IL303145A - Fungicidal oxadiazoles and their mixtures - Google Patents

Fungicidal oxadiazoles and their mixtures

Info

Publication number
IL303145A
IL303145A IL303145A IL30314523A IL303145A IL 303145 A IL303145 A IL 303145A IL 303145 A IL303145 A IL 303145A IL 30314523 A IL30314523 A IL 30314523A IL 303145 A IL303145 A IL 303145A
Authority
IL
Israel
Prior art keywords
methyl
fungicides
independently
phenyl
composition
Prior art date
Application number
IL303145A
Other languages
Hebrew (he)
Original Assignee
Fmc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fmc Corp filed Critical Fmc Corp
Publication of IL303145A publication Critical patent/IL303145A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • A01N25/04Dispersions, emulsions, suspoemulsions, suspension concentrates or gels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/30Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests characterised by the surfactants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/34Nitriles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/44Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids
    • A01N37/50Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids the nitrogen atom being doubly bound to the carbon skeleton
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/541,3-Diazines; Hydrogenated 1,3-diazines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/561,2-Diazoles; Hydrogenated 1,2-diazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • A01N43/6531,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/82Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with three ring hetero atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/84Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms six-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,4
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N45/00Biocides, pest repellants or attractants, or plant growth regulators, containing compounds having three or more carbocyclic rings condensed among themselves, at least one ring not being a six-membered ring
    • A01N45/02Biocides, pest repellants or attractants, or plant growth regulators, containing compounds having three or more carbocyclic rings condensed among themselves, at least one ring not being a six-membered ring having three carbocyclic rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/10Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof
    • A01N47/12Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof containing a —O—CO—N< group, or a thio analogue thereof, neither directly attached to a ring nor the nitrogen atom being a member of a heterocyclic ring
    • A01N47/14Di-thio analogues thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N53/00Biocides, pest repellants or attractants, or plant growth regulators containing cyclopropane carboxylic acids or derivatives thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P3/00Fungicides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N2300/00Combinations or mixtures of active ingredients covered by classes A01N27/00 - A01N65/48 with other active or formulation relevant ingredients, e.g. specific carrier materials or surfactants, covered by classes A01N25/00 - A01N65/48

Description

WO 2022/133114 PCT/US2021/063852 TITLE FUNGICIDAL OXADIAZOLES AND THEIR MIXTURES FIELD OF THE INVENTIONThis invention relates to certain oxadiazoles, their A-oxidcs and salts, and to mixtures and compositions comprising such oxadiazoles and methods for using such derivatives and their mixtures and compositions as fungicides.
BACKGROUND OF THE INVENTIONThe control of plant diseases caused by fungal plant pathogens is extremely important in achieving high crop efficiency. Plant disease damage to ornamental, vegetable, field, cereal and fruit crops can cause significant reduction in productivity and thereby result in increased costs to the consumer. In addition to often being highly destructive, plant diseases can be difficult to control and may develop resistance to commercial fungicides. Many products are commercially available for these purposes, but the need continues for new fungicidal compounds which are more effective, less costly, less toxic, environmentally safer or have different sites of action. Besides introduction of new fungicides, combinations of fungicides are often used to facilitate disease control, to broaden spectrum of control and to retard resistance development. Furthermore, certain rare combinations of fungicides demonstrate a greater-than-additive effect (i.e. synergistic) to provide commercially important levels of plant disease control. The advantages of particular fungicide combinations are recognized in the art to vary, depending on such factors as the particular plant species and plant disease to be treated, and whether the plants are treated before or after infection with the fungal plant pathogen. Accordingly, new advantageous combinations are needed to provide a variety of options to best satisfy particular plant disease control needs. Such combinations have now been discovered.
SUMMARY OF THE INVENTIONThis invention relates to a fungicidal composition (i.e. combination, mixture) comprising(a) at least one compound selected from the compounds of Formula 1 (including all stereoisomers), tautomers, A-oxides, hydrates (and solvates thereof), and salts thereof, wherein WO 2022/133114 PCT/US2021/063852 R1 is a phenyl ring optionally substituted with up to 3 substituents independently selected from R2; orR1 is a 5- to 6-membered heteroaromatic ring, each ring containing ring members selected from carbon atoms and 1 to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, wherein up to 2 ring members are independently selected from C(=O), C(=S), S(=O) and S(=O)2, each ring optionally substituted with up to 3 substituents independently selected from R2; orR1 is a 3- to 7-membered nonaromatic ring or an 8- to 11-membered bicyclic ring system, each ring or ring system containing ring members selected from carbon atoms and optionally up to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, wherein up to 2 ring members are independently selected from C(=O), C(=S), S(=O) and S(=O)2, each ring or ring system optionally substituted with up to 3 substituents independently selected from R2;L is O, NR3, NR3CH2, CH2NR3, NR3CH2CH2, CH2CH2NR3, (CR4aR4b)n, OCH2, CH2O, OCH2CH2, CH2CH2O or CH2OCH2, wherein the atom to the left is connected to R1, and the atom to the right is connected to J, each carbon atom is optionally substituted with up to 2 substituents independently selected from halogen, cyano, hydroxy, nitro, C1-C3 alkyl, C1-C3 haloalkyl, CpC2 alkoxy and CpC2 haloalkoxy;J is a phenyl ring or a naphthalenyl ring system, each optionally substituted with up to substituents independently selected from R5; or a 3- to 7-membered carbocyclic ring, wherein up to 3 ring members are independently selected from C(=O) and C(=S), each ring optionally substituted with up to 2 substituents independently selected from R5; orJ is a 5- to 6-membered heterocyclic ring, each ring containing ring members selected from carbon atoms and 1 to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, wherein up to 2 ring members are independently selected from C(=O), C(=S), S(=O) and S(=O)2, each ring optionally substituted with up to 2 substituents independently selected from R5;each R2 is independently halogen, cyano, hydroxy, nitro, thioyl, SF5, CH(=O), C(=O)OH, -NR3aR3b, C(=O)NR3aR3b, C(=O)C(=O)NR3aR3b, C(=S)NR3aR3b, C(R6)=NR7, N=CR8NR9aR9b or -U-V-Q; or Cr C6 alkyl, C2-C6 alkenyl, C2-Calkynyl, C3-C7 cycloalkyl, C3-C7 cycloalkenyl, C1-C6 alkoxy, C2־Cg alkenyloxy, C2-C6 alkynyloxy, C3-C7 cycloalkoxy, C1-C6 alkylthio, C1-C6 alkylsulfinyl, C1-Calkylsulfonyl, C1-C6 alkylaminosulfinyl, C2־Cg dialkylaminosulfinyl, C1-Calkylsulfonyloxy, C1-C6 alkylsulfonylamino, C2־Cg alkylcarbonyl, C4-C7 WO 2022/133114 PCT/US2021/063852 cycloalkylcarbonyl, C2־Cg alkoxycarbonyl, C3-C6 alkenyloxycarbonyl, C3-Calkynyloxycarbonyl, C4-C7 cycloalkoxycarbonyl, C3-C6 alkyloxycarbonylcarbonyl, C2-C6 alkylcarbonyloxy, C4-C7 cycloalkylcarbonyloxy, C2־Cg alkoxycarbonyloxy, C4-C7 cycloalkoxycarbonyloxy, C2־Cg alkylaminocarbonyloxy, C4-Ccycloalkylaminocarbonyloxy, C2־C6 alkylcarbonylamino, C4-Ccycloalkylcarbonylamino, C2־C6 alkoxycarbonylamino, C4-Ccycloalkoxycarbonylamino, C2־C6 alkylaminocarbonylamino, C4-Ccycloalkylaminocarbonylamino or C2-C6 dialkoxyphosphinyl, each optionally substituted with up to 3 substituents independently selected from R10;each R3 and R3a is independently H, cyano, hydroxy, CpC4 alkyl, CpC4 haloalkyl, C2-Calkenyl, C2-C4 haloalkenyl, C2-C4 alkynyl, C2-C4 haloalkynyl, C4-C5 alkoxy, C2-C4 alkoxy alkyl, CpC4 alkylsulfonyl, CpC4 haloalkylsulfonyl, C2-Calkylthioalkyl, C2-C4 alkylsulfinylalkyl, C2-C4 alkylsulfonylalkyl, C2-Calkylcarbonyl, C2-C4 haloalkylcarbonyl, C4-C7 cycloalkylcarbonyl, C2-Calkoxycarbonyl, C3-C5 alkoxycarbonylalkyl, C2-C5 alkylaminocarbonyl or C3-Cdialkylaminocarbonyl;each R3b is independently H, C-C6 alkyl, C-C6 haloalkyl, C2־Cg alkenyl, C2־Cg haloalkenyl, C2־Cg alkynyl, C2־Cg haloalkynyl, C1-C6 hydroxy alkyl, C2־Cg cyanoalkyl, C3-Cg cycloalkyl, C3-Cg halocycloalkyl, C3-Cg cycloalkenyl, C3-Cg halocycloalkenyl, C4-C10 alkylcycloalkyl, C4-C10 cycloalkylalkyl, C4-Chalocycloalkylalkyl, Cg-C^ cycloalkylcycloalkyl, C5-C10 alkylcycloalkylalkyl, C2-C6 alkoxyalkyl, C2־Cg haloalkoxyalkyl, C4-C10 cycloalkoxyalkyl, C3-Cg alkoxyalkoxyalkyl, C2־Cg alkylthioalkyl, C2־Cg alkylsulfinylalkyl, C2־Cg alkylsulfonylalkyl, C2־Cg alkylaminoalkyl, C2־Cg haloalkylaminoalkyl, Cg-Cg dialkylaminoalkyl or C4-C1Q cycloalkylaminoalkyl, each optionally substituted with up to 1 substituent selected from cyano, hydroxy, nitro, C2-C4 alkylcarbonyl, C2-Calkoxycarbonyl, C3-C15 trialkylsilyl and C3-C15 halotrialkylsilyl; ora pair of R3a and R3b substituents are taken together with the nitrogen atom to which they are attached to form a 4- to 6-membered fully saturated heterocyclic ring, each ring containing ring members, in addition to the connecting nitrogen atom, selected from carbon atoms and up to 2 heteroatoms independently selected from up to 2 O, up to S and up to 2 N atoms, each ring optionally substituted with up to 3 substituents independently selected from halogen and C !€3־ alkyl;each R4a and R4b is independently H, halogen, cyano, hydroxy, nitro, C]-C3 alkyl, C3-Chaloalkyl, C1-C2 alkoxy or C1-C2 haloalkoxy; or WO 2022/133114 PCT/US2021/063852 a pair of R4a and R4b substituents attached to the same carbon atom are taken together to form a C3-C5 cycloalkyl ring optionally substituted with up to 2 substituents independently selected from halogen, methyl, methoxy and methylthio;each R5 is independently hydroxy, cyano, nitro, halogen, C !־C4 alkyl, C !־C4 haloalkyl, C2-C4 alkenyl or CpC4 alkoxy;each R6 is independently H, cyano, halogen, methyl, methoxy, methylthio or methoxycarbonyl;each R7 is independently hydroxy or NRllaRllb; or C!־C4 alkoxy, C2-C4 alkenyloxy, C2-C4 alkynyloxy, C2-C4 alkylcarbonyloxy, C2-C5 alkoxycarbonyloxy, C2-Calkylaminocarbonyloxy or C3-C5 dialkylaminocarbonyloxy, each optionally substituted with up to 1 substituent selected from halogen, cyano, hydroxy and -C(=O)OH;each R8 is independently H, methyl, methoxy or methylthio;each R9a and R9b is independently H or C !־C4 alkyl; ora pair of R9a and R9b substituents are taken together with the nitrogen atom to which they are attached to form a 5- to 6-membered fully saturated heterocyclic ring, each ring containing ring members, in addition to the connecting nitrogen atom, selected from carbon atoms and up to 2 heteroatoms independently selected from up to 2 O, up to S and up to 2 N atoms, each ring optionally substituted with up to 2 methyl;each R10 is independently halogen, amino, cyano, hydroxy, nitro, thioyl, C!־C4 alkyl, Cr C4 haloalkyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, CpC4 alkoxy, CpChaloalkoxy, C2-C4 alkoxyalkoxy, CpC4 alkylthio, CpC4 alkylsulfinyl, CpCalkylsulfonyl, CpC4 haloalkylsulfonyl, C2-C4 alkylcarbonyl, C2-Chaloalky !carbonyl, C2-C5 alkoxycarbonyl, C1-C6 alkylamino, C2־Cg dialkylamino, C2-C5 alkylaminocarbonyl, C3-C5 dialkylaminocarbonyl, C3-Calkylthioalkylcarbonyl, C3-C15 trialkylsily, C3-C15 halotrialkylsilyl, C(R13)=NORor C(R15)=NR16;each U is independently a direct bond, C(=O)O, C(=O)NR17 or C(=S)NR18, wherein the atom to the left is connected to R1, and the atom to the right is connected to V;each V is independently a direct bond; or C !־C^ alkylene, C2־Cg alkenylene, C3-Calkynylene, C3-C5 cycloalkylene or C3-C5 cycloalkenylene, each optionally substituted with up to 3 substituents independently selected from halogen, cyano, nitro, hydroxy, CpC2 alkyl, CpC2 haloalkyl, CpC2 alkoxy and CpC2 haloalkoxy;each Q is independently phenyl or phenoxy, each optionally substituted with up to substituents independently selected from R12; or WO 2022/133114 PCT/US2021/063852 each Q is independently a 5- to 6-membered heteroaromatic ring, each ring containing ring members selected from carbon atoms and 1 to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, wherein up to 2 ring members are independently selected from C(=O), C(=S), S(=O) and S(=O)2, each ring optionally substituted with up to 2 substituents independently selected from R12; oreach Q is independently a 3- to 7-membered nonaromatic heterocyclic ring, each ring containing ring members selected from carbon atoms and 1 to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, wherein up to ring members are independently selected from C(=O), C(=S), S(=O) and S(=O)2, each ring optionally substituted with up to 2 substituents independently selected from R12;each Rlla is independently H, CpC4 alkyl or C2-C4 alkylcarbonyl;each Rllb is independently H, cyano, C!־C5 alkyl, C2-C5 alkylcarbonyl, C2-Chaloalkylcarbonyl, C4-C7 cycloalkylcarbonyl, C2-C5 alkoxycarbonyl, C3-Calkoxycarbonylalkyl, C2-C5 alkylaminocarbonyl or C3-C5 dialkylaminocarbonyl; or a pair of R1 la and R1 lb substituents are taken together with the nitrogen atom to which they are attached to form a 5- to 6-membered fully saturated heterocyclic ring, each ring containing ring members, in addition to the connecting nitrogen atom, selected from carbon atoms and up to 2 heteroatoms independently selected from up to 2 O, up to 2 S and up to 2 N atoms, each ring optionally substituted with up to 2 methyl;each R12 is independently halogen, cyano, hydroxy, nitro, C !־C4 alkyl, C!־C4 haloalkyl, C2-C4 alkenyl, CpC4 alkoxy, C2-C4 alkylcarbonyl or C2-C4 alkoxycarbonyl;each R13 and R15 is independently H, cyano, halogen, C1-C3 alkyl, C1-C3 haloalkyl, C3-C6 cycloalkyl or C^-Cg alkoxy; or a phenyl ring optionally substituted with up to substituents independently selected from halogen and C^-Cg alkyl;each R14 is independently H, C4-C5 alkyl, C4-C5 haloalkyl, C2-C5 alkenyl, C2-Chaloalkenyl, C2-C5 alkynyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C2-Calkylcarbonyl or C2-C5 alkoxycarbonyl; oreach R14 is a phenyl ring optionally substituted with up to 2 substituents independently selected from halogen and C1-C3 alkyl; or a 5- to 6-membered fully saturated heterocyclic ring, each ring containing ring members selected from carbon atoms and up to 2 heteroatoms independently selected from up to 2 O, up to 2 S and up to N atoms, each ring optionally substituted with up to 2 substituents independently selected from halogen and C1-C3 alkyl; WO 2022/133114 PCT/US2021/063852 each R16 is independently H, cyano, C1-C3 alkyl, C1-C3 haloalkyl, CpC4 alkoxy, C2-Calkylcarbonyl or C2-C4 alkoxycarbonyl;each R17 and R18 is independently H, cyano, hydroxy, CpC4 alkyl, CpC4 haloalkyl, C2-C4 alkylcarbonyl, C2-C4 haloalkylcarbonyl, C2-C4 alkoxycarbonyl or C2-Chaloalkoxycarbonyl; andn is 1, 2 or 3; and (b) at least one additional fungicidal compound.
This invention also relates to a composition comprising: (a) at least one compound selected from the compounds of Formula 1 described above, A-oxidcs, and salts thereof; and at least one invertebrate pest control compound or agent.This invention also relates to a composition comprising one of the aforesaid compositions comprising component (a) and at least one additional component selected from the group consisting of surfactants, solid diluents and liquid diluents.This invention also relates to a method for controlling plant diseases caused by fungal plant pathogens comprising applying to the plant or portion thereof, or to the plant seed, a fungicidally effective amount of one of the aforesaid compositions.The aforedescribed method can also be described as a method for protecting a plant or plant seed from diseases caused by fungal pathogens comprising applying a fungicidally effective amount of one of the aforesaid compositions to the plant (or portion thereof) or plant seed (directly or through the environment (e.g., growing medium) of the plant or plant seed).This invention also relates to a compound of Formula 1described above, a tautomer, an A-oxidc or salt thereof.
DETAILS OF THE INVENTIONAs used herein, the terms "comprises, " "comprising, " "includes, " "including, " "has, " "having, " "contains, " "containing, " "characterized by" or any other variation thereof, are intended to cover a non-exclusive inclusion, subject to any limitation explicitly indicated. For example, a composition, mixture, process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such composition, mixture, process, method, article, or apparatus.The transitional phrase "consisting of ’ excludes any element, step, or ingredient not specified. If in the claim, such would close the claim to the inclusion of materials other than those recited except for impurities ordinarily associated therewith. When the phrase "consisting of ’ appears in a clause of the body of a claim, rather than immediately following the preamble, it WO 2022/133114 PCT/US2021/063852 limits only the element set forth in that clause; other elements are not excluded from the claim as a whole.The transitional phrase "consisting essentially of ’ is used to define a composition, method or apparatus that includes materials, steps, features, components, or elements, in addition to those literally disclosed, provided that these additional materials, steps, features, components, or elements do not materially affect the basic and novel characteristic(s) of the claimed invention. The term "consisting essentially of ’ occupies a middle ground between "comprising " and "consisting of ’.Where applicants have defined an invention or a portion thereof with an open-ended term such as "comprising, " it should be readily understood that (unless otherwise stated) the description should be interpreted to also describe such an invention using the terms "consisting essentially of ’ or "consisting of. "Further, unless expressly stated to the contrary, "or " refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).Also, the indefinite articles "a" and "an" preceding an element or component of the invention are intended to be nonrestrictive regarding the number of instances (i.e. occurrences) of the element or component. Therefore "a" or "an" should be read to include one or at least one, and the singular word form of the element or component also includes the plural unless the number is obviously meant to be singular.The term "agronomic " refers to the production of field crops such as for food and fiber and includes the growth of maize or corn, soybeans and other legumes, rice, cereal (e.g., wheat, oats, barley, rye and rice), leafy vegetables (e.g., lettuce, cabbage, and other cole crops), fruiting vegetables (e.g., tomatoes, pepper, eggplant, crucifers and cucurbits), potatoes, sweet potatoes, grapes, cotton, tree fruits (e.g., pome, stone and citrus), small fruit (e.g., berries and cherries) and other specialty crops (e.g., canola, sunflower and olives).The term "nonagronomic " refers to other than field crops, such as horticultural crops (e.g., greenhouse, nursery or ornamental plants not grown in a field), residential, agricultural, commercial and industrial structures, turf (e.g., sod farm, pasture, golf course, lawn, sports field, etc.), wood products, stored product, agro-forestry and vegetation management, public health (i.e. human) and animal health (e.g., domesticated animals such as pets, livestock and poultry, undomesticated animals such as wildlife) applications.The term "crop vigor " refers to rate of growth or biomass accumulation of a crop plant. An "increase in vigor " refers to an increase in growth or biomass accumulation in a crop plant relative WO 2022/133114 PCT/US2021/063852 to an untreated control crop plant. The term "crop yield " refers to the return on crop material, in terms of both quantity and quality, obtained after harvesting a crop plant. An "increase in crop yield " refers to an increase in crop yield relative to an untreated control crop plant.The term "biologically effective amount " refers to the amount of a biologically active compound (e.g., a compound of Formula 1 or a mixture with at least one other fungicidal compound) sufficient to produce the desired biological effect when applied to (i.e. contacted with) a fungus to be controlled or its environment, or to a plant, the seed from which the plant is grown, or the locus of the plant (e.g., growth medium) to protect the plant from injury by the fungal disease or for other desired effect (e.g., increasing plant vigor).As referred to in the present disclosure and claims, "plant" includes members of Kingdom Plantae, particularly seed plants (Spermatopsida), at all life stages, including young plants (e.g., germinating seeds developing into seedlings) and mature, reproductive stages (e.g., plants producing flowers and seeds). Portions of plants include geotropic members typically growing beneath the surface of the growing medium (e.g., soil), such as roots, tubers, bulbs and corms, and also members growing above the growing medium, such as foliage (including stems and leaves), flowers, fruits and seeds.As referred to herein, the term "seedling ", used either alone or in a combination of words means a young plant developing from the embryo of a seed.As referred to herein, the term "broadleaf ’ used either alone or in words such as "broadleaf crop " means dicot or dicotyledon, a term used to describe a group of angiosperms characterized by embryos having two cotyledons.As referred to in this disclosure, the terms "fungal pathogen " and "fungal plant pathogen " include pathogens in the Ascomycota, Basidiomycota and Zygomycota phyla, and the fungal-like Oomycota class that are the causal agents of a broad spectrum of plant diseases of economic importance, affecting ornamental, turf, vegetable, field, cereal and fruit crops. In the context of this disclosure, "protecting a plant from disease " or "control of a plant disease " includes preventative action (interruption of the fungal cycle of infection, colonization, symptom development and spore production) and/or curative action (inhibition of colonization of plant host tissues).As used herein, the term "mode of action " (MOA) is as define by the Fungicide Resistance Action Committee (FRAC), and is used to distinguish fungicides according to their biochemical mode of action in the biosynthetic pathways of plant pathogens, and their resistance risk. FRAC-defined modes of actions include (A) nucleic acids metabolism, (B) cytoskeleton and motor protein, (C) respiration, (D) amino acids and protein synthesis, (E) signal transduction, (F) lipid synthesis or transport and membrane integrity or function, (G) sterol biosynthesis in WO 2022/133114 PCT/US2021/063852 membranes, (H) cell wall biosynthesis, (I) melanin synthesis in cell wall, (P) host plant defense induction, (U) unknown mode of action, (M) chemicals with multi-site activity and (BM) biologicals with multiple modes of action. Each mode of action (i.e. letters A through BM) contain one or more subgroups (e.g., A includes subgroups Al, A2, A3 and A4) based either on individual validated target sites of action, or in cases where the precise target site is unknown, based on cross resistance profiles within a group or in relation to other groups. Each of these subgroups (e.g., Al, A2, A3 and A4) is assigned a FRAC code which is a number and/or letter. For example, the FRAC code for subgroup Al is 4. Additional information on target sites and FRAC codes can be obtained from publicly available databases maintained, for example, by FRAC.As used herein, the term "cross resistance " refers to the phenomenon that occurs when a pathogen develops resistance to one fungicide and simultaneously becomes resistant to one or more other fungicides. These other fungicides are typically, but not always, in the same chemical class or have the same target site of action, or can be detoxified by the same mechanism.In the above recitations, the term "alkyl", used either alone or in compound words such as "alkylthio " or "haloalkyl" includes straight-chain and branched alkyl, such as, methyl, ethyl, zz-propyl, z-propyl, and the different butyl, pentyl and hexyl isomers. "Alkenyl " includes straight-chain and branched alkenes such as ethenyl, 1-propenyl, 2-propenyl, and the different butenyl, pentenyl and hexenyl isomers. "Alkenyl " also includes polyenes such as 1,2-propadienyl and 2,4-hexadienyl. "Alkynyl" includes straight-chain and branched alkynes such as ethynyl, 1-propynyl, 2-propynyl, and the different butynyl, pentynyl and hexynyl isomers. "Alkynyl" can also include moieties comprised of multiple triple bonds such as 2,5-hexadiynyl. "Alkylene " denotes a straight-chain or branched alkanediyl. Examples of "alkylene " include CH2, CH2CH2, CH(CH3), CH2CH2CH2, CH2CH(CH3), and the different butylene isomers. "Alkenylene " denotes a straight-chain or branched alkenediyl containing one olefinic bond. Examples of "alkenylene " include CH=CH, CH2CH=CH, CH=C(CH3) and the different butenylene isomers. The term "cycloalkylene " denotes a cycloalkanediyl ring. Examples of "cycloalkylene " include cyclopropylene, cyclobutylene, cyclopentylene and cyclohexylene. The term "cycloalkenylene " denotes a cycloalkenediyl ring containing one olefinic bond. Examples of "cycloalkenylene " include cylopropenediyl and cyclpentenediyl."Alkoxy " includes, for example, methoxy, ethoxy, n-propyloxy, i-propyloxy, and the different butoxy, pentoxy and hexyloxy isomers. "Alkenyloxy " includes straight-chain and branched alkenyl attached to and linked through an oxygen atom. Examples of "alkenyloxy " include H2C=CHCH2O and CH3CH=CHCH2O. "Alkynyloxy" includes straight-chain and WO 2022/133114 PCT/US2021/063852 branched alkynyloxy moieties. Examples of "alkynyloxy" include HC=CCH2O and CH3C=CCH2O.The term "alkylthio " includes straight-chain and branched alkylthio moieties such as methylthio, ethylthio, and the different propylthio and butylthio isomers. "Alkylsulfinyl " includes both enantiomers of an alkylsulfinyl group. Examples of "alkylsulfinyl " include CH3S(=O), CH3CH2S(=O), CH3CH2CH2S(=O), (CH3)2CHS(=O), and the different butylsulfinyl isomers. Examples of "alkylsulfonyl " include CH3S(=O)2, CH3CH2S(=O)2, CH3CH2CH2S(=O)2, (CH3)2CHS(=O)2, and the different butylsulfonyl isomers. "Alkylthioalkyl " denotes alkylthio substitution on alkyl. Examples of "alkylthioalkyl " include CH3SCH2, CH3SCH2CH2, CH3CH2SCH2, CH3CH2CH2SCH2 and CH3CH2SCH2CH2; "alkylsulfinylalkyl " and "alkylsulfonylalkyl " include the corresponding sulfoxides and sulfones, respectively."Alkylamino " includes an NH radical substituted with a straight-chain or branched alkyl group. Examples of "alkylamino " include CH3CH2NH, CH3CH2CH2NH, and (CH3)2CHCH2NH. Examples of "dialkylamino " include (CH3)2N, (CH3CH2CH2)2N and CH3CH2(CH3)N. "Alkylaminoalkyl " denotes alkylamino substitution on alkyl. Examples of "alkylaminoalkyl " include CH3NHCH2, CH3NHCH2CH2, CH3CH2NHCH2, CH3CH2CH2CH2NHCH2 and CH3CH2NHCH2CH2."Alkylcarbonyl " denotes a straight-chain or branched alkyl group bonded to a C(=O) moiety. Examples of "alkylcarbonyl " include CH3C(=O), CH3CH2CH2C(=O) and (CH3)2CHC(=O). Examples of "alkoxycarbonyl " include CH3OC(=O), CH3CH2OC(=O), CH3CH2CH2OC(=O), (CH3)2CHOC(=O), and the different butoxy- and pentoxycarbonyl isomers. Examples of "alkylaminocarbonyl " include CH3NHC(=O), CH3CH2NHC(=O), CH3CH2CH2NHC(=O), (CH3)2CHNHC(=O), and the different butylamino- and pentylaminocarbonyl isomers. Examples of "dialkylaminocarbonyl " include (CH3)2NC(=O), (CH3CH2)2NC(=O), CH3CH2(CH3)NC(=O), (CH3)2CH(CH3)NC(=O) and CH3CH2CH2(CH3)NC(=O).The term "alkylcarbonylamino " denotes alkyl bonded to a C(=O)NH moiety. Examples of "alkylcarbonylamino " include CH3CH2C(=O)NH and CH3CH2CH2C(=O)NH. The term "alkoxycarbonylamino " denotes alkoxy bonded to a C(=O)NH moiety. Examples of "alkoxycarbonylamino " include CH3OC(=O)NH and CH3CH2OC(=O)NH."Alkylsulfonylamino " denotes an NH radical substituted with alkylsulfonyl. Examples of "alkylsulfonylamino " include CH3CH2S(=O)2NH and (CH3)2CHS(=O)2NH. The term "alkylsulfonyloxy " denotes an alkylsulfonyl group bonded to an oxygen atom. Examples of "alkylsulfonyloxy " include CH3S(=O)2O, CH3CH2S(=O)2O, CH3CH2CH2S(=O)2O, WO 2022/133114 PCT/US2021/063852 (CH3)2CHS(=O)2O, and the different butylsulfonyloxy, pentylsulfonyloxy and hexylsulfonyloxy isomers."Alkoxyalkyl " denotes alkoxy substitution on alkyl. Examples of "alkoxyalkyl " include CH3OCH2, CH3OCH2CH2, CH3CH2OCH2, CH3CH2CH2OCH2 and CH3CH2OCH2CH2. "Alkoxyalkoxy " denotes alkoxy substitution on another alkoxy moiety. "Alkoxyalkoxyalkyl " denotes alkoxyalkoxy substitution on alkyl. Examples of "alkoxyalkoxyalkyl " include CH3OCH2OCH2 CH3OCH2OCH2CH2 and CH3CH2OCH2OCH2.The term "alkylcarbonyloxy " denotes a straight-chain or branched alkyl bonded to a C(=O)O moiety. Examples of "alkylcarbonyloxy " include CH3CH2C(=O)O and (CH3)2CHC(=O)O. Examples of "alkoxycarbonyloxy " include CH3CH2CH2OC(=O)O and (CH3)2CHOC(=O)O. The term "alkoxycarbonylalkyl " denotes alkoxycarbonyl substitution on alkyl. Examples of "alkoxycarbonylalkyl " include CH3CH2OC(=O)CH2, (CH3)2CHOC(=O)CH2 and CH3OC(=O)CH2CH2. The term "alkylaminocarbonyloxy " denotes a straight-chain or branched alkylaminocarbonyl attached to and linked through an oxygen atom. Examples of "alkylaminocarbonyloxy " include (CH3)2CHCH2NHC(=O)O and CH3CH2NHC(=O)O."Cycloalkyl " includes, for example, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. The term "cycloalkylalkyl " denotes cycloalkyl substitution on an alkyl moiety. Examples of "cycloalkylalkyl " include cyclopropylmethyl, cyclopentylethyl, and other cycloalkyl moieties bonded to a straight-chain or branched alkyl group. The term "alkylcycloalkyl " denotes alkyl substitution on a cycloalkyl moiety and includes, for example, ethylcyclopropyl, i-propylcyclobutyl, methylcyclopentyl and methylcyclohexyl. "Alkylcycloalkylalkyl " denotes an alkyl group substituted with alkylcycloalkyl. Examples of "alkylcycloalkylalkyl " include methylcyclohexylmethyl and ethyIcycloproy!methyl. "Cycloalkenyl " includes groups such as cyclopentenyl and cyclohexenyl as well as groups with more than one double bond such as 1,3- or 1,4-cyclohexadienyl. The term "cycloalkylcycloalkyl " denotes cycloalkyl substitution on another cycloalkyl ring, wherein each cycloalkyl ring independently has from 3 to 7 carbon atom ring members. Examples of cycloalkylcycloalkyl include cyclopropylcyclopropyl (such as 1,1'- bicyclopropyl-1-yl, l,l'-bicyclopropyl-2-yl), cyclohexylcyclopentyl (such as 4- cyclopentylcyclohexyl) and cyclohexylcyclohexyl (such as l,l'-bicyclohexyl-l-yl), and the different cis- and Zrans-cycloalkylcycloalkyl isomers, (such as (17?,2S')-l,r-bicyclopropyl-2-yl and (1R,2R)-1,1 ,-bicyclopropyl-2-yl).The term "cycloalkoxy " denotes cycloalkyl attached to and linked through an oxygen atom including, for example, cyclopentyloxy and cyclohexyloxy. The term "cycloalkoxyalkyl " denotes cycloalkoxy substitution on an alkyl moiety. Examples of "cycloalkoxyalkyl " include WO 2022/133114 PCT/US2021/063852 cyclopropyloxymethyl, cyclopentyloxyethyl, and other cycloalkoxy groups bonded to a straight-chain or branched alkyl moiety.The term "cycloalkylaminoalkyl " denotes cycloalkylamino substitution on an alkyl group. Examples of "cycloalkylaminoalkyl " include cyclopropylaminomethyl, cyclopentylaminoethyl, and other cycloalkylamino moieties bonded to a straight-chain or branched alkyl group."Cycloalkylcarbonyl " denotes cycloalkyl bonded to a C(=O) group including, for example, cyclopropylcarbonyl and cyclopentylcarbonyl. Cycloalkylcarbonyloxy " denotes cycloalkylcarbonyl attached to and linked through an oxygen atom. Examples of "cycloalkylcarbonyloxy " include cyclohexylcarbonyloxy and cyclopentylcarbonyloxy. The term "cycloalkoxycarbonyl " means cycloalkoxy bonded to a C(=O) group, for example, cyclopropyloxycarbonyl and cyclopentyloxycarbonyl. "Cycloalkylaminocarbonylamino " denotes cycloalkylamino bonded to a C(=O)NH group, for example, cyclopentylaminocarbonylamino and cyclohexylaminocarbonylamino.The term "halogen ", either alone or in compound words such as "haloalkyl", or when used in descriptions such as "alkyl substituted with halogen " includes fluorine, chlorine, bromine or iodine. Further, when used in compound words such as "haloalkyl ", or when used in descriptions such as "alkyl substituted with halogen " said alkyl may be partially or fully substituted with halogen atoms which may be the same or different. Examples of "haloalkyl " or "alkyl substituted with halogen " include F3C, C1CH2, CF3CH2 and CF3CC12. The terms "haloalkenyl", "haloalkynyl" "haloalkoxy ", "haloalkylsulfonyl", "halocycloalkyl", and the like, are defined analogously to the term "haloalkyl ". Examples of "haloalkenyl " include C12C=CHCH2 and CF3CH2CH=CHCH2. Examples of "haloalkynyl " include HC^CCHCl, CF3C=C, CC13C=C and FCH2C=CCH2. Examples of "haloalkoxy " include CF3O, CC13CH2O, F2CHCH2CH2O and CF3CH2O. Examples of "haloalkylsulfonyl " include CF3S(=O)2, CC13S(=O)2, CF3CH2S(=O)and CF3CF2S(=O)2. Examples of "halocycloalkyl " include 2-chlorocyclopropyl, 2-fluorocyclobutyl, 3-bromocyclopentyl and 4-chorocyclohexyl."Cyanoalkyl " denotes an alkyl group substituted with one cyano group. Examples of "cyanoalkyl " include NCCH2, NCCH2CH2 and CH3CH(CN)CH2. "Hydroxyalkyl " denotes an alkyl group substituted with one hydroxy group. Examples of "hydroxyalkyl " include HOCH2CH2, CH3CH2(OH)CH and HOCH2CH2CH2CH2.The total number of carbon atoms in a substituent group is indicated by the "C؛-Cj" prefix where i and j are numbers from 1 to 14. For example, C!־C4 alkylsulfonyl designates methylsulfonyl through butylsulfonyl; C2 alkoxyalkyl designates CH3OCH2; C3 alkoxyalkyl designates, for example, CH3CH(OCH3), CH3OCH2CH2 or CH3CH2OCH2; and C4 alkoxyalkyl WO 2022/133114 PCT/US2021/063852 designates the various isomers of an alkyl group substituted with an alkoxy group containing a total of four carbon atoms, examples including CH3CH2CH2OCH2 and CH3CH2OCH2CH2.Generally when a molecular fragment (i.e. radical) is denoted by a series of atom symbols (e.g., C, H, N, O and S) the implicit point or points of attachment will be easily recognized by those skilled in the art. In some instances herein, particularly when alternative points of attachment are possible, the point or points of attachment may be explicitly indicated by a hyphen ("-"). For example, "-SCN" indicates that the point of attachment is the sulfur atom (i.e. thiocyanate, not isothiocyanato).As used herein, the term "alkylating agent " refers to a chemical compound in which a carbon-containing radical is bound through a carbon atom to a leaving group such as halide or sulfonate, which is displaceable by bonding of a nucleophile to said carbon atom. Unless otherwise indicated, the term "alkylating" does not limit the carbon-containing radical to alkyl; the carbon-containing radicals in alkylating agents include the variety of carbon-bound substituent radicals specified, for example, for R2.The term "unsubstituted " in connection with a group such as a ring or ring system means the group does not have any substituents other than its one or more attachments to the remainder of Formula 1.The term "optionally substituted " means that the number of substituents can be zero. Unless otherwise indicated, optionally substituted groups may be substituted with as many optional substituents as can be accommodated by replacing a hydrogen atom with a non-hydrogen substituent on any available carbon or nitrogen atom. Commonly, the number of optional substituents (when present) ranges from 1 to 3. As used herein, the term "optionally substituted " is used interchangeably with the phrase "substituted or unsubstituted " or with the term "(un)substituted. "The number of optional substituents may be restricted by an expressed limitation. For example, the phrase "optionally substituted with up to 3 substituents independently selected from R2" means that 0, 1, 2 or 3 substituents can be present (if the number of potential connection points allows). When a range specified for the number of substituents (e.g., x being an integer from 0 to 2 in Exhibit A) exceeds the number of positions available for substituents on a ring (e.g., position available for (R2)x on U-7 in Exhibit A), the actual higher end of the range is recognized to be the number of available positions.When a compound is substituted with a substituent bearing a subscript that indicates the number of said substituents can vary (e.g., (R2)x in Exhibit A wherein x is 1 to 2), then said substituents are independently selected from the group of defined substituents, unless otherwise indicated. When a variable group is shown to be optionally attached to a position, for example WO 2022/133114 PCT/US2021/063852 (R2)x in Exhibit A wherein x may be 0, then hydrogen may be at the position even if not recited in the definition of the variable group.Naming of substituents in the present disclosure uses recognized terminology providing conciseness in precisely conveying to those skilled in the art the chemical structure. For the sake of conciseness, locant descriptors may be omitted.Unless otherwise indicated, a "ring " or "ring system " as a component of Formula 1 (e.g., R1 and J) is carbocyclic or heterocyclic. The term "ring system " denotes two or more connected rings. The term "spirocyclic ring system " denotes a ring system consisting of two rings connected at a single atom (so the rings have a single atom in common). The term "bicyclic ring system " denotes a ring system consisting of two rings sharing two or more common atoms. In a "fused bicyclic ring system " the common atoms are adjacent, and therefore the rings share two adjacent atoms and a bond connecting them.The term "ring member " refers to an atom (e.g., C, O, N or S) or other moiety (e.g., C(=O), C(=S), S(=O) and S(=O)2) forming the backbone of a ring or ring system. The term "aromatic " indicates that each of the ring atoms is essentially in the same plane and has a p-orbital perpendicular to the ring plane, and that (4n + 2) 7t electrons, where n is a positive integer, are associated with the ring to comply with Hckel ’s ruleThe term "carbocyclic ring " denotes a ring wherein the atoms forming the ring backbone are selected only from carbon. Unless otherwise indicated, a carbocyclic ring can be a saturated, partially unsaturated, or fully unsaturated ring. When a fully unsaturated carbocyclic ring satisfies Hiickel ’s rule, then said ring is also called an "aromatic ring ". "Saturated carbocyclic " refers to a ring having a backbone consisting of carbon atoms linked to one another by single bonds; unless otherwise specified, the remaining carbon valences are occupied by hydrogen atoms.As used herein, the term "partially unsaturated ring" or "partially unsaturated heterocycle " refers to a ring which contains unsaturated ring atoms and one or more double bonds but is not aromatic.The terms "heterocyclic ring " or "heterocycle " denotes a ring wherein at least one of the atoms forming the ring backbone is other than carbon. Unless otherwise indicated, a heterocyclic ring can be a saturated, partially unsaturated, or fully unsaturated ring. When a fully unsaturated heterocyclic ring satisfies Hiickel ’s rule, then said ring is also called a "heteroaromatic ring " or aromatic heterocyclic ring. "Saturated heterocyclic ring " refers to a heterocyclic ring containing only single bonds between ring members.Unless otherwise indicated, heterocyclic rings and ring systems are attached to the remainder of Formula 1 through any available carbon or nitrogen atom by replacement of a hydrogen on said carbon or nitrogen atom.
WO 2022/133114 PCT/US2021/063852 Compounds of this invention can exist as one or more stereoisomers. Stereoisomers are isomers of identical constitution but differing in the arrangement of their atoms in space and include enantiomers, diastereomers, cis- and /rans-isomers (also known as geometric isomers) and atropisomers. Atropisomers result from restricted rotation about single bonds where the rotational barrier is high enough to permit isolation of the isomeric species. One skilled in the art will appreciate that one stereoisomer may be more active and/or may exhibit beneficial effects when enriched relative to the other stereoisomer(s) or when separated from the other stereoisomer(s). Additionally, the skilled artisan knows how to separate, enrich, and/or to selectively prepare said stereoisomers. For a comprehensive discussion of all aspects of stereoisomerism, see Ernest L. Eliel and Samuel H. Wilen, Stereochemistry of Organic Compounds, John Wiley & Sons, 1994.Compounds of this invention can exist as one or more conformational isomers due to restricted rotation about an amide bond (e.g., C(=O)-N) in Formula 1. This invention comprises mixtures of conformational isomers. In addition, this invention includes compounds that are enriched in one conformer relative to others.This invention comprises all stereoisomers, conformational isomers and mixtures thereof in all proportions as well as isotopic forms such as deuterated compounds.One skilled in the art will appreciate that not all nitrogen containing heterocycles can form A-oxidcs since the nitrogen requires an available lone pair for oxidation to the oxide; one skilled in the art will recognize those nitrogen-containing heterocycles which can form A-oxidcs. One skilled in the art will also recognize that tertiary amines can form A-oxides. Synthetic methods for the preparation of A-oxides of heterocycles and tertiary amines are very well known by one skilled in the art including the oxidation of heterocycles and tertiary amines with peroxy acids such as peracetic and m-chloroperbenzoic acid (MCPBA), hydrogen peroxide, alkyl hydroperoxides such as /-butyl hydroperoxide, sodium perborate, and dioxiranes such as dimethyldioxirane. These methods for the preparation of A-oxides have been extensively described and reviewed in the literature, see for example: T. L. Gilchrist in Comprehensive Organic Synthesis, vol. 7, pp 748-750, S. V. Ley, Ed., Pergamon Press; M. Tisler and B. Stanovnik in Comprehensive Heterocyclic Chemistry, vol. 3, pp 18-20, A. J. Boulton and A. McKillop, Eds., Pergamon Press; M. R. Grimmett and B. R. T. Keene in Advances in Heterocyclic Chemistry, vol. 43, pp 149-161, A. R. Katritzky, Ed., Academic Press; M. Tisler and B. Stanovnik in Advances in Heterocyclic Chemistry, vol. 9, pp 285-291, A. R. Katritzky and A. J. Boulton, Eds., Academic Press; and G. W. H. Cheeseman and E. S. G. Werstiuk in Advances in Heterocyclic Chemistry, vol. 22, pp 390-392, A. R. Katritzky and A. J. Boulton, Eds., Academic Press.
WO 2022/133114 PCT/US2021/063852 One skilled in the art recognizes that because in the environment and under physiological conditions salts of chemical compounds are in equilibrium with their corresponding nonsalt forms, salts share the biological utility of the nonsalt forms. Thus a wide variety of salts of the compounds of Formula 1 are useful for control of plant diseases caused by fungal plant pathogens (i.e. are agriculturally suitable). The salts of the compounds of Formula 1 include acid-addition salts with inorganic or organic acids such as hydrobromic, hydrochloric, nitric, phosphoric, sulfuric, acetic, butyric, fumaric, lactic, maleic, malonic, oxalic, propionic, salicylic, tartaric, 4-toluenesulfonic or valeric acids. When a compound of Formula 1 contains an acidic moiety such as a carboxylic acid, salts also include those formed with organic or inorganic bases such as pyridine, triethylamine or ammonia, or amides, hydrides, hydroxides or carbonates of sodium, potassium, lithium, calcium, magnesium or barium. Accordingly, the present invention comprises compounds selected from Formula 1, A-oxidcs and agriculturally suitable salts, solvates and hydrates thereof.Compounds selected from Formula 1, stereoisomers, tautomers, A-oxidcs, and salts thereof, typically exist in more than one form, and Formula 1 thus includes all crystalline and non- crystalline forms of the compounds that Formula 1 represents. Non-crystalline forms include embodiments which are solids such as waxes and gums as well as embodiments which are liquids such as solutions and melts. Crystalline forms include embodiments which represent essentially a single crystal type and embodiments which represent a mixture of polymorphs (i.e. different crystalline types). The term "polymorph " refers to a particular crystalline form of a chemical compound that can crystallize in different crystalline forms, these forms having different arrangements and/or conformations of the molecules in the crystal lattice. Although polymorphs can have the same chemical composition, they can also differ in composition due to the presence or absence of co-crystallized water or other molecules, which can be weakly or strongly bound in the lattice. Polymorphs can differ in such chemical, physical and biological properties as crystal shape, density, hardness, color, chemical stability, melting point, hygroscopicity, suspensibility, dissolution rate and biological availability. One skilled in the art will appreciate that a polymorph of a compound represented by Formula 1 can exhibit beneficial effects (e.g., suitability for preparation of useful formulations, improved biological performance) relative to another polymorph or a mixture of polymorphs of the same compound represented by Formula 1. Preparation and isolation of a particular polymorph of a compound represented by Formula 1 can be achieved by methods known to those skilled in the art including, for example, crystallization using selected solvents and temperatures. For a comprehensive discussion of polymorphism see R. Hilfiker, Ed., Polymorphism in the Pharmaceutical Industry, Wiley-VCH, Weinheim, 2006.
WO 2022/133114 PCT/US2021/063852 The compounds herein, and the agriculturally acceptable salts thereof, may exist in a continuum of solid states ranging from fully amorphous to fully crystalline. They may also exist in unsolvated and solvated forms. The term "solvate " describes a molecular complex comprising the compound and one or more agriculturally acceptable solvent molecules (e.g., EtOH). The term "hydrate " is a solvate in which the solvent is water. Agriculturally acceptable solvates include those in which the solvent may be isotopically substituted (e.g., D2O, d6-acetone, d^- DMSO).A currently accepted classification system for solvates and hydrates of organic compounds is one that distinguishes between isolated site, channel, and metal-ion coordinated solvates and hydrates. See, e.g., K. R. Morris (H. G. Brittain ed.) Polymorphism in Pharmaceutical Solids (1995). Isolated site solvates and hydrates are ones in which the solvent (e.g., water) molecules are isolated from direct contact with each other by intervening molecules of the organic compound. In channel solvates, the solvent molecules lie in lattice channels where they are next to other solvent molecules. In metal-ion coordinated solvates, the solvent molecules are bonded to the metal ion.As described in the Summary of the Invention, an aspect of the present invention is directed at a composition comprising (a) at least one compound selected from Formula 1,N-oxides, and salts thereof, with (b) at least one additional fungicidal compound. More particularly, Component (b) is selected from the group consisting of(bl) methyl benzimidazole carbamate (MBC) fungicides;(b2) dicarboximide fungicides;(b3) demethylation inhibitor (DMI) fungicides;(b4) phenylamide (PA) fungicides;(b5) amine/morpholine fungicides;(b6) phospholipid biosynthesis inhibitor fungicides;(b7) succinate dehydrogenase inhibitor (SDHI) fungicides;(b8) hydroxy(2-amino-)pyrimidine fungicides;(b9) anilinopyrimidine (AP) fungicides;(biO) N-phenyl carbamate fungicides;(bl 1) quinone outside inhibitor (Qol) fungicides;(bl2) phenylpyrrole (PP) fungicides;(bl3) azanaphthalene fungicides;(bl4) cell peroxidation inhibitor fungicides;(bl5) melanin biosynthesis inhibitor-reductase (MBI-R) fungicides;(bl6a) melanin biosynthesis inhibitor-dehydratase (MBI-D) fungicides; WO 2022/133114 PCT/US2021/063852 (bl6b) melanin biosynthesis inhibitor-polyketide synthase (MBI-P) fungicides;(bl7) keto reductase inhibitor (KRI) fungicides;(bl8) squalene-epoxidase inhibitor fungicides;(b 19) polyoxin fungicides;(b20) phenylurea fungicides;(b21) quinone inside inhibitor (Qil) fungicides;(b22) benzamide and thiazole carboxamide fungicides;(b23) enopyranuronic acid antibiotic fungicides;(b24) hexopyranosyl antibiotic fungicides;(b25) glucopyranosyl antibiotic: protein synthesis fungicides;(b26) glucopyranosyl antibiotic fungicides;(b27) cyanoacetamideoxime fungicides;(b28) carbamate fungicides;(b29) oxidative phosphorylation uncoupling fungicides;(b30) organo tin fungicides;(b31) carboxylic acid fungicides;(b32) heteroaromatic fungicides;(b33) phosphonate fungicides;(b34) phthalamic acid fungicides;(b35) benzotriazine fungicides;(b36) benzene-sulfonamide fungicides;(b37) pyridazinone fungicides;(b38) thiophene-carboxamide fungicides;(b39) complex I NADH oxido-reductase inhibitor fungicides;(b40) carboxylic acid amide (CAA) fungicides;(b41) tetracycline antibiotic fungicides;(b42) thiocarbamate fungicides;(b43) benzamide fungicides;(b44) microbial fungicides;(b45) quinone outside inhibitor, stigmatellin binding (QoSI) fungicides;(b46) plant extract fungicides;(b47) cyanoacrylate fungicides;(b48) polyene fungicides;(b49) oxy sterol binding protein inhibitor (OSBPI) fungicides;(b50) aryl-phenyl-ketone fungicides; WO 2022/133114 PCT/US2021/063852 (b51) host plant defense induction fungicides;(b52) multi-site activity fungicides;(b53) biologicals with multiple modes of action;(b54) fungicides other than fungicides of component (a) and components (bl) through (b53); andsalts of compounds of (bl) through (b54).Of note are embodiments wherein component (b) comprises at least one fungicidal compound from each of two different groups selected from (bl) through (b54).
"Methyl benzimidazole carbamate (MBC) fungicides (bl)" (FRAC code 1) inhibit mitosis by binding to P־tubulin during microtubule assembly. Inhibition of microtubule assembly can disrupt cell division, transport within the cell and cell structure. Methyl benzimidazole carbamate fungicides include benzimidazole and thiophanate fungicides. The benzimidazoles include benomyl, carbendazim, fuberidazole and thiabendazole. The thiophanates include thiophanate and thiophanate-methyl."Dicarboximide fungicides (b2)" (FRAC code 2) inhibit a mitogen-activated protein (MAP)/histidine kinase in osmotic signal transduction. Examples include chlozolinate, dimethachlone, iprodione, procymidone and vinclozolin."Demethylation inhibitor (DMI) fungicides (b3)" (FRAC code 3) (Sterol Biosynthesis Inhibitors (SBI): Class I) inhibit C14-demethylase, which plays a role in sterol production. Sterols, such as ergosterol, are needed for membrane structure and function, making them essential for the development of functional cell walls. Therefore, exposure to these fungicides results in abnormal growth and eventually death of sensitive fungi. DMI fungicides are divided between several chemical classes: piperazines, pyridines, pyrimidines, imidazoles, triazoles and triazolinthiones. The piperazines include triforine. The pyridines include buthiobate, pyrifenox, pyrisoxazole and (a،S,)-[3-(4-chloro-2-fluorophenyl)-5-(2,4-difluorophenyl)-4-isoxazolyl]-3- pyridinemethanol. The pyrimidines include fenarimol, nuarimol and triarimol. The imidazoles include econazole, imazalil, oxpoconazole, pefurazoate, prochloraz and triflumizole. The triazoles include azaconazole, bitertanol, bromuconazole, cyproconazole, difenoconazole, diniconazole (including diniconazole-M), epoxiconazole, etaconazole, fenbuconazole, fluquinconazole, flusilazole, flutriafol, hexaconazole, imibenconazole, ipconazole, ipfentrifluconazole, mefentrifluconazole, metconazole, myclobutanil, penconazole, propiconazole, quinconazole, simeconazole, tebuconazole, tetraconazole, triadimefon, triadimenol, triticonazole, uniconazole, uniconazole-P, a-(l-chlorocyclopropyl)-a-[2-(2,2- dichlorocyclopropyl)ethyl]-l//-l, 2,4-triazole-l-ethanol, rel-1-II(2R,3S)-3-(2-chlorophenyl)-2- WO 2022/133114 PCT/US2021/063852 (2,4-difluorophenyl)-2-oxiranyl]methyl]-l//-l,2,4-triazole, reZ-2-[[(27?,3،2)-3-( ؟-chlorophenyl)- 2-(2,4-difluorophenyl)-2-oxiranyl]methyl]-l,2-dihydro-3//-l,2,4-triazole-3-thione and rel-V [[(2R,3S)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)-2-oxiranyl]methyl]-5-(2-propen-l-ylthio)- l//-l,2,4-triazole. The triazolinthiones include prothioconazole. Biochemical investigations have shown that all of the above mentioned fungicides are DMI fungicides as described by K. H. Kuck et al. in Modern Selective Fungicides - Properties, Applications and Mechanisms of Action, H. Lyr (Ed.), Gustav Fischer Verlag: New York, 1995, 205-258."Phenylamide (PA) fungicides (b4)" (FRAC code 4) are specific inhibitors of RNA polymerase in Oomycete fungi. Sensitive fungi exposed to these fungicides show a reduced capacity to incorporate uridine into rRNA. Growth and development in sensitive fungi is prevented by exposure to this class of fungicide. Phenylamide fungicides include acylalanine, oxazolidinone and butyrolactone fungicides. The acylalanines include benalaxyl, benalaxyl-M (also known as kiralaxyl), furalaxyl, metalaxyl and metalaxyl-M (also known as mefenoxam). The oxazolidinones include oxadixyl. The butyrolactones include ofurace."Amine/morpholine fungicides (b5)" (FRAC code 5) (SBI: Class II) inhibit two target sites within the sterol biosynthetic pathway, A8 —>A7 isomerase and A14 reductase. Sterols, such as ergosterol, are needed for membrane structure and function, making them essential for the development of functional cell walls. Therefore, exposure to these fungicides results in abnormal growth and eventually death of sensitive fungi. Amine/morpholine fungicides (also known as non-DMI sterol biosynthesis inhibitors) include morpholine, piperidine and spiroketal-amine fungicides. The morpholines include aldimorph, dodemorph, fenpropimorph, tridemorph and trimorphamide. The piperidines include fenpropidin and piperalin. The spiroketal-amines include spiroxamine."Phospholipid biosynthesis inhibitor fungicides (b6)" (FRAC code 6) inhibit growth of fungi by affecting phospholipid biosynthesis. Phospholipid biosynthesis fungicides include phophorothiolate and dithiolane fungicides. The phosphorothiolates include edifenphos, iprobenfos and pyrazophos. The dithiolanes include isoprothiolane."Succinate dehydrogenase inhibitor (SDHI) fungicides (b7)" (FRAC code 7) inhibit complex II fungal respiration by disrupting a key enzyme in the Krebs Cycle (TCA cycle) named succinate dehydrogenase. Inhibiting respiration prevents the fungus from making ATP, and thus inhibits growth and reproduction. SDHI fungicides include phenylbenzamide, phenyloxoethylthiophene amide, pyridinylethylbenzamide, furan carboxamide, oxathiin carboxamide, thiazole carboxamide, pyrazole-4-carboxamide, A-cyclopropyl-A-benzyl-pyrazole carboxamide, A-methoxy-(phenyl-ethyl)-pyrazole carboxamide, pyridine carboxamide and pyrazine carboxamide fungicides. The phenylbenzamides include benodanil, flutolanil and WO 2022/133114 PCT/US2021/063852 mepronil. The phenyloxoethylthiophene amides include isofetamid. The pyridinylethy !benzamides include fluopyram. The furan carboxamides include fenfuram. The oxathiin carboxamides include carboxin and oxycarboxin. The thiazole carboxamides include thifluzamide. The pyrazole-4-carboxamides include benzovindiflupyr, bixafen, flubeneteram (provisional common name, Registry Number 1676101-39-5), fluindapyr, fluxapyroxad, furametpyr, inpyrfluxam, isopyrazam, penflufen, penthiopyrad, pyrapropoyne (provisional common name, Registry Number 1803108-03-3), sedaxane and N-[2-(2,4-dichlorophenyl)-2- methoxy-l-methylethyl]-3-(difluoromethyl)-l-methyl-l/7-pyrazole-4-carboxamide. The N- cyclopropyl-N-benzyl-pyrazole carboxamides include isoflucypram. The A-methoxy-(phenyl- ethyl)-pyrazole carboxamides include pydiflumetofen. The pyridine carboxamides include boscalid. The pyrazine carboxamides include pyraziflumid."Hydroxy-(2-amino-)pyrimidine fungicides (b8)" (FRAC code 8) inhibit nucleic acid synthesis by interfering with adenosine deaminase. Examples include bupirimate, dimethirimol and ethirimol."Anilinopyrimidine (AP) fungicides (b9)" (FRAC code 9) are proposed to inhibit biosynthesis of the amino acid methionine and to disrupt the secretion of hydrolytic enzymes that lyse plant cells during infection. Examples include cyprodinil, mepanipyrim and pyrimethanil.،W-Phenyl carbamate fungicides (biO)" (FRAC code 10) inhibit mitosis by binding to 0- tubulin and disrupting microtubule assembly. Inhibition of microtubule assembly can disrupt cell division, transport within the cell and cell structure. Examples include diethofencarb."Quinone outside inhibitor (Qol) fungicides (bll)" (FRAC code 11) inhibit complex III mitochondrial respiration in fungi by affecting ubiquinol oxidase. Oxidation of ubiquinol is blocked at the "quinone outside " (Qo) site of the cytochrome bc^ complex, which is located in the inner mitochondrial membrane of fungi. Inhibiting mitochondrial respiration prevents normal fungal growth and development. Quinone outside inhibitor fungicides include methoxyacrylate, methoxyacetamide, methoxycarbamate, oximinoacetate, oximinoacetamide and dihydrodioxazine fungicides (collectively also known as strobilurin fungicides), and oxazolidinedione, imidazolinone and benzylcarbamate fungicides. The methoxy acrylates include azoxystrobin, coumoxystrobin, enoxastrobin (also known as enestroburin), flufenoxystrobin, picoxystrobin and pyraoxystrobin. The methoxyacetamides include mandestrobin. The methoxy- carbamates include pyraclostrobin, pyrametostrobin and triclopyricarb. The oximinoacetates include kresoxim-methyl and trifloxystrobin. The oximinoacetamides include dimoxystrobin, fenaminstrobin, metominostrobin and orysastrobin. The dihydrodioxazines include fluoxastrobin. The oxazolidinediones include famoxadone. The imidazolinones include fenamidone. The benzylcarbamates include pyribencarb.
WO 2022/133114 PCT/US2021/063852 "Phenylpyrrole (PP) fungicides (bl2)" (FRAC code 12) inhibit a MAP/histidine kinase associated with osmotic signal transduction in fungi. Fenpiclonil and fludioxonil are examples of this fungicide class."Azanaphthalene fungicides (bl3)" (FRAC code 13) are proposed to inhibit signal transduction by a mechanism which is as yet unknown. They have been shown to interfere with germination and/or appressorium formation in fungi that cause powdery mildew diseases. Azanaphthalene fungicides include aryloxy quinolines and quinazolinones. The aryloxyquinolines include quinoxyfen. The quinazolinones include proquinazid."Cell peroxidation inhibitor fungicides (bl4)" (FRAC code 14) are proposed to inhibit lipid peroxidation which affects membrane synthesis in fungi. Members of this class, such as etridiazole, may also affect other biological processes such as respiration and melanin biosynthesis. Cell peroxidation fungicides include aromatic hydrocarbon and 1,2,4-thiadiazole fungicides. The aromatic hydrocarboncarbon fungicides include biphenyl, chloroneb, dicloran, quintozene, tecnazene and tolclofos-methyl. The 1,2,4-thiadiazoles include etridiazole."Melanin biosynthesis inhibitor-reductase (MBI-R) fungicides (bl5)" (FRAC code 16.1) inhibit the naphthal reduction step in melanin biosynthesis. Melanin is required for host plant infection by some fungi. Melanin biosynthesis inhibitor-reductase fungicides include isobenzofuranone, pyrroloquinolinone and triazolobenzothiazole fungicides. The isobenzofuranones include fthalide. The pyrroloquinolinones include pyroquilon. The triazolobenzothiazoles include tricyclazole."Melanin biosynthesis inhibitor-dehydratase (MBI-D) fungicides (bl6a)" (FRAC code 16.2) inhibit scytalone dehydratase in melanin biosynthesis. Melanin is required for host plant infection by some fungi. Melanin biosynthesis inhibitor-dehydratase fungicides include cyclopropanecarboxamide, carboxamide and propionamide fungicides. The cyclopropanecarboxamides include carpropamid. The carboxamides include diclocymet. The propionamides include fenoxanil."Melanin biosynthesis inhibitor-polyketide synthase (MBI-P) fungicides (bl6b)" (FRAC code 16.3) inhibit polyketide synthase in melanin biosynthesis. Melanin is required for host plant infection by some fungi. Melanin biosynthesis inhibitor-polyketide synthase fungicides include trifluoroethylcarbamate fungicides. The trifluoroethylcarbamates include tolprocarb."Keto reductase inhibitor (KRI) fungicides (bl7)" (FRAC code 17) inhibit 3-keto reductase during C4-demethylation in sterol production. Keto reductase inhibitor fungicides (also known as Sterol Biosynthesis Inhibitors (SBI): Class III) include hydroxyanilides and amino- pyrazolinones. Hydroxyanilides include fenhexamid. Amino-pyrazolinones include fenpyrazamine. Quinofumelin (provisional common name, Registry Number 861647-84-9) and WO 2022/133114 PCT/US2021/063852 ipflufenoquin (provisional common name, Registry Number 1314008-27-9) are also believed to be keto reductase inhibitor fungicides."Squalene-epoxidase inhibitor fungicides (bl8)" (FRAC code 18) (SBI: Class IV) inhibit squalene-epoxidase in the sterol biosynthesis pathway. Sterols such as ergosterol are needed for membrane structure and function, making them essential for the development of functional cell walls. Therefore exposure to these fungicides results in abnormal growth and eventually death of sensitive fungi. Squalene-epoxidase inhibitor fungicides include thiocarbamate and allylamine fungicides. The thiocarbamates include pyributicarb. The allylamines include naftifine and terbinafine."Polyoxin fungicides (bl9)" (FRAC code 19) inhibit chitin synthase. Examples include polyoxin."Phenylurea fungicides (b20)" (FRAC code 20) are proposed to affect cell division. Examples include pencycuron."Quinone inside inhibitor (Qil) fungicides (b21)" (FRAC code 21) inhibit complex III mitochondrial respiration in fungi by affecting ubiquinone reductase. Reduction of ubiquinone is blocked at the "quinone inside " (Qi) site of the cytochrome bc^ complex, which is located in the inner mitochondrial membrane of fungi. Inhibiting mitochondrial respiration prevents normal fungal growth and development. Quinone inside inhibitor fungicides include cyanoimidazole, sulfamoyltriazole and picolinamide fungicides. The cyanoimidazoles include cyazofamid. The sulfamoyltriazoles include amisulbrom. The picolinamides include fenpicoxamid (Registry Number 517875-34-2)."Benzamide and thiazole carboxamide fungicides (b22)" (FRAC code 22) inhibit mitosis by binding to P־tubulin and disrupting microtubule assembly. Inhibition of microtubule assembly can disrupt cell division, transport within the cell and cell structure. The benzamides include toluamides such as zoxamide. The thiazole carboxamides include ethylaminothiazole carboxamides such as ethaboxam."Enopyranuronic acid antibiotic fungicides (b23)" (FRAC code 23) inhibit growth of fungi by affecting protein biosynthesis. Examples include blasticidin-S."Hexopyranosyl antibiotic fungicides (b24)" (FRAC code 24) inhibit growth of fungi by affecting protein biosynthesis. Examples include kasugamycin."Glucopyranosyl antibiotic: protein synthesis fungicides (b25)" (FRAC code 25) inhibit growth of fungi by affecting protein biosynthesis. Examples include streptomycin."Glucopyranosyl antibiotic fungicides (b26)" (FRAC code UI8, previously FRAC code reclassified to UI8) are proposed to inhibit trehalase and inositol biosynthesis. Examples include validamycin.
