IT201900019760A1 - PROCEDURE FOR THE REALIZATION OF A COMPOSITE FILTER MEDIA AND COMPOSITE FILTER MEDIA OBTAINED WITH THIS PROCEDURE. - Google Patents

PROCEDURE FOR THE REALIZATION OF A COMPOSITE FILTER MEDIA AND COMPOSITE FILTER MEDIA OBTAINED WITH THIS PROCEDURE. Download PDF

Info

Publication number
IT201900019760A1
IT201900019760A1 IT102019000019760A IT201900019760A IT201900019760A1 IT 201900019760 A1 IT201900019760 A1 IT 201900019760A1 IT 102019000019760 A IT102019000019760 A IT 102019000019760A IT 201900019760 A IT201900019760 A IT 201900019760A IT 201900019760 A1 IT201900019760 A1 IT 201900019760A1
Authority
IT
Italy
Prior art keywords
filter medium
nanofibers
aforementioned
base fabric
composite filter
Prior art date
Application number
IT102019000019760A
Other languages
Italian (it)
Inventor
Roberto Momente'
Carmine Lucignano
Martina Simone
Paolo Canonico
Original Assignee
Saati Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saati Spa filed Critical Saati Spa
Priority to IT102019000019760A priority Critical patent/IT201900019760A1/en
Priority to PL20796947.8T priority patent/PL3880335T3/en
Priority to PCT/IB2020/059890 priority patent/WO2021079283A2/en
Priority to KR1020227009535A priority patent/KR20220073739A/en
Priority to KR1020217019597A priority patent/KR20220069876A/en
Priority to US17/414,219 priority patent/US20220040613A1/en
Priority to PCT/IB2020/059889 priority patent/WO2021079282A1/en
Priority to DK20796947.8T priority patent/DK3880335T3/en
Priority to JP2021545781A priority patent/JP7516401B2/en
Priority to FIEP20796947.8T priority patent/FI3880335T3/en
Priority to EP20796948.6A priority patent/EP4048427A2/en
Priority to PT207969478T priority patent/PT3880335T/en
Priority to JP2022523645A priority patent/JP2022553710A/en
Priority to EP20796947.8A priority patent/EP3880335B1/en
Priority to CN202080069793.6A priority patent/CN114502252A/en
Priority to CN202080007311.4A priority patent/CN113272039A/en
Priority to US17/753,370 priority patent/US20220339567A1/en
Priority to ES20796947T priority patent/ES2944107T3/en
Priority to TW109136761A priority patent/TW202131981A/en
Priority to TW109136762A priority patent/TW202131982A/en
Publication of IT201900019760A1 publication Critical patent/IT201900019760A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/08Filter cloth, i.e. woven, knitted or interlaced material
    • B01D39/083Filter cloth, i.e. woven, knitted or interlaced material of organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/02Types of fibres, filaments or particles, self-supporting or supported materials
    • B01D2239/025Types of fibres, filaments or particles, self-supporting or supported materials comprising nanofibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0414Surface modifiers, e.g. comprising ion exchange groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0471Surface coating material
    • B01D2239/0478Surface coating material on a layer of the filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0471Surface coating material
    • B01D2239/0492Surface coating material on fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0631Electro-spun
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • B01D2239/0654Support layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1233Fibre diameter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Glass Compositions (AREA)

Description

Descrizione del Brevetto per Invenzione Industriale avente per titolo: "PROCEDIMENTO PER LA REALIZZAZIONE DI UN MEZZO FIL-TRANTE COMPOSITO E MEZZO FILTRANTE COMPOSITO OT-TENUTO CON QUESTO PROCEDIMENTO” Description of the Patent for Industrial Invention entitled: "PROCEDURE FOR THE REALIZATION OF A COMPOSITE FILTER MEDIA AND COMPOSITE FILTER MEDIA OBTAINED WITH THIS PROCEDURE"

DESCRIZIONE DESCRIPTION

La presente invenzione concerne un procedimento per la preparazione di un mezzo filtrante composito. L’invenzione si estende anche al mezzo filtrante composito ottenuto con questo procedimento. The present invention relates to a process for the preparation of a composite filter medium. The invention also extends to the composite filter medium obtained with this process.

Il campo dell'invenzione è quello dei mezzi filtranti compositi, in particolare utilizzati con finalità di protezione contro l'intrusione di particelle di sporco e con repellenza verso i liquidi in genere come acqua ed oli, così da conferire una elevata permeabilità aH'aria, ovvero una bassa impedenza acustica, per il migliore trasferimento del suono; ad esempio negli apparecchi di elettronica di consumo, specialmente i componenti elettroacustici dei dispositivi per telefonia mobile. The field of the invention is that of composite filter media, in particular used for the purpose of protection against the intrusion of dirt particles and with repellence towards liquids in general such as water and oils, so as to confer a high permeability to air, that is a low acoustic impedance, for the best sound transfer; for example in consumer electronics appliances, especially the electroacoustic components of mobile telephone devices.

Sono noti dei mezzi filtranti compositi, formati da una combinazione di almeno uno strato di nanofibre supportato da un tessuto base a trama e ordito, in cui lo strato di nanofibre è depositato sul tessuto base per mezzo di un processo di elettrofilatura o elettrospinning. In questo modo è realizzato un mezzo filtrante composito, in cui lo strato di nanofibre è adeso al tessuto base. Composite filter media are known, formed by a combination of at least one layer of nanofibers supported by a weft and warp base fabric, in which the nanofibre layer is deposited on the base fabric by means of an electrospinning or electrospinning process. In this way, a composite filter medium is created, in which the nanofiber layer is adhered to the base fabric.

I mezzi filtranti della tecnica nota che si è ora descritta presentano l'inconveniente di esporre il composito alle intrusioni di particelle di polvere e di grasso, capaci di ostruire i pori del mezzo filtrante. Questo fenomeno compromette la permeabilità aH'aria del mezzo filtrante, che per questo motivo innalza l'impedenza acustica, ostacolando di conseguenza il trasferimento del suono. The filter media of the known art which has just been described have the drawback of exposing the composite to the intrusion of dust and grease particles, capable of obstructing the pores of the filtering medium. This phenomenon compromises the air permeability of the filter medium, which for this reason raises the acoustic impedance, consequently hindering the transfer of sound.

