IL45557A - Thermoplastic polyvinyl chloride composition - Google Patents

Thermoplastic polyvinyl chloride composition

Info

Publication number
IL45557A
IL45557A IL45557A IL4555774A IL45557A IL 45557 A IL45557 A IL 45557A IL 45557 A IL45557 A IL 45557A IL 4555774 A IL4555774 A IL 4555774A IL 45557 A IL45557 A IL 45557A
Authority
IL
Israel
Prior art keywords
weight
polyethylene
chlorination
low pressure
thermoplastic composition
Prior art date
Application number
IL45557A
Other versions
IL45557A0 (en
Original Assignee
Hoechst Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Ag filed Critical Hoechst Ag
Publication of IL45557A0 publication Critical patent/IL45557A0/en
Publication of IL45557A publication Critical patent/IL45557A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/28Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with halogens or compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/28Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with halogens or compounds containing halogen
    • C08L23/286Chlorinated polyethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

45557/2 THERMOPLASTIC POLYVINYL CHLORIDE COMPOSITION This invention relates to a thermoplastic composition consisting of a vinyl chloride polymer and a chlorinated low pressure polyethylene.
It has been proposed to elastify polyvinyl chloride and vinyl chloride copolymers by the addition of chlorination products of polyolefins obtained by chlorinating polyolefins in aqueous suspension and having a chlorine content of from 25 to 50 % by weight (cf. German Patent 1,469,990 and German Patents 1,236,774 and 1,266,969).
To obtain chlorination products having a good elasti-fying effect combined with a sufficient fineness of grain the chlorination has to be carried out in the presence of fine-grained inert, inorganic or organic additives to avoid agglomeration. As inorganic additives silicic acid or kieselguhr have been proposed (cf. German Patent 1,420,407).
The relatively large amount of silicic acid, which must be added to the chlorination reaction as anti-agglomeration agent and which partially remains in the final blend when the chloropolyolefin is mixed with polyvinyl chloride, has a detrimental effect on the Theological and mechanical properties of the blend.
It has now been found that mixtures of vinyl chloride polymers and chlorination products of polyolefins can be produced which do not have the aforesaid disadvantages and are well suitable for dry blend technique by using a chlorinated low pressure polyethylene prepared by chlorinating in water in the presence of silicic acid and a siloxane oil.
The present invention provides a thermoplastic comp - osition essentially consisting of a) 98 to 50 % by weight of a vinyl chloride polymer and b) 2 to 50 % by weight of a chlorinated low pressure polyethylene, having a chlorine content of 25 to 42 % by- weight, a reduced specific viscosity of 1 to 5 dl/g, a residue value of 2 to 40 , measured by extraction with toluene/acetone in a proportion of 1 : 1, and a swelling value of 10 to 70 %, measured in methylcyclo- hexane, and obtained by chlorinating a low pressure polyethylene in water in the presence of 0.1 to 2 % by weight of silicic acid and 0.01 to 1.0 by weight of a siloxane oil, the percentages being calculated on the low pressure polyethylene used, at a chlorination temperature of from 50 to 130°C, at least 10 % by weight of chlorine being incorpo¬ a) 98 to 50 % by weight of a vinyl chloride polymer and b) 2 to 50 by weight of a chlorinated low pressure polyethylene having a chlorine content of from 25 to 42 by weight, a reduced specific viscosity of 1 to 5 dl/g, a residue value of from 2 to 40 , measured by extraction with toluene/acetone in a proportion of 1 : 1, and a swelling value of from 10 to 70 %, measured in methylcyclohexane, and prepared by chlorinating a fine-grained low pressure polyethylene in water in the presence of 0.1 to 2 % by weight of silicic acid and 0.01 to 1.0 % b weight of a siloxane oil, "the percentages being calculated on the starting polyethylene, at a chlorination temperature of from 50 to 130°C, the low pressure polyethylene being possibly thermally treated or presintered at a temperature in the range of from 100°C to its crystallite melting point and at least 10 % of the chlorine being introduced at a temperature of from 110 to 130°C.
The thermoplastic composition consists of 98 to 50 % by weight, preferably 95 to 80 % by weight of polyvinyl chloride or a copolymer of vinyl chloride with other comonomers, such as vinyl acetate, acrylic acid esters or methacrylic acid esters, the amount of comonomer units in the polymer being at most 20 % by weight, preferably 1 to 5 % by weight. The K value of the polymer is expedient ly in a range of from 50 to 80.
