IN2014DN10255A - - Google Patents
Info
- Publication number
- IN2014DN10255A IN2014DN10255A IN10255DEN2014A IN2014DN10255A IN 2014DN10255 A IN2014DN10255 A IN 2014DN10255A IN 10255DEN2014 A IN10255DEN2014 A IN 10255DEN2014A IN 2014DN10255 A IN2014DN10255 A IN 2014DN10255A
- Authority
- IN
- India
- Prior art keywords
- electrolyte
- positive
- negative
- membrane
- exchange membrane
- Prior art date
Links
- 239000003792 electrolyte Substances 0.000 abstract 16
- 239000012528 membrane Substances 0.000 abstract 7
- 239000003011 anion exchange membrane Substances 0.000 abstract 2
- 238000005341 cation exchange Methods 0.000 abstract 2
- -1 anion cation Chemical class 0.000 abstract 1
- 238000002955 isolation Methods 0.000 abstract 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/20—Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/18—Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
- H01M8/184—Regeneration by electrochemical means
- H01M8/188—Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4242—Regeneration of electrolyte or reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/70—Arrangements for stirring or circulating the electrolyte
- H01M50/77—Arrangements for stirring or circulating the electrolyte with external circulating path
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04186—Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/18—Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49108—Electric battery cell making
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
A novel design has been invented for redox flow batteries. Different from the single membrane double electrolyte redox flow battery as a basic structure the design of the present invention involves multiple membrane (at least one cation exchange membrane and at least one anion exchange membrane) multiple electrolyte (one electrolyte in contact with the negative electrode one electrolyte in contact with the positive electrode and at least one electrolyte disposed between the two membranes) as the basic characteristic such as a double membrane triple electrolyte (DMTE) configuration or a triple membrane quadruple electrolyte (TMQE) configuration. The cation exchange membrane is used to separate the negative or positive electrolyte and the middle electrolyte and the anion exchange membrane is used to separate the middle electrolyte and the positive or negative electrolyte. This particular design physically isolates but ionically connects the negative electrolyte and positive electrolyte. The physical isolation offers a great freedom in choosing redox pairs including anion cation hybrid redox pairs in the negative electrolyte and positive electrolyte making high voltage of redox flow batteries possible. The ionic conduction not only makes the design functional but also drastically reduces the overall ionic crossover between negative electrolyte and positive one leading to high columbic efficiency.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201261660182P | 2012-06-15 | 2012-06-15 | |
| PCT/US2013/045595 WO2013188636A1 (en) | 2012-06-15 | 2013-06-13 | Multiple-membrane multiple-electrolyte redox flow battery design |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| IN2014DN10255A true IN2014DN10255A (en) | 2015-08-07 |
Family
ID=49758711
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| IN10255DEN2014 IN2014DN10255A (en) | 2012-06-15 | 2013-06-13 |
Country Status (8)
| Country | Link |
|---|---|
| US (2) | US9640826B2 (en) |
| EP (1) | EP2862225A4 (en) |
| JP (1) | JP2015519718A (en) |
| CN (1) | CN104364959A (en) |
| AU (1) | AU2013274244A1 (en) |
| IN (1) | IN2014DN10255A (en) |
| MX (1) | MX2014015316A (en) |
| WO (1) | WO2013188636A1 (en) |
Families Citing this family (54)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20150072192A1 (en) * | 2011-04-29 | 2015-03-12 | Homeland Technologies Research, Llc | Spiral-wound convection battery and methods of operation |
| US9692077B2 (en) | 2012-07-27 | 2017-06-27 | Lockheed Martin Advanced Energy Storage, Llc | Aqueous redox flow batteries comprising matched ionomer membranes |