Costituisce lo scopo principale della presente invenzione quello di fornire un mezzo filtrante composito ed il rispettivo processo di fabbricazione che, in rapporto ai noti mezzi filtranti di questo tipo, permetta di evitare l'agglomeramento di particelle di sporco, solide o liquide, sulla superficie filtrante. The main purpose of the present invention is to provide a composite filtering medium and the respective manufacturing process which, in relation to the known filtering media of this type, allows to avoid the agglomeration of dirt particles, solid or liquid, on the filtering surface. .

È un ulteriore scopo dell'invenzione quello di fornire un mezzo filtrante composito adatto a evitare, o quantomeno ritardare, i fenomeni di riduzione della permeabilità allaria, garantendo il regolare passaggio del suono. A further object of the invention is to provide a composite filtering medium suitable for avoiding, or at least delaying, the phenomena of reduction of the permeability to air, guaranteeing the regular passage of sound.

L'invenzione ha inoltre lo scopo di fornire un mezzo filtrante composito, adatto per essere facilmente pulito dai conglomerati di polvere e di grasso che ostruiscono la sua superficie filtrante. The invention also has the purpose of providing a composite filter medium, suitable for being easily cleaned from the conglomerates of dust and grease that clog its filtering surface.

Questi ed altri scopi sono raggiunti con il procedimento ed il mezzo filtrante delle rivendicazioni rispettivamente 1 e 4. Dei preferiti modi di realizzare l'invenzione risultano dalle restanti rivendicazioni. These and other objects are achieved with the method and filtering medium of claims 1 and 4, respectively. Preferred ways of carrying out the invention result from the remaining claims.

In rapporto ai noti mezzi filtranti, quello dell'invenzione offre il vantaggio di conservare il desiderato livello di permeabilità aH'aria e quindi di trasmissione del suono, grazie alla capacità del composito di impedire l'intrusione, l'adesione e l'accumulo di particelle di sporco, come anche di acqua, oli ed altri liquidi in genere. In relation to the known filter media, the one of the invention offers the advantage of maintaining the desired level of permeability to air and therefore of sound transmission, thanks to the ability of the composite to prevent the intrusion, adhesion and accumulation of dirt particles, as well as water, oils and other liquids in general.

Un ulteriore vantaggio è rappresentato dalla capacità del mezzo filtrante dell'invenzione di allontanare facilmente i conglomerati di particelle di sporco sulla superficie filtrante, così da ripristinare rapidamente le sue prestazioni acustiche di progetto. A further advantage is represented by the ability of the filtering medium of the invention to easily remove the conglomerates of dirt particles on the filtering surface, so as to rapidly restore its design acoustic performance.

Uno dei principali vantaggi offerti dal mezzo filtrante composito dell'invenzione, in cui le singole nanofibre ed i singoli fili del tessuto sono rivestiti con un sottile rivestimento altamente idro-oleofobico, è rappresentato dalla particolare capacità del mezzo di espellere lo sporco ed in particolare i liquidi, non solo come l'acqua (alta tensione superficiale, 72 mN/m), ma anche liquidi come gli oli a bassa tensione superficiale (30-40 mN/m). Questa proprietà del mezzo filtrante dell'invenzione risulta particolarmente utile nelle sue applicazioni come schermo protettivo per componenti elettroacustici, in particolare nei dispositivi per telefonia mobile. Il mezzo filtrante dell'invenzione infatti è costituito da nanofibre, che permettono di avere una altissima permeabilità aH'aria (viceversa una bassissima impedenza acustica), garantendo un'ottima protezione contro l'intrusione di particelle. Inoltre, grazie al particolare rivestimento del quale esso è dotato, il mezzo filtrante composito dell'invenzione evita l'intrusione di acqua, oli o altri diversi tipi di liquido. Il mezzo filtrante dell'invenzione infatti non solo riesce ad evitare l'intrusione di questi liquidi ma, grazie alla sua idrorepellenza, è anche più facilmente pulibile. One of the main advantages offered by the composite filter medium of the invention, in which the individual nanofibers and the individual threads of the fabric are coated with a thin highly hydro-oleophobic coating, is represented by the particular ability of the medium to expel dirt and in particular the liquids, not only such as water (high surface tension, 72 mN / m), but also liquids such as oils with low surface tension (30-40 mN / m). This property of the filtering medium of the invention is particularly useful in its applications as a protective screen for electroacoustic components, in particular in mobile telephone devices. The filtering medium of the invention in fact consists of nanofibers, which allow to have a very high permeability to air (vice versa a very low acoustic impedance), guaranteeing excellent protection against the intrusion of particles. Moreover, thanks to the particular coating with which it is equipped, the composite filtering medium of the invention avoids the intrusion of water, oils or other different types of liquid. In fact, the filtering medium of the invention is not only able to avoid the intrusion of these liquids but, thanks to its water-repellence, it is also more easily cleanable.

Questi ed altri scopi, vantaggi e caratteristiche risultano dalla descrizione che segue di un modo preferito di realizzare il procedimento e il mezzo filtrante dell'invenzione illustrati, a titolo di esempio non limitativo, nelle figure delle allegate tavole di disegni. These and other objects, advantages and characteristics result from the following description of a preferred way of carrying out the method and the filtering means of the invention illustrated, by way of non-limiting example, in the figures of the attached drawings.