The remaining 2 to 50 % by weight, preferably 2 to 20 % by weight, of the thermoplastic composition of the invention consists of a chlorinated low pressure polyethylene of high molecular weight containing 25 to 42 % by weight, preferably 30 to 40 % by weight of chlorine. The distribution of the chlorine atoms in the polyethylene grains, i.e. the degree of "penetrating or through chlorination" is characterized by the residue value according to the toluene/acetone method and the swelling value in methylcyclohexane. The chlorinated low pressure polyethylene suitable for making the compositions of the invention shall have a residue value of 2 to 40 %, preferably 2 to 30 %, and a swelling value of 10 to 70 %t preferably 20 to 50 %. Moreover, it shall have a reduced specific vis- cosity of 1 to 5 dl/g, preferably 1 to 3-5 dl/g.
The chlorinated low pressure polyethylene of high molecular veight is fine-grained and can readily be mixed homogeneously with the vinyl chloride polymer powder.
The chlorinated low pressure polyethylene to be used according to the invention is produced by chlorinating finegrained low pressure polyethylene, which may have been thermally treated or pre-sintered for 5 "to 300 minutes at a temperature of from 100°C to its crystallite melting point (cf. German Offenlegungsschrift 1,720^800) in water; expediently 3 to 30 times the amount of water, referred to the low pressure polyethylene being used, at a temperature in the range of from 50 to 130°C. The chlorination is advantageously started in a temperature range of from 70 to 90°C, continued with continual temperature increase and terminated at a temperature ranging from 120 to 130°C.
Alternatively, the chlorination can be effected in two steps, i.e. it is started at a temperature of from 50° to 100°C, the chlorine supply is interrupted while the temperature is raised to 120 to 130°C and the chlorination is then continued -and terminated at that temperature.
The low pressure polyethylene used as starting material has a reduced specific viscosity of 1 to 5 dl/g, preferably 1 to 3.5 dl/g.
By silicic acid present in the chlorination as agglomeration inhibitor the various hydrous or anhydrous types of finely porous silicon dioxide preferably having a large surface are understood. Their inner surface should expediently be in the range of from 50 to 400 cm~/g according to BET (Brunauer, Emmet and Teller) preferably 150 to 300 cm2/g.
In general the silicic acid has a mean particle size of from 1 to 50 ^am.
To obtain a sufficient anti-agglomeration effect about 0.1 to 2 $> by weight of silicic acid in combination with 0.01 to 1.0, preferably 0.02 to 0.7 $> by weight of siloxane oil, each time calculated on the low pressure polyethylene used, are generally sufficient. The amount of silicic acid and siloxane oil is not strictly limited, in some cases higher amounts may also be used, whereby the agglomeration inhibition is further improved but disadvantages for the blend with polyvinyl chloride must be taken into consideration.
The organo-silicon compounds or siloxane oils to be used according to the invention are polysiloxanes consisting of the recurring unit in which R-j and Rg each represent an alkyl radical preferably having 1 to 6 carbon atoms, an aryl radical, preferably a phenyl or an aralkyl radical preferably having from 7 to 12 carbon atcms, and x is an integer of from 10 to 10,000, preferably 100 to 1000. The viscosity of the siloxane oils at 25°C is suitably in the range of from 100 to 500,000 centistokes, more suitably 500 to 50,000 centistokes. There are mentioned, by way of example, dimethyl-, diethyl-, dipropyl-, methyl-ethyl-, dioctyl-, dihexyl-, methylpropyl-, dibutyl- and didodecyl-polysiloxanes . Compounds of the dimethyl—polysiloxane series proved to be especially advantageous.
The silicic acid component and the polysiloxane, which are possibly pre-mixed, are expediently added prior to or at the beginning of the chlorination within a temperature interval in which the melting point of the polyethylene is not yet reached.
According to another mode of operation the silicic acid is first added alone and the siloxane oil is then admixed during the course of chlorination. A possible agglomeration can be counteracted at least partially by the later addition of siloxane oil, even if it is made prior to drying.
It is also possible, of course, to add the intended amount of siloxane oil in portions durin some or all process steps.
The thermoplastic composition according to the invention may additionally contain known PVC stabilizers, for example barium or cadmium laurate, epoxide stabilizers, organic phosphites, tin or lead compounds, as well as other known additives, for example UV absorbers, lubricants, processing auxiliaries, dyes and pigments.
Depending on the proportion of chlorinated low pressure polyethylene, the thermoplastic composition of the invention can be used for making tubes, profiles, plates, sheets, cables, injection moulded articles and other shaped structures. Owing to the uniform fineness of the grain, the *. composition can be easily processed by the dry blend technique. Mixing of the components in the plasticized state is not required.
To characterize the chlorinated low pressure polyethy-lenes to be used according to the invention the following methods were used: 1) Residue value according to the toluene/acetone (TAC) method: 4 grams of the chloropolyethylene to be tested were refluxed for 1 hour in 100 ml of a 1 : mixture of toluene and acetone.
