239000004020 conductor Substances 0.000 claims description 13
- 239000000843 powder Substances 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 9
- 239000000243 solution Substances 0.000 claims description 9
- 239000002904 solvent Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 claims description 6
- 239000006229 carbon black Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 5
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical class [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims description 4
- 239000002244 precipitate Substances 0.000 claims description 4
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 claims description 3
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 claims description 3
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 claims description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 3
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 3
- 150000001413 amino acids Chemical class 0.000 claims description 3
- FAWGZAFXDJGWBB-UHFFFAOYSA-N antimony(3+) Chemical class [Sb+3] FAWGZAFXDJGWBB-UHFFFAOYSA-N 0.000 claims description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 3
- -1 copper (II) salt Chemical class 0.000 claims description 3
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 claims description 3
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 3
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 claims description 3
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 claims description 3
- 239000002041 carbon nanotube Substances 0.000 claims description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 239000004744 fabric Substances 0.000 claims description 2
- 229910021389 graphene Inorganic materials 0.000 claims description 2
- 229910002804 graphite Inorganic materials 0.000 claims description 2
- 239000010439 graphite Substances 0.000 claims description 2
- 229920000554 ionomer Polymers 0.000 claims description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims 2
- 229910002651 NO3 Inorganic materials 0.000 claims 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims 2
- 229910021653 sulphate ion Inorganic materials 0.000 claims 1
- 239000010949 copper Substances 0.000 description 36
- 238000006722 reduction reaction Methods 0.000 description 22
- 229910052802 copper Inorganic materials 0.000 description 18
- 239000000047 product Substances 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 10
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 238000002441 X-ray diffraction Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Inorganic materials O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 5
- 235000019253 formic acid Nutrition 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- YEAUATLBSVJFOY-UHFFFAOYSA-N tetraantimony hexaoxide Chemical compound O1[Sb](O2)O[Sb]3O[Sb]1O[Sb]2O3 YEAUATLBSVJFOY-UHFFFAOYSA-N 0.000 description 5
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 4
- 229920000557 Nafion® Polymers 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 229910000410 antimony oxide Inorganic materials 0.000 description 3
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(II) acetate Substances [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 3
- 229940112669 cuprous oxide Drugs 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 238000000441 X-ray spectroscopy Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 150000001879 copper Chemical class 0.000 description 2
- JVLRYPRBKSMEBF-UHFFFAOYSA-K diacetyloxystibanyl acetate Chemical compound [Sb+3].CC([O-])=O.CC([O-])=O.CC([O-])=O JVLRYPRBKSMEBF-UHFFFAOYSA-K 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 229910002703 Al K Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 1
- TXTQARDVRPFFHL-UHFFFAOYSA-N [Sb].[H][H] Chemical compound [Sb].[H][H] TXTQARDVRPFFHL-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 238000004177 carbon cycle Methods 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- NWFNSTOSIVLCJA-UHFFFAOYSA-L copper;diacetate;hydrate Chemical compound O.[Cu+2].CC([O-])=O.CC([O-])=O NWFNSTOSIVLCJA-UHFFFAOYSA-L 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 125000003827 glycol group Chemical group 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 229910009112 xH2O Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/02—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/23—Carbon monoxide or syngas
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/02—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
- C25B11/037—Electrodes made of particles
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/042—Electrodes formed of a single material
- C25B11/043—Carbon, e.g. diamond or graphene
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/055—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
- C25B11/057—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
- C25B11/061—Metal or alloy
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/055—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
- C25B11/057—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
- C25B11/065—Carbon
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Electrochemistry (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Catalysts (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
Description
?MATERIALE ED ELETTRODO A BASE DI RAME E ANTIMONIO PER LA CONVERSIONE SELETTIVA DI BIOSSIDO DI CARBONIO A MONOSSIDO DI CARBONIO? ? COPPER AND ANTIMONY BASED MATERIAL AND ELECTRODE FOR THE SELECTIVE CONVERSION OF CARBON DIOXIDE TO CARBON MONOXIDE?
CAMPO DELL?INVENZIONE FIELD OF INVENTION
La presente invenzione si riferisce ad un materiale a base di rame e antimonio, e ad un elettrodo ottenuto con questo materiale, utili per la riduzione elettrochimica di biossido di carbonio a monossido di carbonio con elevata efficienza e selettivit?. The present invention refers to a material based on copper and antimony, and to an electrode obtained with this material, useful for the electrochemical reduction of carbon dioxide to carbon monoxide with high efficiency and selectivity.
STATO DELLA TECNICA STATE OF THE TECHNIQUE
Le ingentissime emissioni di biossido di carbonio (CO2), anche noto come anidride carbonica, dovute alla combustione di combustibili fossili, sono state riconosciute responsabili del cambiamento climatico globale. Per affrontare questo problema, sono allo studio strategie come la cattura e lo stoccaggio di CO2, con l?obiettivo di rallentare o meglio fermare l?accumulo di CO2 nell?atmosfera. La trasformazione della CO2 catturata in ulteriori prodotti chimici, combustibili o di altro tipo, ? di fondamentale importanza per ottenere un ciclo del carbonio sostenibile e per stoccare energia a lungo termine. Tra le diverse tecnologie di trasformazione della CO2, la conversione elettrochimica ? considerata particolarmente interessante poich? pu? utilizzare energia ottenuta da fonti rinnovabili. Questa tecnologia, sebbene molto promettente, ? di applicabilit? non immediata a causa dell?elevata stabilit? della molecola di CO2, della lenta cinetica e dei complessi meccanismi della reazione di riduzione della CO2. The huge emissions of carbon dioxide (CO2), also known as carbon dioxide, from the combustion of fossil fuels, have been recognized as responsible for global climate change. To address this problem, strategies such as the capture and storage of CO2 are being studied, with the aim of slowing or rather stopping the accumulation of CO2 in the atmosphere. The transformation of the captured CO2 into further chemicals, fuels or other,? of fundamental importance to achieve a sustainable carbon cycle and to store energy in the long term. Among the different CO2 transformation technologies, the electrochemical conversion? considered particularly interesting since? can use energy obtained from renewable sources. This technology, while very promising,? of applicability? not immediate due to the high stability? of the CO2 molecule, of the slow kinetics and of the complex mechanisms of the CO2 reduction reaction.
La riduzione di CO2 pu? avvenire secondo diversi processi di trasferimento di elettroni accoppiati a protoni. Le reazioni di riduzione della CO2 per la produzione di composti contenenti un singolo atomo di carbonio e l?evoluzione elettrochimica di H2 sono riportate di seguito come R1-R5, insieme ai relativi potenziali standard: The reduction of CO2 can? take place according to different transfer processes of electrons coupled to protons. The CO2 reduction reactions for the production of compounds containing a single carbon atom and the electrochemical evolution of H2 are listed below as R1-R5, along with their standard potentials:
I valori di E<0 >sono riportati in condizioni standard (1 atm e 25 ?C) rispetto all?elettrodo di idrogeno reversibile (RHE) in mezzi acquosi. Se non diversamente specificato, nella presente descrizione tutti i potenziali si riferiscono all?RHE. The values of E <0> are reported in standard conditions (1 atm and 25 ° C) with respect to the reversible hydrogen electrode (RHE) in aqueous media. Unless otherwise specified, in this description all potentials refer to RHE.
Tra i numerosi prodotti della riduzione di CO2, l?acido formico (HCOOH) e il monossido di carbonio (CO) sono gli unici prodotti economicamente validi che sono stati ottenuti finora con produttivit? rilevanti. La CO ? molto desiderata nel settore industriale, poich? la sua miscela con idrogeno (H2), vale a dire il gas sintetico o syngas, pu? essere convertita in idrocarburi attraverso il processo Fischer-Tropsch. Among the numerous products of CO2 reduction, formic acid (HCOOH) and carbon monoxide (CO) are the only economically viable products that have been obtained so far with productivity. relevant. CO? much desired in the industrial sector, since? its mixture with hydrogen (H2), ie the synthetic gas or syngas, can? be converted into hydrocarbons through the Fischer-Tropsch process.
Poich? per? i valori dei potenziali standard delle reazioni sopra riportate sono simili, di norma il risultato del processo ? una miscela di prodotti, di difficile o non agevole utilizzo industriale. Inoltre, la reazione parassita di evoluzione di idrogeno avviene di solito con resa superiore alla riduzione di CO2 in elettrolita acquoso. Since? for? are the values of the standard potentials of the above reactions similar, usually the result of the process? a mixture of products, difficult or not easy to use in the industrial sector. Furthermore, the parasitic reaction of hydrogen evolution usually takes place with a higher yield than the reduction of CO2 in aqueous electrolyte.