In esse: In them:

- la figura 1 illustra in sezione e in vista schematica un esempio di mezzo filtrante composito dell'invenzione; Figure 1 is a sectional and schematic view of an example of a composite filter medium of the invention;

- la figura 2 illustra il particolare delle nanofibre depositate per elettrospinning su un corrispondente filo di tessuto base, in cui sia le nanofibre sia i fili del tessuto base sono tutti rivestiti con uno strato nanometrico di polimero idro-olio repellente, applicato per procedimento al plasma; - figure 2 illustrates the detail of the nanofibers deposited by electrospinning on a corresponding thread of base fabric, in which both the nanofibers and the threads of the base fabric are all coated with a nanometric layer of water-oil repellent polymer, applied by plasma process ;

- la figura 3 illustra il metodo di elettrospinning per la realizzazione di uno strato di nanofibre nei mezzo filtrante dell'invenzione; Figure 3 illustrates the electrospinning method for making a layer of nanofibers in the filter medium of the invention;

- la figura 4 illustra in forma schematica il trattamento al plasma del mezzo filtrante dell'invenzione, ottenuto per deposito dello strato di nanofibre realizzato con processo di elettrospinning su un tessuto base; Figure 4 schematically illustrates the plasma treatment of the filter medium of the invention, obtained by depositing the layer of nanofibers made with an electrospinning process on a base fabric;

- la figura 5 illustra la relazione tra flusso e pressione misurata a cavallo del mezzo filtrante per il campione asciutto (“dry") e quello bagnato ("wet"); - Figure 5 illustrates the relationship between flow and pressure measured across the filter medium for the dry ("dry") and wet ("wet") sample;

- la figura 6 illustra la relazione tra pressione di svuotamento e la corrispondente caduta di pressione per il test di declogging effettuato su due campioni diversi. - figure 6 illustrates the relationship between emptying pressure and the corresponding pressure drop for the declogging test carried out on two different samples.

Il mezzo filtrante composito dell'invenzione, indicato complessivamente con 1 in figura 1, comprende un tessuto base 2 del tipo con trama e ordito, di preferenza un tessuto in monofilo, sulla superficie del quale sono depositate per elettrospinning delle nanofibre 4. Adatti per l'invenzione sono i monofili 3 realizzati a partire da monofilo di poliestere, poliammide, polipropilene, polietersulfone, poliimmide, poliammideimmide, polifenilensolfuro, polietereterchetone, polivinildenfluoruro, politetrafluoroetilene, aramidico con un intervallo da 2500 micron a 5 micron di apertura della maglia del tessuto base 2. The composite filter medium of the invention, indicated as a whole with 1 in Figure 1, comprises a base fabric 2 of the warp and weft type, preferably a monofilament fabric, on the surface of which nanofibers 4 are deposited by electrospinning. 'invention are the monofilaments 3 made starting from monofilament of polyester, polyamide, polypropylene, polyethersulfone, polyimide, polyamideimide, polyphenylene sulfide, polyetheretherketone, polyvinyldenfluoride, polytetrafluoroethylene, aramid with a range from 2500 micron to 5 micron opening of the mesh of the base fabric 2 .

Il tessuto base utilizzato nella preparazione del mezzo filtrante composito dell'invenzione è scelto in un ampio intervallo di tessuti in monofilo sintetico, che si diversificano per la natura chimica del monofilo utilizzato per la tessitura, quali poliestere, poliammide, polipropilene, polietersulfone, poliimmide, poliammideimmide, polifenilensolfuro, polietereterchetone, polivinildenfluoruro, politetrafluoroetilene, aramidico. Adatti per l'invenzione sono inoltre i tessuti base con costruzione tessile di 4-300 fili/cm, diametro filo di 10-500 micron, armatura con peso di 15-300 g/m<2 >e spessore di 18-1000 micron. Per i finissaggi ed ulteriori trattamenti superficiali, oltre alla metallizzazione, si possono impiegare il tessuto "bianco" lavato e termofissato, il tessuto colorato, il tessuto sottoposto a trattamento plasma, idrofobico, idrofilico, antibatterico, antistatico e simili. Preferito per l'invenzione è un tessuto di monofilo di poliestere, con 48 fili/cm, diametro 55 pm, apertura di maglia del tessuto base pari a 153 pm. The base fabric used in the preparation of the composite filter medium of the invention is selected from a wide range of synthetic monofilament fabrics, which differ in the chemical nature of the monofilament used for weaving, such as polyester, polyamide, polypropylene, polyethersulfone, polyimide, polyamideimide, polyphenylene sulfide, polyetheretherketone, polyvinylenfluoride, polytetrafluoroethylene, aramid. Also suitable for the invention are basic fabrics with textile construction of 4-300 threads / cm, thread diameter of 10-500 microns, weave with a weight of 15-300 g / m <2> and thickness of 18-1000 microns. For finishing and further surface treatments, in addition to metallization, washed and heat-set "white" fabric, colored fabric, fabric subjected to plasma treatment, hydrophobic, hydrophilic, antibacterial, antistatic and the like can be used. Preferred for the invention is a polyester monofilament fabric, with 48 threads / cm, diameter 55 µm, mesh opening of the base fabric equal to 153 µm.

Adatte per l'invenzione sono le nanofibre 4 di poliestere, poliuretano, poliammide, poliimide, polipropilene, polisulfone, polieteresulfone, poliammideimmide, polifeniiensolfuro, polietereterchetone, polivinildenfluoruro, politetrafluoroetilene, alginato, policarbonato, PVA (alcol polivinilico), PLA (acido polilattico), PAN (poliacrilonitrile), PE-VA (polietilenvinilacetato), PMMA polimetilmetacrilato), PEO (polietilenossido), PE (polietilene), PVC, PEI, PUR e polistirene. Queste nanofibre possono avere un diametro tra 50 nm e 700 nm. Preferite sono le nanofibre in PVDF (polivinilidenfluoruro) con diametro variabile tra 75 e 200 nm. Suitable for the invention are the 4 nanofibers of polyester, polyurethane, polyamide, polyimide, polypropylene, polysulfone, polyethersulfone, polyamideimide, polyphenylene sulfide, polyetheretherketone, polyvinylphenfluoride, polytetrafluoroethylene, alginate, polycarbonate, PVA (polyvinyl alcohol), polyvinyl alcohol) PAN (polyacrylonitrile), PE-VA (polyethylene vinyl acetate), PMMA polymethyl methacrylate), PEO (polyethylene oxide), PE (polyethylene), PVC, PEI, PUR and polystyrene. These nanofibers can have a diameter between 50 nm and 700 nm. PVDF (polyvinylidenefluoride) nanofibers with a diameter ranging between 75 and 200 nm are preferred.

