IN2014DN06957A - - Google Patents
Info
- Publication number
- IN2014DN06957A IN2014DN06957A IN6957DEN2014A IN2014DN06957A IN 2014DN06957 A IN2014DN06957 A IN 2014DN06957A IN 6957DEN2014 A IN6957DEN2014 A IN 6957DEN2014A IN 2014DN06957 A IN2014DN06957 A IN 2014DN06957A
- Authority
- IN
- India
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/06—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M7/2176—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only comprising a passive stage to generate a rectified sinusoidal voltage and a controlled switching element in series between such stage and the output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0032—Control circuits allowing low power mode operation, e.g. in standby mode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/007—Plural converter units in cascade
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Rectifiers (AREA)
- Dc-Dc Converters (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2012/023465 WO2013115814A1 (en) | 2012-02-01 | 2012-02-01 | Offline power supply |
Publications (1)
Publication Number | Publication Date |
---|---|
IN2014DN06957A true IN2014DN06957A (de) | 2015-04-10 |
Family
ID=48905667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
IN6957DEN2014 IN2014DN06957A (de) | 2012-02-01 | 2014-08-19 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10333424B2 (de) |
EP (1) | EP2810349B1 (de) |
CN (1) | CN104247191B (de) |
AU (1) | AU2012368327B2 (de) |
IN (1) | IN2014DN06957A (de) |
WO (1) | WO2013115814A1 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MY176559A (en) | 2013-11-19 | 2020-08-17 | Hyun Chang Lee | Mobile electric leakage detection device and method |
US10397815B2 (en) * | 2018-01-23 | 2019-08-27 | T-Mobile Usa, Inc. | Cellular base station monitoring |
CN110957796B (zh) * | 2019-12-12 | 2023-05-02 | 澳门大学 | 无线充电电路和系统 |
CN116918203A (zh) | 2021-01-11 | 2023-10-20 | 沃特洛电气制造公司 | 无主分布式动态负载管理 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4943902A (en) | 1987-11-23 | 1990-07-24 | Viteq Corporation | AC to DC power converter and method with integrated line current control for improving power factor |
US5134355A (en) | 1990-12-31 | 1992-07-28 | Texas Instruments Incorporated | Power factor correction control for switch-mode power converters |
US5235504A (en) * | 1991-03-15 | 1993-08-10 | Emerson Electric Co. | High power-factor converter for motor drives and power supplies |
WO2003041252A1 (en) | 2001-11-05 | 2003-05-15 | Shakti Systems, Inc. | Multistage dc-dc converter |
US6693412B2 (en) | 2002-06-24 | 2004-02-17 | Intel Corporation | Power savings in a voltage supply controlled according to a work capability operating mode of an integrated circuit |
US7006366B2 (en) * | 2004-06-10 | 2006-02-28 | Wisconsin Alumni Research Foundation | Boost rectifier with half-power rated semiconductor devices |
TWI295756B (en) * | 2004-12-14 | 2008-04-11 | Int Rectifier Corp | Boost type power supply circuit for providing a dc output voltage |
GB0500183D0 (en) * | 2005-01-07 | 2005-02-16 | Koninkl Philips Electronics Nv | Switched mode power supply |
US7456621B2 (en) | 2005-05-06 | 2008-11-25 | Silicon Laboratories Inc. | Digital controller based power factor correction circuit |
DE102006022845B4 (de) * | 2005-05-23 | 2016-01-07 | Infineon Technologies Ag | Ansteuerschaltung für eine Schaltereinheit einer getakteten Leistungsversorgungsschaltung und Resonanzkonverter |
US7564706B1 (en) * | 2006-06-23 | 2009-07-21 | Edward Herbert | Power factor corrected single-phase AC-DC power converter using natural modulation |
KR101235220B1 (ko) | 2006-07-28 | 2013-02-20 | 삼성전자주식회사 | 위상 감지 장치, 이를 구비한 위상 제어 장치 및 정착기제어 장치 |
US7295452B1 (en) * | 2006-09-07 | 2007-11-13 | Green Mark Technology Inc. | Active power factor correction circuit and control method thereof |
US7667351B2 (en) | 2007-04-27 | 2010-02-23 | Liebert Corporation | Method for pulse width modulation synchronization in a parallel UPS system |
JP2009100557A (ja) | 2007-10-17 | 2009-05-07 | Kawasaki Microelectronics Kk | 電源装置及びこの電源装置のスイッチング方法 |
US8022821B2 (en) | 2008-02-05 | 2011-09-20 | J. Baxter Brinkman International Corporation | Smart power supply |
US20090256534A1 (en) | 2008-04-14 | 2009-10-15 | Twisthink, L.L.C. | Power supply control method and apparatus |
CN101656467B (zh) | 2008-08-18 | 2013-01-30 | 海尔集团公司 | 部分有源电源功率因数校正电路 |
TW201017396A (en) * | 2008-10-31 | 2010-05-01 | Ampower Technology Co Ltd | Power device with low standby power |
CN102301301B (zh) * | 2009-01-30 | 2014-07-02 | 惠普开发有限公司 | 计算机系统关机状态的辅助电源轨控制 |
CN101674004B (zh) * | 2009-10-01 | 2012-09-19 | 英飞特电子(杭州)有限公司 | 一种提高电源轻载功率因数的电路 |
TWI407670B (zh) * | 2009-10-21 | 2013-09-01 | Delta Electronics Inc | 具輔助電路之降壓與升降壓pfc電路系統及其方法 |
TW201206248A (en) * | 2010-03-25 | 2012-02-01 | Koninkl Philips Electronics Nv | Method and apparatus for increasing dimming range of solid state lighting fixtures |
WO2012157569A1 (ja) * | 2011-05-18 | 2012-11-22 | 国立大学法人東京大学 | 集積回路装置 |
-
2012
- 2012-02-01 EP EP12867050.2A patent/EP2810349B1/de active Active
- 2012-02-01 US US14/375,644 patent/US10333424B2/en active Active
- 2012-02-01 CN CN201280072073.0A patent/CN104247191B/zh active Active
- 2012-02-01 AU AU2012368327A patent/AU2012368327B2/en not_active Ceased
- 2012-02-01 WO PCT/US2012/023465 patent/WO2013115814A1/en active Application Filing
-
2014
- 2014-08-19 IN IN6957DEN2014 patent/IN2014DN06957A/en unknown
Also Published As
Publication number | Publication date |
---|---|
EP2810349A4 (de) | 2015-12-16 |
CN104247191B (zh) | 2017-12-12 |
CN104247191A (zh) | 2014-12-24 |
EP2810349A1 (de) | 2014-12-10 |
WO2013115814A1 (en) | 2013-08-08 |
AU2012368327B2 (en) | 2017-05-11 |
EP2810349B1 (de) | 2018-06-27 |
AU2012368327A1 (en) | 2014-08-21 |
US10333424B2 (en) | 2019-06-25 |
US20150003130A1 (en) | 2015-01-01 |