Pertanto, sono necessari materiali di elettrodo in grado di garantire un?elevata efficienza di conversione della CO2 e al contempo un?elevata selettivit? verso uno specifico prodotto di reazione, in particolare verso CO; materiali di questo tipo sono generalmente noti in elettrochimica con la definizione di elettrocatalizzatori. Therefore, electrode materials are needed that can guarantee a high CO2 conversion efficiency and at the same time a high selectivity. towards a specific reaction product, in particular towards CO; materials of this type are generally known in electrochemistry with the definition of electrocatalysts.
Secondo studi sperimentali e teorici, l?oro (Au), l?argento (Ag) e il palladio (Pd) sono considerati i migliori elettrocatalizzatori metallici per convertire CO2 in CO; questi metalli non possono per? essere impiegati su scala industriale per questo scopo a causa del loro elevato costo e della loro disponibilit? ridotta. According to experimental and theoretical studies, gold (Au), silver (Ag) and palladium (Pd) are considered the best metallic electrocatalysts for converting CO2 into CO; these metals can not for? be used on an industrial scale for this purpose due to their high cost and availability? reduced.
Oltre ai precedenti materiali, sono state studiate le propriet? elettrocatalitiche, nella riduzione di CO2, di metalli quali rame (Cu), zinco (Zn), stagno (Sn), indio (In) e bismuto (Bi). Il solo Cu non ha una buona selettivit? per nessun prodotto; Zn ha selettivit? sufficiente, ma non ottimale, per la produzione di CO; Sn, In e Bi sono selettivi per la produzione di HCOOH. In addition to the previous materials, the properties have been studied. electrocatalytic, in the reduction of CO2, of metals such as copper (Cu), zinc (Zn), tin (Sn), indium (In) and bismuth (Bi). Cu alone does not have good selectivity? for no product; Does Zn have selectivity? sufficient, but not optimal, for the production of CO; Sn, In and Bi are selective for the production of HCOOH.
In alcuni documenti sono discusse le propriet? come elettrocatalizzatori di composizioni diverse da metalli singoli. In some documents the properties are discussed. as electrocatalysts of compositions other than single metals.
La domanda di brevetto US 2019/0127866 A1 descrive un materiale elettrocatalizzatore per la conversione di CO2 ad etanolo, comprendente nanoparticelle di rame o sue leghe supportate da punte di dimensioni nanometriche (?nanospike?) di carbonio drogato con azoto, boro o fosforo. Le leghe di rame indicate come utili da questo documento sono tutte quelle dell?elemento con uno o pi? elementi scelti tra quelli dei Gruppi 3-15 della tavola periodica. Leghe indicate come preferite sono quelle tra rame ed un elemento scelto tra Ni, Co, Zn, In, Ag e Sn. Gli elettrocatalizzatori di questo documento presentano una selettivit? pi? elevata per l?elettroriduzione della CO2 rispetto all?evoluzione dell?H2 con un?alta efficienza faradica nella produzione di etanolo, con una resa in questo composto di almeno il 60% della miscela; altre specie, come il monossido di carbonio, vengono quindi prodotte con resa non superiore al 40%. Oltre al fatto che viene comunque prodotta una miscela di prodotti, la preparazione dei nanospike di carbonio drogato rende il processo non immediato. US patent application 2019/0127866 A1 describes an electrocatalyst material for the conversion of CO2 to ethanol, comprising nanoparticles of copper or its alloys supported by nano-sized tips (? Nanospike?) Of carbon doped with nitrogen, boron or phosphorus. The copper alloys indicated as useful by this document are all those of the element with one or more? elements chosen from those of Groups 3-15 of the periodic table. Alloys indicated as preferred are those between copper and an element selected from Ni, Co, Zn, In, Ag and Sn. The electrocatalysts of this document have a selectivity? pi? high due to the electro-reduction of CO2 compared to the evolution of H2 with a high faradic efficiency in the production of ethanol, with a yield in this compound of at least 60% of the mixture; other species, such as carbon monoxide, are therefore produced with a yield not exceeding 40%. In addition to the fact that a mixture of products is still produced, the preparation of the doped carbon nanospikes makes the process not immediate.
L?articolo ?Achieving highly selective electrocatalytic CO2 reduction by tuning CuO-Sb2O3 nanocomposites?, Y. Li et al., ACS Sustainable Chem. Eng.2020, 8, 12, 4948-4954, descrive un materiale elettrocatalizzatore costituito da una miscela di carbonio in forma finemente suddivisa (?carbon black?) e polveri di un ossido misto di rame(II) (CuO) e antimonio(III) (Sb2O3). Lo scopo di questo studio ? di identificare le migliori condizioni di conversione di CO2 a CO. I materiali di questo articolo sono prodotti dissolvendo sali solubili di Cu(II) e Sb(III) in una sospensione di carbon black in etanolo, aggiungendo alla sospensione una base (KOH) e lasciando reagire il sistema per 6 ore ad una temperatura di 80 ?C ottenuta con un bagno ad olio; il precipitato ottenuto viene poi lavato con acqua ed etanolo ed infine essiccato. La miscela di polveri cos? ottenuta viene poi distribuita su una carta di carbonio (?carbon paper?) ottenendo degli elettrodi. Nella sezione ?Results and discussion? dell?articolo ? confermato che l?ossido di rame ? in forma di CuO (cio? il rame ? in stato di ossidazione (II)) e che l?ossido di antimonio ? in forma di Sb2O3 (cio? l?antimonio ? in stato di ossidazione (III)), tramite analisi di diffrazione di raggi X (XRD, Fig. 1.a dell?articolo) che mostra la presenza dei picchi caratteristici di CuO e Sb2O3, tramite spettroscopia fotoelettronica a raggi X (XPS, Fig. 1.b) e tramite spettroscopia Raman (Fig. 1.c). Come mostrato nell?articolo (si veda la figura 3.b), i risultati migliori si ottengono col rapporto molare Cu:Sb 10:1, con cui si ottengono rese faradiche approssimativamente del 10% per HCOOH, 10% per H2 e 80% per CO, mentre gli autori riportano che all?aumentare del contenuto di Sb la resa di CO cala rapidamente. I risultati ottenuti col materiale migliore di questo articolo sono gi? interessanti, ma ancora non ottimali sia come resa di CO sia come selettivit? verso questo composto (viene ottenuta una miscela di tre prodotti). The article? Achieving highly selective electrocatalytic CO2 reduction by tuning CuO-Sb2O3 nanocomposites ?, Y. Li et al., ACS Sustainable Chem. Eng. 2020, 8, 12, 4948-4954, describes an electrocatalyst material consisting of a mixture of carbon in finely divided form (? Carbon black?) And powders of a mixed oxide of copper (II) (CuO) and antimony (III ) (Sb2O3). The purpose of this study? to identify the best conditions for converting CO2 to CO. The materials of this article are produced by dissolving soluble salts of Cu (II) and Sb (III) in a suspension of carbon black in ethanol, adding a base (KOH) to the suspension and letting the system react for 6 hours at a temperature of 80 ? C obtained with an oil bath; the precipitate obtained is then washed with water and ethanol and finally dried. The mixture of powders so? obtained is then distributed on a carbon paper (? carbon paper?) obtaining electrodes. In the section? Results and discussion? dell? article? confirmed that copper oxide? in the form of CuO (ie copper? in an oxidation state (II)) and that the antimony oxide? in the form of Sb2O3 (i.e. antimony in oxidation state (III)), by means of X-ray diffraction analysis (XRD, Fig. 1.a of the article) which shows the presence of the characteristic peaks of CuO and Sb2O3 , by X-ray photoelectron spectroscopy (XPS, Fig. 1.b) and by Raman spectroscopy (Fig. 1.c). As shown in the article (see figure 3.b), the best results are obtained with the molar ratio Cu: Sb 10: 1, with which faradic yields of approximately 10% for HCOOH, 10% for H2 and 80% are obtained. for CO, while the authors report that as the Sb content increases, the CO yield drops rapidly. The results obtained with the best material of this article are already? interesting, but still not optimal both as CO yield and as selectivity? towards this compound (a mixture of three products is obtained).
Scopo della presente invenzione ? quello di superare i problemi della tecnica nota, e in particolare di fornire un materiale elettrocatalizzatore che consenta di ottenere nella reazione di riduzione elettrochimica di CO2 una resa di CO e una selettivit? verso questo composto pi? elevate rispetto agli elettrocatalizzatori della tecnica nota. Un altro scopo dell?invenzione ? di mettere a disposizione un processo economicamente vantaggioso per la produzione su larga scala di questo elettrocatalizzatore. Purpose of the present invention? that of overcoming the problems of the known art, and in particular of providing an electrocatalyst material which allows to obtain a yield of CO and a selectivity in the CO2 electrochemical reduction reaction. towards this compound more? high compared to the electrocatalysts of the known art. Another purpose of the invention? to provide a cost-effective process for the large-scale production of this electrocatalyst.