Come illustrato in figura 3, il procedimento di elettrospinning per la formazione delle nanofibre 4 ed il susseguente deposito delle stesse sul tessuto base 2, prevede l'iniezione del materiale di formazione delle nanofibre 4, disciolto in un opportuno solvente, attraverso un ugello 5 al fine di spalmarlo su un elettrodo 6. Grazie alla differenza di potenziale che è formata tra l’ugello 5 e l’elettrodo 6, le nanofibre 4 sono formate per effetto dell'evaporazione del solvente, dovuta al campo elettrico e stretching del polimero depositato sull’elettrodo, per mezzo deH’ugelio. Le nanofibre così formate sono quindi stirate e successivamente depositate sul tessuto base 2. As illustrated in Figure 3, the electrospinning process for the formation of the nanofibers 4 and the subsequent deposition of the same on the base fabric 2, involves the injection of the material for the formation of the nanofibers 4, dissolved in a suitable solvent, through a nozzle 5 at the to spread it on an electrode 6. Thanks to the potential difference that is formed between the nozzle 5 and the electrode 6, the nanofibers 4 are formed due to the evaporation of the solvent, due to the electric field and stretching of the polymer deposited on the the electrode, by means of the ugelium. The nanofibers thus formed are then stretched and subsequently deposited on the base fabric 2.

Il mezzo filtrante composito così ottenuto è successivamente sottoposto ad un trattamento superficiale per deposizione al plasma di uno strato polimerico 7 di spessore nanometrico sulle superfici esposte del tessuto 2 e dello strato di nanofibre 4, ricoprendo completamente le superfici esterne dei monofili 3 del tessuto base 2 e delle citate nanofibre 4 (figura 2). The composite filter medium thus obtained is subsequently subjected to a surface treatment by plasma deposition of a polymeric layer 7 of nanometric thickness on the exposed surfaces of the fabric 2 and of the nanofibre layer 4, completely covering the external surfaces of the monofilaments 3 of the base fabric 2 and of the aforementioned nanofibers 4 (Figure 2).

Come illustrato in figura 4, il mezzo filtrante composito 8, ottenuto dal precedente processo di elettrospinning di figura 3, è disposto all'interno di una camera 9 di trattamento al plasma, in presenza di un gas di formazione del citato rivestimento 7 così da rivestire il mezzo filtrante composito dell’invenzione 1. As illustrated in Figure 4, the composite filter medium 8, obtained from the previous electrospinning process of Figure 3, is arranged inside a plasma treatment chamber 9, in the presence of a gas forming the aforementioned coating 7 so as to coat the composite filter medium of the invention 1.

Preferiti per l'invenzione sono i gas a base di acrilati fluorocarbonici, in particolare eptadecafluorododecilacrilato, perfluoroottilacrilato e simili. Vantaggiosi per l'invenzione sono i gas di formazione via plasma di un deposito di acrilati fluorocarbonici, per la loro azione idro- e oleorepellente. Preferred for the invention are gases based on fluorocarbon acrylates, in particular heptadecafluorododecylacrylate, perfluorooctylacrylate and the like. Advantageous for the invention are the plasma formation gases of a fluorocarbon acrylate deposit, due to their hydro- and oil-repellent action.

Nel trattamento al plasma sopra descritto è inoltre utilizzato un gas di trasporto, per esempio del tipo descritto nella pubblicazione WO2011 089009 A1. In the plasma treatment described above, a carrier gas is also used, for example of the type described in publication WO2011 089009 A1.

Il citato trattamento al plasma prevede la formazione di un livello di vuoto di 10-50 mTorr, una potenza agli elettrodi di 150-350 W ed un tempo di esposizione di 0,5-6 minuti. The aforementioned plasma treatment provides for the formation of a vacuum level of 10-50 mTorr, an electrode power of 150-350 W and an exposure time of 0.5-6 minutes.

Il rivestimento depositato per mezzo della tecnologia plasma può avere uno spessore fino a 500 nm e, grazie alla particolare tecnologia utilizzata, esso assume la struttura di un film continuo, in grado di rivestire anche superfici 3D, quali quelle di un tessuto. A seconda della chimica utilizzata, il citato rivestimento può avere diverse caratteristiche peculiari, quali idrofobicità, oleofobicità, idrofilicità ed antistaticità. The coating deposited by means of plasma technology can have a thickness of up to 500 nm and, thanks to the particular technology used, it assumes the structure of a continuous film, capable of coating 3D surfaces, such as those of a fabric. Depending on the chemistry used, the aforementioned coating can have different peculiar characteristics, such as hydrophobicity, oleophobicity, hydrophilicity and antistaticity.

Preferiti per l'invenzione sono i rivestimenti ottenuti a partire dai seguenti composti chimici nei gas di partenza: Preferred for the invention are the coatings obtained starting from the following chemical compounds in the starting gases:

1H,1H,2H,2H-HEPTADECAFLUORODECYL ACRYLATE (CAS n° 27905-45-9, H2C=CHCO2CH2CH2(CF2)7CF3) 1H, 1H, 2H, 2H-HEPTADECAFLUORODECYL ACRYLATE (CAS n ° 27905-45-9, H2C = CHCO2CH2CH2 (CF2) 7CF3)

1 H, 1 H,2H,2H-PERFLUOROOCTYL ACRYLATE (CAS n° 17527-29-6, H2C=CHCO2CH2CH2(CF2)5CF3) 1 H, 1 H, 2H, 2H-PERFLUOROOCTYL ACRYLATE (CAS n ° 17527-29-6, H2C = CHCO2CH2CH2 (CF2) 5CF3)

Lo spessore del rivestimento 7 è di 15-60 nm, adatto per evitare che questo possa restringere eccessivamente i pori che il mezzo filtrante composito 1 forma in corrispondenza sia del tessuto 2, sia delle nanofibre 4, ciò che ostacolerebbe il libero passaggio del suono. The thickness of the coating 7 is 15-60 nm, suitable to prevent this from excessively narrowing the pores that the composite filter medium 1 forms in correspondence with both the fabric 2 and the nanofibers 4, which would hinder the free passage of sound.