WO 2022/133114 PCT/US2021/063852 "Cyanoacetamideoxime fungicides (b27)" (FRAC code 27) include cymoxanil."Carbamate fungicides (b28)" (FRAC code 28) are considered multi-site inhibitors of fungal growth. They are proposed to interfere with the synthesis of fatty acids in cell membranes, which then disrupts cell membrane permeability. lodocarb, propamacarb and prothiocarb are examples of this fungicide class."Oxidative phosphorylation uncoupling fungicides (b29)" (FRAC code 29) inhibit fungal respiration by uncoupling oxidative phosphorylation. Inhibiting respiration prevents normal fungal growth and development. This class includes dinitrophenyl crotonates such as binapacryl, meptyldinocap and dinocap, and 2,6-dinitroanilines such as fluazinam."Organo tin fungicides (b30)" (FRAC code 30) inhibit adenosine triphosphate (ATP) synthase in oxidative phosphorylation pathway. Examples include fentin acetate, fentin chloride and fentin hydroxide."Carboxylic acid fungicides (b31)" (FRAC code 31) inhibit growth of fungi by affecting deoxyribonucleic acid (DNA) topoisomerase type II (gyrase). Examples include oxolinic acid."Heteroaromatic fungicides (b32)" (FRAC code 32) are proposed to affect DNA/ribonucleic acid (RNA) synthesis. Heteroaromatic fungicides include isoxazoles and isothiazolones. The isoxazoles include hymexazole and the isothiazolones include octhilinone."Phosphonate fungicides (b33)" (FRAC code P07, previously FRAC code 33 reclassified to P07) include phosphorous acid and its various salts, including fosetyl-aluminum."Phthalamic acid fungicides (b34)" (FRAC code 34) include teclofthalam."Benzotriazine fungicides (b35)" (FRAC code 35) include triazoxide."Benzene-sulfonamide fungicides (b36)" (FRAC code 36) include flusulfamide."Pyridazinone fungicides (b37)" (FRAC code 37) include diclomezine."Thiophene-carboxamide fungicides (b38)" (FRAC code 38) are proposed to affect ATP production. Examples include silthiofam."Complex I NADH oxidoreductase inhibitor fungicides (b39)" (FRAC code 39) inhibit electron transport in mitochondria and include pyrimidinamines such as diflumetorim, pyrazole- 5-carboxamides such as tolfenpyrad, and quinazoline such as fenazaquin."Carboxylic acid amide (CAA) fungicides (b40)" (FRAC code 40) inhibit cellulose synthase which prevents growth and leads to death of the target fungus. Carboxylic acid amide fungicides include cinnamic acid amide, valinamide carbamate and mandelic acid amide fungicides. The cinnamic acid amides include dimethomorph, flumorph and pyrimorph. The valinamide carbamates include benthiavalicarb, benthiavalicarb-isopropyl, iprovalicarb, tolprocarb and valifenalate (also known as valiphenal). The mandelic acid amides include mandipropamid, N- [2- [4- [ [3 -(4-chloropheny l)-2-propyn- 1 -yl] oxy ] -3 -methoxyphenyl] ethyl] -3 -methyl-2- WO 2022/133114 PCT/US2021/063852 [(methylsulfonyl)amino]butanamide and A-[2-[4-[[3-(4-chlorophenyl)-2-propyn-l-yl]oxy]-3- methoxyphenyl]ethyl]-3-methyl-2-[(ethylsulfonyl)amino]butanamide."Tetracycline antibiotic fungicides (b41)" (FRAC code 41) inhibit growth of fungi by affecting protein synthesis. Examples include oxy tetracycline."Thiocarbamate fungicides (b42)" (FRAC code M12, previously FRAC code 42 reclassified to Ml 2) include methasulfocarb."Benzamide fungicides (b43)" (FRAC code 43) inhibit growth of fungi by delocalization of spectrin-like proteins. Examples include pyridinylmethyl benzamides such as fluopicolide and fluopimomide."Microbial fungicides (b44)" (FRAC code BM02, previously FRAC code 44 reclassified to BM02) disrupt fungal pathogen cell membranes. Microbial fungicides include Bacillus species such as Bacillus amyloliquefaciens strains AP-136, AP-188, AP-218, AP-219, AP-295, QST713, FZB24, F727, MB 1600, D747, TJ100 (also called strain 1 BE; known from EP2962568), and the fungicidal lipopeptides which they produce."Quinone outside inhibitor, stigmatellin binding (QoSI) fungicides (b45)" (FRAC code 45) inhibit complex III mitochondrial respiration in fungi by affecting ubiquinone reductase at the "quinone outside " (Qo) site, stigmatellin binding sub-site, of the cytochrome bc^ complex. Inhibiting mitochondrial respiration prevents normal fungal growth and development. QoSI fungicides include triazolopyrimidylamines such as ametoctradin."Plant extract fungicides (b46)" (FRAC code 46) cause cell membrane disruption. Plant extract fungicides include terpene hydrocarbons, terpene alcohols and terpen phenols such as the extract from Melaleuca alternifolia (tea tree) and plant oils (mixtures) such as eugenol, geraniol and thymol."Cyanoacrylate fungicides (b47)" (FRAC code 47) bind to the myosin motor domain and effect motor activity and actin assembly. Cyanoacrylates include fungicides such as phenamacril."Polyene fungicides (b48)" (FRAC code 48) cause disruption of the fungal cell membrane by binding to ergosterol, the main sterol in the membrane. Examples include natamycin (pimaricin)."Oxysterol binding protein inhibitor (OSBPI) Fungicides (b49)" (FRAC code 49) bind to the oxysterol-binding protein in oomycetes causing inhibition of zoospore release, zoospore motility and sporangia germination. Oxysterol binding fungicides include piperdinylthiazoleisoxazolines such as oxathiapiprolin and fluoxapiprolin."Aryl-phenyl-ketone fungicides (b50)" (FRAC code 50, previously FRAC code Ureclassified to 50) inhibit the growth of mycelium in fungi. Aryl-phenyl ketone fungicides include benzophenones such as metrafenone, and benzoylpyridines such as pyriofenone.
WO 2022/133114 PCT/US2021/063852 "Host plant defense induction fungicides (b51)" induce host plant defense mechanisms. Host plant defense induction fungicides include benzothiadiazole (FRAC code P01), benzisothiazole (FRAC code P02), thiadiazole carboxamide (FRAC code P03), polysaccharide (FRAC code P04), plant extract (FRAC code P05), microbial (FRAC code P06) and phosphonate fungicides (FRAC code P07, see (b33) above). The benzothiadiazoles include acibenzolar-S- methyl. The benzisothiazoles include probenazole. The thiadiazole carboxamides include tiadinil and isotianil. The polysaccharides include laminarin. The plant extracts include extract from Reynoutria sachalinensis (giant knotweed). The microbials include Bacillus mycoides isolate J and cell walls of Saccharomyces cerevisiae strain LAS 117."Multi-site activity fungicides (b52)" inhibit fungal growth through multiple sites of action and have contact/preventive activity. Multi-site activity fungicides include copper fungicides (FRAC code MOI), sulfur fungicides (FRAC code M02), dithiocarbamate fungicides (FRAC code M03), phthalimide fungicides (FRAC code M04), chloronitrile fungicides (FRAC code M05), sulfamide fungicides (FRAC code M06), multi-site contact guanidine fungicides (FRAC code M07), triazine fungicides (FRAC code MOS), quinone fungicides (FRAC code M09), quinoxaline fungicides (FRAC code MIO), maleimide fungicides (FRAC code Mil) and thiocarbamate (FRAC code M12, see (b42) above) fungicides. Copper fungicides are inorganic compounds containing copper, typically in the copper(II) oxidation state; examples include copper oxychloride, copper sulfate and copper hydroxide, including compositions such as Bordeaux mixture (tribasic copper sulfate) and Kocide. Sulfur fungicides are inorganic chemicals containing rings or chains of sulfur atoms; examples include elemental sulfur. Dithiocarbamate fungicides contain a dithiocarbamate molecular moiety; examples include ferbam, mancozeb, maneb, metiram, propineb, thiram, zinc thiazole, zineb and ziram. Phthalimide fungicides contain a phthalimide molecular moiety; examples include folpet, captan and captafol. Chloronitrile fungicides contain an aromatic ring substituted with chloro and cyano; examples include chlorothalonil. Sulfamide fungicides include dichlofluanid and tolyfluanid. Multi-site contact guanidine fungicides include, guazatine, iminoctadine albesilate and iminoctadine triacetate. Triazine fungicides include anilazine. Quinone fungicides include dithianon. Quinoxaline fungicides include quinomethionate (also known as chinomethionate). Maleimide fungicides include fluoroimide."Biologicals with multiple modes of action (b53)" include agents from biological origins showing multiple mechanisms of action without evidence of a dominating mode of action. This class of fungicides includes polypeptide (lectin), phenol, sesquiterpene, tritepenoid and coumarin fungicides (FRAC code BM01) such as extract from the cotyledons of lupine plantlets. This class also includes microbial fungicides (FRAC code BM02, see (b44) above).
WO 2022/133114 PCT/US2021/063852 "Fungicides other than fungicides of component (a) and components (bl) through (b53); (b54)"; include certain fungicides whose mode of action may be unknown. These include: (b54.1) "phenyl-acetamide fungicides " (FRAC code U06), (b54.2) "guanidine fungicides " (FRAC code U12), (b54.3) "thiazolidine fungicides " (FRAC code U13), (b54.4) "pyrimidinone-hydrazone fungicides " (FRAC code U14), (b54.5) "4-quinolylacetate fungicides " (FRAC code U16), (54.6) "tetrazolyloxime fungicides " (FRAC code U17) and "glucopyranosyl antibiotic fungicides " (FRAC code UI 8, see (b26) above). The phenyl-acetamides include cyflufenamid. The guanidines include dodine. The thiazolidines include flutianil. The pyrimidinonehydrazones include ferimzone. The 4-quinolylacetates include tebufloquin. The tetrazolyloximes include picarbutrazox.The (b54) class also includes bethoxazin, dichlobentiazox (provisional common name, Registry Number 957144-77-3), dipymetitrone (provisional common name, Registry Number 16114-35-5), flometoquin, neo-asozin (ferric methanearsonate), pyrrolnitrin, tolnifanide (Registry Number 304911-98-6), Af-[4-[4-chloro-3-(trifluoromethyl)phenoxy]-2,5-dimethylphenyl]-A- cthyl-A-mcthylmcthanimidamidc, 5-fluoro-2-[(4-fluorophenyl)methoxy]-4-pyrimidinamine and 4-fluorophenyl A-[ 1 -[[[ 1-(4-cyanophcnyl)cthyI]sulfonyl]mcthyljpropy!]carbamate.The (b54) class additionally includes fungicides whose mode of action may be unknown, or may not yet be classified, such as a fungicidal compound selected from components (b54.7) through (b54.14), as described below.Component (54.7) relates to (lS)-2,2-bis(4-fh1orophenyl)-l-methylethyl A-[[3-(acctyloxy)- 4-methoxy-2-pyridinyl]carbonyl]-L-alaninate (provisional common name florylpicoxamid. Registry Number 1961312-55-9) which is believed to be a Quinone inside inhibitor (Qil) fungicide (FRAC code 21) inhibiting the Complex III mitochondrial respiration in fungi.Component (54.8) relates to l-[2-[[[l-(4-chlorophenyl)-l/Z-pyrazol-3-yl]oxy]methyl]-3- methylphenyl]-l,4-dihydro-4-methyl-5//-tetrazol-5-one (provisional common name metyltetraprole, Registry Number 1472649-01-6), which is believed to be a quinone outside inhibitor (Qol) fungicide (FRAC code 45) inhibiting the Complex III mitochondrial respiration in fungi, and is effective against Qol resistant strains.Component (54.9) relates to 3-chloro-4-(2,6-difluorophenyl)-6-methyl-5-phenylpyridazine (provisional common name pyridachlometyl. Registry Number 1358061-55-8), which is believed to be promoter tubulin polymerization, resulting antifungal activity against fungal species belonging to the phyla Ascomycota and Basidiomycota.Component (54.10) relates to (4-phenoxyphenyl)methyl 2-amino-6-methyl-pyridine-3- carboxylate (provisional common name aminopyrifen, Registry Number 1531626-08-0) which is WO 2022/133114 PCT/US2021/063852 believed to inhibit GWT-1 protein in glycosylphosphatidylinositol-anchor biosynthesis in Neurospora crassa.Component (b54.11) relates to a compound of Formula b54.11 whereinRal and Ra2 are each independently halogen; andRa3 is H, halogen, C-C3 alkyl, C-C3 haloalky 1 or C3-C6 cycloalkyl.Examples of compounds of Formula b54.11include (b54.11a) methyl A/-[[5-[l-[2,6-difluoro-4- (l-methylethyl)phenyl]-l//-pyrazol-3-yl]-2-methylphenyl]methyl]carbamate,(b54.1 lb) methyl A/-[[5-[l-(4-chloro-2,6-difluorophenyl)- l//-pyrazol-3-yl]-2-methylphenyl] methyl]carbamate, (b54.11c) methyl W[[5-[l-[2,6-difluoro-4-(trifluoromethyl)phenyl]-l//- pyrazol-3-yl]-2-methylphenyl]methyl]carbamate, (b54.11d) methyl A/-[[5-[l-(4-cyclopropyl-2,6- difluorophenyl)-l//-pyrazol-3-yl]-2-methylphenyl]methyl]carbamate and (b54.11e) methyl N- [[5-[l-(2,6-dichloro-4-cyclopropylphenyl)-l//-pyrazol-3-yl]-2-methylphenyl]methyl]carbamate. Compounds of Formula b54.11,their use as fungicides and methods of preparation are generally known; see, for example, PCT Patent Publications WO 2008/124092 and WO 2020/097012.Component (b54.12) relates to a compound of Formula b54.12 b54.12 whereinRa4 is C2-C5 alkoxycarbonyl or C3-C5 alkenyloxycarbonyl, each optionally substituted with up to 3 substituents independently selected from Ra6;L is CH2, CH2CH2 or CH2O, wherein O is connected to the phenyl ring;Ra5 is Cr C4 alkyl, CpC4 haloalkyl, C2-C4 alkenyl and C2-C4 haloalkenyl; and WO 2022/133114 PCT/US2021/063852 Ra6 is cyano, halogen, cyclopropyl or methoxy;In Formula b54.12the wavy bond indicates a single bond which is linked to an adjacent double bond wherein the geometry about the adjacent double bond is either (Z)-configuration (syn-isomer or czs-isomer) or (E)-configuration (anti-isomer or Zrazzs-isomer), or a mixture thereof.Examples of compounds of Formula b54.12include (b54.12a) ethyl l-[[4-[[(lZ)-2- ethoxy-3, 3,3-trifluoro-l-propen-l-yl]oxy]phenyl]methyl]-l//-pyrazole-4-carboxylate and its (E)- isomer and (b54.12b) ethyl l-[2-[4-[[(lZ)-2-ethoxy-3,3,3-trifluoro-l-propen-l- yl]oxy]phenyl]ethyl]-l//-pyrazole-4-carboxylate and its (E)-isomer. Compounds of Formula b54.12,their use as fungicides and methods of preparation are generally known; see, for example, PCT Patent Publication WO2020/056090.Component (b54.13) relates to a compound of Formula b54.13 b54.13 whereinRa7 is C2-C5 alkoxycarbonyl or C3-C5 alkenyloxycarbonyl, each optionally substituted with up to 3 substituents independently selected from Ral°;L is CH2, CH2CH2 or CH2O, wherein O is connected to the phenyl ring;Ra8 and R9b are each independently H, CpC4 alkyl; orRa8 and Ra9 are taken together with the oxygen atoms to which they are attached to form a 5-membered saturated ring containing ring members, in addition to the oxygen atoms, selected from carbon atoms, the ring optionally substituted with up to substituents independently selected from halogen, cyano, CpC2 alkyl, CpChaloalky 1 and CpC2 alkoxy on carbon atom ring members; andRa10 ؛s cyano, halogen, cyclopropyl or methoxy.Examples of compounds of Formula b54.13include (b54.13a) ethyl l-[[4-[[2- (trifluoromethyl)- 1,3-dioxolan-2-yl] methoxy ]phenyl] methyl]- l//-pyrazole-4-carboxylate, (b54.13b) 2-methylpropyl l-[[4-[[2-(trifluoromethyl)-l,3-dioxolan-2-yl]methoxy]- phenyl]methyl]-l//-pyrazole-4-carboxylate, (b54.13c) 2-butyn-l-yl l-[[4-[[2-(trifluoromethyl)- l,3-dioxolan-2-yl]methoxy]phenyl]methyl]-l//-pyrazole-4-carboxylate and (b54.13d) ethyl 1- WO 2022/133114 PCT/US2021/063852 [[3-fluoro-4-[[2-(trifluoromethyl)-l,3-dioxolan-2-yl]methoxy]phenyl]methyl]-l//-pyrazole-4- carboxylate. Compounds of Formula b54.13,their use as fungicides and methods of preparation are generally known; see, for example, PCT Patent Publication WO2020/056090.Component (b54.14) relates a compound of Formula b54.14 whereinRbll, Rbl2 an،؛ Rbl 3 are eac b independently H, halogen or cyano; andRbl4 and Rbl5 are each independently H, halogen, C]-Cg alkyl or CrC3 methoxy.Examples of compounds of Formula b54.14include (b54.14a) 4-(2-chloro-4-fluorophenyl)-A/-(2- fluoro-4-methyl-6-nitrophenyl)-l,3-dimethyl-l//-pyrazol-5-amine, (b54.14b) 4-(2-chloro-4- fluorophenyl)-A/-(2-fluoro-6-nitrophenyl)-l,3-dimethyl-l//-pyrazol-5-amine, (b54.14c) 3,5-difluoro-4-[5-[(4-methoxy-2-nitrophenyl)amino]-l,3-dimethyl-l//-pyrazol-4-yl]-benzonitrile, (b54.14d) A/-(2-chloro-4-fluoro-6-nitrophenyl)-4-(2-chloro-4-fluorophenyl)-l,3-dimethyl-l//- pyrazol-5-amine, (b54.14e) 4-(2-chloro-4,6-difluorophenyl)-l,3-dimethyl-A/-(2-nitrophenyl)-l//- pyrazol-5-amine and (b54.14f) 4-(2-chloro-4,6-difluorophenyl)-l,3-dimethyl-A/-(4-methyl-2- nitrophenyl)-l//-pyrazol-5-amine. Compounds of Formula b54.14,their use as fungicides and methods of preparation are generally known; see, for example, PCT Patent Publication WO 2020/051402.Embodiments of the present invention as described in the Summary of the Invention include those described below. In the following Embodiments, Formula 1 includes stereoisomers, A-oxides, and salts thereof, and reference to "a compound of Formula 1" includes the definitions of substituents specified in the Summary of the Invention unless further defined in the Embodiments.Embodiment 1. The composition comprising components (a) and (b) described in the Summary of the Invention wherein in Formula 1, R1 is selected from U-l through U-l 18 as depicted in Exhibit A WO 2022/133114 PCT/US2021/063852 WO 2022/133114 PCT/US2021/063852 U-26 U-30 U-34 U-38 U-42 U-46 U-45 U-36 U-40 WO 2022/133114 PCT/US2021/063852 U-49 U-50 U-51 U-58 U-65 U-69 U-73 U-66 U-70 U-74 U-63 U-64 WO 2022/133114 PCT/US2021/063852 WO 2022/133114 PCT/US2021/063852 U-112 U-117 U-118 U-116 wherein the floating bond is connected to L in Formula 1 through any available carbon or nitrogen atom of the depicted ring or ring system; and x is 0, 1 or 2.Embodiment 2. The composition comprising components (a) and (b) described in the Summary of the Invention wherein in Formula 1,R1 is U-l through U-16, U-20, U-22, U-24, U-25, U-26, U-28, U-29, U-30, U-37, U-38, U-42 through U-47 or U-71 through U-l 14.Embodiment 3. The composition comprising components (a) and (b) described in the Summary of the Invention wherein in Formula 1, is U-l, U-2, U-3, U-4, U-5, U-7, U-8, U-10, U-ll, U-12, U-24, U-26, U-28, U-29, U-30, U-37, U-38, U-42 through WO 2022/133114 PCT/US2021/063852 U-46, U-71, U-74, U-76, U-77, U-78, U-82, U-83, U-84 through U-91, U-through U-96, U-99 or U-101 through U-l 14.Embodiment 4. The composition comprising components (a) and (b) described in the Summary of the Invention wherein in Formula 1,R1 is U-l, U-2, U-3, U-4, U-5, U-7, U-8, U-10, U-ll, U-12, U-24, U-26, U-28, U-29, U-30, U-42 through U-46, U-71, U-76, U-77, U-78, U-82, U-83, U-84, U-89, U-90, U-91, U-93, U-103, U-1or U-109 through U-l 12.Embodiment 5. The composition comprising components (a) and (b) described in the Summary of the Invention wherein in Formula 1,R1 is U-l, U-2, U-3, U-4, U-5, U-7, U-8, U-10, U-ll, U-12, U-26, U-29, U-30, U-42 through U-46, U-71, U-76, U-77, U-78, U-82, U-83, U-89, U-90, U-103 or U-104.Embodiment 6. The composition comprising components (a) and (b) described in the Summary of the Invention wherein in Formula 1,R1 is U-l, U-2, U-3, U-4, U-5, U-7, U-8, U-10, U-ll, U-12 or U-29.Embodiment 7. The composition comprising components (a) and (b) described in the Summary of the Invention wherein in Formula 1,R1 is U-l, U-2, U-3, U-4, U-8, U-10, U-ll, U-12.Embodiment 8. The composition comprising components (a) and (b) described in the Summary of the Invention wherein in Formula 1,R1 is U-l, U-2, U-8, U-10, U-ll or U-12.Embodiment 8a. The composition comprising components (a) and (b) described in the Summary of the Invention wherein in Formula 1,R1 is U-l, U-2, U-8, U-ll or U-12.Embodiment 9. The composition comprising components (a) and (b) described in the Summary of the Invention wherein in Formula 1,R1 is U-l, U-2, U-8 or U-12.Embodiment 10. The composition comprising components (a) and (b) described in the Summary of the Invention wherein in Formula 1,R1 is U-l, U-2 or U-12.Embodiment 11. The composition comprising components (a) and (b) described in the Summary of the Invention wherein in Formula 1,R1 is U-2 or U-12.Embodiment 12. The composition comprising components (a) and (b) described in the Summary of the Invention wherein in Formula 1, R1 is U-l.Embodiment 13. The composition comprising components (a) and (b) described in the Summary of the Invention wherein in Formula 1, R1 is U-2.Embodiment 14. The composition comprising components (a) and (b) described in the Summary of the Invention wherein in Formula 1,R1 is U-8 WO 2022/133114 PCT/US2021/063852 Embodiment 15. The composition comprising components (a) and (b) described in the Summary of the Invention wherein in Formula 1,R1 is U-12.Embodiment 16. The composition comprising components (a) and (b) described in the Summary of the Invention wherein in Formula 1, R1 is U-l connected at its 2-position to L.Embodiment 17. The composition comprising components (a) and (b) described in the Summary of the Invention wherein in Formula 1, R1 is U-2 connected at its 2-position to L.Embodiment 18. The composition comprising components (a) and (b) described in the Summary of the Invention wherein in Formula 1, R1 is U-8 connected at its 5-position to L.Embodiment 19. The composition comprising components (a) and (b) described in the Summary of the Invention wherein in Formula 1,R1 is U-12 connected at its !-position to L.Embodiment 20. The composition comprising components (a) and (b) described in the Summary of the Invention wherein in Formula 1,R1 is U-12 connected at its 3-position to L.Embodiment 21. The composition comprising components (a) and (b) described in the Summary of the Invention wherein in Formula 1,R1 is U-12 connected at its 5-position to L.Embodiment 22. The composition comprising components (a) and (b) described in the Summary of the Invention wherein in Formula 1, R1 is U-2 connected at its 2-position to L and its 4-position to R2.Embodiment 22a. The composition comprising components (a) and (b) described in the Summary of the Invention wherein in Formula 1,R1 is U-12 connected at its !-position to L and its 4-position to R2.Embodiment 23. The composition comprising components (a) and (b) described in the Summary of the Invention wherein in Formula 1,R1 is U-l 1 connected at its !-position to L and its 5-position to R2.Embodiment 24. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 23 wherein in Formula 1,x is 1 or 2.Embodiment 25. The composition of Embodiment 24 wherein x is 1.Embodiment 26. The composition of Embodiment 24 wherein x is 2.
WO 2022/133114 PCT/US2021/063852 Embodiment 27. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 26 wherein in Formula 1,L is O, (CR4aR4b)n, OCH2, CH2O, OCH2CH2, CH2CH2O or CH2OCH2, wherein the atom to the left is connected to R1, and the atom to the right is connected to J, each carbon atom is optionally substituted with up to 2 substituents independently selected from halogen, cyano, hydroxy, C1-C3 alkyl, C^-Cg haloalkyl, CpC2 alkoxy and CpC2 haloalkoxy.Embodiment 28. The composition of Embodiment 27 wherein L is (CR4aR4b)n, OCH2, CH2O, OCH2CH2, CH2CH2O or CH2OCH2, wherein the atom to the left is connected to R1, and the atom to the right is connected to J, each carbon atom is optionally substituted with up to 1 substituent selected from halogen, cyano, hydroxy, methyl, halomethyl or methoxy.Embodiment 29. The composition of Embodiment 28 wherein L is (CR4aR4b)n, OCH2, CH2O, OCH2CH2, CH2CH2O or CH2OCH2, wherein the atom to the left is connected to R1, and the atom to the right is connected to J.Embodiment 30. The composition of Embodiment 28 wherein L is (CR4aR4b)n, CH2O or CH2OCH2, wherein the atom to the left is connected to R1, and the atom to the right is connected to J, each carbon atom is optionally substituted with up to 1 substituent selected from halogen, cyano, hydroxy, methyl, halomethyl or methoxy.Embodiment 31. The composition of Embodiment 30 wherein L is (CR4aR4b)n, CH2O or CH2OCH2, wherein the atom to the left is connected to R1, and the atom to the right is connected to J.Embodiment 32. The composition of Embodiment 31 wherein L is (CR4aR4b)n or CH2O, wherein the atom to the left is connected to R1, and the atom to the right is connected to J.Embodiment 33. The composition of Embodiment 31 wherein L is (CR4aR4b)n.Embodiment 34. The composition of Embodiment 31 wherein L is CH2O, wherein the atom to the left is connected to R1, and the atom to the right is connected to J.Embodiment 35. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 34 wherein in Formula 1,n is 1 or 2.Embodiment 36. The composition of Embodiment 35 wherein n is 1.Embodiment 37. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 36 wherein in Formula 1, J is a phenyl ring optionally substituted with up to 2 substituents WO 2022/133114 PCT/US2021/063852 independently selected from R5; or a 3- to 7-membered carbocyclic ring, wherein up to 2 ring members are independently selected from C(=O) and C(=S), each ring optionally substituted with up to 2 substituents independently selected from R5; or a 5- to 6-membered heterocyclic ring, each ring containing ring members selectedfrom carbon atoms and 1 to 4 heteroatoms independently selected from up to 2 O, upto 2 S and up to 4 N atoms, wherein up to 2 ring members are independently selected from C(=O) and C(=S), each ring optionally substituted with up to 2 substituents independently selected from R5.Embodiment 38. The composition comprising components (a) and (b) described in theSummary of the Invention or any one of Embodiments 1 through 37 wherein inFormula 1, J is selected from J-l through J-93 as depicted in Exhibit B WO 2022/133114 PCT/US2021/063852 J-38J-39J-40 WO 2022/133114 PCT/US2021/063852 WO 2022/133114 PCT/US2021/063852 WO 2022/133114 PCT/US2021/063852 wherein the bond projecting to the left is bonded to L, and the bond projecting to the right is bonded to the oxadiazole ring in Formula 1; and each R5a is independently H or R5; provided that at most only two R5a substituents are other than H.
Embodiment 39. The composition of Embodiment 38 wherein J is J-l through J-5, J-17, J-18, J-27, J-37 through J-41, J-60, J-63 through J-71, J-73, J-74, J-75 or J-through J-85.Embodiment 40. The composition of Embodiment 39 wherein J is J-4, J-5, J-18, J-27, J-37, J-40, J-41, J-63 through J-69, J-73 or J-77 through J-85.Embodiment 41. The composition of Embodiment 40 wherein J is J-4, J-18, J-27, J-37, J-40, J-63 through J-69 or J-73.Embodiment 42. The composition of Embodiment 41 wherein J is J-4, J-18, J-27, J-40 or J-63.Embodiment 43. The composition of Embodiment 42 wherein J is J-40 or J-63.Embodiment 44. The composition of Embodiment 43 wherein J is J-40.Embodiment 45. The composition of Embodiment 43 wherein J is J-63.Embodiment 46. The composition of any one of Embodiments 38 through 45 whereineach R5a is H.
WO 2022/133114 PCT/US2021/063852 Embodiment 47. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 46 wherein in Formula 1,each R2 is independently halogen, cyano, CH(=O), C(=O)OH, C(=O)NR3aR3b, C(R6)=NR7 or -U-V-Q; or Cr C6 alkyl, C2-C6 alkenyl, C2-Calkynyl, C3-C7 cycloalkyl, C1-C6 alkoxy, C2-Cg alkenyloxy, C2-Cg alkynyloxy, C3- C7 cycloalkoxy, C1-C6 alkylthio, C2-Cg alkoxycarbonyl, C3-C6 alkenyloxycarbonyl, C3-C6 alkynyloxycarbonyl, C4-C7 cycloalkoxycarbonyl, C2-Cg alkylcarbonyloxy or C2-C6 alkylcarbonylamino, each optionally substituted with up to 3 substituents independently selected from R10.Embodiment 48. The composition of Embodiment 48 wherein each R2 is independently halogen, CH(=O), C(=O)OH, C(=O)NR3aR3b, C(R6)=NR7 or -U-V-Q; or Cr Calkyl, C2-C6 alkenyl, C2-Cg alkynyl, C3-C7 cycloalkyl, C,-Ce alkoxy, C2-Cg alkenyloxy, C2-Cg alkynyloxy, C3-C7 cycloalkoxy, C1-C6 alkylthio, C2-Cg alkoxycarbonyl, C3-C6 alkenyloxycarbonyl, C3-C6 alkynyloxycarbonyl, C4-Ccycloalkoxycarbonyl, C2-Cg alkylcarbonyloxy or C2-Cg alkylcarbonylamino, each optionally substituted with up to 2 substituents independently selected from R10.Embodiment 49. The composition of Embodiment 48 wherein each R2 is independently halogen, C(=O)NR3aR3b, C(R6)=NR7 or -U-V-Q; or Cr C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C7 cycloalkyl, C1-C6 alkoxy, C2-Cg alkenyloxy, C2-Cg alkynyloxy, C3-C7 cycloalkoxy, C1-C6 alkylthio, C2-Cg alkoxycarbonyl, C3-Calkenyloxycarbonyl, C3-C6 alkynyloxycarbonyl, C4-C7 cycloalkoxycarbonyl, C2-Cg alkylcarbonyloxy or C2-Cg alkylcarbonylamino, each optionally substituted with up to 1 substituent selected from R10.Embodiment 50. The composition of Embodiment 49 wherein each R2 is independently halogen, C(=O)NR3aR3b or -U-V-Q; or C_-C6 alkyl, C2-Cg alkenyl, C2-Cg alkynyl, C1-C6 alkoxy, C2-Cg alkoxycarbonyl, C3-C6 alkenyloxycarbonyl, C3-Calkynyloxycarbonyl or C4-C7 cycloalkoxycarbonyl, each optionally substituted with up to 1 substituent selected from R10.Embodiment 51. The composition of Embodiment 50 wherein each R2 is independently C(=O)NR3aR3b or -U-V-Q; or C_-C3 alkyl, C2-Cg alkoxycarbonyl, C3-Calkenyloxycarbonyl or C3-C6 alkynyloxycarbonyl, each optionally substituted with up to 1 substituent selected from R10.Embodiment 52. The composition of Embodiment 51 wherein each R2 is independently C(=O)NR3aR3b; or CpC2 alkyl, C2-Cg alkoxycarbonyl, C3-C alkenyloxycarbonyl WO 2022/133114 PCT/US2021/063852 or C3-C6 alkynyloxycarbonyl, each optionally substituted with up to 1 substituent selected from R10.Embodiment 53. The composition of Embodiment 52 wherein each R2 is independently C(=O)NR3aR3b; or CpC2 alkyl or C2־Cg alkoxycarbonyl, each optionally substituted with up to 1 substituent selected from R10.Embodiment 53a. The composition of Embodiment 51 wherein each R2 is independently C(=O)NR3aR3b or -U-V-Q; or CpC2 alkyl or C2־Cg alkoxycarbonyl, each optionally substituted with up to 1 substituent selected from R10.Embodiment 54. The composition of Embodiments 53 or 53a wherein each R2 is independently C(=O)NR3aR3b; or C2־Cg alkoxycarbonyl optionally substituted with up to 1 substituent selected from R10.Embodiment 55. The composition of Embodiment 54 wherein each R2 is independently C(=O)NR3aR3b or C2־Cg alkoxycarbonyl.Embodiment 56. The composition of Embodiment 55 wherein each R2 is independently C(=O)NR3aR3b or C2-C4 alkoxycarbonyl.Embodiment 57. The composition of Embodiment 56 wherein each R2 is independently C(=O)NR3aR3b or C2-C3 alkoxycarbonyl.Embodiment 58. The composition of Embodiment 57 wherein each R2 is independently C(=O)NR3aR3b.Embodiment 59. The composition of Embodiment 57 wherein each R2 is independently C2-C3 alkoxycarbonyl.Embodiment 60. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 59 wherein in Formula 1, R3 is H, cyano, hydroxy, CpC4 alkyl, CpC4 haloalkyl, C2-C4 alkenyl, C2-C4 alkynyl or CpC4 alkoxy.Embodiment 61. The composition of Embodiment 60 wherein R3 is H, cyano, hydroxy, methyl or methoxy.Embodiment 62. The composition of Embodiment 61 wherein R3 is H.Embodiment 63. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 62 wherein in Formula 1,when each R3a is separate (i.e. not taken together with R3b), then each R3a is independently H, cyano, hydroxy, CpC4 alkyl, CpC4 haloalkyl, C2-Calkenyl, C2-C4 alkynyl, C4-C5 alkoxy, C2-C4 alkoxyalkyl, C2-C4 alkylthioalkyl, C2-C4 alkylcarbonyl, C2-C4 haloalkylcarbonyl, C4-C6 cycloalkylcarbonyl, C2-Calkoxycarbonyl or C3-C5 alkoxycarbonylalkyl.
WO 2022/133114 PCT/US2021/063852 Embodiment 64. The composition of Embodiment 63 wherein each R3a is independently H, cyano, hydroxy, CpC4 alkyl, CpC4 haloalkyl, C2-C4 alkenyl, C2-C4 alkynyl, Cr C4 alkoxy, C2-C4 alkoxyalkyl, C2-C4 alkylcarbonyl, C2-C4 haloalky !carbonyl or C3-C5 alkoxycarbonylalkyl.Embodiment 65. The composition of Embodiment 64 wherein each R3a is independently H, Cr C4 alkyl, Cr C4 haloalkyl, C2-C4 alkenyl, C2-C4 alkynyl, Cr C4 alkoxy, C2-C4 alkoxyalkyl, C2-C4 alkylcarbonyl, C2-C4 haloalkylcarbonyl or C3-Calkoxycarbonylalkyl.Embodiment 66. The composition of Embodiment 65 wherein each R3a is independently H, Cr C4 alkyl, Cr C4 haloalkyl, C2-C4 alkenyl, C2-C4 alkynyl, C2-C4 alkoxy alkyl or C3-C5 alkoxycarbonylalkyl.Embodiment 67. The composition of Embodiment 66 wherein each R3a is independently H, Cr C3 alkyl, Cr C3 haloalkyl or C2-C3 alkoxyalkyl.Embodiment 68. The composition of Embodiment 67 wherein each R3a is H.Embodiment 69. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 68 wherein in Formula 1,when each R3b is separate (i.e. not taken together with R3a), then each R3b is independently H, C-C6 alkyl, C-C6 haloalkyl, C2-Cg alkenyl, C2-Cg haloalkenyl, C2-Cg alkynyl, C2-Cg haloalkynyl, C1-C6 hydroxy alkyl, C2-Cg cyanoalkyl, C3-C§ cycloalkyl, C3-C§ halocycloalkyl, C4-C10 alkylcycloalkyl, C4-C10 cycloalkylalkyl, C4-C10 halocycloalkylalkyl, C2-Cg alkoxyalkyl, C2-Cg haloalkoxyalkyl or C4-C1Q cycloalkoxyalkyl, each optionally substituted with up to substituent selected from cyano, hydroxy, C2-C4 alkylcarbonyl, C2-Calkoxycarbonyl, C3-C^5 trialkylsilyl and C3-C^5 halotrialkylsilyl.Embodiment 70. A compound of Embodiment 69 wherein each R3b is independently H, Cr C6 alkyl, Cr C6 haloalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl, C2- Cg haloalkynyl, C3-C§ halocycloalkyl, C4-C10 cycloalkylalkyl, C4-Chalocycloalkylalkyl, C2-Cg alkoxyalkyl or C2-Cg haloalkoxyalkyl, each optionally substituted with up to 1 substituent selected from cyano, C2-C4 alkylcarbonyl, C2-Calkoxycarbonyl and C3-C^5 trialkylsilyl.Embodiment 71. The composition of Embodiment 70 wherein each R3b is independently H, Cr C6 alkyl, Cr C6 haloalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl, C2-C6 haloalkynyl, C4-C10 cycloalkylalkyl, C4-C10 halocycloalkylalkyl, C2-Cg alkoxyalkyl or C2-Cg haloalkoxyalkyl, each optionally substituted with up to substituent selected from cyano, C2-C4 alkylcarbonyl and C2-C4 alkoxycarbonyl.
WO 2022/133114 PCT/US2021/063852 Embodiment 72. The composition of Embodiment 71 wherein each R3b is independently H, C1-C6 alkyl, C1-C6 haloalkyl, C2־Cg alkoxy alkyl or C2־Cg haloalkoxy alkyl, each optionally substituted with up to 1 substituent selected from cyano, C2-Calkylcarbonyl and C2-C4 alkoxycarbonyl.Embodiment 73. The composition of Embodiment 72 wherein each R3b is independently H, Cr C3 alkyl, C1-C3 haloalkyl, C2-C3 alkoxyalkyl or C2-C3 haloalkoxyalkyl, each optionally substituted with up to 1 substituent selected from cyano, C2-Calkylcarbonyl and C2-C3 alkoxycarbonyl.Embodiment 74. The composition of Embodiment 73 wherein each R3b is independently H, Cr C3 alkyl, C!־C3 haloalkyl, C2-C3 alkoxyalkyl or C2-C3 haloalkoxyalkyl, each optionally substituted with up to 1 substituent selected from cyano.Embodiment 75. The composition of Embodiment 74 wherein each R3b is independently H, Cr C3 alkyl, C!־C3 cyanoalkyl, C!־C3 haloalkyl, C2-C3 alkoxyalkyl or C2-Chaloalkoxyalkyl.Embodiment 76. The composition of Embodiment 75 wherein each R3b is independently Cr C2 haloalkyl.Embodiment 77. The composition of Embodiment 76 wherein each R3b is CF3CH2-.Embodiment 78. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 77 wherein in Formula 1,when a pair of R3a and R3b substituents attached to the same nitrogen atom are taken together to form a 5- to 6-membered fully saturated heterocyclic ring, then said ring contains ring members, in addition to the connecting nitrogen atom, selected from carbon atoms and up to 1 heteroatom selected from up to 1 O, up to S and up to 1 N atom, each ring optionally substituted with up to 2 methyl.Embodiment 79. The composition of Embodiment 78 wherein a pair of R3a and R3b substituents attached to the same nitrogen atom are taken together to form an azetidinyl, morpholinyl, pyrrolidinyl, piperidinyl, piperazinyl or thiomorpholinyl ring, each ring optionally substituted with up to 3 substituents independently selected from halogen.Embodiment 80. The composition of Embodiment 79 wherein a pair of R3a and R3b substituents attached to the same nitrogen atom are taken together to form an azetidinyl, pyrrolidinyl or piperidinyl ring, each ring optionally substituted with up to 3 substituents independently selected from halogen.Embodiment 81. The composition of Embodiment 80 wherein a pair of R3a and R3b substituents attached to the same nitrogen atom are taken together to form a WO 2022/133114 PCT/US2021/063852 pyrrolidinyl ring optionally substituted with up to 2 substituents independently selected from halogen.Embodiment 82. The composition of Embodiment 81 wherein a pair of R3a and R3b substituents attached to the same nitrogen atom are taken together to form a pyrrolidinyl ring optionally substituted with up to 2 fluorine atoms.Embodiment 83. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 82 wherein in Formula 1,when each R4a and R4b is separate (i.e. not taken together), then each R4a and R4b is independently H, halogen, cyano, hydroxy, methyl or methoxy.Embodiment 84. The composition of Embodiment 83 wherein each R4a and R4b is independently H, halogen, hydroxy, methyl or methoxy.Embodiment 85. The composition of Embodiment 84 wherein each R4a and R4b is independently H or methyl.Embodiment 86. The composition of Embodiment 85 wherein each R4a and R4b is H.Embodiment 87. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 86 wherein in Formula 1,when a pair of R4a and R4b substituents attached to the same carbon atom are taken together to form a ring, said ring is a cyclopropyl ring optionally substituted with up to 2 substituents independently selected from halogen, methyl, methoxy or methylthio.Embodiment 88. The composition of Embodiment 87 wherein a pair of R4a and R4b substituents attached to the same carbon atom are taken together to form a cyclopropyl ring.Embodiment 89. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 88 wherein in Formula 1, each R5 is independently cyano, halogen, C !־C4 alkyl, C !־C4 haloalkyl or Cr C4 alkoxy.Embodiment 90. The composition of Embodiment 89 wherein each R5 is independently cyano, halogen, C1-C3 alkyl, C1-C3 haloalkyl or C1-C3 alkoxy.Embodiment 91. The composition of Embodiment 90 wherein each R5 is independently cyano, halogen, methyl or methoxy.Embodiment 92. The composition of Embodiment 91 wherein each R5 is independently methyl or methoxy.
WO 2022/133114 PCT/US2021/063852 Embodiment 93. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 92 wherein in Formula 1, each R6 is independently H, cyano, halogen methyl or methoxy.Embodiment 94. The composition of Embodiment 93 wherein each R6 is independently H, Cl or methyl.Embodiment 95. The composition of Embodiment 94 wherein each R6 is H.Embodiment 96. The composition comprising components (a) and (b) described in theSummary of the Invention or any one of Embodiments 1 through 95 wherein in Formula 1,each R7 is independently hydroxy or NRllaRllb; or C!־C4 alkoxy, C2״ C4 alkenyloxy, C2-C4 alkynyloxy or C2-C4 alkylcarbonyloxy, each optionally substituted with up to 1 substituent selected cyano, hydroxy and -C(=O)OH.Embodiment 97. The composition of Embodiment 96 wherein each R7 is independentlyCr C4 alkoxy, C2-C4 alkenyloxy or C2-C4 alkynyloxy, each optionally substituted with up to 1 substituent selected cyano, hydroxy and -C(=O)OH.Embodiment 98. The composition of Embodiment 97 wherein each R7 is independentlyCr C4 alkoxy, C2-C4 alkenyloxy or C2-C4 alkynyloxy.Embodiment 99. The composition comprising components (a) and (b) described in theSummary of the Invention or any one of Embodiments 1 through 98 wherein in Formula 1,each R8 is independently H, methyl or methoxy.Embodiment 100. or methyl. Embodiment 101. Embodiment 102.
The composition of Embodiment 99 wherein each R8 is independently H The composition of Embodiment 100 wherein each R8 is H.The composition comprising components (a) and (b) described in theSummary of the Invention or any one of Embodiments 1 through 101 wherein in Formula 1,when each R9a and R9b is separate (i.e. not taken together), then each R9a and R9b is independently H, methyl or ethyl.Embodiment 103. The composition of Embodiment 102 wherein each R9a and R9b is independently H or methyl.Embodiment 104. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 103 wherein in Formula 1,each R10 is independently halogen, cyano, CpC4 alkyl, CpC4 haloalkyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, CpC4 alkoxy, CpC4 haloalkoxy, C2-Calkoxyalkoxy, CpC4 alkylthio, CpC4 alkylsulfinyl, CpC4 alkylsulfonyl, CpChaloalkylsulfonyl, C2-C4 alkylcarbonyl, C2-C4 haloalkylcarbonyl, C2-C5 WO 2022/133114 PCT/US2021/063852 alkoxycarbonyl, C3-C5 alkylthioalkylcarbonyl, C3-C15 trialkylsily or C(R13)=NOR14.Embodiment 105. The composition of Embodiment 104 wherein each R10 is independently halogen, cyano, CpC4 alkyl, CpC4 haloalkyl, CpC4 alkoxy, CpC4 haloalkoxy, C2״ C4 alkoxyalkoxy, CpC4 alkylsulfonyl, CpC4 haloalkylsulfonyl, C2-Calkylcarbonyl, C2-C4 haloalkylcarbonyl, C2-C5 alkoxycarbonyl or C(R13)=NOR14.Embodiment 105a. The composition of Embodiment 104 wherein each R10 is cyano.Embodiment 106. The composition of Embodiment 105 wherein each R10 is independently halogen, CpC4 alkyl, CpC4 haloalkyl, CpC4 alkoxy, CpC4 haloalkoxy, C2-Calkylcarbonyl, C2-C4 haloalkylcarbonyl, C2-C5 alkoxycarbonyl or C(R13)=NOR14.Embodiment 107. The composition of Embodiment 106 wherein each R10 is independently halogen, CpC4 alkyl, CpC4 alkoxy, C2-C4 alkylcarbonyl, C2-C4 haloalkylcarbonyl, C2-C5 alkoxycarbonyl or C(R13)=NOR14.Embodiment 108. The composition of Embodiment 107 wherein each R10 is independently halogen, CpC4 alkyl, CpC4 alkoxy, C2-C4 alkylcarbonyl, C2-C4 haloalkylcarbonyl or C2-C5 alkoxycarbonyl.Embodiment 108a. The composition of Embodiment 108 wherein each R10 is independently halogen, CpC2 alkoxy, C2-C3 alkylcarbonyl or C2-Chaloalkylcarbonyl.Embodiment 108b. The composition of Embodiment 105 wherein each R10 is independently cyano, halogen, CpC2 alkoxy, C2-C3 alkylcarbonyl or C2-Chaloalkylcarbonyl.Embodiment 109. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 108 wherein in Formula 1,each U is independently a direct bond, C(=O)O or C(=O)NR17.Embodiment 110. The composition of Embodiment 109 wherein each U is independently C(=O)O or C(=O)NR17.Embodiment 111. The composition of Embodiment 110 wherein each U is independently C(=O)NR17.Embodiment 112. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 111 wherein in Formula 1, each V is independently a direct bond; or C1-C3 alkylene or C2-Calkenylene, each optionally substituted with up to 2 substituents independently selected from halogen, cyano, nitro, hydroxy, CpC2 alkyl, CpC2 haloalkyl, CpCalkoxy and CpC2 haloalkoxy.
WO 2022/133114 PCT/US2021/063852 Embodiment 113. The composition of Embodiment 112 wherein each V is independently a direct bond; or CpC2 alkylene optionally substituted with up to 1 substituent C !־Calkyl, Cr C2 alkoxy and CpC2 haloalkoxy.Embodiment 114. The composition of Embodiment 113 wherein each V is independently Cr C2 alkylene.Embodiment 115. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 114 wherein in Formula 1,each Q is independently phenyl, each optionally substituted with up to substituents independently selected from R12; or pyridinyl, pyrazolyl, imidazolyl, triazolyl, thiazolyl or oxazolyl, each ring optionally substituted with up to substituents independently selected from R12.Embodiment 116. The composition of Embodiment 115 wherein each Q is independently phenyl, each optionally substituted with up to 2 substituents independently selected from R12; or pyridinyl or pyrazolyl, each ring optionally substituted with up to substituents independently selected from R12.Embodiment 117. The composition of Embodiment 116 wherein each Q is pyrazolyl.Embodiment 118. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 117 wherein in Formula 1, each R12 is independently halogen, cyano, CpC4 alkyl, CpC4 haloalkyl or Cr C4 alkoxy.Embodiment 119. The composition of Embodiment 118 wherein each R12 is independently halogen, cyano, C1-C3 alkyl, C1-C3 haloalkyl or C1-C3 alkoxy.Embodiment 120. The composition of Embodiment 119 wherein each R12 is independently halogen, cyano, CpC2 alkyl, CpC2 haloalkyl orC1-C2 alkoxy.Embodiment 121. The composition of Embodiment 120 wherein each R12 is independently halogen, methyl or methoxy.Embodiment 122. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 121 wherein in Formula 1, each R13 and R15 is independently H, cyano, halogen, methyl, halomethyl or methoxy.Embodiment 123. The composition of Embodiment 122 wherein each R13 and R15 is independently H, halogen, methyl or methoxy.Embodiment 124. The composition of Embodiment 123 wherein each R13 and R15 is H.Embodiment 125. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 124 wherein in WO 2022/133114 PCT/US2021/063852 Formula 1,151 wherein each R14 is independently H, C!־C2 alkyl, C!־C2 haloalkyl, C2-C4 alkenyl, C2-C4 alkylcarbonyl or C2-C4 alkoxycarbonyl.Embodiment 126. The composition of Embodiment 125 wherein each R14 is independently H, methyl, halomethyl, C2-C4 alkylcarbonyl or C2-C4 alkoxycarbonyl.Embodiment 127. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 126 wherein in Formula 1, each R16 is independently H, cyano, methyl, halomethyl, methoxy, C2-C4 alkylcarbonyl or C2-C4 alkoxycarbonyl.Embodiment 128. The composition of Embodiment 127 wherein each R16 is independently H, cyano, methyl, halomethyl or methoxy.Embodiment 129. The composition of Embodiment 128 wherein each R16 is independently H or methyl.Embodiment 130. The composition of Embodiment 129 wherein each R16 is H.Embodiment 131. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 130 wherein in Formula 1, each R17 and R18 is independently H, cyano, methyl or halomethyl.Embodiment 132. The composition of Embodiment 131 wherein in Formula 1,each Rand R18 is H.Embodiment 133. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 132 wherein component (a) does not comprise an iV-oxide of a compound of Formula 1. Embodiment 133a. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 132 wherein component (a) does not comprise a salt of a compound of Formula 1. Embodiment 134. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 133a wherein component (a) comprises a compound selected from the group consisting of methyl l-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-l/Z-pyrazole-4- carboxylate (Compound 21);cyanomethyl l-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-l/Z-pyrazole-4- carboxylate (Compound 57);ethyl 5-methyl- 1 -[[4-[5-(trifluoromethyl)- 1,2,4-oxadiazol-3-yl]phenyl]methyl] - 1H-pyrazole- 3-carboxylate (Compound 110);A/-(2-methoxyethyl)-5-methyl-l-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3- yl]phenyl]methyl]-l/Z-pyrazole-3-carboxamide (Compound 183); WO 2022/133114 PCT/US2021/063852 propyl l-[[5-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]-2-thienyl]methyl]-l//-pyrazole-4- carboxylate (Compound 198);A/-(2-chloroethyl)-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-4- oxazolecarboxamide (Compound 204);A/-(2,2-difluoroethyl)-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-4- oxazolecarboxamide (Compound 225);A/-(2-cyanoethyl)-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-4-oxazolecarboxamide (Compound 229);A/-(2-methoxyethyl)-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-4- oxazolecarboxamide (Compound 257);A/-[2-(l/Z-pyrazol-l-yl)ethyl]-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]- 4-oxazolecarboxamide (Compound 264);A/-(2,2,2-trifluoroethyl)-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-4- oxazolecarboxamide (Compound 316);2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-A/-(3,3,3-trifluoropropyl)-4- oxazolecarboxamide (Compound 330);ethyl l-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenoxy]methyl]-l/Z-pyrazole-4- carboxylate (Compound 376);A/-(2-methoxyethyl)-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-4- thiazolecarboxamide (Compound 394);A/-(2-fluoroethyl)-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-4- oxazolecarboxamide (Compound 400);A/-[2-(trifluoromethoxy)ethyl]-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl] methyl]-4-oxazolecarboxamide (Compound 401);(3,3-difluoro- 1 -pyrrolidinyl) [2- [[4- [5-(trifluoromethyl)- 1,2,4-oxadiazol-3-yl]phenyl]methyl] - 4-oxazolyl] methanone (Compound 402);A/-(2,2,2-trifluoroethyl)-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-4- thiazolecarboxamide (Compound 463);A/-(2,2-difluoroethyl)-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-4- thiazolecarboxamide (Compound 505);A/-(2,2,2-trifluoroethyl)-5-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-l,2,4- oxadiazole-3-carboxamide (Compound 506);3-[4-[(l-cyanomethyl-l/7-pyrazol-3-yl)methyl]phenyl]-5-(trifluoromethyl)-l,2,4-oxadiazole (Compound 507); WO 2022/133114 PCT/US2021/063852 A/-ethyl-l-[[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methoxy]methyl]-l//- pyrazole-4-carboxamide (Compound 508);l-methyl-A/-(2,2,2-trifluoroethyl)-5-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3- yl]phenyl]methyl]-l//-pyrazole-3-carboxamide (Compound 509);5-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-3-isoxazoleacetonitrile (Compound 510);A/-(2-methoxyethyl)-5- [ [4- [5-(trifluoromethyl)- 1,2,4-oxadiazol-3 -yl]phenyl] methyl] -1,2,4- oxadiazole-3-carboxamide (Compound 511); andl-methyl-A/-(2,2,2-trifluoroethyl)-3-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3- yl]phenyl]methyl]-l//-pyrazole-5-carboxamide (Compound 512).Embodiment 135. The composition of Embodiment 134 wherein component (a) comprises a compound selected from the group consisting of Compounds 204, 225, 229, 257, 264, 316, 330, 376, 394, 400, 401, 402, 463, 505, 507, 508 and 509.Embodiment 135a. The composition of Embodiment 134 wherein component (a) comprises a compound selected from the group consisting of Compounds 225, 229, 257, 316, 376, 394, 506, 507, 508, 509, 510, 511 and 512.Embodiment 135b. The composition of Embodiment 134a wherein component (a) comprises a compound selected from the group consisting of Compounds 507, 508, 509 and 510.Embodiment 136. The composition of Embodiment 135 wherein component (a) comprises a compound selected from the group consisting of Compounds 204, 225, 264, 316, 330, 376, 394, 463, 505, 508 and 509.Embodiment 137. The composition of Embodiment 136 wherein component (a) comprises a compound selected from the group consisting of Compounds 225, 316, 330, 376, and 505.Embodiment 138. The composition of Embodiment 137 wherein component (a) comprises a compound selected from the group consisting of Compounds 316 and 376.Embodiment 139. The composition of Embodiment 138 wherein component (a) is Compound 316.Embodiment 140. The composition of Embodiment 138 wherein component (a) is Compound 376.Embodiment 141. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 140 wherein component (a) is A/-(2-chloroethyl)-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3- yl]phenyl]methyl]-4-oxazolecarboxamide.
WO 2022/133114 PCT/US2021/063852 Embodiment 142. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 140 wherein component (a) is A/-(2,2-difluoroethyl)-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3- yl]phenyl]methyl]-4-oxazolecarboxamide.Embodiment 143. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 140 wherein component (a) is A/-(2-cyanoethyl)-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3- yl]phenyl]methyl]-4-oxazolecarboxamide.Embodiment 144. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 140 wherein component (a) is A/-(2-methoxyethyl)-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3- yl]phenyl]methyl]-4-oxazolecarboxamide.Embodiment 145. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 140 wherein component (a) is A/-[2-(l//-pyrazol-l-yl)ethyl]-2-[[4-[5-(trifluoromethyl)-l,2,4- oxadiazol-3-yl]phenyl]methyl]-4-oxazolecarboxamide.Embodiment 146. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 140 wherein component (a) is A/-(2,2,2-trifluoroethyl)-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol- -y 1] phenyl] methyl] -4 -oxazolecarboxamide .Embodiment 147. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 140 wherein component (a) is 2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-A/- (3,3,3-trifluoropropyl)-4-oxazolecarboxamide.Embodiment 148. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 140 wherein component (a) is ethyl l-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3- y 1] phenoxy ] methyl] -1 H-pyrazole-4-c arboxy late .Embodiment 149. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 140 wherein component (a) is A/-(2-methoxyethyl)-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3- yl]phenyl]methyl]-4-thiazolecarboxamide.Embodiment 150. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 140 wherein WO 2022/133114 PCT/US2021/063852 component (a) is A/-(2-fluoroethyl)-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3- yl]phenyl]methyl]-4-oxazolecarboxamide.Embodiment 151. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 140 wherein component (a) is A/-[2-(trifluoromethoxy)ethyl]-2-[[4-[5-(trifluoromethyl)-l,2,4- oxadiazol-3-yl]phenyl]methyl]-4-oxazolecarboxamide.Embodiment 152. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 140 wherein component (a) is (3,3־difluoro-l-pyrrolidinyl)[2-[[4-[5-(trifluoromethyl)-l,2,4- oxadiazol-3-yl]phenyl]methyl]-4-oxazolyl]methanone.Embodiment 153. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 140 wherein component (a) is A/-(2,2,2-trifluoroethyl)-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol- -yl] phenyl] methyl] -4 -thiazolec arboxamide .Embodiment 154. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 140 wherein component (a) is A/-(2,2-difluoroethyl)-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3- yl]phenyl]methyl]-4-thiazolecarboxamide.Embodiment 155. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 140 wherein component (a) is A/-(2,2,2-trifluoroethyl)-5-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol- 3-yl]phenyl]methyl]-l,2,4-oxadiazole-3-carboxamide.Embodiment 156. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 140 wherein component (a) is 3-[4-[(l-cyanomethyl-lH-pyrazol-3-yl)methyl]phenyl]-5- (trifluoromethyl)- 1,2,4-oxadiazole.Embodiment 157. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 140 wherein component (a) is A/-ethyl-l-[[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3- yl]phenyl]methoxy]methyl]-l/Z-pyrazole-4-carboxamide.Embodiment 158. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 140 wherein component (a) is l-methyl-A/-(2,2,2-trifluoroethyl)-5-[[4-[5-(trifluoromethyl)-l,2,4- oxadiazol-3-yl]phenyl]methyl]-l/Z-pyrazole-3-carboxamide.
WO 2022/133114 PCT/US2021/063852 Embodiment 159. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 140 wherein component (a) is 5-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-3- isoxazoleacetonitrile.Embodiment 160. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 140 wherein component (a) is A/-(2-methoxyethyl)-5-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3- yl]phenyl]methyl]-l,2,4-oxadiazole-3-carboxamide.Embodiment 161. The composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 140 wherein component (a) is l-methyl-A/-(2,2,2-trifluoroethyl)-3-[[4-[5-(trifluoromethyl)-l,2,4- oxadiazol-3-yl]phenyl]methyl]-l/Z-pyrazole-5-carboxamide.Embodiment 162. The composition of Embodiments 141 through 158 wherein component (b) comprises at least two fungicidal compounds, and when component (b) consists of a binary combination of two fungicidal compounds, wherein one of the fungicidal compounds is cyproconazole, difenoconazole, epoxiconazole, flutriafol, metconazole, prothioconazole or tebuconazole then the other fungicidal compound is other than azoxystrobin, benzovindiflupyr, bixafen, boscalid, fluopyram, fluindapyr, fluxapyroxad, isopyrazam, kresoxim-methyl, penthiopyrad, picoxystrobin, proquinazid, pyraclostrobin, quinoxyfen, sedaxane or trifloxystrobin.Embodiment 163. The composition of Embodiments 141 through 158 wherein component (b) comprises at least two fungicidal compounds, and when component (b) consists of a binary combination of two fungicidal compounds, wherein one of the fungicidal compounds is cyproconazole, difenoconazole, epoxiconazole, flutriafol, prothioconazole or tebuconazole then the other fungicidal compound is other than azoxystrobin, benzovindiflupyr, bixafen, fluindapyr, fluxapyroxad, isopyrazam, picoxystrobin, pyraclostrobin, or trifloxystrobin.Embodiment 164. The composition of Embodiment 160 wherein (b) comprises at least two fungicidal compounds, and when component (b) consists of a binary combination of two fungicidal compounds, wherein one of the fungicidal compounds is cyproconazole, difenoconazole, epoxiconazole, flutriafol, prothioconazole or tebuconazole then the other fungicidal compound is other than azoxystrobin, benzovindiflupyr, bixafen, fluindapyr, fluxapyroxad, isopyrazam, picoxystrobin, pyraclostrobin or trifloxystrobin.
WO 2022/133114 PCT/US2021/063852 Embodiments of this invention, including Embodiments 1-164 above as well as any other embodiments described herein, can be combined in any manner, and the descriptions of variables in the embodiments pertain not only to the compositions comprising compounds of Formula 1 with at least one other fungicidal compound, but also to compositions comprising compounds of Formula 1with at least one invertebrate pest control compound or agent, and also to the compounds of Formula 1and their compositions, and also to the starting compounds and intermediate compounds useful for preparing the compounds of Formula 1.In addition, embodiments of this invention, including Embodiments 1-164 above as well as any other embodiments described herein, and any combination thereof, pertain to the methods of the present invention. Therefore of note as a further embodiment is the composition disclosed above comprising (a) at least one compound selected from the compounds of Formula 1 described above, A-oxidcs, and salts thereof; and at least one invertebrate pest control compound or agent.Combinations of Embodiments 1-164 are illustrated by:Embodiment A. The composition comprising components (a) and (b) described in the Summary of the Invention wherein component (a) comprises a compound of Formula 1or salt thereof, wherein in Formula 1, R1 is selected from U-l through U-118 U-3 U-7 U-ll WO 2022/133114 PCT/US2021/063852 U-33 U-34 U-20 U-36 WO 2022/133114 PCT/US2021/063852 U-45 U-47 U-49 U-57 U-58 U-59 U-60 WO 2022/133114 PCT/US2021/063852 U-66 U-73 U- AT Q1N^> U-68 U-80 U-84 WO 2022/133114 PCT/US2021/063852 WO 2022/133114 PCT/US2021/063852 U-109 U-110 U-lll U-114 U-115 U-112 U-116 U-117 U-118wherein the floating bond is connected to L in Formula 1 through any available carbon or nitrogen atom of the depicted ring or ring system;x is 0, 1 or 2;L is (CR4aR4b)n, OCH2, CH2O, OCH2CH2, CH2CH2O or CH2OCH2, wherein the atom to the left is connected to R1, and the atom to the right is connected to J, each carbon atom is optionally substituted with up to 1 substituent selected from halogen, cyano, hydroxy, methyl, halomethyl or methoxy;n is 1 or 2;J is selected from J-l through J-93 WO 2022/133114 PCT/US2021/063852 WO 2022/133114 PCT/US2021/063852 WO 2022/133114 PCT/US2021/063852 WO 2022/133114 PCT/US2021/063852 wherein the bond projecting to the left is bonded to L, and the bond projecting to the right is bonded to the oxadiazole ring in Formula 1; each R5a is independently H or R5; provided that at most only two R5a substituents are other than H;each R2 is independently halogen, C(=O)NR3aR3b, C(R6)=NR7 or -U-V-Q; or C-C6 alkyl, C2-C6 alkenyl, C2־Cg alkynyl, C3-C7 cycloalkyl, C1-C6 alkoxy, C2־Cg alkenyloxy, WO 2022/133114 PCT/US2021/063852 C2-C6 alkynyloxy, C3-C7 cycloalkoxy, C1-C6 alkylthio, C2־Cg alkoxycarbonyl, C3- Cg alkenyloxycarbonyl, C3-C6 alkynyloxycarbonyl, C4-C7 cycloalkoxycarbonyl, C2-C6 alkylcarbonyloxy or C2־Cg alkylcarbonylamino, each optionally substituted with up to 1 substituent selected from R10;each R3a is independently H, cyano, hydroxy, CpC4 alkyl, CpC4 haloalkyl, C2-C4 alkenyl, C2-C4 alkynyl, CpC4 alkoxy, C2-C4 alkoxyalkyl, C2-C4 alkylcarbonyl, C2-Chaloalkylcarbonyl or C3-C5 alkoxycarbonylalkyl;each R3b is independently H, C-C6 alkyl, C-C6 haloalkyl, C2־Cg alkenyl, C2־Cg haloalkenyl, C2־Cg alkynyl, C2־Cg haloalkynyl, C4-C10 cycloalkylalkyl, C4-Chalocycloalkylalkyl, C2־Cg alkoxyalkyl or C2־Cg haloalkoxyalkyl, each optionally substituted with up to 1 substituent selected from cyano, C2-C4 alkylcarbonyl and C2-C4 alkoxycarbonyl; ora pair of R3a and R3b substituents attached to the same nitrogen atom are taken together to form a pyrrolidinyl ring optionally substituted with up to 2 substituents independently selected from halogen;each R4a and R4b is independently H, halogen, hydroxy, methyl or methoxy;each R5 is independently cyano, halogen, methyl or methoxy;each R6 is independently H, cyano, halogen methyl or methoxy;each R7 is independently C !€4־ alkoxy, C2-C4 alkenyloxy or C2-C4 alkynyloxy;each R10 is independently halogen, CpC4 alkyl, CpC4 haloalkyl, CpC4 alkoxy, CpChaloalkoxy, C2-C4 alkylcarbonyl, C2-C4 haloalkylcarbonyl, C2-C5 alkoxycarbonyl or C(R13)=NOR14;each U is independently a direct bond, C(=O)O or C(=O)NR17;each V is independently a direct bond; or CpC2 alkylene optionally substituted with up to substituent selected from CpC2 alkyl, C !־C2 alkoxy and C !־C2 haloalkoxy;each Q is independently phenyl optionally substituted with up to 2 substituents independently selected from R12; or pyridinyl or pyrazolyl, each ring optionally substituted with up to 2 substituents independently selected from R12;each R12 is independently halogen, cyano, C1-C3 alkyl, C1-C3 haloalkyl or C1-C3 alkoxy;each R13 is independently H, halogen, methyl or methoxy;each R14 is independently H, methyl, halomethyl, C2-C4 alkylcarbonyl or C2-Calkoxycarbonyl; andeach R17 is independently H, cyano, methyl or halomethyl.Embodiment B. The composition of Embodiment A wherein in Formula 1, R1 is U-l, U-2, U-3, U-4, U-5, U-7, U-8, U-10, U-ll, U-12 or U-29; WO 2022/133114 PCT/US2021/063852 x is 1 or 2;L is (CR4aR4b)n, CH2O or CH2OCH2, wherein the atom to the left is connected to R1, and the atom to the right is connected to J, each carbon atom is optionally substituted with up to 1 substituent selected from halogen, cyano, hydroxy, methyl, halomethyl or methoxy;J is J-4, J-18, J-27, J-40 or J-63;each R2 is independently C(=O)NR3aR3b or -U-V-Q; or C_-C3 alkyl, C2-Cg alkoxycarbonyl, C3-C6 alkenyloxycarbonyl or C3-C6 alkynyloxycarbonyl, each optionally substituted with up to 1 substituent selected from R10;each R3a is independently H, CpC4 alkyl, CpC4 haloalkyl, C2-C4 alkenyl, C2-C4 alkynyl, C2-C4 alkoxyalkyl or C3-C5 alkoxycarbonylalkyl;each R3b is independently H, C1-C6 alkyl, C1-C6 haloalkyl, C2-Cg alkoxy alkyl or C2-Cg haloalkoxyalkyl, each optionally substituted with up to 1 substituent selected from cyano, C2-C4 alkylcarbonyl and C2-C4 alkoxycarbonyl; ora pair of R3a and R3b substituents attached to the same nitrogen atom are taken together to form a pyrrolidinyl ring optionally substituted with up to 2 fluorine atoms;each R4a and R4b is independently H or methyl;each R5 is independently methyl or methoxy;each R10 is independently halogen, CpC4 alkyl, CpC4 alkoxy, C2-C4 alkylcarbonyl, C2-Chaloalkylcarbonyl or C2-C5 alkoxycarbonyl;each U is independently C(=O)O or C(=O)NR17;each V is independently CpC2 alkylene; andeach R12 is independently halogen, methyl or methoxy.Embodiment C. The composition of Embodiment B wherein in Formula 1, R1 is U-l,U-2, U-8, U-ll or U-12;L is (CR4aR4b)n, CH2O or CH2OCH2,n is 1;J is J-63;each R2 is independently C(=O)NR3aR3b; or CpC2 alkyl, C2-Cg alkoxycarbonyl, C3-Calkenyloxycarbonyl or C3-C6 alkynyloxycarbonyl, each optionally substituted with up to 1 substituent selected from R10;each R3a is independently H, C1-C3 alkyl, C1-C3 haloalkyl or C2-C3 alkoxyalkyl;each R3b is independently H, C1-C3 alkyl, C1-C3 haloalkyl, C2-C3 alkoxyalkyl or C2-Chaloalkoxyalkyl, each optionally substituted with up to 1 substituent selected from cyano; WO 2022/133114 PCT/US2021/063852 each R4a and R4b is H;each R5a is H; andeach R10 is independently cyano, halogen, CpC2 alkoxy, C2-C3 alkylcarbonyl or C2-Chaloalkylcarbonyl.Embodiment CC. The composition of Embodiment C wherein in Formula 1, R1 is U-l connected at its 2-position to L; orR1 is U-2 connected at its 2-position to L; orR1 is U-8 connected at its 5-position to L; orR1 is U-ll connected at its 5-position to L; orR1 is U-12 connected at its !-position, 3-position or 5-position to L;each R3a is independently H;each R3b is independently H, C1-C3 alkyl, C1-C3 haloalky 1 or C2-C3 alkoxyalkyl, each optionally substituted with up to 1 substituent selected from cyano;each R10 is independently cyano.Embodiment CCC. The composition of Embodiment B wherein in Formula 1, R1 is U-l, U-2, U-8 or U-12;L is (CR4aR4b)n or CH2O;n is 1;J is J-63;each R2 is independently C(=O)NR3aR3b; or C!־C2 alkyl, C2-Cg alkoxycarbonyl, C3-Calkenyloxycarbonyl or C3-C6 alkynyloxycarbonyl, each optionally substituted with up to 1 substituent selected from R10;each R3a is independently H, C1-C3 alkyl, C1-C3 haloalky 1 or C2-C3 alkoxyalkyl;each R3b is independently H, C1-C3 alkyl, C1-C3 haloalkyl, C2-C3 alkoxyalkyl or C2-Chaloalkoxyalkyl, each optionally substituted with up to 1 substituent selected from cyano;each R4a and R4b is H;each R5a is H; andeach R10 is independently halogen, CpC2 alkoxy, C2-C3 alkylcarbonyl or C2-Chaloalkylcarbonyl.Embodiment D. The composition of Embodiment CCC wherein in Formula 1, R1 is U-2 or U-12;x is 1;R2 is C(=O)NR3aR3b or C2-Cg alkoxycarbonyl;R3a is H; and WO 2022/133114 PCT/US2021/063852 R3b is H, Q-C3 alkyl, C,-C3 cyanoalkyl, C,-C3 haloalkyl, C2C3 alkoxyalkyl or C2Chaloalkoxyalkyl.Embodiment E. The composition of Embodiment D wherein in Formula 1, R1 is U-2 connected at its 2-position to L and L is CH2; orR1 is U-12 connected at its !-position to L and L is CH2O; andR2 is C(=O)NR3aR3b or C2-C3 alkoxycarbonyl.Embodiment F. The composition comprising components (a) and (b) described in the Summary of the Invention wherein component (a) comprises a compound of Formula 1or salt thereof, wherein in Formula 1, R1 is 4 4U-l U-2 U-8 U-12wherein the floating bond is connected to L in Formula 1through any available carbon or nitrogen atom of the depicted ring;x is 1 or 2;L is CH2, CH2O or CH2OCH2, wherein the atom to the left is connected to R1, and the atom to the right is connected to J;J is wherein the bond projecting to the left is bonded to L, and the bond projecting to the right is bonded to the oxadiazole ring in Formula 1; each R5a is H;each R2 is independently halogen, C(=O)NR3aR3b or -U-V-Q; or C-C6 alkyl, C2-Cg alkenyl, C2-Cg alkynyl, C1-C6 alkoxy, C2-Cg alkoxycarbonyl, C3-Calkenyloxycarbonyl, C3-C6 alkynyloxycarbonyl or C4-C7 cycloalkoxycarbonyl, each optionally substituted with up to 1 substituent selected from R10; WO 2022/133114 PCT/US2021/063852 each R3a is independently H, C1-C3 alkyl, C1-C3 haloalky 1 or C2-C3 alkoxyalkyl; and each R3b is independently H, C1-C3 alkyl, C1-C3 haloalkyl, C2-C3 alkoxyalkyl or C2-Chaloalkoxyalkyl, each optionally substituted with up to 1 substituent selected from cyano;each R10 is cyano;each U is independently C(=O)NR17;each R17 is H;each V is independently CpC2 alkylene; andeach Q is pyrazolyl.Embodiment G. The composition of Embodiment F wherein in Formula 1, R1 is U-2 or U-12;L is CH2 or CH2O;each R2 is independently C(=O)NR3aR3b, C-C6 alkyl or C2-Cg alkoxycarbonyl;each R3a is H; andeach R3b is independently C1-C3 alkyl, C1-C3 haloalkyl, C2-C3 alkoxyalkyl or C2-Chaloalkoxyalkyl.Embodiment H. The composition of Embodiment G wherein in Formula 1, x is 1;R2 is C(=O)NR3aR3b; andR3b is Cr C3 haloalkyl, C2-C3 alkoxyalkyl or C2-C3 haloalkoxyalkyl.Embodiment I. The composition of Embodiment H wherein in Formula 1, R1 is U-2 connected at its 2-position to L, L is CH2 and R3b is Q-C3 haloalkyl; or R1 is U-12 connected at its !-position to L, L is CH2O and R3b is C2-C3 alkoxyalkyl.