SOMMARIO DELL?INVENZIONE SUMMARY OF THE INVENTION
Questi scopi vengono raggiunti con la presente invenzione, che in un suo primo aspetto riguarda un materiale elettrocatalizzatore costituito da ossido di rame(I) (Cu2O) contenente antimonio, in cui la quantit? di antimonio ? compresa tra il 5% e 25,2% in peso. These objects are achieved with the present invention, which in a first aspect relates to an electrocatalyst material consisting of copper (I) oxide (Cu2O) containing antimony, in which the quantity? of antimony? between 5% and 25.2% by weight.
Questo materiale viene impiegato in forma finemente suddivisa per produrre elettrodi per la riduzione elettrochimica di CO2, in cui detto materiale ? combinato con un materiale elettroconduttore. This material is used in finely divided form to produce electrodes for the electrochemical reduction of CO2, in which said material? combined with an electroconductive material.
In un suo secondo aspetto l?invenzione riguarda un processo per la produzione del materiale elettrocatalizzatore, che comprende i seguenti passaggi: In a second aspect, the invention relates to a process for the production of the electrocatalyst material, which includes the following steps:
a) dissolvere un sale di rame(II) e un sale di antimonio(III) in un solvente scelto tra etanolo, glicole etilenico, acetilacetone, dietilammina, etilendiammina, oleilammina, N,N-dimetilformammide, miscele di questi solventi tra loro, con acqua o con soluzioni acquose di D-glucosio, idrato di idrazina, aminoacidi o carbossimetilcellulosa di sodio; a) dissolve a copper (II) salt and an antimony (III) salt in a solvent selected from ethanol, ethylene glycol, acetylacetone, diethylamine, ethylenediamine, oleylamine, N, N-dimethylformamide, mixtures of these solvents with each other, with water or with aqueous solutions of D-glucose, hydrazine hydrate, amino acids or sodium carboxymethylcellulose;
b) scaldare la soluzione in forno a microonde ad una temperatura compresa tra 180 e 230 ?C per un tempo compreso tra 1 e 10 minuti; b) heat the solution in a microwave oven at a temperature between 180 and 230 ° C for a time between 1 and 10 minutes;
c) separazione del precipitato dalla soluzione e sua asciugatura. c) separation of the precipitate from the solution and its drying.
BREVE DESCRIZIONE DELLE FIGURE BRIEF DESCRIPTION OF THE FIGURES
L?invenzione verr? descritta in dettaglio nel seguito con riferimento alle figure, in cui: The invention will come described in detail below with reference to the figures, in which:
- la Fig. 1 mostra microfotografie ottenute con microscopio elettronico a scansione ad effetto di campo (FESEM) di vari materiali dell?invenzione e tre materiali di confronto; - Fig. 1 shows photomicrographs obtained with a scanning electron field effect microscope (FESEM) of various materials of the invention and three comparison materials;
- la Fig.2 mostra i risultati di diffrazione ai raggi X (XRD) di campioni di polveri di materiali dell?invenzione aventi diversa composizione e tre materiali di confronto; - Fig.2 shows the results of X-ray diffraction (XRD) of powder samples of materials of the invention having different composition and three comparison materials;
- la Fig. 3 mostra spettri ottenuti tramite spettroscopia fotoelettronica a raggi X (XPS) per Cu e Sb su un campione dell?invenzione; - Fig. 3 shows spectra obtained by X-ray photoelectron spectroscopy (XPS) for Cu and Sb on a sample of the invention;
- la Fig. 4 rappresenta in forma schematica una cella elettrolitica impiegata per realizzare le prove di riduzione di CO2 riportate nella sezione degli Esempi; - Fig. 4 is a schematic view of an electrolytic cell used to carry out the CO2 reduction tests reported in the section of the Examples;
- la Fig.5 mostra grafici rappresentativi dell?efficienza faradica nella conversione da CO2 a CO ottenuta con un materiale dell?invenzione. - Fig. 5 shows representative graphs of the faradic efficiency in the conversion from CO2 to CO obtained with a material of the invention.
DESCRIZIONE DETTAGLIATA DELL?INVENZIONE DETAILED DESCRIPTION OF THE INVENTION
Gli inventori hanno trovato che l?ossido di rame(I) (Cu2O, ossido rameoso) contenente antimonio in quantit? compresa tra 5 e 25,2% in peso, quando impiegato per produrre un elettrodo, consente di ottenere la riduzione elettrochimica di CO2 a CO con valori pi? alti di efficienza faradica e selettivit? rispetto ai materiali conosciuti. I composti dell?invenzione consentono di ottenere questi risultati impiegando rame e antimonio, che sono componenti economici ed ampiamente reperibili. The inventors have found that copper (I) oxide (Cu2O, cuprous oxide) containing antimony in quantities? between 5 and 25.2% by weight, when used to produce an electrode, it allows to obtain the electrochemical reduction of CO2 to CO with values pi? high faradic efficiency and selectivity? compared to known materials. The compounds of the invention allow these results to be obtained by using copper and antimony, which are cheap and widely available components.
Un materiale simile a quello della presente invenzione ? stato descritto nell?articolo ?Optimal synthesis of antimony-doped cuprous oxides for photoelectrochemical applications?, Dae Yun et al., Thin Solid Films 671 (2019) 120-126. Questo documento ? per? diretto allo studio dell?influenza della concentrazione di Sb sulle propriet? strutturali, elettriche e fotoelettrochimiche dei film sottili di ossido rameoso ai fini della scissione fotoelettrochimica dell?acqua; inoltre, questo studio riporta materiali in cui la quantit? di Sb arriva al massimo fino all?1% in moli, ed indica come materiale preferito per lo scopo citato Cu2O drogato con 0,75% molare di Sb. A material similar to that of the present invention? described in the article? Optimal synthesis of antimony-doped cuprous oxides for photoelectrochemical applications ?, Dae Yun et al., Thin Solid Films 671 (2019) 120-126. This document ? for? directed to the study of the influence of Sb concentration on the properties? structural, electrical and photoelectrochemical of cuprous oxide thin films for the purpose of photoelectrochemical cleavage of water; moreover, this study reports materials in which the quantity? of Sb reaches a maximum of up to 1% by moles, and indicates as the preferred material for the aforementioned purpose Cu2O doped with 0.75% molar of Sb.
I materiali dell?invenzione verranno indicati generalmente nel seguito con la notazione Cu2O/Sb, indipendentemente dalla specifica composizione. The materials of the invention will be generally indicated in the following with the notation Cu2O / Sb, independently of the specific composition.
I materiali Cu2O/Sb dell?invenzione hanno un contenuto di Sb compreso tra 5,2 e 25,2% in peso; preferiti sono i materiali con un contenuto di Sb compreso tra 17,2 e 20,1% in peso. The Cu2O / Sb materials of the invention have an Sb content of between 5.2 and 25.2% by weight; materials with an Sb content of between 17.2 and 20.1% by weight are preferred.
I materiali dell?invenzione vengono ottenuti ed impiegati in forma di polveri. La morfologia di queste polveri ? uniforme ed omogenea almeno fino alla concentrazione di Sb del 25,2%. La Fig.1 mostra immagini ottenute con microscopio elettronico a scansione ad effetto di campo (FESEM) di campioni dell?invenzione a contenuto crescente di Sb (Figg. da 1(b) a 1(g)) e, per confronto, di tre campioni prodotti seguendo la stessa metodica dei campioni dell?invenzione ma contenenti solo rame (Fig. 1(a)), solo antimonio (Fig. 1(i)), e un campione contenente una quantit? di antimonio superiore a 25,2% (pari a 36%; Fig. 1(h)); in particolare, la quantit? % in peso di Sb nei campioni dell?invenzione preparati come descritto nell?Esempio 1, determinata con analisi chimica, ? la seguente: The materials of the invention are obtained and used in the form of powders. The morphology of these powders? uniform and homogeneous at least up to the Sb concentration of 25.2%. Fig. 1 shows images obtained with a scanning field effect electron microscope (FESEM) of samples of the invention with increasing Sb content (Figs. From 1 (b) to 1 (g)) and, for comparison, of three samples produced following the same method as the samples of the invention but containing only copper (Fig. 1 (a)), only antimony (Fig. 1 (i)), and a sample containing a quantity of of antimony greater than 25.2% (equal to 36%; Fig. 1 (h)); in particular, the quantity? % by weight of Sb in the samples of the invention prepared as described in Example 1, determined by chemical analysis,? the following:
- Fig.1(b): 5,2; - Fig. 1 (b): 5.2;
- Fig.1(c): 9,4; - Fig. 1 (c): 9.4;
- Fig. 1(d): 13,6; - Fig. 1 (d): 13.6;
- Fig. 1(e): 17,2; - Fig. 1 (e): 17.2;
- Fig. 1(f): 20,1; - Fig. 1 (f): 20.1;
- Fig. 1(g): 25,2. - Fig. 1 (g): 25.2.