The amount of insoluble residue consisting of insuffiently chlorinated portions is a measurement for the through chlorination of the polyethylene particles. The smaller the residue the better the chlorination product is suitable for the compositions of the invention. 2) Swelling value in methylcyclohexane (MCH) The increase in weight of a sample after a 24 hour storage in methylcyclohexane is a further measurement for the through chlorination of the polyethylene particles. Portions which have not been chlorinated to a sufficient extent swell very little. Products having a high swelling value are especially suitable.
The following examples illustrate the invention.
E X A M P L E 1: The chloropolyethylene used was prepared as follows: In a chlorination vessel 100 parts by weight of low pressure polyethylene having a reduced specific viscosity of 1.3 dl/g, measured at 35°C in tetrahydronaphthalene, in 800 * parts by weight of water were chlorinated, with the addition of 1 part by weight of silicic acid having a mean particle size of 12 yum and an inner surface of 200 cm /g according to BET and 0.7 part by weight of dimethylpolysiloxane having a viscosity of 10,000 at 25°C, first at 80°C until a chlorine content of 20 % by weight had been reached o and then at 120 C to a chlorine content of 38.7 % by weight.
The filtered, washed and dried product had a TAC value of 29 % and a MCH value of 12 %.
A mixture of 10 parts by weight of the above chlorination product and 90 parts by weight of suspension polyvinyl chloride having a K value of 70 was rolled for 10 minutes at 175°C with the addition of 3 parts by weight of barium/cadmium stabilizer and 1 part by weight of di-phenyl-octyl phosphite. The plates moulded from the blend had the following values Notched impact strength according to DIN 53,453: 30.4 cmkg/cm Impact strength at -20°C according to DIN 53,453: "without break" Notched tensile impact strength (DIN 53,448): Comparative E A M P L E The same low pressure polyethylene was chlorinated under the conditions specified above with the exception that no silicic acid and no siloxane oil were added. The polymer agglomerated to a large extent so that further chlorination was much impeded. A chlorination product was obtained having a chlorine content of 39.1 % by weight, a TAC value of 45 % and a MCH value of 3 A blend of 10 % by weight of the said chlorination product with 90 % by weight of suspension polyvinyl chloride having a K value of 70, prepared under the conditions of Example 1 , was found to have a notched impact strength of 19.2 cmkg/cm2 and an impact strength at -20°C "without break", according to DIN 53,453, and a notched tensile impact strength of 102 cmkg/cm according to DIN 53,448.
E A M P L E 2: In a chlorination vessel 100 parts by weight of low pressure polyethylene having a reduced specific viscosity of 1.2 dl/g in 100 parts by weight of water were chlorinated with the addition of 1 part by weight of silicic acid having a mean particle size of 12 yum and an inner surface of 200 cm /g and 0.7 part by weight of dimethyl-polysiloxane having a viscosity of 1,000 centistokes at 25°C, first at 90°C to a chlorine content of 20 % by weight and then at 121°C until a chlorine content of 38.3 % by weight was reached. The product had a TAC value of 29 and a MCH value of 18 .
A blend of 10 parts of the chloropolyethylene obtained with 90 parts of suspension PVC having a K value of 70, prepared under the conditions specified in Example 1 , had a notched impact strength of 37.6 cmkg/cm 2 and an impact strength at -20°C "without break".
In an impeller 90 parts by weight of suspension PVC having a K value of 70 and 10 parts by weight of the chlorinated polyethylene were mixed with the addition of 2 parts by weight of barium/cadmium laurate, 0.5 part of diphenyl-octyl phosphite, 2 parts by weight of epoxidized soybean oil and 2 parts by weight of titanium dioxide.
The stabilized blend was processed directly on a single screw extruder having a screw diameter of U5 mm and a screw length of 680 mm at a temperature increasing in the direction of conveyance from 150°C to 180°C and a screw speed of 15 revolutions per minute to a ribbon of the dimensions 1 x 70 mm having a glossy surface. The notched tensile impact strength of the ribbon was 166 cmkg/cm measured according to DIN 53,^*48.
E X A M P L E 3: 100 parts by weight of the polyethylene as used in Example 2 in 1,000 parts by weight of water were chlorinated with the addition of 1 part of the same silicic acid and 0.35 part of siloxane oil having a viscosity of 10,000 centistokes at 25°C, first at 70°C to a chlorine content of 28 % by weight and then at 121°C until a chlorine content of 38.1 % by weight was reached. The product obtained had a TAC value of 33 % and a MCH value of 16 %.
A blend of 10 parts of the chlorinated polyethylene with 90 parts of suspension PVC having a K value of 70, produced under the conditions of Example 1 , showed a notched impact strength of 28.3 cmkg/cm and an ijnpact strength at -20°C "without break".