Embodiment J. The composition any one of Embodiments A through I wherein component (a) comprises a compound selected from the group consisting of: Compound 204, Compound 225, Compound 229, Compound 257, Compound 264, Compound 316, Compound 330, Compound 376, Compound 394, Compound 400, Compound 401, Compound 402, Compound 463, Compound 505, Compound 506, Compound 507, Compound 508 and Compound 509.Embodiment K. The composition of Embodiment J wherein component (a) comprises a compound selected from the group consisting of: Compound 204, Compound 225, Compound 264, Compound 316, Compound 330, Compound 376, Compound 394, Compound 463, Compound 505, Compound 508 and Compound 509.
WO 2022/133114 PCT/US2021/063852 Embodiment L. The composition of Embodiment K wherein component (a) comprises a Compound 225, Compound 316, Compound 330 and Compound 505.
Embodiment M. The composition of Embodiment L wherein component (a) comprises Compound 316 and Compound 376.
Embodiment N. The composition of Embodiment M wherein component (a) comprises Compound 316.
Embodiment O. The composition of Embodiment M wherein component (a) comprises Compound 376.
Embodiment P. The composition any one of Embodiments A through I wherein component (a) comprises a compound selected from the group consisting of: 225, 229, 257, 316, 376, 394, 506, 507, 508, 509, 510, 511 and 512.
Embodiment Q. The composition of Embodiment P wherein component (a) comprises a compound selected from the group consisting of: 507, 508, 509 and 510.
Embodiment Bl. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (bl) methyl benzimidazole carbamate fungicides such as benomyl, carbendazim, fuberidazole thiabendazole, thiophanate and thiophanate-methyl.Embodiment B2. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b2) dicarboximide fungicides such as chlozolinate, dimethachlone, iprodione, procymidone and vinclozolin.Embodiment B3. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b3) demethylation inhibitor fungicides such as triforine, buthiobate, pyrifenox, pyrisoxazole, fenarimol, nuarimol, triarimol econazole, imazalil, oxpoconazole, pefurazoate, prochloraz, triflumizole, azaconazole, bitertanol, bromuconazole, cyproconazole, difenoconazole, diniconazole (including diniconazole-M), epoxiconazole, etaconazole, fenbuconazole, fluquinconazole, flusilazole, flutriafol, hexaconazole, imibenconazole, ipconazole, mefentrifluconazole, metconazole, myclobutanil, penconazole, propiconazole, prothioconazole, ipfentrifluconazole, quinconazole, simeconazole, tebuconazole, tetraconazole triadimefon, triadimenol, triticonazole, uniconazole and uniconazole-P.
WO 2022/133114 PCT/US2021/063852 Embodiment B4. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b4) phenylamide fungicides such as metalaxyl, metalaxyl-M, benalaxyl, benalaxyl-M, furalaxyl, ofurace and oxadixy 1.Embodiment B5. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b5) amine/morpholine fungicides such as aldimorph, dodemorph, fenpropimorph, tridemorph, trimorphamide, fenpropidin, piperalin and spiroxamine.Embodiment B6. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b6) phospholipid biosynthesis inhibitor fungicides such as edifenphos, iprobenfos, pyrazophos and isoprothiolane.Embodiment B7. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b7) succinate dehydrogenase inhibitor fungicides such as benodanil, flutolanil, mepronil, isofetamid, fluopyram, fenfuram, carboxin, oxycarboxin thifluzamide, benzovindiflupyr, bixafen, fluindapyr, fluxapyroxad, furametpyr, inpyrfluxam, isopyrazam, penflufen, penthiopyrad, pyrapropoyne, sedaxane, flubeneteram, isoflucypram, pydiflumetofen, boscalid and pyraziflumid.Embodiment B8. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b8) hydroxy(2- amino-)pyrimidine fungicides such as bupirimate, dimethirimol and ethirimol.Embodiment B9. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments! through 164 and A through Q) wherein component (b) includes at least one compound selected from (b9) anilinopyrimidine fungicides such as cyprodinil, mepanipyrim and pyrimethanil.Embodiment BIO. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (biO) A-phenyl carbamate fungicides such as diethofencarb.
WO 2022/133114 PCT/US2021/063852 Embodiment B11. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (bl 1) fungicides quinone outside inhibitor fungicides such as azoxystrobin, coumoxystrobin, enoxastrobin, flufenoxystrobin, picoxystrobin, pyraoxystrobin, mandestrobin, pyraclostrobin, pyrametostrobin, triclopyricarb, kresoxim-methyl, trifloxystrobin, dimoxystrobin, fenaminstrobin, metominostrobin, orysastrobin, fluoxastrobin, famoxadone, fenamidone and pyribencarb.Embodiment B12. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (bl2) phenylpyrrole fungicides compound such as fenpiclonil and fludioxonil.Embodiment B13. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (bl3) azanaphthalene fungicides such as quinoxyfen and proquinazid.Embodiment B14. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (bl4) cell peroxidation inhibitor fungicides such as biphenyl, chloroneb, dicloran, quintozene, tecnazene, tolclofos-methyl and etridiazole.Embodiment B15. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (bl5) melanin biosynthesis inhibitors-reductase fungicides such as fthalide, pyroquilon and tricyclazole.Embodiment B16a. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (bl6a) melanin biosynthesis inhibitors-dehydratase fungicides such as carpropamid, diclocymet, and fenoxanil.Embodiment B16b. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (bl6b) melanin biosynthesis inhibitor-polyketide synthase fungicides such as tolprocarb.
WO 2022/133114 PCT/US2021/063852 Embodiment B17. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (bl7) keto reductase inhibitor fungicides such as fenhexamid, fenpyrazamine, quinofumelin and ipflufenoquin.Embodiment B18. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (bl8) squalene- epoxidase inhibitor fungicides such as pyributicarb, naftifine and terbinafine.Embodiment B19. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (bl9) polyoxin fungicides such as polyoxin.Embodiment B20. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b20) phenylurea fungicides such as pencycuron.Embodiment B21. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b21) quinone inside inhibitor fungicides such as cyazofamid, amisulbrom and fenpicoxamid (Registry Number 517875-34-2).Embodiment B22. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b22) benzamide and thiazole carboxamide fungicides such as zoxamide and ethaboxam.Embodiment B23. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b23) enopyranuronic acid antibiotic fungicides such as blasticidin-S.Embodiment B24. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b24) hexopyranosyl antibiotic fungicides such as kasugamycin.Embodiment B25. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) WO 2022/133114 PCT/US2021/063852 wherein component (b) includes at least one compound selected from (b25) glucopyranosyl antibiotic: protein synthesis fungicides such as streptomycin.Embodiment B26. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b26) glucopyranosyl antibiotic: trehalase and inositol biosynthesis fungicides such as validamycin.Embodiment B27. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b27) cyanoacetamideoxime fungicides such as cymoxanil.Embodiment B28. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b28) carbamate fungicides such as propamacarb, prothiocarb and iodocarb.Embodiment B29. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b29) oxidative phosphorylation uncoupling fungicides such as fluazinam, binapacryl, meptyldinocap and dinocap.Embodiment B30. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b30) organo tin fungicides such as fentin acetate, fentin chloride and fentin hydroxide.Embodiment B31. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b31) carboxylic acid fungicides such as oxolinic acid.Embodiment B32. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b32) heteroaromatic fungicides such as hymexazole and octhilinone.Embodiment B33. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b33) phosphonate fungicides such as phosphorous acid and its various salts, including fosetyl-aluminum.
WO 2022/133114 PCT/US2021/063852 Embodiment B34. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b34) phthalamic acid fungicides such as teclofthalam.Embodiment B35. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b35) benzotriazine fungicides such as triazoxide.Embodiment B36. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b36) benzene- sulfonamide fungicides such as flusulfamide.Embodiment B37. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b37) pyridazinone fungicides such as diclomezine.Embodiment B38. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b38) thiophene- carboxamide fungicides such as silthiofam.Embodiment B39. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b39) complex I NADH oxidoreductase inhibitor fungicides such as diflumetorim, tolfenpyrad and fenazaquin.Embodiment B40. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b40) carboxylic acid amide fungicides such as dimethomorph, benthiavalicarb, benthiavalicarb-isopropyl, iprovalicarb, valifenalate, mandipropamid, flumorph, dimethomorph, flumorph, pyrimorph, benthiavalicarb, benthiavalicarb-isopropyl, iprovalicarb, tolprocarb, valifenalate and mandipropamid.Embodiment B41. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) WO 2022/133114 PCT/US2021/063852 wherein component (b) includes at least one compound selected from (b41) tetracycline antibiotic fungicides such as oxy tetracycline.Embodiment B42. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b42) thiocarbamate fungicides such as methasulfocarb.Embodiment B43. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b43) benzamide fungicides such as fluopicolide and fluopimomide.Embodiment B44. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b44) microbial fungicides such as Bacillus amyloliquefaciens strains QST713, FZB24, MB 1600, D747, F727, TJ100 (also called strain 1 BE; known from EP2962568) and the fungicidal lipopeptides which they produce.Embodiment B45. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b45) quinone outside inhibitor, stigmatellin binding fungicides such as ametoctradin.Embodiment B46. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b46) plant extract fungicides such as Melaleuca alternifolia, eugenol, geraniol and thymol.Embodiment B47. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b47) cyanoacrylate fungicides such as phenamacril.Embodiment B48. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b48) polyene fungicides such as natamycin.Embodiment B49. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) WO 2022/133114 PCT/US2021/063852 wherein component (b) includes at least one compound selected from (b49) oxysterol binding protein inhibitor fungicides such as oxathiapiprolin and fluoxapiprolin.Embodiment B50. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b50) aryl-phenyl- ketone fungicides such as metrafenone and pyriofenone.Embodiment B51. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b51) host plant defense induction fungicides such as acibenzolar-S-methyl, probenazole, tiadinil, isotianil, laminarin, extract from Reynoutria sachalinensis and Bacillus mycoides isolate J and cell walls of Saccharomyces cerevisiae strain LAS 117.Embodiment B52. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b52) multi-site activity fungicides such as copper oxychloride, copper sulfate, copper hydroxide (e.g., Kocide), Bordeaux composition (tribasic copper sulfide), elemental sulfur, ferbam, mancozeb, maneb, metiram, propineb, thiram, zinc thiazole, zineb, ziram, folpet, captan, captafol, chlorothalonil, dichlofluanid, tolyfluanid, guazatine, iminoctadine albesilate, iminoctadine triacetate, anilazine, dithianon, quinomethionate and fluoroimide.Embodiment B53. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b53) biological fungicides with multiple modes of action such as extract from the cotyledons of lupine plantlets.Embodiment B54. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b54) fungicides other than fungicides of component (a) and components (bl) through (b53), such as cyflufenamid, bethoxazin, neo-asozin, pyrrolnitrin, tebufloquin, dodine, flutianil, ferimzone, picarbutrazox, dichlobentiazox (Registry Number 957144-77-3), dipymetitrone (Registry Number 16114-35-5), flometoquin, tolnifanide (Registry Number 304911-98-6), 7V-[4-[4- chloro-3-(trifluoromethyl)phenoxy]-2,5-dimethylphenyl]-A-ethyl-A-methylmethanimid- amide, 5-fluoro-2-[(4-fluorophenyl)methoxy]-4-pyrimidinamine and 4-fluorophenyl N-[l- [[[l-(4-cyanophenyl)ethyl]sulfonyl]methyl]propyl]carbamate (XR-539).
WO 2022/133114 PCT/US2021/063852 Embodiment B55. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes (lS)-2,2-bis(4-fluorophenyl)-l-methylethyl A-[[3- (acetyloxy)-4-methoxy-2-pyridinyl]carbonyl]-L-alaninate (provisional common name florylpicoxamid) .Embodiment B56. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes l-[2-[[[l-(4-chlorophenyl)-l//-pyrazol-3-yl]oxy]methyl]- 3-methylphenyl]-l,4-dihydro-4-methyl-5//-tetrazol-5-one (provisional common name mety Itetraprole) .Embodiment B57. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes 3-chloro-4-(2,6-difluorophenyl)-6-methyl-5- phenylpyridazine (provisional common name pyridachlometyl).Embodiment B58. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes (4-phenoxyphenyl)methyl 2-amino-6-methyl-pyridine-3- carboxylate (provisional common name aminopyrifen).Embodiment B59. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b54.11) (i.e. Formula b54.11) whereinRaland Ra2 are each independently halogen; andRa3 is H, halogen, C!־C3 alkyl, C-C3 haloalky 1 or C3-C6 cycloalkyl.Embodiment B60. The composition of Embodiment B59 wherein component (b) includes at least one fungicidal compound selected from the group consisting of methyl A-[[5-[l-[2,6- difluoro-4-(l-methylethyl)phenyl]-l//-pyrazol-3-yl]-2-methylphenyl]methy !]carbamate, methyl A-[[5-[l-(4-chloro-2,6-difluorophenyl)-l//-pyrazol-3-yl]-2-methylphenyl]methyl] WO 2022/133114 PCT/US2021/063852 carbamate, methyl A-[[5-[l-[2,6-difluoro-4-(trifluoromethyl)phenyl]- l//-pyrazol-3-yl]-2- methylphenyl]methyl]carbamate, methyl A-[[5-[l-(4-cyclopropyl-2,6-difluorophenyl)-l//- pyrazol-3-yl]-2-methylphenyl]methyl]carbamate and methyl A-[[5-[l-(2,6-dichloro-4- cyclopropylphenyl)-l//-pyrazol-3-yl]-2-methylphenyl]methyl]carbamate.Embodiment B60a. The composition of Embodiment B60 wherein component (b) includes at least one fungicidal compound selected from the group consisting of methyl A/-[[5-[l-[2,6- difluoro-4-(l-methylethyl)phenyl]-l//-pyrazol-3-yl]-2-methylphenyl]methy !]carbamate, methyl A-[[5-[l-(4-chloro-2,6-difluorophenyl)-l//-pyrazol-3-yl]-2-methylphenyl]methyl] carbamate, methyl A-[[5-[l-[2,6-difluoro-4-(trifluoromethyl)phenyl]- l//-pyrazol-3-yl]-2- methylphenyl]methyl]carbamate and methyl A-[[5-[l-(4-cyclopropyl-2,6-difluorophenyl)- H-pyrazol- 3 -y 1] -2 -methylphenyl] methyl] carb amate .Embodiment B60b. The composition of Embodiment B60a wherein component (b) includes methyl A-[[5-[l-[2,6-difluoro-4-(l-methylethyl)phenyl]-l//-pyrazol-3-yl]-2-methylphenyl] methyl]carbamate.Embodiment B61. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b54.12) (i.e. Formula b54.12) b54.12 whereinRaland Ra2 are each independently halogen; andRa3 is H, halogen, C!־C3 alkyl, C!־C3 haloalky 1 or C3-C6 cycloalkyl.Embodiment B62. The composition of Embodiment B61 wherein component (b) includes at least one fungicidal compound selected from the group consisting of ethyl l-[[4-[[(lZ)-2- ethoxy-3, 3,3-trifluoro-l-propen-l-yl]oxy]phenyl]methyl]-l//-pyrazole-4-carboxylate and its (/?)-isomer and (b54.12b) ethyl l-[2-[4-[[(lZ)-2-ethoxy-3,3,3-trifluoro-l-propen-l- yl]oxy]phenyl]ethyl]-l//-pyrazole-4-carboxylate and its (/?)-isomer.
WO 2022/133114 PCT/US2021/063852 Embodiment B62a. The composition of Embodiment B62 wherein component (b) includes ethyl l-[[4-[[(lZ)-2-ethoxy-3,3,3-trifluoro-l-propen-l-yl]oxy]phenyl]methyl]-l//-pyrazole- 4-carboxylate.Embodiment B63. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b54.13) (i.e. Formula b54.13) b54.13 whereinRa7 is C2-C5 alkoxycarbonyl or C3-C5 alkenyloxycarbonyl, each optionally substituted with up to 3 substituents independently selected from Ral°;L is CH2, CH2CH2 or CH2O, wherein O is connected to the phenyl ring;Ra8 and R9b are each independently H, CpC4 alkyl; orRa8 and Ra9 are taken together with the oxygen atoms to which they are attached to form a 5-membered saturated ring containing ring members, in addition to the oxygen atoms, selected from carbon atoms, the ring optionally substituted with up to substituents independently selected from halogen, cyano, CpC2 alkyl, CpChaloalky 1 and CpC2 alkoxy on carbon atom ring members; andRa10 ؛s cyano, halogen, cyclopropyl or methoxy.Embodiment B64. The composition of Embodiment B63 wherein component (b) includes at least one fungicidal compound selected from the group consisting of ethyl l-[[4-[[2- (trifluoromethyl)- 1,3-dioxolan-2-yl] methoxy ]phenyl] methyl]- l//-pyrazole-4-carboxylate, 2- methylpropyl l-[[4-[[2-(trifluoromethyl)-l,3-dioxolan-2-yl]methoxy]phenyl]methyl]-l//- pyrazole-4-carboxylate, 2-butyn-l-yl l-[[4-[[2-(trifluoromethyl)-l,3-dioxolan-2- yl]methoxy]phenyl]methyl]-l//-pyrazole-4-carboxylate and ethyl l-[[3-fluoro-4-[[2- (trifluoromethyl)- 1,3-dioxolan-2-yl] methoxy ]phenyl] methyl]- l//-pyrazole-4-carboxylate.Embodiment B64a. The composition of Embodiment B64 wherein component (b) includes ethyl l-[[4-[[2-(trifluoromethyl)-l,3-dioxolan-2-yl]methoxy]phenyl]methyl]-l//-pyrazole- 4-carboxylate.
WO 2022/133114 PCT/US2021/063852 Embodiment B65. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one compound selected from (b54.14) (i.e. Formula b54.14) whereinRbl 1, Rbl2 an،؛ Rbl 3 are eac b independently H, halogen or cyano; andRbl4 and Rbl5 are each independently H, halogen, C]-Cg alkyl or C]-Cg methoxy.Embodiment B66. The composition of Embodiment B65 wherein component (b) includes at least one fungicidal compound selected from the group consisting of 4-(2-chloro-4- fluorophcny l)-A-(2-fluoro-4-mcthy l-6-nilrophcny I)-1,3-dimethyl- l//-pyrazol-5-amine, 4-(2- chloro-4-fluorophenyl)-A-(2-fluoro-6-nitrophenyl)-l,3-dimethyl-l//-pyrazol-5-amine, 3,5- difluoro-4-[5-[(4-methoxy-2-nitrophenyl)amino]- 1,3-dimethyl-l//-pyrazol-4-yl]- benzonitrile, A-(2-chloro-4-fluoro-6-nitrophenyl)-4-(2-chloro-4-fluorophenyl)-l,3- dimethyl-l//-pyrazol-5-amine, 4-(2-chloro-4,6-difluorophenyl)- 1,3-dimethyl-A-(2- nitrophenyl)-l//-pyrazol-5-amine and 4-(2-chloro-4,6-difluorophenyl)- 1,3-dimethyl-A-(4- methyl-2-nitrophenyl)-l//-pyrazol-5-amine.Embodiment B66a. The composition of Embodiment B66 wherein component (b) includes at least one fungicidal compound selected from the group consisting of 4-(2-chloro-4- fluorophcny l)-A-(2-fluoro-4-mcthyl-6-nilrophcny I)-1,3-dimethyl- l//-pyrazol-5-amine, 4-(2- chloro-4-fluorophenyl)-/V-(2-fluoro-6-nitrophenyl)- 1,3-dimethyl-l//-pyrazol-5-amine, 4-(2- chloro-4,6-difluorophenyl)- 1,3-dimethyl-A-(2-nitrophenyl)-l//-pyrazol-5-amine and 4-(2- chloro-4,6-difluorophenyl)- 1,3-di mcthy l-A-(4-mcthy l-2-nitrophcny I)-l//-pyrazol-5-amine.Embodiment B67. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one fungicidal compound (fungicide) selected from WO 2022/133114 PCT/US2021/063852 the group consisting of azoxystrobin, benzovindiflupyr, boscalid (nicobifen), bixafen, bromuconazole, carbendazim, chlorothalonil, cyflufenamid, cyproconazole, difenoconazole, dimoxystrobin, epoxiconazole, famoxadone, fenbuconazole, fenpropidin, fenpropimorph, fluindapyr, flusilazole, flutriafol, fluxapyroxad, hexaconazole, ipconazole kresoxim-methyl, manzate, metconazole, metominostrobin, metrafenone, myclobutanil, penconazole, penthiopyrad, picoxystrobin, prochloraz, propiconazole, proquinazid, prothioconazole, pydiflumetofen, pyraclostrobin, pyrametostrobin, pyraoxystrobin, pyriofenone quinoxyfen, tebuconazole, trifloxystrobin, triticonazole, methyl A/-[[5-[l-(2,6-dichloro-4- cyclopropylphenyl)- 1 H-pyrazol-3 -yl]-2-methylphenyl]methyl]carbamate, methyl N-[[5-[ 1 - (4-chloro-2,6-difluorophenyl)-lH-pyrazol-3-yl]-2-methylphenyl]methyl]carbamate and methyl A/-[[5-[l-(4-cyclopropyl-2,6-difluorophenyl)-l//-pyrazol-3-yl]-2- methylphenyl]methyl]carbamate.Embodiment B68. The composition of Embodiment B67 wherein component (b) includes at least one compound selected from the group consisting of azoxystrobin, benzovindiflupyr, bixafen, chlorothalonil cyflufenamid, cyproconazole, difenoconazole, dimoxystrobin, epoxiconazole, famoxadone, fenpropidin, fenpropimorph, fluindapyr, flusilazole, flutriafol, fluxapyroxad, kresoxim-methyl, manzate, metconazole, metominostrobin, metrafenone, myclobutanil, penthiopyrad, picoxystrobin, propiconazole, proquinazid, prothioconazole, pydiflumetofen, pyraclostrobin, pyrametostrobin, pyraoxystrobin, pyriofenone, quinoxyfen, tebuconazole, trifloxystrobin, triticonazole, methyl A/-[[5-[l-(2,6-dichloro-4- cyclopropylphenyl)- 1 H-pyrazol-3 -yl]-2-methylphenyl]methyl]carbamate, methyl N-[[5-[ 1 - (4-chloro-2,6-difluorophenyl)-lH-pyrazol-3-yl]-2-methylphenyl]methyl]carbamate and methyl N- [[5- [ 1 -(4-cyclopropyl-2,6-difluorophenyl)- l//-pyrazol-3-yl] -2- methylphenyljmethyljcarbamate.Embodiment B69. The composition of Embodiment B68 wherein component (b) includes at least one compound selected from the group consisting of azoxystrobin, benzovindiflupyr, bixafen, chlorothalonil, cyproconazole, difenoconazole, epoxiconazole, fenpropimorph, fluindapyr, flutriafol, fluxapyroxad, mancozeb, picoxystrobin, prothioconazole, pydiflumetofen, pyraclostrobin, tebuconazole, trifloxystrobin, methyl A/-[[5-[l-(2,6- dichloro-4-cyclopropylphenyl)-l//-pyrazol-3-yl]-2-methylphenyl]methyl]carbamate, methyl N-[[5-[ 1 -(4-chloro-2,6-difluorophenyl)- 1 H-pyrazol-3-yl] -2-methyl- phenyl]methyl]carbamate and methyl A/-[[5-[l-(4-cyclopropyl-2,6-difluorophenyl)-l//- pyrazol-3-yl]-2-methylphenyl]methyl]carbamate.Embodiment B70. The composition of Embodiment B69 wherein component (b) includes at least one compound selected from the group consisting of azoxystrobin, benzovindiflupyr, WO 2022/133114 PCT/US2021/063852 bixafen, chlorothalonil, cyproconazole, difenoconazole, epoxiconazole, fenpropimorph, fluindapyr, flutriafol, fluxapyroxad, manzate, picoxystrobin, prothioconazole, pydiflumetofen, pyraclostrobin, tebuconazole and trifloxystrobin.Embodiment B71. The composition of Embodiment B70 wherein component (b) includes at least one compound selected from the group consisting of azoxystrobin, benzovindiflupyr, bixafen, chlorothalonil, cyproconazole, epoxiconazole, fenpropimorph, fluindapyr, fluxapyroxad, manzate, picoxystrobin, prothioconazole, pydiflumetofen, tebuconazole and trifloxystrobin.Embodiment B72. The composition described in the Summary of the Invention (including but not limited to the composition of any one of Embodiments 1 through 164 and A through Q) wherein component (b) includes at least one fungicidal compound (fungicide) selected from the group consisting of azoxystrobin, benzovindiflupyr, boscalid (nicobifen), bixafen, bromuconazole, carbendazim, chlorothalonil, cyflufenamid, cyproconazole, difenoconazole, dimoxystrobin, epoxiconazole, famoxadone, fenbuconazole, fenpropidin, fenpropimorph, fluindapyr, flusilazole, flutriafol, fluxapyroxad, hexaconazole, ipconazole kresoxim-methyl, manzate, metconazole, metominostrobin, metrafenone, myclobutanil, penconazole, penthiopyrad, picoxystrobin, prochloraz, propiconazole, proquinazid, prothioconazole, pydiflumetofen, pyraclostrobin, pyrametostrobin, pyraoxystrobin, pyriofenone quinoxyfen, tebuconazole, trifloxystrobin, triticonazole, methyl A/-[[5-[l-[2,6-difluoro-4-(l-methylethyl) phenyl]-l/Z-pyrazol-3-yl]-2-methylphenyl]methyl]carbamate, ethyl l-[[4-[[(lZ)-2-ethoxy- 3,3,3 -trifluoro- 1 -propen- 1 -yl] oxy ]phenyl] methyl] -1 TZ-pyrazole-4-carboxylate, ethyl 1 - [[4- [[2-(trifluoromethyl)-l,3-dioxolan-2-yl]methoxy]phenyl]methyl]-l/Z-pyrazole-4- carboxylate, 4-(2-chloro-4-fluorophenyl)-/V-(2-fluoro-4-methyl-6-nitrophenyl)-l,3- dimethyl- l/Z-pyrazol-5-amine, 4-(2-chloro-4-fluorophcnyl)-A-(2-fluoro-6-nilrophcnyI)- 1,3- dimethyl- l/Z-pyrazol-5-amine, 4-(2-chloro-4,6-difluorophenyl)- 1,3-dimethyl-A-(2- nitrophenyl)- l/Z-pyrazol-5-amine and 4-(2-chloro-4,6-difluorophenyl)- 1,3-dimethyl-A-(4- methyl-2-nitrophenyl)-l/Z-pyrazol-5-amine.Embodiment B73. The composition of Embodiment B72 wherein component (b) includes at least one compound selected from the group consisting of azoxystrobin, benzovindiflupyr, bixafen, chlorothalonil cyflufenamid, cyproconazole, difenoconazole, dimoxystrobin, epoxiconazole, famoxadone, fenpropidin, fenpropimorph, fluindapyr, flusilazole, flutriafol, fluxapyroxad, kresoxim-methyl, manzate, metconazole, metominostrobin, metrafenone, myclobutanil, penthiopyrad, picoxystrobin, propiconazole, proquinazid, prothioconazole, pydiflumetofen, pyraclostrobin, pyrametostrobin, pyraoxystrobin, pyriofenone, quinoxyfen, tebuconazole, trifloxystrobin, triticonazole, methyl A-[[5-[ 1 -[2,6-difluoro-4-(l-mcthylcthyl) WO 2022/133114 PCT/US2021/063852 phenyl]-l/Z-pyrazol-3-yl]-2-methylphenyl]methyl]carbamate, ethyl l-[[4-[[(lZ)-2-ethoxy- 3,3,3 -trifluoro- 1 -propen- 1 -yl] oxy ]phenyl] methyl] -1 TZ-pyrazole-4-carboxylate, ethyl 1 - [[4- [[2-(trifluoromethyl)-l,3-dioxolan-2-yl]methoxy]phenyl]methyl]-l/Z-pyrazole-4- carboxylate, 4-(2-chloro-4-fluorophenyl)-/V-(2-fluoro-4-methyl-6-nitrophenyl)-l,3- dimethyl- l/Z-pyrazol-5-amine, 4-(2-chloro-4-fluorophenyl)-A-(2-fluoro-6-nitrophenyl)- 1,3- dimethyl- l/Z-pyrazol-5-amine, 4-(2-chloro-4,6-difluorophenyl)- 1,3-dimethyl-A-(2- nitrophenyl)- l/Z-pyrazol-5-amine and 4-(2-chloro-4,6-difluorophenyl)- 1,3-dimethyl-A-(4- methyl-2-nitrophenyl)-l/Z-pyrazol-5-amine.Embodiment B74. The composition of Embodiment B73 wherein component (b) includes at least one compound selected from the group consisting of azoxystrobin, benzovindiflupyr, bixafen, chlorothalonil, cyproconazole, difenoconazole, epoxiconazole, fenpropimorph, fluindapyr, flutriafol, fluxapyroxad, mancozeb, picoxystrobin, prothioconazole, pydiflumetofen, pyraclostrobin, tebuconazole, trifloxystrobin, methyl A-[[5-[l-[2,6- difluoro-4-(l-methylethyl)phenyl]-l/7-pyrazol-3-yl]-2-methylphenyl]methy !]carbamate, ethyl l-[[4-[[(lZ)-2-ethoxy-3,3,3-trifluoro-l-propen-l-yl]oxy]phenyl]methyl]-l/7-pyrazole- 4-carboxylate, ethyl l-[[4-[[2-(trifluoromethyl)-l,3-dioxolan-2-yl]methoxy]phenyl]methyl]- l/Z-pyrazole-4-carboxylate, 4-(2-chloro-4-fluorophenyl)-/V-(2-fluoro-4-methyl-6- nitrophenyl)- 1,3-dimethyl- l/Z-pyrazol-5-amine, 4-(2-chloro-4-fluorophenyl)-A-(2-fluoro-6- nitrophenyl)- 1,3-dimethyl- l/Z-pyrazol-5-amine, 4-(2-chloro-4,6-difluorophenyl)- 1,3- dimethyl-A-(2-nitrophenyl)- l/Z-pyrazol-5-amine and 4-(2-chloro-4,6-difluorophenyl)- 1,3- dimethyl-A-(4-methyl-2-nitrophenyl)-l/7-pyrazol-5-amine.Of note is the composition of any one of the embodiments described herein, including any Embodiments 1 through 164, A through Q, and Bl through B74, wherein reference to Formula 1 includes salts thereof but not A-oxidcs thereof; therefore the phrase "a compound of Formula 1" can be replaced by the phrase "a compound of Formula 1 or a salt thereof ’. In this composition of note, component (a) comprises a compound of Formula 1or a salt thereof.Also noteworthy as embodiments are fungicidal compositions of the present invention comprising a fungicidally effective amount of a composition of Embodiments 1 through 164, A through Q, and Bl through B74, and at least one additional component selected from the group consisting of surfactants, solid diluents and liquid diluents.Embodiments of the invention further include methods for controlling plant diseases caused by fungal plant pathogens comprising applying to the plant or portion thereof, or to the plant seed or seedling, a fungicidally effective amount of a composition of Embodiments 1 through 164, A through Q, and Bl through B74 (e.g., as a composition including formulation ingredients as described herein). Embodiments of the invention also include methods for protecting a plant or WO 2022/133114 PCT/US2021/063852 plant seed from diseases caused by fungal pathogens comprising applying a fungicidally effective amount of a composition of any one of Embodiments 1 through 164, A through Q, and B1 through B65 to the plant or plant seed.Some embodiments of the invention involve control of a plant disease or protection from a plant disease that primarily afflicts plant foliage and/or applying the composition of the invention to plant foliage (i.e. plants instead of seeds). The preferred methods of use include those involving the above preferred compositions; and the diseases controlled with particular effectiveness include plant diseases caused by fungal plant pathogens. Combinations of fungicides used in accordance with this invention can facilitate disease control and retard resistance development.
Method embodiments further include:Embodiment Cl. A method for protecting a plant from a disease selected from rust, powdery mildew and Septoria diseases comprising applying to the plant a fungicidally effective amount of the composition comprising components (a) and (b) described in the Summary of the Invention or any one of Embodiments 1 through 164.Embodiment C2. The method of Embodiment Cl wherein the disease is a rust disease and component (b) of the composition includes at least one fungicidal compound selected from (b3) demethylation inhibitor (DMI) fungicides, (b5) amine/morpholine fungicides, (b7) succinate dehydrogenase inhibitor fungicides, (bll) quinone outside inhibitor (Qol) fungicides, (bl3) methyl benzimidazole carbamate fungicides and (b52) multi-site activity fungicides.Embodiment C3. The method of Embodiment C2 wherein component (b) of the composition includes at least one fungicidal compound selected from (b3) demethylation inhibitor (DMI) fungicides, (b5) amine/morpholine fungicides, (b7) succinate dehydrogenase inhibitor fungicides, (bll) quinone outside inhibitor (Qol) fungicides and (b52) multi-site activity fungicides.Embodiment C4. The method of Embodiment C3 wherein component (b) of the composition includes at least one fungicidal compound selected from the group consisting of azoxystrobin, benzovindiflupyr, bixafen, chlorothalonil, cyproconazole, epoxiconazole, fenpropimorph, fluindapyr, fluxapyroxad, mancozeb, picoxystrobin, prothioconazole, pydiflumetofen, tebuconazole and trifloxystrobin.Embodiment C5. The method of Embodiment C4 wherein component (b) of the composition includes at least one fungicidal compound selected from the group WO 2022/133114 PCT/US2021/063852 consisting of azoxystrobin, cyproconazole, epoxiconazole, fluindapyr, fluxapyroxad, picoxystrobin, prothioconazole, pydiflumetofen, tebuconazole and trifloxystrobin.Embodiment C6. The method of any one of Embodiments C2 through C5 wherein the disease is Asian soybean rust caused by Puccinia recondite.Embodiment C7. The method of any one of Embodiments C2 through C5 wherein the disease is wheat leaf rust caused by Phakopsora pachyrhizi.Embodiment C8. The method of Embodiment Cl wherein the disease is a powdery mildew disease and component (b) of the composition includes at least one fungicidal compound selected from (b3) demethylation inhibitor (DMI) fungicides, (bl 1) quinine outside inhibitor (Qol) fungicides and (bl3) azanaphthalene fungicides.Embodiment C9. The method of Embodiment C8 wherein the disease is wheat powdery mildew.Embodiment CIO. The method of Embodiment C8 wherein the disease is grape downy mildew.Embodiment Cl 1. The method of any one of Embodiments C8 through CIO wherein component (b) includes at least one fungicidal compound selected from (b3) DMI fungicides.Embodiment C12. The method of Embodiment C11 wherein component (b) includes at least one fungicidal compound selected from the group consisting of cyproconazole, difenoconazole, epoxiconazole, prothioconazole and tebuconazole.Embodiment C13. The method of Embodiment C12 wherein component (b) includes at least one fungicidal compound selected from the group consisting of cyproconazole, difenoconazole and prothioconazole.Embodiment C14. The method of any one of Embodiments C8 through CIO wherein component (b) includes at least one fungicidal compound selected from (bl 1) Qol fungicides.Embodiment C15. The method of Embodiment C14 wherein component (b) includes at least one fungicidal compound selected from the group consisting of azoxystrobin, picoxystrobin and pyraclostrobin.Embodiment Cl6. The method of Embodiment Cl wherein the disease is a Septoria disease and component (b) of the composition includes at least one fungicidal compound selected from the group consisting of epoxiconazole, metalaxyl (including metalaxyl-M), iprovalicarb and fenpropimorph.Embodiment C17. The method of Embodiment C16 wherein the disease is wheat leaf blotch.
WO 2022/133114 PCT/US2021/063852 Embodiment Cl8. The method of any one of Embodiments Cl through C17 wherein components (a) and (b) are applied in synergistically effective amounts (and in a synergistic ratio relative to each other).Of note are embodiments that are counterparts of Embodiments Cl through C18 relating to a method for controlling plant diseases caused by fungal plant pathogens comprising applying to the plant or portion thereof, a fungicidally effective amount of a fungicidal composition of the invention.As noted in the Summary of the Invention, this invention also relates to a compound of Formula 1,or an A-oxide or salt thereof. Also already noted is that the embodiments of this invention, including Embodiments 1-164, relate also to compounds of Formula 1.Of note is a compound selected from the group consisting of:3-[4-[(l-cyanomethyl-l//-pyrazol-3-yl)methyl]phenyl]-5-(trifluoromethyl)-l,2,4- oxadiazole (Compound 507); A-ethyl-l-[[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methoxy]methyl]- l/Z-pyrazole-4-carboxamide (Compound 508); l-methyl-A-(2,2,2-trifluoroethyl)-5-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3- yl]phenyl]methyl]-l/Z-pyrazole-3-carboxamide (Compound 509); and - [ [4- [5-(trifluoromethyl)- 1,2,4-oxadiazol-3 -yl]phenyl]methyl] -3 - isoxazoleacetonitrile (Compound 510).One or more of the following methods and variations as described in Schemes 1-13 can be used to prepare the compounds of Formula 1.The definitions ofR1, R2, L and J in the compounds of Formulae 1-21below are as defined above in the Summary of the Invention unless otherwise noted. Compounds of Formulae la, lb, 1c, 3a, 6aand 6bare various subsets of Formula 1,and all substituents for Formulae la, lb, 1c, 3a, 6aand 6bare as defined above for Formula 1unless otherwise noted.As shown in Scheme 1, compounds of Formula 1can be prepared by reaction of an amide oxime of Formula 2 with trifluoroacetic anhydride (TFAA) or an equivalent. The reaction can be carried out without solvent other than the compounds of Formula 2 and TFAA. Typically the reaction is conducted in a liquid phase with a solvent such as tetrahydrofuran, acetonitrile A,A-di methyl formamide or toluene at a temperature between about 0 to 100 °C, optionally in the presence of a base such as pyridine, A,A-diisopropylethylamine or trimethylamine. Preparation of oxadiazole rings by this method and others are known in the art; see, for example, Comprehensive Heterocyclic Chemistry, Vol. 6, Part 4B, pages 365-391, Kevin T. Potts editor, WO 2022/133114 PCT/US2021/063852 Pergamon Press, New York, 1984.The method of Scheme 1 is also illustrated in present Example 10, Step C and Example 11, Step A (second paragraph).
Scheme 1 TFAA As shown in Scheme 2, oximes of Formula 2can be prepared from corresponding nitriles of Formula 3 and hydroxylamine or a hydroxylamine salt (e.g., hydroxylamine hydrochloride) in a solvent such as ethanol, methanol or A, A-di methyl formamide at temperatures generally ranging from about 0 to 80 °C. The hydroxylamine may be used in the form of a solution in water; alternatively, the hydroxylamine can be generated in situ by treating an acid salt of hydroxylamine with a base such as an alkali metal hydroxide or carbonate, preferably sodium hydroxide or sodium carbonate. Hydroxylamine salts include salts which hydroxylamine forms with inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid or with organic acids such as formic acid, acetic acid, propionic acid and sulfonic acids. For reaction conditions see present Example 10, Step B and Example 11, Step A (first paragraph).
Scheme 2 NH2OH Compounds of Formula 1wherein L is (CR4aR4b)n, and the like, and R1 is a heterocyclic ring or ring system, such as pyrazole, indazole, imidazole, pyrrole and triazole, linked to L via a nitrogen atom, can be prepared by displacement of an appropriate leaving group X1 of compounds of Formula 4with nitrogen-containing heterocycles of Formula 5in the presence of a base as depicted in Scheme 3. Suitable bases include inorganic bases such as alkali or alkaline earth metal (e.g., lithium, sodium, potassium and cesium) hydrides, alkoxides, carbonates, phosphates and hydroxides. A variety of solvents are suitable for the reaction including, for example, N,N- dimethylformamide, A,A-dimethylacetamide, N-methylpyrrolidinone, acetonitrile and acetone. Particularly useful reaction conditions include using cesium carbonate or potassium carbonate and A,A-dimethylformamide or acetonitrile as the solvent at temperatures ranging between about 0 to WO 2022/133114 PCT/US2021/063852 80 °C. Suitable leaving groups in the compounds of Formula 4 include bromide, chlorine, iodide, mesylate (OS(O)2CH3), triflate (OS(O)2CF3), and the like. The method of Scheme 3 is illustrated in present Example 1, Step C; Examples 2-9; and Example 11, Step C.
Scheme 3 /Rbase X1 is a leaving group such as Br, Cl, 1, OS(O)2Me or OS(O)2CFand L is (CR4aR4b)n, and the like R' is a nitrogen containing heterocycle unsubstituted on N, e.g., 1H-pyrazole R' is a heterocycle linked to L via a nitrogen atom and Lis (CR4aR4b)n, and the like Compounds of Formula 4 can be prepared by conversion of the corresponding alcohols of Formula 6 to an appropriate leaving group (i.e. X1) as shown in Scheme 4. For example, alcohols of Formula 6 can be converted to alkyl chlorides of Formula 4 by treatment with thionyl chloride, oxalyl chloride or phosphorus trichloride (for conditions, see Example 1, Step B). Alkyl bromides can be prepared in a similar reaction using phosphorus tribromide or phosphorus oxybromide. Sulfonates can be prepared by reaction of Formula 6 with a sulfonating agent such as methanesulfonyl chloride, typically in the presence of a base, under conditions well known to one skilled in the art of organic synthesis.
Scheme 4 L is (CR4aR4b)n, and the likeX is a leaving group such as Br, Cl, I, OS(O)2Me or OS(O)2CFand L is (CR4aR4b)n, and the like Alternatively, compounds of Formula 1wherein R1 is a nitrogen-linked heterocycle can be prepared by reaction of primary or secondary alcohols of Formula 6 with nitrogen-containing heterocycles of Formula 5using Mitsunobu coupling reaction conditions as shown in Scheme 5. Mitsunobu reactions are typically run in tetrahydrofuran with triphenylphosphine and diisopropyl azodicarboxylate (DIAD) or diethyl azodicarboxylate (DEAD) at room temperature. Polymer supported triphenylphosphine can be used to ease purification. For a review of the Mitsunobu reaction, see Mitsunobu, O. Comprehensive Organic Synthesis׳ , Trost, B. M., Fleming, I., Eds.; WO 2022/133114 PCT/US2021/063852 Pergamon: Oxford, 1991; Vol. 6, pages 65-101. Also, Step C of Example 12 illustrates the preparation of a compound of Formula 1using Mitsunobu conditions.
Scheme 5 6 L is (CR4aR4b)n, and the like PPh3 andR1 DIAD or DEAD+ H/ ____________ R1 is a nitrogen containing heterocycle unsubstituted on N, e.g., 1H-pyrazole 1 R1 is a heterocycle linked toL via nitrogen atom Compounds of Formula 6can be prepared by a number of known methods including, for example, treating corresponding nitriles with hydroxylamine or a hydroxylamine salt followed by TFAA, analogous to the methods described in Schemes 1 and 2, and as illustrated in present Example 1, Step A. Additionally, secondary alcohols of Formula 6can be prepared by oxidation of the corresponding alcohol to the aldehyde, and then reaction of the aldehyde with a Grignard reagent. The oxidation reaction can be performed by a variety of means, such as by treatment of the alcohol of Formula 6with manganese dioxide, Dess-Martin periodinane, pyridinium chlorochromate or pyridinium dichromate. For example, as shown in Scheme 6, compounds of Formula 6b(i.e. Formula 6wherein L in CHMe) can be synthesized by conversion of the alcohol of Formula 6a(i.e. Formula 6wherein L is CH) to the aldehyde of Formula 7,and then treatment with methylmagnesium bromide. The method of Scheme 6 is illustrated in Example 12, Steps A- B.
Compounds of Formula 1 can also be prepared by reaction of suitably functionalized compounds of Formula 8with suitably functionalized compounds of Formula 9as shown in Scheme 7. The functional groups Y1 and Y2 are selected from, but not limited to, moieties such as aldehydes, ketones, esters, acids, amides, thioamides, nitriles, amines, alcohols, thiols, hydrazines, oximes, amidines, amide oximes, olefins, acetylenes, halides, alkyl halides, methanesulfonates, trifluoromethanesulfonates (triflate), boronic acids, boronates, and the like, which under the appropriate reaction conditions, will allow for the construction of the various R1 WO 2022/133114 PCT/US2021/063852 rings. As an example, reaction of a compound of Formula 8where Y1 is a chlorooxime moiety with a compound of Formula 9where Y2 is a vinyl or acetylene group in the presence of a base will give a compound of Formula 1 where R1 is an isoxazoline or isoxazole, respectively. Present Example 13, Step C illustrates the preparation of a compound of Formula 1wherein R1 is isoxazoline. The synthetic literature describes many general methods for forming heterocyclic rings and ring systems (e.g., such as those shown in U-l through U-l 18); see, for example, Comprehensive Heterocyclic Chemistry, Volumes 4-6, A. R. Katritzky and C. W. Rees editors- in-chief, Pergamon Press, Oxford, 1984; Comprehensive Heterocyclic Chemistry II, Volumes 2- 4, A. R. Katritzky, C. W. Rees and E. F. V. Scriven editors-in-chief, Pergamon Press, Oxford, 1996; and the series, The Chemistry of Heterocyclic Compounds, E. C. Taylor, editor, Wiley, New York. One skilled in the art knows how to select the appropriate functional groups Y1 and Y2 to construct the desired R1 ring. Compounds of Formula 8 are known or can be prepared by general methods known in the art. Compounds of Formula 9 can be prepared by treating corresponding nitriles with hydroxylamine or a hydroxylamine salt followed by TFAA analogous to the reactions described in Schemes 1 and 2, and as illustrated in present Example 13, Steps A-B.
Scheme 7 1 9 ״י 8 h wherein x is 0-32wherein Y and Y are suitable functional groups capableof undergoing transformation to form the desired R1 ring Compounds of Formula la(i.e. Formula 1wherein R1 is oxazoline) can also be prepared as outlined in Scheme 8. In this method a compound of Formula 10is contacted with an amine of Formula 11in the presence of O-(7-azabenzotriazol-l-yl)-A,A,Af,Af-tetramethyluronium hexafluorophosphate (HATU) or 2-chloro-l-methylpyridinium iodide and a base such as triethylamine, AW-diisopropylcthylaminc or 4-methylmorpholine at a temperature ranging from to 100 °C to provide an amide of Formula 12.In a subsequent step, the amide of Formula 12is dehydrated using a dehydrating agent such as diethylaminosulfur trifluoride (DAST) in a suitable solvent. The reaction is typically carried out by adding 0.9 to 2 equivalents, preferably 1.equivalents, of diethylamino sulfur trifluoride to a mixture of a compound of Formula 12in a solvent such as dichloromethane, at a temperature ranging from - 78 to 0 °C. The method of Scheme 8 is illustrated by Steps B-C of Example 15. Compounds of Formula 11are commercially WO 2022/133114 PCT/US2021/063852 available or their preparation is known in the art. Compounds of Formula 10can be prepared by treating corresponding nitriles with hydroxylamine or a hydroxylamine salt followed by TFAA, analogous to the reactions described in Schemes 1 and 2 and illustrated in Example 15, Step A.
Scheme 8 As shown in Scheme 9, compounds of Formula lb(i.e. Formula 1wherein L is NHCH(CN)) can be prepared from amines of Formula 14and aldehydes of Formula 13in the presence of a cyanide source under Strecker reaction conditions. A variety of solvents and cyanide sources can be employed in the method of Scheme 9. The presence of a Lewis acid such as titanium(IV) isopropoxide can be advantageous. For conditions and variations of this reaction see the following references and references cited therein: D. T. Mowry, Chemical Reviews 1948,42, 236, H. Groeger, Chemical Reviews 2003,103, 2795-2827, and M. North in Comprehensive Organic Functional Group Transformations A. R. Katritsky, O. Meth-Cohn and C. W. Rees Editors., Volume 3, 615-617; Pergamon, Oxford, 1995. The method of Scheme 9 is also illustrated in Step E of Example 14. For less reactive amines of Formula 14,such as aryl amines containing ortho electron withdrawing groups, the use of trimethylsilyl cyanide in combination with a catalyst such as guanidine hydrochloride can be advantageous. For a reference see, for example, Heydari et al., Journal of Molecular Catalysis A: Chemical 2007,277(1-2), 142-144.
Scheme 9metal cyanide or TMMSCN lb As shown in Scheme 10, Compounds of Formula 3 can be prepared from compounds of Formulae 15and 16wherein Y3 and Y4 are suitable functional groups which under the appropriate reaction conditions will allow for the construction of the various L groups. Suitable functional WO 2022/133114 PCT/US2021/063852 groups include, but are not limited to, ionizable hydrogen (e.g., a hydrogen attached to a nitrogen atom of a heterocyclic ring or a hydrogen attached to a carbon atom adjacent to a C(=O) moiety), carbonyl, aldehyde, ketone, ester, acid, acid chloride, amine, alcohol, thiol, hydrazine, oxime, olefin, acetylene, halide, alkyl halide, boronic acid, boronate, and the like. For example, compounds of Formula 3wherein L is CH2 can be prepared by reacting a compound of Formula 15wherein Y3 is hydrogen (i.e. an ionizable hydrogen attached to a nitrogen atom ring member of an R1 ring) with a base such as potassium carbonate or sodium hydride, followed by treatment with a compound of Formula 16wherein Y4 is a methyl halide (e.g., BrCH 2-); while treatment with a compound of Formula 16wherein Y4 is CH(=O)- will give a compound of Formula 3 wherein L is CH(OH). Compounds of Formula 3 wherein L is O can be prepared by reacting a compound of Formula 15wherein Y3 is Br with a compound of Formula 16wherein Y4 is OH in the presence of a base such as sodium hydride. Compounds of Formula 3 wherein L is CH2O can be prepared by reacting a compound of Formula 15wherein Y3 is BrCH 2- with a compound of Formula 16wherein Y4 is OH in the presence of a base. Compounds of Formula 3wherein L is OCH2CH2 can be prepared by reacting a compound of Formula 15wherein Y3 is OH with a compound of Formula 16wherein Y4 is ethyl halide (e.g., ICH2CH2-) in the presence of a base. The synthetic literature describes many general methods for forming a saturated chain containing 1- to 3-atoms consisting of carbon and heteroatoms such as the L groups of the present invention; see, for example, Comprehensive Organic Functional Group Transformations, Vol. 1, 2, 3 and 5, A. R. Katritzky editor, Pergamon Press, New York, 1995;Vogel’s Textbook of Practical Organic Chemistry, 5th Ed., pp 470-823, Longman Group, London, 1989;and Advanced Organic Chemistry, 4th Ed. Jerry March, Wiley, New York 1992.One skilled in the art can easily determine how to select appropriate compounds of Formula 15and Formula 16to construct the desired L group.
Scheme 10 ^.N 3 v4 /C/ R -Y3 Y /C R1 j one or more steps 15 16 3 wherein Y3 and Y4 are a suitable functionalgroups for the construction of the desired L group Scheme 11 illustrates a specific example of the general method of Scheme 10 for the preparation of a compound of Formula 3a(i.e. Formula 3wherein R1 is pyrazole and L is CH2). In this method a pyrazole of Formula 17is reacted with a methyl bromide of Formula 18in the WO 2022/133114 PCT/US2021/063852 presence of a base such as sodium or potassium hydroxide, sodium hydride or potassium carbonate in a solvent such as tetrahydrofuran, A,A-di methyl formamide, ethanol or acetonitrile typically at a temperature between about 0 to 80 °C. Present Example 10, Step A illustrates the method of Scheme 11.
Scheme 11 !7 18 3a One skilled in the art will recognize that the method of Scheme 10 can also be performed when the substituent -C=N in Formula 16is replaced with 5-(trifluoromethyl)-l,2,4-oxadiazol-3- yl (i.e. Formula 19)thus providing a compound of Formula 1as shown below in Scheme 12.
Scheme 12 2 3wherein Y and Y are a suitable functionalgroups for construction of the desired L group Scheme 13 illustrates a specific example of the general method of Scheme 12 for the preparation of a compound of Formula 1c(i.e. Formula 1wherein R1 is oxazole and L is CH2O). In this method a methyl chloride of Formula 20is reacted with an alcohol of Formula 21in the presence of a base such as sodium or potassium hydroxide, sodium hydride or potassium carbonate in a solvent such as tetrahydrofuran, A,A-di methyl formamide, ethanol or acetonitrile typically at a temperature between about 0 to 80 °C. Present Examples 17 and 18 illustrate the method of Scheme 19.
Scheme 13 WO 2022/133114 PCT/US2021/063852 It is recognized that some reagents and reaction conditions described above for preparing compounds of Formula 1 may not be compatible with certain functionalities present in the intermediates. In these instances, the incorporation of protection/deprotection sequences or functional group interconversions into the synthesis will aid in obtaining the desired products. The use and choice of the protecting groups will be apparent to one skilled in chemical synthesis (see, for example, T. W. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, 2nd ed.; Wiley: New York, 1991). One skilled in the art will recognize that, in some cases, after the introduction of a given reagent as it is depicted in any individual scheme, it may be necessary to perform additional routine synthetic steps not described in detail to complete the synthesis of compounds of Formula 1. One skilled in the art will also recognize that it may be necessary to perform a combination of the steps illustrated in the above schemes in an order other than that implied by the particular sequence presented to prepare the compounds of Formula 1. One skilled in the art will also recognize that compounds of Formula 1 and the intermediates described herein can be subjected to various electrophilic, nucleophilic, radical, organometallic, oxidation, and reduction reactions to add substituents or modify existing substituents.Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following Examples are, therefore, to be construed as merely illustrative, and not limiting of the disclosure in any way whatsoever. Steps in the following Examples illustrate a procedure for each step in an overall synthetic transformation, and the starting material for each step may not have necessarily been prepared by a particular preparative run whose procedure is described in other Examples or Steps. Percentages are by weight except for chromatographic solvent mixtures or where otherwise indicated. Parts and percentages for chromatographic solvent mixtures are by volume unless otherwise indicated. 1H NMR spectra are reported in ppm downfield from tetramethylsilane; "s " means singlet, "d" means doublet, "t" means triplet, "q " means quartet, "m" means multiplet, "dd" means doublet of doublets, "dt" means doublet of triplets, "br s " means broad singlet and "br d" means broad doublet. 19F NMR spectra are reported in ppm using trichlorofluoromethane as the reference.
EXAMPLE 1Preparation l-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-l//-pyrazolo[3,4- /?]pyridine (Compound 147)Step A: Preparation of 4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]benzenemethanolA mixture of 4-(hydroxymethyl)benzonitrile (52.8 g, 397 mmol), hydroxylamine hydrochloride (33.1g, 476 mmol), A,A-diisopropylcthylaminc (107 mL, 595 mmol) and WO 2022/133114 PCT/US2021/063852 8-quinolinol (0.3 g) in ethanol (400 mL) was heated at reflux for 5 h. The reaction mixture was concentrated under reduced pressure to provide the intermediate compound A-hydroxy-4- (hydroxymethyl)benzenecarboximidamide.To a mixture of A-hydroxy-4-(hydroxymethyl)benzenecarboximidamide in acetonitrile and tetrahydrofuran (1:1, 400 mL) was added pyridine (70 mL, 873 mmol) and trifluoroacetic anhydride (121 mL, 873 mmol) dropwise at room temperature. The reaction mixture was heated at reflux for 15 h, allowed to cool to room temperature, and then saturated aqueous sodium bicarbonate solution (300 mL) was slowly added, followed by ethyl acetate (400 mL) and water. The resulting mixture was separated and the organic layer was washed with saturated aqueous sodium chloride solution (100 mL), dried over sodium sulfate, filtered and concentrated under reduce pressure to provide the title compound.1H NMR (CDC13): 8 4.77 (s, 2H), 7.50 (d, 2H), 8.08 (d, 2H).19p NMR (CDCI3): 8 -65.47.Step B: Preparation of 3-[4-(chloromethyl)phenyl]-5-(trifluoromethyl)-l,2,4-oxadiazoleTo a mixture of 4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]benzenemethanol (i.e. the product of Step A) (98.0 g, 397 mmol) and A, A-di methyl formamide (4 drops) in dichloromethane (500 mL) at 5 °C was added thionyl chloride (57 mL). The reaction mixture was heated at approximately 42 °C for 30 minutes, and then concentrated under reduced pressure to remove the dichloromethane. The resulting mixture was diluted with acetonitrile (80 mL) and poured into ice water (700 mL). The resulting solid precipitate was collected by filtration, rinsed with water, and dried in a vacuum oven under nitrogen to provide the title compound as a solid (55 g).1H NMR (CDCI3): 8 4.64 (s, 2H), 7.54-7.55 (d, 2H), 8.10-8.12 (d, 2H).19p NMR (CDCI3): 8 -65.45.Step C: Preparation of l-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-l/7-pyrazolo[3,4-Z>]pyridineA mixture of 3-[4-(chloromethyl)phenyl]-5-(trifluoromethy)-l,2,4-oxadiazole (i.e. the product of Step B) (0.3 g, 1.1 mmol), l/7-pyrazolo[3,4-Z>]pyridine (0.136 g, 1.1 mmol) and cesium carbonate (0.38 g, 1.1 mmol) in A,A-dimethylformamide (2.5 ml) was stirred at room temperature for 12 h. The reaction mixture was partitioned between ethyl acetate (25 ml) and water (5 ml). The organic layer was separated and washed with saturated aqueous sodium chloride solution, dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting material was purified by silica gel chromatography (eluting with a gradient of 5 to 50% ethyl acetate in hexanes) to provide the title compound, a compound of the present invention, as a solid (0.090 g).
WO 2022/133114 PCT/US2021/063852 100 1H NMR (CDC13): 8 5.80 (s, 2H), 7.13-7.21 (m, 1H), 7.42-7.51 (m, 2H), 8.01-8.13 (m, 4H), 8.(dd, 1H).19p NMR (CDCI3): 8 -65.43.
EXAMPLE 2Preparation of 1 -[[4-[5-(trifluoromethyl)- 1,2,4-oxadiazol-3 -yl]phenyl]methyl] - 1H-pyrazole-4- carbonitrile (Compound 95)A mixture of 3-[4-(chloromethyl)phenyl]-5-(trifluoromethyl)-l,2,4-oxadiazole (i.e. product of Example 1, Step B) (3.60 g, 13.7 mmol), l/Z-pyrazole-4-carbonitrile (1.91g, 20.6 mmol), potassium carbonate (3.41 g, 24.7 mmol) and sodium bromide (1.62 g, 15.8 mmol) in acetonitrile (100 mL) was heated at reflux for 18 h. The reaction mixture was allowed to cool to room temperature, filtered, and the filtrate was concentrated under reduced pressure. The resulting material was purified by silica gel chromatography (eluting with a gradient of 0 to 100% ethyl acetate in hexanes) to provide a white solid (4.38 g). The solid was crystalized from ethanol to provide the title compound, a compound of the present invention, as a white solid (3.29 g) melting at 106-108 °C.1H NMR (CDCI3): 8 5.42 (s, 2H), 7.38-7.39 (d, 2H), 7.86-7.87 (m, 2H), 8.13-8.15 (d, 2H). 19F NMR (CDCI3): 8 -65.33.
EXAMPLE 3Preparation of 6-chloro-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-3(2/f)- pyridazinone (Compound 4)A mixture of 3-[4-(chloromethyl)phenyl]-5-(trifluoromethyl)-l,2,4-oxadiazole (i.e. product of Example 1, Step B) (0.2 g, 0.76 mmol), 6-chloro-3(2/f)-pyridazinone (0.099 g, 0.76 mmol) and potassium carbonate (0.21 g, 1.52 mmol) in A,A-di methyl formamide (5 mL) was stirred at room temperature overnight. The reaction mixture was diluted with water and extracted with diethyl ether (2x). The combined extracts were washed with saturated aqueous sodium chloride solution, dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting material was purified by silica gel chromatography (eluting with 1:1 ethyl acetate in hexanes) to provide the title compound, a compound of the present invention, as a white solid (0.18 g).1H NMR (CDCI3): 8 8.10 (d, 2H), 7.58 (d, 2H), 7.19 (d, 1H), 6.95 (d, 1H), 5.32 (s, 2H).