Sono stati eseguiti dei test su mezzo filtrante composito 8, come ottenuto dal processo di elettrospinning di figura 3, messo a confronto con l'analogo mezzo filtrante composito 1 che ha subito il successivo trattamento al plasma di figura 4. Tests were carried out on the composite filter medium 8, as obtained by the electrospinning process of figure 3, compared with the similar composite filter medium 1 which underwent the subsequent plasma treatment of figure 4.

In particolare il citato mezzo filtrante 8 è formato da un tessuto trama e ordito in monofilo sintetico 3 (per esempio poliestere), sul quale sono state depositate delle nanofibre 4, anch'esse di materiale sintetico (per esempio poliestere), al fine di ottenere una impedenza acustica pari a 25 MKS Rayls, misurata allo strumento Textest o similare per la misura dell’impedenza acustica/air permeability. In particular, the aforementioned filter medium 8 is formed by a weft and warp fabric in synthetic monofilament 3 (for example polyester), on which nanofibers 4, also of synthetic material (for example polyester), have been deposited, in order to obtain an acoustic impedance equal to 25 MKS Rayls, measured with the Textest instrument or similar to measure the acoustic impedance / air permeability.

Dopo trattamento al plasma del mezzo filtrante 8 si osserva, sul mezzo filtrante composito 1 dell'invenzione, che l'impedenza acustica rimane inalterata a valori di 25 MKS Rayls. Altrettanto invariati restano il valore di 5.200 l/m<2>s ad una pressione di 200 Pa della permeabilità all'aria, nonché dell'efficienza di filtrazione. After plasma treatment of the filter medium 8 it is observed, on the composite filter medium 1 of the invention, that the acoustic impedance remains unchanged at values of 25 MKS Rayls. Equally unchanged remain the value of 5,200 l / m <2> s at a pressure of 200 Pa of the air permeability, as well as of the filtration efficiency.

Si osserva invece un aumento consistente sia dell'angolo di contatto con l'acqua (da 50° a 130°), sia dell'angolo di contatto con l’olio (da 50° a 120° per un olio con un olio di mais con tensione superficiale pari a 32mN/m), dove l'angolo di contatto è misurato su una goccia d’acqua o di olio con le nanofibre 4, utilizzando il metodo sessile con la strumentazione della Kruss (deposizione goccia e misura dell’angolo di contato per mezzo di camera ad alta risoluzione) Test di declogging On the other hand, a consistent increase is observed both in the angle of contact with water (from 50 ° to 130 °), and in the angle of contact with the oil (from 50 ° to 120 ° for an oil with a corn oil. with surface tension equal to 32mN / m), where the contact angle is measured on a drop of water or oil with the nanofibers 4, using the sessile method with Kruss instrumentation (drop deposition and measurement of the angle of counted by means of high resolution camera) Declogging test

Al fine di dare evidenza di quanto appena qualitativamente discusso, è stato messo a punto un metodo di prova, in grado di quantificare numericamente l’energia necessaria per rimuovere dell’olio depositato sulla superficie del mezzo filtrante composito dell'invenzione. In order to give evidence of what has just been qualitatively discussed, a test method has been developed, capable of numerically quantifying the energy required to remove the oil deposited on the surface of the composite filter medium of the invention.

Per questa prova viene utilizzato un porometro (PMI 1200 della ditta PMI), strumento che attraverso la tecnica di porometria capillare a flusso, viene utilizzato per determinare il bubble point, la dimensione del poro minimo e la distribuzione della dimensione dei pori sul campione di interesse. La porometria capillare a flusso, o solo porometria, si basa su un principio estremamente semplice: misurare la pressione di un gas, necessaria per forzare il passaggio di un liquido bagnante attraverso i pori del materiale. La pressione alia quale i pori si svuotano è inversamente proporzionale alla dimensione dei pori stessi. Pori grandi richiedono basse pressioni, mentre pori stretti alte pressioni. For this test a porometer is used (PMI 1200 from the PMI company), an instrument that, through the flow capillary porometry technique, is used to determine the bubble point, the minimum pore size and the distribution of the pore size on the sample of interest. . Flow capillary porometry, or porometry alone, is based on an extremely simple principle: measuring the pressure of a gas, necessary to force the passage of a wetting liquid through the pores of the material. The pressure at which the pores empty is inversely proportional to the size of the pores themselves. Large pores require low pressures, while narrow pores require high pressures.