Come si nota nelle immagini, i materiali dell?invenzione con un contenuto di Sb fino al 25,2% in peso hanno una morfologia simile tra loro, e sono costituiti da polveri in forma di particelle essenzialmente sferiche con distribuzione dimensionale molto stretta (tutte le particelle hanno dimensioni di circa 5 ?m), composte da nanoparticelle strettamente impaccate. Per concentrazioni superiori a 25,2% si osservano particelle ricche di Sb e la formazione di una fase isolata costituita da Sb2O3 cristallino (particelle ottaedriche in Fig. 1(h), da confrontare con l?immagine dell?ossido di antimonio puro in Fig. 1(i)). L?analisi della spettroscopia a raggi X a dispersione di energia (EDX) indica che Sb ? distribuito uniformemente nei campioni oggetto dell?invenzione. As can be seen in the images, the materials of the invention with an Sb content up to 25.2% by weight have a similar morphology to each other, and consist of powders in the form of essentially spherical particles with a very narrow dimensional distribution (all particles are about 5 µm in size), composed of tightly packed nanoparticles. For concentrations higher than 25.2%, Sb-rich particles and the formation of an isolated phase consisting of crystalline Sb2O3 are observed (octahedral particles in Fig. 1 (h), to be compared with the image of pure antimony oxide in Fig. . 1 (i)). Analysis of energy dispersive X-ray spectroscopy (EDX) indicates that Sb? uniformly distributed in the samples object of the invention.
L?analisi XRD conferma che il materiale ? essenzialmente ossido rameoso. In Fig.2 sono riportati, dall?alto in basso, i diffrattogrammi rispettivamente per il campione contenente solo rame, dei campioni a concentrazione crescente di antimonio, e del campione contenente solo antimonio. Come si nota in figura, nei campioni dell?invenzione fino al contenuto di Sb del 25,2% in peso sono presenti solo picchi attribuibili alla fase Cu2O (con intensit? decrescente all?aumentare del contenuto di Sb); nel campione con contenuto di Sb del 36,0% in peso appaiono invece, pur se con bassa intensit?, picchi attribuibili alla fase Sb2O3. The XRD analysis confirms that the material? essentially cuprous oxide. Fig. 2 shows, from top to bottom, the diffractograms respectively for the sample containing only copper, for the samples with increasing antimony concentration, and for the sample containing only antimony. As can be seen in the figure, in the samples of the invention up to the Sb content of 25.2% by weight there are only peaks attributable to the Cu2O phase (with decreasing intensity as the Sb content increases); in the sample with an Sb content of 36.0% by weight, on the other hand, peaks attributable to the Sb2O3 phase appear, albeit with low intensity.
La composizione ? confermata anche dalla spettroscopia XPS ad alta risoluzione (HR). La Figura 3 mostra gli spettri tipici del campione contenente 17,2% in peso di Sb. Dalla misurazione XPS (Fig. 3a) risulta che l?antimonio ? presente nel campione sotto forma di ioni Sb<3+>, come evidenziato dagli intensi picchi relativi a Sb 3d5/2 e Sb 3d3/2 centrati rispettivamente a 530,06 eV e 539,45 eV. La Fig.3b mostra invece la regione dello spettro XPS corrispondente al doppietto Cu 2p; poich? il picco di Cu 2p ? difficile da deconvolvere a causa della sovrapposizione di numerosi picchi, viene acquisita anche la regione Auger CuLMM (inserto nella Figura 3b). L?energia cinetica del picco ? 916,8 eV, che corrisponde a Cu<+>. Il parametro Auger modificato ? circa 1848,8 eV, correlato a uno stato di ossidazione medio di Cu (I). ? quindi evidente che il rame ? presente nei campioni in forma di ione Cu<+>. The composition ? also confirmed by high resolution (HR) XPS spectroscopy. Figure 3 shows the typical spectra of the sample containing 17.2% by weight of Sb. From the XPS measurement (Fig. 3a) it appears that antimony? present in the sample in the form of Sb <3+> ions, as evidenced by the intense peaks related to Sb 3d5 / 2 and Sb 3d3 / 2 centered respectively at 530.06 eV and 539.45 eV. Fig.3b instead shows the region of the XPS spectrum corresponding to the Cu 2p doublet; since? the Cu 2p peak? difficult to deconvolve due to the overlap of numerous peaks, the Auger CuLMM region is also acquired (inset in Figure 3b). The kinetic energy of the peak? 916.8 eV, which corresponds to Cu <+>. Auger parameter changed? approximately 1848.8 eV, correlated to an average oxidation state of Cu (I). ? so it is clear that copper? present in samples in the form of Cu <+> ion.
Visto che i materiali elettrocatalizzatori dell?invenzione sono di per s? scarsi conduttori elettrici, per la produzione di elettrodi per la riduzione di CO2 vengono impiegati in combinazione con materiali conduttori. Preferibilmente, il materiale conduttore ? a sua volta in forma di polveri o altra forma finemente suddivisa. Allo scopo viene generalmente impiegato un materiale a base di carbonio, grazie alla sua bassa attivit? catalitica, per esempio nerofumo (carbon black), grafite, grafeni, nanotubi di carbonio o loro miscele; il materiale conduttore preferito ? il carbon black. Il materiale elettrocatalizzatore dell?invenzione e il materiale conduttore vengono impiegati in rapporti in peso compresi tra 9:1 e 19:1. Per la produzione dell?elettrodo, la miscela tra materiale elettrocatalizzatore dell?invenzione e materiale conduttore viene distribuita su un supporto, che pu? essere a sua volta conduttore o meno. Esempi di supporti preferiti sono carta di carbonio (carbon paper) conduttivo, panno di carbonio (carbon cloth) conduttivo e rete metallica (metal mesh). La stabilizzazione della miscela di polveri sul supporto pu? essere ottenuta con ionomeri, cio? polimeri conduttivi per ioni, che formano una pellicola contenitiva e conduttiva sulle polveri. Since the electrocatalyst materials of the invention are in themselves? poor electrical conductors, for the production of electrodes for CO2 reduction are used in combination with conductive materials. Preferably, the conductive material? in turn in the form of powders or other finely divided form. For this purpose, a carbon-based material is generally used, thanks to its low activity. catalytic, for example carbon black, graphite, graphenes, carbon nanotubes or mixtures thereof; your favorite conductor material? carbon black. The electrocatalyst material of the invention and the conductive material are used in weight ratios ranging from 9: 1 to 19: 1. For the production of the electrode, the mixture between the electrocatalyst material of the invention and the conductive material is distributed on a support, which can? to be in turn conductor or not. Examples of preferred substrates are conductive carbon paper, conductive carbon cloth and metal mesh. The stabilization of the powder mixture on the support can? be obtained with ionomers, that is? conductive polymers for ions, which form a containing and conductive film on the powders.
Nel suo secondo aspetto l?invenzione riguarda un processo per la produzione del materiale elettrocatalizzatore, che consiste nei passaggi da a) a c) sopra citati. In its second aspect, the invention relates to a process for the production of the electrocatalyst material, which consists of the steps a) to c) mentioned above.
Il passaggio a) consiste nel dissolvere un sale di rame(II) e un sale di antimonio(III) in un solvente scelto tra etanolo, glicole etilenico, acetilacetone, dietilammina, etilendiammina, oleilammina, N,N-dimetilformammide, miscele di questi solventi tra loro, con acqua o con soluzioni acquose di D-glucosio, idrato di idrazina, aminoacidi e carbossimetilcellulosa di sodio. I sali pi? adatti per gli scopi dell?invenzione sono gli acetati, i solfati e i nitrati di entrambi i metalli. Step a) consists in dissolving a copper (II) salt and an antimony (III) salt in a solvent chosen from ethanol, ethylene glycol, acetylacetone, diethylamine, ethylenediamine, oleylamine, N, N-dimethylformamide, mixtures of these solvents with each other, with water or with aqueous solutions of D-glucose, hydrazine hydrate, amino acids and sodium carboxymethylcellulose. The salts more? suitable for the purposes of the invention are acetates, sulphates and nitrates of both metals.