WO 2022/133114 PCT/US2021/063852 101 EXAMPLE 4Preparation of methyl 2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-2//- indazole-4-carboxylate (Compound 36) and methyl l-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]pheny !]methyl]- 1/7- indazole-4-carboxylate (Compound 49)A mixture of 3-[4-(chloromethyl)phenyl]-5-(trifluoromethyl)-l,2,4-oxadiazole (i.e. the product of Example 1, Step B) (0.3 g, 1.1 mmol), methyl l//-indazole-4-carboxylate (0.2 g, 1.1 mmol) and cesium carbonate (0.56 g, 1.7 mmol) in A,A-di methyl formamide (2.5 ml) was stirred at room temperature for 12 h. The reaction mixture was partitioned between ethyl acetate (25 ml) and water (5 ml). The organic layer was separated and washed with saturated aqueous sodium chloride solution, dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting material was purified by silica gel chromatography (eluting with a gradient of 5 to 50% ethyl acetate in hexanes) to provide the title Compound 49 (faster eluting product) as a solid (0.11 g). Also obtained was the title Compound 36, (slower eluting product) as a solid (0.04 g).1H NMR (CDC13): 8 3.97 (s, 3H), 5.73 (s, 2H), 7.33-7.42 (m, 1H), 7.42-7.49 (m, 2H), 7.90-8.(m, 2H), 8.07-8.16 (m, 2H), 8.53 (s, 1H) (Compound 36).19p NMR (CDCI3): 8 -65.39 (Compound 36). 1H NMR (CDCI3): 8 3.98-4.08 (m, 3H), 5.67-5.76 (m, 2H), 7.28-7.35 (m, 2H), 7.37-7.48 (m, 1H), 7.50-7.59 (m, 1H), 7.89-7.98 (m, 1H), 8.01-8.10 (m, 2H), 8.59 (s, 1H) (Compound 49).19p NMR (CDCI3): 8 -65.42 (Compound 49).
EXAMPLE 5Preparation of 1 -[[4-[5-(trifluoromethyl)- 1,2,4-oxadiazol-3-yl]phenyl]methyl] - 1H-pyrrolo [3,2- b]pyridine (Compound 136)A mixture of 3-[4-(chloromethyl)phenyl]-5-(trifluoromethyl)-l,2,4-oxadiazole (i.e. the product of Example 1, Step B) (0.3 g, 1.1 mmol), l//-pyrrolo[3,2-Z>]pyridine (0.14 g, 1.1 mmol) and cesium carbonate (0.56 g, 1.7 mmol) in A,A-di methyl formamide (2.5 ml) was stirred at room temperature for 12 h. The reaction mixture was partitioned between ethyl acetate (25 ml) and water (5 ml). The organic layer was separated and washed with saturated aqueous sodium chloride solution, dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting material was purified by silica gel chromatography (eluting with a gradient of 5 to 50% ethyl acetate in hexanes) to provide the title compound, a compound of the present invention, as a solid (0.045 g).
WO 2022/133114 PCT/US2021/063852 102 1H NMR (CDC13): 8 5.42 (m, 2H), 6.79-6.88 (m, 1H), 7.06-7.15 (m, 1H), 7.23 (m, 2H), 7.41 (d, 1H), 7.54 (d, 1H), 8.07 (d, 2H), 8.49 (br d, 1H).19p NMR (CDCI3): 8 -65.40.
EXAMPLE 6Preparation of 1 -[[4-[5-(trifluoromethyl)- 1,2,4-oxadiazol-3 -yl]phenyl]methyl] -2( 1H)- quinoxalinone (Compound 158)A mixture of 3-[4-(chloromethyl)phenyl]-5-(trifluoromethyl)-l,2,4-oxadiazole (i.e. the product of Example 1, Step B) (0.3 g, 1.1 mmol), 2( 1H)-quinoxalinone (0.17 g, 1.1 mmol) and cesium carbonate (0.56 g, 1.7 mmol) in A,A-di methyl formamide (2.5 ml) was stirred at room temperature for 12 h. The reaction mixture was partitioned between ethyl acetate (25 ml) and water (5 ml). The organic layer was separated and washed with saturated aqueous sodium chloride solution, dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting material was purified by silica gel chromatography (eluting with a gradient of 5 to 50% ethyl acetate in hexanes) to provide the title compound, a compound of the present invention, as a solid (0.08 g).1H NMR (CDCI3): 8 5.57 (s, 2H), 7.19-7.24 (m, 1H), 7.32-7.38 (m, 1H), 7.40 (d, 2H), 7.45-7.(m, 1H), 7.90-7.97 (m, 1H), 8.08 (d, 2H), 8.44 (s, 1H).19p NMR (CDCI3): 8 -65.40.
EXAMPLE 7Preparation of l,3-dihydro-l-methyl-3-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3- yl]phenyl] methyl]-2/Z-benzimidazol-2-one (Compound 159)A mixture of 3-[4-(chloromethyl)phenyl]-5-(trifluoromethyl)-l,2,4-oxadiazole (i.e. the product of Example 1, Step B) (0.3 g, 1.1 mmol), l,3-dihydro-l-rnethyl-2H-benzimidazol-2-one (0.17 g, 1.1 mmol) and cesium carbonate (0.56 g, 1.7 mmol) in A,A-di methyl formamide (2.5 ml) was stirred at room temperature for 12 h. The reaction mixture was partitioned between ethyl acetate (25 ml) and water (5 ml). The organic layer was separated and washed with saturated aqueous sodium chloride solution, dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting material was purified by silica gel chromatography (eluting with a gradient of 0 to 50% ethyl acetate in hexanes) to provide the title compound, a compound of the present invention, as a solid (0.095 g).1H NMR (CDCI3): 8 3.49 (s, 3H), 5.16 (s, 2H), 6.81-6.90 (m, 1H), 6.97-7.06 (m, 2H), 7.06-7.(m, 1H), 7.47 (d, 2H), 8.07 (d, 2H).
WO 2022/133114 PCT/US2021/063852 103 EXAMPLE 8Preparation of methyl l,2-dihydro-2-oxo-l-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3- yl]phenyl] methyl]-4-pyridinecarboxylate (Compound 24)A mixture of 3-[4-(chloromethyl)phenyl]-5-(trifluoromethyl)-l,2,4-oxadiazole (i.e. the product of Example 1, Step B) (1.0 g, 3.8 mmol), methyl l,2-dihydro-2-oxo-4- pyridinecarboxylate (0.59 g, 3.81 mmol) and cesium carbonate (1.90 g, 5.72 mmol) in N,N- dimethylformamide (5 ml) was stirred at room temperature for 12 h. The reaction mixture was partitioned between ethyl acetate (25 ml) and water (5 ml). The organic layer was separated and washed with saturated aqueous sodium chloride solution, dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting material was purified by silica gel chromatography (eluting with a gradient of 5 to 50% ethyl acetate in hexanes) to provide the title compound, a compound of the present invention, as a solid (0.35 g).1H NMR (CDC13): 8 3.92 (s, 3H), 5.23 (s, 2H), 6.64-6.73 (m, 1H), 7.27 (d, 1H), 7.33-7.40 (m, 1H), 7.40-7.49 (m, 2H), 8.04-8.17 (m, 2H).19F NMR (CDCI3): 8 -65.39.
EXAMPLE 9Preparation of 2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-l/Z-isoindole- l,3(2/f)-dione (Compound 90)A mixture of 3-[4-(chloromethyl)phenyl]-5-(trifluoromethyl)-l,2,4-oxadiazole (i.e. the product of Example 1, Step B) (0.25 g, 0.95 mmol) and potassium phthalimide (0.17 g, 0.95 mmol) in A,A-di methyl formamide (2.5 ml) was stirred at room temperature for 12 h. The reaction mixture was partitioned between ethyl acetate (25 ml) and water (5 ml). The organic layer was separated and washed with saturated aqueous sodium chloride solution, dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting material was purified by silica gel chromatography (eluting with a gradient of 5 to 50% ethyl acetate in hexanes) to provide the title compound, a compound of the present invention, as a solid (0.21 g).1H NMR (CDCI3): 8 4.92 (s, 2H), 7.50-7.63 (m, 2H), 7.68-7.79 (m, 2H), 7.82-7.93 (m, 2H), 8.01- 8.13 (m, 2H).19F NMR (CDCI3): 8 -65.39.
WO 2022/133114 PCT/US2021/063852 104 EXAMPLE 10Preparation of ethyl l-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-l//- pyrazole-4-carboxylate (Compound 83)Step A: Preparation of ethyl l-[(4-cyanophenyl)methyl]-l//-pyrazole-4-carboxylateA mixture of ethyl l//-pyrazole-4-carboxylate (4.96 g, 35.4 mmol), 4-(bromomethyl)benzonitrile (6.92 g, 35.3 mmol) and potassium carbonate (6.0 g, 43.5 mmol) in acetonitrile (100 mL) was heated at 60 °C for 6 h, and then stirred at room temperature overnight. The reaction mixture was diluted with water and the resulting solid precipitate was filtered, washed with water and air dried to provide the title compound as a white solid (8.65 g). 1H NMR (CDC13): 8 1.34 (t, 3H), 4.30 (q, 2H), 5.37 (s, 2H), 7.29-7.31 (m, 2H), 7.65-7.66 (m, 2H), 7.93 (s, 1H), 7.96 (s, 1H).Step B: Preparation of ethyl l-[[4-[(hydroxyamino)iminomcthyl]phcnyl]mcthyl]-l /7-pyrazole-4-carboxylateA mixture ethyl l-[(4-cyanophenyl)methyl]-l/Z-pyrazole-4-carboxylate (i.e. the product of Step A) (29.1 g, 114 mmol) and hydroxylamine (50% aqueous solution, 12 mL, 194 mmol) in A,A-di methyl formamide (200 mL) was stirred at room temperature for 3 days. The reaction mixture was poured into ice water and the resulting solid precipitate was filtered and washed with water. The wet solid was mixed with acetonitrile (500 mL) and concentrated under reduced pressure to provide the title compound as a white solid (31.32 g)1H NMR (DMSO-^6): 8 1.26 (t, 3H), 4.21 (q, 2H), 5.38 (s, 2H), 5.79 (s, 2H), 7.25-7.27 (m, 2H), 7.63-7.65 (m, 2H), 7.87 (s, 1H), 8.47 (s, 1H), 9.63 (s, 1H).Step C: Preparation of ethyl l-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-l/Z-pyrazole-4-carboxylateTo a mixture of ethyl 1-[[4-[(hydroxyamino)iminomcthyl]phcnyl]methyl]-l/7-pyrazolc-4- carboxylate (i.e. the product of Step B) (33.65 g, 117 mmol) and pyridine (13 mL, 160 mmol) in A,A-di methyl formamide (100 mL) at 0 °C was added trifluoroacetic anhydride (19 mL, 140 mmol) dropwise over 20 minutes. The reaction mixture was heated at 70 °C for 2 h, cooled and allowed to stir at room temperature overnight. The reaction mixture was poured into ice water and the resulting solid precipitate was filtered and washed with water. The solid was crystallized from ethanol (250 mL) to provide the title compound, a compound of the present invention, as solid needles (35.1 g) melting at 127-129 °C.1H NMR (CDCI3): 8 1.34 (t, 3H), 4.30 (q, 2H), 5.39 (s, 2H), 7.37-7.39 (m, 2H), 7.93 (s, 1H), 7.(s, 1H), 8.11-8.13 (m, 2H).19F NMR (CDCI3): 8 -65.34.
WO 2022/133114 PCT/US2021/063852 105 EXAMPLE 11Preparation of 3-[5-[(4-bromo- 1H-pyrazol- 1 -yl)methyl]-2-thienyl] -5-(trifluoromethyl)- 1,2,4- oxadiazole (Compound 71)Step A: Preparation of 3-(5-methyl-2-thienyl)-5-(trifluoromethyl)-l,2,4-oxadiazoleA mixture of 5-methyl-2-thiophenecarbonitrile (4.0 g, 32 mmol), hydroxylamine hydrochloride (3.3 g, 48 mmol), diisopropylethylamine (10 ml, 56 mmol) and 8-quinolinol (0.074 g) in ethanol (65 ml) was refluxed for 5 h. The reaction mixture was concentrated under reduced pressure to provide the intermediate compound A-hydroxy-5-methyl-2- thiophenecarboximidamide.A-hydroxy-5-methyl-2-thiophenecarboximidamide in tetrahydrofuran (65 ml) was added dropwise to a mixture of trifluoroacetic anhydride (13 mL, 96 mmol), diisopropylethylamine (20 mL, 112 mmol) and 4-dimethylaminopyridine (1.0 g, 8 mmol). The reaction mixture was stirred at room temperature 15 h, and then diluted with saturated aqueous sodium bicarbonate solution (30 mL). The aqueous mixture was extracted with ethyl acetate (80 ml) and the organic layer was washed with saturated aqueous sodium chloride solution, dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting material was purified by silica gel chromatography (eluting with 1:10 ethyl acetate in hexanes) to provide the title compound as a solid (3.2 g).1H NMR (CDC13): 8 2.57 (s, 3H), 6.85 (d, 1H), 7.68 (d, 1H).19p NMR (CDCI3): 8 -65.46.Step B: Preparation of 3-[5-(bromomethyl)-2-thienyl]-5-(trifluoromethyl)-l,2,4-oxadiazoleTo a mixture of 3-(5-methyl-2-thienyl)-5-(trifluoromethyl)-l,2,4-oxadiazole (i.e. the product of Step A) (3.1g, 13.2 mmol) in dichloromethane (30 mL) was added N- bromosuccinimide (2.6 g, 14.8 mmol) and 2,2'-azodiisobutyronitrile (0.2 g, 1.3 mmol). The reaction mixture was heated at reflux for 6 h, cool to room temperature, and concentrated under reduced pressure. The resulting material was purified by silica gel chromatography (eluting with 1:10 ethyl acetate in hexanes) to provide the title compound as a white solid (2.8 g).1H NMR (CDCI3): 8 4.73 (s, 2H), 7.18 (m, 1H), 7.73 (m, 1H).19F NMR (CDCI3): 8 -65.40.Step C: Preparation of 3-[5-[(4-bromo- 1 /7-pyrazol- 1 -yl)mcthyl]-2-thicnyl]-5-(trifluoromethyl)- 1,2,4-oxadiazoleA mixture of 3-[5-(bromomethyl)-2-thienyl]-5-(trifluoromethyl)-l,2,4-oxadiazole (i.e. the product of Step B) (0.16 g, 0.5 mmol), 4-bromo-1H-pyrazole (0.080 g, 0.55 mmol) and potassium carbonate (0.152 g, 1.1 mmol) in acetonitrile (4 mL) was heated at refluxed for 2 h. After cooling WO 2022/133114 PCT/US2021/063852 106 to room temperature, the reaction mixture was concentrated under reduced pressure. The resulting material was purified by silica gel chromatography (eluting with 3:1 hexanes in ethyl acetate) to provide the title compound, a compound of the present invention, as an oil (0.088 g).1H NMR (CDC13): 8 5.47 (s, 2H), 7.09 (m, 1H), 7.48 (s, 1H), 7.50 (s, 1H), 7.74 (m, 1H).19p NMR (CDCI3): 8 -65.41.
EXAMPLE 12Preparation of ethyl l-[l-[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]ethyl]-l/Z- pyrazole-4-carboxylate (Compound 2)Step A: Preparation of 4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]benzaldehydeTo a mixture of 4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]benzenemethanol (2.00 g, 8.19 mmol) in dichloromethane (20 ml) was added l,l,l-tris(acetoxy)- 1,1-dihydro- 1,2- benziodoxol-3(l/T)-one (Dess-Martin periodinane) (3.47 g, 8.19 mmol) portionwise at room temperature. After stirring for 3 h, the reaction mixture was diluted with dichloromethane and saturated aqueous sodium bicarbonate solution. The organic layer was separated and washed with saturated aqueous sodium chloride solution, dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting material was purified by silica gel chromatography (eluting with a gradient of 5 to 50% ethyl acetate in hexanes) to provide the title compound as an oil (1.53 g).1H NMR (CDCI3): 8 8.05 (d, 2H), 8.32 (d, 2H), 10.12 (s, 1H).19p NMR (CDCI3): 8 -65.32.Step B: Preparation of cc-methyl-4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]benzenemethanolTo a mixture of 4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]benzaldehyde (i.e. the product of Step A) (1.53 g, 6.3 mmol) in tetrahydrofuran (20 ml) at -12 °C was added a solution of methylmagnesium bromide (3M in diethyl ether; 2.1 mL, 6.3 mmol) dropwise. The reaction mixture was stirred for 2 h at -12 °C, and then quenched with saturated aqueous ammonium chloride solution. The resulting mixture was poured into water and extracted with ethyl acetate. The combined organic extracts were washed with saturated aqueous sodium chloride solution, dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting material was purified by silica gel chromatography (eluting with a gradient of 5 to 50% ethyl acetate in hexanes) to provide the title compound as a solid (1.63 g).1H NMR (CDCI3): 8 1.40-1.61 (m, 3H), 4.84-5.06 (m, 1 H), 7.50 (d, 2H), 8.06 (d, 2H).19F NMR (CDCI3): 8 -65.49.
WO 2022/133114 PCT/US2021/063852 107 Step C: Preparation of ethyl l-[l-[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]ethyl]-lH-pyrazole-4-carboxylateA mixture of oc-methyl-4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]benzenemethanol (i.e. the product of Step B) (0.372 g, 0.95 mmol), ethyl l/Z-pyrazole-4-carboxylate (0.202 g, 0.95 mmol) and triphenylphosphine (0.377 g, 0.95 mmol) in tetrahydrofuran (10 mL) was stirred at room temperature for 10 minutes, and then l,2-bis(l-methylethyl) 1,2-diazenedicarboxylate (DIAD) (0.285 mL, 0.95 mmol) was added. After 12 h, the reaction mixture was concentrated under reduced pressure. The resulting material was purified by silica gel flash chromatography (eluting with a gradient of 5 to 50% ethyl acetate in hexanes) to provide the title compound, a compound of the present invention, as a solid (0.11 g).1H NMR (CDC13): 8 1.25-1.38 (m, 3H), 1.88-2.00 (m, 3H), 4.28 (q, 2H), 5.49-5.67 (m, 1H), 7.29- 7.41 (m, 2H), 7.89-8.02 (m, 2H), 8.03-8.16 (m, 2H).19p NMR (CDCI3): 8 -65.44.
EXAMPLE 13Preparation of 4,5-dihydro-A,A-dimethyl-5-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3- yl]phenyl]methyl]-3-isoxazolecarboxamide (Compound 12)Step A: Preparation of A-hydroxy-4-(2-propcn-l -yl)bcnzcnccarboximidamidcA mixture of 4-(2-propen-l-yl)benzonitrile (5.0 g, 35 mmol) and hydroxylamine (50% aqueous solution, 4.5 mL, 73 mmol) in absolute ethanol (50 mL) was stirred at room temperature for 16 h. The reaction mixture was concentrated under reduced pressure, diluted with acetonitrile (50 mL), concentrated under reduced pressure, and again diluted with acetonitrile (50 mL) and concentrated under reduced pressure to provide the title compound as a colorless oil which crystalized on standing (6.1 g).1H NMR (CDCI3): 8 3.39-3.41 (m, 2H), 4.90 (br s, 2H), 5.07-5.10 (m, 2H), 5.90-6.00 (m, 1H), 7.20-7.22 (m, 2H), 7.54-7.56 (m, 2H), 8.5-9.5 (br s, 1H).Step B: Preparation of 3-[4-(2-propen-l-yl)phenyl]-5-(trifluoromethyl)-l,2,4-oxadiazoleTo a mixture of A-hydroxy-4-(2-propcn-l-yl)bcnzcnccarboximidamidc (i.e. the product of Step A) (6.0 g, 34 mmol) and pyridine (3.5 mL, 43 mmol) in acetonitrile (25 mL) at 0 °C was added trifluoroacetic anhydride (5.5 mL, 40 mmol) dropwise over 20 minutes. The reaction mixture was heated at 60 °C for 4 h, cooled, and then poured into ice water and extracted with diethyl ether (3 x 100 mL). The combined organic extracts were washed with aqueous hydrochloric acid solution (IN), saturated aqueous sodium bicarbonate solution, saturated aqueous sodium chloride solution, dried over magnesium sulfate, filtered and concentrated under reduced pressure to provide the title compound as a light-yellow oil (8.0 g).
WO 2022/133114 PCT/US2021/063852 108 1HNMR (CDC13): 53.46-3.48 (m, 2H), 5.10-5.15 (m, 2H), 5.90-6.05 (m, 1H), 7.34-7.36 (m, 2H), 8.03-8.05 (m, 2H).19p NMR (CDC13): 5 -65.40.Step C: Preparation of 4,5-dihydro-A,A-dimethyl-5-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-3-isoxazolecarboxamideA mixture of 3-[4-(2-propen-l-yl)phenyl]-5-(trifluoromethyl)-l,2,4-oxadiazole (i.e. the product of Step B) (0.254 g, 1.0 mmol), 2-(dimethylamino)-/V-hydroxy-2-oxo-acetimidoyl chloride (0.152 g, 1.0 mmol) and sodium bicarbonate (0.3 g, 3.5 mmol) in ethyl acetate (20 mL) was stirred at room temperature for 24 h. The reaction mixture was filtered washing with a small amount of ethyl acetate and the filtrate was concentrated under reduced pressure. The resulting material was purified by silica gel flash chromatography (eluting with a gradient of 0-100% ethyl acetate in hexanes) to provide the title compound, a compound of the present invention, as a white solid (0.27 g).1H NMR (CDCI3): 5 3.00-3.15 (m, 2H), 3.03 (s, 3H), 3.17 (s, 3H), 3.33-3.40 (m, 1H), 4.92-5.(m, 1H), 7.40-7.44 (m, 2H), 8.06-8.10 (m, 2H).19F NMR (CDCI3): 5 -65.36.
EXAMPLE 14Preparation of cc-(phenylamino)-4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]benzeneacetonitrile (Compound 13)Step A: Preparation of 4-(l,3-dioxolan-2-yl)benzonitrileTo a mixture of 4-formylbenzonitrile (25.16 g, 191.9 mmol) in toluene (250 mL) was added ethylene glycol (35.73 g, 576 mmol) and p-toluenesulfonic acid monohydrate (2.92 g, 15.3 mmol). The reaction mixture was heated at reflux for 18 h with use of a Dean-Stark trap for the azeotropic removal of water. After cooling to room temperature, the reaction mixture was washed with saturated aqueous sodium bicarbonate solution, saturated aqueous sodium chloride solution, dried over magnesium sulfate, filtered and concentrated under reduced pressure to provide the title compound as a white solid (33.6 g).1H NMR (CDCI3): 5 4.04-4.13 (m, 4H), 5.85 (s, 1H), 7.57-7.62 (m, 2H), 7.66-7.70 (m, 2H).Step B: Preparation of 4-( 1,3-dioxolan-2-yl)-A-hydroxybcnzcnccarboximidamidcA mixture of 4-(l,3-dioxolan-2-yl)benzonitrile (i.e. the product of Step A) (33.6 g, 192 mmol) and hydroxylamine (50% aqueous solution, 14 mL, 228 mmol) in ethanol (200 mL) was heated at 70 °C for 1 h. After cooling to room temperature, the reaction mixture was concentrated under reduced pressure. The resulting material was diluted with acetonitrile and concentrated under reduced pressure to provide the title compound as a white solid (40.2 g).
WO 2022/133114 PCT/US2021/063852 109 1H NMR (DMSO-^6): 8 3.91-4.09 (m, 4H), 5.74 (s, 1H), 5.77-5.88 (m, 2H), 7.42-7.44 (m, 2H), 7.68-7.71 (m, 2H), 9.67 (s, 1H).Step C: Preparation of 3-[4-(l,3-dioxolan-2-yl)phenyl]-5-(trifluoromethyl)-l,2,4-oxadiazoleTo a mixture of 4-(l,3-dioxolan-2-yl)-A-hydroxybenzenecarboximidamide (i.e. the product of Step B) (40.2 g, 192 mmol) and pyridine (18.3 mL, 226 mmol) in acetonitrile (350 mL) at 0 °C was added trifluoroacetic anhydride (28.8 mL, 207 mmol) dropwise over 10 minutes. The reaction mixture was allowed to warm to room temperature and stirred overnight. The reaction mixture was concentrated under reduced pressure and the resulting material was partitioned between dichloromethane and water. The organic layer was separated and washed with saturated aqueous sodium chloride solution, dried over magnesium sulfate, filtered and concentrated under reduced pressure. The resulting material was purified by silica gel chromatography (eluting with a gradient of 0 to 100% ethyl acetate in hexanes) to provide the title compound as a white solid melting at 53-55 °C.1H NMR (CDC13): 8 4.05-4.23 (m, 4H), 5.88 (s, 1H), 7.65 (d, 2H), 8.14 (d, 2H).19F NMR (CDCI3): 8 -65.36.Step D: Preparation of 4-[5-(trifluoromethyl)- 1,2,4-oxadiazol-3-yl)]benzaldehydeA mixture of 3-[4-(l,3-dioxolan-2-yl)phenyl]-5-(trifluoromethyl)-l,2,4-oxadiazole (i.e. the product of Step C) (2.48 g 8.67 mmol), tetrahydrofuran (25 mL), water (25 mL) and concentrated hydrochloric acid (25 mL) was stirred for 30 minutes at room temperature. The reaction mixture was diluted with ethyl acetate (100 mL) and the layers were separated. The organic layer was washed with water and saturated aqueous sodium chloride solution, dried over magnesium sulfate, filtered and concentrated under reduced pressure to provide the title compound as a white solid (2.09 g) melting at 50-52 °C.1H NMR (CDCI3): 8 8.04-8.06 (m, 2H) 8.31-8.33 (m, 2H) 10.12 (s, 1H).Step E: Preparation of a-(phenylamino)-4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]benzeneacetonitrileA mixture of 4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl)benzaldehyde (i.e. the product of Step D) (2.59 g, 10.7 mmol), benzenamine (95 uL, 1.0 mmol) and titanium(IV) isopropoxide (500 uL, 170 mmol) in tetrahydrofuran (5 mL) was stirred at room temperature for 2 h, and then trimethylsilyl cyanide (500 uL, 3.9 mol) was added. The reaction mixture was stirred at room temperature overnight, and then added to a vigorously stirred mixture of ice and ethyl acetate. After 1 h, the mixture was filtered and the filtrate was washed with water and saturated aqueous sodium chloride solution, dried over magnesium sulfate, filtered and concentrated under reduced pressure to provide a yellow solid. The solid was crystalized from diethyl ether (4 mL) and WO 2022/133114 PCT/US2021/063852 110 hexanes (10 mL) to provide the title compound, a compound of the present invention, as a colorless solid (163 mg).1H NMR (CDC13): 8 4.12 (d, 1H), 5.55 (d, 1H), 6.80 (m, 2H), 6.95 (m, 1H), 7.27-7.32 (m, 2H), 7.79-7.81 (m, 2H), 8.20-8.24 (m, 2H).19p NMR (CDCI3): 8 -65.31.
EXAMPLE 15Preparation of methyl 4,5-dihydro-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3- yl]phenyl] methyl]-4-oxazolecarboxylate (Compound 74)Step A: Preparation of 4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]benzeneacetic acidA mixture of 4-cyanobenzeneacetic acid (25.0 g, 155 mmol) and hydroxylamine (50% aqueous solution, 23.8 mL, 780 mmol) in ethanol (500 mL) was heated at reflux overnight. The reaction mixture was concentrated under reduced pressure and the resulting solid was dried in a vacuum oven overnight. The solid (i.e. the intermediate compound 4-[(hydroxyamino)- iminomethyl]benzeneacetic acid) was suspended in tetrahydrofuran (500 mL) and cooled to 0 °C, and then trifluoroacetic anhydride (48 mL, 340 mmol) and triethylamine (47 mL, 340 mmol) were added. The reaction mixture was stirred at room temperature overnight, and then concentrated under reduced. The resulting material was partitioned between water and dichloromethane. The organic layer was separated, dried over sodium sulfate, filtered, and concentrated onto Celite® (diatomaceous filter aid). The Celite® mixture was purified by medium pressure silica gel chromatography (eluting with a gradient of 0 to 100% of ethyl acetate in hexanes) to provide the title compound as a white solid (17.8 g).1H NMR (CDCI3): 8 8.10 (d, 2H), 7.46 (d, 2H), 3.76 (s, 2H).19F NMR (CDCI3): 8 -65.35.Step B: Preparation of A-[2-[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl] acetyl] serine methyl esterTo 4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]benzeneacetic acid (i.e. the product of Step A) (17.8 g, 65.3 mmol) in A,A-di methyl formamide (220 mL) was added DL-serine methyl ester hydrochloride (1:1) (12.2 g, 78.4 mmol), l-[bis(dimethylamino)methylene]-l/Z-l,2,3- triazolo[4,5-Z7]pyridinium 3-oxide hexafluorophosphate (HATU) (29.8 g, 78.4 mmol) and 4- methylmorpholine (14.4 mL, 131 mmol). The reaction was stirred at room temperature overnight, and then diluted with water and extracted with ethyl acetate (3x). The combined organic layers were washed with water and saturated aqueous sodium chloride solution, dried over magnesium sulfate, filtered, and concentrated onto Celite® (diatomaceous filter aid). The Celite® mixture WO 2022/133114 PCT/US2021/063852 111 was purified by medium pressure silica gel chromatography (eluting with a gradient of 0% to 100% ethyl acetate in hexanes) to provide the title compound.1H NMR (CDC13): 8 8.12 (d, 2H), 7.48 (d, 2H), 6.47, (br s, 1H), 4.68 (dt, 1H), 4.00 (dd, 1H), 3.(m, 1H), 3.78 (s, 3H), 3.72 (s, 2H).19p NMR (CDCI3): 8 -65.34.Step C: Preparation of methyl 4,5-dihydro-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl] methyl]-4-oxazolecarboxylateTo A/-[2-[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]acetyl]serine methyl ester (i.e. the product of Step B) (65.3 mmol) in dichloromethane (650 mL) at -78 °C was added diethylamino sulfur trifluoride (DAST) (13 mL, 98 mmol). The reaction was stirred for 1.5 h at -78 °C, and then quenched with saturated aqueous sodium bicarbonate solution and the layers were separated. The aqueous layer was further extracted with dichloromethane and the combined organic layers were washed with saturated aqueous sodium bicarbonate solution, dried over magnesium sulfate, filtered, concentrated onto Celite® (diatomaceous filter aid). The Celite® mixture was purified by medium pressure silica gel chromatography (eluting with a gradient of 0% to 100% ethyl acetate in hexanes) to provide the title compound, a compound of the present invention, as a solid (8.17 g).1H NMR (CDCI3): 8 8.08 (d, 2H), 7.48 (d, 2H), 4.78 (m, 1H), 4.53 (m, 1H), 4.43 (m, 1H), 3.(s, 3H), 3.76 (m, 2H).19F NMR (CDCI3): 8 -65.33.
EXAMPLE 16Preparation of 4,5-dihydro-N,A-dimethyl-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3- yl]phenyl]methyl]-4-oxazolecarboxamide (Compound 178)To a mixture of methyl 4,5-dihydro-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3- yl]phenyl] methyl]-4-oxazolecarboxylate (i.e. the product of Example 15, Step C) (0.25 g, 0.7 mmol) in methanol (7 mL) was added A,A-dimcthylaminc (5.6 N in ethanol, 0.63 mL) The reaction mixture was stirred overnight at 65 °C, and then cooled to room temperature and concentrated onto Celite® (diatomaceous filter aid). The Celite® mixture was purified by medium pressure silica gel chromatography (eluting with a gradient of 0% to 100% ethyl acetate in hexanes) to provide the title compound, a compound of the present invention, as a solid (0.009 g).1H NMR (CDCI3): 8 8.06 (d, 2H), 7.46 (d, 2H), 4.95 (m, 2H), 4.29 (dd, 1H), 3.71 (m, 2H), 3.(s, 3H), 3.00 (s, 3H).19F NMR (CDCI3): 8 -65.36.
WO 2022/133114 PCT/US2021/063852 112 EXAMPLE 17Preparation of 4,5-dihydro-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-4- oxazolecarboxamide (Compound 75)A mixture of methyl 4,5-dihydro-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3- yl]phenyl]methyl]-4-oxazolecarboxylate (i.e. the product of Example 15, Step C) (0.5 g, 1.4 mmol) and ammonia (7 N in methanol, 14 mL) was stirred at room temperature overnight. The reaction mixture was concentrated under reduced pressure to provide the title compound, a compound of the present invention, as a solid (0.134 g).1H NMR (CDC13): 8 8.10 (d, 2H), 7.46 (d, 2H), 4.68 (m, 2H), 4.52, m, 2H), 3.73 (m, 2H). 19p NMR (CDCI3): 8 -65.32.
EXAMPLE 18Preparation of methyl 2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3- yl]-1phenoxy]-!methyl]oxazole-4-carboxylate (Compound 403) Step A: Preparation of 4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenolTo a mixture of 4-hydroxybenzonitrile (20 g, 168 mmol) in ethanol (177 mL) was added hydroxylamine (50% aqueous solution, 13.4 mL, 440 mmol). The reaction mixture was stirred for h, and then concentrated under reduced pressure. The solid (i.e. the intermediate compound A,4-dihydroxybcnzcnccarboximidamidc) was dissolved in dichloromethane (336 mL) and trifluoroacetic anhydride (47 mL, 336 mmol) was added. The reaction mixture was heated to reflux for 18 h, and then cooled to room temperature and quenched with water. The layers were separated, and the aqueous layer further extracted with dichloromethane two times. The combined organics were washed with saturated aqueous sodium bicarbonate solution and aqueous sodium chloride solution, dried over magnesium sulfate and filtered, and concentrated onto Celite® (diatomaceous filter aid). The Celite® mixture was purified by medium pressure liquid chromatography (0% to 100% ethyl acetate in hexanes as eluent) to provide the title compound (16.3 g).1H NMR (CDCI3): 8 8.10 (d, 2H), 6.96 (d, 2H).19F NMR (CDCI3): 8 -65.45.Step B: Preparation of methyl 2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]-1phenoxy]1 ־methyl]oxazole-4-carboxylateTo 4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenol (i.e. the product of Step A) (1.13 g, mmol) in acetonitrile (50 mL) was added methyl 2-(chloromethyl)oxazole-4-carboxylate (0.95 g, 5.4 mmol), potassium carbonate (1.52 g, 11 mmol) and tetrabutylammonium iodide (0.18 g, 0.5 mmol). The reaction mixture was heated to 80 °C for 18 h, and then cooled to room WO 2022/133114 PCT/US2021/063852 113 temperature and concentrated onto Celite® (diatomaceous filter aid). The Celite® mixture was purified by medium pressure liquid chromatography (0% to 100% ethyl acetate in hexanes as eluent) to provide the title compound, a compound of the present invention, as a solid (1.14 g). 1H NMR (CDC13): 8 8.29 (s, 1H), 8.07 (d, 2H), 7.13 (d, 2H), 5.27 (s, 2H), 3.94 (s, 3H).19F NMR (CDCI3): 8 -65.38.
By the procedures described herein, together with methods known in the art, the following compounds of Tables 1, 1A-92A, 2 and 1B-92B can be prepared. The following abbreviations are used in the Tables: t means tertiary, 5 means secondary, n means normal, i means iso, c means cyclo, Me means methyl, Et means ethyl, Pr means propyl, i-Pr means isopropyl, c-Pr means cyclopropyl, Bu means butyl, i-Bu means isobutyl, t-Bu means /erZ-butyl, and Ph means phenyl.
The definitions of R^ and J in Table 1 are as defined Exhibits A and B in the above Embodiments. In the column Rl, the number in parentheses following the U-ring number refers to the attachment point of the ring toL. The (R—)x column refers to the substituent(s) attached to the U-ring as shown in Exhibit A above. A dash" in the (R^)x column means that no R^ substituent is present and the remaining valences are occupied byhydrogen atoms.L is CH2 and J is J-40. L is CH2 and J is J-40.R1(R2)xR1 R1U-l (4) - U-8 (5) -U-l (4) 2-Me U-8 (5) 3-MeU-l (4) 2-Et U-8 (5) 3-EtU-l (4) 2-n-Pr U-8 (5) 3-n-PrU-l (4) 2-z-Pr U-8 (5) 3-z-PrU-l (4) 2-c-Pr U-8 (5) 3-c-PrU-l (4) 2-n-Bu U-8 (5) 3-n-BuU-l (4) 2-i-Bu U-8 (5) 3--BuU-l (4) 2-t-Bu U-8 (5) 3-t-BuU-l (4) 2-F U-8 (5) 3-FU-l (4) 2-C1 U-8 (5) 3-C1U-l (4) 2-Br U-8 (5) 3-BrU-l (4) 2-CF3 U-8 (5) 3-CF3 WO 2022/133114 PCT/US2021/063852 114 CH2 and J is J-40. L is CH2 and J is J-40.R1(R2)xR1 R1U-l (4) 2-HO U-8 (5) 3-HOU-l (4) 2-N=C U-8 (5) 3-N=CU-l (4) 2-N=CCH2 U-8 (5) 3-N=CCH2U-l (4) 2-(MeO) U-8 (5) 3-(MeO)U-l (4) 2-(MeOCH2) U-8 (5) 3-(MeOCH2)U-l (4) 2-(EtOCH2) U-8 (5) 3-(EtOCH2)U-l (4) 2-(CH(=O)) U-8 (5) 3-(CH(=O))U-l (4) 2-(HOC(=O)) U-8 (5)3-(HOC(=O))U-l (4) 2-(MeOC(=O)) U-8 (5) 3-(MeOC(=O))U-l (4) 2-(EtOC(=O)) U-8 (5) 3-(EtOC(=O))U-l (4) 2-(z-PrOC(=O)) U-8 (5) 3-(z-PrOC(=O))U-l (4) 2-(n-PrOC(=O)) U-8 (5) 3-(n-PrOC(=O))U-l (4) 2-(BuOC(=O)) U-8 (5) 4-(BuOC(=O))U-l (4) 2-(z-BuOC(=O)) U-8 (5) 3-(z-BuOC(=O))U-l (4) (( BuOC(=O -)؛- 2 U-8 (5) (( BuOC(=O -)؛- 3U-l (4) 2-(CF3CH2OC(=O) U-8 (5) 3-(CF3CH2OC(=O)U-l (4) 2-(CH2=CHOC(=O)) U-8 (5) 3-(CH2=CHOC(=O))U-l (4) 2-(CH2=CHCH2OC(=O)) U-8 (5) 3-(CH2=CHCH2OC(=O))U-l (4) 2-(CH2=CBrCH2OC(=O)) U-8 (5) 3-(CH2=CBrCH2OC(=O))U-l (4) 2-(CH2=CHCF2OC(=O)) U-8 (5) 3-(CH2=CHCF2OC(=O))U-l (4) 2-(Me2C=CHCH2OC(=O)) U-8 (5) 3-(Me2C=CHCH2OC(=O))U-l (4) 2-(CH2=C(Me)CH2OC(=O)) U-8 (5) 3-(CH2=C(Me)CH2OC(=O))U-l (4) 2-(CH=CCH2OC(=O)) U-8 (5) 3-(CH=CCH2OC(=O))U-l (4) 2-(N=CCH2OC(=O)) U-8 (5) 3-(N=CCH2OC(=O))U-l (4) 2-(MeNHC(=O)) U-8 (5) 3-(MeNHC(=O))U-l (4) 2-(Me2NC(=O)) U-8 (5) 3-(Me2NC(=O))U-l (4) 2-(MeNHC(=O)) U-8 (5) 3-(MeNHC(=O))U-l (4) 2-(EtNHC(=0)) U-8 (5) 3-(EtNHC(=0))U-l (4) 2-(PrNHC(=O)) U-8 (5) 3-(PrNHC(=O))U-l (4) 2-(z-PrNHC(=0)) U-8 (5) 3-(z-PrNHC(=0))U-l (4) 2-(BuNHC(=O)) U-8 (5) 3-(BuNHC(=O))U-l (4) (( BuNHC(=O -)؛- 2 U-8 (5) (( BuNHC(=O -)؛- 3U-l (4) 2-(z-BuNHC(=O)) U-8 (5) 3-(z-BuNHC(=O)) WO 2022/133114 PCT/US2021/063852 115 L is CH2 and J is J-40.R1 R1L is CH2 and J is J-40.R1(R2)xU-l (4) 2-(CF3CH2NHC(=O))U-l (4) 2-(c-PrCH2NHC(=O))U-l (4) 2-(MeOCH2NHC(=O))U-l (4) 2-(MeOCH2CH2NHC(=O))U-l (4) 2-(CH2=CHCH2NHC(=O))U-l (4) 2-(N=CCH2NHC(=O))U-l (4) 2-(OH-N=CH)U-l (4) 2-(Me2NN=CH)U-l (4) 2-(MeOC(=O)NHN=CH)U-l (4) 2-(OHC(=O)CH2ON=CH)U-l (2) -U-l (2) 4-MeU-l (2) 4-EtU-l (2) 4-n-PrU-l (2) 4-z-PrU-l (2) 4-c-PrU-l (2) 4-n-BuU-l (2) 4-z-BuU-l (2) Bu -؛- 4U-l (2) 4-FU-l (2) 4-C1U-l (2) 4-BrU-l (2) 4-CF3U-l (2) 4-HOU-l (2) 4-N=CU-l (2) 4-CCH2U-l (2) 4-(MeO)U-l (2) 4-(MeOCH2)U-l (2) 4-(EtOCH2)U-l (2) 4-(CH(=O))U-l (2)4-(HOC(=O))U-l (2) 4-(MeOC(=O))U-l (2) 4-(EtOC(=O)) U-8 (5) 3-(CF3CH2NHC(=O))U-8 (5) 3-(c-PrCH2NHC(=O))U-8 (5) 3-(MeOCH2NHC(=O))U-8 (5) 3-(MeOCH2CH2NHC(=O))U-8 (5) 3-(CH2=CHCH2NHC(=O))U-8 (5) 3-(N=CCH2NHC(=O))U-8 (5) 3-(OH-N=CH)U-8 (5) 3-(Me2NN=CH)U-8 (5) 3-(MeOC(=O)NHN=CH)U-8 (5) 3-(OHC(=O)CH2ON=CH)U-12 (3) 1-MeU-12 (3) 1,5-di-MeU-12 (3) 1-Me, 5-EtU-12 (3) 1-Me, 5-n-PrU-12 (3) 1-Me, 5-i-PrU-12 (3) 1-Me, 5-c-PrU-12 (3) 1-Me, 5-n-BuU-12 (3) 1-Me, 5-i-BuU-12 (3) 1-Me, 5-t-BuU-12 (3) 1-Me, 5-FU-12 (3) 1-Me, 5-C1U-12 (3) 1-Me, 5-BrU-12 (3) 1-Me, 5-CF3U-12 (3) 1-Me, 5-HOU-12 (3) 1-Me, 5-=CU-12 (3) 1-Me, 5-CCH2U-12 (3) 1-Me, 5-(MeO)U-12 (3) 1-Me, 5-(MeOCH2)U-12 (3) 1-Me, 5-(EtOCH2)U-12 (3) 1-Me, 5-(CH(=O))U-12 (3)1-Me, 5-(HOC(=O))U-12 (3) 1-Me, 5-(MeOC(=O))U-12 (3) 1-Me, 5-(EtOC(=O)) WO 2022/133114 PCT/US2021/063852 116 CH2 and J is J-40. L is CH2 and J is J-40.R1(R2)xR1 R1U-l (2) 4-(z-PrOC(=O)) U-12 (3) 1-Me, 5-(z-PrOC(=O))U-l (2) 4-(n-PrOC(=O)) U-12 (3) 1-Me, 5-(n-PrOC(=O))U-l (2) 4-(BuOC(=O)) U-12 (3) 1-Me, 5-(BuOC(=O))U-l (2) 4-(z-BuOC(=O)) U-12 (3) 1-Me, 5-(z-BuOC(=O))U-l (2) (( BuOC(=O -)؛- 4 U-12 (3) (( BuOC(=O -)؛- 5 , 1 - MeU-l (2) 4-(CF3CH2OC(=O) U-12 (3) 1-Me, 5-(CF3CH2OC(=O)U-l (2) 4-(CH2=CHOC(=O)) U-12 (3) 1-Me, 5-(CH2=CHOC(=O))U-l (2) 4-(CH2=CHCH2OC(=O)) U-12 (3) 1-Me, 5-(CH2=CHCH2OC(=O))U-l (2) 4-(CH2=CBrCH2OC(=O)) U-12 (3) 1-Me, 5-(CH2=CBrCH2OC(=O))U-l (2) 4-(CH2=CHCF2OC(=O)) U-12 (3) 1-Me, 5-(CH2=CHCF2OC(=O))U-l (2) 4-(Me2C=CHCH2OC(=O)) U-12 (3) 1-Me, 5-(Me2C=CHCH2OC(=O))U-l (2) 4-(CH2=C(Me)CH2OC(=O)) U-12 (3) 1-Me, 5-(CH2=C(Me)CH2OC(=O))U-l (2) 4-(CH=CCH2OC(=O)) U-12 (3) 1-Me, 5-(CH=CCH2OC(=O))U-l (2) 4-(N=CCH2OC(=O)) U-12 (3) 1-Me, 5-(N=CCH2OC(=O))U-l (2) 4-(MeNHC(=O)) U-12 (3) 1-Me, 5-(MeNHC(=O))U-l (2) 4-(Me2NC(=O)) U-12 (3) 1-Me, 5-(Me2NC(=O))U-l (2) 4-(MeNHC(=O)) U-12 (3) 1-Me, 5-(MeNHC(=O))U-l (2) 4-(EtNHC(=0)) U-12 (3) 1-Me, 5-(EtNHC(=0))U-l (2) 4-(PrNHC(=O)) U-12 (3) 1-Me, 5-(PrNHC(=O))U-l (2) 4-(z-PrNHC(=0)) U-12 (3) 1-Me, 5-(z-PrNHC(=0))U-l (2) 4-(BuNHC(=O)) U-12 (3) 1-Me, 5-(BuNHC(=O))U-l (2) (( BuNHC(=O -)؛- 4 U-12 (3) (( BuNHC(=O -)؛- 5 , 1 - MeU-l (2) 4-(z-BuNHC(=O)) U-12 (3) 1-Me, 5-(z-BuNHC(=O))U-l (2) 4-(CF3CH2NHC(=O)) U-12 (3) 1-Me, 5-(CF3CH2NHC(=O))U-l (2) 4-(c-PrCH2NHC(=O)) U-12 (3) 1-Me, 5-(c-PrCH2NHC(=O))U-l (2) 4-(MeOCH2NHC(=O)) U-12 (3) 1-Me, 5-(MeOCH2NHC(=O))U-l (2) 4-(MeOCH2CH2NHC(=O)) U-12 (3) 1-Me, 5-(MeOCH2CH2NHC(=O))U-l (2) 4-(CH2=CHCH2NHC(=O)) U-12 (3) 1-Me, 5-(CH2=CHCH2NHC(=O))U-l (2) 4-(N=CCH2NHC(=O)) U-12 (3) 1-Me, 5-(N=CCH2NHC(=O))U-l (2) 4-(OH-N=CH) U-12 (3) 1-Me, 5-(OH-N=CH)U-l (2) 4-(Me2NN=CH) U-12 (3) 1-Me, 5-(Me2NN=CH)U-l (2) 4-(MeOC(=O)NHN=CH) U-12 (3) 1-Me, 5-(MeOC(=O)NHN=CH)U-l (2) 4-(OHC(=O)CH2ON=CH) U-12 (3) 1-Me, 5-(OHC(=O)CH2ON=CH) WO 2022/133114 PCT/US2021/063852 117 L is CH2 and J is J-40.R1 R1L is CH2 and J is J-40.R1(R2)xU-2 (2) -U-2 (2) 4-MeU-2 (2) 4-EtU-2 (2) 4-n-PrU-2 (2) 4-z-PrU-2 (2) 4-c-PrU-2 (2) 4-n-BuU-2 (2) 4-z-BuU-2 (2) Bu -؛- 4U-2 (2) 4-FU-2 (2) 4-C1U-2 (2) 4-BrU-2 (2) 4-CF3U-2 (2) 4-HOU-2 (2) 4-=CU-2 (2) 4-N=CCH2U-2 (2) 4-(MeO)U-2 (2) 4-(MeOCH2)U-2 (2) 4-(EtOCH2)U-2 (2) 4-(CH(=O))U-2 (2)4-(HOC(=O))U-2 (2) 4-(MeOC(=O))U-2 (2) 4-(EtOC(=O))U-2 (2) 4-(z-PrOC(=O))U-2 (2) 4-(n-PrOC(=O))U-2 (2) 4-(BuOC(=O))U-2 (2) 4-(z-BuOC(=O))U-2 (2) (( BuOC(=O -)؛- 4U-2 (2) 4-(CF3CH2OC(=O)U-2 (2) 4-(CH2=CHOC(=O))U-2 (2) 4-(CH2=CHCH2OC(=O))U-2 (2) 4-(CH2=CBrCH2OC(=O))U-2 (2) 4-(CH2=CHCF2OC(=O)) U-12 (1) -U-12 (1) 4-MeU-12 (1) 4-EtU-12 (1) 4-n-PrU-12 (1) 4-z-PrU-12 (1) 4-c-PrU-12 (1) 4-n-BuU-12 (1) 4-z-BuU-12 (1) 4-t-BuU-12 (1) 4-FU-12 (1) 4-C1U-12 (1) 4-BrU-12 (1) 4-CF3U-12 (1) 4-HOU-12 (1) 4-=CU-12 (1) 4-CCH2U-12 (1) 4-(MeO)U-12 (1) 4-(MeOCH2)U-12 (1) 4-(EtOCH2)U-12 (1) 4-(CH(=O))U-12 (1)4-(HOC(=O))U-12 (1) 4-(MeOC(=O))U-12 (1) 4-(EtOC(=O))U-12 (1) 4-(z-PrOC(=O))U-12 (1) 4-(n-PrOC(=O))U-12(l) 4-(BuOC(=O))U-12(l) 4-(z-BuOC(=O))U-12(l) (( BuOC(=O -)؛- 4U-12(l) 4-(CF3CH2OC(=O)U-12(l) 4-(CH2=CHOC(=O))U-12(l) 4-(CH2=CHCH2OC(=O))U-12(l) 4-(CH2=CBrCH2OC(=O))U-12(l) 4-(CH2=CHCF2OC(=O)) WO 2022/133114 PCT/US2021/063852 118 L is CH2 and J is J-40.R1(R2)xU-2 (2) 4-(Me2C=CHCH2OC(=O))U-2 (2) 4-(CH2=C(Me)CH2OC(=O))U-2 (2) 4-(CH=CCH2OC(=O))U-2 (2) 4-(N=CCH2OC(=O))U-2 (2) 4-(MeNHC(=O))U-2 (2) 4-(Me2NC(=O))U-2 (2) 4-(MeNHC(=O))U-2 (2) 4-(EtNHC(=0))U-2 (2) 4-(PrNHC(=O))U-2 (2) 4-(z-PrNHC(=0))U-2 (2) 4-(BuNHC(=O))U-2 (2) (( BuNHC(=O -)؛- 4U-2 (2) 4-(z-BuNHC(=O))U-2 (2) 4-(CF3CH2NHC(=O))U-2 (2) 4-(c-PrCH2NHC(=O))U-2 (2) 4-(MeOCH2NHC(=O))U-2 (2) 4-(MeOCH2CH2NHC(=O))U-2 (2) 4-(CH2=CHCH2NHC(=O))U-2 (2) 4-(N=CCH2NHC(=O))U-2 (2) 4-(OH-N=CH)U-2 (2) 4-(Me2NN=CH)U-2 (2) 4-(MeOC(=O)NHN=CH)U-2 (2) 4-(OHC(=O)CH2ON=CH)U-2 (4) -U-2 (4) 2-MeU-2 (4) 2-EtU-2 (4) 2-n-PrU-2 (4) 2-z-PrU-2 (4) 2-c-PrU-2 (4) 2-n-BuU-2 (4) 2-i-BuU-2 (4) 2-t-BuU-2 (4) 2-F L is CH2 and J is J-40.R1 R1U-12 (1) 4-(Me2C=CHCH2OC(=O))U-12 (1) 4-(CH2=C(Me)CH2OC(=O))U-12 (1) 4-(CH=CCH2OC(=O))U-12 (1) 4-(N=CCH2OC(=O))U-12 (1) 4-(MeNHC(=O))U-12 (1) 4-(Me2NC(=O))U-12 (1) 4-(MeNHC(=O))U-12 (1) 4-(EtNHC(=0))U-12 (1) 4-(PrNHC(=O))U-12 (1) 4-(z-PrNHC(=0))U-12 (1) 4-(BuNHC(=O))U-12 (1) (( BuNHC(=O -)؛- 4U-12 (1) 4-(z-BuNHC(=O))U-12 (1) 4-(CF3CH2NHC(=O))U-12 (1) 4-(c-PrCH2NHC(=O))U-12 (1) 4-(MeOCH2NHC(=O))U-12 (1) 4-(MeOCH2CH2NHC(=O))U-12 (1) 4-(CH2=CHCH2NHC(=O))U-12 (1) 4-(N=CCH2NHC(=O))U-12 (1) 4-(OH-N=CH)U-12 (1) 4-(Me2NN=CH)U-12 (1) 4-(MeOC(=O)NHN=CH)U-12 (1) 4-(OHC(=O)CH2ON=CH)U-69 (1) -U-69 (1) 4-MeU-69 (1) 4-EtU-69 (1) 4-n-PrU-69 (1) 4-z-PrU-69 (1) 4-c-PrU-69 (1) 4-n-BuU-69 (1) 4--BuU-69 (1) Bu -؛- 4U-69 (1) 4-F WO 2022/133114 PCT/US2021/063852 119 CH2 and J is J-40. L is CH2 and J is J-40.R1(R2)xR1 R1U-2 (4) 2-C1 U-69 (1) 4-C1U-2 (4) 2-Br U-69 (1) 4-BrU-2 (4) 2-CF3 U-69 (1) 4-CF3U-2 (4) 2-HO U-69 (1) 4-HOU-2 (4) 2-=C U-69 (1) 4-=CU-2 (4) 2-N=CCH2 U-69 (1) 4-CCH2U-2 (4) 2-(MeO) U-69 (1) 4-(MeO)U-2 (4) 2-(MeOCH2) U-69 (1) 4-(MeOCH2)U-2 (4) 2-(EtOCH2) U-69 (1) 4-(EtOCH2)U-2 (4) 2-(CH(=O)) U-69 (1) 4-(CH(=O))U-2 (4)2-(HOC(=O))U-69 (1)4-(HOC(=O))U-2 (4) 2-(MeOC(=O)) U-69 (1) 4-(MeOC(=O))U-2 (4) 2-(EtOC(=O)) U-69 (1) 4-(EtOC(=O))U-2 (4) 2-(z-PrOC(=O)) U-69 (1) 4-(z-PrOC(=O))U-2 (4) 2-(n-PrOC(=O)) U-69 (1) 4-(n-PrOC(=O))U-2 (4) 2-(BuOC(=O)) U-69 (1) 4-(BuOC(=O))U-2 (4) 2-(z-BuOC(=O)) U-69 (1) 4-(z-BuOC(=O))U-2 (4) (( BuOC(=O -)؛- 2 U-69 (1) (( BuOC(=O -)؛- 4U-2 (4) 2-(CF3CH2OC(=O) U-69 (1) 4-(CF3CH2OC(=O)U-2 (4) 2-(CH2=CHOC(=O)) U-69 (1) 4-(CH2=CHOC(=O))U-2 (4) 2-(CH2=CHCH2OC(=O)) U-69 (1) 4-(CH2=CHCH2OC(=O))U-2 (4) 2-(CH2=CBrCH2OC(=O)) U-69 (1) 4-(CH2=CBrCH2OC(=O))U-2 (4) 2-(CH2=CHCF2OC(=O)) U-69 (1) 4-(CH2=CHCF2OC(=O))U-2 (4) 2-(Me2C=CHCH2OC(=O)) U-69 (1) 4-(Me2C=CHCH2OC(=O))U-2 (4) 2-(CH2=C(Me)CH2OC(=O)) U-69 (1) 4-(CH2=C(Me)CH2OC(=O))U-2 (4) 2-(CH=CCH2OC(=O)) U-69 (1) 4-(CH=CCH2OC(=O))U-2 (4) 2-(N=CCH2OC(=O)) U-69 (1) 4-(N=CCH2OC(=O))U-2 (4) 2-(MeNHC(=O)) U-69 (1) 4-(MeNHC(=O))U-2 (4) 2-(Me2NC(=O)) U-69 (1) 4-(Me2NC(=O))U-2 (4) 2-(MeNHC(=O)) U-69 (1) 4-(MeNHC(=O))U-2 (4) 2-(EtNHC(=0)) U-69 (1) 4-(EtNHC(=0))U-2 (4) 2-(PrNHC(=O)) U-69 (1) 4-(PrNHC(=O))U-2 (4) 2-(z-PrNHC(=0)) U-69 (1) 4-(z-PrNHC(=0)) WO 2022/133114 PCT/US2021/063852 120 L is CH2 and J is J-40. L is CH2 and J is J-40.R1(R2)xR1 R1U-2 (4) 2-(BuNHC(=O)) U-69 (1) 4-(BuNHC(=O))U-2 (4) (( BuNHC(=O -)؛- 2 U-69 (1) (( BuNHC(=O -)؛- 4U-2 (4) 2-(z-BuNHC(=O)) U-69 (1) 4-(z-BuNHC(=O))U-2 (4) 2-(CF3CH2NHC(=O)) U-69 (1) 4-(CF3CH2NHC(=O))U-2 (4) 2-(c-PrCH2NHC(=O)) U-69 (1) 4-(c-PrCH2NHC(=O))U-2 (4) 2-(MeOCH2NHC(=O)) U-69 (1) 4-(MeOCH2NHC(=O))U-2 (4) 2-(MeOCH2CH2NHC(=O)) U-69 (1) 4-(MeOCH2CH2NHC(=O))U-2 (4) 2-(CH2=CHCH2NHC(=O)) U-69 (1) 4-(CH2=CHCH2NHC(=O))U-2 (4) 2-(N=CCH2NHC(=O)) U-69 (1) 4-(N=CCH2NHC(=O))U-2 (4) 2-(OH-N=CH) U-69 (1) 4-(OH-N=CH)U-2 (4) 2-(Me2NN=CH) U-69 (1) 4-(Me2NN=CH)U-2 (4) 2-(MeOC(=O)NHN=CH) U-69 (1) 4-(MeOC(=O)NHN=CH)U-2 (4) 2-(OHC(=O)CH2ON=CH) U-69 (1) 4-(OHC(=O)CH2ON=CH)The present disclosure also includes Tables 1A through 47A, each of which is constructed the same as Table 1 above, except that the row heading in Table 1 (i.e. "L is CH2 and J is J-40") is replaced with the respective row heading shown below.Table Row Heading Table Row Heading1A L is CH2CH2 and J is J-40. 25A L is OCH2 and J is J-27.2A L is CH2(Me) and J is J-40. 26A L is CH2O and J is J-27.3A L is CH2CH2CH2and J is J-40. 27A L is CH2OCH2 and J is J-27.4A L is OCH2 and J is J-40. 28A L is CH2 and J is J-63.5A L is CH2O and J is J-40. 29A L is CH2CH2 and J is J-63.6A L is CH2OCH2 and J is J-40. 30A L is CH2(Me) and J is J-63.7A L is CH2 and J is J-4. 31A L is CH2CH2CH2and J is J-63.8A L is CH2CH2 and J is J-4. 32A L is OCH2 and J is J-63.9A L is CH2(Me) and J is J-4. 33A L is CH2O and J is J-63.10A L is CH2CH2CH2and J is J-4. 34A L is CH2OCH2 and J is J-63.11A L is OCH2 and J is J-4. 35A L is CH2 and J is J-73.12A L is CH2O and J is J-4. 36A L is CH2CH2 and J is J-73.13A L is CH2OCH2 and J is J-4. 37A L is CH2(Me) and J is J-73.14A L is CH2 and J is J-18. 38A L is CH2CH2CH2and J is J-73.15A Lis CH2CH2 and Jis J-18. 39A L is OCH2 and J is J-73.16A L is CH2(Me) and J is J-18. 40A L is CH2O and J is J-73.
WO 2022/133114 PCT/US2021/063852 121 Table 2 discloses specific compounds Formula 3 which are useful as process intermediates for preparing compounds of Formula 1,as described in Schemes 2 and 10 above.
Table Row Heading Table Row Heading17A L is CH2CH2CH2and J is J-18. 41A L is CH2OCH2 and J is J-73.18A L is OCH2 and J is J-18. 42A L is CH2 and J is J-93.19A L is CH2O and J is J-18. 43A Lis CH2CH2 and J is J-93.20A L is CH2OCH2 and J is J-18. 44A L is CH2(Me) and J is J-93.21A L is CH2 and J is J-27. 45A L is CH2CH2CH2and J is J-93.22A L is CH2CH2 and J is J-27. 46A L is OCH2 and J is J-93.23A L is CH2(Me) and J is J-27. 47A L is CH2O and J is J-93.24A L is CH2CH2CH2and J is J-27. 48A L is CH2OCH2 and J is J-93.