La prova consiste nel tagliare il campione da analizzare e posizionarlo all’interno della camera di test. Successivamente il campione viene tenuto in posizione per mezzo di O-ring, in maniera tale da esser sicuri di non avere trafilamenti laterali d’aria. Una volta chiusa la camera si misura la permeabilità all'aria del mezzo filtrante, ottenendo una curva che mette in relazione il flusso d’aria attraverso il campione con la caduta di pressione misurata a cavallo del mezzo filtrante (dry curve nel grafico di figura 5). Una volta ottenuta la dry curve, si apre la camera di prova e, lasciando il campione in posizione, si ricopre la sua superficie con un liquido di test a bassa tensione superficiale (tipicamente < 20mN/m). Successivamente si richiude la camera di test e si misura nuovamente la permeabilità airaria del materiale. Essendo il materiale occluso dal liquido di test la pressione aumenterà, ma non si riuscirà a misurare nessun flusso d’aria a valle, fino a che la pressione sarà sufficientemente alta da forzare il passaggio del liquido attraverso i pori. Da questo momento in poi i pori di dimensione decrescente si andranno a svuotare con valori di pressione crescente fino a che il campione (precedentemente bagnato) risulterà completamente asciutto e le due curve di figura 5 risulteranno sovrapposte. Senza entrare in dettagli analitici, a livello qualitativo, dalla differenza tra le due curve è possibile determinare il valore di bubble point (poro più grande), la dimensione del poro più piccolo e la distribuzione della dimensione dei pori. The test consists in cutting the sample to be analyzed and placing it inside the test chamber. Subsequently, the sample is held in position by means of O-rings, in such a way as to be sure of no lateral air leaks. Once the chamber is closed, the air permeability of the filter medium is measured, obtaining a curve that relates the air flow through the sample to the pressure drop measured across the filter medium (dry curve in the graph in figure 5 ). Once the dry curve has been obtained, the test chamber is opened and, leaving the sample in position, its surface is covered with a low surface tension test liquid (typically <20mN / m). The test chamber is then closed again and the air permeability of the material is measured again. Since the material is occluded by the test liquid, the pressure will increase, but it will not be possible to measure any air flow downstream, until the pressure is high enough to force the passage of the liquid through the pores. From this moment on, the pores of decreasing size will be emptied with increasing pressure values until the sample (previously wet) is completely dry and the two curves of figure 5 will be superimposed. Without going into analytical details, on a qualitative level, from the difference between the two curves it is possible to determine the bubble point value (largest pore), the size of the smallest pore and the distribution of the pore size.

Nel caso specifico, al fine di determinare la capacità di repellenza/pulizia dall’olio, è stato realizzato il test appena descritto, ove però il liquido di prova è stato sostituito da olio di mais (tensione superficiale 32 mN/m). In the specific case, in order to determine the oil repellency / cleaning capacity, the test just described was carried out, where however the test liquid was replaced by corn oil (surface tension 32 mN / m).

Nel grafico di figura 6 sono riportate la pressione di svuotamento e la corrispondente caduta di pressione (energia necessaria per lo svuotamento). I campioni considerati nel grafico di figura 6 sono il mezzo filtrante 8 da trattamento di elettrospinning (curva 10) ed il mezzo filtrante 1 dell'invenzione (curva 11). È possibile osservare come nel caso del mezzo filtrante 1 dell'invenzione sia possibile ottenere uno svuotamento di olio con pressioni decisamente più basse o, viceversa, a parità di pressione si ottiene uno svuotamento decisamente maggiore rispetto al mezzo filtrante composito 8 che non ha subito il trattamento al plasma. The graph in figure 6 shows the emptying pressure and the corresponding pressure drop (energy required for emptying). The samples considered in the graph of figure 6 are the filter medium 8 from electrospinning treatment (curve 10) and the filter medium 1 of the invention (curve 11). It is possible to observe how in the case of the filtering medium 1 of the invention it is possible to obtain an emptying of oil with decidedly lower pressures or, vice versa, at the same pressure, a decidedly greater emptying is obtained with respect to the composite filtering medium 8 which has not undergone the plasma treatment.

Claims (12)