La soluzione cos? formata viene scaldata in forno a microonde, all?interno di un contenitore sigillato di adatto materiale (es., teflon) ad una temperatura compresa tra 180 e 230 ?C per un tempo compreso tra 1 e 10 minuti. Oltre a causare la reazione dei sali metallici a formare il materiale finale, il riscaldamento in microonde in presenza dei solventi citati determina la riduzione dello ione Cu<2+ >del sale di rame di partenza a ione Cu<+ >presente nell?ossido Cu2O. Nel caso del glicole etilenico, il glicole funziona sia come solvente che come agente riducente e l?aumento della temperatura pu? aumentare la sua capacit? riducente. Normalmente una temperatura compresa tra 180 ?C e 230 ?C ? adatta per la formazione di Cu<+ >dal Cu<2+ >nella soluzione indicata. The solution cos? formed is heated in a microwave oven, inside a sealed container of suitable material (eg Teflon) at a temperature between 180 and 230 ° C for a time between 1 and 10 minutes. In addition to causing the reaction of the metal salts to form the final material, the heating in microwaves in the presence of the solvents mentioned determines the reduction of the Cu <2+> ion of the starting copper salt to the Cu <+> ion present in the Cu2O oxide . In the case of ethylene glycol, the glycol functions both as a solvent and as a reducing agent and the increase in temperature can? increase its capacity? reducing agent. Normally a temperature between 180? C and 230? C? suitable for the formation of Cu <+> from Cu <2+> in the indicated solution.
Infine il precipitato formato nel riscaldamento a microonde viene separato dalla fase liquida, per esempio tramite filtrazione o centrifugazione, lavato con etanolo, ed essiccato, per esempio attraverso un trattamento in forno ad una temperatura compresa tra 50 e 100 ?C sotto vuoto o in atmosfera inerte. Finally, the precipitate formed in microwave heating is separated from the liquid phase, for example by filtration or centrifugation, washed with ethanol, and dried, for example by an oven treatment at a temperature between 50 and 100 ° C under vacuum or in an atmosphere. inert.
Il procedimento dell?invenzione differisce da quello dell?articolo di Li et al. citato in precedenza per l?impiego del riscaldamento a microonde al posto di un riscaldamento tradizionale, che come detto determina la riduzione dello ione Cu<2+ >del sale di rame di partenza e la formazione della fase Cu2O. The process of the invention differs from that of the article by Li et al. previously mentioned for the use of microwave heating instead of traditional heating, which as said determines the reduction of the Cu <2+> ion of the starting copper salt and the formation of the Cu2O phase.
L?invenzione verr? ulteriormente descritta nella sezione sperimentale che segue. Materiali, strumentazione e metodi The invention will come further described in the experimental section below. Materials, instrumentation and methods
Nella preparazione dei campioni sono stati impiegati i seguenti precursori: The following precursors were used in the preparation of the samples:
- acetato di rame(II), Cu(OAc)2?xH2O (Sigma-Aldrich, n. catalogo 66923-66-8 grado di idratazione, ~ 1), purezza 98%; - copper (II) acetate, Cu (OAc) 2? xH2O (Sigma-Aldrich, catalog no. 66923-66-8 degree of hydration, ~ 1), purity 98%;
- acetato di antimonio(III), Sb(OAc)3, (Sigma-Aldrich, n. catalogo 6923-52-0), purezza 99,99%; - antimony (III) acetate, Sb (OAc) 3, (Sigma-Aldrich, catalog no. 6923-52-0), purity 99.99%;
- glicole etilenico (Sigma-Aldrich, n. catalogo 107-21-1), purezza 99,8%; - ethylene glycol (Sigma-Aldrich, catalog no. 107-21-1), purity 99.8%;
- soluzione di Nafion<? >117 (Sigma-Aldrich, n. catalogo 31175-20-9; Nafion ? un marchio registrato di E. I. du Pont de Nemours and Company), purezza: ~ 5% in una miscela di alcoli alifatici inferiori e acqua. - Nafion's solution <? > 117 (Sigma-Aldrich, catalog no. 31175-20-9; Nafion is a registered trademark of E. I. du Pont de Nemours and Company), purity: ~ 5% in a mixture of lower aliphatic alcohols and water.
Le analisi di composizione chimica dei campioni sono state effettuate tramite spettroscopia di emissione ottica al plasma accoppiata induttivamente (ICP-OES, strumento iCAP 7600 DUO, Thermo Fisher Scientific); ogni analisi ? stata eseguita dissolvendo 5,0 mg del campione in 10,0 ml di una soluzione acquosa con 10% di acqua regia. The chemical composition analyzes of the samples were performed by inductively coupled plasma optical emission spectroscopy (ICP-OES, iCAP 7600 DUO instrument, Thermo Fisher Scientific); any analysis? was performed by dissolving 5.0 mg of the sample in 10.0 ml of an aqueous solution with 10% aqua regia.
Le immagini al microscopio elettronico e le analisi di spettroscopia a raggi X a dispersione di energia (EDX) sono state ottenute con un FESEM Supra 40 (Zeiss) dotato di un detector (Oxford Instruments Si(Li)) per le analisi di spettroscopia a raggi X a dispersione di energia (EDX). Electron microscope images and energy dispersion X-ray spectroscopy (EDX) analyzes were obtained with a FESEM Supra 40 (Zeiss) equipped with a detector (Oxford Instruments Si (Li)) for X-ray spectroscopy analyzes X energy dispersive (EDX).
La composizione di fase di ciascun campione ? stata determinata mediante diffrazione di raggi X (XRD) con un diffrattometro (PANalytical X?Pert Pro dotato di un X?Celerator detector) che utilizza la radiazione Cu K? (? = 1,54178 ?) generata a 40 kV e 30 mA. I diffrattogrammi XRD sono stati registrati nel campo 2? 25-80? con un passo (2?) di 0,017? e un tempo di conteggio di 0,45 secondi. The phase composition of each sample? was determined by X-ray diffraction (XRD) with a diffractometer (PANalytical X? Pert Pro equipped with an X? Celerator detector) that uses Cu K? (? = 1.54178?) Generated at 40 kV and 30 mA. Were XRD diffractograms recorded in field 2? 25-80? with a step (2?) of 0.017? and a counting time of 0.45 seconds.
Le analisi XPS ad alta risoluzione (HR) sono state effettuate con uno strumento PHI 5000 VersaProbe (Physical Electronics) che utilizza la radiazione monocromatica Al K? (1486,6 eV). The high resolution (HR) XPS analyzes were performed with a PHI 5000 VersaProbe (Physical Electronics) instrument using monochromatic Al K radiation? (1486.6 CE).
Le analisi dei prodotti gassosi derivati dall?elettroriduzione di CO2 sono state effettuate in tempo reale con un micro gascromatografo (?GC) INFICON Fusion<? >dotato di due canali con una colonna Rt-Molsieve 5A da 10 m e una colonna Rt-Q-Bond da 8 m, rispettivamente, e microrilevatori di conducibilit? termica (micro-TCD). The analyzes of the gaseous products derived from CO2 electro-reduction were carried out in real time with an INFICON Fusion <? > equipped with two channels with a 10 m Rt-Molsieve 5A column and an 8 m Rt-Q-Bond column, respectively, and conductivity micro detectors. thermal (micro-TCD).
ESEMPIO 1 EXAMPLE 1
Questo esempio si riferisce alla sintesi dei materiali dell?invenzione. This example refers to the synthesis of the materials of the invention.
Sono stati preparati sette campioni di materiali dell?invenzione a differente contenuto di Sb usando come precursori acetato di rame e antimonio, impiegati nelle quantit? riportate in Tabella 1. I campioni dell?invenzione sono indicati come A-G. Per confronto, sono stati prodotti con l?identica modalit? descritta di seguito anche un campione a partire da solo acetato di rame (campione indicato come ?Cu? in tabella), un campione a partire da solo acetato di antimonio (campione ?Sb?), e un campione di composizione mista Cu/Sb non dell?invenzione (campione ?NI?). Nell?ultima colonna della tabella sono riportati i valori di contenuto di Sb in ognuno dei campioni dell?invenzione, ottenuti con analisi ICP-OES (il dato per i campioni Cu e Sb non ? riportato perch? naturalmente in questi due casi l?analisi per la determinazione del contenuto percentuale di Sb non ? stata effettuata). Seven samples of materials of the invention with different Sb content were prepared using copper acetate and antimony as precursors, used in the quantities. reported in Table 1. The samples of the invention are indicated as A-G. For comparison, they were produced in the same way? described below is also a sample starting from copper acetate only (sample indicated as? Cu? in the table), a sample starting from antimony acetate only (sample? Sb?), and a sample of mixed composition Cu / Sb not of the invention (sample? NI?). The last column of the table shows the values of Sb content in each of the samples of the invention, obtained with ICP-OES analysis (the data for the Cu and Sb samples is not reported because of course in these two cases the analysis for the determination of the percentage content of Sb has not been carried out).
