IL306085B2 - מערכת ושיטה מולטי-ספקטרלית בזמן אמת - Google Patents

מערכת ושיטה מולטי-ספקטרלית בזמן אמת

Info

Publication number
IL306085B2
IL306085B2 IL306085A IL30608523A IL306085B2 IL 306085 B2 IL306085 B2 IL 306085B2 IL 306085 A IL306085 A IL 306085A IL 30608523 A IL30608523 A IL 30608523A IL 306085 B2 IL306085 B2 IL 306085B2
Authority
IL
Israel
Prior art keywords
training
spectral data
data cube
spectral
model
Prior art date
Application number
IL306085A
Other languages
English (en)
Other versions
IL306085B1 (he
IL306085A (he
Inventor
Benny Eliyahu
Ankor Uriel
Gilichinsky Michael
Original Assignee
Elbit Systems Electro Optics Elop Ltd
Benny Eliyahu
Ankor Uriel
Gilichinsky Michael
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elbit Systems Electro Optics Elop Ltd, Benny Eliyahu, Ankor Uriel, Gilichinsky Michael filed Critical Elbit Systems Electro Optics Elop Ltd
Priority to IL306085A priority Critical patent/IL306085B2/he
Priority to JP2025518427A priority patent/JP2025534548A/ja
Priority to EP23874072.4A priority patent/EP4594715A1/en
Priority to PCT/IL2023/051058 priority patent/WO2024075121A1/en
Publication of IL306085A publication Critical patent/IL306085A/he
Publication of IL306085B1 publication Critical patent/IL306085B1/he
Priority to US19/169,041 priority patent/US20250274643A1/en
Publication of IL306085B2 publication Critical patent/IL306085B2/he

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0297Constructional arrangements for removing other types of optical noise or for performing calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/194Terrestrial scenes using hyperspectral data, i.e. more or other wavelengths than RGB

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Processing (AREA)
IL306085A 2022-10-06 2023-09-19 מערכת ושיטה מולטי-ספקטרלית בזמן אמת IL306085B2 (he)

Priority Applications (5)

Application Number Priority Date Filing Date Title
IL306085A IL306085B2 (he) 2023-09-19 2023-09-19 מערכת ושיטה מולטי-ספקטרלית בזמן אמת
JP2025518427A JP2025534548A (ja) 2022-10-06 2023-10-03 リアルタイム・マルチスペクトル・システム及び方法
EP23874072.4A EP4594715A1 (en) 2022-10-06 2023-10-03 Real-time multi-spectral system and method
PCT/IL2023/051058 WO2024075121A1 (en) 2022-10-06 2023-10-03 Real-time multi-spectral system and method
US19/169,041 US20250274643A1 (en) 2022-10-06 2025-04-03 Real-time multi-spectral system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IL306085A IL306085B2 (he) 2023-09-19 2023-09-19 מערכת ושיטה מולטי-ספקטרלית בזמן אמת

Publications (3)

Publication Number Publication Date
IL306085A IL306085A (he) 2024-01-01
IL306085B1 IL306085B1 (he) 2025-04-01
IL306085B2 true IL306085B2 (he) 2025-08-01

Family

ID=95251054

Family Applications (1)

Application Number Title Priority Date Filing Date
IL306085A IL306085B2 (he) 2022-10-06 2023-09-19 מערכת ושיטה מולטי-ספקטרלית בזמן אמת

Country Status (1)

Country Link
IL (1) IL306085B2 (he)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110070004A (zh) * 2019-04-02 2019-07-30 杭州电子科技大学 一种应用于深度学习的近地高光谱数据扩展方法
US20210239606A1 (en) * 2020-02-04 2021-08-05 Andrea Gabrieli Computationally efficient method for retrieving physical properties from 7-14 um hyperspectral imaging data under clear and cloudy background conditions
US20220309288A1 (en) * 2021-03-26 2022-09-29 Sharper Shape Oy Method for creating training data for artificial intelligence system to classify hyperspectral data

