IN2014DN08834A - - Google Patents

Info

Publication number
IN2014DN08834A
IN2014DN08834A IN8834DEN2014A IN2014DN08834A IN 2014DN08834 A IN2014DN08834 A IN 2014DN08834A IN 8834DEN2014 A IN8834DEN2014 A IN 8834DEN2014A IN 2014DN08834 A IN2014DN08834 A IN 2014DN08834A
Authority
IN
India
Prior art keywords
zero phase
phase
carrier wave
generated
wave signals
Prior art date
Application number
Inventor
Tingan Lee
Masahiro Kinoshita
Nobuyuki Nagai
Kazunori Sanada
Original Assignee
Toshiba Mitsubishi Elec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Elec Inc filed Critical Toshiba Mitsubishi Elec Inc
Publication of IN2014DN08834A publication Critical patent/IN2014DN08834A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/38Auxiliary core members; Auxiliary coils or windings
    • H01F27/385Auxiliary core members; Auxiliary coils or windings for reducing harmonics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4216Arrangements for improving power factor of AC input operating from a three-phase input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/10Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in series, e.g. for multiplication of voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters

Abstract

In the present invention a power conversion circuit connected to a three phase AC line is controlled by a PWM method. First to third carrier wave signals (55,56,57) are generated to control arms corresponding to each phase. The first to third carrier wave signals include two signals (55,56) with mutually different phases which are 180° apart. Because the zero phase component reaches peak value less frequently the zero phase component has a smaller time average. Thus it is possible to reduce the zero phase high frequency component generated from a power source device.
IN8834DEN2014 2012-03-30 2012-03-30 IN2014DN08834A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/058517 WO2013145248A1 (en) 2012-03-30 2012-03-30 Power source device

Publications (1)

Publication Number Publication Date
IN2014DN08834A true IN2014DN08834A (en) 2015-05-22

Family

ID=49258613

Family Applications (1)

Application Number Title Priority Date Filing Date
IN8834DEN2014 IN2014DN08834A (en) 2012-03-30 2012-03-30

Country Status (8)

Country Link
US (1) US9509229B2 (en)
EP (1) EP2833535B1 (en)
JP (1) JP5770929B2 (en)
KR (1) KR101731156B1 (en)
CN (1) CN104205603B (en)
CA (1) CA2868700C (en)
IN (1) IN2014DN08834A (en)
WO (1) WO2013145248A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5955470B2 (en) * 2013-10-30 2016-07-20 三菱電機株式会社 DC / DC converter and load drive control system
US9537427B2 (en) * 2014-05-30 2017-01-03 Hamilton Sundstrand Corporation Pulse-width modulation control of paralleled inverters
US10476370B2 (en) * 2014-08-28 2019-11-12 Astronics Advanced Electronics Systems Corp. Split rail PFC and AC inverted architecture
WO2016093269A1 (en) * 2014-12-12 2016-06-16 株式会社ダイヘン High-frequency power source
DE102015101766A1 (en) * 2015-02-06 2016-08-11 Woodward Kempen Gmbh filter monitoring
US10439516B2 (en) * 2015-06-23 2019-10-08 Nissan Motor Co., Ltd. Inverter with charging capability
JP6348460B2 (en) * 2015-07-08 2018-06-27 東芝三菱電機産業システム株式会社 Power conversion system
CN106341050A (en) * 2015-07-17 2017-01-18 台达电子企业管理(上海)有限公司 Multi-level frequency converter and control method thereof
EP3196714B2 (en) * 2016-01-19 2023-08-23 dSPACE GmbH Simulation method and simulation device
CN107046370B (en) 2016-02-09 2020-05-26 松下知识产权经营株式会社 Converter, power transmission system and controller
CN107046379B (en) 2016-02-09 2020-07-10 松下知识产权经营株式会社 Converter, power transmission system and controller
FR3048139B1 (en) * 2016-02-18 2018-01-26 Schneider Toshiba Inverter Europe Sas METHOD AND CONTROL SYSTEM FOR AN ELECTRIC MOTOR CONTROL INSTALLATION
JP6673624B2 (en) * 2016-04-12 2020-03-25 東芝三菱電機産業システム株式会社 Power converter control device
CN107689735B (en) * 2016-08-05 2020-01-31 台达电子企业管理(上海)有限公司 Power conversion system and common-mode voltage suppression method thereof
JP6821685B2 (en) * 2016-08-24 2021-01-27 東芝三菱電機産業システム株式会社 Energization evaluation test device for input filter for PWM converter
CN110463011B (en) * 2017-04-03 2021-09-03 东芝三菱电机产业系统株式会社 Power conversion device
WO2019038830A1 (en) * 2017-08-22 2019-02-28 東芝三菱電機産業システム株式会社 Power supply device
KR102343983B1 (en) 2017-09-27 2021-12-27 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 power supply
CN108111027A (en) * 2017-12-27 2018-06-01 江苏新亚高电压测试设备有限公司 Variable-frequency power sources
WO2019150443A1 (en) * 2018-01-30 2019-08-08 三菱電機株式会社 Serial multiplex inverter
US11424693B2 (en) * 2018-04-27 2022-08-23 Toshiba Mitsubishi-Electric Industrial Systems Corporation Three-level power conversion device, three-level power conversion device control method, and storage medium
US11277077B2 (en) * 2018-10-30 2022-03-15 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device suppressing waveform distortion in an output voltage
KR102475947B1 (en) * 2018-11-20 2022-12-08 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 uninterruptible power supply
JP7204894B2 (en) * 2019-04-12 2023-01-16 三菱電機株式会社 Power converter and air conditioner
CN112217409A (en) * 2020-11-05 2021-01-12 武汉理工大学 Variable carrier pulse width modulation system and method of three-phase four-bridge arm voltage type inverter