Tabella 1 Table 1
Le quantit? di precursori indicate sono state sciolte in 40 ml di glicole etilenico e 5 ml di H2O bidistillata (resistivit? circa 18 M??cm). Ogni soluzione ? stata quindi trasferita in un recipiente di teflon (volume 100 mL). Il contenitore in teflon ? stato sigillato, inserito in un forno a microonde (Milestone, STARTSynth, segmento HPR-1000-10S con controllo temperatura e pressione), riscaldato a 220 ?C e poi mantenuto a questa temperatura alimentando il forno con una potenza massima di 900 W per un tempo totale di irradiazione di 2 minuti. Dopo il raffreddamento a temperatura ambiente, il prodotto in sospensione in ogni contenitore ? stato separato mediante centrifuga e lavato due volte con H2O bidistillata e di seguito una volta con etanolo. Ogni campione di polvere ? stato infine essiccato sotto vuoto a 60 ?C per una notte. The quantities of indicated precursors were dissolved in 40 ml of ethylene glycol and 5 ml of bidistilled H2O (resistivity about 18 M ?? cm). Any solution? it was then transferred to a Teflon container (volume 100 mL). The Teflon container? been sealed, placed in a microwave oven (Milestone, STARTSynth, segment HPR-1000-10S with temperature and pressure control), heated to 220 ° C and then maintained at this temperature by feeding the oven with a maximum power of 900 W for a total irradiation time of 2 minutes. After cooling to room temperature, the product in suspension in each container? was separated by centrifugation and washed twice with bidistilled H2O and then once with ethanol. Any sample of dust? it was finally vacuum dried at 60 ° C overnight.
Oltre all?analisi ICP-OES, i campioni dell?invenzione sono stati esaminati con microscopia elettronica a scansione e analisi EDX per determinare la morfologia (anche per i campioni Cu e Sb) e la distribuzione dell?antimonio, con diffrazione di raggi X per determinare la struttura cristallina (anche per i campioni Cu e Sb) e tramite XPS per determinare lo stato di ossidazione di Cu e Sb; i risultati delle tre analisi sono stati discussi in precedenza con riferimento rispettivamente alle Figure 1, 2 e 3. In addition to the ICP-OES analysis, the samples of the invention were examined with scanning electron microscopy and EDX analysis to determine the morphology (also for the Cu and Sb samples) and the distribution of antimony, with X-ray diffraction for determine the crystal structure (also for Cu and Sb samples) and by XPS to determine the oxidation state of Cu and Sb; the results of the three analyzes have been previously discussed with reference to Figures 1, 2 and 3 respectively.
ESEMPIO 2 EXAMPLE 2
Questo esempio si riferisce alla produzione di elettrodi per la riduzione elettrochimica di CO2 con i materiali dell?invenzione (campioni A-F) e con i tre materiali di confronto (campioni Cu, Sb e NI). This example refers to the production of electrodes for the electrochemical reduction of CO2 with the materials of the invention (samples A-F) and with the three comparison materials (samples Cu, Sb and NI).
Ogni elettrodo ? stato preparato miscelando 10 mg di campione A-F, Cu, Sb o NI, 1 mg di carbon black da acetilene, 90 ?l di soluzione di Nafion<? >117 e 320 ?l di isopropanolo. Ogni miscela ? stata sonicata per 30 minuti fino a ottenere una sospensione uniforme. Ogni sospensione ? stata quindi impiegata per rivestire una carta di carbonio ricoperto da uno strato permeabile ai gas (GDL; SIGRACET 28BC, SGL Technologies); la superficie geometrica di ogni elettrodo era 1,5 cm<2>. L?elettrodo ottenuto ? stato essiccato a 60 ?C per una notte per evaporare i solventi. Il caricamento dell?elettrocatalizzatore su ogni elettrodo ? stato di circa 3,0 mg cm<-2>. Gli elettrodi cos? ottenuti vengono indicati nel seguito con le abbreviazioni Ex, in cui il pedice x corrisponde al campione A-F, Cu, Sb o NI impiegato per la sua produzione. Any electrode? was prepared by mixing 10 mg of sample A-F, Cu, Sb or NI, 1 mg of carbon black from acetylene, 90? l of Nafion solution <? > 117 and 320? L of isopropanol. Any blend? was sonicated for 30 minutes until a uniform suspension was obtained. Any suspension? it was then used to coat a carbon paper covered with a gas permeable layer (GDL; SIGRACET 28BC, SGL Technologies); the geometric surface of each electrode was 1.5 cm <2>. The electrode obtained? been dried at 60 ° C overnight to evaporate the solvents. The loading of the electrocatalyst on each electrode? state of about 3.0 mg cm <-2>. The electrodes cos? obtained are indicated below with the abbreviations Ex, in which the subscript x corresponds to the sample A-F, Cu, Sb or NI used for its production.
ESEMPIO 3 EXAMPLE 3
Questo esempio si riferisce alla misura dell?efficienza di riduzione di CO2 degli elettrodi preparati nell?Esempio precedente. This example refers to the measurement of the CO2 reduction efficiency of the electrodes prepared in the previous Example.
Le misure elettrochimiche sono state effettuate con una cella avente la configurazione schematizzata in Fig. 4; la cella nel suo insieme, 10, ? mostrata in figura racchiusa da una linea discontinua. Come mostrato in figura, la cella ? a due compartimenti separati da una membrana a scambio ionico 11 (membrana Nafion<? >N117, Sigma-Aldrich), ed adotta una configurazione a tre elettrodi. Ogni compartimento ha un volume totale 10 ml e contiene 7 ml di elettrolita, e quindi 3 ml di spazio di testa. L?elettrodo di riferimento, 12, ? un elettrodo Ag/AgCl (1 mm, LF-1 privo di perdite) che viene inserito nel compartimento catodico. Il controelettrodo, 13, ? una lamina di Pt (Goodfellow, 99,95%). L?elettrodo di lavoro, cio? quello dell?invenzione, ? indicato in figura come elemento 14. Come soluzione elettrolitica ? stata utilizzata una soluzione acquosa di 0,1 M KHCO3. In questa configurazione, la CO2 gassosa viene alimentata in entrambe le semicelle dalla parte inferiore dei due compartimenti, mentre la miscela di prodotti su cui si valutano i risultati ? estratta dal compartimento catodico (a destra in figura); la maggior parte di questa miscela viene inviata allo stadio di separazione e purificazione (realizzate con metodi noti nel settore e non descritte in questo testo), mentre una frazione della miscela ? inviata all?analisi. Le misurazioni cronoamperometriche sono state eseguite utilizzando una workstation elettrochimica CHI760D (CH Instruments, Inc., USA). I prodotti in fase gassosa sono stati analizzati in tempo reale con un micro gascromatografo (?GC). L?ingresso dello strumento ?GC era collegato al lato catodico della cella elettrochimica attraverso un filtro GENIE, per rimuovere l?umidit? dal gas prima del suo ingresso nello strumento di analisi (?GC). Durante le misurazioni cronoamperometriche, gli elettroliti di entrambi i lati dell?anodo e del catodo erano statici, mentre ? stata mantenuta una portata di CO2 costante di 15 ml/min per saturare l?elettrolita catodico e per portare i prodotti gassosi al ?GC. Le prove sono state eseguite a diversi potenziali compresi tra -0,79 V e -0,99 V. Il potenziale ? stato corretto compensando la caduta di potenziale ohmico, di cui l?85% dallo strumento (compensazione iR). The electrochemical measurements were carried out with a cell having the configuration shown in Fig. 4; the cell as a whole, 10,? shown in the figure enclosed by a discontinuous line. As shown in the figure, the cell? with two compartments separated by an ion exchange membrane 11 (membrane Nafion <?> N117, Sigma-Aldrich), and adopts a three-electrode configuration. Each compartment has a total volume of 10ml and contains 7ml of electrolyte, and thus 3ml of headspace. The reference electrode, 12,? an Ag / AgCl electrode (1 mm, LF-1 leak-free) which is inserted into the cathode compartment. The counter electrode, 13,? a sheet of Pt (Goodfellow, 99.95%). The working electrode, that is? that of the invention,? indicated in the figure as element 14. How electrolyte solution? An aqueous solution of 0.1 M KHCO3 was used. In this configuration, the gaseous CO2 is fed into both half-cells from the lower part of the two compartments, while the mixture of products on which the results are evaluated? removed from the cathode compartment (right in the figure); most of this mixture is sent to the separation and purification stage (made with methods known in the sector and not described in this text), while a fraction of the mixture? sent for analysis. Chronoamperometric measurements were performed using a CHI760D electrochemical workstation (CH Instruments, Inc., USA). The gas phase products were analyzed in real time with a micro gas chromatograph (? GC). The input of the? GC instrument was connected to the cathode side of the electrochemical cell through a GENIE filter, to remove moisture. from the gas before it enters the analysis instrument (? GC). During the chronoamperometric measurements, the electrolytes on both sides of the anode and cathode were static, while? a constant CO2 flow rate of 15 ml / min was maintained to saturate the cathode electrolyte and to bring the gaseous products to the? GC. The tests were performed at different potentials between -0.79 V and -0.99 V. The potential? corrected by compensating for the drop in ohmic potential, of which 85% by the instrument (iR compensation).