RIVENDICAZIONI 1. Procedimento per la realizzazione di un mezzo filtrante composito (1), caratterizzato dal fatto di comprendere una fase di formazione di un primo mezzo filtrante (8) per deposizione di nanofibre (4) su un tessuto base (2), per mezzo di un processo di elettrospinning ed una successiva fase di rivestimento del detto mezzo filtrante (1) per deposizione al plasma di un rivestimento (7) sul detto primo mezzo filtrante (8). CLAIMS 1. Process for making a composite filter medium (1), characterized in that it comprises a step of forming a first filter medium (8) by depositing nanofibers (4) on a base fabric (2), by means of an electrospinning process and a subsequent step of coating the said filter medium (1) by plasma deposition of a coating (7) on the said first filter medium (8). 2. Procedimento secondo la rivendicazione 1 , caratterizzato dal fatto che il processo di elettrospinning prevede l’estrusione di polimero disciolto in opportuno solvente, tramite ugello (5) e successivo stiramento delle fibre tra l’ugello stesso ed un elettrodo, ottenendo così una deposizione di fibre nanometriche sul tessuto base, opportunamente interposto tra ugello ed elettrodo, il mezzo filtrante (8) così ottenuto essendo successivamente sottoposto ad un trattamento superficiale per deposizione al plasma di uno strato polimerico (7) di spessore nanometrico sulle superfici esposte del tessuto base (2) e dello strato di nanofibre (4), ottenendo il citato mezzo filtrante composito (1) in cui le superfici esterne dei monofili (3) del tessuto base (2) e delle citate nanofibre (4) sono rivestite dai detto strato polimerico (7). 2. Process according to claim 1, characterized in that the electrospinning process provides for the extrusion of polymer dissolved in a suitable solvent, by means of a nozzle (5) and subsequent stretching of the fibers between the nozzle itself and an electrode, thus obtaining a deposition of nanometric fibers on the base fabric, suitably interposed between nozzle and electrode, the filter medium (8) thus obtained being subsequently subjected to a surface treatment by plasma deposition of a polymeric layer (7) of nanometric thickness on the exposed surfaces of the base fabric ( 2) and of the nanofibre layer (4), obtaining the aforementioned composite filter medium (1) in which the external surfaces of the monofilaments (3) of the base fabric (2) and of the aforementioned nanofibers (4) are coated by said polymeric layer ( 7). 3. Procedimento secondo la rivendicazione 2, caratterizzato dal fatto che il citato trattamento al plasma prevede la formazione di un livello di vuoto di 10-50 mTorr, una potenza agli elettrodi di 150-350 W ed un tempo di esposizione di 0,5-6 minuti. 3. Process according to claim 2, characterized in that the aforementioned plasma treatment provides for the formation of a vacuum level of 10-50 mTorr, an electrode power of 150-350 W and an exposure time of 0.5- 6 minutes. 4. Mezzo filtrante composito, del tipo comprendente un tessuto base (2) sul quale sono depositate delle nanofibre (4), caratterizzato dal fatto che il detto tessuto base e le citate nanofibre sono ricoperte con uno strato di rivestimento (7) nanometrico, applicato per processo al plasma. 4. Composite filter medium, of the type comprising a base fabric (2) on which nanofibers (4) are deposited, characterized in that said base fabric and the aforementioned nanofibers are covered with a nanometric coating layer (7), applied for plasma process. 5. Mezzo filtrante secondo la rivendicazione 4, caratterizzato dal fatto che il citato rivestimento (7) è formato da un film avente spessore fino a 500 nm, di preferenza con spessore di 15-60 nm. 5. Filter medium according to claim 4, characterized in that the aforementioned coating (7) is formed by a film having a thickness of up to 500 nm, preferably with a thickness of 15-60 nm. 6. Mezzo filtrante secondo la rivendicazione 4, caratterizzato dal fatto che il citato rivestimento (7) è un rivestimento a base di acrilati fluorocarbonici ad azione idro ed oleorepellente. 6. Filtering medium according to claim 4, characterized in that the aforementioned coating (7) is a coating based on fluorocarbonic acrylates with hydro and oil-repellent action. 7. Mezzo filtrante secondo la rivendicazione 4, caratterizzato dal fatto che i detti monofili (3) sono realizzati a partire da monofilo di poliestere, poliammide, polipropilene, polietersulfone, poliimmide, poliammideimmide, polifenilensolfuro, polietereterchetone, polivinildenfluoruro, politetrafluoroetilene, aramidico. 7. Filtering medium according to claim 4, characterized in that said monofilaments (3) are made starting from monofilament of polyester, polyamide, polypropylene, polyethersulfone, polyimide, polyamideimide, polyphenylene sulfide, polyetheretherketone, polyvinyldenfluoride, polytetrafluoroethylene, aramidic. 8. Mezzo filtrante secondo la rivendicazione 4, caratterizzato dal fatto che il citato tessuto base (2) presenta un'apertura di maglia pari a 2500-5 micron. 8. Filter medium according to claim 4, characterized in that the aforementioned base fabric (2) has a mesh opening equal to 2500-5 microns. 9. Mezzo filtrante secondo la rivendicazione 4, caratterizzato dal fatto che il citato tessuto base (2) presenta una costruzione tessile di 4-300 fili/cm, diametro filo di 10-500 micron, armatura con peso di 15-300 g/m<2 >e spessore di 18-1000 micron. 9. Filtering medium according to claim 4, characterized in that the aforementioned base fabric (2) has a textile construction of 4-300 threads / cm, thread diameter of 10-500 microns, weave with a weight of 15-300 g / m <2> and thickness of 18-1000 microns. 10. Mezzo filtrante secondo la rivendicazione 4, caratterizzato dal fatto che le citate nanofibre (4) sono nanofibre di poliestere, poliuretano, poliammide, poliimide, polipropilene, polisulfone, polieteresulfone, poliammideimmide, polifenilensolfuro, polietereterchetone, polivinildenfluoruro, politetrafluoroetilene , alginato, policarbonato, PVA (alcol polivinilico), PLA (acido polilattico), PAN (poliacrilonitrile), PEVA (polietilenvinilacetato), PMMA polimetilmetacrilato), PEO (polietilenossìdo), PE (polietilene), PVC, PI o polistirene. 10. Filter medium according to claim 4, characterized in that the aforementioned nanofibers (4) are nanofibers of polyester, polyurethane, polyamide, polyimide, polypropylene, polysulfone, polyethersulfone, polyamideimide, polyphenylene sulfide, polyetheretherketone, polyvinyl carbonenfluoride, polytetrafluoroethylene PVA (polyvinyl alcohol), PLA (polylactic acid), PAN (polyacrylonitrile), PEVA (polyethylene vinyl acetate), PMMA polymethyl methacrylate), PEO (polyethylene oxide), PE (polyethylene), PVC, PI or polystyrene. 11. Mezzo filtrante secondo la rivendicazione 4, caratterizzato dal fatto che le dette nanofibre (4) hanno un diametro tra 50 nm e 700 nm, di preferenza sono nanofibre in PVDF (polivinilidenfluoruro) con diametro variabile tra 75 e 200 nm. 11. Filter medium according to claim 4, characterized in that said nanofibers (4) have a diameter between 50 nm and 700 nm, preferably they are PVDF (polyvinylidene fluoride) nanofibers with a diameter ranging between 75 and 200 nm. 12. Utilizzo di tale mezzo filtrante come protezione di componenti elettro acustici in dispositivi di telefonia mobile, in grado di lasciar passare il suono con una certa qualità ma di impedire l'intrusione di particelle e di ritardarne l’otturazione grazie alle esaltate performance di repellenza 12. Use of this filter medium as a protection for electro-acoustic components in mobile phone devices, capable of letting sound through with a certain quality but preventing the intrusion of particles and delaying their clogging thanks to the enhanced repellency performance
IT102019000019760A 2019-10-24 2019-10-24 PROCEDURE FOR THE REALIZATION OF A COMPOSITE FILTER MEDIA AND COMPOSITE FILTER MEDIA OBTAINED WITH THIS PROCEDURE. IT201900019760A1 (en)

Priority Applications (20)