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110070004A (zh) * 2019-04-02 2019-07-30 杭州电子科技大学 一种应用于深度学习的近地高光谱数据扩展方法
US20210239606A1 (en) * 2020-02-04 2021-08-05 Andrea Gabrieli Computationally efficient method for retrieving physical properties from 7-14 um hyperspectral imaging data under clear and cloudy background conditions
US20220309288A1 (en) * 2021-03-26 2022-09-29 Sharper Shape Oy Method for creating training data for artificial intelligence system to classify hyperspectral data

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BASENER, BILL; BASENER, ABIGAIL, BASENER, BILL; BASENER, ABIGAIL. GAUSSIAN PROCESS AND DEEP LEARNING ATMOSPHERIC CORRECTION. REMOTE SENSING, 2023, 15.3: 649.‏, 21 January 2023 (2023-01-21) *
JI, JINGYU, ET AL., JI, JINGYU, ET AL. INFRARED AND VISIBLE IMAGE REGISTRATION BASED ON AUTOMATIC ROBUST ALGORITHM. ELECTRONICS, 2022, 11.11: 1674.‏, 25 May 2022 (2022-05-25) *

Also Published As

Publication number Publication date
IL306085B1 (he) 2025-04-01
IL306085A (he) 2024-01-01

Similar Documents

Publication Publication Date Title
Liu et al. Estimating leaf area index using unmanned aerial vehicle data: shallow vs. deep machine learning algorithms
Aboutalebi et al. Assessment of different methods for shadow detection in high-resolution optical imagery and evaluation of shadow impact on calculation of NDVI, and evapotranspiration
DadrasJavan et al. UAV-based multispectral imagery for fast Citrus Greening detection
Zarco-Tejada et al. Understanding the temporal dimension of the red-edge spectral region for forest decline detection using high-resolution hyperspectral and Sentinel-2a imagery
US20250274643A1 (en) Real-time multi-spectral system and method
López et al. A framework for registering UAV-based imagery for crop-tracking in Precision Agriculture
CN111553245A (zh) 基于机器学习算法和多源遥感数据融合的植被分类方法
Sagan et al. Data-driven artificial intelligence for calibration of hyperspectral big data
Ribera et al. Estimating phenotypic traits from UAV based RGB imagery
Zou et al. The fusion of satellite and unmanned aerial vehicle (UAV) imagery for improving classification performance
Deng et al. An approach for reflectance anisotropy retrieval from UAV-based oblique photogrammetry hyperspectral imagery
Rumora et al. Spatial video remote sensing for urban vegetation mapping using vegetation indices
Tian et al. A new method for estimating signal-to-noise ratio in UAV hyperspectral images based on pure pixel extraction
Han et al. Remote sensing image classification based on multi-spectral cross-sensor super-resolution combined with texture features: a case study in the Liaohe planting area
Liu et al. Detection of Firmiana danxiaensis canopies by a customized imaging system mounted on an UAV platform
Zhang et al. Acquisitions and applications of forest canopy hyperspectral imageries at hotspot and multiview angle using unmanned aerial vehicle platform
Li et al. Seeing into individual trees: Tree-specific retrieval of tree-level traits using 3D radiative transfer model and spatial adjacency constraint from UAV multispectral imagery
Yurtseven et al. Using of high-resolution satellite images in object-based image analysis
Vidal et al. Change detection of isolated housing using a new hybrid approach based on object classification with optical and TerraSAR-X data
Bloechl et al. A comparison of real and simulated airborne multisensor imagery
Yang et al. Simple, low-cost estimation of potato above-ground biomass using improved canopy leaf detection method
IL319656A (he) מערכת ושיטה מולטי-ספקטרלית בזמן אמת
Jadhav et al. Hybrid cluster segmentation and deep learning convolutional neural network classification of remote sensing data
IL306085B2 (he) מערכת ושיטה מולטי-ספקטרלית בזמן אמת
Siok et al. A simulation approach to the spectral quality of multispectral images enhancement