La selettivit? ? descritta dall?efficienza faradica (FE), che ? il rapporto tra la quantit? di carica (coulomb, C) richiesta per produrre una certa quantit? di un prodotto e la carica totale consumata nel tempo di reazione, ed ? espressa dalla relazione seguente: The selectivity? ? described by the faradic efficiency (FE), which? the relationship between the quantity? of charge (coulomb, C) required to produce a certain amount? of a product and the total charge consumed in the reaction time, and d? expressed by the following relationship:
FE (%) = nNF/Q x 100 FE (%) = nNF / Q x 100
dove n ? il numero di elettroni trasferiti nel processo faradico (per la riduzione di CO2 a CO e a H2, n ? 2 come mostrato nelle reazioni R1 e R5 sopra riportate), N sono le moli di un prodotto generato in un periodo di reazione specifico, F ? la costante faradica (96485,33 C/mol) e Q ? la carica totale in un periodo di reazione specifico. where n ? the number of electrons transferred in the faradic process (for the reduction of CO2 to CO and H2, n? 2 as shown in the reactions R1 and R5 above), N are the moles of a product generated in a specific reaction period, F? the faradic constant (96485.33 C / mol) and Q? the total charge in a specific reaction period.
I risultati delle prove a due valori di potenziale sono riportati in Tabella 2. The results of the two-value tests are shown in Table 2.
Tabella 2 Table 2
Come si nota dai risultati delle prove, l?elettrodo ESb non produce CO per nessuno dei due potenziali. L?elettrodo Cu ha una scarsa selettivit? per CO, con valori FECO inferiori al 10%. L?elettrodo di confronto ENI mostra scarsi valori di selettivit? verso CO, probabilmente perch? formato da una miscela contenente solo una quantit? ridotta di materiale attivo insieme ad un materiale del tutto inattivo (l?ossido di antimonio). Gli elettrodi EA-EF dell?invenzione presentano invece un?elevata selettivit? verso CO, con FECO superiore all?80% per tutti i materiali A-F a -0,79 V. Tra questi materiali, in particolare, D ed E mostrano valori eccellenti di selettivit? per CO, pari ad almeno 90% ad entrambi i potenziali. As can be seen from the results of the tests, the ESb electrode does not produce CO for either of the two potentials. The Cu electrode has poor selectivity for CO, with FECO values below 10%. The comparison electrode ENI shows poor selectivity values? towards CO, probably why? formed by a mixture containing only a quantity? reduced active material together with a completely inactive material (antimony oxide). The EA-EF electrodes of the invention, on the other hand, have a high selectivity. towards CO, with FECO higher than 80% for all materials A-F at -0.79 V. Among these materials, in particular, D and E show excellent selectivity values? for CO, equal to at least 90% to both potentials.
ESEMPIO 4 EXAMPLE 4
Questo esempio si riferisce alla misura di riduzione di CO2 con un elettrodo dell?invenzione a vari potenziali. This example refers to the CO2 reduction measurement with an electrode of the invention at various potentials.
L?elettrodo ED, che ha dato i migliori risultati nell?Esempio 3, ? stato testato a cinque differenti valori di potenziale compresi tra -0,69 V e -1,09 V. In ogni prova ? stata valutata l?evoluzione di CO e H2 nel tempo nel corso di test della durata compresa tra una e due ore. The ED electrode, which gave the best results in Example 3,? been tested at five different potential values between -0.69 V and -1.09 V. In each test? The evolution of CO and H2 over time was assessed during tests lasting between one and two hours.
I risultati di queste prove sono riportati graficamente in Fig.5. In dettaglio, le Figure da 5(a) a 5(e) riportano prove effettuate ai seguenti potenziali: 5(a) -0,69 V; 5(b) -0,79 V; 5(c) -0,89 V; 5(d) -0,99 V; 5(e) -1,09 V. Le prove a -0,79 V e -0,99 sono le stesse i cui risultati sono gi? stati riportati nell?esempio precedente. I risultati di queste prove sono riassunti in forma sintetica nel grafico della Fig. 5(f), in cui sono riportati i valori di efficienza faradica per CO e H2, rilevati quando il processo di riduzione ? arrivato a regime, a tutti i potenziali valutati. The results of these tests are shown graphically in Fig. 5. In detail, Figures 5 (a) to 5 (e) report tests carried out at the following potentials: 5 (a) -0.69 V; 5 (b) -0.79 V; 5 (c) -0.89 V; 5 (d) -0.99 V; 5 (e) -1.09 V. The tests at -0.79 V and -0.99 are the same whose results are already? been reported in the previous example. The results of these tests are summarized in a synthetic form in the graph of Fig. 5 (f), which shows the faradic efficiency values for CO and H2, detected when the reduction process? arrived at full capacity, to all potential assessed.
Come si nota nei grafici, in ogni prova c?? un tempo iniziale di assestamento compreso tra circa 10 minuti (prova a -0,99 V) e 20 minuti; ci? ? attribuito alla stabilizzazione dell?elettrodo e al riempimento dello spazio di testa della cella elettrochimica e dei tubi tra la cella e il ?GC. Quindi, i valori FE si stabilizzano, indicando le prestazioni stabili dell?elettrodo. L?elettrodo ED mostra ottime prestazioni nella conversione di CO2 in CO (FECO > 80%) in tutto l?intervallo di potenziali esplorato, con valori fino al 90-92% ai potenziali da -0,79 V a -1,09 V. A potenziali pi? negativi (< -1,09 V), il FECO scende al di sotto del 90%. I valori di FEH2 si mantengono bassi (? 9%) da -0,69 V a -1,09 V. Non sono stati rilevati altri prodotti in fase gassosa oltre a CO e H2. I prodotti liquidi (per es., HCOOH) non sono stati quantificati, ma si pu? ritenere che siano presenti in quantit? molto modeste o trascurabili, poich? l?efficienza faradica totale per CO e H2 misurata in tutte le prove ? intorno al 100%. As can be seen in the graphs, in each test c ?? an initial settling time between about 10 minutes (test at -0.99 V) and 20 minutes; there? ? attributed to the stabilization of the electrode and the filling of the headspace of the electrochemical cell and the tubes between the cell and the? GC. Then, the FE values stabilize, indicating the stable performance of the electrode. The ED electrode shows excellent performance in the conversion of CO2 into CO (FECO> 80%) in the whole range of potentials explored, with values up to 90-92% at potentials from -0.79 V to -1.09 V At potential pi? negative (<-1.09 V), the FECO falls below 90%. FEH2 values remain low (? 9%) from -0.69 V to -1.09 V. No other products in the gas phase were detected besides CO and H2. Liquid products (e.g., HCOOH) have not been quantified, but can you? believe that they are present in quantity? very modest or negligible, since? the total faradic efficiency for CO and H2 measured in all tests? around 100%.
COMMENTO AI RISULTATI COMMENT ON THE RESULTS
Come dimostrato nelle prove sopra descritte, i materiali elettrocatalizzatori dell?invenzione catalizzano la riduzione elettrochimica di CO2 con elevata selettivit? verso CO. I materiali dell?invenzione offrono poi ulteriori vantaggi. As demonstrated in the tests described above, the electrocatalyst materials of the invention catalyze the electrochemical reduction of CO2 with high selectivity. towards CO. The materials of the invention then offer further advantages.
In primo luogo, antimonio e rame, e i loro composti impiegati come precursori nel processo dell?invenzione, sono materiali economici; la produzione di questi materiali ? inoltre semplice e facilmente scalabile a livello industriale, anche perch? non impiega prodotti tossici o nocivi; l?invenzione offre quindi un?alternativa tecnicamente valida e competitiva all?impiego di metalli quali Au, Ag e Pd. First, antimony and copper, and their compounds used as precursors in the process of the invention, are cheap materials; the production of these materials? furthermore simple and easily scalable on an industrial level, also why? does not use toxic or harmful products; the invention therefore offers a technically valid and competitive alternative to the use of metals such as Au, Ag and Pd.
Poich? i materiali dell?invenzione sono in forma di polvere, possono essere impiegati in reattori con varie configurazioni come elettrodo a diffusione di gas (GDE) e dimensioni diverse. Since? the materials of the invention are in powder form, they can be used in reactors with various configurations such as gas diffusion electrode (GDE) and different sizes.