| US9559374B2 (en) | 2012-07-27 | 2017-01-31 | Lockheed Martin Advanced Energy Storage, Llc | Electrochemical energy storage systems and methods featuring large negative half-cell potentials |
| US9768463B2 (en) | 2012-07-27 | 2017-09-19 | Lockheed Martin Advanced Energy Storage, Llc | Aqueous redox flow batteries comprising metal ligand coordination compounds |
| US9899694B2 (en) * | 2012-07-27 | 2018-02-20 | Lockheed Martin Advanced Energy Storage, Llc | Electrochemical energy storage systems and methods featuring high open circuit potential |
| US9865893B2 (en) | 2012-07-27 | 2018-01-09 | Lockheed Martin Advanced Energy Storage, Llc | Electrochemical energy storage systems and methods featuring optimal membrane systems |
| CN105684203B (en) | 2013-09-25 | 2019-07-26 | 洛克希德马丁能量有限公司 | Electrolyte Balance Strategies for Flow Batteries |
| WO2015050402A1 (en) * | 2013-10-03 | 2015-04-09 | Lg Electronics Inc. | Method and apparatus for transmitting device-to-device related information in wireless communication system |
| WO2015054260A2 (en) * | 2013-10-07 | 2015-04-16 | Board Of Regents, The University Of Texas System | A redox flow battery that uses complexes of cobalt and iron with amino-alcohol ligands in alkaline electrolytes to store electrical energy |
| US10084206B2 (en) | 2013-11-12 | 2018-09-25 | Alexandre M. Iarochenko | Fast charge apparatus for a battery |
| KR101541994B1 (en) * | 2014-02-03 | 2015-08-04 | 한국에너지기술연구원 | Apparatus and process for carbon dioxide capture related to generate electricity |
| WO2015126907A1 (en) * | 2014-02-18 | 2015-08-27 | Massachusetts Institute Of Technology | Materials for use with aqueous redox flow batteries and related methods and systems |
| KR101564165B1 (en) * | 2014-03-07 | 2015-10-28 | 한국에너지기술연구원 | Carbon dioxide capture apparatus and process for using self-generating power means |
| EP3284129B1 (en) * | 2015-04-14 | 2020-09-16 | Lockheed Martin Energy, LLC | Flow battery balancing cells having a bipolar membrane for simultaneous modification of a negative electrolyte solution and a positive electrolyte solution |
| CN107431223B (en) | 2015-04-14 | 2021-05-07 | 洛克希德马丁能量有限公司 | Flow battery balancing cell with bipolar membrane and method of use thereof |
| US9899695B2 (en) * | 2015-05-22 | 2018-02-20 | General Electric Company | Zinc-based electrolyte compositions, and related electrochemical processes and articles |
| CN105355958B (en) * | 2015-10-29 | 2018-03-30 | 广州道动新能源有限公司 | A kind of novel battery that more electrolyte structures are realized using micro-fluidic technologies |
| US20170244127A1 (en) * | 2016-02-24 | 2017-08-24 | The Regents Of The University Of California | Impact of membrane characteristics on the performance and cycling of the br2-h2 redox flow cell |
| US10347925B2 (en) | 2016-04-29 | 2019-07-09 | Lockheed Martin Energy, Llc | Three-chamber electrochemical balancing cells for simultaneous modification of state of charge and acidity within a flow battery |
| GB201607461D0 (en) * | 2016-04-29 | 2016-06-15 | Ecole Polytech | Battery |
| CN108461784A (en) * | 2016-12-10 | 2018-08-28 | 中国科学院大连化学物理研究所 | A kind of Alkaline Zinc iron liquid galvanic battery |
| US10461352B2 (en) | 2017-03-21 | 2019-10-29 | Lockheed Martin Energy, Llc | Concentration management in flow battery systems using an electrochemical balancing cell |
| US10550014B2 (en) | 2017-08-11 | 2020-02-04 | Palo Alto Research Center Incorporated | Electrochemical desalination system with coupled electricity storage |
| RU2692753C2 (en) * | 2017-11-13 | 2019-06-27 | Дмитрий Юрьевич Тураев | Zinc-dioxide lead alkaline-acid membrane battery |
| US11648506B2 (en) | 2018-02-07 | 2023-05-16 | Palo Alto Research Center Incorporated | Electrochemical desalination system |
| US11616246B2 (en) | 2018-04-09 | 2023-03-28 | Washington University | Microscale-bipolar-interface-enabled pH gradients in electrochemical devices |
| KR102036766B1 (en) * | 2018-05-24 | 2019-10-25 | 도레이케미칼 주식회사 | Pore filling amphoteric membrane for low vanadium ion permeation and method for preparing thereof |