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3221828B2 (en) * 1996-02-16 2001-10-22 株式会社日立製作所 Power conversion method and power conversion device
JPH10257775A (en) * 1997-03-10 1998-09-25 Shimadzu Corp Inverter device
BR9907351A (en) * 1999-12-22 2001-08-07 Ericsson Telecomunicacoees S A Control method and circuit for three-level three-level elevator rectifier
US6324085B2 (en) * 1999-12-27 2001-11-27 Denso Corporation Power converter apparatus and related method
JP2004173340A (en) * 2002-11-18 2004-06-17 Mitsubishi Electric Corp Control system for synchronous motor
JP2005051838A (en) * 2003-07-29 2005-02-24 Toyota Industries Corp Inverter and reducing method of ripple current
JP2005051959A (en) 2003-07-31 2005-02-24 Fuji Electric Holdings Co Ltd Noise reduction method and circuit for power converter
US7049778B2 (en) * 2004-02-09 2006-05-23 Nippon Yusoki Co., Ltd. Inverter control apparatus and inverter control method
US20060034364A1 (en) * 2004-08-13 2006-02-16 Breitzmann Robert J Carrier synchronization to reduce common mode voltage in an AC drive
JP4356715B2 (en) * 2006-08-02 2009-11-04 トヨタ自動車株式会社 Power supply device and vehicle equipped with power supply device
JP4509134B2 (en) 2007-04-16 2010-07-21 株式会社日立製作所 Power converter and control method thereof
JP5167884B2 (en) 2008-03-14 2013-03-21 ダイキン工業株式会社 Converter control method and control apparatus
CA2732352C (en) * 2008-07-30 2014-03-18 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device
US7952896B2 (en) * 2008-08-20 2011-05-31 Hamilton Sundstrand Corporation Power conversion architecture with zero common mode voltage
JP5463289B2 (en) 2008-08-22 2014-04-09 東芝三菱電機産業システム株式会社 Power converter
JP5241692B2 (en) * 2009-11-30 2013-07-17 株式会社日立製作所 Power converter
JP5447136B2 (en) * 2010-04-20 2014-03-19 日産自動車株式会社 Multi-phase inverter device
US8503207B2 (en) * 2010-09-29 2013-08-06 Rockwell Automation Technologies, Inc. Discontinuous pulse width drive modulation method and apparatus for reduction of common-mode voltage in power conversion systems
CN102148581B (en) * 2011-04-20 2013-07-17 黑龙江科技学院 Multicarrier TPWM (Trapezoidal Pulse Width Modulation) method based on position reverse-phase cross of sawtooth waves

Also Published As

Publication number Publication date
KR101731156B1 (en) 2017-04-27
EP2833535A1 (en) 2015-02-04
CA2868700C (en) 2016-10-11
CN104205603A (en) 2014-12-10
WO2013145248A1 (en) 2013-10-03
CN104205603B (en) 2017-09-29
CA2868700A1 (en) 2013-10-03
US9509229B2 (en) 2016-11-29
KR20140120352A (en) 2014-10-13
JP5770929B2 (en) 2015-08-26
JPWO2013145248A1 (en) 2015-08-03
EP2833535B1 (en) 2019-11-06
US20150016155A1 (en) 2015-01-15
EP2833535A4 (en) 2016-06-29

Similar Documents

Publication Publication Date Title
IN2014DN08834A (en)
EP3719983B8 (en) Boost power conversion circuit
GB2537322A (en) Differential output mode for a multi-mode power converter
EP3340449A4 (en) Voltage conversion circuit and method, and multi-phase parallel power supply system
EP3295460A4 (en) Thermophotovoltaic electrical power generator
WO2014106744A3 (en) Power balancing in a multi-phase system
GB201100691D0 (en) An efficient, power configurable, high reliability hybrid control system using dynamic power regulation to increase the dimming dynamic range and power contro
IN2014DE03445A (en)
EP3039348A4 (en) Integrated solid state microwave power generation modules
GB2538665A (en) Charge pump stability control
WO2015026343A8 (en) Apparatus and method for providing a power interface
WO2014180539A3 (en) Method for operating a charging device for single-phase and multi-phase charging of an energy store in a motor vehicle and charging device
WO2014113146A8 (en) Connection for improved current balancing between parallel bridge circuits
MX2014000773A (en) Power conversion device.
WO2013132099A3 (en) Electric unit for a pump-storage power plant
HK1223199A1 (en) Large output, high efficiency, single phase, multi-polar power generator
EP2878072A4 (en) High efficiency ac dc electric motor, electric power generating system with variable speed, variable power, geometric isolation and high efficiency conducting elements.
IN2013MU03632A (en)
EP3574716A4 (en) Power converter circuit
MY158785A (en) Power conversion device
IN2014DE01762A (en)
EP3152825A4 (en) Energy saving high frequency series buck ac voltage regulator system
MX2013013987A (en) Power conversion device.
MX2018005214A (en) Closed-transition variable-frequency drive apparatus and methods.
WO2013124296A3 (en) Multi-phase converter