IN2013MU01392A - - Google Patents

Download PDF

Info

Publication number
IN2013MU01392A
IN2013MU01392A IN1392MU2013A IN2013MU01392A IN 2013MU01392 A IN2013MU01392 A IN 2013MU01392A IN 1392MU2013 A IN1392MU2013 A IN 1392MU2013A IN 2013MU01392 A IN2013MU01392 A IN 2013MU01392A
Authority
IN
India
Prior art keywords
switching modules
switching
electricity supply
conducting state
modules
Prior art date
Application number
Inventor
Simon David Hart
Michael Cade
Richard Mark Wain
Original Assignee
Control Tech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Control Tech Ltd filed Critical Control Tech Ltd
Publication of IN2013MU01392A publication Critical patent/IN2013MU01392A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control

Abstract

Embodiments of the present invention relate to an a method, apparatus and computer program product for controlling the operation of a drive unit comprising a plurality of switching modules arranged to receive a DC electricity supply and generate an AC electricity supply for driving a load from the received DC electricity supply, the AC electricity supply being generated by the switching of the plurality of switching modules between a conducting state and a non-conducting state. The method comprises receiving one or more characteristics associated with each of the switching modules, comparing, for each switching module of the plurality of switching modules, a characteristic of the switching module with an equivalent characteristic associated with one or more other switching modules of the plurality of switching modules, and controlling a time period during which one or more of the plurality of switching modules are in the conducting state in accordance with a result of the comparison.
IN1392MU2013 2012-07-27 2013-04-15 IN2013MU01392A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1213526.5A GB2504361B (en) 2012-07-27 2012-07-27 Control system and method

Publications (1)

Publication Number Publication Date
IN2013MU01392A true IN2013MU01392A (en) 2015-07-31

Family

ID=46881372

Family Applications (1)

Application Number Title Priority Date Filing Date
IN1392MU2013 IN2013MU01392A (en) 2012-07-27 2013-04-15

Country Status (4)