TABLE 2 The definitions of R^ and J in Table 2 are as defined Exhibits A and B in the above Embodiments. In thecolumn R ؛, the number in parentheses following the U-ring refers to the attachment point of the ring to L. The (R^)x column refers to the substituent(s) attached to the U-ring as shown in Exhibit A above. A dash in the (R^)x column means that no R، substituent is present and the remaining valences are occupied by hydrogenatoms.L is CH2 and J is J-40. L is CH2 and J is J-40.R1(R2)xR1 R1U-l (4) - U-8 (5) -U-l (4) 2-Me U-8 (5) 3-MeU-l (4) 2-Et U-8 (5) 3-EtU-l (4) 2-n-Pr U-8 (5) 3-n-PrU-l (4) 2-z-Pr U-8 (5) 3-LPrU-l (4) 2-c-Pr U-8 (5) 3-c-PrU-l (4) 2-n-Bu U-8 (5) 3-n-BuU-l (4) 2-i-Bu U-8 (5) 3--BuU-l (4) 2-t-Bu U-8 (5) 3-t-BuU-l (4) 2-F U-8 (5) 3-FU-l (4) 2-C1 U-8 (5) 3-C1 WO 2022/133114 PCT/US2021/063852 122 CH2 and J is J-40. L is CH2 and J is J-40.R1(R2)xR1 R1U-l (4) 2-Br U-8 (5) 3-BrU-l (4) 2-CF3 U-8 (5) 3-CF3U-l (4) 2-HO U-8 (5) 3-HOU-l (4) 2-N=C U-8 (5) 3-N=CU-l (4) 2-N=CCH2 U-8 (5) 3-N=CCH2U-l (4) 2-(MeO) U-8 (5) 3-(MeO)U-l (4) 2-(MeOCH2) U-8 (5) 3-(MeOCH2)U-l (4) 2-(EtOCH2) U-8 (5) 3-(EtOCH2)U-l (4) 2-(CH(=O)) U-8 (5) 3-(CH(=O))U-l (4) 2-(HOC(=O)) U-8 (5)3-(HOC(=O))U-l (4) 2-(MeOC(=O)) U-8 (5) 3-(MeOC(=O))U-l (4) 2-(EtOC(=O)) U-8 (5) 3-(EtOC(=O))U-l (4) 2-(z-PrOC(=O)) U-8 (5) 3-(z-PrOC(=O))U-l (4) 2-(n-PrOC(=O)) U-8 (5) 3-(n-PrOC(=O))U-l (4) 2-(BuOC(=O)) U-8 (5) 4-(BuOC(=O))U-l (4) 2-(z-BuOC(=O)) U-8 (5) 3-(z-BuOC(=O))U-l (4) (( BuOC(=O -)؛- 2 U-8 (5) (( BuOC(=O -)؛- 3U-l (4) 2-(CF3CH2OC(=O) U-8 (5) 3-(CF3CH2OC(=O)U-l (4) 2-(CH2=CHOC(=O)) U-8 (5) 3-(CH2=CHOC(=O))U-l (4) 2-(CH2=CHCH2OC(=O)) U-8 (5) 3-(CH2=CHCH2OC(=O))U-l (4) 2-(CH2=CBrCH2OC(=O)) U-8 (5) 3-(CH2=CBrCH2OC(=O))U-l (4) 2-(CH2=CHCF2OC(=O)) U-8 (5) 3-(CH2=CHCF2OC(=O))U-l (4) 2-(Me2C=CHCH2OC(=O)) U-8 (5) 3-(Me2C=CHCH2OC(=O))U-l (4) 2-(CH2=C(Me)CH2OC(=O)) U-8 (5) 3-(CH2=C(Me)CH2OC(=O))U-l (4) 2-(CH=CCH2OC(=O)) U-8 (5) 3-(CH=CCH2OC(=O))U-l (4) 2-(N=CCH2OC(=O)) U-8 (5) 3-(N=CCH2OC(=O))U-l (4) 2-(MeNHC(=O)) U-8 (5) 3-(MeNHC(=O))U-l (4) 2-(Me2NC(=O)) U-8 (5) 3-(Me2NC(=O))U-l (4) 2-(MeNHC(=O)) U-8 (5) 3-(MeNHC(=O))U-l (4) 2-(EtNHC(=0)) U-8 (5) 3-(EtNHC(=0))U-l (4) 2-(PrNHC(=O)) U-8 (5) 3-(PrNHC(=O))U-l (4) 2-(z-PrNHC(=0)) U-8 (5) 3-(z-PrNHC(=0))U-l (4) 2-(BuNHC(=O)) U-8 (5) 3-(BuNHC(=O)) WO 2022/133114 PCT/US2021/063852 123 L is CH2 and J is J-40.R1 R1L is CH2 and J is J-40.R1(R2)xU-l (4) (( BuNHC(=O -)؛- 2U-l (4) 2-(z-BuNHC(=O))U-l (4) 2-(CF3CH2NHC(=O))U-l (4) 2-(c-PrCH2NHC(=O))U-l (4) 2-(MeOCH2NHC(=O))U-l (4) 2-(MeOCH2CH2NHC(=O))U-l (4) 2-(CH2=CHCH2NHC(=O))U-l (4) 2-(N=CCH2NHC(=O))U-l (4) 2-(OH-N=CH)U-l (4) 2-(Me2NN=CH)U-l (4) 2-(MeOC(=O)NHN=CH)U-l (4) 2-(OHC(=O)CH2ON=CH)U-l (2) -U-l (2) 4-MeU-l (2) 4-EtU-l (2) 4-n-PrU-l (2) 4-z-PrU-l (2) 4-c-PrU-l (2) 4-n-BuU-l (2) 4--BuU-l (2) Bu -؛- 4U-l (2) 4-FU-l (2) 4-C1U-l (2) 4-BrU-l (2) 4-CF3U-l (2) 4-HOU-l (2) 4-N=CU-l (2) 4-CCH2U-l (2) 4-(MeO)U-l (2) 4-(MeOCH2)U-l (2) 4-(EtOCH2)U-l (2) 4-(CH(=O))U-l (2)4-(HOC(=O)) U-8 (5) (( BuNHC(=O -)؛- 3U-8 (5) 3-(z-BuNHC(=O))U-8 (5) 3-(CF3CH2NHC(=O))U-8 (5) 3-(c-PrCH2NHC(=O))U-8 (5) 3-(MeOCH2NHC(=O))U-8 (5) 3-(MeOCH2CH2NHC(=O))U-8 (5) 3-(CH2=CHCH2NHC(=O))U-8 (5) 3-(N=CCH2NHC(=O))U-8 (5) 3-(OH-N=CH)U-8 (5) 3-(Me2NN=CH)U-8 (5) 3-(MeOC(=O)NHN=CH)U-8 (5) 3-(OHC(=O)CH2ON=CH)U-12 (3) 1-MeU-12 (3) 1,5-di-MeU-12 (3) 1-Me, 5-EtU-12 (3) 1-Me, 5-n-PrU-12 (3) 1-Me, 5-i-PrU-12 (3) 1-Me, 5-c-PrU-12 (3) 1-Me, 5-n-BuU-12 (3) 1-Me, 5-i-BuU-12 (3) 1-Me, 5-t-BuU-12 (3) 1-Me, 5-FU-12 (3) 1-Me, 5-C1U-12 (3) 1-Me, 5-BrU-12 (3) 1-Me, 5-CF3U-12 (3) 1-Me, 5-HOU-12 (3) 1-Me, 5-=CU-12 (3) 1-Me, 5-CCH2U-12 (3) 1-Me, 5-(MeO)U-12 (3) 1-Me, 5-(MeOCH2)U-12 (3) 1-Me, 5-(EtOCH2)U-12 (3) 1-Me, 5-(CH(=O))U-12 (3)1-Me, 5-(HOC(=O)) WO 2022/133114 PCT/US2021/063852 124 CH2 and J is J-40. L is CH2 and J is J-40.R1(R2)xR1 R1U-l (2) 4-(MeOC(=O)) U-12 (3) 1-Me, 5-(MeOC(=O))U-l (2) 4-(EtOC(=O)) U-12 (3) 1-Me, 5-(EtOC(=O))U-l (2) 4-(z-PrOC(=O)) U-12 (3) 1-Me, 5-(z-PrOC(=O))U-l (2) 4-(n-PrOC(=O)) U-12 (3) 1-Me, 5-(n-PrOC(=O))U-l (2) 4-(BuOC(=O)) U-12 (3) 1-Me, 5-(BuOC(=O))U-l (2) 4-(z-BuOC(=O)) U-12 (3) 1-Me, 5-(z-BuOC(=O))U-l (2) (( BuOC(=O -)؛- 4 U-12 (3) (( BuOC(=O -)؛- 5 , 1 - MeU-l (2) 4-(CF3CH2OC(=O) U-12 (3) 1-Me, 5-(CF3CH2OC(=O)U-l (2) 4-(CH2=CHOC(=O)) U-12 (3) 1-Me, 5-(CH2=CHOC(=O))U-l (2) 4-(CH2=CHCH2OC(=O)) U-12 (3) 1-Me, 5-(CH2=CHCH2OC(=O))U-l (2) 4-(CH2=CBrCH2OC(=O)) U-12 (3) 1-Me, 5-(CH2=CBrCH2OC(=O))U-l (2) 4-(CH2=CHCF2OC(=O)) U-12 (3) 1-Me, 5-(CH2=CHCF2OC(=O))U-l (2) 4-(Me2C=CHCH2OC(=O)) U-12 (3) 1-Me, 5-(Me2C=CHCH2OC(=O))U-l (2) 4-(CH2=C(Me)CH2OC(=O)) U-12 (3) 1-Me, 5-(CH2=C(Me)CH2OC(=O))U-l (2) 4-(CH=CCH2OC(=O)) U-12 (3) 1-Me, 5-(CH=CCH2OC(=O))U-l (2) 4-(N=CCH2OC(=O)) U-12 (3) 1-Me, 5-(N=CCH2OC(=O))U-l (2) 4-(MeNHC(=O)) U-12 (3) 1-Me, 5-(MeNHC(=O))U-l (2) 4-(Me2NC(=O)) U-12 (3) 1-Me, 5-(Me2NC(=O))U-l (2) 4-(MeNHC(=O)) U-12 (3) 1-Me, 5-(MeNHC(=O))U-l (2) 4-(EtNHC(=0)) U-12 (3) 1-Me, 5-(EtNHC(=0))U-l (2) 4-(PrNHC(=O)) U-12 (3) 1-Me, 5-(PrNHC(=O))U-l (2) 4-(z-PrNHC(=0)) U-12 (3) 1-Me, 5-(z-PrNHC(=0))U-l (2) 4-(BuNHC(=O)) U-12 (3) 1-Me, 5-(BuNHC(=O))U-l (2) (( BuNHC(=O -)؛- 4 U-12 (3) (( BuNHC(=O -)؛- 5 , 1 - MeU-l (2) 4-(z-BuNHC(=O)) U-12 (3) 1-Me, 5-(z-BuNHC(=O))U-l (2) 4-(CF3CH2NHC(=O)) U-12 (3) 1-Me, 5-(CF3CH2NHC(=O))U-l (2) 4-(c-PrCH2NHC(=O)) U-12 (3) 1-Me, 5-(c-PrCH2NHC(=O))U-l (2) 4-(MeOCH2NHC(=O)) U-12 (3) 1-Me, 5-(MeOCH2NHC(=O))U-l (2) 4-(MeOCH2CH2NHC(=O)) U-12 (3) 1-Me, 5-(MeOCH2CH2NHC(=O))U-l (2) 4-(CH2=CHCH2NHC(=O)) U-12 (3) 1-Me, 5-(CH2=CHCH2NHC(=O))U-l (2) 4-(N=CCH2NHC(=O)) U-12 (3) 1-Me, 5-(N=CCH2NHC(=O))U-l (2) 4-(OH-N=CH) U-12 (3) 1-Me, 5-(OH-N=CH)U-l (2) 4-(Me2NN=CH) U-12 (3) 1-Me, 5-(Me2NN=CH) WO 2022/133114 PCT/US2021/063852 125 CH2 and J is J-40. L is CH2 and J is J-40.R1(R2)xR1 R1U-l (2) 4-(MeOC(=O)NHN=CH) U-12 (3) 1-Me, 5-(MeOC(=O)NHN=CH)U-l (2) 4-(OHC(=O)CH2ON=CH) U-12 (3) 1-Me, 5-(OHC(=O)CH2ON=CH)U-2 (2) - U-12 (1) -U-2 (2) 4-Me U-12 (1) 4-MeU-2 (2) 4-Et U-12 (1) 4-EtU-2 (2) 4-n-Pr U-12 (1) 4-n-PrU-2 (2) 4-z-Pr U-12 (1) 4-z-PrU-2 (2) 4-c-Pr U-12 (1) 4-c-PrU-2 (2) 4-n-Bu U-12 (1) 4-n-BuU-2 (2) 4-z-Bu U-12 (1) 4-z-BuU-2 (2) Bu -؛- 4 U-12 (1) 4-t-BuU-2 (2) 4-F U-12 (1) 4-FU-2 (2) 4-C1 U-12 (1) 4-C1U-2 (2) 4-Br U-12 (1) 4-BrU-2 (2) 4-CF3 U-12 (1) 4-CF3U-2 (2) 4-HO U-12 (1) 4-HOU-2 (2) 4-=C U-12 (1) 4-=CU-2 (2) 4-N=CCH2 U-12 (1) 4-CCH2U-2 (2) 4-(MeO) U-12 (1) 4-(MeO)U-2 (2) 4-(MeOCH2) U-12 (1) 4-(MeOCH2)U-2 (2) 4-(EtOCH2) U-12 (1) 4-(EtOCH2)U-2 (2) 4-(CH(=O)) U-12 (1) 4-(CH(=O))U-2 (2)4-(HOC(=O))U-12 (1)4-(HOC(=O))U-2 (2) 4-(MeOC(=O)) U-12 (1) 4-(MeOC(=O))U-2 (2) 4-(EtOC(=O)) U-12 (1) 4-(EtOC(=O))U-2 (2) 4-(z-PrOC(=O)) U-12 (1) 4-(z-PrOC(=O))U-2 (2) 4-(n-PrOC(=O)) U-12(l) 4-(n-PrOC(=O))U-2 (2) 4-(BuOC(=O)) U-12(l) 4-(BuOC(=O))U-2 (2) 4-(z-BuOC(=O)) U-12(l) 4-(z-BuOC(=O))U-2 (2) (( BuOC(=O -)؛- 4 U-12(l) (( BuOC(=O -)؛- 4U-2 (2) 4-(CF3CH2OC(=O) U-12(l) 4-(CF3CH2OC(=O)U-2 (2) 4-(CH2=CHOC(=O)) U-12(l) 4-(CH2=CHOC(=O))U-2 (2) 4-(CH2=CHCH2OC(=O)) U-12(l) 4-(CH2=CHCH2OC(=O)) WO 2022/133114 PCT/US2021/063852 126 L is CH2 and J is J-40.R1(R2)xU-2 (2) 4-(CH2=CBrCH2OC(=O))U-2 (2) 4-(CH2=CHCF2OC(=O))U-2 (2) 4-(Me2C=CHCH2OC(=O))U-2 (2) 4-(CH2=C(Me)CH2OC(=O))U-2 (2) 4-(CH=CCH2OC(=O))U-2 (2) 4-(N=CCH2OC(=O))U-2 (2) 4-(MeNHC(=O))U-2 (2) 4-(Me2NC(=O))U-2 (2) 4-(MeNHC(=O))U-2 (2) 4-(EtNHC(=0))U-2 (2) 4-(PrNHC(=O))U-2 (2) 4-(z-PrNHC(=0))U-2 (2) 4-(BuNHC(=O))U-2 (2) (( BuNHC(=O -)؛- 4U-2 (2) 4-(z-BuNHC(=O))U-2 (2) 4-(CF3CH2NHC(=O))U-2 (2) 4-(c-PrCH2NHC(=O))U-2 (2) 4-(MeOCH2NHC(=O))U-2 (2) 4-(MeOCH2CH2NHC(=O))U-2 (2) 4-(CH2=CHCH2NHC(=O))U-2 (2) 4-(N=CCH2NHC(=O))U-2 (2) 4-(OH-N=CH)U-2 (2) 4-(Me2NN=CH)U-2 (2) 4-(MeOC(=O)NHN=CH)U-2 (2) 4-(OHC(=O)CH2ON=CH)U-2 (4) -U-2 (4) 2-MeU-2 (4) 2-EtU-2 (4) 2-n-PrU-2 (4) 2-z-PrU-2 (4) 2-c-PrU-2 (4) 2-n-BuU-2 (4) 2-i-Bu L is CH2 and J is J-40.R1 R1U-12 (1) 4-(CH2=CBrCH2OC(=O))U-12 (1) 4-(CH2=CHCF2OC(=O))U-12 (1) 4-(Me2C=CHCH2OC(=O))U-12 (1) 4-(CH2=C(Me)CH2OC(=O))U-12 (1) 4-(CH=CCH2OC(=O))U-12 (1) 4-(N=CCH2OC(=O))U-12 (1) 4-(MeNHC(=O))U-12 (1) 4-(Me2NC(=O))U-12 (1) 4-(MeNHC(=O))U-12 (1) 4-(EtNHC(=0))U-12 (1) 4-(PrNHC(=O))U-12 (1) 4-(z-PrNHC(=0))U-12 (1) 4-(BuNHC(=O))U-12 (1) (( BuNHC(=O -)؛- 4U-12 (1) 4-(z-BuNHC(=O))U-12 (1) 4-(CF3CH2NHC(=O))U-12 (1) 4-(c-PrCH2NHC(=O))U-12 (1) 4-(MeOCH2NHC(=O))U-12 (1) 4-(MeOCH2CH2NHC(=O))U-12 (1) 4-(CH2=CHCH2NHC(=O))U-12 (1) 4-(N=CCH2NHC(=O))U-12 (1) 4-(OH-N=CH)U-12 (1) 4-(Me2NN=CH)U-12 (1) 4-(MeOC(=O)NHN=CH)U-12 (1) 4-(OHC(=O)CH2ON=CH)U-69 (1) -U-69 (1) 4-MeU-69 (1) 4-EtU-69 (1) 4-n-PrU-69 (1) 4-z-PrU-69 (1) 4-c-PrU-69 (1) 4-n-BuU-69 (1) 4--Bu WO 2022/133114 PCT/US2021/063852 127 L is CH2 and J is J-40.R1(R2)xU-2 (4) 2-t-BuU-2 (4) 2-FU-2 (4) 2-C1U-2 (4) 2-BrU-2 (4) 2-CF3U-2 (4) 2-HOU-2 (4) 2-=CU-2 (4) 2-N=CCH2U-2 (4) 2-(MeO)U-2 (4) 2-(MeOCH2)U-2 (4) 2-(EtOCH2)U-2 (4) 2-(CH(=O))U-2 (4)2-(HOC(=O))U-2 (4) 2-(MeOC(=O))U-2 (4) 2-(EtOC(=O))U-2 (4) 2-(z-PrOC(=O))U-2 (4) 2-(n-PrOC(=O))U-2 (4) 2-(BuOC(=O))U-2 (4) 2-(z-BuOC(=O))U-2 (4) (( BuOC(=O -)؛- 2U-2 (4) 2-(CF3CH2OC(=O)U-2 (4) 2-(CH2=CHOC(=O))U-2 (4) 2-(CH2=CHCH2OC(=O))U-2 (4) 2-(CH2=CBrCH2OC(=O))U-2 (4) 2-(CH2=CHCF2OC(=O))U-2 (4) 2-(Me2C=CHCH2OC(=O))U-2 (4) 2-(CH2=C(Me)CH2OC(=O))U-2 (4) 2-(CH=CCH2OC(=O))U-2 (4) 2-(N=CCH2OC(=O))U-2 (4) 2-(MeNHC(=O))U-2 (4) 2-(Me2NC(=O))U-2 (4) 2-(MeNHC(=O))U-2 (4) 2-(EtNHC(=0)) L is CH2 and J is J-40.R1 R1U-69 (1) Bu -؛- 4U-69 (1) 4-FU-69 (1) 4-C1U-69 (1) 4-BrU-69 (1) 4-CF3U-69 (1) 4-HOU-69 (1) 4-=CU-69 (1) 4-CCH2U-69 (1) 4-(MeO)U-69 (1) 4-(MeOCH2)U-69 (1) 4-(EtOCH2)U-69 (1) 4-(CH(=O))U-69 (1)4-(HOC(=O))U-69 (1) 4-(MeOC(=O))U-69 (1) 4-(EtOC(=O))U-69 (1) 4-(z-PrOC(=O))U-69 (1) 4-(n-PrOC(=O))U-69 (1) 4-(BuOC(=O))U-69 (1) 4-(z-BuOC(=O))U-69 (1) (( BuOC(=O -)؛- 4U-69 (1) 4-(CF3CH2OC(=O)U-69 (1) 4-(CH2=CHOC(=O))U-69 (1) 4-(CH2=CHCH2OC(=O))U-69 (1) 4-(CH2=CBrCH2OC(=O))U-69 (1) 4-(CH2=CHCF2OC(=O))U-69 (1) 4-(Me2C=CHCH2OC(=O))U-69 (1) 4-(CH2=C(Me)CH2OC(=O))U-69 (1) 4-(CH=CCH2OC(=O))U-69 (1) 4-(N=CCH2OC(=O))U-69 (1) 4-(MeNHC(=O))U-69 (1) 4-(Me2NC(=O))U-69 (1) 4-(MeNHC(=O))U-69 (1) 4-(EtNHC(=0)) WO 2022/133114 PCT/US2021/063852 128 L is CH2 and J is J-40. L is CH2 and J is J-40.R1(R2)xR1 R1U-2 (4) 2-(PrNHC(=O)) U-69 (1) 4-(PrNHC(=O))U-2 (4) 2-(z'-PrNHC(=O)) U-69 (1) 4-(z-PrNHC(=O))U-2 (4) 2-(BuNHC(=O)) U-69 (1) 4-(BuNHC(=O))U-2 (4) (( BuNHC(=O -)؛- 2 U-69 (1) (( BuNHC(=O -)؛- 4U-2 (4) 2-(z-BuNHC(=O)) U-69 (1) 4-(z-BuNHC(=O))U-2 (4) 2-(CF3CH2NHC(=O)) U-69 (1) 4-(CF3CH2NHC(=O))U-2 (4) 2-(c-PrCH2NHC(=O)) U-69 (1) 4-(c-PrCH2NHC(=O))U-2 (4) 2-(MeOCH2NHC(=O)) U-69 (1) 4-(MeOCH2NHC(=O))U-2 (4) 2-(MeOCH2CH2NHC(=O)) U-69 (1) 4-(MeOCH2CH2NHC(=O))U-2 (4) 2-(CH2=CHCH2NHC(=O)) U-69 (1) 4-(CH2=CHCH2NHC(=O))U-2 (4) 2-(N=CCH2NHC(=O)) U-69 (1) 4-(N=CCH2NHC(=O))U-2 (4) 2-(OH-N=CH) U-69 (1) 4-(OH-N=CH)U-2 (4) 2-(Me2NN=CH) U-69 (1) 4-(Me2NN=CH)U-2 (4) 2-(MeOC(=O)NHN=CH) U-69 (1) 4-(MeOC(=O)NHN=CH)U-2 (4) 2-(OHC(=O)CH2ON=CH) U-69 (1) 4-(OHC(=O)CH2ON=CH)The present disclosure also includes Tables IB through 47B, each of which is constructed the same as Table 2 above, except that the row heading in Table 2 (i.e. "L is CH2 and J is J-40") is replaced with the respective row heading shown below.Table Row Heading Table Row HeadingIB L is CH2CH2 and J is J-40. 25B L is OCH2 and J is J-27.2B L is CH2(Me) and J is J-40. 26B L is CH2O and J is J-27.3B L is CH2CH2CH2and J is J-40. 27B L is CH2OCH2 and J is J-27.4B L is OCH2 and J is J-40. 28B L is CH2 and J is J-63.5B L is CH2O and J is J-40. 29B L is CH2CH2 and J is J-63.6B L is CH2OCH2 and J is J-40. 30B L is CH2(Me) and J is J-63.7B L is CH2 and J is J-4. 31B L is CH2CH2CH2and J is J-63.8B L is CH2CH2 and J is J-4. 32B L is OCH2 and J is J-63.9B L is CH2(Me) and J is J-4. 33B L is CH2O and J is J-63.10B L is CH2CH2CH2and J is J-4. 34B L is CH2OCH2 and J is J-63.11B L is OCH2 and J is J-4. 35B L is CH2 and J is J-73.12B L is CH2O and J is J-4. 36B L is CH2CH2 and J is J-73.13B L is CH2OCH2 and J is J-4. 37B L is CH2(Me) and J is J-73.14B L is CH2 and J is J-18. 38B L is CH2CH2CH2and J is J-73.
WO 2022/133114 PCT/US2021/063852 129 Table Row Heading Table Row Heading15B Lis CH2CH2 and J is J-18. 39B L is OCH2 and J is J-73.16B L is CH2(Me) and J is J-18. 40B L is CH2O and J is J-73.17B L is CH2CH2CH2and J is J-18. 41B L is CH2OCH2 and J is J-73.18B L is OCH2 and J is J-18. 42B L is CH2 and J is J-93.19B L is CH2O and J is J-18. 43B L is CH2CH2 and J is J-93.20B L is CH2OCH2 and J is J-18. 44B L is CH2(Me) and J is J-93.21B L is CH2 and J is J-27. 45B L is CH2CH2CH2and J is J-93.22B L is CH2CH2 and J is J-27. 46B L is OCH2 and J is J-93.23B L is CH2(Me) and J is J-27. 47B L is CH2O and J is J-93.24B L is CH2CH2CH2and J is J-27. 48B L is CH2OCH2 and J is J-93.
Formulation/U tilityA compound of Formula 1 of this invention (including A-oxides and salts thereof), or a mixture (i.e. composition) comprising the compound with at least one additional fungicidal compound as described in the Summary of the Invention, will generally be used as a fungicidal active ingredient in a composition, i.e. formulation, with at least one additional component selected from the group consisting of surfactants, solid diluents and liquid diluents, which serve as a carrier. The formulation or composition ingredients are selected to be consistent with the physical properties of the active ingredient, mode of application and environmental factors such as soil type, moisture and temperature.The mixtures of component (a) (i.e. at least one compound of Formula 1, N-oxides, or salts thereof) with component (b) (e.g., selected from (bl) to (b54) and salts thereof as described above) and/or one or more other biologically active compound or agent (i.e. insecticides, other fungicides, nematocides, acaricides, herbicides and other biological agents) can be formulated in a number of ways, including:(i) component (a), component (b) and/or one or more other biologically active compounds or agents can be formulated separately and applied separately or applied simultaneously in an appropriate weight ratio, e.g., as a tank mix; or(ii) component (a), component (b) and/or one or more other biologically active compounds or agents can be formulated together in the proper weight ratio.Useful formulations include both liquid and solid compositions. Liquid compositions include solutions (including emulsifiable concentrates), suspensions, emulsions (including microemulsions, oil-in-water emulsions, flowable concentrates and/or suspoemulsions) and the like, which optionally can be thickened into gels. The general types of aqueous liquid WO 2022/133114 PCT/US2021/063852 130 compositions are soluble concentrate, suspension concentrate, capsule suspension, concentrated emulsion, microemulsion, oil-in-water emulsion, flowable concentrate and suspoemulsion. The general types of nonaqueous liquid compositions are emulsifiable concentrate, microemulsifiable concentrate, dispersible concentrate and oil dispersion.The general types of solid compositions are dusts, powders, granules, pellets, prills, pastilles, tablets, filled films (including seed coatings) and the like, which can be water-dispersible ("wettable ") or water-soluble. Films and coatings formed from film-forming solutions or flowable suspensions are particularly useful for seed treatment. Active ingredient can be (micro)encapsulated and further formed into a suspension or solid formulation; alternatively the entire formulation of active ingredient can be encapsulated (or "overcoated "). Encapsulation can control or delay release of the active ingredient. An emulsifiable granule combines the advantages of both an emulsifiable concentrate formulation and a dry granular formulation. High-strength compositions are primarily used as intermediates for further formulation.Of note is a composition embodiment wherein granules of a solid composition comprising a compound of Formula 1 (or an A-oxidc or salt thereof) is mixed with granules of a solid composition comprising component (b). These mixtures can be further mixed with granules comprising additional agricultural protectants. Alternatively, two or more agricultural protectants (e.g., a component (a) (Formula 1) compound, a component (b) compound, an agricultural protectant other than component (a) or (b)) can be combined in the solid composition of one set of granules, which is then mixed with one or more sets of granules of solid compositions comprising one or more additional agricultural protectants. These granule mixtures can be in accordance with the general granule mixture disclosure of PCT Patent Publication WO 94/248or more preferably the homogeneous granule mixture teaching of U.S. Patent 6,022,552.Sprayable formulations are typically extended in a suitable medium before spraying. Such liquid and solid formulations are formulated to be readily diluted in the spray medium, usually water, but occasionally another suitable medium like an aromatic or paraffinic hydrocarbon or vegetable oil. Spray volumes can range from about one to several thousand liters per hectare, but more typically are in the range from about ten to several hundred liters per hectare. Sprayable formulations can be tank mixed with water or another suitable medium for foliar treatment by aerial or ground application, or for application to the growing medium of the plant. Liquid and dry formulations can be metered directly into drip irrigation systems or metered into the furrow during planting. Liquid and solid formulations can be applied onto seeds of crops and other desirable vegetation as seed treatments before planting to protect developing roots and other subterranean plant parts and/or foliage through systemic uptake.
WO 2022/133114 PCT/US2021/063852 131 The formulations will typically contain effective amounts of active ingredient, diluent andsurfactant within the following approximate ranges which add up to 100 percent by weight.Weight PercentActiveIngredient Diluent SurfactantWater-Dispersible and Water- soluble Granules, Tablets and Powders 0.001-90 0-99.999 0-15 Oil Dispersions, Suspensions, Emulsions, Solutions (including Emulsifiable Concentrates) 1-50 40-99 0-50 Dusts 1-25 70-99 0-5Granules and Pellets 0.001-95 5-99.999 0-15 High Strength Compositions 90-99 0-10 0-2 Solid diluents include, for example, clays such as bentonite, montmorillonite, attapulgite and kaolin, gypsum, cellulose, titanium dioxide, zinc oxide, starch, dextrin, sugars (e.g., lactose, sucrose), silica, talc, mica, diatomaceous earth, urea, calcium carbonate, sodium carbonate and bicarbonate, and sodium sulfate. Typical solid diluents are described in Watkins et al., Handbook of Insecticide Dust Diluents and Carriers, 2nd Ed., Dorland Books, Caldwell, New Jersey.Liquid diluents include, for example, water, WA-dimcthylalkanamidcs (e.g., AW-di methyl formamide), limonene, dimethyl sulfoxide, Walkylpyrrolidones (e.g., Wmethylpyrrolidinone), alkyl phosphates (e.g., triethyl phosphate), ethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, propylene carbonate, butylene carbonate, paraffins (e.g., white mineral oils, normal paraffins, isoparaffins), alkylbenzenes, alkylnaphthalenes, glycerine, glycerol triacetate, sorbitol, aromatic hydrocarbons, dearomatized aliphatics, alkylbenzenes, alkylnaphthalenes, ketones such as cyclohexanone, 2-heptanone, isophorone and 4-hydroxy-4-methyl-2-pentanone, acetates such as isoamyl acetate, hexyl acetate, heptyl acetate, octyl acetate, nonyl acetate, tridecyl acetate and isobomyl acetate, other esters such as alkylated lactate esters, dibasic esters, alkyl and aryl benzoates and y- butyrolactone, and alcohols, which can be linear, branched, saturated or unsaturated, such as methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, n-hcxanol, 2- ethylhexanol, 77-octanol, decanol, isodecyl alcohol, isooctadecanol, cetyl alcohol, lauryl alcohol, tridecyl alcohol, oleyl alcohol, cyclohexanol, tetrahydrofurfuryl alcohol, diacetone alcohol, cresol and benzyl alcohol. Liquid diluents also include glycerol esters of saturated and unsaturated fatty WO 2022/133114 PCT/US2021/063852 132 acids (typically Cg-C22), such as plant seed and fruit oils (e.g., oils of olive, castor, linseed, sesame, com (maize), peanut, sunflower, grapeseed, safflower, cottonseed, soybean, rapeseed, coconut and palm kernel), animal-sourced fats (e.g., beef tallow, pork tallow, lard, cod liver oil, fish oil), and mixtures thereof. Liquid diluents also include alkylated fatty acids (e.g., methylated, ethylated, butylated) wherein the fatty acids may be obtained by hydrolysis of glycerol esters from plant and animal sources, and can be purified by distillation. Typical liquid diluents are described in Marsden, Solvents Guide, 2nd Ed., Interscience, New York, 1950.The solid and liquid compositions of the present invention often include one or more surfactants. When added to a liquid, surfactants (also known as "surface-active agents ") generally modify, most often reduce, the surface tension of the liquid. Depending on the nature of the hydrophilic and lipophilic groups in a surfactant molecule, surfactants can be useful as wetting agents, dispersants, emulsifiers or defoaming agents.Surfactants can be classified as nonionic, anionic or cationic. Nonionic surfactants useful for the present compositions include, but are not limited to: alcohol alkoxylates such as alcohol alkoxylates based on natural and synthetic alcohols (which may be branched or linear) and prepared from the alcohols and ethylene oxide, propylene oxide, butylene oxide or mixtures thereof; amine ethoxylates, alkanolamides and ethoxylated alkanolamides; alkoxylated triglycerides such as ethoxylated soybean, castor and rapeseed oils; alkylphenol alkoxylates such as octylphenol ethoxylates, nonylphenol ethoxylates, dinonyl phenol ethoxylates and dodecyl phenol ethoxylates (prepared from the phenols and ethylene oxide, propylene oxide, butylene oxide or mixtures thereof); block polymers prepared from ethylene oxide or propylene oxide and reverse block polymers where the terminal blocks are prepared from propylene oxide; ethoxylated fatty acids; ethoxylated fatty esters and oils; ethoxylated methyl esters; ethoxylated tristyrylphenol (including those prepared from ethylene oxide, propylene oxide, butylene oxide or mixtures thereof); fatty acid esters, glycerol esters, lanolin-based derivatives, polyethoxylate esters such as poly ethoxylated sorbitan fatty acid esters, poly ethoxylated sorbitol fatty acid esters and poly ethoxylated glycerol fatty acid esters; other sorbitan derivatives such as sorbitan esters; polymeric surfactants such as random copolymers, block copolymers, alkyd peg (polyethylene glycol) resins, graft or comb polymers and star polymers; polyethylene glycols (pegs); polyethylene glycol fatty acid esters; silicone-based surfactants; and sugar-derivatives such as sucrose esters, alkyl polyglycosides; alkyl polysaccharides; and glucamides such as mixtures of octyl-A-methylglucamide and decyl-A-methylglucamide (e.g., products is obtainable under the Synergen® GA name from Clariant).Useful anionic surfactants include, but are not limited to: alkylaryl sulfonic acids and their salts; carboxylated alcohol or alkylphenol ethoxylates; diphenyl sulfonate derivatives; lignin and WO 2022/133114 PCT/US2021/063852 133 lignin derivatives such as lignosulfonates; maleic or succinic acids or their anhydrides; olefin sulfonates; phosphate esters such as phosphate esters of alcohol alkoxylates, phosphate esters of alkylphenol alkoxylates and phosphate esters of styryl phenol ethoxylates; protein-based surfactants; sarcosine derivatives; styryl phenol ether sulfate; sulfates and sulfonates of oils and fatty acids; sulfates and sulfonates of ethoxylated alkylphenols; sulfates of alcohols; sulfates of ethoxylated alcohols; sulfonates of amines and amides such as AUV-alkyltaurates; sulfonates of benzene, cumene, toluene, xylene, and dodecyl and tridecylbenzenes; sulfonates of condensed naphthalenes; sulfonates of naphthalene and alkyl naphthalene; sulfonates of fractionated petroleum; sulfosuccinamates; and sulfosuccinates and their derivatives such as dialkyl sulfosuccinate salts.Useful cationic surfactants include, but are not limited to: amides and ethoxylated amides; amines such as A-alkyl propanediamines, tripropylenetriamines and dipropylenetetramines, and ethoxylated amines, ethoxylated diamines and propoxylated amines (prepared from the amines and ethylene oxide, propylene oxide, butylene oxide or mixtures thereof); amine salts such as amine acetates and diamine salts; quaternary ammonium salts such as quaternary salts, ethoxylated quaternary salts and diquaternary salts; and amine oxides such as alkyldimethylamine oxides and bis-(2-hydroxyethyl)-alkylamine oxides.Also useful for the present compositions are mixtures of nonionic and anionic surfactants or mixtures of nonionic and cationic surfactants. Nonionic, anionic and cationic surfactants and their recommended uses are disclosed in a variety of published references including McCutcheon’s Emulsifiers and Detergents, annual American and International Editions published by McCutcheon ’s Division, The Manufacturing Confectioner Publishing Co.; Sisely and Wood, Encyclopedia of Surface Active Agents, Chemical Publ. Co., Inc., New York, 1964; and A. S. Davidson and B. Milwidsky, Synthetic Detergents, Seventh Edition, John Wiley and Sons, New York, 1987.Compositions of this invention may also contain formulation auxiliaries and additives, known to those skilled in the art as formulation aids (some of which may be considered to also function as solid diluents, liquid diluents or surfactants). Such formulation auxiliaries and additives may control: pH (buffers), foaming during processing (antifoams such polyorganosiloxanes), sedimentation of active ingredients (suspending agents), viscosity (thixotropic thickeners), in-container microbial growth (antimicrobials), product freezing (antifreezes), color (dyes/pigment dispersions), wash-off (film formers or stickers), evaporation (evaporation retardants), and other formulation attributes. Film formers include, for example, polyvinyl acetates, polyvinyl acetate copolymers, polyvinylpyrrolidone-vinyl acetate copolymer, polyvinyl alcohols, polyvinyl alcohol copolymers and waxes. Examples of formulation WO 2022/133114 PCT/US2021/063852 134 auxiliaries and additives include those listed in McCutcheon’s Volume 2: Functional Materials, annual International and North American editions published by McCutcheon ’s Division, The Manufacturing Confectioner Publishing Co.; and PCT Publication WO 03/024222.The compound of Formula 1 and any other active ingredients are typically incorporated into the present compositions by dissolving the active ingredient in a solvent or by grinding in a liquid or dry diluent. Solutions, including emulsifiable concentrates, can be prepared by simply mixing the ingredients. If the solvent of a liquid composition intended for use as an emulsifiable concentrate is water-immiscible, an emulsifier is typically added to emulsify the active-containing solvent upon dilution with water. Active ingredient slurries, with particle diameters of up to 2,0pm can be wet milled using media mills to obtain particles with average diameters below 3 pm. Aqueous slurries can be made into finished suspension concentrates (see, for example, U.S. 3,060,084) or further processed by spray drying to form water-dispersible granules. Dry formulations usually require dry milling processes, which produce average particle diameters in the 2 to 10 pm range. Dusts and powders can be prepared by blending and usually grinding (such as with a hammer mill or fluid-energy mill). Granules and pellets can be prepared by spraying the active material upon preformed granular carriers or by agglomeration techniques. See Browning, "Agglomeration ", Chemical Engineering, December 4, 1967, pp 147-48, Perry’s Chemical Engineer’s Handbook, 4th Ed., McGraw-Hill, New York, 1963, pp 8-57 and following, and WO 91/13546. Pellets can be prepared as described in U.S. 4,172,714. Water-dispersible and water-soluble granules can be prepared as taught in U.S. 4,144,050, U.S. 3,920,442 and DE 3,246,493. Tablets can be prepared as taught in U.S. 5,180,587, U.S. 5,232,701 and U.S. 5,208,030. Films can be prepared as taught in GB 2,095,558 and U.S. 3,299,566.One embodiment of the present invention relates to a method for controlling fungal pathogens, comprising diluting the fungicidal composition of the present invention (a compound of Formula 1 formulated with surfactants, solid diluents and liquid diluents or a formulated mixture of a compound of Formula 1 and at least one other fungicide) with water, and optionally adding an adjuvant to form a diluted composition, and contacting the fungal pathogen or its environment with an effective amount of said diluted composition.Although a spray composition formed by diluting with water a sufficient concentration of the present fungicidal composition can provide sufficient efficacy for controlling fungal pathogens, separately formulated adjuvant products can also be added to spray tank mixtures. These additional adjuvants are commonly known as "spray adjuvants " or "tank-mix adjuvants ", and include any substance mixed in a spray tank to improve the performance of a pesticide or alter the physical properties of the spray mixture. Adjuvants can be anionic or nonionic surfactants, emulsifying agents, petroleum-based crop oils, crop-derived seed oils, acidifiers, buffers, WO 2022/133114 PCT/US2021/063852 135 thickeners or defoaming agents. Adjuvants are used to enhancing efficacy (e.g., biological availability, adhesion, penetration, uniformity of coverage and durability of protection), or minimizing or eliminating spray application problems associated with incompatibility, foaming, drift, evaporation, volatilization and degradation. To obtain optimal performance, adjuvants are selected with regard to the properties of the active ingredient, formulation and target (e.g., crops, insect pests).The amount of adjuvants added to spray mixtures is generally in the range of about 0.1% to 2.5% by volume. The application rates of adjuvants added to spray mixtures are typically between about 1 to 5 L per hectare. Representative examples of spray adjuvants include: Adigor® (Syngenta) 47% methylated rapeseed oil in liquid hydrocarbons, Silwet® (Helena Chemical Company) polyalkyleneoxide modified heptamethyltrisiloxane and Assist® (BASF) 17% surfactant blend in 83% paraffin based mineral oil.One method of seed treatment is by spraying or dusting the seed with a compound of the invention (i.e. as a formulated composition) before sowing the seeds. Compositions formulated for seed treatment generally comprise a film former or adhesive agent. Therefore typically a seed coating composition of the present invention comprises a biologically effective amount of a compound of Formula 1and a film former or adhesive agent. Seeds can be coated by spraying a flowable suspension concentrate directly into a tumbling bed of seeds and then drying the seeds. Alternatively, other formulation types such as wetted powders, solutions, suspoemulsions, emulsifiable concentrates and emulsions in water can be sprayed on the seed. This process is particularly useful for applying film coatings on seeds. Various coating machines and processes are available to one skilled in the art. Suitable processes include those listed in P. Kosters et al., Seed Treatment: Progress and Prospects, 1994 BCPC Mongraph No. 57, and references listed therein.For further information regarding the art of formulation, see T. S. Woods, "The Formulator ’s Toolbox - Product Forms for Modern Agriculture " in Pesticide Chemistry and Bioscience, The Food-Environment Challenge, T. Brooks and T. R. Roberts, Eds., Proceedings of the 9th International Congress on Pesticide Chemistry, The Royal Society of Chemistry, Cambridge, 1999, pp. 120-133. Also see U.S. 3,235,361, Col. 6, line 16 through Col. 7, line and Examples 10-41; U.S. 3,309,192, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138-140, 162-164, 166, 167 and 169-182; U.S. 2,891,855, Col. 3, line 66 through Col. 5, line 17 and Examples 1-4; Klingman, Weed Control as a Science, John Wiley and Sons, Inc., New York, 1961, pp 81-96; Hance et al., Weed Control Handbook, 8th Ed., Blackwell Scientific Publications, Oxford, 1989; and Developments in formulation technology, PJB Publications, Richmond, UK, 2000.
WO 2022/133114 PCT/US2021/063852 136 In the following Examples, all percentages are by weight and all formulations are prepared in conventional ways. Active ingredient refers to the compounds in Index Tables A-T disclosed herein. Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following Examples are, therefore, to be constructed as merely illustrative, and not limiting of the disclosure in any way whatsoever.ExampleHigh Strength ConcentrateCompound 204 98.5%silica aerogel 0.5%synthetic amorphous fine silica 1.0% ExampleWettable PowderCompound 225 65.0%dodecylphenol polyethylene glycol ether 2.0%sodium ligninsulfonate 4.0%sodium silicoaluminate 6.0%montmorillonite (calcined) 23.0%ExampleGranuleCompound 264 10.0%attapulgite granules (low volatile matter, 0.71/0.30 mm; 90.0%U.S.S. No. 25-50 sieves) Example DExtruded PelletCompound 316 25.0%anhydrous sodium sulfate 10.0%crude calcium ligninsulfonate 5.0%sodium alkylnaphthalenesulfonate 1.0%calcium/magnesium bentonite 59.0%ExampleEmulsifiable ConcentrateCompound 330 10.0%polyoxyethylene sorbitol hexoleate 20.0% WO 2022/133114 PCT/US2021/063852 137 C6־C1q fatty acid methyl ester 70.0%ExampleMicroemulsionCompound 376 5.0%polyvinylpyrrolidone-vinyl acetate copolymer 30.0%alkylpoly glyco side 30.0%glyceryl monooleate 15.0%water 20.0%ExampleSeed TreatmentCompound 394 20.00%polyvinylpyrrolidone-vinyl acetate copolymer 5.00%montan acid wax 5.00%calcium ligninsulfonate 1.00%polyoxyethylene/polyoxypropylene block copolymers 1.00%stearyl alcohol (POE 20) 2.00%polyorganosilane 0.20%colorant red dye 0.05%water 65.75% ExampleFertilizer StickCompound 463 2.50%pyrrolidone-styrene copolymer 4.80%tristyrylphenyl 16-ethoxylate 2.30%talc 0.80%com starch 5.00%slow-release fertilizer 36.00%kaolin 38.00%water 10.60% ExampleSuspension ConcentrateCompound 505 35%butyl polyoxyethylene/polypropylene block copolymer 4.0%stearic acid/polyethylene glycol copolymer 1.0% WO 2022/133114 PCT/US2021/063852 138 styrene acrylic polymer 1.0%xanthan gum 0.1%propylene glycol 5.0%silicone based defoamer 0.1%l,2-benzisothiazolin-3-one 0.1%water 53.7% ExampleEmulsion in WaterCompound 508 10.0%butyl polyoxyethylene/polypropylene block copolymer 4.0%stearic acid/polyethylene glycol copolymer 1.0%styrene acrylic polymer 1.0%xanthan gum 0.1%propylene glycol 5.0%silicone based defoamer 0.1%l,2-benzisothiazolin-3-one 0.1%aromatic petroleum based hydrocarbon 20.0water 58.7% ExampleOil DispersionCompound 509 25%polyoxyethylene sorbitol hexaoleate 15%organically modified bentonite clay 2.5%fatty acid methyl ester 57.5% ExampleSuspoemulsionCompound 316 10.0%imidacloprid 5.0%butyl polyoxyethylene/polypropylene block copolymer 4.0%stearic acid/polyethylene glycol copolymer 1.0%styrene acrylic polymer 1.0%xanthan gum 0.1%propylene glycol 5.0%silicone based defoamer 0.1% WO 2022/133114 PCT/US2021/063852 139 l,2-benzisothiazolin-3-one 0.1%aromatic petroleum based hydrocarbon 20.0%water 53.7% Water-soluble and water-dispersible formulations are typically diluted with water to form aqueous compositions before application. Aqueous compositions for direct applications to the plant or portion thereof (e.g., spray tank compositions) typically contain at least about 1 ppm or more (e.g., from 1 ppm to 100 ppm) of the compound(s) of this invention.Seed is normally treated at a rate of from about 0.001 g (more typically about 0.1 g) to about g per kilogram of seed (i.e. from about 0.0001 to 1% by weight of the seed before treatment). A flowable suspension formulated for seed treatment typically comprises from about 0.5 to about 70% of the active ingredient, from about 0.5 to about 30% of a film-forming adhesive, from about 0.5 to about 20% of a dispersing agent, from 0 to about 5% of a thickener, from 0 to about 5% of a pigment and/or dye, from 0 to about 2% of an antifoaming agent, from 0 to about 1% of a preservative, and from 0 to about 75% of a volatile liquid diluent.The compositions of this invention are useful as plant disease control agents. The present invention therefore further comprises a method for controlling plant diseases caused by fungal plant pathogens comprising applying to the plant or portion thereof to be protected, or to the plant seed to be protected, an effective amount of a compound of the invention or a fungicidal composition containing said compound. The compounds and/or compositions of this invention provide control of diseases caused by a broad spectrum of fungal plant pathogens in the Ascomycota, Basidiomycota, Zygomycota phyla, and the fungal-like Oomycota class. They are effective in controlling a broad spectrum of plant diseases, particularly foliar pathogens of ornamental, turf, vegetable, field, cereal, and fruit crops. These pathogens include but are not limited to those listed in Table 1-1. For Ascomycetes and Basidiomycetes, names for both the sexual/teleomorph/perfect stage as well as names for the asexual/anamorph/imperfect stage (in parentheses) are listed where known. Synonymous names for pathogens are indicated by an equal sign. For example, the sexual/teleomorph/perfect stage name Phaeosphaeria nodorum is followed by the corresponding asexual/anamorph/imperfect stage name Stagnospora nodorum and the synonymous older name Septoria nodorum.Table 1-1Ascomycetes in the order Pleosporales including Altemaria solani, A. altemata and A. brassicae, Guignardia bidwellii, Venturia inaequalis, Pyrenophora tritici-repentis (Dreschlera tritici-repentis = Helminthosporium tritici-repentis) and Pyrenophora teres {Dreschlera teres = Helminthosporium teres), Corynespora cassiicola, Phaeosphaeria nodorum (Stagonospora nodorum = Septoria WO 2022/133114 PCT/US2021/063852 140 nodorum), Cochliobolus carbonum and C. heterostrophus, Leptosphaeria biglobosa andL. maculans׳ ,Ascomycetes in the order Mycosphaerellales including Mycosphaerella graminicola (Zymoseptoria tritici = Septaria tritici), M. berkeleyi (Cercosporidium personatum), M. arachidis (Cercospora arachidicola), Passalora sojina (Cercospora sojina), Cercospora zeae-maydis and C. beticola;Ascomycetes in the order Erysiphales (the powdery mildews) such as Blumeria graminis f.sp. tritici and Blumeria graminis f.sp. hordei, Erysiphe polygoni, E. necator (= Uncinula necator), Podosphaerafuliginea (= Sphaerothecafuliginea), and Podosphaera leucotricha (= Sphaerotheca fuliginea);Ascomycetes in the order Helotiales such as Botryotiniafuckeliana (Botrytis cinerea), Oculimacula yallundae (= Tapesia yallundae; anamorph Helgardia herpotrichoides = Pseudocercosporella herpetrichoides), Moniliniafructicola, Sclerotinia sclerotiorum, Sclerotinia minor, and Sclerotinia homoeocarpa;Ascomycetes in the order Hypocreales such as Giberella zeae (Fusarium graminearum), G. monoliformis (Fusarium moniliforme), Fusarium solani and Verticillium dahliae;Ascomycetes in the order Eurotiales such as Aspergillus flavus and A. parasiticus;Ascomycetes in the order Diaporthales such as Cryptosphorella viticola (= Phomopsis viticola), Phomopsis longicolla, and Diaporthe phaseolorum;Other Ascomycete pathogens including Magnaporthe grisea, Gaeumannomyces graminis, Rhynchosporium secalis, and anthracnose pathogens such as Glomerella acutata (Colletotrichum acutatum), G. graminicola (C. graminicola) and G. lagenaria (C. orbiculare);Basidiomycetes in the order Urediniales (the rusts) including Puccinia recondita, P. striiformis, Puccinia hordei, P. graminis and P. arachidis), Hemileia vastatrix and Phakopsora pachyrhizi;Basidiomycetes in the order Ceratobasidiales such as Thanatophorum cucumeris (Rhizoctonia solani) and Ceratobasidium oryzae-sativae (Rhizoctonia oryzae);Basidiomycetes in the order Polyporales such as Athelia rolfsii (Sclerotium rolfsii);Basidiomycetes in the order Ustilaginales such as Ustilago maydis;Zygomycetes in the order Mucorales such as Rhizopus stolonifer;Oomycetes in the order Pythiales, including Phytophthora infestans, P. megasperma, P. parasitica, P. sojae, P. cinnamomi and P. capsici, and Pythium pathogens such as Pythium aphanidermatum, P. graminicola, P. irregulare, P. ultimum and P. dissoticum;Oomycetes in the order Peronosporales such as Plasmopara viticola, P. halstedii, Peronospora hyoscyami (=Peronospora tabacina), P. manshurica, Hyaloperonospora parasitica (=Peronospora parasitica), Pseudoperonospora cubensis and Bremia lactucae׳ , WO 2022/133114 PCT/US2021/063852 141 and other genera and species closely related to all of the above pathogens.In addition to their fungicidal activity, the compositions or combinations also have activity against bacteria such as Erwinia amylovora, Xanthomonas campestris, Pseudomonas syringae, and other related species. By controlling harmful microorganisms, the compositions of this invention are useful for improving (i.e. increasing) the ratio of beneficial to harmful microorganisms in contact with crop plants or their propagules (e.g., seeds, corms, bulbs, tubers, cuttings) or in the agronomic environment of the crop plants or their propagules.Compositions of this invention are useful in treating all plants, plant parts and seeds. Plant and seed varieties and cultivars can be obtained by conventional propagation and breeding methods or by genetic engineering methods. Genetically modified plants or seeds (transgenic plants or seeds) are those in which a heterologous gene (transgene) has been stably integrated into the plant's or seed ’s genome. A transgene that is defined by its particular location in the plant genome is called a transformation or transgenic event.Genetically modified plant cultivars which can be treated according to the invention include those that are resistant against one or more biotic stresses (pests such as nematodes, insects, mites, fungi, etc.) or abiotic stresses (drought, cold temperature, soil salinity, etc.), or that contain other desirable characteristics. Plants can be genetically modified to exhibit traits of, for example, herbicide tolerance, insect-resistance, modified oil profiles or drought tolerance.Treatment of genetically modified plants and seeds with compounds of the invention may result in super-additive or enhanced effects. For example, reduction in application rates, broadening of the activity spectrum, increased tolerance to biotic/abiotic stresses or enhanced storage stability may be greater than expected from just simple additive effects of the application of compounds of the invention on genetically modified plants and seeds.Compounds and compositions of this invention are useful in seed treatments for protecting seeds from plant diseases. In the context of the present disclosure and claims, treating a seed means contacting the seed with a biologically effective amount of a compound of this invention, which is typically formulated as a composition of the invention. This seed treatment protects the seed from soil-borne disease pathogens and generally can also protect roots and other plant parts in contact with the soil of the seedling developing from the germinating seed. The seed treatment may also provide protection of foliage by translocation of the compound of this invention or a second active ingredient within the developing plant. Seed treatments can be applied to all types of seeds, including those from which plants genetically transformed to express specialized traits will germinate. Representative examples include those expressing proteins toxic to invertebrate pests, such as Bacillus thuringiensis toxin or those expressing herbicide resistance such as glyphosate acetyltransferase, which provides resistance to glyphosate. Seed treatments with WO 2022/133114 PCT/US2021/063852 142 compounds and compositions of this invention can also increase vigor of plants growing from the seed.Compounds and compositions of this invention are particularly useful in seed treatment for crops including, but not limited to, maize or com, soybeans, cotton, cereal (e.g., wheat, oats, barley, rye and rice), potatoes, vegetables and oilseed rape.Furthermore, the compounds and compositions of this invention are useful in treating postharvest diseases of fruits and vegetables caused by fungi, oomycetes and bacteria. These infections can occur before, during and after harvest. For example, infections can occur before harvest and then remain dormant until some point during ripening (e.g., host begins tissue changes in such a way that infection can progress or conditions become conducive for disease development); also infections can arise from surface wounds created by mechanical or insect injury. In this respect, the compositions of this invention can reduce losses (i.e. losses resulting from quantity and quality) due to postharvest diseases which may occur at any time from harvest to consumption. Treatment of postharvest diseases with compounds of the invention can increase the period of time during which perishable edible plant parts (e.g., fruits, seeds, foliage, stems, bulbs, tubers) can be stored refrigerated or un-refrigerated after harvest, and remain edible and free from noticeable or harmful degradation or contamination by fungi or other microorganisms. Treatment of edible plant parts before or after harvest with compounds of the invention can also decrease the formation of toxic metabolites of fungi or other microorganisms, for example, mycotoxins such as aflatoxins.Plant disease control is ordinarily accomplished by applying an effective amount of a compound of this invention either pre- or post-infection, to the portion of the plant to be protected such as the roots, stems, foliage, fruits, seeds, tubers or bulbs, or to the media (soil or sand) in which the plants to be protected are growing. The compounds can also be applied to seeds to protect the seeds and seedlings developing from the seeds. The compounds can also be applied through irrigation water to treat plants. Control of postharvest pathogens which infect the produce before harvest is typically accomplished by field application of a compound of this invention, and in cases where infection occurs after harvest the compounds can be applied to the harvested crop as dips, sprays, fumigants, treated wraps and box liners.The compounds and compositions of this invention can also be applied using an unmanned aerial vehicle (UAV) for the dispension of the compositions disclosed herein over a planted area. In some embodiments the planted area is a crop-containing area. In some embodiments, the crop is selected from a monocot or dicot. In some embodiments, the crop is selected form rice, corn, barley, sobean, wheat, vegetable, tobacco, tea tree, fruit tree and sugar cane. In some embodiments, the compositions disclosed herein are formulated for spraying at an ultra-low WO 2022/133114 PCT/US2021/063852 143 volume. Products applied by drones may use water or oil as the spray carrier. Typical spray volume (including product) used for drone applications globally. 5.0 liters/ha - 100 liters/ha (approximately 0.5-10 gpa). This includes the range of ultra low spray volume (ULV) to low spray volume (LV). Although not common there may be situations where even lower spray volumes could be used as low as 1.0 liter/ha (0.1 gpa).Suitable rates of application (e.g., fungicidally effective amounts) of component (a) (i.e. at least one compound selected from compounds of Formula 1,A-oxidcs and salts thereof) as well as suitable rates of applicaton (e.g., biologically effective amounts, fungicidally effective amounts or insecticidally effective amounts) for the mixtures and compositions comprising component (a) according to this invention can be influenced by factors such as the plant diseases to be controlled, the plant species to be protected, the population structure of the pathogen to be controlled, ambient moisture and temperature and should be determined under actual use conditions. One skilled in the art can easily determine through simple experimentation the fungicidally effective amount necessary for the desired level of plant disease control. Foliage can normally be protected when treated at a rate of from less than about 1 g/ha to about 5,000 g/ha of active ingredient. Seed and seedlings can normally be protected when seed is treated at a rate of from about 0.001 g (more typically about 0.1 g) to about 10 g per kilogram of seed. One skilled in the art can easily determine through simple experimentation the application rates of component (a), and mixtures and compositions thereof, containing particular combinations of active ingredients according to this invention needed to provide the desired spectrum of plant protection and control of plant diseases and optionally other plant pests.Compounds and compositions of the present invention may also be useful for increasing vigor of a crop plant. This method comprises contacting the crop plant (e.g., foliage, flowers, fruit or roots) or the seed from which the crop plant is grown with a composition comprising a compound of Formula 1 in amount sufficient to achieve the desired plant vigor effect (i.e. biologically effective amount). Typically the compound of Formula 1 is applied in a formulated composition. Although the compound of Formula 1 is often applied directly to the crop plant or its seed, it can also be applied to the locus of the crop plant, i.e. the environment of the crop plant, particularly the portion of the environment in close enough proximity to allow the compound of Formula 1 to migrate to the crop plant. The locus relevant to this method most commonly comprises the growth medium (i.e. medium providing nutrients to the plant), typically soil in which the plant is grown. Treatment of a crop plant to increase vigor of the crop plant thus comprises contacting the crop plant, the seed from which the crop plant is grown or the locus of the crop plant with a biologically effective amount of a compound of Formula 1.