| CN112889167A (en) * | 2018-06-14 | 2021-06-01 | 纽约城市大学研究基金会 | High voltage ion-mediated flow/flow-assisted manganese dioxide-zinc battery |
| US11056698B2 (en) | 2018-08-02 | 2021-07-06 | Raytheon Technologies Corporation | Redox flow battery with electrolyte balancing and compatibility enabling features |
| US11081712B2 (en) | 2018-10-26 | 2021-08-03 | Saudi Arabian Oil Company | Method and system to modify the performance of a redox flow battery |
| US11185823B2 (en) | 2018-11-26 | 2021-11-30 | Palo Alto Research Center Incorporated | Electrodialytic system used to remove solvent from fluid and non-fluid flows |
| US11117090B2 (en) | 2018-11-26 | 2021-09-14 | Palo Alto Research Center Incorporated | Electrodialytic liquid desiccant dehumidifying system |
| KR102153995B1 (en) * | 2019-03-19 | 2020-09-09 | 성균관대학교산학협력단 | Continuous capacitive deionization process using electroytes for redox flow cells |
| CA3134415A1 (en) * | 2019-03-20 | 2020-09-24 | The Regents Of The University Of Colorado, A Body Corporate | Electrochemical storage devices comprising chelated metals |
| US11015875B2 (en) | 2019-04-17 | 2021-05-25 | Palo Alto Research Center Incorporated | Electrochemical heat pump |
| CN111200154A (en) * | 2020-01-10 | 2020-05-26 | 西南交通大学 | Polyhalide-chromium flow battery |
| KR102486285B1 (en) * | 2020-10-08 | 2023-01-10 | 탑에코에너지주식회사 | Redox flow battery |
| CN114447385B (en) * | 2020-11-06 | 2024-03-01 | 中国科学院金属研究所 | Double-membrane aqueous organic flow battery with positive and negative electrolyte with different pH values |
| KR102510553B1 (en) * | 2020-11-26 | 2023-03-16 | 인하대학교 산학협력단 | Asymmetric water electrolysis system with low overpotential using vanadium redox flow system |
| US11949139B2 (en) * | 2020-11-30 | 2024-04-02 | Volta Energy, Inc. | Electrochemical cell and method for carbon capture with energy storage |
| US11271226B1 (en) | 2020-12-11 | 2022-03-08 | Raytheon Technologies Corporation | Redox flow battery with improved efficiency |
| US11925903B2 (en) | 2020-12-18 | 2024-03-12 | Xerox Corporation | Electrodialysis heat pump |
| US12261338B2 (en) | 2021-01-14 | 2025-03-25 | Xerox Corporation | Electrochemical device with efficient ion exchange membranes |
| CN214672733U (en) * | 2021-02-07 | 2021-11-09 | 宁波息相石新能源有限公司 | High-energy-density charge-discharge battery |
| US12085293B2 (en) | 2021-03-17 | 2024-09-10 | Mojave Energy Systems, Inc. | Staged regenerated liquid desiccant dehumidification systems |
| US12239941B2 (en) | 2021-06-24 | 2025-03-04 | Xerox Corporation | System for redox shuttle solution monitoring |
| US11872528B2 (en) | 2021-11-09 | 2024-01-16 | Xerox Corporation | System and method for separating solvent from a fluid |
| EP4434109A1 (en) * | 2021-11-16 | 2024-09-25 | Quino Energy, Inc. | System and process for rebalancing flow battery state of charge |
| US11944934B2 (en) | 2021-12-22 | 2024-04-02 | Mojave Energy Systems, Inc. | Electrochemically regenerated liquid desiccant dehumidification system using a secondary heat pump |
| AU2022425341A1 (en) * | 2021-12-27 | 2024-06-27 | Electric Hydrogen Co. | Multi-layered membranes for electrochemical cells |
| AU2022458327B2 (en) | 2022-05-09 | 2025-06-12 | Lockheed Martin Energy, Llc | Flow battery with a dynamic fluidic network |
| KR20250122478A (en) | 2022-12-12 | 2025-08-13 | 모하비 에너지 시스템즈, 인코포레이티드 | Liquid desiccant air conditioning system and control method |
| US12276436B2 (en) | 2023-04-07 | 2025-04-15 | Mojave Energy Systems, Inc. | Ultra low flow desiccant air conditioning systems devices and methods |
| CN117747896B (en) * | 2023-11-24 | 2025-02-25 | 天津大学 | A charging-free thermal regeneration electrochemical battery based on a double membrane structure and a method of use |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4786567A (en) | 1986-02-11 | 1988-11-22 | Unisearch Limited | All-vanadium redox battery |
| US5422197A (en) * | 1992-10-14 | 1995-06-06 | National Power Plc | Electrochemical energy storage and power delivery process utilizing iron-sulfur couple |
| US5439757A (en) | 1992-10-14 | 1995-08-08 | National Power Plc | Electrochemical energy storage and/or power delivery cell with pH control |