Application Number Priority Date Filing Date Title
IT102019000019760A IT201900019760A1 (en) 2019-10-24 2019-10-24 PROCEDURE FOR THE REALIZATION OF A COMPOSITE FILTER MEDIA AND COMPOSITE FILTER MEDIA OBTAINED WITH THIS PROCEDURE.
PL20796947.8T PL3880335T3 (en) 2019-10-24 2020-10-21 A method for preparing a composite filter medium and the composite filter medium obtained with this method
PCT/IB2020/059890 WO2021079283A2 (en) 2019-10-24 2020-10-21 A method for preparing a composite filter medium and the composite filter medium obtained with this method
KR1020227009535A KR20220073739A (en) 2019-10-24 2020-10-21 Method for manufacturing composite filter media and composite filter media obtained by the method
KR1020217019597A KR20220069876A (en) 2019-10-24 2020-10-21 Method for producing composite filter media and composite filter media obtained by the method
US17/414,219 US20220040613A1 (en) 2019-10-24 2020-10-21 A method for preparing a composite filter medium and the composite filter medium obtained with this method
PCT/IB2020/059889 WO2021079282A1 (en) 2019-10-24 2020-10-21 A method for preparing a composite filter medium and the composite filter medium obtained with this method
DK20796947.8T DK3880335T3 (en) 2019-10-24 2020-10-21 Method for producing a composite filter medium, and the composite filter medium obtained by this method
JP2021545781A JP7516401B2 (en) 2019-10-24 2020-10-21 Method for preparing a composite filter material and composite filter material obtained by this method
FIEP20796947.8T FI3880335T3 (en) 2019-10-24 2020-10-21 A method for preparing a composite filter medium and the composite filter medium obtained with this method
EP20796948.6A EP4048427A2 (en) 2019-10-24 2020-10-21 A method for preparing a composite filter medium and the composite filter medium obtained with this method
PT207969478T PT3880335T (en) 2019-10-24 2020-10-21 A method for preparing a composite filter medium and the composite filter medium obtained with this method
JP2022523645A JP2022553710A (en) 2019-10-24 2020-10-21 Composite filter material manufacturing method and composite filter material obtained by said manufacturing method
EP20796947.8A EP3880335B1 (en) 2019-10-24 2020-10-21 A method for preparing a composite filter medium and the composite filter medium obtained with this method
CN202080069793.6A CN114502252A (en) 2019-10-24 2020-10-21 Method for preparing composite filter medium and composite filter medium obtained by method
CN202080007311.4A CN113272039A (en) 2019-10-24 2020-10-21 Method for producing a composite filter medium and composite filter medium obtained by said method
US17/753,370 US20220339567A1 (en) 2019-10-24 2020-10-21 A method for preparing a composite filter medium and the composite filter medium obtained with this method
ES20796947T ES2944107T3 (en) 2019-10-24 2020-10-21 A method for preparing a composite filter medium and the composite filter medium obtained by this method
TW109136761A TW202131981A (en) 2019-10-24 2020-10-22 A method for preparing a composite filter medium and the composite filter medium obtained with this method
TW109136762A TW202131982A (en) 2019-10-24 2020-10-22 A method for preparing a composite filter medium and the composite filter medium obtained with this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT102019000019760A IT201900019760A1 (en) 2019-10-24 2019-10-24 PROCEDURE FOR THE REALIZATION OF A COMPOSITE FILTER MEDIA AND COMPOSITE FILTER MEDIA OBTAINED WITH THIS PROCEDURE.

Publications (1)

Publication Number Publication Date
IT201900019760A1 true IT201900019760A1 (en) 2021-04-24

Family

ID=69811533

Family Applications (1)

Application Number Title Priority Date Filing Date
IT102019000019760A IT201900019760A1 (en) 2019-10-24 2019-10-24 PROCEDURE FOR THE REALIZATION OF A COMPOSITE FILTER MEDIA AND COMPOSITE FILTER MEDIA OBTAINED WITH THIS PROCEDURE.

Country Status (1)

Country Link
IT (1) IT201900019760A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089009A1 (en) 2010-01-22 2011-07-28 Europlasma Nv Method for the application of a conformal nanocoating by means of a low pressure plasma process
US20140275692A1 (en) * 2013-03-15 2014-09-18 Shagufta Patel Modified surface energy non-woven filter element
US20180237967A1 (en) * 2017-02-23 2018-08-23 Sefar Ag Protective Vent and Method for Producing a Protective Vent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089009A1 (en) 2010-01-22 2011-07-28 Europlasma Nv Method for the application of a conformal nanocoating by means of a low pressure plasma process
US20140275692A1 (en) * 2013-03-15 2014-09-18 Shagufta Patel Modified surface energy non-woven filter element
US20180237967A1 (en) * 2017-02-23 2018-08-23 Sefar Ag Protective Vent and Method for Producing a Protective Vent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 27905-45-9

Similar Documents

Publication Publication Date Title
JP7516401B2 (en) Method for preparing a composite filter material and composite filter material obtained by this method
US20200122069A1 (en) Elastomeric depth filter
KR101768727B1 (en) Fabric material composite construction for use as a filter means
KR20170129719A (en) METHOD FOR MANUFACTURING COMPOSITE MEMBRANES
JP2021120451A (en) Functionalized porous membranes and methods of manufacture and use
CN103930184B (en) Filter material
US12049052B2 (en) Polymeric material having micro-nano composite structure, device including the same, and method of manufacturing the polymeric material
IT201800010762A1 (en) HIGH PERFORMANCE FABRIC FOR WATER / DIESEL SEPARATION FILTERS.
US20220339567A1 (en) A method for preparing a composite filter medium and the composite filter medium obtained with this method
IT201900019760A1 (en) PROCEDURE FOR THE REALIZATION OF A COMPOSITE FILTER MEDIA AND COMPOSITE FILTER MEDIA OBTAINED WITH THIS PROCEDURE.
Azeem et al. Hydrophobic analysis of nano-filament polyester fabric
Huang et al. A Weaving Method to Prepare Double-Layer Janus Fabric for Oil-Water Separation
JP6957472B2 (en) Non-woven
KR102573827B1 (en) Manufacturing method of super water-repellent and oil-repellent fiber
Banuškevičiūtė et al. Investigation of water permeability of thermoplastic polyurethane (TPU) electrospun porous mat
IT202100019997A1 (en) COMPOSITE FILTER MEDIA AND METHOD FOR ITS PRODUCTION
Bara et al. ASPECTS REGARDING ACCOMPLISHING MULTILAYERED FILTRATION MEDIA, USING ELECROSPUN WEBS
US20210162354A1 (en) Filter medium and filter unit including same
Gibson et al. Patterned electrospun polymer fiber structures
ITUD20130019U1 (en) AIR FILTER FOR INTERNAL COMBUSTION ENGINES