WO 2022/133114 PCT/US2021/063852 144 Increased crop vigor can result in one or more of the following observed effects: (a) optimal crop establishment as demonstrated by excellent seed germination, crop emergence and crop stand; (b) enhanced crop growth as demonstrated by rapid and robust leaf growth (e.g., measured by leaf area index), plant height, number of tillers (e.g., for rice), root mass and overall dry weight of vegetative mass of the crop; (c) improved crop yields, as demonstrated by time to flowering, duration of flowering, number of flowers, total biomass accumulation (i.e. yield quantity) and/or fruit or grain grade marketability of produce (i.e. yield quality); (d) enhanced ability of the crop to withstand or prevent plant disease infections and arthropod, nematode or mollusk pest infestations; and (e) increased ability of the crop to withstand environmental stresses such as exposure to thermal extremes, suboptimal moisture or phytotoxic chemicals.The compounds and compositions of the present invention may increase the vigor of treated plants compared to untreated plants by preventing and/or curing plant diseases caused by fungal plant pathogens in the environment of the plants. In the absence of such control of plant diseases, the diseases reduce plant vigor by consuming plant tissues or sap, or transmiting plant pathogens such as viruses. Even in the absence of fungal plant pathogens, the compounds of the invention may increase plant vigor by modifying metabolism of plants. Generally, the vigor of a crop plant will be most significantly increased by treating the plant with a compound of the invention if the plant is grown in a nonideal environment, i.e. an environment comprising one or more aspects adverse to the plant achieving the full genetic potential it would exhibit in an ideal environment.Of note is a method for increasing vigor of a crop plant wherein the crop plant is grown in an environment comprising plant diseases caused by fungal plant pathogens. Also of note is a method for increasing vigor of a crop plant wherein the crop plant is grown in an environment not comprising plant diseases caused by fungal plant pathogens. Also of note is a method for increasing vigor of a crop plant wherein the crop plant is grown in an environment comprising an amount of moisture less than ideal for supporting growth of the crop plant.Compounds and compositions of this invention can also be mixed with one or more other biologically active compounds or agents including fungicides, insecticides, nematicides, bactericides, acaricides, herbicides, herbicide safeners, growth regulators such as insect molting inhibitors and rooting stimulants, chemosterilants, semiochemicals, repellents, attractants, pheromones, feeding stimulants, plant nutrients, other biologically active compounds or entomopathogenic bacteria, virus or fungi to form a multi-component pesticide giving an even broader spectrum of agricultural protection. Thus the present invention also pertains to a composition comprising a compound of Formula 1 (in a fungicidally effective amount) and at least one additional biologically active compound or agent (in a biologically effective amount) and can further comprise at least one of a surfactant, a solid diluent or a liquid diluent. The other WO 2022/133114 PCT/US2021/063852 145 biologically active compounds or agents can be formulated in compositions comprising at least one of a surfactant, solid or liquid diluent. For mixtures of the present invention, one or more other biologically active compounds or agents can be formulated together with a compound of Formula 1, to form a premix, or one or more other biologically active compounds or agents can be formulated separately from the compound of Formula 1, and the formulations combined together before application (e.g., in a spray tank) or, alternatively, applied in succession.As mentioned in the Summary of the Invention, one aspect of the present invention is a fungicidal composition comprising (i.e. a mixture or combination of) a compound of Formula 1, an A-oxide, or a salt thereof (i.e. component (a)), and at least one other fungicide (i.e. component (b)). Of note is such a combination where the other fungicidal active ingredient has different site of action from the compound of Formula 1. In certain instances, a combination with at least one other fungicidal active ingredient having a similar spectrum of control but a different site of action will be particularly advantageous for resistance management. Thus, a composition of the present invention can further comprise a fungicidally effective amount of at least one additional fungicidal active ingredient having a similar spectrum of control but a different site of action.Examples of component (b) fungicides include acibenzolar-S-methyl, aldimorph, ametoctradin, amisulbrom, anilazine, azaconazole, azoxystrobin, benalaxyl (including benalaxyl- M), benodanil, benomyl, benthiavalicarb (including benthiavalicarb-isopropyl), benzovindiflupyr, bethoxazin, binapacryl, biphenyl, bitertanol, bixafen, blasticidin-S, boscalid, bromuconazole, bupirimate, buthiobate, captafol, captan, carbendazim, carboxin, carpropamid, chloroneb, chlorothalonil, chlozolinate, clotrimazole, copper hydroxide (e.g., Kocide), copper oxychloride, copper sulfate, coumoxystrobin, cyazofamid, cyflufenamid, cymoxanil, cyproconazole, cyprodinil, dichlofluanid, diclocymet, diclomezine, dicloran, diethofencarb, difenoconazole, diflumetorim, dimethirimol, dimethomorph, dimoxystrobin, diniconazole (including diniconazole-M), dinocap, dithianon, dithiolanes, dodemorph, dodine, dipymetitrone, econazole, edifenphos, enoxastrobin (also known as enestroburin), epoxiconazole, etaconazole, ethaboxam, ethirimol, etridiazole, famoxadone, fenamidone, fenarimol, fenaminstrobin, fenbuconazole, fenfuram, fenhexamid, fenoxanil, fenpiclonil, fenpropidin, fenpropimorph, fenpyrazamine, fentin acetate, fentin chloride, fentin hydroxide, ferbam, ferimzone, flometoquin, florylpicoxamid, fluazinam, fludioxonil, flufenoxystrobin, fluindapyr, flumorph, fluopicolide, fluopimomide, fluopyram, flouroimide, fluoxastrobin, fluquinconazole, flusilazole, flusulfamide, flutianil, flutolanil, flutriafol, fluxapyroxad, folpet, fthalide, fuberidazole, furalaxyl, furametpyr, guazatine, hexaconazole, hymexazole, imazalil, imibenconazole, iminoctadine albesilate, iminoctadine triacetate, iodocarb, ipconazole, ipfentrifluconazole, iprobenfos, iprodione, iprovalicarb, isoconazole, isofetamid, isoprothiolane, isoflucypram, isopyrazam, isotianil, WO 2022/133114 PCT/US2021/063852 146 kasugamycin, kresoxim-methyl, mancozeb, mandepropamid, mandestrobin, maneb, mepanipyrim, mepronil, meptyldinocap, metalaxyl (including metalaxyl-M/mefenoxam), mefentrifluconazole, metconazole, methasulfocarb, metiram, metominostrobin, metrafenone, miconazole, myclobutanil, naftifine, neo-asozin, nuarimol, octhilinone, ofurace, orysastrobin, oxadixyl, oxathiapiprolin, oxolinic acid, oxpoconazole, oxycarboxin, oxytetracycline, pefurazoate, penconazole, pencycuron, penflufen, penthiopyrad, phosphorous acid (including salts thereof, e.g., fosetyl-aluminum), picarbutrazox, picoxystrobin, piperalin, polyoxin, probenazole, prochloraz, procymidone, propamacarb, propiconazole, propineb, proquinazid, prothiocarb, prothioconazole, pydiflumetofen, pyraclostrobin, pyrametostrobin, pyraoxystrobin, pyrazophos, pyribencarb, pyributicarb, pyrifenox, pyrimethanil, pyriofenone, pyrisoxazole, pyroquilon, pyrrolnitrin, quinconazole, quinofumelin (Registry Number 861647-84-9) quinomethionate, quinoxyfen, quintozene, sedaxane, silthiofam, simeconazole, spiroxamine, streptomycin, sulfur, tebuconazole, tebufloquin, teclofthalam, tecnazene, terbinafine, tetraconazole, thiabendazole, thifluzamide, thiophanate, thiophanate-methyl, thiram, tiadinil, tolclofos-methyl, tolnifanide, tolprocarb, tolyfluanid, triadimefon, triadimenol, triarimol, triticonazole, triazoxide, tribasic copper sulfate, tricyclazole, triclopyricarb, tridemorph, trifloxystrobin, triflumizole, triforine, trimorphamide, uniconazole, uniconazole-P, validamycin, valifenalate (also known as valiphenal), vinclozolin, zineb, ziram, zoxamide, A/-[2-(15,2R)-[l,r ־ bicyclopropyl]-2-ylphenyl]-3-(difluoromethyl)-l-methyl-l/7-pyrazole-4-carboxamide, a-(l-chlorocyclopropyl)-a-[2-(2,2-dichlorocyclopropyl)ethyl]-l/Z-l,2,4-triazole-l-ethanol, (aS)-[3- (4-chloro-2-fluorophenyl)-5-(2,4-difluorophenyl)-4-isoxazolyl]-3-pyridinemethanol, rel-V[[(2R,3،S')-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)-2-oxiranyl]methyl]-l/Z-l,2,4-triazole, rel- 2-[[(2/?,3S)-3-(2-chlorophcnyl)-2-(2,4-difluorophcnyl)-2-oxiranyl]mcthyl]-l ,2-dihydro-3/7- l,2,4-triazole-3-thione, rel- l-[[(2R,3S')-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)-2-oxiranyl]- methyl]-5-(2-propen-l-ylthio)-l/Z-l,2,4-triazole, A/-[2-[4-[[3-(4-chlorophenyl)-2-propyn-l-yl]- oxy] -3 -methoxyphenyl] ethyl] -3 -methyl-2- [(methylsulfonyl)amino]butanamide, N- [2- [4- [ [3 -(4- chlorophenyl)-2-propyn-l-yl]oxy]-3-methoxyphenyl]ethyl]-3-methyl-2-[(ethylsulfonyl)amino]- butanamide, A^-[4-[4-chloro-3-(trifluoromethyl)phenoxy]-2,5-dimethylphenyl]-/V-ethyl-/V- methylmethanimidamide, N-[[(cyclopropyhnethoxy)amino][6-(difluoromethoxy)-2,3-difluoro- phenyl]methylene]benzeneacetamide, N-[2-(2,4-dichlorophenyl)-2-methoxy-l-methylethyl]-3- (difluoromethyl)- 1-methyl- l/Z-pyrazole-4-carboxamide, A/-(3',4'-difluoro[l,r ־biphenyl]-2-yl)-3- (trifluoromethyl)-2-pyrazinecarboxamide, 3-(di fluoromcthy l)-A/-(2,3-dihydro- 1,1,3-trimethyl-l/7-inden-4-yl)-l-methyl-l/7-pyrazole-4-carboxamide, 5,8-difluoro-A/-[2-[3-methoxy-4-[[4-(tri- fluoromethyl)-2-pyridinyl] oxy ]phenyl] ethyl]-4-quinazolinamine, l-[4-[4-[5/?-[(2,6-di fluoro-phenoxy )methyl] -4,5-dihydro-3 -isoxazolyl] -2-thiazolyl] -1 -piperdinyl] -2- [5-methyl-3 - WO 2022/133114 PCT/US2021/063852 147 (trifluoromethyl)- 1 /7-pyrazol- 1 -yl]ethanone, 4-fluorophenyl N-[ 1 -[[[ 1 -(4-cyanophenyl)ethyl] - sulfonyl]methyl]propyl]carbamate, 5-fluoro-2-[(4-fluorophenyl)methoxy]-4-pyrimidinamine, a-(methoxyimino)-N-methyl-2-[[[l-[3-(trifluoromethyl)phenyl]ethoxy]imino]methyl]benzene- acetamide, [[4-methoxy-2-[[[(3،S',7R,8R,9،S')-9-methyl-8-(2-methyl-l-oxopropoxy)-2,6-dioxo-7- (phenylmethyl)- 1,5-dioxonan-3 -yl] amino] carbonyl] -3 -pyridinyl] oxy ]methyl 2-methylpropan-oate, methyl A/-[[5-[l-[2,6-difluoro-4-(l-methylethyl)phenyl]-l/7-pyrazol-3-yl]-2-methylphenyl] methyl]carbamate (b54.11a), methyl /V-[[5-[l-(4-cyclopropyl-2,6-difluorophenyl)-l/7-pyrazol-3- yl]-2-methylphenyl]methyl]carbamate (b54.11d), ethyl l-[[4-[[(lZ)-2-ethoxy-3,3,3-trifluoro-l- propen-l-yl]oxy]phenyl]methyl]-l/Z-pyrazole-4-carboxylate and its (E)-isomer (b54.12a) and ethyl l-[[4-[[2-(trifluoromethyl)-l,3-dioxolan-2-yl]methoxy]phenyl]methyl]-l//-pyrazole-4- carboxylate (b54.13a).Therefore of note is a fungicidal composition comprising as component (a) a compound of Formula 1 (or an N-oxide or salt thereof) and as component (b) at least one fungicide selected from the preceding list.Of particular note are combinations of compounds of Formula 1(or an N-oxide or salt thereof) (i.e. Component (a) in compositions) with component (b) compounds selected from aminopyrifen (Registry Number 1531626-08-0), azoxystrobin, benzovindiflupyr, bixafen, captan, carpropamid, chlorothalonil, copper hydroxide (e.g., Kocide), copper oxychloride, copper sulfate, cymoxanil, cyproconazole, cyprodinil, dichlobentiazox (Registry Number 957144-77-3), diethofencarb, difenoconazole, dimethomorph, dipymetitrone, epoxiconazole, ethaboxam, fenarimol, fenhexamid, fenpropimorph, fluazinam, fludioxonil, fluindapyr, fluopyram, flusilazole, flutianil, flutriafol, fluxapyroxad, folpet, ipflufenoquin (Registry Number 1314008- 27-9), iprodione, isofetamid, isoflucypram, isopyrazam, kresoxim-methyl, mancozeb, mandestrobin, meptyldinocap, metalaxyl (including metalaxyl-M/mefenoxam), mefentrifluconazole, metconazole, metrafenone, metyltetraprole (Registry Number 1472649-01- 6), myclobutanil, oxathiapiprolin, penflufen, penthiopyrad, phosphorous acid (including salts thereof, e.g., fosetyl-aluminum), picoxystrobin, propiconazole, proquinazid, prothioconazole, pydiflumetofen, pyridachlometyl (Registry Number 1358061-55-8), pyraclostrobin, pyrapropoyne (Registry Number 1803108-03-3), pyrimethanil, sedaxane spiroxamine, sulfur, tebuconazole, thiophanate-methyl, trifloxystrobin, zoxamide, a-(l-chlorocyclopropyl)-a-[2-(2,2- dichlorocyclopropyl)ethyl]- 1//-1,2,4-triazole- 1 -ethanol, N-[2-(2,4-dichlorophenyl)-2-methoxy- l-methylethyl]-3-(difluoromethyl)- 1-methyl-l//-pyrazole-4-carboxamide, 3-(difluoromethyl)-iV- (2,3-dihydro-l,l,3-trimethyl-l//-inden-4-yl)-l-methyl-l//-pyrazole-4-carboxamide, l-[4-[4-[5R- (2,6-difluorophenyl)-4,5-dihydro-3-isoxazolyl]-2-thiazolyl]-l-piperidinyl]-2-[5-methyl-3- (trifluoromethyl)-l//-pyrazol-l-yl]ethanone, 1,1-dimethylethyl N-[6-[[[[( 1-methyl-l/Z-tetrazol- WO 2022/133114 PCT/US2021/063852 148 -yl)phenylmethylene]amino]oxy]methyl]-2-pyridinyl]carbamate, 5-fluoro-2-[(4-fluorophenyl)- methoxy]-4-pyrimidinamine, (aS)-[3-(4-chloro-2-fluorophenyl)-5-(2,4-difluorophenyl)-4-isox- azolyl]-3-pyridinemethanol, rel-1-[[(2R,3S)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)-2-ox- iranyl]methyl]-l//-l,2,4-triazole, reZ-2-[[(27?,3S)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)-2- oxiranyl]methyl]-l,2-dihydro-3//-l,2,4-triazole-3-thione, rel-1-II(2R,3S)-3-(2-chlorophenyl)-2- (2,4-difluorophenyl)-2-oxiranyl]methyl]-5-(2-propen-l-ylthio)-l//-l,2,4-triazole, methyl W-[[5- [ 1 - [2,6-difluoro-4-( 1-methylethyl)phenyl] - l//-pyrazol-3-yl]-2-methylphenyl]methyl]carbamate (b54.11a), methyl /V-[[5-[l-(4-cyclopropyl-2,6-difluorophenyl)-l//-pyrazol-3-yl]-2-methyl- phenyl]methyl]carbamate (b54.11d), ethyl l-[[4-[[(lZ)-2-ethoxy-3,3,3-trifluoro-l-propen-l- yl]oxy]phenyl]methyl]-l//-pyrazole-4-carboxylate and its (/?)-isomer (b54.12a) and ethyl l-[[4- [[2-(trifluoromethyl)-l,3-dioxolan-2-yl]methoxy]phenyl]methyl]-l//-pyrazole-4-carboxylate (b54.13a) (i.e. as Component (b) in compositons).Generally preferred for better control of plant diseases caused by fungal plant pathogens (e.g., lower use rate or broader spectrum of plant pathogens controlled) or resistance management are mixtures of a compound of Formula 1,an AZ-oxidc, or salt thereof, with a fungicidal compound selected from the group: amisulbrom, azoxystrobin, benzovindiflupyr, bixafen, boscalid, carbendazim, carboxin, chlorothalonil, copper hydroxide (e.g., Kocide), cymoxanil, cyproconazole, difenoconazole, dimethomorph, dimoxystrobin, epoxiconazole, fenpropimorph, florylpicoxamid, fluazinam, fludioxonil, flufenoxystrobin, fluindapyr, fluquinconazole, fluopicolide, fluoxastrobin, flutriafol, fluxapyroxad, ipconazole, ipfentrifluconazole, iprodione, kresoxim-methyl, mancozeb, metalaxyl, mefenoxam, mefentrifluconazole, metconazole, metominostrobin, myclobutanil, paclobutrazole, penflufen, picoxystrobin, prothioconazole, pydiflumetofen, pyraclostrobin, pyrametostrobin, pyraoxystrobin, pyriofenone, sedaxane, silthiofam, tebuconazole, thiabendazole, thiophanate-methyl, thiram, trifloxystrobin, triticonazole, methyl N- [ [5- [ 1 - [2,6-difluoro-4-( 1 -methylethyl)phenyl] -1 H-pyrazol-3 -yl] -2- methylphenyl]methyl]carbamate (b54.1 la), methyl /V-[[5-[l-(4-cyclopropyl-2,6-difluorophenyl)- l//-pyrazol-3-yl]-2-methylphenyl]methyl]carbamate (b54.11d), ethyl l-[[4-[[(lZ)-2-ethoxy- 3,3,3-trifluoro-l-propen-l-yl]oxy]phenyl]methyl]-l//-pyrazole-4-carboxylate and its (E)-isomer (b54.12a) and ethyl l-[[4-[[2-(trifluoromethyl)-l,3-dioxolan-2-yl]methoxy]phenyl]methyl]-l//- pyrazole-4-carboxylate (b54.13a).In the fungicidal compositions of the present invention, component (a) (i.e. at least one compound selected from compounds of Formula 1,ZV-oxides, and salts thereof) and component (b) are present in fungicidally effective amounts. The weight ratio of component (a) component to component (b) (i.e. one or more additional fungicidal compounds) to is generally between about 1:3000 to about 3000: 1, and more typically between about 1:500 and about 500:1. Of note are WO 2022/133114 PCT/US2021/063852 149 compositions where in the weight ratio of component (a) to component (b) is from about 125:1 to about 1:125. With many fungicidal compounds of component (b), these compositions are particularly effective for controlling plant diseases caused by fungal plant pathogens. Of particular note are compositions wherein the weight ratio of component (a) to component (b) is from about 25:1 to about 1:25, or from about 5:1 to about 1:5. One skilled in the art can easily determine through simple experimentation the weight ratios and application rates of fungicidal compounds necessary for the desired spectrum of fungicidal protection and control. It will be evident that including additional fungicidal compounds in component (b) may expand the spectrum of plant diseases controlled beyond the spectrum controlled by component (a) alone. Furthermore, Tables Al through A26 and Cl through C26 exemplify weight ratios for combinations of fungicidal compounds of the present invention. Table Bl lists typical, more typical and most typical ranges of ratios involving particular fungicidal compounds of component (b).Specific mixtures (compound numbers refer to compounds in Index Tables A through T) are listed in Tables Al through A26. In Table Al, each line below the column headings "Component (a)" and "Component (b)" specifically discloses a mixture of Component (a), (i.e. Compound 21), with a Component (b) fungicidal compound. The entries under the heading "Illustrative Ratios " disclose three specific weight ratios of Component (a) to Component (b) for the disclosed mixture. For example, the first line of Table Al discloses a mixture of Compound with acibenzolar-S-methyl and lists weight ratios of Compound 21 relative to acibenzolar-S- methyl of 1:1, 1:4 or 1:18.Table AlComponent (a) Component (b) Illustrative Ratios(*)Compound 21 acibenzolar-S-methyl 1:1 1:4 1:18Compound 21 aldimorph 7:1 3:1 1:1Compound 21 ametoctradin 3:1 1:1 1:3Compound 21 amisulbrom 1:1 1:2 1:6Compound 21 anilazine 22:1 8:1 4:1Compound 21 azaconazole 2:1 1:2 1:4Compound 21 azoxystrobin 3:1 1:1 1:3Compound 21 benalaxyl 1:1 1:2 1:6Compound 21 benalaxyl-M 1:1 1:3 1:8Compound 21 benodanil 4:1 2:1 1:2Compound 21 benomyl 11:1 4:1 1:1Compound 21 benthiavalicarb 1:1 1:4 1:12 WO 2022/133114 PCT/US2021/063852 150 Component (b) Illustrative Ratios(*) Component (a)Compound 3 benthiavalicarb-isopropyl 1:1 1:4 1:12Compound 21 bethoxazin 15:1 5:1 2:1Compound 21 binapacryl 15:1 5:1 2:1Compound 21 biphenyl 15:1 5:1 2:1Compound 21 bitert anol 3:1 1:1 1:2Compound 21 bixafen 2:1 1:1 1:3Compound 21 blasticidin-S 1:4 1:12 1:30Compound 21Bordeaux mixture (tribasic copper sulfate)45:1 15:1 5:1Compound 21 boscalid 4:1 2:1 1:2Compound 21 bromuconazole 3:1 1:1 1:3Compound 21 bupirimate 1:3 1:10 1:30Compound 21 captafol 15:1 5:1 2:1Compound 21 captan 15:1 5:1 2:1Compound 21 carbendazim 11:1 4:1 2:1Compound 21 carboxin 4:1 2:1 1:2Compound 21 carpropamid 3:1 1:1 1:3Compound 21 chloroneb 100:1 35:1 14:1Compound 21 chlorothalonil 15:1 5:1 2:1Compound 21 chlozolinate 11:1 4:1 2:1Compound 21 clotrimazole 3:1 1:1 1:3Compound 21copper hydroxide45:1 15:1 5:1Compound 21 copper oxychloride 45:1 15:1 5:1Compound 21 cyazofamid 1:1 1:2 1:6Compound 21 cyflufenamid 1:2 1:6 1:24Compound 21 cymoxanil 1:1 1:2 1:5Compound 21 cyproconazole 1:1 1:2 1:6Compound 21 cyprodinil 4:1 2:1 1:2Compound 21 dichlofluanid 15:1 5:1 2:1Compound 21 diclocymet 15:1 5:1 2:1Compound 21 diclomezine 3:1 1:1 1:3Compound 21 dicloran 15:1 5:1 2:1Compound 21 diethofencarb 7:1 2:1 1:2Compound 21 difenoconazole 1:1 1:3 1:12Compound 21 diflumetorim 15:1 5:1 2:1 WO 2022/133114 PCT/US2021/063852 151 Illustrative Ratios(*) Component (a) Component (b)Compound 21 dimethirimol 1:3 1:8 1:30Compound 21 dimethomorph 3:1 1:1 1:2Compound 21 dimoxystrobin 2:1 1:1 1:4Compound 21 diniconazole 1:1 1:3 1:8Compound 21 diniconazole-M 1:1 1:3 1:12Compound 21 dinocap 2:1 1:1 1:3Compound 21 dithianon 5:1 2:1 1:2Compound 21 dodemorph 7:1 3:1 1:1Compound 21 dodine 10:1 4:1 2:1Compound 21 edifenphos 3:1 1:1 1:3Compound 21 enestroburin 2:1 1:1 1:4Compound 21 epoxiconazole 1:1 1:3 1:7Compound 21 etaconazole 1:1 1:3 1:7Compound 21 ethaboxam 2:1 1:1 1:3Compound 21 ethirimol 7:1 3:1 1:1Compound 21 etridiazole 7:1 2:1 1:2Compound 21 famoxadone 2:1 1:1 1:4Compound 21 fenamidone 2:1 1:1 1:4Compound 21 fenaminstrobin 3:1 1:1 1:3Compound 21 fenarimol 1:2 1:7 1:24Compound 21 fenbuconazole 1:1 1:3 1:10Compound 21 fenfur am 4:1 1:1 1:2Compound 21 fenhexamid 10:1 4:1 2:1Compound 21 fenoxanil 15:1 4:1 1:1Compound 21 fenpiclonil 15:1 5:1 2:1Compound 21 fenpropidin 7:1 2:1 1:1Compound 21 fenpropimorph 7:1 2:1 1:1Compound 21 fenpyraz amine 3:1 1:1 1:3Compound 21 fentin salt such as fentin acetate, fentin chloride or fentin 3:1 1:1 1:3hydroxideCompound 21 ferbam 30:1 10:1 4:1Compound 21 ferimzone 7:1 2:1 1:2Compound 21 fluazinam 3:1 1:1 1:2Compound 21 fludioxonil 2:1 1:1 1:4 WO 2022/133114 PCT/US2021/063852 152 Component (a) Component (b) Illustrative Ratios(*)Compound 21 flumetover 3:1 1:1 1:2Compound 21 flumorph 3:1 1:1 1:3Compound 21 fluopicolide 1:1 1:2 1:6Compound 21 fluopyram 3:1 1:1 1:3Compound 21 fluoroimide 37:1 14:1 5:1Compound 21 fluoxastrobin 1:1 1:2 1:6Compound 21 fluquinconazole 1:1 1:2 1:4Compound 21 flusilazole 3:1 1:1 1:3Compound 21 flusulfamide 15:1 5:1 2:1Compound 21 flutianil 1:1 1:2 1:6Compound 21 flutolanil 4:1 1:1 1:2Compound 21 flutriafol 1:1 1:2 1:4Compound 21 fluxapyroxad 2:1 1:1 1:3Compound 21 folpet 15:1 5:1 2:1Compound 21 fo setyl- aluminum 30:1 12:1 5:1Compound 21 fuberidazole 11:1 4:1 2:1Compound 21 furalaxyl 1:1 1:2 1:6Compound 21 furametpyr 15:1 5:1 2:1Compound 21 guazatine 15:1 5:1 2:1Compound 21 hexaconazole 1:1 1:2 1:5Compound 21 hymexazol 75:1 25:1 9:1Compound 21 imazalil 1:1 1:2 1:5Compound 21 imibenconazole 1:1 1:2 1:5Compound 21 iminoctadine 15:1 4:1 1:1Compound 21 iodocarb 15:1 5:1 2:1Compound 21 ipconazole 1:1 1:2 1:5Compound 21 iprobenfos 15:1 5:1 2:1Compound 21 iprodione 15:1 5:1 2:1Compound 21 iprovalicarb 2:1 1:1 1:3Compound 21 isoprothiolane 45:1 15:1 5:1Compound 21 isopyrazam 2:1 1:1 1:3Compound 21 isotianil 2:1 1:1 1:3Compound 21 kasugamycin 1:2 1:7 1:24Compound 21 kresoxim-methyl 2:1 1:1 1:4 WO 2022/133114 PCT/US2021/063852 153 Component (a) Component (b) Illustrative Ratios(*)Compound 21 mancozeb 22:1 7:1 3:1Compound 21 mandipropamid 2:1 1:1 1:4Compound 21 maneb 22:1 7:1 3:1Compound 21 mepanipyrim 6:1 2:1 1:1Compound 21 mepronil 1:1 1:2 1:6Compound 21 meptyldinocap 2:1 1:1 1:3Compound 21 metalaxyl 1:1 1:2 1:6Compound 21 metalaxyl-M 1:1 1:4 1:12Compound 21 metconazole 1:1 1:2 1:6Compound 21 methasulfocarb 15:1 5:1 2:1Compound 21 metiram 15:1 5:1 2:1Compound 21 metominostrobin 3:1 1:1 1:3Compound 21 metrafenone 2:1 1:1 1:4Compound 21 myclobutanil 1:1 1:3 1:8Compound 21 naftifine 15:1 5:1 2:1Compound 21 neo-asozin (feme methanearsonate) 15:1 5:1 2:1Compound 21 nuarimol 3:1 1:1 1:3Compound 21 octhilinone 15:1 4:1 1:1Compound 21 0furace 1:1 1:2 1:6Compound 21 orysastrobin 3:1 1:1 1:3Compound 21 oxadixyl 1:1 1:2 1:6Compound 21 oxolinic acid 7:1 2:1 1:2Compound 21 oxpoconazole 1:1 1:2 1:5Compound 21 oxycarboxin 4:1 1:1 1:2Compound 21 oxytetracycline 3:1 1:1 1:3Compound 21 pefurazoate 15:1 5:1 2:1Compound 21 penconazole 1:2 1:6 1:15Compound 21 pencycuron 11:1 4:1 2:1Compound 21 penflufen 2:1 1:1 1:3Compound 21 penthiopyrad 2:1 1:1 1:3Compound 21 phosphorous acid or a salt thereof 15:1 6:1 2:1Compound 21 phthalide 15:1 6:1 2:1Compound 21 picoxystrobin 1:1 1:2 1:5Compound 21 piperalin 3:1 1:1 1:3 WO 2022/133114 PCT/US2021/063852 154 Component (a) Component (b) Illustrative Ratios(*)Compound 21 polyoxin 3:1 1:1 1:3Compound 21 probenazole 3:1 1:1 1:3Compound 21 prochloraz 7:1 2:1 1:2Compound 21 procymidone 11:1 4:1 2:1Compound 21 propamocarb or propamocarb-hydrochloride 10:1 4:1 2:1Compound 21 propiconazole 1:1 1:2 1:5Compound 21 propineb 11:1 4:1 2:1Compound 21 proquinazid 1:1 1:3 1:12Compound 21 prothiocarb 3:1 1:1 1:3Compound 21 prothioconazole 1:1 1:2 1:5Compound 21 pyraclostrobin 2:1 1:1 1:4Compound 21 pyrametostrobin 2:1 1:1 1:4Compound 21 pyraoxystrobin 2:1 1:1 1:4Compound 21 pyrazophos 15:1 4:1 1:1Compound 21 pyribencarb 4:1 1:1 1:2Compound 21 pyributicarb 15:1 4:1 1:1Compound 21 pyrifenox 3:1 1:1 1:3Compound 21 pyrimethanil 3:1 1:1 1:2Compound 21 pyriofenone 2:1 1:1 1:4Compound 21 pyrisoxazole 3:1 1:1 1:3Compound 21 pyroquilon 3:1 1:1 1:3Compound 21 pyrrolnitrin 15:1 5:1 2:1Compound 21 quinconazole 1:1 1:2 1:4Compound 21 quinomethionate 15:1 5:1 2:1Compound 21 quinoxyfen 1:1 1:2 1:6Compound 21 quintozene 15:1 5:1 2:1Compound 21 silthiofam 2:1 1:1 1:4Compound 21 simeconazole 1:1 1:2 1:5Compound 21 spiroxamine 5:1 2:1 1:2Compound 21 streptomycin 3:1 1:1 1:3Compound 21 sulfur 75:1 25:1 9:1Compound 21 tebuconazole 1:1 1:2 1:5Compound 21 tebufloquin 3:1 1:1 1:3Compound 21 tecloftalam 15:1 5:1 2:1 WO 2022/133114 PCT/US2021/063852 155 Component (b) Illustrative Ratios(*) Component (a)Compound 21 tecnazene 15:1 5:1 2:1Compound 21 terbinafine 15:1 5:1 2:1Compound 21 tetraconazole 1:1 1:2 1:5Compound 21 thiabendazole 11:1 4:1 2:1Compound 21 thifluzamide 3:1 1:1 1:3Compound 21 thiophanate 11:1 4:1 2:1Compound 21 thiophanate-methyl 11:1 4:1 2:1Compound 21 thiram 37:1 14:1 5:1Compound 21 tiadinil 2:1 1:1 1:3Compound 21 tolclofos-methyl 37:1 14:1 5:1Compound 21 tolnifanide 3:1 1:1 1:3Compound 21 tolylfluanid 15:1 5:1 2:1Compound 21 triadimefon 1:1 1:2 1:5Compound 21 triadimenol 1:1 1:2 1:5Compound 21 triarimol 1:2 1:7 1:24Compound 21 tri azoxide 15:1 5:1 2:1Compound 21 tricyclazole 3:1 1:1 1:3Compound 21 tridemorph 7:1 2:1 1:1Compound 21 trifloxystrobin 2:1 1:1 1:4Compound 21 triflumizole 3:1 1:1 1:3Compound 21 triforine 3:1 1:1 1:3Compound 21 trimorphamide 7:1 2:1 1:2Compound 21 triticonazole 1:1 1:2 1:5Compound 21 uniconazole 1:1 1:2 1:5Compound 21 validamycin 3:1 1:1 1:3Compound 21 valifenalate 2:1 1:1 1:4Compound 21 vinclozolin 15:1 6:1 2:1Compound 21 zineb 37:1 14:1 5:1Compound 21 ziram 37:1 14:1 5:1Compound 21 zoxamide 2:1 1:1 1:4Compound 215-chloro-6-(2,4,6-trifluorophenyl)-7-(4-methylpiperidin-1:1 1:2 1:6-yl)[ 1,2,4]triazolo[ 1,5-a]pyrimidine (DPX-BAS600F) WO 2022/133114 PCT/US2021/063852 156 Component (a) Component (b) Illustrative Ratios(*)Compound 21A- [2- [4- [ [3 -(4-chlorophenyl)-2-propyn-1 -yl] oxy] -3 -methoxy- phenyl] ethyl] -3 -methyl-2- [(methylsulfonyl) amino] - butanamide 2:1 1:1 1:4 Compound 21A- [2- [4- [ [3 -(4-chlorophenyl)-2-propyn-1 -yl] oxy] -3 -methoxy- phenyl]ethyl]-3-methyl-2-[(ethylsulfonyl)amino]butanamide2:1 1:1 1:4 Compound 214-fluorophenyl N- [ 1 - [ [ [ 1 -(4-cyanophenyl)ethyl] sulfonyl] - methyl]propyl]carbamate2:1 1:1 1:4 Compound 21AA[[(cyclopropyhnethoxy)amino][6-(difluoromethoxy)-2,3-difluorophenyl]methylene]benzeneacetamide1:2 1:7 1:24 Compound 21a- [methoxyimino] -A-methyl-2- [ [ [ 1 - [3-(trifluoromethyl)- phenyl] ethoxy] imino] methy !]benzeneacetamide3:1 1:1 1:3 Compound 21AA 4-| 4-chlom-3-(thf1 uommethyl )phenoxy |-2,5-dimethyl- phenyl |-A'-ethyl-AAnethyhnethanirnid1؛rnide3:1 1:1 1:3 (*) Ratios of Component (a) relative to Component (b) by weight.
Tables A2 through A26 are each constructed the same as Table Al above except that entries below the "Component (a)" column heading are replaced with the respective Component (a) Column Entry shown below. Thus, for example, in Table A2 the entries below the "Component (a)" column heading all recite "Compound 57", and the first line below the column headings inTable A2 specifically discloses a mixture of Compound 57 with acibenzolar-S-methyl. Tables Athrough A26 are constructed similarly.
Table Number Component (a) Column Entry Table Number Component (a) Column EntryA2 Compound 57 A15 Compound 400A3 Compound 110 A16 Compound 401A4 Compound 183 A17 Compound 402A5 Compound 198 A18 Compound 463A6 Compound 204 A19 Compound 505A7 Compound 225 A20 Compound 506A8 Compound 229 A21 Compound 507A9 Compound 257 A22 Compound 508A10 Compound 264 A23 Compound 509All Compound 316 A24 Compound 510A12 Compound 330 A25 Compound 511A13 Compound 376 A26 Compound 512A14 Compound 394 WO 2022/133114 PCT/US2021/063852 157 Table Bl lists specific combinations of a Component (b) compound with Component (a) illustrative of the mixtures, compositions and methods of the present invention. The first column of Table Bl lists the specific Component (b) compound (e.g., "acibenzolar-S-methyl" in the first line). The second, third and fourth columns of Table B1 lists ranges of weight ratios for rates at which the Component (a) compound is typically applied to a field-grown crop relative to Component (b). Thus, for example, the first line of Table Bl discloses the combination of a compound of Component (a) with acibenzolar-S-methyl is typically applied in a weight ratio of the Component (a) to Component (b) of between 2:1 to 1:180. The remaining lines of Table Bl are to be construed similarly. Of particular note is a composition comprising a mixture of any one of the compounds listed in Embodiment 134 as Component (a) with a compound listed in the Component (b) column of Table Bl according to the weight ratios disclosed in Table Bl. Table Bl thus supplements the specific ratios disclosed in Tables Al through A23 with ranges of ratiosfor these combinations.
Component (b) Table BlTypicalWeight RatioTypicalWeight RatioMost TypicalWeight Ratioacibenzolar-S-methyl 2:1 to 1:180 1:1 to 1:60 1:1 to 1:18aldimorph 30:1 to 1:3 10:1 to 1:1 7:1 to 1:1ametoctradin 9:1 to 1:18 3:1 to 1:6 3:1 to 1:3amisulbrom 6:1 to 1:18 2:1 to 1:6 1:1 to 1:6anilazine 90:1 to 2:1 30:1 to 4:1 22:1 to 4:1azaconazole 7:1 to 1:18 2:1 to 1:6 2:1 to 1:4azoxystrobin 9:1 to 1:12 3:1 to 1:4 3:1 to 1:3benalaxyl 4:1 to 1:18 1:1 to 1:6 1:1 to 1:6benalaxyl-M 4:1 to 1:36 1:1 to 1:12 1:1 to 1:8benodanil 18:1 to 1:6 6:1 to 1:2 4:1 to 1:2benomyl 45:1 to 1:4 15:1 to 1:1 11:1 to 1:1benthiavalicarb or benthiavalicarb-isopropyl 2:1 to 1:36 1:1 to 1:12 1:1 to 1:12bethoxazin 150:1 to 1:36 50:1 to 1:12 15:1 to 2:1binapacryl 150:1 to 1:36 50:1 to 1:12 15:1 to 2:1biphenyl 150:1 to 1:36 50:1 to 1:12 15:1 to 2:1bitertanol 15:1 to 1:5 5:1 to 1:2 3:1 to 1:2bixafen 12:1 to 1:9 4:1 to 1:3 2:1 to 1:3blasticidin-S 3:1 to 1:90 1:1 to 1:30 1:4 to 1:30boscalid 18:1 to 1:6 6:1 to 1:2 4:1 to 1:2 WO 2022/133114 PCT/US2021/063852 158 Component (b)TypicalWeight RatioTypicalWeight RatioMost TypicalWeight Ratiobromuconazole 15:1 to 1:9 5:1 to 1:3 3:1 to 1:3bupirimate 3:1 to 1:90 1:1 to 1:30 1:3 to 1:30captafol 90:1 to 1:4 30:1 to 1:2 15:1 to 2:1captan 90:1 to 1:4 30:1 to 1:2 15:1 to 2:1carbendazim 45:1 to 1:4 15:1 to 1:2 11:1 to 2:1carboxin 18:1 to 1:6 6:1 to 1:2 4:1 to 1:2carpropamid 15:1 to 1:9 5:1 to 1:3 3:1 to 1:3chloroneb 300:1 to 2:1 100:1 to 4:1 100:1 to 14:1chlorothalonil 90:1 to 1:4 30:1 to 1:2 15:1 to 2:1chlozolinate 45:1 to 1:2 15:1 to 2:1 11:1 to 2:1clotrimazole 15:1 to 1:9 5:1 to 1:3 3:1 to 1:3copper salts such as Bordeaux mixture(tribasic copper sulfate), copper450:1 to 1:1 150:1 to 4:1 45:1 to 5:1oxychloride, copper sulfate and copperhydroxide such as Kocidecyazofamid 4:1 to 1:18 1:1 to 1:6 1:1 to 1:6cyflufenamid 1:1 to 1:90 1:2 to 1:30 1:2 to 1:24cymoxanil 6:1 to 1:18 2:1 to 1:6 1:1 to 1:5cyproconazole 4:1 to 1:18 1:1 to 1:6 1:1 to 1:6cyprodinil 22:1 to 1:9 7:1 to 1:3 4:1 to 1:2dichlofluanid 150:1 to 1:36 50:1 to 1:12 15:1 to 2:1diclocymet 150:1 to 1:36 50:1 to 1:12 15:1 to 2:1diclomezine 15:1 to 1:9 5:1 to 1:3 3:1 to 1:3dicloran 150:1 to 1:36 50:1 to 1:12 15:1 to 2:1diethofencarb 22:1 to 1:9 7:1 to 1:3 7:1 to 1:2difenoconazole 4:1 to 1:36 1:1 to 1:12 1:1 to 1:12diflumetorim 150:1 to 1:36 50:1 to 1:12 15:1 to 2:1dimethirimol 3:1 to 1:90 1:1 to 1:30 1:3 to 1:30dimethomorph 9:1 to 1:6 3:1 to 1:2 3:1 to 1:2dimoxystrobin 9:1 to 1:18 3:1 to 1:6 2:1 to 1:4diniconazole 3:1 to 1:36 1:1 to 1:12 1:1 to 1:8diniconazole M 3:1 to 1:90 1:1 to 1:30 1:1 to 1:12dinocap 7:1 to 1:9 2:1 to 1:3 2:1 to 1:3 WO 2022/133114 PCT/US2021/063852 159 Component (b)TypicalWeight RatioTypicalWeight RatioMost TypicalWeight Ratiodithianon 15:1 to 1:4 5:1 to 1:2 5:1 to 1:2dodemorph 30:1 to 1:3 10:1 to 1:1 7:1 to 1:1dodine 30:1 to 1:2 10:1 to 2:1 10:1 to 2:1edifenphos 30:1 to 1:9 10:1 to 1:3 3:1 to 1:3enestroburin 9:1 to 1:18 3:1 to 1:6 2:1 to 1:4epoxiconazole 3:1 to 1:36 1:1 to 1:12 1:1 to 1:7etaconazole 3:1 to 1:36 1:1 to 1:12 1:1 to 1:7ethaboxam 7:1 to 1:9 2:1 to 1:3 2:1 to 1:3ethirimol 30:1 to 1:3 10:1 to 1:1 7:1 to 1:1etridiazole 30:1 to 1:9 10:1 to 1:3 7:1 to 1:2famoxadone 9:1 to 1:18 3:1 to 1:6 2:1 to 1:4fenamidone 6:1 to 1:18 2:1 to 1:6 2:1 to 1:4fenaminstrobin 9:1 to 1:18 3:1 to 1:6 3:1 to 1:3fenarimol 3:1 to 1:90 1:1 to 1:30 1:2 to 1:24fenbuconazole 3:1 to 1:30 1:1 to 1:10 1:1 to 1:10fenfur am 18:1 to 1:6 6:1 to 1:2 4:1 to 1:2fenhexamid 30:1 to 1:2 10:1 to 2:1 10:1 to 2:1fenoxanil 150:1 to 1:36 50:1 to 1:12 15:1 to 1:1fenpiclonil 75:1 to 1:9 25:1 to 1:3 15:1 to 2:1fenpropidin 30:1 to 1:3 10:1 to 1:1 7:1 to 1:1fenpropimorph 30:1 to 1:3 10:1 to 1:1 7:1 to 1:1fenpyrazamine 100:1 to 1:100 10:1 to 1:10 3:1 to 1:3fentin salt such as the acetate, chloride or hydroxide15:1 to 1:9 5:1 to 1:3 3:1 to 1:3 ferbam 300:1 to 1:2 100:1 to 2:1 30:1 to 4:1ferimzone 30:1 to 1:5 10:1 to 1:2 7:1 to 1:2fluazinam 22:1 to 1:5 7:1 to 1:2 3:1 to 1:2fludioxonil 7:1 to 1:12 2:1 to 1:4 2:1 to 1:4flumetover 9:1 to 1:6 3:1 to 1:2 3:1 to 1:2flumorph 9:1 to 1:18 3:1 to 1:6 3:1 to 1:3fluopicolide 3:1 to 1:18 1:1 to 1:6 1:1 to 1:6fluopyram 15:1 to 1:90 5:1 to 1:30 3:1 to 1:3fluoromide 150:1 to 2:1 50:1 to 4:1 37:1 to 5:1 WO 2022/133114 PCT/US2021/063852 160 Component (b)TypicalWeight RatioTypicalWeight RatioMost TypicalWeight Ratiofluoxastrobin 4:1 to 1:18 1:1 to 1:6 1:1 to 1:6fluquinconazole 4:1 to 1:12 1:1 to 1:4 1:1 to 1:4flusilazole 15:1 to 1:9 5:1 to 1:3 3:1 to 1:3flusulfamide 90:1 to 1:2 30:1 to 2:1 15:1 to 2:1flutianil 7:1 to 1:36 2:1 to 1:12 1:1 to 1:6flutolanil 18:1 to 1:6 6:1 to 1:2 4:1 to 1:2flutriafol 4:1 to 1:12 1:1 to 1:4 1:1 to 1:4fluxapyroxad 12:1 to 1:9 4:1 to 1:3 2:1 to 1:3folpet 90:1 to 1:4 30:1 to 1:2 15:1 to 2:1fo setyl- aluminum 225:1 to 2:1 75:1 to 5:1 30:1 to 5:1fuberidazole 45:1 to 1:4 15:1 to 1:2 11:1 to 2:1furalaxyl 15:1 to 1:45 5:1 to 1:15 1:1 to 1:6furametpyr 150:1 to 1:36 50:1 to 1:12 15:1 to 2:1guazatine or iminoctadine 150:1 to 1:36 50:1 to 1:12 15:1 to 2:1hexaconazole 15:1 to 1:36 5:1 to 1:12 1:1 to 1:5hymexazol 225:1 to 2:1 75:1 to 4:1 75:1 to 9:1imazalil 7:1 to 1:18 2:1 to 1:6 1:1 to 1:5imibenconazole 15:1 to 1:36 5:1 to 1:12 1:1 to 1:5iodocarb 150:1 to 1:36 50:1 to 1:12 15:1 to 2:1ipconazole 15:1 to 1:36 5:1 to 1:12 1:1 to 1:5iprobenfos 150:1 to 1:36 50:1 to 1:12 15:1 to 2:1iprodione 120:1 to 1:2 40:1 to 2:1 15:1 to 2:1iprovalicarb 9:1 to 1:9 3:1 to 1:3 2:1 to 1:3isoprothiolane 150:1 to 2:1 50:1 to 4:1 45:1 to 5:1isopyrazam 12:1 to 1:9 4:1 to 1:3 2:1 to 1:3isotianil 12:1 to 1:9 4:1 to 1:3 2:1 to 1:3kasugamycin 7:1 to 1:90 2:1 to 1:30 1:2 to 1:24kresoxim-methyl 7:1 to 1:18 2:1 to 1:6 2:1 to 1:4mancozeb 180:1 to 1:3 60:1 to 2:1 22:1 to 3:1mandipropamid 6:1 to 1:18 2:1 to 1:6 2:1 to 1:4maneb 180:1 to 1:3 60:1 to 2:1 22:1 to 3:1mepanipyrim 18:1 to 1:3 6:1 to 1:1 6:1 to 1:1mepronil 7:1 to 1:36 2:1 to 1:12 1:1 to 1:6 WO 2022/133114 PCT/US2021/063852 161 Component (b)TypicalWeight RatioTypicalWeight RatioMost TypicalWeight Ratiomeptyldinocap 7:1 to 1:9 2:1 to 1:3 2:1 to 1:3metalaxyl 15:1 to 1:45 5:1 to 1:15 1:1 to 1:6metal axyl-M 7:1 to 1:90 2:1 to 1:30 1:1 to 1:12metconazole 3:1 to 1:18 1:1 to 1:6 1:1 to 1:6methasulfocarb 150:1 to 1:36 50:1 to 1:12 15:1 to 1:1metiram 150:1 to 1:36 50:1 to 1:12 15:1 to 1:1metominostrobin 9:1 to 1:12 3:1 to 1:4 3:1 to 1:3metrafenone 6:1 to 1:12 2:1 to 1:4 2:1 to 1:4myclobutanil 5:1 to 1:26 1:1 to 1:9 1:1 to 1:8naftifine 150:1 to 1:36 50:1 to 1:12 15:1 to 2:1neo-asozin (feme methanearsonate) 150:1 to 1:36 50:1 to 1:12 15:1 to 2:1nuarimol 15:1 to 1:9 5:1 to 1:3 3:1 to 1:3octhilinone 150:1 to 1:36 50:1 to 1:12 15:1 to 1:10furace 15:1 to 1:45 5:1 to 1:15 1:1 to 1:6orysastrobin 9:1 to 1:12 3:1 to 1:4 3:1 to 1:3oxadixyl 15:1 to 1:45 5:1 to 1:15 1:1 to 1:6oxolinic acid 30:1 to 1:9 10:1 to 1:3 7:1 to 1:2oxpoconazole 15:1 to 1:36 5:1 to 1:12 1:1 to 1:5oxycarboxin 18:1 to 1:6 6:1 to 1:2 4:1 to 1:2oxytetracycline 15:1 to 1:9 5:1 to 1:3 3:1 to 1:3pefurazoate 150:1 to 1:36 50:1 to 1:12 15:1 to 2:1penconazole 1:1 to 1:45 1:2 to 1:15 1:2 to 1:15pencycuron 150:1 to 1:2 50:1 to 2:1 11:1 to 2:1penflufen 12:1 to 1:9 4:1 to 1:3 2:1 to 1:3penthiopyrad 12:1 to 1:9 4:1 to 1:3 2:1 to 1:3phosphorous acid and salts thereof 150:1 to 1:36 50:1 to 1:12 15:1 to 2:1phthalide 150:1 to 1:36 50:1 to 1:12 15:1 to 2:1picoxystrobin 7:1 to 1:18 2:1 to 1:6 1:1 to 1:5piperalin 15:1 to 1:9 5:1 to 1:3 3:1 to 1:3polyoxin 15:1 to 1:9 5:1 to 1:3 3:1 to 1:3probenazole 15:1 to 1:9 5:1 to 1:3 3:1 to 1:3prochloraz 22:1 to 1:4 7:1 to 1:1 7:1 to 1:2procymidone 45:1 to 1:3 15:1 to 1:1 11:1 to 2:1 WO 2022/133114 PCT/US2021/063852 162 Component (b)TypicalWeight RatioTypicalWeight RatioMost TypicalWeight Ratiopropamocarb or propamocarb-30:1 to 1:2 10:1 to 2:1 10:1 to 2:1hydrochloridepropiconazole 4:1 to 1:18 1:1 to 1:6 1:1 to 1:5propineb 45:1 to 1:2 15:1 to 2:1 11:1 to 2:1proquinazid 3:1 to 1:36 1:1 to 1:12 1:1 to 1:12prothiocarb 9:1 to 1:18 3:1 to 1:6 3:1 to 1:3prothioconazole 6:1 to 1:18 2:1 to 1:6 1:1 to 1:5pyraclostrobin 9:1 to 1:18 3:1 to 1:6 2:1 to 1:4pyrametostrobin 9:1 to 1:18 3:1 to 1:6 2:1 to 1:4pyraoxystrobin 9:1 to 1:18 3:1 to 1:6 2:1 to 1:4pyrazophos 150:1 to 1:36 50:1 to 1:12 15:1 to 1:1pyribencarb 15:1 to 1:6 5:1 to 1:2 4:1 to 1:2pyrifenox 15:1 to 1:9 5:1 to 1:3 3:1 to 1:3pyrimethanil 30:1 to 1:6 10:1 to 1:2 3:1 to 1:2pyriofenone 6:1 to 1:12 2:1 to 1:4 2:1 to 1:4pyrisoxazole 15:1 to 1:9 5:1 to 1:3 3:1 to 1:3pyroquilon 15:1 to 1:9 5:1 to 1:3 3:1 to 1:3pyrrolnitrin 150:1 to 1:36 50:1 to 1:12 15:1 to 2:1quinconazole 4:1 to 1:12 1:1 to 1:4 1:1 to 1:4quinmethionate 150:1 to 1:36 50:1 to 1:12 15:1 to 2:1quinoxyfen 4:1 to 1:18 1:1 to 1:6 1:1 to 1:6quintozene 150:1 to 1:36 50:1 to 1:12 15:1 to 2:1silthiofam 7:1 to 1:18 2:1 to 1:6 2:1 to 1:4simeconazole 15:1 to 1:36 5:1 to 1:12 1:1 to 1:5spiroxamine 22:1 to 1:4 7:1 to 1:2 5:1 to 1:2streptomycin 15:1 to 1:9 5:1 to 1:3 3:1 to 1:3sulfur 300:1 to 3:1 100:1 to 9:1 75:1 to 9:1tebuconazole 7:1 to 1:18 2:1 to 1:6 1:1 to 1:5tebufloquin 100:1 to 1:100 10:1 to 1:10 3:1 to 1:3tecloftalam 150:1 to 1:36 50:1 to 1:12 15:1 to 2:1tecnazene 150:1 to 1:36 50:1 to 1:12 15:1 to 2:1terbinafine 150:1 to 1:36 50:1 to 1:12 15:1 to 2:1tetraconazole 15:1 to 1:36 5:1 to 1:12 1:1 to 1:5 WO 2022/133114 PCT/US2021/063852 163 Component (b)TypicalWeight RatioTypicalWeight RatioMost TypicalWeight Ratiothiabendazole 45:1 to 1:4 15:1 to 1:2 11:1 to 2:1thifluzamide 15:1 to 1:9 5:1 to 1:3 3:1 to 1:3thiophanate 45:1 to 1:3 15:1 to 2:1 11:1 to 2:1thiophanate-methyl 45:1 to 1:3 15:1 to 2:1 11:1 to 2:1thiram 150:1 to 1:2 50:1 to 2:1 37:1 to 5:1tiadinil 12:1 to 1:9 4:1 to 1:3 2:1 to 1:3tolclofos-methyl 150:1 to 1:2 50:1 to 2:1 37:1 to 5:1tolnifanide 15:1 to 1:18 5:1 to 1:6 3:1 to 1:3tolylfluanid 150:1 to 1:36 50:1 to 1:12 15:1 to 2:1triadimefon 15:1 to 1:36 5:1 to 1:12 1:1 to 1:5triadimenol 15:1 to 1:36 5:1 to 1:12 1:1 to 1:5triarimol 3:1 to 1:90 1:1 to 1:30 1:2 to 1:24tri azoxide 150:1 to 1:36 50:1 to 1:12 15:1 to 2:1tricyclazole 15:1 to 1:9 5:1 to 1:3 3:1 to 1:3tridemorph 30:1 to 1:3 10:1 to 1:1 7:1 to 1:1trifloxystrobin 6:1 to 1:18 2:1 to 1:6 2:1 to 1:4triflumizole 15:1 to 1:9 5:1 to 1:3 3:1 to 1:3triforine 15:1 to 1:9 5:1 to 1:3 3:1 to 1:3trimorphamide 45:1 to 1:9 15:1 to 1:3 7:1 to 1:2triticonazole 15:1 to 1:36 5:1 to 1:12 1:1 to 1:5uniconazole 15:1 to 1:36 5:1 to 1:12 1:1 to 1:5validamycin 150:1 to 1:36 50:1 to 1:12 3:1 to 1:3valifenalate 6:1 to 1:18 2:1 to 1:6 2:1 to 1:4vinclozolin 120:1 to 1:2 40:1 to 2:1 15:1 to 2:1zineb 150:1 to 1:2 50:1 to 2:1 37:1 to 5:1ziram 150:1 to 1:2 50:1 to 2:1 37:1 to 5:1zoxamide 6:1 to 1:18 2:1 to 1:6 2:1 to 1:45-chloro-6-(2,4,6-tri fluorophenyl)-7-(4-methylpiperidin-1 -yl)[ 1,2,4]triazolo- 15:1 to 1:36 5:1 to 1:12 1:1 to 1:6[l,5-a]pyrimidine (DPX-BAS600F)/V-12-14- [ [3 -(4-chlorophenyl)-2-propyn-6:1 to 1:18 2:1 to 1:6 2:1 to 1:4-yl] oxy] -3 -methoxyphenyl] ethyl] - WO 2022/133114 PCT/US2021/063852 164 Component (b)TypicalWeight RatioTypicalWeight RatioMost TypicalWeight Ratio3-methyl-2- [(methylsulfonyl)amino] -butanamideN- [2- [4-[ [3-(4-chlorophenyl)-2-propyn-1 - y 1] oxy ] - 3 -methoxypheny 1] ethyl] - 3 -methyl- 6:1 to 1:18 2:1 to 1:6 2:1 to 1:42-[(ethylsulfonyl)amino]butanamide4-fluorophenyl N- [ 1 - [ [ [ 1 -(4-cyanophenyl)- ethyl] sulfonyl] methyl] propyl] c arb amate6:1 to 1:18 2:1 to 1:6 2:1 to 1:4 N- [ [(cyclopropylmethoxy)amino] [6- (difluoromethoxy)-2,3-difluorophenyl] - 1:1 to 1:90 1:2 to 1:30 1:2 to 1:24methylene]benzeneacetamidea- [methoxyimino] - A'- rnethy 1 -2- [ [ [ 1 - [3 - (trifluoromethy !)phenyl] ethoxy] imino] - 9:1 to 1:18 3:1 to 1:6 3:1 to 1:3methyl]benzeneacetamideN*-[4- [4-chloro-3-(tri fluoromethyl)- phenoxy] -2,5 -dimethylphenyl] - A'-ethy 1 - 15:1 to 1:18 5:1 to 1:6 3:1 to 1:3Wmethylmethanimidamide As already noted, the present invention includes embodiments wherein in the composition comprising components (a) and (b), component (b) comprises at least one fungicidal compound from each of two groups selected from (bl) through (b54). Tables Cl through C23 list specific mixtures (compound numbers refer to compounds in Index Tables A through T) to illustrate embodiments wherein component (b) includes at least one fungicidal compound from each of two groups selected from (bl) through (b54). In Table Cl, each line below the column headings "Component (a)" and "Component (b)" specifically discloses a mixture of Component (a), which is Compound 21, with at least two Component (b) fungicidal compounds. The entries under the heading "Illustrative Ratios " disclose three specific weight ratios of Component (a) to each Component (b) fungicidal compound in sequence for the disclosed mixture. For example, the first line discloses a mixture of Compound 21 with cyproconazole and azoxystrobin and lists weight ratios of Compound 21 to cyproconazole to azoxystrobin of 1:1:1,2:1:1 or 3:1:1.TabledComponent (a) Component (b) Component (b) Component (b) Illustrative Ratios(*)Compound 21 cyproconazole azoxystrobin 1:1:1 2:1:1 3:1:1Compound 21 cyproconazole kresoxim-methyl 1:1:1 2:1:1 3:1:1Compound 21 cyproconazole picoxystrobin 1:1:1 2:1:1 3:1:1 WO 2022/133114 PCT/US2021/063852 165 Component (a) Component (b) Component (b) Component (b) Illustrative Ratios(*)Compound 21 cyproconazole pyraclostrobin 1:1:1 2:1:1 3:1:1Compound 21 cyproconazole pyrametrostrobin 1:1:1 2:1:1 3:1:1Compound 21 cyproconazole pyraoxystrobin 1:1:1 2:1:1 3:1:1Compound 21 cyproconazole trifloxystrobin 1:1:1 2:1:1 3:1:1Compound 21 cyproconazole bixafen 1:1:2 2:1:2 3:1:2Compound 21 cyproconazole boscalid 1:1:2 2:1:2 3:1:2Compound 21 cyproconazole cyflufenamid 1:2:1 2:2:1 3:2:1Compound 21 cyproconazole fluopyram 1:1:2 2:1:2 3:1:2Compound 21 cyproconazole isopyrazam 1:1:2 2:1:2 3:1:2Compound 21 cyproconazole metrafenone 1:1:2 2:1:2 3:1:2Compound 21 cyproconazole penthiopyrad 1:1:2 2:1:2 3:1:2Compound 21 cyproconazole proquinazid 1:1:1 2:1:1 3:1:1Compound 21 cyproconazole pyriofenone 1:1:2 2:1:2 3:1:2Compound 21 cyproconazole quinoxyfen 1:1:1 2:1:1 3:1:1Compound 21 cyproconazole sedaxane 1:1:2 2:1:2 3:1:2Compound 21 cyproconazole picoxystrobin proquinazid 1:1:1:1 2:1:1:1 3:1:1:1Compound 21 cyproconazole trifloxystrobin proquinazid 1:1:1:1 2:1:1:1 3:1:1:1Compound 21 difenconazole azoxystrobin 1:1:1 2:1:1 3:1:1Compound 21 difenconazole kresoxim-methyl 1:1:1 2:1:1 3:1:1Compound 21 difenconazole picoxystrobin 1:1:1 2:1:1 3:1:1Compound 21 difenconazole pyraclostrobin 1:1:1 2:1:1 3:1:1Compound 21 difenconazole pyrametostrobin 1:1:1 2:1:1 3:1:1Compound 21 difenoconazole pyraoxystrobin 1:1:1 2:1:1 3:1:1Compound 21 difenconazole trifloxystrobin 1:1:1 2:1:1 3:1:1Compound 21 difenconazole bixafen 1:1:2 2:1:2 3:1:2Compound 21 difenconazole boscalid 1:1:2 2:1:2 3:1:2Compound 21 difenconazole cyflufenamid 1:2:1 2:2:1 3:2:1Compound 21 difenconazole fluopyram 1:1:2 2:1:2 3:1:2Compound 21 difenconazole isopyrazam 1:1:2 2:1:2 3:1:2Compound 21 difenconazole metrafenone 1:1:2 2:1:2 3:1:2Compound 21 difenconazole penthiopyrad 1:1:2 2:1:2 3:1:2Compound 21 difenconazole proquinazid 1:1:1 2:1:1 3:1:1Compound 21 difenconazole pyriofenone 1:1:2 2:1:2 3:1:2Compound 21 difenconazole quinoxyfen 1:1:1 2:1:1 3:1:1 WO 2022/133114 PCT/US2021/063852 166 Component (a) Component (b) Component (b) Component (b) Illustrative Ratios(*)Compound 21 difenconazole sedaxane 1:1:2 2:1:2 3:1:2Compound 21 difenconazole picoxystrobin proquinazid 1:1:1:1 2:1:1:1 3:1:1:1Compound 21 difenconazole trifloxystrobin proquinazid 1:1:1:1 2:1:1:1 3:1:1:1Compound 21 epoxiconazole azoxystrobin 1:1:1 2:1:1 3:1:1Compound 21 epoxiconazole kresoxim-methyl 1:1:1 2:1:1 3:1:1Compound 21 epoxiconazole picoxystrobin 1:1:1 2:1:1 3:1:1Compound 21 epoxiconazole pyraclostrobin 1:1:1 2:1:1 3:1:1Compound 21 epoxiconazole pyrametostrobin 1:1:1 2:1:1 3:1:1Compound 21 epoxiconazole pyraoxystrobin 1:1:1 2:1:1 3:1:1Compound 21 epoxiconazole trifloxystrobin 1:1:1 2:1:1 3:1:1Compound 21 epoxiconazole bixafen 1:1:2 2:1:2 3:1:2Compound 21 epoxiconazole boscalid 1:1:2 2:1:2 3:1:2Compound 21 epoxiconazole cyflufenamid 1:2:1 2:2:1 3:2:1Compound 21 epoxiconazole fluopyram 1:1:2 2:1:2 3:1:2Compound 21 epoxiconazole isopyrazam 1:1:2 2:1:2 3:1:2Compound 21 epoxiconazole metrafenone 1:1:2 2:1:2 3:1:2Compound 21 epoxiconazole penthiopyrad 1:1:2 2:1:2 3:1:2Compound 21 epoxiconazole proquinazid 1:1:1 2:1:1 3:1:1Compound 21 epoxiconazole pyriofenone 1:1:2 2:1:2 3:1:2Compound 21 epoxiconazole quinoxyfen 1:1:1 2:1:1 3:1:1Compound 21 epoxiconazole sedaxane 1:1:2 2:1:2 3:1:2Compound 21 epoxiconazole picoxystrobin proquinazid 1:1:1:1 2:1:1:1 3:1:1:1Compound 21 epoxiconazole trifloxystrobin proquinazid 1:1:1:1 2:1:1:1 3:1:1:1Compound 21 metconazole azoxystrobin 1:1:1 2:1:1 3:1:1Compound 21 metconazole kresoxim-methyl 1:1:1 2:1:1 3:1:1Compound 21 metconazole picoxystrobin 1:1:1 2:1:1 3:1:1Compound 21 metconazole pyraclostrobin 1:1:1 2:1:1 3:1:1Compound 21 metconazole pyrametostrobin 1:1:1 2:1:1 3:1:1Compound 21 metconazole pyraoxystrobin 1:1:1 2:1:1 3:1:1Compound 21 metconazole trifloxystrobin 1:1:1 2:1:1 3:1:1Compound 21 metconazole bixafen 1:1:2 2:1:2 3:1:2Compound 21 metconazole boscalid 1:1:2 2:1:2 3:1:2Compound 21 metconazole cyflufenamid 1:2:1 2:2:1 3:2:1Compound 21 metconazole fluopyram 1:1:2 2:1:2 3:1:2 WO 2022/133114 PCT/US2021/063852 167 Component (a) Component (b) Component (b) Component (b) Illustrative Ratios(*)Compound 21 metconazole isopyrazam 1:1:2 2:1:2 3:1:2Compound 21 metconazole metrafenone 1:1:2 2:1:2 3:1:2Compound 21 metconazole penthiopyrad 1:1:2 2:1:2 3:1:2Compound 21 metconazole proquinazid 1:1:1 2:1:1 3:1:1Compound 21 metconazole pyriofenone 1:1:2 2:1:2 3:1:2Compound 21 metconazole quinoxyfen 1:1:1 2:1:1 3:1:1Compound 21 metconazole sedaxane 1:1:2 2:1:2 3:1:2Compound 21 metconazole picoxystrobin proquinazid 1:1:1:1 2:1:1:1 3:1:1:1Compound 21 metconazole trifloxystrobin proquinazid 1:1:1:1 2:1:1:1 3:1:1:1Compound 21 myclobutanil azoxystrobin 1:1:1 2:1:1 3:1:1Compound 21 myclobutanil kresoxim-methyl 1:1:1 2:1:1 3:1:1Compound 21 myclobutanil picoxystrobin 1:1:1 2:1:1 3:1:1Compound 21 myclobutanil pyraclostrobin 1:1:1 2:1:1 3:1:1Compound 21 myclobutanil pyrametostrobin 1:1:1 2:1:1 3:1:1Compound 21 myclobutanil pyraoxystrobin 1:1:1 2:1:1 3:1:1Compound 21 myclobutanil trifloxystrobin 1:1:1 2:1:1 3:1:1Compound 21 myclobutanil bixafen 1:1:2 2:1:2 3:1:2Compound 21 myclobutanil boscalid 1:1:2 2:1:2 3:1:2Compound 21 myclobutanil cyflufenamid 1:2:1 2:2:1 3:2:1Compound 21 myclobutanil fluopyram 1:1:2 2:1:2 3:1:2Compound 21 myclobutanil isopyrazam 1:1:2 2:1:2 3:1:2Compound 21 myclobutanil metrafenone 1:1:2 2:1:2 3:1:2Compound 21 myclobutanil penthiopyrad 1:1:2 2:1:2 3:1:2Compound 21 myclobutanil proquinazid 1:1:1 2:1:1 3:1:1Compound 21 myclobutanil pyriofenone 1:1:2 2:1:2 3:1:2Compound 21 myclobutanil quinoxyfen 1:1:1 2:1:1 3:1:1Compound 21 myclobutanil sedaxane 1:1:2 2:1:2 3:1:2Compound 21 myclobutanil picoxystrobin proquinazid 1:1:1:1 2:1:1:1 3:1:1:1Compound 21 myclobutanil trifloxystrobin proquinazid 1:1:1:1 2:1:1:1 3:1:1:1Compound 21 prothioconazole azoxystrobin 1:1:1 2:1:1 3:1:1Compound 21 prothioconazole kresoxim-methyl 1:1:1 2:1:1 3:1:1Compound 21 prothioconazole picoxystrobin 1:1:1 2:1:1 3:1:1Compound 21 prothioconazole pyraclostrobin 1:1:1 2:1:1 3:1:1Compound 21 prothioconazole pyrametostrobin 1:1:1 2:1:1 3:1:1 WO 2022/133114 PCT/US2021/063852 168 Component (a) Component (b) Component (b) Component (b) Illustrative Ratios(*)Compound 21 prothioconazole pyraoxystrobin 1:1:1 2:1:1 3:1:1Compound 21 prothioconazole trifloxystrobin 1:1:1 2:1:1 3:1:1Compound 21 prothioconazole bixafen 1:1:2 2:1:2 3:1:2Compound 21 prothioconazole boscalid 1:1:2 2:1:2 3:1:2Compound 21 prothioconazole cyflufenamid 1:2:1 2:2:1 3:2:1Compound 21 prothioconazole fluopyram 1:1:2 2:1:2 3:1:2Compound 21 prothioconazole isopyrazam 1:1:2 2:1:2 3:1:2Compound 21 prothioconazole metrafenone 1:1:2 2:1:2 3:1:2Compound 21 prothioconazole penthiopyrad 1:1:2 2:1:2 3:1:2Compound 21 prothioconazole proquinazid 1:1:1 2:1:1 3:1:1Compound 21 prothioconazole pyriofenone 1:1:2 2:1:2 3:1:2Compound 21 prothioconazole quinoxyfen 1:1:1 2:1:1 3:1:1Compound 21 prothioconazole sedaxane 1:1:2 2:1:2 3:1:2Compound 21 prothioconazole picoxystrobin proquinazid 1:1:1:1 2:1:1:1 3:1:1:1Compound 21 prothioconazole trifloxystrobin proquinazid 1:1:1:1 2:1:1:1 3:1:1:1Compound 21 tebuconazole azoxystrobin 1:1:1 2:1:1 3:1:1Compound 21 tebuconazole kresoxim-methyl 1:1:1 2:1:1 3:1:1Compound 21 tebuconazole picoxystrobin 1:1:1 2:1:1 3:1:1Compound 21 tebuconazole pyraclostrobin 1:1:1 2:1:1 3:1:1Compound 21 tebuconazole pyrametostrobin 1:1:1 2:1:1 3:1:1Compound 21 tebuconazole pyraoxystrobin 1:1:1 2:1:1 3:1:1Compound 21 tebuconazole trifloxystrobin 1:1:1 2:1:1 3:1:1Compound 21 tebuconazole bixafen 1:1:2 2:1:2 3:1:2Compound 21 tebuconazole boscalid 1:1:2 2:1:2 3:1:2Compound 21 tebuconazole cyflufenamid 1:2:1 2:2:1 3:2:1Compound 21 tebuconazole fluopyram 1:1:2 2:1:2 3:1:2Compound 21 tebuconazole isopyrazam 1:1:2 2:1:2 3:1:2Compound 21 tebuconazole metrafenone 1:1:2 2:1:2 3:1:2Compound 21 tebuconazole penthiopyrad 1:1:2 2:1:2 3:1:2Compound 21 tebuconazole proquinazid 1:1:1 2:1:1 3:1:1Compound 21 tebuconazole pyriofenone 1:1:2 2:1:2 3:1:2Compound 21 tebuconazole quinoxyfen 1:1:1 2:1:1 3:1:1Compound 21 tebuconazole sedaxane 1:1:2 2:1:2 3:1:2Compound 21 tebuconazole picoxystrobin proquinazid 1:1:1:1 2:1:1:1 3:1:1:1 WO 2022/133114 PCT/US2021/063852 169 Component (a) Component (b) Component (b) Component (b) Illustrative Ratios(*)Compound 21 tebuconazole trifloxystrobin proquinazid 1:1:1:1 2:1:1:1 3:1:1:1 (*) Ratios of Component (a) relative to Component (b) in sequence, by weight.
Tables C2 through C26 are each constructed the same as Table Cl above except that entries below the "Component (a)" column heading are replaced with the respective Component (a) Column Entry shown below. Thus, for example, in Table C2 the entries below the "Component(a)" column heading all recite "Compound 57", and the first line in below the column headings inTable C2 specifically discloses a mixture of Compound 57 with cyproconazole and azoxystrobin,and the illustrative weight ratios of 1:1:1, 2:1:1 and 3:1:1 of Compound57:cyproconazole:azoxystrobin. Tables C3 through C26 are constructed similarly.
Table Number Component (a) Column Entry Table Number Component (a) Column EntryC2 Compound 57 C15 Compound 400C3 Compound 110 C16 Compound 401C4 Compound 183 C17 Compound 402C5 Compound 198 C18 Compound 463C6 Compound 204 C19 Compound 505C7 Compound 225 C20 Compound 506C8 Compound 229 C21 Compound 507C9 Compound 257 C22 Compound 508CIO Compound 264 C23 Compound 509Cll Compound 316 C24 Compound 510C12 Compound 330 C25 Compound 511C13 Compound 376 C26 Compound 512C14 Compound 394 Of note is a composition of the present invention comprising a compound of Formula 1(oran AZ-oxidc or salt thereof) with at least one other fungicidal compound that has a different site of action from the compound of Formula 1.In certain instances, a combination with at least one other fungicidal compound having a similar spectrum of control but a different site of action will be particularly advantageous for resistance management. Thus, a composition of the present invention can advantageously comprise at least one fungicidal active compound selected from thegroup consisting of (bl) through (b54) as described above, having a similar spectrum of control but a different site of action.
WO 2022/133114 PCT/US2021/063852 170 Compositions of component (a), or component (a) with component (b), can be further mixed with one or more other biologically active compounds or agents including insecticides, nematocides, bactericides, acaricides, herbicides, herbicide safeners, growth regulators such as insect molting inhibitors and rooting stimulants, chemosterilants, semiochemicals, repellents, attractants, pheromones, feeding stimulants, plant nutrients, other biologically active compounds or entomopathogenic bacteria, virus or fungi to form a multi-component pesticide giving an even broader spectrum of agricultural protection. Thus the present invention also pertains to a composition comprising a fungicidally effective amount of component (a), or a mixture of component (a) with component (b), and a biologically effective amount of at least one additional biologically active compound or agent and can further comprise at least one of a surfactant, a solid diluent or a liquid diluent. The other biologically active compounds or agents can also be separately formulated in compositions comprising at least one of a surfactant, solid or liquid diluent. For compositions of the present invention, one or more other biologically active compounds or agents can be formulated together with one or both of components (a) and (b) to form a premix, or one or more other biologically active compounds or agents can be formulated separately from components (a) and (b) and the formulations combined together before application (e.g., in a spray tank) or, alternatively, applied in succession.Examples of such biologically active compounds or agents with which compositions of component (a), or component (a) with component (b), can be formulated are: insecticides such as abamectin, acephate, acequinocyl, acetamiprid, acrinathrin, acynonapyr, afidopyropen ([(35,47?,4a7?,65,6a5,127?,12a5,12b5)-3-[(cyclopropylcarbonyl)oxy]-l,3,4,4a,5,6,6a,12,12a,12b- decahydro-6,12-dihydroxy-4,6a, 12b-trimethyl-l l-oxo-9-(3-pyridinyl)-2/Z, 1 l/7-naphtho[2, 1- Z?]pyrano[3,4-e]pyran-4-yl]methyl cyclopropanecarboxylate), amidoflumet, amitraz, avermectin, azadirachtin, azinphos-methyl, benfuracarb, bensultap, benzpyrimoxan, bifenthrin, kappa- bifenthrin, bifenazate, bistrifluron, borate, broflanilide, buprofezin, cadusafos, carbaryl, carbofuran, cartap, carzol, chlorantraniliprole, chlorfenapyr, chlorfluazuron, chloroprallethrin, chlorpyrifos, chlorpyrifos-e, chlorpyrifos-methyl, chromafenozide, clofentezin, chloroprallethrin, clothianidin, cyantraniliprole (3-bromo-1-(3-chloro-2-pyridinyl)-N-[4-cyano-2-methyl-6- [(methylamino)carbonyl]phenyl]-l/Z-pyrazole-5-carboxamide), cyclaniliprole (3-bromo-iV-[2- bromo-4-chloro-6-[[(l-cyclopropylethyl)amino]carbonyl]phenyl]-l-(3-chloro-2-pyridinyl)-lH- pyrazole-5-carboxamide), cycloprothrin, cycloxaprid ((55,87?)- l-[(6-chloro-3-pyridinyl)methyl]- 2,3,5,6,7,8-hexahydro-9-nitro-5,8-Epoxy-l/7-imidazo[l,2-a]azepine), cyenopyrafen,cyflumetofen, cyfluthrin, beta-cyfluthrin, cyhalodiamide, cyhalothrin, gamma-cyhalothrin, lambda-cyhalothrin, cypermethrin, alpha-cypermethrin, zeta-cypermethrin, cyromazine, deltamethrin, diafenthiuron, diazinon, dicloromesotiaz, dieldrin, diflubenzuron, dimefluthrin.