Claims (6)

HOE 73/F 265 What is claimed is;
1. Thermoplastic composition essentially consisting of a) 98 to 50 % by weight of a vinyl chloride polymer and b) 2 to 50 % by weight of a chlorinated low pressure polyethylene having a chlorine content of 25 to 42 % by weight, a reduced specific viscosity of 1 to 5 dl/g, a residue value of 2 to 40 %, measured by extraction in a 1 : 1 mixture of toluene and acetone, and a swelling value of 10 to 70 %, measured in methyl cyclohexane, the chloro-polyethylene being prepared by chlorination of low pressure polyethylene in water i in the presence of 0. 1 to 2 % by weight of silicic acid and 0.0 to 1.0 % by weight of siloxane oil, the percentages being calculated, on the the polyethylene, at a chlorination temperature of from 50°C to 130°C, at least 10 % by weight of the chlorine fceing incorporated at a temperature of from 120 to 130°C.
2. Thermoplastic composition as claimed in claim 1 , wherein the chloro-polyethylene used was prepared by chlorination starting at 50 to 100°C and ending at 120 to 130°C.
3. Thermoplastic composition as claimed in claim 1 , wherein the chloro-polyethylene used was prepared by chlorination starting at 70 to 90°C and ending at 120 to 130°C. HOE 73/F 263
4. Thermoplastic composition as claimed in claim 1 , φ wherein the chlorinated low pressure polyethylene has a chlorine content of from 30 to 40 ,
5. Thermoplastic composition as claimed in claim 1, wherein the chlorinated polyethylene was prepared from low pressure polyethylene which had been thermally treated or pre-sintered at a temperature in the range of from 100°C to its crystallite melting point.
6. Process for the manufacture of a thermoplastic composition by mixing a) 98 to 50 % by weight of a vinyl chloride polymer and b) 2 to 50 % by weight of a chlorinated low pressure polyethylene wherein the low pressure polyethylene has a chlorine content of 25 to 42 % by weight, a reduced specific viscosity of 1 to 5 dl/g, a residue value of 2 to 40 %, measured by extraction in a 1 : 1 mixture of toluene and acetone, and a swelling value of 10 to 7096, measured in methylcyclohexane, and is prepared by chlorination in water in "the presence of 0.1 to 2 % by weight of silicic acid and 0.01 to 1.0 % by weight of siloxane oil, the percent-ages being calculated on the polyethylene used, at a chlorination temperature of from 50°C to 130°C, «t leat 10 by weight of the chlorine being incorporated at a temperature of from 120 to 30°C. HOE 73/P 263 Process for the manufacture of the thermoplastic composi- £ tion as claimed in claim 6, wherein the viscosity number of the siloxane oil is in the range from 1000 to 500,000 centlstokes. Process for the manufacture of the thermoplastic composition as claimed in claim 6, wherein the quantity of silicic acid is from 0.1 to 1 i» by weight. Process for the manufacture of the thermoplastic composition as claimed in claim 6, wherein the silicic acid has an average particle size of from 1 to 50im and an inner r surface of from 50 to 4-00 cm /g (according to BET). P. O. Box 33116 , Tel-Avi Attorneys for Applicant
IL45557A 1973-08-31 1974-08-27 Thermoplastic polyvinyl chloride composition IL45557A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2343983A DE2343983C3 (en) 1973-08-31 1973-08-31 Thermoplastic mass