Country Link
US (1) US9893668B2 (en)
CN (1) CN103580518B (en)
GB (1) GB2504361B (en)
IN (1) IN2013MU01392A (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103296867B (en) * 2013-06-28 2015-07-15 成都芯源系统有限公司 Multiphase switching converter, controller and control method thereof
EP2963800B1 (en) * 2014-07-02 2021-03-24 Siemens Aktiengesellschaft Controlling parallel converter systems for wind turbines
US9755568B2 (en) * 2014-07-09 2017-09-05 Nidec Motor Corporation System and method for detecting loss of input phase by sensing before power rectifier
US10063181B2 (en) * 2014-07-14 2018-08-28 Nidec Motor Corporation System and method for detecting loss of input phase by sensing after power rectifier
DE102014224167A1 (en) * 2014-11-26 2016-06-02 Robert Bosch Gmbh Method and device for operating parallel-connected power semiconductor switches
US10656026B2 (en) 2016-04-15 2020-05-19 Emerson Climate Technologies, Inc. Temperature sensing circuit for transmitting data across isolation barrier
US10277115B2 (en) 2016-04-15 2019-04-30 Emerson Climate Technologies, Inc. Filtering systems and methods for voltage control
US10312798B2 (en) 2016-04-15 2019-06-04 Emerson Electric Co. Power factor correction circuits and methods including partial power factor correction operation for boost and buck power converters
US10284132B2 (en) 2016-04-15 2019-05-07 Emerson Climate Technologies, Inc. Driver for high-frequency switching voltage converters
US9933842B2 (en) 2016-04-15 2018-04-03 Emerson Climate Technologies, Inc. Microcontroller architecture for power factor correction converter
US10305373B2 (en) 2016-04-15 2019-05-28 Emerson Climate Technologies, Inc. Input reference signal generation systems and methods
US10763740B2 (en) 2016-04-15 2020-09-01 Emerson Climate Technologies, Inc. Switch off time control systems and methods
US10284418B2 (en) * 2016-07-25 2019-05-07 American Megatrends, Inc. Network switch management via embedded management controller using management information base (MIB) to JSON parser
US11522459B2 (en) * 2017-03-22 2022-12-06 Renesas Electronics America Inc. Combining temperature monitoring and true different current sensing in a multiphase voltage regulator
TWI656723B (en) * 2017-08-16 2019-04-11 大銀微系統股份有限公司 Power conversion device
CN112583265B (en) * 2020-12-09 2022-03-08 湖南铁路科技职业技术学院 DCDC power supply control method and control system thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433573A (en) * 1990-05-28 1992-02-04 Mitsubishi Electric Corp Inverter
JP3185257B2 (en) * 1991-07-23 2001-07-09 株式会社明電舎 Power conversion unit parallel operation device
US5191518A (en) * 1991-08-15 1993-03-02 Recker Bradley J Plural inverter control arrangement
GB2295508B (en) * 1992-02-18 1996-09-04 Hitachi Ltd An apparatus for controlling parallel running of inverters
GB2264403B (en) * 1992-02-18 1996-09-04 Hitachi Ltd An apparatus for controlling parallel running of inverters
JP4033273B2 (en) * 1998-03-30 2008-01-16 東洋電機製造株式会社 Inverter parallel operation control method
US6504427B2 (en) * 2001-05-31 2003-01-07 Motorola, Inc. Switching amplifier having digital correction and method therefor
EP1427094A3 (en) * 2002-12-06 2006-01-25 Loher GmbH Method for operating several pulse controlled inverters connected in parallel
US6933706B2 (en) * 2003-09-15 2005-08-23 Semiconductor Components Industries, Llc Method and circuit for optimizing power efficiency in a DC-DC converter
US7616460B2 (en) * 2005-12-22 2009-11-10 Continental Automotive Systems Us, Inc. Apparatus, system, and method for AC bus loss detection and AC bus disconnection for electric vehicles having a house keeping power supply
EP2211454A1 (en) * 2009-01-27 2010-07-28 Abb Oy Load balancing of parallel connected inverter modules
BR112013006956B1 (en) * 2010-09-24 2020-04-22 Siemens Ag undersea power switching device and methods of operation thereof
JP5803681B2 (en) * 2012-01-12 2015-11-04 株式会社明電舎 PWM power converter parallel operation device
US9281761B2 (en) * 2013-01-18 2016-03-08 General Electric Company Control scheme for current balancing between parallel bridge circuits
FR3005536B1 (en) * 2013-05-07 2016-12-30 Sofineco DEVICE FOR RECOVERING, STORING AND RESTITUTING ELECTRICAL ENERGY FOR A HANDLING DOOR

Also Published As

Publication number Publication date
CN103580518B (en) 2017-05-31
GB2504361B (en) 2020-04-01
US9893668B2 (en) 2018-02-13
CN103580518A (en) 2014-02-12
GB2504361A (en) 2014-01-29
US20140028239A1 (en) 2014-01-30
GB201213526D0 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
IN2013MU01392A (en)
IN2014CN02647A (en)
GB2521977A (en) Power supply apparatus, power supply method, and computer progam
MX2013010230A (en) Intelligent display and fixture system.
WO2013037740A3 (en) Safety device for a photovoltaic system
GB2498911A (en) Inverter array with localized inverter control
IL217263B (en) System, method and computer program product for controlling electric power supply
MX351924B (en) Method and apparatus for feeding electric energy into an electric supply network.
WO2013140266A3 (en) Applying rf energy according to time variations in em feedback
EP2544354A3 (en) Power converter circuit with AC output
IN2015DN01650A (en)
MY173151A (en) Highly efficient power supply unit and method for supplying power using same
MX342111B (en) Power supplies having power electronic modules and replacement methods thereof.
GB2530673A (en) Apparatus for controlling an alternating current machine
WO2014093208A3 (en) Power stack control systems
WO2014098104A8 (en) Control method and control system for parallel operation between different types of power generator
WO2012119795A3 (en) Control unit
IN2013CH01327A (en)
WO2014075999A3 (en) Method and arrangement for data communication between an inverter and a network monitoring unit
MX2014012943A (en) Method and apparatus for providing welding type power using multiple power modules.
EP2703943A3 (en) Apparatus and method for power switching in electronic device
MX2013001503A (en) Switch mode power supply module and associated hiccup control method.
WO2012120478A8 (en) Electrical energy buffering system
WO2016009220A3 (en) A hydrocarbon heating system
GB2515666A (en) Overvoltage protection systems and method