WO 2022/133114 PCT/US2021/063852 171 dimehypo, dimethoate, dimpropyridaz, dinotefuran, diofenolan, emamectin, emamectin benzoate, endosulfan, esfenvalerate, ethiprole, etofenprox, epsilon-metofluthrin, etoxazole, fenbutatin oxide, fenitrothion, fenothiocarb, fenoxycarb, fenpropathrin, fenvalerate, fipronil, flometoquin (2- ethyl-3,7-dimethyl-6-[4-(trifluoromethoxy)phenoxy]-4-quinolinyl methyl carbonate), flonicamid, fluazaindolizine, flubendiamide, flucythrinate, flufenerim, flufenoxuron, flufenoxystrobin (methyl (aE)-2-[[2-chloro-4-(trifluoromethyl)phenoxy]methyl]-a-(methoxymethylene)benzene- acetate), fluensulfone (5-chloro-2-[(3,4,4-trifluoro-3-buten-l-yl)sulfonyl]thiazole), fluhexafon, fluopyram, flupiprole (1 -[2,6-dichloro-4-(trifluoromethyl)phenyl] -5-[(2-methyl-2-propen- 1 -yl)- amino] -4- [(trifluoromethyl) sulfinyl] -1 /7-pyrazolc-3-carboni tri Ie), flupyradifurone (4- [ [(6-chloro- 3-pyridinyl)methyl](2,2-difluoroethyl)amino]-2(5//)-furanone), flupyrimin, fluvalinate, tau-fluvalinate, fluxametamide, fonophos, formetanate, fosthiazate, gamma-cyhalothrin, halofenozide, heptafluthrin ([2,3,5,6-tetrafluoro-4-(methoxymethyl)phenyl]methyl 2,2-dimethyl- - [(1Z)3,3,3־ -trifluoro- 1 -propen- 1 -yl] cyclopropanecarboxylate) , hexaflumuron, hexy thiazox, hydramethylnon, imidacloprid, indoxacarb, insecticidal soaps, isofenphos, isocycloseram, kappa- tefluthrin, lambda-cyhalothrin, lufenuron, malathion, meperfluthrin ([2,3,5,6-tetrafluoro-4- (methoxy methy !)phenyl] methyl (l/?,3S)-3-(2,2-dichlorocthcnyl)-2,2-di methy !cyclopropane-carboxylate), metaflumizone, metaldehyde, methamidophos, methidathion, methiocarb, methomyl, methoprene, methoxychlor, metofluthrin, methoxyfenozide, epsilon-metofluthrin, epsilon-momfluorothrin, monocrotophos, monofluorothrin ([2,3,5,6-tetrafluoro-4-(methoxy- methy !)phenyl] methyl 3-(2-cyano- 1-propen- l-yl)-2,2-dimethylcyclopropanecarboxylate),nicotine, nitenpyram, nithiazine, novaluron, noviflumuron, oxamyl, oxazosulfyl, parathion, parathion-methyl, permethrin, phorate, phosalone, phosmet, phosphamidon, pirimicarb, profenofos, profluthrin, propargite, protrifenbute, pyflubumide (l,3,5-trimethyl-A/-(2-methyl-l- oxopropyl)-A/-[3-(2-methylpropyl)-4-[2,2,2-trifluoro-l-methoxy-l-(trifluoromethyl)ethyl]- phenyl]- l/Z-pyrazole-4-carboxamide), pymetrozine, pyrafluprole, pyrethrin, pyridaben, pyridalyl, pyrifluquinazon, pyriminostrobin (methyl (aE)-2-[[[2-[(2,4-dichlorophenyl)amino]-6-(trifluoro- methyl)-4-pyrimidinyl]oxy]methyl]-a-(methoxymethylene)benzeneacetate), pyriprole,pyriproxyfen, rotenone, ryanodine, silafluofen, spinetoram, spinosad, spirodiclofen, spiromesifen, spiropidion, spirotetramat, sulprofos, sulfoxaflor (A/-[methyloxido[l-[6-(trifluoromethyl)-3- pyridinyl]ethyl]-k 4-sulfanylidene]cyanamide), tebufenozide, tebufenpyrad, teflubenzuron, tefluthrin, kappa-tefluthrin, terbufos, tetrachlorantraniliprole, tetrachlorvinphos, tetramethrin, tetramethylfluthrin ([2,3,5,6-tetrafluoro-4-(methoxymethyl)phenyl]methyl 2,2,3,3-tetramethyl- cyclopropanecarboxylate), tetraniliprole, thiacloprid, thiamethoxam, thiodicarb, thiosultap- sodium, tioxazafen (3-phenyl-5-(2-thienyl)-l,2,4-oxadiazole), tolfenpyrad, tralomethrin, WO 2022/133114 PCT/US2021/063852 172 triazamate, trichlorfon, triflumezopyrim (2,4-dioxo-l-(5-pyrimidinylmethyl)-3-[3-(trifluoro- methyl)phenyl]-2//-pyrido[l,2-،z]pyrimidinium inner salt), triflumuron, tyclopyrazoflor, zeta- cypermethrin. Bacillus thuringiensis delta-endotoxins, entomopathogenic bacteria, entomopathogenic viruses or entomopathogenic fungi.One embodiment of biological agents for mixing with compounds of this disclosure include entomopathogenic bacteria such as Bacillus thuringiensis, and the encapsulated delta-endotoxins of Bacillus thuringiensis such as MVP® and MVPII® bioinsecticides prepared by the CellCap® process (CellCap®, MVP® and MVPII® are trademarks of Mycogen Corporation, Indianapolis, Indiana, USA); entomopathogenic fungi such as green muscardine fungus; and entomopathogenic (both naturally occurring and genetically modified) viruses including baculovirus, nucleopolyhedro virus (NPV) such as Helicoverpa zea nucleopolyhedrovirus (HzNPV), Anagrapha falcifera nucleopolyhedrovirus (AfNPV); and granulosis virus (GV) such as Cydia pomonella granulosis virus (CpGV).General references for these agricultural protectants (i.e. insecticides, fungicides, nematocides, acaricides, herbicides and biological agents) include The Pesticide Manual, 13 th Edition, C. D. S. Tomlin, Ed., British Crop Protection Council, Farnham, Surrey, U.K., 2003 and The BioPesticide Manual, 2nd Edition, L. G. Copping, Ed., British Crop Protection Council, Farnham, Surrey, U.K., 2001.For embodiments where one or more of these various mixing partners are used, the weight ratio of these various mixing partners (in total) to component (a), or a mixture of component (a) with component (b), is generally between about 1:3000 and about 3000:1. Of note are weight ratios between about 1:100 and about 3000:1, or between about 1:30 and about 300:1 (for example ratios between about 1:1 and about 30:1). It will be evident that including these additional components may expand the spectrum of diseases controlled beyond the spectrum controlled by component (a), or a mixture of component (a) with component (b).Component (a) compounds and/or combinations thereof with component (b) compounds and/or one or more other biologically active compounds or agents can be applied to plants genetically transformed to express proteins toxic to invertebrate pests (such as Bacillus thuringiensis delta-endotoxins). The effect of the exogenously applied present component (a) alone or in combination with component (b) may be synergistic with the expressed toxin proteins.Of note is the combination or the composition comprising component (a), or components (a) and (b), as described in the Summary of the Invention further comprising at least one invertebrate pest control compound or agent (e.g., insecticide, acaricide). Of particular note is a composition comprising component (a) and at least one (i.e. one or more) invertebrate pest control compound or agent, which then can be subsequently combined with component (b) to provide a WO 2022/133114 PCT/US2021/063852 173 composition comprising components (a) and (b) and the one or more invertebrate pest control compounds or agents. Alternatively without first mixing with component (b), a biologically effective amount of the composition comprising component (a) with at least one invertebrate pest control agent can be applied to a plant or plant seed (directly or through the environment of the plant or plant seed) to protect the plant or plant seed from diseases caused by fungal pathogens and injury caused by invertebrate pests.For embodiments where one or more of invertebrate pest control compounds are used, the weight ratio of these compounds (in total) to the component (a) compounds is typically between about 1:3000 and about 3000:1. Of note are weight ratios between about 1:300 and about 300:(for example ratios between about 1:30 and about 30:1). One skilled in the art can easily determine through simple experimentation the biologically effective amounts of active ingredients necessary for the desired spectrum of biological activity.Of note is a composition of the present invention which comprises in addition to a component (a) compound, alone or in combination with component (b), at least one invertebrate pest control compound or agent selected from the group consisting abamectin, acetamiprid, acrinathrin, acynonapyr, afidopyropen, amitraz, avermectin, azadirachtin, benfuracarb, bensultap, bifenthrin, buprofezin, broflanilide, cadusafos, carbaryl, cartap, chlorantraniliprole, chloroprallethrin, chlorfenapyr, chlorpyrifos, clothianidin, cyantraniliprole, cyclaniliprole, cycloprothrin, cyfluthrin, beta-cyfluthrin, cyhalothrin, gamma-cyhalothrin, lambda-cyhalothrin, cypermethrin, alpha-cypermethrin, zeta-cypermethrin, cyromazine, deltamethrin, dieldrin, dinotefuran, diofenolan, emamectin, endosulfan, epsilon-metofluthrin, esfenvalerate, ethiprole, etofenprox, etoxazole, fenitrothion, fenothiocarb, fenoxycarb, fenvalerate, fipronil, flometoquin, fluxametamide, flonicamid, flubendiamide, fluensulfone, flufenoxuron, flufenoxystrobin, flufensulfone, flupiprole, flupyrimin, flupyradifurone, fluvalinate, formetanate, fosthiazate, gamma-cyhalothrin, heptafluthrin, hexaflumuron, hydramethylnon, imidacloprid, indoxacarb, isocycloseram, kappa-tefluthrin, lambda-cyhalothrin, lufenuron, meperfluthrin, metaflumizone, methiodicarb, methomyl, methoprene, methoxyfenozide, metofluthrin, monofluorothrin, nitenpyram, nithiazine, novaluron, oxamyl, pyflubumide, pymetrozine, pyrethrin, pyridaben, pyridalyl, pyriminostrobin, pyriproxyfen, ryanodine, spinetoram, spinosad, spirodiclofen, spiromesifen, spirotetramat, sulfoxaflor, tebufenozide, tetramethrin, tetramethylfluthrin, thiacloprid, thiamethoxam, thiodicarb, thiosultap-sodium, tralomethrin, triazamate, triflumezopyrim, triflumuron, tyclopyrazoflor, zeta-cypermethrin, Bacillus thuringiensis delta- endotoxins, all strains of Bacillus thuringiensis and all strains of nucleo polyhedrosis viruses.In certain instances, combinations of a a component (a) compound of this invention, alone or in mixture with component (b), with other biologically active (particularly fungicidal) WO 2022/133114 PCT/US2021/063852 compounds or agents (i.e. active ingredients) can result in a greater-than-additive (i.e. synergistic) effect. Reducing the quantity of active ingredients released in the environment while ensuring effective pest control is always desirable. When an enhanced effect of fungicidal active ingredients occurs at application rates giving agronomically satisfactory levels of fungal control, such combinations can be advantageous for reducing crop production cost and decreasing environmental load.Table DI lists specific combinations of invertebrate pest control agents with Compound (compound numbers refer to compounds in Index Tables A through T) as a component (a) compound illustrative of mixtures and compositions comprising these active ingredients and methods using them according to the present invention. The second column of Table DI lists the specific invertebrate pest control agents (e.g., "Abamectin " in the first line). The third column of Table DI lists the mode of action (if known) or chemical class of the invertebrate pest control agents. The fourth column of Table DI lists embodiment(s) of ranges of weight ratios for rates at which the invertebrate pest control agent is typically applied relative to Compound 21 alone or in combination with component (b) (e.g., "50:1 to 1:50" of abamectin relative to a Compound 21 by weight). Thus, for example, the first line of Table DI specifically discloses the combination of Compound 21 with abamectin is typically applied in a weight ratio between 50:1 to 1:50. The remaining lines of Table DI are to be construed similarly. Thus, for example, the first line of Table DI specifically discloses the combination of Compound 21 with abamectin is typically applied in a weight ratio between 50:1 to 1:50. The remaining lines of Table DI are to be construed similarly.Table DI Table NumberInvertebrate Pest Control Agent Mode of Action or Chemical ClassTypicalWeight RatioCompound 21 Abamectin macrocyclic lactones 50:1 to 1:50Compound 21 Acetamiprid neonicotinoids 150:1 to 1:200Compound 21 Amitraz octopamine receptor ligands 200:1 to 1:100Compound 21 Avermectin macrocyclic lactones 50:1 to 1:50Compound 21 Azadirachtin ecdysone agonists 100:1 to 1:120Compound 21 Beta-cyfluthrin sodium channel modulators 150:1 to 1:200Compound 21 Bifenthrin sodium channel modulators 100:1 to 1:10Compound 21 Buprofezin chitin synthesis inhibitors 500:1 to 1:50Compound 21 Cartap nereistoxin analogs 100:1 to 1:200Compound 21 Chlorantraniliprole ryanodine receptor ligands 100:1 to 1:120 WO 2022/133114 PCT/US2021/063852 175 Table NumberInvertebrate Pest Control Agent Mode of Action or Chemical ClassTypicalWeight Ratio Compound 21 Chlorfenapyrmitochondrial electron transport300:1 to 1:200 Compound 21 Chlorpyrifosinhibitorscholinesterase inhibitors 500:1 to 1:200Compound 21 Clothianidin neonicotinoids 100:1 to 1:400Compound 21 Cyantraniliprole ryanodine receptor ligands 100:1 to 1:120Compound 21 Cyfluthrin sodium channel modulators 150:1 to 1:200Compound 21 Cyhalothrin sodium channel modulators 150:1 to 1:200Compound 21 Cypermethrin sodium channel modulators 150:1 to 1:200Compound 21 Cyromazine chitin synthesis inhibitors 400:1 to 1:50Compound 21 Deltamethrin sodium channel modulators 50:1 to 1:400Compound 21 Dieldrin cyclodiene insecticides 200:1 to 1:100Compound 21 Dinotefur an neonicotinoids 150:1 to 1:200Compound 21 Diofenolan molting inhibitor 150:1 to 1:200Compound 21 Emamectin macrocyclic lactones 50:1 to 1:10Compound 21 Endosulfan cyclodiene insecticides 200:1 to 1:100Compound 21 Esfenvalerate sodium channel modulators 100:1 to 1:400 Compound 21 EthiproleGABA-regulated chloride channel200:1 to 1:100 Compound 21 Fenothiocarbblockers150:1 to 1:200Compound 21 Fenoxycarb juvenile hormone mimics 500:1 to 1:100Compound 21 Fenvalerate sodium channel modulators 150:1 to 1:200 Compound 21 FipronilGABA-regulated chloride channel150:1 to 1:100 Compound 21 Flonicamidblockers200:1 to 1:100Compound 21 Flubendiamide ryanodine receptor ligands 100:1 to 1:120Compound 21 Flufenoxuron chitin synthesis inhibitors 200:1 to 1:100Compound 21 Hexaflumuron chitin synthesis inhibitors 300:1 to 1:50 Compound 21 Hydramethylnonmitochondrial electron transport inhibitors150:1 to 1:250 Compound 21 Imidacloprid neonicotinoids 1000:1 to 1:1000Compound 21 Indoxacarb sodium channel modulators 200:1 to 1:50Compound 21 Lambda-cyhalothrin sodium channel modulators 50:1 to 1:250Compound 21 Lufenuron chitin synthesis inhibitors 500:1 to 1:250 WO 2022/133114 PCT/US2021/063852 176 Table NumberInvertebrate Pest Control Agent Mode of Action or Chemical ClassTypicalWeight RatioCompound 21 Meperfluthrin sodium channel modulators 100:1 to 1:400Compound 21 Metaflumizone 200:1 to 1:200Compound 21 Methomyl cholinesterase inhibitors 500:1 to 1:100Compound 21 Methoprene juvenile hormone mimics 500:1 to 1:100Compound 21 Methoxyfenozide ecdysone agonists 50:1 to 1:50Compound 21 Nitenpyram neonicotinoids 150:1 to 1:200Compound 21 Nithiazine neonicotinoids 150:1 to 1:200Compound 21 Novaluron chitin synthesis inhibitors 500:1 to 1:150Compound 21 Oxamyl cholinesterase inhibitors 200:1 to 1:200Compound 21 Pymetrozine 200:1 to 1:100Compound 21 Pyrethrin sodium channel modulators 100:1 to 1:10 Compound 21 Pyridabenmitochondrial electron transport inhibitors200:1 to 1:100 Compound 21 Pyridalyl 200:1 to 1:100Compound 21 Pyriproxyfen juvenile hormone mimics 500:1 to 1:100Compound 21 Ryanodine ryanodine receptor ligands 100:1 to 1:120Compound 21 Spinetoram macrocyclic lactones 150:1 to 1:100Compound 21 Spinosad macrocyclic lactones 500:1 to 1:10Compound 21 Spirodiclofen lipid biosynthesis inhibitors 200:1 to 1:200Compound 21 Spiromesifen lipid biosynthesis inhibitors 200:1 to 1:200Compound 21 Sulfoxaflor 200:1 to 1:200Compound 21 Tebufenozide ecdysone agonists 500:1 to 1:250Compound 21 Tetramethylfluthrin sodium channel modulators 100:1 to 1:40Compound 21 Thiacloprid neonicotinoids 100:1 to 1:200Compound 21 Thiamethoxam neonicotinoids 1250:1 to 1:1000Compound 21 Thiodicarb cholinesterase inhibitors 500:1 to 1:400Compound 21 Thiosultap-sodium 150:1 to 1:100Compound 21 Tralomethrin sodium channel modulators 150:1 to 1:200Compound 21 Triazamate cholinesterase inhibitors 250:1 to 1:100Compound 21 Triflumuron chitin synthesis inhibitors 200:1 to 1:100Compound 21 Bacillus thuringiensis biological agents 50:1 to 1:10 Compound 21Bacillus thuringiensis delta- endotoxinbiological agents 50:1 to 1:10 WO 2022/133114 PCT/US2021/063852 177 Invertebrate Pest Control TypicalTable Number Agent Mode of Action or Chemical Class Weight RatioCompound 21 NPV (e.g., Gemstar) biologicalagents 50:1 to 1:10 Tables D2 through D26 are each constructed the same as Table DI above except that entries below the "Component (a)" column heading are replaced with the respective Component (a) Column Entry shown below. Thus, for example, in Table D2 the entries below the "Component (a)" column heading all recite "Compound 57", and the first line in below the column headings in Table D2 specifically discloses a mixture of Compound 57 with abamectin. Tables D3 through D26 are constructed similarly.
Table Number Component (a) Column Entry Table Number Component (a) Column EntryD2 Compound 57 D15 Compound 400D3 Compound 110 D16 Compound 401D4 Compound 183 D17 Compound 402D5 Compound 198 D18 Compound 463D6 Compound 204 D19 Compound 505D7 Compound 225 D20 Compound 506D8 Compound 229 D21 Compound 507D9 Compound 257 D22 Compound 508DIO Compound 264 D23 Compound 509Dll Compound 316 D24 Compound 510D12 Compound 330 D25 Compound 511D13 Compound 376 D26 Compound 512D14 Compound 394Compositions comprising compounds of Formula 1 useful for seed treatment can further comprise bacteria and fungi that have the ability to provide protection from the harmful effects of plant pathogenic fungi or bacteria and/or soil born animals such as nematodes. Bacteria exhibiting nematicidal properties may include but are not limited to Bacillus firmus, Bacillus cereus, Bacillius subtiliis and Pasteuria penetrans. X suitable Bacillus firmus strain is strain CNCM I- 1582 (GB-126) which is commercially available as BioNemTM. A suitable Bacillus cereus strain is strain NCMM 1-1592. Both Bacillus strains are disclosed in US 6,406,690. Other suitable bacteria exhibiting nematicidal activity are B. amyloliquefaciens IN937a and B. subtilis strain GB03. Bacteria exhibiting fungicidal properties may include but are not limited to B. pumilusstrain GB34. Fungal species exhibiting nematicidal properties may include but are not limited to Myrothecium verrucaria, Paecilomyces lilacinus and Purpureocillium lilacinum.
WO 2022/133114 PCT/US2021/063852 178 Seed treatments can also include one or more nematicidal agents of natural origin such as the elicitor protein called harpin which is isolated from certain bacterial plant pathogens such as Erwinia amylovora. An example is the Harpin-N-Tek seed treatment technology available as N- Hibit™ Gold CST.Seed treatments can also include one or more species of legume-root nodulating bacteria such as the microsymbiotic nitrogen-fixing bacteria Bradyrhizobium japonicum. These inocculants can optionally include one or more lipo-chitooligosaccharides (LCOs), which are nodulation (Nod) factors produced by rhizobia bacteria during the initiation of nodule formation on the roots of legumes. For example, the Optimize® brand seed treatment technology incorporates ECO Promoter Technology™ in combination with an inocculant.Seed treatments can also include one or more isoflavones which can increase the level of root colonization by mycorrhizal fungi. Mycorrhizal fungi improve plant growth by enhancing the root uptake of nutrients such as water, sulfates, nitrates, phosphates and metals. Examples of isoflavones include, but are not limited to, genistein, biochanin A, formononetin, daidzein, glycitein, hesperetin, naringenin and pratensein. Formononetin is available as an active ingredient in mycorrhizal inocculant products such as PHC Colonize® AG.Seed treatments can also include one or more plant activators that induce systemic acquired resistance in plants following contact by a pathogen. An example of a plant activator which induces such protective mechanisms is acibenzolar-S-methyl.In the present fungicidal compositions, the Formula 1 compounds of component (a) can work synergically with the additional fungicidal compounds of component (b) to provide such beneficial results as broadening the spectrum of plant diseases controlled, extending duration of preventative and curative protection, and suppressing proliferation of resistant fungal pathogens. In particular embodiments, compositions are provided in accordance with this invention that comprise proportions of component (a) and component (b) that are especially useful for controlling particular fungal diseases (such as Alternaria solani, Blumeria graminis f. sp. tritici, Botrytis cinerea, Puccinia recondita f. sp. tritici, Rhizoctonia solani, Septaria nodorum, Septaria tritici).Mixtures of fungicides may also provide significantly better disease control than could be predicted based on the activity of the individual components. This synergism has been described as "the cooperative action of two components of a mixture, such that the total effect is greater or more prolonged than the sum of the effects of the two (or more) taken independently " (see P. M. L. Tames, Neth. J. Plant Pathology 1964,70, 73-80). In methods providing plant disease control in which synergy is exhibited from a combination of active ingredients (e.g., fungicidal compounds) applied to the plant or seed, the active ingredients are applied in a synergistic weight WO 2022/133114 PCT/US2021/063852 179 ratio and synergistic (i.e. synergistically effective) amounts. Measures of disease control, inhibition and prevention cannot exceed 100%. Therefore expression of substantial synergism typically requires use of application rates of active ingredients wherein the active ingredients separately provide much less than 100% effect, so that their additive effect is substantially less than 100% to allow the possibility of increase in effect as result of synergism. On the other hand, application rates of active ingredients that are too low may show not show much activity in mixtures even with the benefit of synergism. One skilled in the art can easily identify and optimize through simple experimentation the weight ratios and application rates (i.e. amounts) of fungicidal compounds providing synergy.The presence of a synergistic effect between two active ingredients was established with the aid of the Colby equation (see Colby, S. R. "Calculating Synergistic and Antagonistic Responses of Herbicide Combinations ", Weeds, (1967), 15, 20-22): Using the method of Colby, the presence of a synergistic interaction between two active ingredients is established by first calculating the predicted activity, p, of the mixture based on activities of the two components applied alone. If p is lower than the experimentally established effect, synergism has occurred. In the equation above, A is the fungicidal activity in percentage control of one component applied alone at rate x. The B term is the fungicidal activity in percentage control of the second component applied at rate y. The equation estimates p, the expected fungicidal activity of the mixture of A at rate x with B at rate y if their effects are strictly additive and no interaction has occurred.The following TESTS demonstrate the control efficacy of compounds of this invention on specific pathogens. The pathogen control protection afforded by the compounds is not limited, however, to these species. See Index Tables A through T below for compound descriptions. The following abbreviations are used in the Index Tables: Me means methyl, CN means cyano, NOmeans nitro, Et means ethyl, n-Pr means n-propyl, i-Pr means Ao-propyl, c-Pr means cyclopropyl, i-Bu means Ao-butyl, t-Bu means /er/-butyl, Ph means phenyl, MeO means methoxy, EtO means ethoxy and Ac means acetyl. The abbreviation "Cmpd. No. " stands for "Compound Number ", and the abbreviation "Ex. " stands for "Example " and is followed by a number indicating in which example the compound is prepared. 19F NMR spectra are reported in ppm relative to trichlorofluoromethane in CDCl3 solution unless indicated otherwise. The numerical value reported in the column "MS" is the molecular weight of the highest isotopic abundance positively charged parent ion (M+l) formed by addition of H+ (molecular weight of 1) to the molecule WO 2022/133114 PCT/US2021/063852 180 having the highest isotopic abundance, or the highest isotopic abundance negatively charged ion (M-l) formed by loss of H+ (molecular weight of 1). The presence of molecular ions containing one or more higher atomic weight isotopes of lower abundance (e.g., 37Cl, 8lBr) is not reported. The reported MS peaks were observed by mass spectrometry using electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI).
A dash in the (R2)x column means that no R2 substituent is present and the remaining carbon valences are occupied by hydrogen atoms. In the L column, the atom to the right is connected to the phenyl ring and the atom to the left is connected to the pyrazolyl ring.Cmpd.No. (R2)x L 19FNMR MS3-(EtOC(=O)), 4-Br, 5-Me ch2 -65.40(Ex. 12) 4-(EtOC(=O)) CH(Me) -65.443A=C ch2 -65.395A=C ch2 -65.394-(CH(=O)) ch2 -65.344-(MeOC(=O)NHN=CH) ch2 -65.344-(Me2NN=CH) ch2 -65.354-(OH-N=CH) ch2 -65.34, -66.154-(MeOC(=O)) ch2 -65.414-(MeON=CH) ch2 -65.344-(OHC(=O)CH2ON=CH) ch2 -65.344-(OHC(=O)) ch2 -65.394-(HC=CCH2OC(=O)) ch2 -65.394-(N=CCH2OC(=O)) ch2 -65.384-(z-PrOC(=O)) ch2 -65.394-(MeOCH2CH2OC(=O)) ch2 -65.394-(n-PrOC(=O)) ch2 -65.394-(MeNHC(=O)) ch2-64.74a WO 2022/133114 PCT/US2021/063852 181 Cmpd.19F NMRMS No.(R2)xL4-(Me2NC(=O)) ch2 -65.414-(z-PrNHC(=0)) ch2-64.74a4-(CH2=CHCH2NHC(=O)) ch2-64.74a4-(N=CCH2NHC(=O)) ch2-64.74a3,5-di-Me, 4-(EtOC(=O)) ch2 -65.354-(EtNHC(=O)) ch2-64.73a4-(n-PrNHC(=O)) ch2-64.74a4-(c-PrNHC(=O)) ch2-64.75a( BuNHC(=O -)؛- 4 ch2 -65.383-(EtOC(=O)), 5-Et ch2 -65.423-(EtOC(=O)), 5-z-Pr ch2 -65.393-Et, 5-(EtOC(=O)) ch2 -65.433-z-Pr, 5-(EtOC(=O)) ch2 -65.41(Ex. 10) 4-(EtOC(=O)) ch2 -65.383-Ph ch2 -65.35(Ex. 2) 4A=C ch2 -65.333-Br ch2 375 (M+l)3-t-Bu ch2 351 (M+l)109 3-Me, 5-(EtOC(=O)) ch2 -65.47110 3-(EtOC(=O)), 5-Me ch2 -65.53111 3-CF3. 4-(EtOC(=O)) ch2 -65.38114 3-(EtOC(=O)) ch2 367 (M+l)122 3-(4-Cl-Ph) ch2 405 (M+l)127 3-Me, 5-CF3 ch2 -65.42132 3-CF3, 5-Me ch2 -65.43140 3,5-di-(OHC(=O)) ch2 381 (M+l)142 3-(2-Cl-Ph) ch2 405 (M+l)144 3,5-di-CF3 ch2 431 (M+l)145 3,5-di-Me ch2 323 (M+l)146 3-(2-Cl-Ph), 4-Br ch2 485 (M+l)153 3-CF3 ch2 -65.35, -61.93154 3,5-di-(EtOC(=O)) ch2 -65.42162 - ch2 -65.36 WO 2022/133114 PCT/US2021/063852 182 Cmpd.No.(R2)xL19F NMRMS163 4-Br ch2 -65.34166 4-(CH2=CHCH2OC(=O)) ch2 -65.39167 4-(CH2=CBrCH2OC(=O)) ch2 -65.39168 4-(CH2=CHCF2OC(=O)) ch2 -65.39, -83.18169 4-(Me2C=CHCH2OC(=O)) ch2 -65.39170 4-(CH2=C(Me)CH2OC(=O)) ch2 -65.39171 4-(z-BuOC(=O)) ch2 -65.39 1724{MeOC(-O)'^^'NHC(-O))ch2 -65.39 1734-(N=C'^'NHC(-O))ch2 -65.39174 3,4,5-tri-(EtOC(=O)) ch2 -65.48179 3-(OHC(=O)), 5-Me ch2 -65.40180 3-(CF3C(=O)OC(=O)), 5-Me ch2 -65.40, -72.88181 3-(N=CCH2NHC(=O)), 5-Me ch2 -65.39182 3-(Me2NC(=O)), 5-Me ch2 -65.40183 3-(MeOCH2CH2NHC(=O)), 5-Me ch2 -65.40184 3-(N=CCH2OC(=O)), 5-Me ch2 -65.40185 3-(N=CCH2OC(=O)), 5-Me ch2 -65.40186 3-(CH2=CHCH2OC(=O)), 5-Me ch2 -65.41187 Bu -؛- 5 ((, 3 (- EtOC(=O ch2 -65.44212 4-(CF3CH2NHC(=O)) ch2o 436 (M+l)213 4-(MeOCH2CH2NHC(=O)) ch2o 412 (M+l)214 4-(N=CCH2NHC(=O)) ch2o 393 (M+l)215 4-( IH-pyrazol-1 -yl-CH2CH2NHC(=O)) ch2o 448 (M+l)216 4-(c-PrCH2OC(=O)) ch2o 409 (M+l)217 4-(n-PrOC(=O)) ch2o 397 (M+l) 2184- [(tetrahydro-2H-pyran-2- yl)ON=C(Me)CH2OC(=O)]ch2 492 (M-l) 219 4-(n-BuON=C(Me)CH2OC(=O)) ch2466 (M+l)220 4-(؛-BuON=C(Me)CH2OC(=O)) ch2466 (M+l)221 4-(EtON=C(Me)CH2OC(=O)) ch2438 (M+l)222 4-(z-PrON=C(Me)CH2OC(=O)) ch2452 (M+l) WO 2022/133114 PCT/US2021/063852 183 Cmpd.19F NMRMS No.(R2)xL223 4-(HO-N=C(Me)CH2OC(=O)) ch2 410 (M+l)241 4-(EtOC(=O)) ch2sch2 411 (M-l)242 4-(EtOC(=O)) CH2S(O)CH2429 (M+l)243 4-(EtOC(=O)) CH2S(O)2CH2445 (M+l)244 4-(PhC(=O)CH2OC(=O)) ch2 457 (M+l)245 4-(MeON=C(Ph)CH2OC(=O)) ch2486 (M+l)268 4-(2-EtO-Ph-OCH2CH2OC(=O)) Och2 -65.30 2694-(Mc/^CH2OC(-O))ch2 -65.30 270 4-(z'-PrONHC(=O)) ch2 -64.70a272 4-(MeONHC(=O)) ch2 -64.50a273 (( BuONHC(=O -)؛- 4 ch2 408 (M+l)274 4-(N=CCH2CH2CH2OC(=O)) ch2 -65.30275 4-(MeOC(=O)CH=CHCH2OC(=O)) ch2 -65.30299 4-(Ph-C=CCH2OC(=O)) ch2 -65.30300 4-(N=CCH(Me)OC(=O)) ch2 392 (M+l)301 4-(4-CN-Ph-CH2OC(=O)) ch2 -65.30308 4-(EtOC(=O)) ch2ch2o 395 (M-l)339 4-(EtC=CCH2OC(=O)) ch2 -65.30340 4-(( 1 -Me-2-pyrrolidmyl)CH2OC(=O)) ch2 -65.30348 4-((Me)3SiC=CCH2OC(=O)) ch2 449 (M+l)349 4-(MeC(=O)CH2OC(=O)) ch2 395 (M+l)350 4-(MeON=C(Me)CH2OC(=O)) ch2 424 (M+l)359 4-N=C ch2ch2ch2 348 (M+l)360 3-Ph ch2ch2ch2 399 (M+l)361 3-(4-Cl-Ph) ch2ch2ch2 433 (M+l)362 4-(EtOC(=O)) ch2och2 397 (M+l)363 4-(HOC(=O)) ch2ch2ch2 367 (M+l)364 4-(CH2=C(Me)CH2OC(=O)) ch2ch2ch2 422 (M+l)365 4-(n-PrOC(=O)) ch2ch2ch2 409 (M+l)373 4-(CH2=CHCH2OC(=O)) ch2ch2ch2 407 (M+l)374 4-(CH=CCH2OC(=O)) ch2ch2ch2 405 (M+l) WO 2022/133114 PCT/US2021/063852 184 Cmpd.19F NMRMS No.(R2)xL376 4-(EtOC(=O)) ch2o 383 (M+l)378 4-(EtOC(=O)CH2NHC(=O)) ch2 -65.30379 4-(N=CCH2N(Me)C(=O)) ch2 391 (M+l)380 4-(EtONHC(=O)) ch2-64.70a381 4-NH2 ch2 310 (M+l)382 4-NO2 ch2 -65.40383 4-1 ch2 -65.40384 4-(EtO-N=CH) ch2 -65.35385 4-(n-PrO-N=CH) ch2 -65.33386 4-(CH2=CHCH2O-N=CH) ch2 -65.35387 4-(CH=CCH2O-N=CH) ch2 -65.34388 4-(z-PrO-N=CH) ch2 -65.36389 4-(CH3C(=O)NHN=CH) ch2 -65.35390 4-(MeS(=O)2CH2CH2OC(=O)) ch2 -65.30391 4-((EtO)2CHCH2C(=O)) ch2 -65.30392 4-(F2CHCH2O(=O)) ch2 403 (M+l)406 4-((Me)2NC(=O) ch2ch2ch2 -65.37 394 (M+l)410 4-(n-BuOC(=O)) ch2 -65.30411 4-(c-PrCH2OC(=O)) ch2 -65.30412 4-(PhCH2OC(=O)) ch2 -65.30415 4-(MeNHC(=O)) ch2ch2ch2 -65.37427 4-(MeOC(=O)) ch2ch2ch2 381 (M+l)428 4-(EtOC(=O)) ch2ch2ch2 395 (M+l)434 4-(MeSCH2C(=O)CH2OC(=O)) ch2 441 (M+l)435 4-CN CH2CH2 -65.35436 4-(MeOC(=O)) CH2CH2 -65.36437 4-(EtOC(=O)) CH2CH2 -65.38441 4-(MeC(=O)NH) ch2 -65.40442 4-(MeS(=O)2NH) ch2 -65.40443 4-(EtOC(=O)NH) ch2 -65.40447 4-(CH3(CH2)4OC(=O)) ch2 -65.30448 4-(ClCH2CH2CH2O(=O)) ch2 -65.30449 4-(CF3CH2NHC(=O)) ch2 420 (M+l) WO 2022/133114 PCT/US2021/063852 185 Cmpd. a. 19p NMR in DMSO-،/6 solution.
No.(R2)xL19FNMR MS474 4-(MeO(CH2)3OC(=O))ch2-65.30475 4-((4-morpholinyl)CH2CH2OC(=O))ch2-65.30476 4-(EtOC(=O)CH2OC(=O))ch2-65.30477 4-(ClCH2CH2OC(=O))ch2-65.30478 4-(BrCH2CH2OC(=O))ch2-85.30479 4-((2-pyridinyl)CH2OC(=O))ch2-65.30480 4-((Me)2CHCH2CH2OC(=O))ch2-65.30481 4-(sec-BuOC(=O))ch2-65.40482 4-(CH2=C(Cl)CH2OC(=O))ch2-65.30483 4-((3-pyridinyl)CH2NHC(=O))ch2-65.30484 4-(PhCH2NH(=O))ch2-65.30485 4-(PhNH(=O))ch2-65.30486 4-(CH2=C(CN)CH2OC(=O))ch2404 (M+l)494 4-(MeON=C(CH2Cl)CH2OC(=O))ch2 458 (M+l)495 4-(ClCH2C(=O)CH2OC(=O))ch2 429 (M+l)496 4-[(2,2-dimethyl-l,3־dioxolan-4-yl)CH2OC(=O)]ch2 453 (M+l) 503 3-(F5S)ch2-65.31, -72.69 (d),-84.24 (quint) 504 5-(F5S)ch2-65.33, -63.66 (d),-80.27 (quint)508 4-(EtNHC(=O))ch2och2396 (M+l) A dash in the (R^)x column means that no substituent is present and the remaining carbon valences are occupied by hydrogen atoms.
WO 2022/133114 PCT/US2021/063852 186 Cmpd. No.(R2)xL19F NMRMS3-Br, 5-NO2 ch2 -65.405-Br, 6-Me ch2 -65.423-Me, 4-Br ch2 -65.414-1, 6-C1 ch2 -65.416-(MeOC(=O)) ch2 -65.423-(MeON(Me)C(=O)) ch2 -65.413-(N=CCH2NHC(=O)) ch2 -65.403-(MeNHC(=O)) ch2 -65.413-(MeOCH2CH2NHC(=O)) ch2 -65.417-(MeOC(=O)) ch2 -65.455-(MeOC(=O)) ch2 403 (M+l)(Ex. 4) 4-(MeOC(=O)) ch2 -65.423-Me, 5-Br ch2 -65.414-C1, 6-Br ch2 -65.405-NO2 ch2 -65.393-Me ch2 -65.43100 4-Me ch2 -65.42101 7-Me ch2 -65.43104 3-=C ch2 -65.40105 4-N=C ch2 -65.41106 5-=C ch2 -65.41112 3-Br ch2 -65.41115 5-NH2 ch2 360 (M+l)116 3-C1 ch2 -65.41117 3-(EtOC(=O)) ch2 -65.42119 5-C1 ch2 -65.42120 3-CN, 6-MeO ch2 -65.40125 4-F ch2 -65.42126 5-MeO ch2 -65.42128 5-Br ch2 -65.41134 3-(MeOC(=O)) ch2 -65.41143 - ch2 345 (M+l)148 3-(Me2NC(=O)) ch2 -65.41341 4-(MeOC(=O)) ch2 -65.40 WO 2022/133114 PCT/US2021/063852 187 INDEX TABLE C Cmpd. No.(R2)xL19F NMR5-Br, 6-Me ch2 -65.395-(MeOC(=O)) ch2 -65.39(Ex. 4) 4-(MeOC(=O)) ch2 -65.393-Me, 4-Br ch2 -65.394-1, 6-C1 ch2 -65.386-(MeOC(=O)) ch2 -65.397-(MeOC(=O)) ch2 -65.423-Me, 5-Br ch2 -65.404-C1, 6-Br ch2 -65.38102 4-Me ch2 -65.39103 7-Me ch2 -65.40107 4-N=C ch2 -65.39108 5-=C ch2 -65.38113 3-Br ch2 -65.40121 3-N=C, 6-MeO ch2 -65.39123 3-(EtOC(=O)) ch2 -65.44130 4-F ch2 -65.39131 5-MeO ch2 -65.39133 5-Br ch2 -65.39141 3-(MeOC(=O)) ch2 -65.41 WO 2022/133114 PCT/US2021/063852 188 Cmpd. No.R2L19F NMR(Ex. 13) Me2NC(=O) ch2 -65.36EtOC(=O) ch2 -65.36164 NH2C(=O) ch2 -65.37165 MeNHC(=O) ch2 -65.36175 EtNHC(=O) ch2 -65.36176 CHCCH2HC(=O) ch2 -65.34177 1 -azetidinyl-C(=O) ch2 -65.36 INDEX TABLE E (1 Cmpd. No.
N^°x/°J 1 K Z _ JL /^CF3J N MS L19F NMRC=O ch2 -65.38118 0 ch2 -65.41156 s ch2 378 (M+l)159 (Ex. 7) N-Me ch2 375 (M+l)161 cf2 ch2 -65.41 INDEX TABLE F (R2)cf34? O Cmpd. No. X Y Z(R2)x19F NMRMSN CH C 4-C1 357 (M+l)(Ex. 3) N C CH 5-C1 357 (M+l)N C C 4,5-di-Cl 391 (M+l)N C C 4-MeO, 5-C1 387 (M+l)N CH C 4-MeO 353 (M+l) WO 2022/133114 PCT/US2021/063852 189 Cmpd. No. X Y Z(R2)x19F NMRMSCH CH C 4-CN -65.35417 CH CH CH 3-CN -65.30418 CH N CH 3-(EtOC(=O)) -65.30419 CH C N 5-(EtOC(=O)) -65.30420 CH C CH 5-(MeOC(=O)) -65.30421 CH CH C 4-MeO -65.30422 CH CH CH 3-(MeOC(=O)) -65.30423 CH CH N 3-(MeOC(=O)) 381 (M+l) 8 (N=C)CH ch2 -65.44O CH(C=N) -65.32O ch2 -65.36150 C=O ch2 -65.36 A dash in the column means that no substituent is present and the remaining carbon valences are occupied by hydrogen atoms.
Cmpd. No. Z YR2L19F NMRMSN N 5-(MeOC(=O)) ch2 404 (M+l)CH CH 6-CN ch2 -65.38N CH - ch2 -65.38 WO 2022/133114 PCT/US2021/063852 190 Cmpd. No. Z YR2L19F NMRMSN N — ch2 -65.39 Cmpd. No. Z Y L19F NMRC(=O) S(=O)2 ch2 -65.41(Ex. 9) C(=O) C(=O) ch2 -65.39155 s C(=O) ch2 -65.40160 ch2 ch2 ch2 -65.41 INDEX TABLE J /R$ n-°x ■N flAl)^cf3Z/ xx Z Cmpd. m.p.No. R2LZ R5 19F NMRMS (°C)4-(EtOC(=O)) ch2 S H -65.39(Ex. 11) 4-Br ch2 S H -65.413-Br ch2 S H -65.393-(EtOC(=O)), 5-Me ch2 S H -65.443-CN, 4-Br ch2 S H -65.364-Br, 5-CN ch2 S H -65.38188 4-(MeOC(=O)) ch2 S H -65.40 372(M+1)189 4-CN ch2 S H -65.41190 4-(CH=CCH2OC(=O)) ch2 S H -65.39192 4-(EtOC(=O)) CH(Me) S H -65.47197 4-CH(=O) CH2 S H -65.38 329(M+1)198 4-(«-PrOC(=O)) ch2 S H -65.39 387(M+1)199 4-(CH2=CHCH2OC(=O)) ch2 S H -65.44 385 (M+l) WO 2022/133114 PCT/US2021/063852 191 Cmpd.MSm.p.(°C) No.R2L zR5 19F NMR2004-(z-PrOC(=O)) ch2 s H -65.39 387 (M+l)2094-(HOC(=O)) ch2 s MeO 141-152.32104-(EtOC(=O)) ch2 0 H 65-80.92114-(n-PrOC(=O)) ch2 0 H 53.5-64.12464-(EtOC(=O)) *CH(Me) s H 387 (M+l)2474-(EtOC(=O)) **CH(Me) s H 387 (M+l)2484-(n-PrOC(=O)) *CH(Me) s H 401 (M+l)2494-(n-PrOC(=O)) **CH(Me) s H 401 (M+l)4914-(CH=CCH2NHC(=O)) ch2 s H 371 (M+l)4934-(n-PrOC(=O)) CH(Me) s H3364-(EtOC(=O)) ch2 s MeO 126.2-128.34394-(n-PrOC(=O)) ch2 s MeO 417 (M+H)4404-(CH2=CHCH2OC(=O)) ch2 s MeO 415 (M+H)*S-isomer at the carbon atom denoted by the asterisk in the table above.**R-isomer at the carbon atom denoted by the double asterisk "**" in the table above.
In the L column, the atom to the right is connected to the thienyl ring and the atom to the left is connected to R'.Cmpd. No.191 194 195 196IH-indol-l-yl L 19FNMR MS m.p. (°C) NHCH2 -65.46 CH2 -65.41 CH2 -65.41 CH2 -65.46 350 (M+l) WO 2022/133114 PCT/US2021/063852 192 19F NMRMS m.p. (°C) 80-84 323tetrahydro-1,1 -dioxido-2H-1,2- thiazin-2-ylch2 3241,1 -dioxido-2-isothiazolidinyl ch23253-oxo-4-morpholinyl ch23752-Me-5-F-Phoch24382-Me-Phoch2 415 (M+l) 368 (M+l) 376 (M+23)334 (M+l)-65.46-66.04 INDEX TABLE L Cmpd. No.R1L MS m.p. (°C)366EtOC(=O) ch2 88.7-93.2367HOC(=O) ch2 111.5-125.6368MeNHC(=O) ch2 95.3-120.3369EtNHC(=O) ch2 145-147429CHCCH2HC(=O) ch2 113.5-119430(Et)2NC(=O) ch2 403 (M+l)460(Me)2NC(=O) ch2 375 (M+l)461MeOCH2CH2NHC(=O) ch2 55.2-78.1 INDEX TABLE MN—O WO 2022/133114 PCT/US2021/063852 193 19F NMRCmpd. No. LR1305 4-(EtOC(=O))- IH-pyrazol-1 -yl ch2 -65.39 306Me2Nn vch2 -65.38 307H N4-(EtOC(=O))- IH-pyrazol-1 -yl ch2ch2 -65.44310 4-(MeOC(=O))-Ph ch2ch2 -65.43311 4-(MeOC(=O))-Ph ch2 -65.43 326f3c CT 'ch2ch2ch2 -65.43 In the L column, the atom to the right is connected to the phenyl ring and the atom to the left is connected to the R' ring.Cmpd No.R2Z L m.p. (°C) MS203 (N=C)2CHNHC(=O) 0 ch2 403 (M+l)204 C1CH2CH2NHC(=O) 0 ch2 401 (M+l)205 3,3 -difluoro-1 -piperidinyl-C(=O) 0 ch2 444 (M+l)206 (Me)3SiCH2CH2NHC(=O) 0 ch2 439 (M+l)207 3,3 -difluoro-1 -pyrrolidinyl-C(=O) s ch2 445 (M+l)208 C12C=CHCH2NHC(=O) s ch2 463 (M+l)225 F2CHCH2NHC(=O) 0 ch2 403 (M+l)226 2,2-difluorocyclopropyl-CH2NHC(=O) 0 ch2 429 (M+l)227 1 -pyrrolidinyl-C(=O) 0 ch2 393 (M+l)228 4,4-difluoro-1 -piperidinyl-C(=O) 0 ch2 443 (M+l)229 N=CCH2CH2NHC(=O) 0 ch2 392 (M+l)230 N=CC(Me)2NHC(=O) 0 ch2 406 (M+l)231NEc-X-NIIE-0,ch2 404 (M+l) WO 2022/133114 PCT/US2021/063852 194 Cmpd No.R2Z L m.p. (°C) MS252 EtOC(=O) 0 CH2 368 (M+l)253 HOC(=O) 0 ch2 199-203 340 (M+l)254 NH2C(=O) 0 ch2 339 (M+l)256 N=C 0 ch2 319 (M+l)257 MeOCH2CH2NHC(=O) 0 ch2 397 (M+l)258 N=CCH2NHC(=O) 0 ch2 378 (M+l)259 z-PrNHC(=O)) 0 ch2 381 (M+l)260 c-PrNHC(=O) 0 ch2 379 (M+l)261 1 -azetidinyl-C(=O)ch2 379 (M+l)262 Et2NC(=O) 0 ch2 395 (M+l)263 4-morpholinyl-C(=O) 0 ch2 409 (M+l)264 1H-pyrazol-1 -yl-CH2CH2NHC(=O) 0 ch2 125-126 433 (M+l)265 1 -methyl- lH-pyrazol-3-yl-CH2NHC(=O) 0 ch2 433 (M+l)277 2-thiazolyl-CH2NHC(=O) 0 ch2 436 (M+l)278 (MeO)2CHCH2NHC(=O) 0 ch2 427 (M+l)279 (MeOCH2)2CHNHC(=O) 0 ch2 441 (M+l)280 EtNHC(=O) 0 ch2 367 (M+l)315 (Me)2NC(=O) 0 ch2 367 (M+l)316 F3CCH2NHC(=O) 0 ch2 164-168 421 (M+l)327 c-PrCH2NHC(=O) 0 ch2 393 (M+l)328 CF3CF2CH2NHC(=O) 0 ch2 471 (M+l)329 3 -thietanyl-NHC(=O) 0 ch2 411 (M+l)330 CF3CH2CH2NHC(=O) 0 ch2 104-105 435 (M+l)331 CF3C(Me)2NHC(=O) 0 ch2 449 (M+l)332tetrahydro-2-oxo-3-furanyl-NHC(=O))ch2 423 (M+l)334 CH2=CHCH2OC(=O) 0 ch2 380 (M+l)335 z-BuOC(=O) 0 ch2 396 (M+l)342 c-PrNHC(=O) s ch2 112-116343 H2NC(=O) s ch2 195-199344 EtOC(=O) s ch2 109-113345 HOC(=O) s ch2 200-204370 N=C s ch2 97-101393 N=CCH2NHC(=O) s ch2 143-147394 MeOCH2CH2NHC(=O) s ch2 83-87 WO 2022/133114 PCT/US2021/063852 195 Cmpd No.R2Z L m.p. (°C) MS395 4,4-difluorocyclohexyl-NHC(=O) 0 ch2 457 (M+l)396 1H-pyrazol-1 -yl-CH2CH2NHC(=O) S ch2 449 (M+l)397 CF3CH2CH2NHC(=O) s ch2 451 (M+l)398 CF3(CH2)3NHC(=O) 0 ch2 449 (M+l)399 C12C=CHCH2NHC(=O) 0 ch2 447 (M+l)400 FCH2CH2NHC(=O) 0 ch2 385 (M+l)401 CF3OCH2CH2NHC(=O) 0 ch2 451 (M+l)402 3,3-di-F-pyrolidin-l-yl-C(=O) 0 ch2 429 (M+l)403 (Ex. 18) MeOC(=O) 0 ch2o 370 (M+l)404 EtOC(=O) s ch2o 400 (M+l)463 CF3CH2NHC(=O) s ch2 437 (M+l)464 MeOCH2CH2NHC(=O) 0 ch2o 413 (M+l)465 CF3CH2NHC(=O) 0 ch2o 437 (M+l)466 IH-pyrazol-1 -yl-CH2CH2NHC(=O) 0 ch2o 449 (M+l)467 CF3CH2CH2NHC(=O) 0 ch2o 451 (M+l)468 N=CCH2NHC(=O) 0 ch2o 394 (M+l)469 MeOCH2CH2NHC(=O) s ch2o 429 (M+l)470 CF3CH2NHC(=O) s ch2o 453 (M+l)471 IH-pyrazol-1 -yl-CH2CH2NHC(=O) s ch2o 465 (M+l)472 CF3CH2CH2NHC(=O) s ch2o 467 (M+l)473 N=CCH2NHC(=O) s ch2o 410 (M+l)487 4-morpholinyl-C(=O) s ch2 86-90488 EtNHC(=O) s ch2 71-75489 (MeOCH2)2CHNHC(=O) s ch2 457 (M+l)490 MeOC(=O) 0 ch2 354 (M+l)505 F2CHCH2NHC(=O) s ch2 83-92 419 (M+l) WO 2022/133114 PCT/US2021/063852 196 A dash in the R2 column means that no R2 substituent is present and the remaining carbon valences are occupiedby hydrogen atoms, connected to the R'Cmpd No.
In the L column, the atom to the right is connected to J (phenyl ring) and the atom to the left is phenyl ring bearing R2.R2L19F NMRMS(Ex. 14) - HCH(C=) -65.31- N(Ac)CH(C=N) -65.34281 4-(CF3CH2NHC(=O)) CH2 430 (M+l)282 4-(MeOCH2CH2NHC(=O)) ch2 406 (M+l)283 4-(N=CCH2NHC(=O)) ch2 387 (M+l)284 3-(MeOCH2CH2NHC(=O)) ch2 406 (M+l)285 3-(N=CCH2NHC(=O)) ch2 387 (M+l)309 4-MeO CH(OH) -65.37354 4-(MeOC(=O)) ch2o -65.41451 - ch2 -65.37453 4-(EtOC(=O)) ch2 376 (M-l)454 3-(EtOC(=O)) ch2 376 (M-l)497 2-Me CH(OH) 333 (M-l)498 3-F CH(OH) 337 (M-l)499 3-C1 CH(OH) 353 (M-l)500 4-F CH(OH) 337 (M-l)501 4-Me CH(OH) 333 (M-l) INDEX TABLE P Cmpd No. ZR2L MS286 s CF3CH2NHC(=O) ch2 436 (M+l)287 s MeOCH2CH2NHC(=O) ch2 412 (M+l)288 s N=CCH2NHC(=O) ch2 393 (M+l)289 s 1 H-pyrazol-1 -yl-CH2CH2NHC(=O)) ch2 448 (M+l)290 s c-PrCH2NHC(=O) ch2 408 (M+l)292 0 MeOCH2CH2NHC(=O) ch2 396 (M+l) WO 2022/133114 PCT/US2021/063852 197 Cmpd No. ZR2L MS293 0 1 H-pyrazol-1 -yl-CH2CH2NHC(=O)) ch2 432 (M+l)294 0 N=CCH2NHC(=O) ch2 377 (M+l)291 0 CF3CH2NHC(=O) ch2 420 (M-l)455 s MeOC(=O) ch2 368 (M-l)456 0 MeOC(=O) ch2 352 (M-l) INDEX TABLE Q Cmpd No.R2L19F NMRMS235 Et ch2 -65.36 354 (M+l)236 c-Pr ch2 -65.36 366 (M+l)237 i-Pr ch2 -65.36 368 (M+l)238 n-Pr ch2 -65.36 368 (M+l)239 cf3 CH2CH2 -65.37, -66.17 408 (M+l)240 cf3 ch2ch2ch2 -65.37, -66.17 422 (M+l)267 cf3 ch2 -65.37, -66.17 394 (M+l) INDEX TABLE R cf3In the J column the bond to the left is connected to L and the bond to the right is connected to the oxadiazolyl ring.CmpdNo. R2 L 19F NMRMS m.p. (°C) !93 EtOC(=O) CH2 234 EtOC(=O) CH2 -65.38 -65.19 WO 2022/133114 PCT/US2021/063852 198 Cmpd No. 250 251 271 304 346 347 358 377 416 424 457 458 R n-PrOC(=O) z-PrOC(=O) EtOC(=O) EtOC(=O) EtOC(=O) EtOC(=O) EtOC(=O) HOC(=O) n-PrOC(=O) EtOC(=O) EtOC(=O) EtOC(=O) 19F NMR MS m.p. (°C) -65.41 -65.41 371 (M+l) 385 (M+l) 385 (M+l) 399 (M+l) 413 (M+l) -65.38 100.7-130 -65.30 417 (M+l) 374 (M+l) WO 2022/133114 PCT/US2021/063852 199 CmpdNo. 459 In the L column, CmpdNo.10 24 (Ex. 8) 3174 (Ex. 15)(Ex. 17)86 EtOC(=O) CH2CH2 124 19F NMR MS m.p. (°C) 388 (M+l) the atom to the right is connected to the phenyl ring and the atom to the left is connected toR1.
R1-cyano-I //-1,2,4-triazol-1 -yl3-cyano-4H-l,2,4-triazol-4-yl4-(MeOC(=O))- 1H- 1,2,3-triazol-1 -yl 4-Me-5-MeS-2H-1,2,3-triazol-2-yl4-MeS-5-Me-1/7-1,2,3-triazol-1 -yl4-(MeOC(=O))-4,5-dihydro-2-oxazolyl 4-(NH2C(=O))-4,5-dihydro-2-oxazolyl5-Br-4-(EtOC(=O))-2//-l,2,3-triazol-2-ylH-pyrrolo [2,3 -b]pyridin- 1 -yl 3-(EtOC(=O))-1 -pyrrolidnyl m.p.L19F NMRMS (°C)ch2 -65.38ch2 -65.39ch2 -65.35 ch2 404 (M+l) ch2 -65.39 ch2 -65.40ch2 -65.39ch2 -65.33 356 (M+l) 79-81ch2 -65.32 341 (M+l)ch2 -70.14ch2 -65.40 ch2 -65.38 ch2 -65.46 WO 2022/133114 PCT/US2021/063852 200 CmpdNo.m.p. 129 135 136 (Ex. 5) 137 138139 147 (Ex. 1) 149 151 152 R1 3-(MeOC(=O))-4H-1,2,4-triazol-4-yl3-(MeOC(=O))- 1H- 1,2,4-triazol-1 -yl L 19FNMR MS (°C) CH2 -65.39 CH2 ch2 ch2 ch2ch2 ch2 -65.40 -65.40 -65.40 -65.41-65.41 -65.43 ch2 -65.38 ch2 -65.41 323 (M+l) ch2 -65.37 381 (M+l) WO 2022/133114 PCT/US2021/063852 201 CmpdNo.R1L19F NMRMS 157ch2-65.42 158 (Ex. 6)ch2-65.40 178 (Ex. 16) 4-(Me2NC(=O))-4,5-dihydro-2-oxazolylch2-65.36 370 (M+l) 255 297 ch2 ch2 473 (M+l) 364 (M+l) 0298 2-Me-4-thiazolyl ch2o 342 (M+l) 303 4-(EtOC(=O))- 1H-1,2,3-triazol-1 -ylch2-65.30 312 3-(MeOC(=O))-5-isoxazolyl ch2o 369 (M-l) e'^n —313 I 1 /־ 314 3-(Me2NC(=O))-5-isoxazolyl ch2o ch2o 361 (M+l) 383 (M+l) 317 5-(MeOC(=O))-2-thienyl ch2o 383 (M-l) 318 3-isoxazolyl ch2o 312 (M+l) m.p.(°C) WO 2022/133114 PCT/US2021/063852 202 Cmpd No. 319 320 321 322 337 338 351 352 353 355 356 357 371 372 407 R1L19F NMRMS CD-ch2o 362 (M+l) | —ch2o 363 (M+l) tetrahydro-1,1 -diox ido-2//-1,2-thiazin-2-yl ch2 362 (M+l) 1,1 -dioxido-2-isothiazolidinyl ch2 370 (M+23) 1H-1,2,4-triazol-1 -yl ch2o 312 (M+l) 3,5 -dimethyl-4-isoxazolyl ch2o 340 (M+l) 3,4-dihydro-2(17/)־is°quinolinyl ch2 -65.40 -(EtNHC(=O))-2-thienyl ch2o 398 (M+l) 3-pyridinyl ch2o 322 (M+l) 2-benzoxazolyl ch2o 362 (M+l) O -65.32 O -65.35 2-oxo-1-py rrolidinyI CH2 312 (M+l) CH2 327 (M+l) m.p.(°C) 3-oxo-4-morpholinyl CH2 -65.30 WO 2022/133114 PCT/US2021/063852 203 CmpdNo.m.p.L 19FNMR MS (°C) 408 409 414 413 431 432 433 444 CH2 -65.40 CH2 346 (M+l) CH2 -65.30 CH2 -65.30 CH2 384 (M+l) CH2 398 (M+l) ch2 ch2 -65.30 -65.40 WO 2022/133114 PCT/US2021/063852 204 Cmpd No. 445 446 450 452 462 492 506 507 509 L 19FNMR MS CH2 472 (M+l) CH2 -65.40 CH2 -65.35, -73.25 O 372 (M+l) CH2 364 (M+l) CH2 379 (M+l) CH2 ch2 ch2 m.p.(°C) 116-120 111-114 142-142.9 WO 2022/133114 PCT/US2021/063852 205 CmpdNo. 510 511 512 L ch2 CH2 ch2 INDEX TABLE TCmpd No. 224 232 233 276 19F NMRMSm.p.(°C) 101-104 80-85 156-160 H3C 19F NMRMS -65.37 -65.23 -65.24 399 (M+l) WO 2022/133114 PCT/US2021/063852 206 Cmpd No. 426 502 19F NMRMS -65.43 -65.34 376 (M+l) BIOLOGICAL EXAMPLES OF THE INVENTIONGeneral protocol for preparing test suspensions for Tests A-D: the test compounds were first dissolved in acetone in an amount equal to 3% of the final volume and then suspended at the desired concentration (in ppm) in acetone and purified water (50/50 mix by volume) containing 250 ppm of the surfactant PEG400 (polyhydric alcohol esters). The resulting test suspensions were then used in Tests A-D.
TESTAThe test suspension was sprayed to the point of run-off on soybean seedlings. The following day the seedlings were inoculated with a spore suspension of Phakopsora pachyrhizi (the causal agent of Asian soybean rust) and incubated in a saturated atmosphere at 22 °C for 24 h and then moved to a growth chamber at 22 °C for 8 days, after which time visual disease ratings were made.
TESTBThe test suspension was sprayed to the point of run-off on wheat seedlings. The following day the seedlings were inoculated with a spore suspension of Zymoseptoria tritici (the causal agent of wheat leaf blotch) and incubated in a saturated atmosphere at 24 °C for 48 h, and then moved to a growth chamber at 20 °C for 17 days, after which time visual disease ratings were made.
TESTCThe test suspension was sprayed to the point of run-off on wheat seedlings. The following day the seedlings were inoculated with a spore suspension of Puccinia recondita f. sp. tritici; (the causal agent of wheat leaf rust) and incubated in a saturated atmosphere at 20 °C for 24 h, and then moved to a growth chamber at 20 °C for 6 days, after which time visual disease ratings were made.