Publications (2)

Publication Number Publication Date
IL45557A0 IL45557A0 (en) 1974-11-29
IL45557A true IL45557A (en) 1977-01-31

Family

ID=5891280

Family Applications (1)

Application Number Title Priority Date Filing Date
IL45557A IL45557A (en) 1973-08-31 1974-08-27 Thermoplastic polyvinyl chloride composition

Country Status (12)

Country Link
JP (1) JPS5727911B2 (en)
AT (1) AT329270B (en)
BE (1) BE819449A (en)
CA (1) CA1033873A (en)
CH (1) CH598314A5 (en)
DE (1) DE2343983C3 (en)
FR (1) FR2242432B1 (en)
GB (1) GB1475715A (en)
IL (1) IL45557A (en)
IT (1) IT1020308B (en)
NL (1) NL7411332A (en)
SE (1) SE394446B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2937178A1 (en) * 1979-09-14 1981-04-02 Hoechst Ag, 6000 Frankfurt THERMOPLASTIC MASS
DE3105404A1 (en) * 1981-02-14 1982-09-02 Hoechst Ag, 6000 Frankfurt METHOD FOR PRODUCING A FINE-GRAINED NON-AGGLOMERATING CHLORINE POLYETHYLENE
EP1227127B1 (en) 1999-07-30 2005-07-06 NOK Corporation Molding material for carbon dioxide

Also Published As

Publication number Publication date
JPS5064347A (en) 1975-05-31
DE2343983B2 (en) 1979-02-01
NL7411332A (en) 1975-03-04
IL45557A0 (en) 1974-11-29
DE2343983C3 (en) 1979-09-20
GB1475715A (en) 1977-06-01
FR2242432B1 (en) 1978-02-17
SE394446B (en) 1977-06-27
DE2343983A1 (en) 1975-03-13
AT329270B (en) 1976-05-10
CA1033873A (en) 1978-06-27
CH598314A5 (en) 1978-04-28
ATA705274A (en) 1975-07-15
JPS5727911B2 (en) 1982-06-14
IT1020308B (en) 1977-12-20
BE819449A (en) 1975-03-03
FR2242432A1 (en) 1975-03-28
SE7411021L (en) 1975-03-03

Similar Documents

Publication Publication Date Title
US3940456A (en) Thermoplastic composition comprising PVC and chlorinated polyethylene
TWI664222B (en) Resin composition for molding
KR101611497B1 (en) Filled poly vinyl chloride composition
EP0512610B1 (en) Chlorinated PVC blends
US3994995A (en) Thermoplastic composition comprising pvc and chlorinated polyethylene
EP0065569B1 (en) Extrusion-grade vinylidene chloride copolymer compositions and films prepared therefrom
IL45557A (en) Thermoplastic polyvinyl chloride composition
EP2064284A1 (en) Composition of at least one vinylidene chloride polymer
JPH0436163B2 (en)
IL45558A (en) Thermoplastic polivinylchloride composition
NO176279B (en) Crosslinkable silyl polymer blend
NO174209B (en) Crosslinkable Polymer Composition and Process for Preparing a Crosslinked Product
Haba et al. Development and characterization of reactively extruded PVC/polystyrene blends
US4711921A (en) Stabilization of vinyl chloride polymers
WO1998053005A1 (en) Chlorinated polyvinyl chloride compound having excellent physical, chemical resistance and processing properties
EP2970630B1 (en) Heavy metal free halogenated polymer compounds
US4797443A (en) Stabilized vinyl halide resins and compositions and articles made therefrom
CA1228693A (en) Terpolymer processing aid for polyvinyl halide polymers
JP3541367B2 (en) Plastisol composition
CA1065088A (en) Thermoplastic compositions
JPH02191606A (en) Reactive polyvinyl chloride and polymer product prepared therefrom
RU2139297C1 (en) Method of suspension polycondensation of vinyl chloride
Lee et al. Effects of poly (methyl methacrylate‐co‐n‐butyl acrylate) on the properties and processing behavior of poly (vinyl chloride)
JPS6348891B2 (en)
SU939495A1 (en) Granulated organic material