| PT1051766E (en) * | 1998-01-28 | 2002-01-30 | Squirrel Holdings Ltd | REDOX FLOW BATTERY SYSTEM AND CELL STACK |
| US20060063065A1 (en) * | 2001-08-10 | 2006-03-23 | Clarke Robert L | Battery with bifunctional electrolyte |
| EP2684734B1 (en) | 2008-06-12 | 2017-04-12 | Massachusetts Institute Of Technology | High energy density redox flow device |
| US7820321B2 (en) * | 2008-07-07 | 2010-10-26 | Enervault Corporation | Redox flow battery system for distributed energy storage |
| DE102009009357B4 (en) * | 2009-02-18 | 2011-03-03 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Redox flow battery for storing electrical energy in ionic liquids |
| EP3240078B1 (en) * | 2009-04-06 | 2025-05-28 | 24M Technologies, Inc. | Fuel system |
| KR101638595B1 (en) * | 2010-01-29 | 2016-07-12 | 삼성전자주식회사 | Redox flow battery |
| JP2012018515A (en) | 2010-07-07 | 2012-01-26 | Fujitsu Ltd | Information processor, control method, and control program |
| US9200375B2 (en) * | 2011-05-19 | 2015-12-01 | Calera Corporation | Systems and methods for preparation and separation of products |
-
2013
- 2013-06-13 MX MX2014015316A patent/MX2014015316A/en unknown
- 2013-06-13 JP JP2015517416A patent/JP2015519718A/en active Pending
- 2013-06-13 CN CN201380031402.1A patent/CN104364959A/en active Pending
- 2013-06-13 IN IN10255DEN2014 patent/IN2014DN10255A/en unknown
- 2013-06-13 EP EP13804479.7A patent/EP2862225A4/en not_active Withdrawn
- 2013-06-13 WO PCT/US2013/045595 patent/WO2013188636A1/en active Application Filing
- 2013-06-13 AU AU2013274244A patent/AU2013274244A1/en not_active Abandoned
- 2013-06-14 US US13/918,452 patent/US9640826B2/en not_active Expired - Fee Related
- 2013-06-14 US US13/918,444 patent/US9917323B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| US9640826B2 (en) | 2017-05-02 |
| AU2013274244A1 (en) | 2014-12-18 |
| US20140004402A1 (en) | 2014-01-02 |
| WO2013188636A1 (en) | 2013-12-19 |
| EP2862225A1 (en) | 2015-04-22 |
| MX2014015316A (en) | 2015-03-05 |
| US20140004403A1 (en) | 2014-01-02 |
| US9917323B2 (en) | 2018-03-13 |
| EP2862225A4 (en) | 2015-12-30 |
| CN104364959A (en) | 2015-02-18 |
| JP2015519718A (en) | 2015-07-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| IN2014DN10255A (en) | ||
| MX2013014873A (en) | Metal-air cell with ion exchange material. | |
| MX394151B (en) | FLOW BATTERY BALANCING CELLS HAVING A BIPOLAR MEMBRANE FOR SIMULTANEOUS MODIFICATION OF A NEGATIVE ELECTROLYTE SOLUTION AND A POSITIVE ELECTROLYTE SOLUTION. | |
| GB201211349D0 (en) | Redox battery use for Polyoxometallate | |
| JP2014096376A5 (en) | ||
| FI3944374T3 (en) | High-capacity positive electrode active material | |
| MX2014004819A (en) | Polyurethane based membranes and/or separators for electrochemical cells. | |
| PL2301093T3 (en) | Liquid ionic electrolytes containing anionic surfactant, and electrochemical devices such as batteries containing them | |
| CA2806188C (en) | Electrically rechargeable, metal-air battery systems and methods | |
| MX341244B (en) | Lithium accumulator. | |
| WO2015074037A3 (en) | Separator enclosures for electrodes and electrochemical cells | |
| MX2023003666A (en) | Electrolyte balancing strategies for flow batteries. | |
| NZ722728A (en) | Gelated ionic liquid film-coated surfaces and uses thereof | |
| MX2014004820A (en) | Polyurethane based electrolyte systems for electrochemical cells. | |
| JP2011253827A5 (en) | ||
| GB2519453A (en) | Electrochemical compression system | |
| WO2013059611A3 (en) | Modular battery disconnect unit | |
| WO2014200286A3 (en) | Sulfonate-based compound and polymer electrolyte membrane using same | |
| EP2541647A3 (en) | Electric storage device and spacer | |
| MX2017012587A (en) | FLOW BATTERY BALANCE CELLS THAT HAVE A BIPOLAR MEMBRANE AND METHODS TO USE THE SAME. | |
| WO2014054888A3 (en) | Battery pack | |
| MY164650A (en) | Lithium ion battery | |
| WO2012171622A3 (en) | Battery for a vehicle | |
| WO2014133614A3 (en) | Anaerobic aluminum-water electrochemical cell | |
| WO2016044586A3 (en) | Copper based flow batteries |