Claims (11)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| IT102020000007948A IT202000007948A1 (en) | 2020-04-15 | 2020-04-15 | COPPER AND ANTIMONY BASED MATERIAL AND ELECTRODE FOR THE SELECTIVE CONVERSION OF CARBON DIOXIDE TO CARBON MONOXIDE |
| EP21724756.8A EP4136277B1 (en) | 2020-04-15 | 2021-04-14 | Copper and antimony based material and electrode for the selective conversion of carbon dioxide to carbon monoxide |
| US17/995,423 US20230167563A1 (en) | 2020-04-15 | 2021-04-14 | Copper and antimony based material and electrode for the selective conversion of carbon dioxide to carbon monoxide |
| PCT/IB2021/053074 WO2021209920A1 (en) | 2020-04-15 | 2021-04-14 | Copper and antimony based material and electrode for the selective conversion of carbon dioxide to carbon monoxide |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| IT102020000007948A IT202000007948A1 (en) | 2020-04-15 | 2020-04-15 | COPPER AND ANTIMONY BASED MATERIAL AND ELECTRODE FOR THE SELECTIVE CONVERSION OF CARBON DIOXIDE TO CARBON MONOXIDE |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| IT202000007948A1 true IT202000007948A1 (en) | 2021-10-15 |
Family
ID=71170782
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| IT102020000007948A IT202000007948A1 (en) | 2020-04-15 | 2020-04-15 | COPPER AND ANTIMONY BASED MATERIAL AND ELECTRODE FOR THE SELECTIVE CONVERSION OF CARBON DIOXIDE TO CARBON MONOXIDE |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US20230167563A1 (en) |
| EP (1) | EP4136277B1 (en) |
| IT (1) | IT202000007948A1 (en) |
| WO (1) | WO2021209920A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114293216A (en) * | 2021-11-25 | 2022-04-08 | 广州大学 | A preparation method of Ni@NC-X electrocatalyst for electrochemical reduction of CO2 to CO2 |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114799197B (en) * | 2022-04-13 | 2023-01-24 | 电子科技大学 | Preparation method of copper-antimony monatomic alloy catalyst and application of copper-antimony monatomic alloy catalyst in carbon dioxide reduction |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20180119296A1 (en) * | 2016-11-01 | 2018-05-03 | King Fahd University Of Petroleum And Minerals | Method for electrochemical reduction of carbon dioxide |
| US20190127866A1 (en) | 2016-05-02 | 2019-05-02 | Ut-Battelle, Llc | Electrochemical catalyst for conversion of co2 to ethanol |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2017169682A1 (en) * | 2016-03-28 | 2017-10-05 | 古河電気工業株式会社 | Metal-containing cluster catalyst, electrode for carbon dioxide reduction using same, and carbon dioxide reduction device |
-
2020
- 2020-04-15 IT IT102020000007948A patent/IT202000007948A1/en unknown
-
2021
- 2021-04-14 US US17/995,423 patent/US20230167563A1/en active Pending
- 2021-04-14 EP EP21724756.8A patent/EP4136277B1/en active Active
- 2021-04-14 WO PCT/IB2021/053074 patent/WO2021209920A1/en not_active Ceased
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20190127866A1 (en) | 2016-05-02 | 2019-05-02 | Ut-Battelle, Llc | Electrochemical catalyst for conversion of co2 to ethanol |
| US20180119296A1 (en) * | 2016-11-01 | 2018-05-03 | King Fahd University Of Petroleum And Minerals | Method for electrochemical reduction of carbon dioxide |
Non-Patent Citations (6)
| Title |
|---|
| IN-YUP JEON ET AL: "Antimony-doped graphene nanoplatelets", NATURE COMMUNICATIONS, vol. 6, 22 May 2015 (2015-05-22), pages 7123, XP055353208, DOI: 10.1038/ncomms8123 * |
| IRFAN MALIK M ET AL: "Electrochemical reduction of CO2to methanol over MWCNTs impregnated with Cu2O", CHEMICAL ENGINEERING SCIENCE, OXFORD, GB, vol. 152, 17 June 2016 (2016-06-17), pages 468 - 477, XP029667794, ISSN: 0009-2509, DOI: 10.1016/J.CES.2016.06.035 * |
| LILY MANDAL ET AL: "Investigating the Role of Copper Oxide in Electrochemical CO 2 Reduction in Real Time", ACS APPLIED MATERIALS & INTERFACES, vol. 10, no. 10, 13 February 2018 (2018-02-13), US, pages 8574 - 8584, XP055636493, ISSN: 1944-8244, DOI: 10.1021/acsami.7b15418 * |
| Y. LI ET AL.: "closing highly selective electrocatalytic C02 reduction by tuning Cu0-Sb203 nanocomposites", ACS SUSTAINABLE CHEM. ENG., vol. 8, no. 12, 2020, pages 4948 - 4954 |
| YOUNG DAE YUN ET AL: "Optimal synthesis of antimony-doped cuprous oxides for photoelectrochemical applications", THIN SOLID FILMS, vol. 671, 1 February 2019 (2019-02-01), AMSTERDAM, NL, pages 120 - 126, XP055762036, ISSN: 0040-6090, DOI: 10.1016/j.tsf.2018.12.037 * |
| YUN ET AL.: "optimal synthesis of antimony-doped cuprous oxides for photoelectrochemical applications", THIN SOLID FILMS, vol. 671, 2019, pages 120 - 126 |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114293216A (en) * | 2021-11-25 | 2022-04-08 | 广州大学 | A preparation method of Ni@NC-X electrocatalyst for electrochemical reduction of CO2 to CO2 |
Also Published As
| Publication number | Publication date |
|---|---|
| EP4136277B1 (en) | 2024-05-22 |
| EP4136277C0 (en) | 2024-05-22 |
| EP4136277A1 (en) | 2023-02-22 |
| WO2021209920A1 (en) | 2021-10-21 |
| US20230167563A1 (en) | 2023-06-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Wang et al. | In-Sn alloy core-shell nanoparticles: In-doped SnOx shell enables high stability and activity towards selective formate production from electrochemical reduction of CO2 | |
| Lv et al. | Urchin-like Al-doped Co3O4 nanospheres rich in surface oxygen vacancies enable efficient ammonia electrosynthesis | |
| Chebrolu et al. | Overview of emerging catalytic materials for electrochemical green ammonia synthesis and process | |
| Cui et al. | Electrochemical synthesis of ammonia directly from N 2 and water over iron-based catalysts supported on activated carbon | |
| Etesami et al. | Benchmarking superfast electrodeposited bimetallic (Ni, Fe, Co, and Cu) hydroxides for oxygen evolution reaction | |
| Lv et al. | Interface and defect engineer of titanium dioxide supported palladium or platinum for tuning the activity and selectivity of electrocatalytic nitrogen reduction reaction | |
| Wang et al. | Metal-organic-framework template-derived hierarchical porous CoP arrays for energy-saving overall water splitting | |
| Liu et al. | Carbon dots-oriented synthesis of fungus-like CoP microspheres as a bifunctional electrocatalyst for efficient overall water splitting | |
| US20160289849A1 (en) | Bifunctional water splitting catalysts and associated methods | |
| Yu et al. | Sustainable carbons and fuels: recent advances of CO2 conversion in molten salts | |
| Gillani et al. | An efficient NiO/NiS/NiP heterostructure catalyst for oxygen evolution reaction | |
| Dong et al. | Highly efficient ampere-level CO2 reduction to multicarbon products via stepwise hollow-fiber penetration electrodes | |
| Koo et al. | Ultrasonic spray pyrolysis synthesis of nano-cluster ruthenium on molybdenum dioxide for hydrogen evolution reaction | |
| Li et al. | Graphene supported atomic Co/nanocrystalline Co3O4 for oxygen evolution reaction | |
| Lu et al. | Microwave synthesis and properties of nanodiamond supported PtRu electrocatalyst for methanol oxidation | |
| Sun et al. | One-pot synthesis of ruthenium-based nanocatalyst using reduced graphene oxide as matrix for electrochemical synthesis of ammonia | |
| Wang et al. | Free-standing, flexible β-Ni (OH) 2/electrochemically-exfoliated graphene film electrode for efficient oxygen evolution | |
| EP4136277B1 (en) | Copper and antimony based material and electrode for the selective conversion of carbon dioxide to carbon monoxide | |
| Yang et al. | Catalysts for C–N coupling in urea electrosynthesis under ambient conditions from carbon dioxide and nitrogenous species | |
| Yang et al. | Achieving highly active A-site cation-deficient perovskite electrocatalysts operated at large current density toward hydrogen evolution reaction | |
| Sliem et al. | Rational synthesis of mixed metal oxide clusters supported on a partially etched MAX phase for efficient electrocatalytic CO2 conversion | |
| Naresh et al. | Hydrothermally synthesized NiO-SnO2 nanocomposite as an efficient electrocatalyst for oxygen evolution reaction (OER) and urea oxidation reaction (UOR) | |
| Chen et al. | In2O3/Bi2O3 interface induces ultra-stable carbon dioxide electroreduction on heterogeneous InBiOx catalyst | |
| Younis et al. | Molybdenum carbide nanosheets with iron doping as electrocatalysts for highly efficient ammonia electrosynthesis | |
| Sreekanth et al. | Facile preparation of nickel MOF-derived nickel oxide/gadolinium oxide electrocatalysts for urea oxidation and oxygen evolution reactions |