TESTDThe test suspension was sprayed to the point of run-off on wheat seedlings. The following day the seedlings were inoculated with a spore suspension of Erysiphe graminis f. sp. tritici, (the WO 2022/133114 PCT/US2021/063852 207 causal agent of wheat powdery mildew) and incubated in a saturated atmosphere at 20 °C for days, after which time visual disease ratings were made. Of the compounds tested the following provided very good to excellent disease control (80% or greater): 85, 192, 263, 282, 337, 353, 455, 454, 490 and 497.The test results for Tests A-C presented in Table A below for compounds of Formula 1 illustrate the fungicidal activity of component (a) contributing to the plant disease control utility of compositions comprising component (a) in combination with component (b) according to the present invention. In the Table, a rating of 100 indicates 100% disease control and a rating of indicates no disease control (relative to the controls). A dash (-) indicates the compound was not tested. The test suspensions were sprayed at the concentration listed in the column "Rate in ppm", unless otherwise indicated. An asterisk next to the rating indicates a 250 ppm test suspension was used, a double asterisk "**" next to the rating indicates a 100 ppm test suspension was used, and a triple asterisk "***" next to the rating indicates a 50 ppm test suspension was used.TABLE A Cmpd No. Rate in ppm Test A Test B Test C10100 - 6810 100gg**3100 — 10050 100 — 10050 100 — 94250 100 0 100250 100 0 100270 100 18 100260 100 100 100270 100 5 10010 100 — 74255 100 98 100250 100 85 100250 100 86 100250 100 0 96260 100 93 100250 100 98 100250 100 93 100250 100 100 100 WO 2022/133114 PCT/US2021/063852 208 Cmpd No. Rate in ppm Test A Test B Test C250 100 99 10010 10097**10010 100 — 9610 100 — 10010 100 — 95250 100 86* 100250 100 46* 10050 100 — 10050 100 — 10010 73 94* 1910 25 — 010 100 — 10010 96 — 6810 100 — 6810 71 — 5510 100 — 9810 100 — 10010 99 — 8610 78 — 6810 44 — 2810 100 — 9210 100 — 9810 100 — 9210 100 — 9610 100 — 9510 100 — 9910 100 — 10010 100 — 7410 100 — 8910 100 — 10010 13 — 2810 99 — 6810 99 — 8010 0—9 WO 2022/133114 PCT/US2021/063852 209 Cmpd No. Rate in ppm Test A Test B Test C10 99 — 6810 100 — 9910 100 68** 10010 10099**10010 100 83** 10010 100 58** 10010 100 75** 10010 100 — 10010 100 — 10010 100 — 10010 100 — 10010 100 — 100255 100 — 10010 100 — 9910 100 — 10010 100 — 100255 100 96 100250 100 36 10050 99 — 10010 100 — 8610 99 — 5110 100 — 68270 100 41 9950 100 — 10010 100 — 10010 100 — 6810 100 — 6810 100 — 010 0 — 0250 100 79 100250 100 66 100250 100*** 9 100250 100 89 100250 100 82 100 WO 2022/133114 PCT/US2021/063852 210 Cmpd No. Rate in ppm Test A Test B Test C250 100 93 100250 100 83 100250 100 33 99250 100 96 100250 0 96 100250 100 39 99250 100 35 78250 100 87 100250 100 0 9950 99 — 10050 99 — 6810 100 — 68100100 — 86101100 — 100102100 — 99103100 — 97104100 — 68105100 — 100106100 — 100107100 — 90108100 — 100109100 — 77110100 — 91111255 100 0 8611292 — 011399 — 0114250 100 0 10011598 — 95116265 100 25 99117255 88 0 41118250 100 0 98119265 100 54 100120260 99 0 6812187—0 WO 2022/133114 PCT/US2021/063852 211 Cmpd No. Rate in ppm Test A Test B Test C122250 100 0 68123255 100 21 99124260 100 50 100125260 100 55 100126260 100 — 1001270 — 0128255 100 19 100129260 100 0 89130260 100 89 100131100 — 99132270 100 0 95133255 100 59 100134255 100 0 8013596 — 0136100 — 68137100 — 41138260 100 96 100139255 100 62 1001400 — 0141100 — 88142250 100 57 100143250 100 71 100144250 36 0 0145250 100 0 100146250 100 0 0147100 — 100148100 — 96149260 100 72 100150255 100 19 100151100 — 98152100 — 100153250 100 0 89154100 — 10015560—0 WO 2022/133114 PCT/US2021/063852 212 Cmpd No. Rate in ppm Test A Test B Test C156255 100 86 100157100 — 100158270 100 90 100159260 100 87 10016099 — 98161265 100 33 99162250 100 0 100163250 100 0 100164250 100 88 100165260 100 95 10016610090**100167100 — 100168100 — 100169100 — 9917010097**10017110037**100172100 — 99173100 — 9617485 — 91175255 100 95 100176250 100 92 100177250 100 97 10017896 — 6817998 — 918097 — 0181100 — 100182100 — 100183100 — 100184100 — 55185100 — 98186100 — 741870 — 0188100 — 100189100—100 WO 2022/133114 PCT/US2021/063852 213 Cmpd No. Rate in ppm Test A Test B Test C190100 — 100191100 96* 100192100 99* 100193100 28* 100194100 — 100195100 — 98196100 — 9319799 — 9819810094**199100 — 100200100 — 100201250 100 28 100202250 100 83 100203100 — 86204100 — 100205100 — 8920698 — 68207100 — 86208100 — 86209— — — —210100 63* 99211100 70* 100212100 79* 100213100 82* 74214100 73* 7421599 90* 742161009*217100 35* 86218100 — 98219100 — 86220100 — 86221100 — 95222100 — 97223100—91 WO 2022/133114 PCT/US2021/063852 214 Cmpd No. Rate in ppm Test A Test B Test C224100 81* 89225100 99* 100226100 94* 100227100 99* 97228100 99* 79229100 94* 100230100 99* 99231100 95* 97232250 100 68 10023397 90* 100234100 87* 88235250 100 87 100236250 100 83 100237250 100 94 100238250 100 87 100239250 100 0 100240250 100 4 100241100 — 100242100 — 9924398 — 85244100 — 95245100 — 86246100 — 100247100 — 100248100 — 100249100 — 100250100 — 74251100 - 74252100 92* 8425398 46* 74254100 70* 100255100 - 100256100 98* 99257100 99* 100 WO 2022/133114 PCT/US2021/063852 215 Cmpd No. Rate in ppm Test A Test B Test C258100 99* 99259100 99* 99260100 47* 100261100 88* 99262100 96* 98263100 95* 94264100 99* 99265100 93* 10026799 — 74268100 — 86269100 — 100270100 — 10027199 — 68272100 — 100273100 — 100274100 — 100275100 — 100276100 35* 80277100 99* 100278100 98* 100279100 94* 100280100 99* 99281100 34* 95282100 94* 97283100 0* 98284100 91* 100285100 94* 97286100 3* 100287100 98* 100288100 91* 100289100 80* 100290100 53* 100291100 13* 97292100 96* 85 WO 2022/133114 PCT/US2021/063852 216 Cmpd No. Rate in ppm Test A Test B Test C293100 91* 79294100 50* 79297100 — 9329850 73* 0299100 — 8630094 — 9301100 — 100303100 — 100304100 — 10030544 0* 03060 10* 03070 0* 03080 — 0309100 — 683100 0* 03110 0* 03120 0* 031377 14* 031499 86* 0315100 97* 99316100 5* 1003170 54* 03180 11* 031997 33* 032097 33* 0321250 100 99* 100322250 100 95* 100323250 100 92* 100324250 100 80* 100325250 100 36* 100326250 84 1* 67327100 94* 100328100 0* 100329100 98* 98 WO 2022/133114 PCT/US2021/063852 217 Cmpd No. Rate in ppm Test A Test B Test C330100 96* 10033199 97* 94332100 99* 9933499 92* 86335100 73* 943360 — 033799 78* 8233899 10* 0339100 — 98340100 — 94341100 — 100342100 99* 100343100 97* 100344100 96* 9334596 50* 683460 0* 03470 0* 0348100 — 96349100 — 100350100 — 9935192 — 6735287 0* 683530 73* 03540 20* 035504*356250 99 96* 94357250 98 99* 913580 0* 0359100 99* 95360100 — 68361100 — 0362100 — 100363100 — 100364100—100 WO 2022/133114 PCT/US2021/063852 218 Cmpd No. Rate in ppm Test A Test B Test C365100 80* 99366100 — 10036796 — 67368100 — 100369100 — 100370250 100 98* 100371250 100 95* 100372250 100 99* 100373250 100 99* 100374100 — 96375100 — 98376100 49* 68377— — —378100 — 98379100 — 97380100 — 1003810 — 0382100 — 9638371 — 68384100 — 100385100 — 100386100 — 100387100 — 99388100 — 100389100 — 100390100 — 100391100 — 100392100 — 100393100 94* 100394100 99* 10039595 0* 97396100 28* 100397100 82* 98398100 80* 97 WO 2022/133114 PCT/US2021/063852 219 Cmpd No. Rate in ppm Test A Test B Test C399100 10* 99400100 99* 100401100 77* 99402100 96* 9040360 47* 04040 0* 68406100 — 93407100 — 100408100 — 100409100 — 100410100 — 100411100 — 100412100 — 100413100 — 68414100 — 100415100 — 9641677 — 0417100 — 100418100 — 9941996 — 99420100 — 100421100 — 10042290 — 9342386 — 80424100 — 96426250 09*427100 — 67428100 — 100429100 — 100430100 — 10043199 — 98432100 — 92433100 — 99434100—98 WO 2022/133114 PCT/US2021/063852 220 Cmpd No. Rate in ppm Test A Test B Test C435100 — 74436100 — 74437100 — 86438— — —4390 — 04400 — 044187 — 944244 — 0443100 — 7444496 — 86445100 — 9944699 — 86447100 — 100448100 — 100449100 — 10045094 41* 045199 8* 045281 59* 045392 50* 0454100 47* 0455100 66* 0456100 65* 6845777 — 04580 0* 04590 0* 0460100 — 99461100 — 100462100 — 89463100 65* 10046479 94* 23465100 0* 80466100 3* 5546797 6* 6846884 22* 0 WO 2022/133114 PCT/US2021/063852 221 Cmpd No. Rate in ppm Test A Test B Test C46996 65* 86470100 0* 9447177 15* 8047277 22* 047394 28* 89474100 — 100475100 — 91476100 — 86477100 — 10047881 — 19479100 — 100480100 — 98481100 — 100482100 — 100483100 — 54484100 — 100485100 — 99486100 — 89487100gg**100488100 99* 100489100 92* 99490100 94* 74491— — — —492100 — 85493100 — 100494100 47* 0495100 43* 0496100 48* 0497100 5* 0498100 43* 0499250 100 48* 100500250 100 5* 100501100 — 0502250 100 62 100 WO 2022/133114 PCT/US2021/063852 222 Cmpd No. Rate in ppm Test A Test B Test C50343 — 050474 — 0505100 100* 100506250100 49 100507100 - 98508100 - 100509100 - 99510100 - 84511250100 90 100512100 98* 100 The test results for TEST A through D presented above illustrate the fungicidal activity of component (a) (i.e. compound of Formula 1) contributing to the plant disease control utility of compositions comprising component (a) in combination with component (b) and optionally at least one additional fungicidal compound according to the present invention.The test results presented below for TEST E illustrate the fungicidal efficacy of mixtures of this invention (i.e. mixtures of component (a) and component (b)). The pathogen control protection afforded by the mixtures is not limited, however, to these test results.The general protocol for preparing test compositions for TEST E was as follows: Compound 316, Compound 376, Compound 225, Compound 229, Compound 257, Compound 394, Compound 506, Compound 507, Compound 508, Compound 509, Compound 511, Compound 512, methyl A-[[5-[l-[2,6-difhjoro-4-(l-methylethyl)phenyl]-l/Z-pyrazol-3-yl]-2- methylphenyl]methyl]carbamate (b54.1 la), methyl A-[[5-[l-(4-cyclopropyl-2,6-difluorophenyl)- l#-pyrazol-3-yl]-2-methylphenyl]methyl]carbamate (b54.11d), ethyl l-[[4-[[(lZ)-2-ethoxy- 3,3,3-trifluoro-l-propen-l-yl]oxy]phenyl]methyl]-l/Z-pyrazole-4-carboxylate (b54.12a), ethyl 1- [ [4- [ [2-(trifluoromethyl)- 1,3 -dioxolan-2-yl] methoxy ]phenyl] methyl] -1 TZ-pyrazole-4-carboxylate (b54.13a), azoxystrobin, benzovindiflupyr, bixafen, chlorothalonil, cyproconazole, epoxiconazole, fenpropidin, fenpropimorph, fluindapyr, flutriafol, fluxapyroxad, inpyrfluxam, metominostrobin, picoxystrobin, prothioconazole, pydiflumetofen, pyraclostrobin, tebuconazole and trifloxystrobin were obtained as unformulated, technical-grade materials. Copper hydroxide and mancozeb was obtained as a formulated product marketed under the trademarks KOCIDE 3000 and MANZATE, respectively. Unformulated materials were first dissolved in acetone and then suspended at the desired concentration (in ppm) in acetone and purified water (50/50 mixture by volume) containing 250 ppm of the surfactant Trem® 014 (polyhydric alcohol esters). Formulated materials were dispersed in sufficient water to give the desired concentration, and WO 2022/133114 PCT/US2021/063852 223 neither organic solvent nor surfactant was added to the suspension. The resulting test mixtures were then used in TEST E. The tests were run on four individual plants and the results reported as the mean average of the four plants.
SYNERGY EVALUATION METHODThe presence of a synergistic effect between two active ingredients can be established with the aid of the Colby equation (see Colby, S. R. "Calculating Synergistic and Antagonistic Responses of Herbicide Combinations ", Weeds, (1967), 15, 20-22): Using the method of Colby, the presence of a synergistic interaction between two active ingredients is established by first calculating the predicted activity, p, of the mixture based on activities of the two components applied alone. If p is lower than the experimentally established effect, synergism has occurred. In the equation above, A is the fungicidal activity in percentage control of one component applied alone at rate x. The B term is the fungicidal activity in percentage control of the second component applied at rate y. The equation estimates p, the expected fungicidal activity of the mixture of A at rate x with B at rate y if their effects are strictly additive and no interaction has occurred.
TESTEThe test mixture was sprayed to the point of run-off on soybean seedlings. The following day the seedlings were inoculated with a spore suspension of Phakopsora pachyrhizi (the causal agent of Asian soybean rust) and incubated in a saturated atmosphere at 22 °C for 24 h and then moved to a growth chamber at 22 °C for 8 days, after which time visual disease ratings were made.Results for Test E are given below in Tables A-l through K-2. Each table corresponds to a set of evaluations performed together at the same time. In each table, a rating of 100 indicates 100 % disease control and a rating of 0 indicates no disease control (relative to the controls). Columns labeled "Obsd " indicate the average of results observed from test run on four individual plants. Columns labeled "Exp " indicate the expected value for each treatment mixture using the Colby equation, as described above.Table A-lObserved and Expected Effects of Compound 316 Alone and Mixtures with b54.13a (ethyl l-[[4-[[2-(trifluoromethyl)-l,3-dioxolan-2-yl]methoxy]phenyl]methyl]-l/Z-pyrazole-4- carboxylate), b54.12a(ethyl l-[[4-[[(lZ)-2-ethoxy-3,3,3-trifluoro-l-propen-l-yl] oxy ]phenyl] methyl] -l/Z-pyrazole-4-carboxylate), b54.11a(methyl A-[[5-[l-[2,6-difluoro-4- WO 2022/133114 PCT/US2021/063852 224 (l-mcthylcthyIjphcnyI]-l/7-pyrazol-3-yl]-2-mcthylphcnyI]mcthy!]carbamate) and Picoxystrobin in Controlling Asian Soybean Rust Application Rate (ppm) of Compound 316 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -0.471 None 0 59 -0.764 None 0 75 -b54.13a 1.422 55 -b54.13a 2.276 64 -0.471 b54.13a 1.422 88 810.471 b54.13a 2.276 79 850.764 b54.13a 1.422 86 890.764 b54.13a 2.276 92 91b54.12a 0.303 53 -b54.12a 0.489 68 -0.471 b54.12a 0.303 82 800.471 b54.12a 0.489 85 870.764 b54.12a 0.303 86 880.764 b54.12a 0.489 92 92b54.11a 0.403 34 -b54.11a 0.652 68 -0.471 b54.11a 0.403 62 730.471 b54.11a 0.652 69 870.764 b54.11a 0.403 68 840.764 b54.11a 0.652 79 92picoxystrobin 20.596 73 -picoxystrobin 38.865 75 -0.471 picoxystrobin 20.596 74 890.471 picoxystrobin 38.865 81 900.764 picoxystrobin 20.596 84 930.764 picoxystrobin 38.865 95 94 WO 2022/133114 PCT/US2021/063852 225 Table A-2Observed and Expected Effects of Compound 376 Alone and Mixtures with b54.13a (ethyl l-[[4-[[2-(trifluoromethyl)-l,3-dioxolan-2-yl]methoxy]phenyl]methyl]-l/Z-pyrazole-4- carboxylate), b54.12a(ethyl l-[[4-[[(lZ)-2-ethoxy-3,3,3-trifluoro-l-propen-l-yl] oxy ]phenyl] methyl] -l/Z-pyrazole-4-carboxylate), b54.11a(methyl A/-[[5-[l-[2,6-difluoro-4- (1 -methylethy !)phenyl] -1 /7- py razo I - 3 -y 1] -2 -methylphenyl] methyl] carb amate) , b54.1 Id(methyl A/-[[5-[l-(4-cyclopropyl-2,6-difluorophenyl)-l/7-pyrazol-3-yl]-2-methylphenyl]methyl] carbamate) and Picoxystrobin in Controlling Asian Soybean Rust Application Rate (ppm) of Compound 376 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -0.753 None 0 70 -1.228 None 0 66 -b54.13a 1.422 55 -b54.13a 2.276 64 -0.753 b54.13a 1.422 68 870.753 b54.13a 2.276 87 891.228 b54.13a 1.422 75 851.228 b54.13a 2.276 75 88b54.12a 0.303 53 -b54.12a 0.489 68 -0.753 b54.12a 0.303 81 860.753 b54.12a 0.489 86 901.228 b54.12a 0.303 83 841.228 b54.12a 0.489 89 89b54.11a 0.403 34 -b54.11a 0.652 68 -0.753 b54.11a 0.403 61 800.753 b54.11a 0.652 77 901.228 b54.11a 0.403 76 771.228 b54.11a 0.652 93 89b54.11d 0.346 29 -b54.11d 0.764 62 - WO 2022/133114 PCT/US2021/063852 226 Application Rate (ppm) of Compound 376 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0.753 b54.11d 0.346 70 790.753 b54.11d 0.764 86 891.228 b54.11d 0.346 89 761.228 b54.11d 0.764 88 87picoxystrobin 20.596 73 -picoxystrobin 33.865 75 -0.753 picoxystrobin 20.596 66 920.753 picoxystrobin 33.865 80 931.228 picoxystrobin 20.596 80 911.228 picoxystrobin 33.865 89 91Table B-lObserved and Expected Effects of Compound 316 Alone and Mixtures with Bixafen, Fluxapyroxad and Fluindapyr in Controlling Asian Soybean RustApplication Rate (ppm) of Compound 316 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -0.471 None 0 22 -0.764 None 0 54 -bixafen 11.327 54 -bixafen 19.525 55 -0.471 bixafen 11.327 60 650.471 bixafen 19.525 65 640.764 bixafen 11.327 60 790.764 bixafen 19.525 73 79fluxapyroxad 2.757 19 -fluxapyroxad 4.748 52 -0.471 fluxapyroxad 2.757 32 360.471 fluxapyroxad 4.748 54 620.764 fluxapyroxad 2.757 59 620.764 fluxapyroxad 4.748 65 78 WO 2022/133114 PCT/US2021/063852 227 Application Rate (ppm) of Compound 316 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 fluindapyr 8.820 61 -fluindapyr 15.230 79 -0.471 fluindapyr 8.820 53 700.471 fluindapyr 15.230 70 830.764 fluindapyr 8.820 74 820.764 fluindapyr 15.230 88 90Table B-2Observed and Expected Effects of Compound 376 Alone and Mixtures with Bixafen, Fluxapyroxad and Fluindapyr in Controlling Asian Soybean Rust Application Rate (ppm) of Compound 376 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -0.753 None 0 15 -1.228 None 0 21 -bixafen 11.327 54 -bixafen 19.525 55 -0.753 bixafen 11.327 48 620.753 bixafen 19.525 40 611.228 bixafen 11.327 56 641.228 bixafen 19.525 78 63fluxapyroxad 2.757 19 -fluxapyroxad 4.748 52 -0.753 fluxapyroxad 2.757 33 300.753 fluxapyroxad 4.748 75 591.228 fluxapyroxad 2.757 64 351.228 fluxapyroxad 4.748 72 62fluindapyr 8.820 61 -fluindapyr 15.230 79 -0.753 fluindapyr 8.820 53 670.753 fluindapyr 15.230 51 82 WO 2022/133114 PCT/US2021/063852 228 Application Rate (ppm) of Compound 376 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 1.228 fluindapyr 8.820 40 691.228 fluindapyr 15.230 61 83Table C-lObserved and Expected Effects of Compound 316 Alone and Mixtures with Mancozeb, Fenpropimorph and Tebuconazole in Controlling Asian Soybean Rust Application Rate (ppm) of Compound 316 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -0.471 None 0 49 -0.764 None 0 66 -mancozeb 42.532 70 -mancozeb 74.012 71 -0.471 mancozeb 42.532 87 850.471 mancozeb 74.012 93 850.764 mancozeb 42.532 96 900.764 mancozeb 74.012 89 90fenpropimorph 242.823 33 -fenpropimorph 458.587 44 -0.471 fenpropimorph 242.823 72 660.471 fenpropimorph 458.587 87 720.764 fenpropimorph 242.823 91 770.764 fenpropimorph 458.587 89 81tebuconazole 486.921 30 -tebuconazole 841.166 55 -0.471 tebuconazole 486.921 62 650.471 tebuconazole 841.166 90 770.764 tebuconazole 486.921 91 760.764 tebuconazole 841.166 96 85 WO 2022/133114 PCT/US2021/063852 229 Table C-2Observed and Expected Effects of Compound 376 Alone and Mixtures with Mancozeb, Fenpropimorph and Tebuconazole in Controlling Asian Soybean Rust Application Rate (ppm) of Compound 376 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -0.753 None 0 54 -1.228 None 0 71 -mancozeb 42.532 70 -mancozeb 74.012 71 -0.753 mancozeb 42.532 86 860.753 mancozeb 74.012 94 871.228 mancozeb 42.532 87 911.228 mancozeb 74.012 96 92fenpropimorph 242.823 33 -fenpropimorph 458.587 44 -0.753 fenpropimorph 242.823 72 690.753 fenpropimorph 458.587 92 741.228 fenpropimorph 242.823 78 811.228 fenpropimorph 458.587 95 84tebuconazole 486.921 30 -tebuconazole 841.166 55 -0.753 tebuconazole 486.921 56 680.753 tebuconazole 841.166 67 791.228 tebuconazole 486.921 75 801.228 tebuconazole 841.166 70 87Table D-lObserved and Expected Effects of Compound 316 Alone and Mixtures withCyproconazole, Azoxystrobin and Trifloxystrobin in Controlling Asian Soybean RustApplication Rate (ppm) of Compound 316 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 - WO 2022/133114 PCT/US2021/063852 230 Application Rate (ppm) of Compound 316 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0.471 None 0 20 -0.764 None 0 70 -cyproconazole 37.333 44 -cyproconazole 64.883 68 -0.471 cyproconazole 37.333 62 550.471 cyproconazole 64.883 76 740.764 cyproconazole 37.333 85 830.764 cyproconazole 64.883 85 90azoxystrobin 95.873 70 -azoxystrobin 169.226 88 -0.471 azoxystrobin 95.873 86 760.471 azoxystrobin 169.226 88 910.764 azoxystrobin 95.873 84 910.764 azoxystrobin 169.226 86 97trifloxystrobin 20.511 69 -trifloxystrobin 35.310 86 -0.471 trifloxystrobin 20.511 71 750.471 trifloxystrobin 35.310 93 890.764 trifloxystrobin 20.511 83 910.764 trifloxystrobin 35.310 79 96Table D-2Observed and Expected Effects of Compound 376 Alone and Mixtures withCyproconazole, Azoxystrobin and Trifloxystrobin in Controlling Asian Soybean RustApplication Rate (ppm) of Compound 376 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -0.753 None 0 67 -1.228 None 0 68 -cyproconazole 37.333 44 -cyproconazole 64.883 68 - WO 2022/133114 PCT/US2021/063852 231 Application Rate (ppm) of Compound 376 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0.753 cyproconazole 37.333 78 810.753 cyproconazole 64.883 62 891.228 cyproconazole 37.333 77 821.228 cyproconazole 64.883 77 90azoxystrobin 95.873 70 -azoxystrobin 169.226 88 -0.753 azoxystrobin 95.873 75 900.753 azoxystrobin 169.226 85 961.228 azoxystrobin 95.873 84 901.228 azoxystrobin 169.226 92 96trifloxystrobin 20.511 69 -trifloxystrobin 35.310 86 -0.753 trifloxystrobin 20.511 61 900.753 trifloxystrobin 35.310 79 951.228 trifloxystrobin 20.511 88 901.228 trifloxystrobin 35.310 88 96Table E-lObserved and Expected Effects of Compound 316 Alone and Mixtures with Epoxiconazole and Pydiflumetofen in Controlling Asian Soybean Rust Application Rate (ppm) of Compound 316 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -0.471 None 0 61 -0.764 None 0 58 -epoxiconazole 46.795 23 -epoxiconazole 89.631 70 -0.471 epoxiconazole 46.795 43 700.471 epoxiconazole 89.631 64 880.764 epoxiconazole 46.795 77 670.764 epoxiconazole 89.631 70 87 WO 2022/133114 PCT/US2021/063852 232 Application Rate (ppm) of Compound 316 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 pydiflumetofen 70.950 0 -pydiflumetofen 135.850 73 -0.471 pydiflumetofen 70.950 52 610.471 pydiflumetofen 135.850 64 900.764 pydiflumetofen 70.950 60 580.764 pydiflumetofen 135.850 72 89Table E-2Observed and Expected Effects of Compound 376 Alone and Mixtures with Epoxiconazole and Pydiflumetofen in Controlling Asian Soybean Rust Application Rate (ppm) of Compound 376 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -0.753 None 0 81 -1.228 None 0 67 -epoxiconazole 46.795 23 -epoxiconazole 89.631 70 -0.753 epoxiconazole 46.795 64 850.753 epoxiconazole 89.631 71 941.228 epoxiconazole 46.795 73 751.228 epoxiconazole 89.631 69 90pydiflumetofen 70.950 0 -pydiflumetofen 135.850 73 -0.753 pydiflumetofen 70.950 59 810.753 pydiflumetofen 135.850 66 951.228 pydiflumetofen 70.950 76 671.228 pydiflumetofen 135.850 82 91 WO 2022/133114 PCT/US2021/063852 233 Table F-lObserved and Expected Effects of Compound 316 Alone and Mixtures withBenzo vindiflupyr, Prothioconazole and Chlorothalonil in Controlling Asian Soybean Rust Application Rate (ppm) of Compound 316 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -0.471 None 0 61 -0.764 None 0 68 -benzo vindiflupyr 0.606 67 -benzo vindiflupyr 0.980 67 -0.471 benzo vindiflupyr 0.606 80 870.471 benzo vindiflupyr 0.980 85 870.764 benzo vindiflupyr 0.606 84 890.764 benzo vindiflupyr 0.980 91 89prothioconazole 10.165 7 -prothioconazole 16.339 65 -0.471 prothioconazole 10.165 63 640.471 prothioconazole 16.339 88 860.764 prothioconazole 10.165 85 700.764 prothioconazole 16.339 82 89chlorothalonil 138.129 59 -chlorothalonil 222.081 85 -0.471 chlorothalonil 138.129 74 840.471 chlorothalonil 222.081 94 940.764 chlorothalonil 138.129 78 870.764 chlorothalonil 222.081 99 95Table F-2Observed and Expected Effects of Compound 376 Alone and Mixtures withBenzovindiflupyr, Prothioconazole and Chlorothalonil in Controlling Asian Soybean RustApplication Rate (ppm) of Compound 376 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 - WO 2022/133114 PCT/US2021/063852 234 Application Rate (ppm) of Compound 376 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0.753 None 0 68 -1.228 None 0 77 -benzo vindiflupyr 0.606 67 -benzo vindiflupyr 0.980 67 -0.753 benzo vindiflupyr 0.606 82 900.753 benzo vindiflupyr 0.980 87 901.228 benzo vindiflupyr 0.606 87 921.228 benzo vindiflupyr 0.980 87 93prothioconazole 10.165 7 -prothioconazole 16.339 65 -0.753 prothioconazole 10.165 60 700.753 prothioconazole 16.339 82 891.228 prothioconazole 10.165 72 791.228 prothioconazole 16.339 85 92chlorothalonil 138.129 59 -chlorothalonil 222.081 85 -0.753 chlorothalonil 138.129 75 870.753 chlorothalonil 222.081 96 951.228 chlorothalonil 138.129 87 911.228 chlorothalonil 222.081 92 97Table G-lObserved and Expected Effects of Compound 316 Alone and Mixtures withPydiflumetofen, Pyraclostrobin and Metominostrobin in Controlling Asian Soybean RustApplication Rate (ppm) of Compound 316 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -0.471 None 0 31 -0.764 None 0 64 -pydiflumetofen 41.364 49 -pydiflumetofen 128.793 36 - WO 2022/133114 PCT/US2021/063852 235 Application Rate (ppm) of Compound 316 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0.471 pydiflumetofen 41.364 34 650.471 pydiflumetofen 128.793 70 560.764 pydiflumetofen 41.364 75 810.764 pydiflumetofen 128.793 77 77pyraclostrobin 45.860 35 -pyraclostrobin 137.503 45 -0.471 pyraclostrobin 45.860 57 550.471 pyraclostrobin 137.503 68 620.764 pyraclostrobin 45.860 62 760.764 pyraclostrobin 137.503 75 80metominostrobin 29.673 13 -metominostrobin 86.003 37 -0.471 metominostrobin 29.673 49 400.471 metominostrobin 86.003 75 560.764 metominostrobin 29.673 28 690.764 metominostrobin 86.003 61 77Table G-2Observed and Expected Effects of Compound 376 Alone Alone and Mixtures with Pydiflumetofen, Pyraclostrobin and Metominostrobin in Controlling Asian Soybean Rust Application Rate (ppm) of Compound 376 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -0.753 None 0 52 -1.228 None 0 37 -pydiflumetofen 41.364 49 -pydiflumetofen 128.793 36 -0.753 pydiflumetofen 41.364 36 750.753 pydiflumetofen 128.793 58 691.228 pydiflumetofen 41.364 53 681.228 pydiflumetofen 128.793 49 60 WO 2022/133114 PCT/US2021/063852 236 Application Rate (ppm) of Compound 376 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 pyraclostrobin 45.860 35 -pyraclostrobin 137.503 45 -0.753 pyraclostrobin 45.860 2 690.753 pyraclostrobin 137.503 34 731.228 pyraclostrobin 45.860 23 591.228 pyraclostrobin 137.503 46 65metominostrobin 29.673 13 -metominostrobin 86.003 37 -0.753 metominostrobin 29.673 14 580.753 metominostrobin 86.003 57 701.228 metominostrobin 29.673 45 451.228 metominostrobin 86.003 73 60Table H-lObserved and Expected Effects of Compound 316 Alone and Mixtures with Copper Hydroxide, Flutriafol and Fenpropidin in Controlling Asian Soybean Rust Application Rate (ppm) of Compound 316 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -0.471 None 0 44 -0.764 None 0 80 -copper hydroxide 3610.778 87 -copper hydroxide 7371.507 65 -0.471 copper hydroxide 3610.778 82 920.471 copper hydroxide 7371.507 82 800.764 copper hydroxide 3610.778 86 970.764 copper hydroxide 7371.507 81 93flutriafol 544.265 13 -flutriafol 1124.021 52 -0.471 flutriafol 544.265 64 510.471 flutriafol 1124.021 66 73 WO 2022/133114 PCT/US2021/063852 237 Application Rate (ppm) of Compound 316 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0.764 flutriafol 544.265 67 830.764 flutriafol 1124.021 88 90fenpropidin 78.393 45 -fenpropidin 161.740 68 -0.471 fenpropidin 78.393 66 690.471 fenpropidin 161.740 75 820.764 fenpropidin 78.393 63 890.764 fenpropidin 161.740 87 94Table H-2Observed and Expected Effects of Compound 376 Alone Alone and Mixtures with Copper Hydroxide, Flutriafol and Fenpropidin in Controlling Asian Soybean RustApplication Rate (ppm) of Compound 376 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -0.753 None 0 62 -1.228 None 0 81 -copper hydroxide 3610.778 87 -copper hydroxide 7371.507 65 -0.753 copper hydroxide 3610.778 84 950.753 copper hydroxide 7371.507 87 871.228 copper hydroxide 3610.778 90 971.228 copper hydroxide 7371.507 87 93flutriafol 544.265 13 -flutriafol 1124.021 52 -0.753 flutriafol 544.265 68 670.753 flutriafol 1124.021 76 821.228 flutriafol 544.265 75 831.228 flutriafol 1124.021 88 91fenpropidin 78.393 45 -fenpropidin 161.740 68 - WO 2022/133114 PCT/US2021/063852 238 Table 1-1 Application Rate (ppm) of Compound 376 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0.753 fenpropidin 78.393 78 790.753 fenpropidin 161.740 82 881.228 fenpropidin 78.393 85 891.228 fenpropidin 161.740 89 94 Observed and Expected Effects of Compound 225 Alone and Mixtures withBenzo vindiflupyr, Prothioconazole and Chlorothalonil in Controlling Asian Soybean Rust Application Rate (ppm) of Compound 225 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -0.292 None 0 19 -0.589 None 0 68 -benzo vindiflupyr 0.606 51 -benzo vindiflupyr 0.980 68 -0.292 benzo vindiflupyr 0.606 77 740.292 benzo vindiflupyr 0.980 87 600.589 benzo vindiflupyr 0.606 75 900.589 benzo vindiflupyr 0.980 84 84prothioconazole 10.165 34 -prothioconazole 16.339 56 -0.292 prothioconazole 10.165 44 460.292 prothioconazole 16.339 65 640.589 prothioconazole 10.165 81 790.589 prothioconazole 16.339 79 86chlorothalonil 138.129 76 -chlorothalonil 222.081 88 -0.292 chlorothalonil 138.129 87 810.292 chlorothalonil 222.081 87 900.589 chlorothalonil 138.129 80 920.589 chlorothalonil 222.081 85 96 WO 2022/133114 PCT/US2021/063852 239 Table 1-2Observed and Expected Effects of Compound 229 Alone and Mixtures withBenzo vindiflupyr, Prothioconazole and Chlorothalonil in Controlling Asian Soybean Rust Table 1-3 Application Rate (ppm) of Compound 229 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -0.964 None 0 59 -1.915 None 0 77 -benzo vindiflupyr 0.606 51 -benzo vindiflupyr 0.980 68 -0.964 benzo vindiflupyr 0.606 81 920.964 benzo vindiflupyr 0.980 83 891.915 benzo vindiflupyr 0.606 87 871.915 benzo vindiflupyr 0.980 89 80prothioconazole 10.165 34 -prothioconazole 16.339 56 -0.964 prothioconazole 10.165 70 840.964 prothioconazole 16.339 68 901.915 prothioconazole 10.165 73 731.915 prothioconazole 16.339 74 82chlorothalonil 138.129 76 -chlorothalonil 222.081 88 -0.964 chlorothalonil 138.129 76 940.964 chlorothalonil 222.081 89 971.915 chlorothalonil 138.129 66 901.915 chlorothalonil 222.081 93 95 Observed and Expected Effects of Compound 257 Alone and Mixtures withBenzovindiflupyr, Prothioconazole and Chlorothalonil in Controlling Asian Soybean RustApplication Rate (ppm) of Compound 257 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 - WO 2022/133114 PCT/US2021/063852 240 Table 1-4 Application Rate (ppm) of Compound 257 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0.914 None 0 27 -1.828 None 0 62 -benzo vindiflupyr 0.606 51 -benzo vindiflupyr 0.980 68 -0.914 benzo vindiflupyr 0.606 72 760.914 benzo vindiflupyr 0.980 70 641.828 benzo vindiflupyr 0.606 86 881.828 benzo vindiflupyr 0.980 85 82prothioconazole 10.165 34 -prothioconazole 16.339 56 -0.914 prothioconazole 10.165 50 520.914 prothioconazole 16.339 73 681.828 prothioconazole 10.165 70 751.828 prothioconazole 16.339 69 83chlorothalonil 138.129 76 -chlorothalonil 222.081 88 -0.914 chlorothalonil 138.129 73 820.914 chlorothalonil 222.081 86 911.828 chlorothalonil 138.129 87 911.828 chlorothalonil 222.081 85 96 Observed and Expected Effects of Compound 394 Alone and Mixtures withBenzo vindiflupyr, Prothioconazole and Chlorothalonil in Controlling Asian Soybean RustApplication Rate (ppm) of Compound 394 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -0.490 None 0 73 -benzo vindiflupyr 0.606 51 -benzo vindiflupyr 0.980 68 -0.490 benzo vindiflupyr 0.606 76 68 WO 2022/133114 PCT/US2021/063852 241 Table 1-5 Application Rate (ppm) of Compound 394 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0.490 benzo vindiflupyr 0.980 91 51prothioconazole 10.165 34 -prothioconazole 16.339 56 -0.490 prothioconazole 10.165 69 340.490 prothioconazole 16.339 81 56chlorothalonil 138.129 76 -chlorothalonil 222.081 88 -0.490 chlorothalonil 138.129 55 760.490 chlorothalonil 222.081 81 88 Observed and Expected Effects of Compound 506 Alone and Mixtures withBenzo vindiflupyr, Prothioconazole and Chlorothalonil in Controlling Asian Soybean RustApplication Rate (ppm) of Compound 506 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -0.790 None 0 27 -1.585 None 0 34 -benzo vindiflupyr 0.606 51 -benzo vindiflupyr 0.980 68 -0.790 benzo vindiflupyr 0.606 76 790.790 benzo vindiflupyr 0.980 91 681.585 benzo vindiflupyr 0.606 74 771.585 benzo vindiflupyr 0.980 85 64prothioconazole 10.165 34 -prothioconazole 16.339 56 -0.790 prothioconazole 10.165 74 560.790 prothioconazole 16.339 74 711.585 prothioconazole 10.165 58 521.585 prothioconazole 16.339 61 68chlorothalonil 138.129 76 - WO 2022/133114 PCT/US2021/063852 242 Table 1-6 Application Rate (ppm) of Compound 506 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 chlorothalonil 222.081 88 -0.790 chlorothalonil 138.129 88 840.790 chlorothalonil 222.081 90 921.585 chlorothalonil 138.129 85 831.585 chlorothalonil 222.081 87 91 Observed and Expected Effects of Compound 507 Alone and Mixtures withBenzo vindiflupyr, Prothioconazole and Chlorothalonil in Controlling Asian Soybean Rust Application Rate (ppm) of Compound 507 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -0.896 None 0 57 -1.823 None 0 74 -benzo vindiflupyr 0.606 51 -benzo vindiflupyr 0.980 68 -0.896 benzo vindiflupyr 0.606 76 860.896 benzo vindiflupyr 0.980 80 791.823 benzo vindiflupyr 0.606 80 921.823 benzo vindiflupyr 0.980 89 87prothioconazole 10.165 34 -prothioconazole 16.339 56 -0.896 prothioconazole 10.165 54 710.896 prothioconazole 16.339 82 811.823 prothioconazole 10.165 76 831.823 prothioconazole 16.339 81 88chlorothalonil 138.129 76 -chlorothalonil 222.081 88 -0.896 chlorothalonil 138.129 77 900.896 chlorothalonil 222.081 89 951.823 chlorothalonil 138.129 89 94 WO 2022/133114 PCT/US2021/063852 243 Table 1-7 Application Rate (ppm) of Compound 507 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 1.823 chlorothalonil 222.081 87 97 Observed and Expected Effects of Compound 508 Alone and Mixtures withBenzo vindiflupyr, Prothioconazole and Chlorothalonil in Controlling Asian Soybean Rust Application Rate (ppm) of Compound 508 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -0.855 None 0 23 -1.716 None 0 60 -benzo vindiflupyr 0.606 51 -benzo vindiflupyr 0.980 68 -0.855 benzo vindiflupyr 0.606 80 750.855 benzo vindiflupyr 0.980 83 621.716 benzo vindiflupyr 0.606 74 871.716 benzo vindiflupyr 0.980 85 80prothioconazole 10.165 34 -prothioconazole 16.339 56 -0.855 prothioconazole 10.165 60 490.855 prothioconazole 16.339 58 661.716 prothioconazole 10.165 67 731.716 prothioconazole 16.339 77 82chlorothalonil 138.129 76 -chlorothalonil 222.081 88 -0.855 chlorothalonil 138.129 85 810.855 chlorothalonil 222.081 91 911.716 chlorothalonil 138.129 78 901.716 chlorothalonil 222.081 83 95 WO 2022/133114 PCT/US2021/063852 244 Table 1-8Observed and Expected Effects of Compound 509 Alone and Mixtures withBenzo vindiflupyr, Prothioconazole and Chlorothalonil in Controlling Asian Soybean Rust Table 1-9 Application Rate (ppm) of Compound 509 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -2.796 None 0 54 -5.625 None 0 35 -benzo vindiflupyr 0.606 51 -benzo vindiflupyr 0.980 68 -2.796 benzo vindiflupyr 0.606 80 792.796 benzo vindiflupyr 0.980 62 685.625 benzo vindiflupyr 0.606 68 855.625 benzo vindiflupyr 0.980 79 77prothioconazole 10.165 34 -prothioconazole 16.339 56 -2.796 prothioconazole 10.165 32 572.796 prothioconazole 16.339 45 715.625 prothioconazole 10.165 61 695.625 prothioconazole 16.339 74 80chlorothalonil 138.129 76 -chlorothalonil 222.081 88 -2.796 chlorothalonil 138.129 74 842.796 chlorothalonil 222.081 87 925.625 chlorothalonil 138.129 76 895.625 chlorothalonil 222.081 77 95 Observed and Expected Effects of Compound 511 Alone and Mixtures withBenzovindiflupyr, Prothioconazole and Chlorothalonil in Controlling Asian Soybean RustApplication Rate (ppm) of Compound 511 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 - WO 2022/133114 PCT/US2021/063852 245 Application Rate (ppm) of Compound 511 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 2.436 None 0 40 -4.926 None 0 66 -benzo vindiflupyr 0.606 51 -benzo vindiflupyr 0.980 68 -2.436 benzo vindiflupyr 0.606 66 812.436 benzo vindiflupyr 0.980 77 714.926 benzo vindiflupyr 0.606 79 894.926 benzo vindiflupyr 0.980 82 84prothioconazole 10.165 34 -prothioconazole 16.339 56 -2.436 prothioconazole 10.165 60 602.436 prothioconazole 16.339 79 744.926 prothioconazole 10.165 77 784.926 prothioconazole 16.339 67 85chlorothalonil 138.129 76 -chlorothalonil 222.081 88 -2.436 chlorothalonil 138.129 87 862.436 chlorothalonil 222.081 89 934.926 chlorothalonil 138.129 74 924.926 chlorothalonil 222.081 91 96Table I-10Observed and Expected Effects of Compound 512 Alone and Mixtures withBenzo vindiflupyr, Prothioconazole and Chlorothalonil in Controlling Asian Soybean RustApplication Rate (ppm) of Compound 512 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -1.893 None 0 14 -3.829 None 0 66 -benzo vindiflupyr 0.606 51 -benzo vindiflupyr 0.980 68 - WO 2022/133114 PCT/US2021/063852 246 Application Rate (ppm) of Compound 512 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 1.893 benzo vindiflupyr 0.606 66 721.893 benzo vindiflupyr 0.980 82 583.829 benzo vindiflupyr 0.606 86 893.829 benzo vindiflupyr 0.980 87 83prothioconazole 10.165 34 -prothioconazole 16.339 56 -1.893 prothioconazole 10.165 64 431.893 prothioconazole 16.339 83 623.829 prothioconazole 10.165 65 783.829 prothioconazole 16.339 87 85chlorothalonil 138.129 76 -chlorothalonil 222.081 88 -1.893 chlorothalonil 138.129 86 791.893 chlorothalonil 222.081 90 903.829 chlorothalonil 138.129 88 923.829 chlorothalonil 222.081 89 96Table J-lObserved and Expected Effects of Compound 225 Alone and Mixtures with with Copper Hydroxide, Fenpropidin and Picoxystrobin in Controlling Asian Soybean Rust Application Rate (ppm) of Compound 225 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -0.292 None 0 0 -0.589 None 0 55 -copper hydroxide 3610.778 80 -copper hydroxide 7371.507 73 -0.292 copper hydroxide 3610.778 81 800.292 copper hydroxide 7371.507 71 730.589 copper hydroxide 3610.778 81 910.589 copper hydroxide 7371.507 72 88 WO 2022/133114 PCT/US2021/063852 247 Application Rate (ppm) of Compound 225 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 fenpropidin 78.393 0 -fenpropidin 161.740 52 -0.292 fenpropidin 78.393 54 00.292 fenpropidin 161.740 70 520.589 fenpropidin 78.393 73 550.589 fenpropidin 161.740 76 79picoxystrobin 20.596 28 -picoxystrobin 33.865 43 -0.292 picoxystrobin 20.596 39 280.292 picoxystrobin 33.865 76 430.589 picoxystrobin 20.596 59 680.589 picoxystrobin 33.865 77 74Table J-2Observed and Expected Effects of Compound 229 Alone and Mixtures with Copper Hydroxide, Fenpropidin and Picoxystrobin in Controlling Asian Soybean Rust Application Rate (ppm) of Compound 229 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -0.964 None 0 63 -1.915 None 0 73 -copper hydroxide 3610.778 80 -copper hydroxide 7371.507 73 -0.964 copper hydroxide 3610.778 75 920.964 copper hydroxide 7371.507 76 901.915 copper hydroxide 3610.778 87 951.915 copper hydroxide 7371.507 78 93fenpropidin 78.393 0 -fenpropidin 161.740 52 -0.964 fenpropidin 78.393 67 630.964 fenpropidin 161.740 77 82 WO 2022/133114 PCT/US2021/063852 248 Application Rate (ppm) of Compound 229 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 1.915 fenpropidin 78.393 78 731.915 fenpropidin 161.740 89 87picoxystrobin 20.596 28 -picoxystrobin 33.875 43 -0.964 picoxystrobin 20.596 67 730.964 picoxystrobin 33.875 87 781.915 picoxystrobin 20.596 80 811.915 picoxystrobin 33.875 90 85Table J-3Observed and Expected Effects of Compound 257 Alone and Mixtures with Copper Hydroxide, Fenpropidin and Picoxystrobin in Controlling Asian Soybean RustApplication Rate (ppm) of Compound 257 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -0.914 None 0 36 -1.828 None 0 41 -copper hydroxide 3610.778 80 -copper hydroxide 7371.507 73 -0.914 copper hydroxide 3610.778 79 870.914 copper hydroxide 7371.507 77 831.828 copper hydroxide 3610.778 85 881.828 copper hydroxide 7371.507 85 84fenpropidin 78.393 0 -fenpropidin 161.740 52 -0.914 fenpropidin 78.393 55 360.914 fenpropidin 161.740 83 691.828 fenpropidin 78.393 0 411.828 fenpropidin 161.740 76 72picoxystrobin 20.596 28 -picoxystrobin 33.865 43 - WO 2022/133114 PCT/US2021/063852 249 Application Rate (ppm) of Compound 257 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0.914 picoxystrobin 20.596 60 540.914 picoxystrobin 33.865 62 631.828 picoxystrobin 20.596 66 581.828 picoxystrobin 33.865 70 66Table J-4Observed and Expected Effects of Compound 394 Alone and Mixtures with Copper Hydroxide, Fenpropidin and Picoxystrobin in Controlling Asian Soybean Rust Application Rate (ppm) of Compound 394 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -0.241 None 0 4 -0.490 None 0 0 -copper hydroxide 3610.778 80 -copper hydroxide 7371.507 73 -0.241 copper hydroxide 3610.778 85 800.241 copper hydroxide 7371.507 71 740.490 copper hydroxide 3610.778 77 800.490 copper hydroxide 7371.507 72 73fenpropidin 78.393 0 -fenpropidin 161.740 52 -0.241 fenpropidin 78.393 9 40.241 fenpropidin 161.740 34 540.490 fenpropidin 78.393 20 00.490 fenpropidin 161.740 71 52picoxystrobin 20.596 28 -picoxystrobin 33.865 43 -0.241 picoxystrobin 20.596 22 310.241 picoxystrobin 33.865 85 450.490 picoxystrobin 20.596 14 280.490 picoxystrobin 33.865 66 43 WO 2022/133114 PCT/US2021/063852 250 Table J-5Observed and Expected Effects of Compound 506 Alone and Mixtures with Copper Hydroxide, Fenpropidin and Picoxystrobin in Controlling Asian Soybean Rust Application Rate (ppm) of Compound 506 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -0.790 None 0 9 -1.585 None 0 13 -copper hydroxide 3610.778 80 -copper hydroxide 7371.507 73 -0.790 copper hydroxide 3610.778 78 810.790 copper hydroxide 7371.507 75 751.585 copper hydroxide 3610.778 83 821.585 copper hydroxide 7371.507 84 76fenpropidin 78.393 0 -fenpropidin 161.740 52 -0.790 fenpropidin 78.393 54 90.790 fenpropidin 161.740 79 561.585 fenpropidin 78.393 66 131.585 fenpropidin 161.740 79 59picoxystrobin 20.596 28 -picoxystrobin 33.865 43 -0.790 picoxystrobin 20.596 65 340.790 picoxystrobin 33.865 77 481.585 picoxystrobin 20.596 77 381.585 picoxystrobin 33.865 72 50Table J-6Observed and Expected Effects of Compound 507 Alone and Mixtures with CopperHydroxide, Fenpropidin and Picoxystrobin in Controlling Asian Soybean RustApplication Rate (ppm) of Compound 507 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 - WO 2022/133114 PCT/US2021/063852 251 Application Rate (ppm) of Compound 507 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0.896 None 0 31 -1.823 None 0 56 -copper hydroxide 3610.778 80 -copper hydroxide 7371.507 73 -0.896 copper hydroxide 3610.778 81 860.896 copper hydroxide 7371.507 76 811.823 copper hydroxide 3610.778 87 911.823 copper hydroxide 7371.507 81 88fenpropidin 78.393 0 -fenpropidin 161.740 52 -0.896 fenpropidin 78.393 38 310.896 fenpropidin 161.740 71 671.823 fenpropidin 78.393 56 561.823 fenpropidin 161.740 74 79picoxystrobin 20.596 28 -picoxystrobin 33.865 43 -0.896 picoxystrobin 20.596 47 510.896 picoxystrobin 33.865 72 611.823 picoxystrobin 20.596 80 691.823 picoxystrobin 33.865 75 75Table J-7Observed and Expected Effects of Compound 508 Alone and Mixtures with Copper Hydroxide, Fenpropidin and Picoxystrobin in Controlling Asian Soybean RustApplication Rate (ppm) of Compound 508 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -0.855 None 0 0 -1.716 None 0 52 -copper hydroxide 3610.778 80 -copper hydroxide 7371.507 73 - WO 2022/133114 PCT/US2021/063852 252 Application Rate (ppm) of Compound 508 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0.855 copper hydroxide 3610.778 76 800.855 copper hydroxide 7371.507 80 731.716 copper hydroxide 3610.778 69 901.716 copper hydroxide 7371.507 73 87fenpropidin 78.393 0 -fenpropidin 161.740 52 -0.855 fenpropidin 78.393 25 00.855 fenpropidin 161.740 71 521.716 fenpropidin 78.393 69 521.716 fenpropidin 161.740 84 77picoxystrobin 20.596 28 -picoxystrobin 33.865 43 -0.855 picoxystrobin 20.596 75 280.855 picoxystrobin 33.865 88 431.716 picoxystrobin 20.596 70 661.716 picoxystrobin 33.865 71 72Table J-8Observed and Expected Effects of Compound 509 Alone and Mixtures with Copper Hydroxide, Fenpropidin and Picoxystrobin in Controlling Asian Soybean Rust Application Rate (ppm) of Compound 509 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -2.796 None 0 36 -5.625 None 0 47 -copper hydroxide 3610.778 80 -copper hydroxide 7371.507 73 -2.796 copper hydroxide 3610.778 77 872.796 copper hydroxide 7371.507 71 835.625 copper hydroxide 3610.778 77 895.625 copper hydroxide 7371.507 79 86 WO 2022/133114 PCT/US2021/063852 253 Application Rate (ppm) of Compound 509 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 fenpropidin 78.393 0 -fenpropidin 161.740 52 -2.796 fenpropidin 78.393 53 362.796 fenpropidin 161.740 72 695.625 fenpropidin 78.393 53 475.625 fenpropidin 161.740 78 75picoxystrobin 20.596 28 -picoxystrobin 33.865 43 -2.796 picoxystrobin 20.596 73 542.796 picoxystrobin 33.865 79 635.625 picoxystrobin 20.596 68 625.625 picoxystrobin 33.865 85 70Table J-9Observed and Expected Effects of Compound 511 Alone and Mixtures with Copper Hydroxide, Fenpropidin and Picoxystrobin in Controlling Asian Soybean Rust Application Rate (ppm) of Compound 511 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -2.436 None 0 21 -4.926 None 0 68 -copper hydroxide 3610.778 80 -copper hydroxide 7371.507 73 -2.436 copper hydroxide 3610.778 83 842.436 copper hydroxide 7371.507 77 784.926 copper hydroxide 3610.778 83 944.926 copper hydroxide 7371.507 76 91fenpropidin 78.393 0 -fenpropidin 161.740 52 -2.436 fenpropidin 78.393 45 212.436 fenpropidin 161.740 68 62 WO 2022/133114 PCT/US2021/063852 254 Application Rate (ppm) of Compound 511 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 4.926 fenpropidin 78.393 82 684.926 fenpropidin 161.740 85 85picoxystrobin 20.596 28 -picoxystrobin 33.865 43 -2.436 picoxystrobin 20.596 40 432.436 picoxystrobin 33.865 79 544.926 picoxystrobin 20.596 82 774.926 picoxystrobin 33.865 87 82Table J-10Observed and Expected Effects of Compound 512 Alone and Mixtures with Copper Hydroxide, Fenpropidin and Picoxystrobin in Controlling Asian Soybean RustApplication Rate (ppm) of Compound 512 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -1.893 None 0 9 -3.829 None 0 58 -copper hydroxide 3610.778 80 -copper hydroxide 7371.507 73 -1.893 copper hydroxide 3610.778 84 811.893 copper hydroxide 7371.507 80 753.829 copper hydroxide 3610.778 81 913.829 copper hydroxide 7371.507 71 89fenpropidin 78.393 0 -fenpropidin 161.740 52 -1.893 fenpropidin 78.393 47 91.893 fenpropidin 161.740 74 573.829 fenpropidin 78.393 74 583.829 fenpropidin 161.740 82 80picoxystrobin 20.596 28 -picoxystrobin 33.865 43 - WO 2022/133114 PCT/US2021/063852 255 Application Rate (ppm) of Compound 512 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 1.893 picoxystrobin 20.596 52 351.893 picoxystrobin 33.865 78 483.829 picoxystrobin 20.596 79 703.829 picoxystrobin 33.865 84 76Table K-lObserved and Expected Effects of Compound 316 Alone and Mixtures with Inpyrfluxam in Controlling Asian Soybean Rust Application Rate (ppm) of Compound 316 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -0.471 None 0 24 -0.764 None 0 82 -inpyrfluxam 0.448 56 -inpyrfluxam 1.059 79 -0.471 inpyrfluxam 0.448 69 660.471 inpyrfluxam 1.059 77 840.764 inpyrfluxam 0.448 38 920.764 inpyrfluxam 1.059 79 96Table K-2Observed and Expected Effects of Compound 376 Alone and Mixtures with Inpyrfluxamin Controlling Asian Soybean Rust Application Rate (ppm) of Compound 376 (i.e. Component (a))Component (b)Application Rate (ppm) of Component (b) Test E Obsd Exp 0 None 0 0 -0.753 None 0 53 -1.228 None 0 78 -inpyrfluxam 0.448 56 -inpyrfluxam 1.059 79 -0.753 inpyrfluxam 0.448 55 79

Claims (15)

WO 2022/133114 PCT/US2021/063852 257 CLAIMSWhat is claimed is:
1. A fungicidal composition comprising:(a) at least one compound selected from the compounds of Formula 1,A-oxides, and salts thereof: whereinR1 is a phenyl ring optionally substituted with up to 3 substituents independently selected from R2; orR1 is a 5- to 6-membered heteroaromatic ring, each ring containing ring members selected from carbon atoms and 1 to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, wherein up to 2 ring members are independently selected from C(=O), C(=S), S(=O) and S(=O)2, each ring optionally substituted with up to 3 substituents independently selected from R2; orR1 is a 3- to 7-membered nonaromatic ring or an 8- to 11-membered bicyclic ring system, each ring or ring system containing ring members selected from carbon atoms and optionally up to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, wherein up to 2 ring members are independently selected from C(=O), C(=S), S(=O) and S(=O)2, each ring or ring system optionally substituted with up to 3 substituents independently selected from R2;L is O, NR3, NR3CH2, CH2NR3, NR3CH2CH2, CH2CH2NR3, (CR4aR4b)n, OCH2, CH,O, OCH„CH2, CH„CH,O or CH,OCH2, wherein the atom to the left is connected to R1, and the atom to the right is connected to J, each carbon atom is optionally substituted with up to 2 substituents independently selected from halogen, cyano, hydroxy, nitro, Cj-Cj alkyl, Cj-Cj haloalkyl, C!־C2 alkoxy and C!-C2 haloalkoxy;J is a phenyl ring or a naphthalenyl ring system, each optionally substituted with up to substituents independently selected from R5; or a 3- to 7-membered carbocyclic ring, wherein up to 3 ring members are independently selected from C(=O) and C(=S), each ring optionally substituted with up to 2 substituents independently selected from R5; orJ is a 5- to 6-membered heterocyclic ring, each ring containing ring members selected from carbon atoms and 1 to 4 heteroatoms independently selected from up to 2 WO 2022/133114 PCT/US2021/063852 258 O, up to 2 S and up to 4 N atoms, wherein up to 2 ring members are independently selected from C(=O), C(=S), S(=O)and S(=O)2,each ring optionally substituted with up to 2 substituents independently selected from R5; each R2 is independently halogen, cyano, hydroxy, nitro, thioyl, SF5, CH(=O), C(=O)OH, -NR3aR3b, C(=O)NR3aR3b, C(=O)C(=O)NR3aR3b, C(=S)NR3aR3b, C(R6)=NR7, N=CR8NR9aR9b or -U-V-Q; or CrC6 alkyl, C2-C6 alkenyl, C2-Calkynyl, C3-C7 cycloalkyl, C3-C7 cycloalkenyl, C1-C6 alkoxy, C2-Cg alkenyloxy, C2-Cg alkynyloxy, C3-C7 cycloalkoxy, Cj-Cg alkylthio, Cj-Cg alkylsulfinyl, Cj-Cg alkylsulfonyl, Cj-Cg alkylaminosulfinyl, C2-Cg dialkylaminosulfinyl, Cj-Cg alkylsulfonyloxy, Cj-Cg alkylsulfonylamino, C2-Cg alkylcarbonyl, C4-C7 cycloalkylcarbonyl, C2-Cg alkoxycarbonyl, Cj-Cg alkenyloxy carbonyl, Cj-Cg alkynyloxycarbonyl, C4-C7 cycloalkoxycarbonyl, C3-C6 alkyloxycarbonylcarbonyl, C2-Cg alkylcarbonyloxy, C4-Ccycloalkylcarbonyloxy, C2-Cg alkoxycarbonyloxy, C4-Ccycloalkoxycarbonyloxy, C2-Cg alkylaminocarbonyloxy, C4-Ccycloalkylaminocarbonyloxy, C2-Cg alkylcarbonylamino, C4-Ccycloalkylcarbonylamino, C2-C6alkoxycarbonylamino, C4-Ccycloalkoxycarbonylamino, C2-Cg alkylaminocarbonylamino, C4-Ccycloalkylaminocarbonylamino or C2-Cg dialkoxyphosphinyl, each optionally substituted with up to 3 substituents independently selected from R10;each R3 and R3a is independently H, cyano, hydroxy, C|-C4 alkyl, C|-C4 haloalkyl, C2-C4alkenyl, C2-C4haloalkenyl, C2-C4alkynyl, C2-C4haloalkynyl, C|-Calkoxy, C2-C4 alkoxyalkyl, C|-C4 alkylsulfonyl, C|-C4 haloalkylsulfonyl, C2-Calkylthioalkyl, C2-C4 alkylsulfinylalkyl, C2-C4 alkylsulfonylalkyl, C2-Calkylcarbonyl, C2-C4haloalkylcarbonyl, C4-C2cycloalkylcarbonyl, C2-C5 alkoxycarbonyl, C3-C5 alkoxycarbonylalkyl, C2-C5 alkylaminocarbonyl or C3-C5 dialkylaminocarbonyl;each R3b is independently H, Cj-Cg alkyl, Cj-Cg haloalkyl, C2-Cg alkenyl, C2-Cg haloalkenyl, C2-Cg alkynyl, C2-Cg haloalkynyl, Cj-Cg hydroxyalkyl, C2-Cg cyanoalkyl, C3-C8 cycloalkyl, C3-C8 halocycloalkyl, C3-C8 cycloalkenyl, C3-Chalocycloalkenyl, C4-C!q alkylcycloalkyl, C4-C!q cycloalkylalkyl, C4-C!q halocycloalkylalkyl, C()-C!4 cycloalkylcycloalkyl, C5-C1Q alkylcycloalkylalkyl, C2-C6alkoxyalkyl, C2-Cghaloalkoxyalkyl, C4-C!q cycloalkoxyalkyl, C3-Calkoxyalkoxyalkyl, C2-Cg alkylthioalkyl, C2-Cg alkylsulfinylalkyl, C2-Cg alkylsulfonylalkyl, C2-Cg alkylaminoalkyl, C2-Cg haloalkylaminoalkyl, C3-Cdialkylaminoalkyl or C4-C!q cycloalkylaminoalkyl, each optionally substituted with up to 1 substituent selected from cyano, hydroxy, nitro, C2-C4 WO 2022/133114 PCT/US2021/063852 259 alkylcarbonyl, C2-C4 alkoxycarbonyl, C3-C15 trialkylsilyl and C3-Chalotrialkylsilyl; ora pair of R3a and R3b substituents are taken together with the nitrogen atom to which they are attached to form a 4- to 6-membered fully saturated heterocyclic ring, each ring containing ring members, in addition to the connecting nitrogen atom, selected from carbon atoms and up to 2 heteroatoms independently selected from up to 2 O, up to 2 S and up to 2 N atoms, each ring optionally substituted with up to 3 substituents independently selected from halogen and Cj-Cj alkyl;each R4a and R4b is independently H, halogen, cyano, hydroxy, nitro, Cj-Cj alkyl, CrC3 haloalkyl, C!־C2 alkoxy or C!־C2 haloalkoxy; ora pair of R4a and R4b substituents attached to the same carbon atom are taken together to form a C3-C5 cycloalkyl ring optionally substituted with up to 2 substituents independently selected from halogen, methyl, methoxy and methylthio;each R5 is independently hydroxy, cyano, nitro, halogen, C4-C4 alkyl, C4-Chaloalkyl, C2-C4 alkenyl or C4-C4 alkoxy;each R6 is independently H, cyano, halogen, methyl, methoxy, methylthio or methoxycarbonyl;each R7 is independently hydroxy or NRllaRllb; or C4-C4 alkoxy, C2-C4 alkenyloxy, C2-C4 alkynyloxy, C2-C4 alkylcarbonyloxy, C2-C5 alkoxycarbonyloxy, C2-Calkylaminocarbonyloxy or C3-C5 dialkylaminocarbonyloxy, each optionally substituted with up to 1 substituent selected from halogen, cyano, hydroxy and -C(=O)OH;each R8 is independently H, methyl, methoxy or methylthio;each R9a and R9b is independently H or C । -C4 alkyl; ora pair of R9a and R9b substituents are taken together with the nitrogen atom to which they are attached to form a 5- to 6-membered fully saturated heterocyclic ring, each ring containing ring members, in addition to the connecting nitrogen atom, selected from carbon atoms and up to 2 heteroatoms independently selected from up to 2 O, up to 2 S and up to 2 N atoms, each ring optionally substituted with up to 2 methyl;each R10 is independently halogen, amino, cyano, hydroxy, nitro, thioyl, C!־C4 alkyl, CrC4 haloalkyl, Cj-Cg cycloalkyl, Cj-Cg halocycloalkyl, C!־C4 alkoxy, C!־Chaloalkoxy, C2-C4 alkoxyalkoxy, C!־C4 alkylthio, C!־C4 alkylsulfinyl, C!־Calkylsulfonyl, C!־C4 haloalkylsulfonyl, C2-C4 alkylcarbonyl, C2-Chaloalky !carbonyl, C2-C5 alkoxycarbonyl, Cj-Cg alkylamino, C2־Cg dialkylamino, C2-C5 alkylaminocarbonyl, C3-C5 dialkylaminocarbonyl, C3-Calkylthioalkylcarbonyl, C3-C15 trialkylsily, C3-C15 halotrialkylsilyl, C(R13)=NOR14 or C(R15)=NR16; WO 2022/133114 PCT/US2021/063852 260 each U is independently a direct bond, C(=O)O, C(=O)NR17 or C(=S)NR18, wherein the atom to the left is connected to R1, and the atom to the right is connected to V;each V is independently a direct bond; or Cj-Cg alkylene, C2־Cg alkenylene, Cj-Cg alkynylene, Cj-Cg cycloalkylene or Cj-Cg cycloalkenylene, each optionally substituted with up to 3 substituents independently selected from halogen, cyano, nitro, hydroxy, C4-C2 alkyl, C!־C2 haloalkyl, C!־C2 alkoxy and C!־Chaloalkoxy;each Q is independently phenyl or phenoxy, each optionally substituted with up to substituents independently selected from R12; oreach Q is independently a 5- to 6-membered heteroaromatic ring, each ring containing ring members selected from carbon atoms and 1 to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, wherein up to 2 ring members are independently selected from C(=O), C(=S), S(=O) and S(=O)2, each ring optionally substituted with up to 2 substituents independently selected from R12; oreach Q is independently a 3- to 7-membered nonaromatic heterocyclic ring, each ring containing ring members selected from carbon atoms and 1 to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, wherein up to 2 ring members are independently selected from C(=O), C(=S), S(=O) and S(=O)2, each ring optionally substituted with up to 2 substituents independently selected from R12;each Rlla is independently H, C4-C4 alkyl or C2-C4 alkylcarbonyl;each Rllb is independently H, cyano, C|-C؟ alkyl, C2-C5 alkylcarbonyl, C2-Chaloalkylcarbonyl, C4-C7 cycloalkylcarbonyl, C2-C5 alkoxycarbonyl, C3-Calkoxycarbonylalkyl, C2-C5 alkylaminocarbonyl or C3-C5 dialky laminocarbonyl; ora pair of R1 la and R1 lb substituents are taken together with the nitrogen atom to which they are attached to form a 5- to 6-membered fully saturated heterocyclic ring, each ring containing ring members, in addition to the connecting nitrogen atom, selected from carbon atoms and up to 2 heteroatoms independently selected from up to 2 O, up to 2 S and up to 2 N atoms, each ring optionally substituted with up to 2 methyl;each R12 is independently halogen, cyano, hydroxy, nitro, C4-C4 alkyl, C4-Chaloalkyl, C2-C4 alkenyl, C । -C4 alkoxy, C2-C4 alkylcarbonyl or C2-Calkoxycarbonyl; WO 2022/133114 PCT/US2021/063852 261 each R13 and R15 is independently H, cyano, halogen, Cj-Cj alkyl, Cj-Cj haloalkyl, C3-C6 cycloalkyl or C । -C3 alkoxy; or a phenyl ring optionally substituted with up to 2 substituents independently selected from halogen and C । -C3 alkyl;each R14 is independently H, C1-C5 alkyl, CpC5 haloalkyl, C2-C5 alkenyl, C2-Chaloalkenyl, C2-C5 alkynyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C2-Calkylcarbonyl or C2-C5 alkoxycarbonyl; oreach R14 is a phenyl ring optionally substituted with up to 2 substituents independently selected from halogen and C । -C3 alkyl; or a 5- to 6-membered fully saturated heterocyclic ring, each ring containing ring members selected from carbon atoms and up to 2 heteroatoms independently selected from up to 2 O, up to 2 S and up to 2 N atoms, each ring optionally substituted with up to 2 substituents independently selected from halogen and C । -C3 alkyl;each R16 is independently H, cyano, Cj-Cj alkyl, Cj-Cj haloalkyl, C!־C4 alkoxy, C2-C4 alkylcarbonyl or C2-C4 alkoxy carbonyl;each R17 and R18 is independently H, cyano, hydroxy, C!־C4 alkyl, C!־C4 haloalkyl, C2-C4 alkylcarbonyl, C2-C4 haloalkylcarbonyl, C2-C4 alkoxycarbonyl or C2-Chaloalkoxycarbonyl; andn is 1, 2 or 3; and (b) at least one additional fungicidal compound.
2. The composition of Claim 1 wherein component (a) comprises a compound of Formula 1 or salt thereof, whereinR1 is selected from U-l through U-118 WO 2022/133114 PCT/US2021/063852 262 U-33 U-34 U-36 U-37 U-38 U-39 U-40 WO 2022/133114 PCT/US2021/063852 263 WO 2022/133114 PCT/US2021/063852 264 U-85 U-92 U-94 U-95 U-96 WO 2022/133114 PCT/US2021/063852 265 u-101 U-102 U-103 U-104 U-109 U-106 U-107 U-108 U-110 U-lll U-114 U-115 U-118wherein the floating bond is connected to L in Formula 1 through any available carbon or nitrogen atom of the depicted ring or ring system;x is 0, 1 or 2;L is (CR4aR4b)n, OCH2, CH2O, OCH2CH2, CH2CH2O or CH2OCH2, wherein theatom to the left is connected to R1, and the atom to the right is connected to J,each carbon atom is optionally substituted with up to 1 substituent selected from halogen, cyano, hydroxy, methyl, halomethyl or methoxy; WO 2022/133114 PCT/US2021/063852 266 n is 1 or 2;J is selected from J-l through J-93 J-20 J-24 WO 2022/133114 PCT/US2021/063852 267 WO 2022/133114 PCT/US2021/063852 WO 2022/133114 PCT/US2021/063852 269 J-93 wherein the bond projecting to the left is bonded to L, and the bond projecting to the right is bonded to the oxadiazole ring in Formula 1; each R5a is independently H or R5; provided that at most only two R5a substituents are other than H;each R2 is independently halogen, C(=O)NR3aR3b, C(R6)=NR7 or -U-V-Q; or Cj-Cg alkyl, C2-C6alkenyl, C2-C6alkynyl, C3-C7cycloalkyl, CrC6alkoxy, C2-C6 alkenyloxy, C2-C(,alkynyloxy, C3-C7 cycloalkoxy, Cj-Cg alkylthio, C2-C(, alkoxycarbonyl, Cj-Cg alkenyloxycarbonyl, Cj-Cg alkynyloxycarbonyl, C4-C7 WO 2022/133114 PCT/US2021/063852 270 cycloalkoxycarbonyl, C2־Cg alkylcarbonyloxy or C2־Cg alkylcarbonylamino, each optionally substituted with up to 1 substituent selected from R10;each R3a is independently H, cyano, hydroxy, C|-C4 alkyl, C|-C4 haloalkyl, C2־Calkenyl, C2־C4 alkynyl, C؛-C4 alkoxy, C2־C4 alkoxyalkyl, C2־C4 alkylcarbonyl, C2-C4 haloalkylcarbonyl or C3-C5 alkoxycarbonylalkyl;each R3b is independently H, Cj-Cg alkyl, Cj-Cg haloalkyl, C2־Cg alkenyl, C2־Cg haloalkenyl, C2־Cg alkynyl, C2־Cg haloalkynyl, C4-C!q cycloalkylalkyl, C4-C!q halocycloalkylalkyl, C2־Cg alkoxyalkyl or C2־Cg haloalkoxyalkyl, each optionally substituted with up to 1 substituent selected from cyano, C2־Calkylcarbonyl and C2־C4 alkoxycarbonyl; ora pair of R3a and R3b substituents attached to the same nitrogen atom are taken together to form a pyrrolidinyl ring optionally substituted with up to 2 substituents independently selected from halogen;each R4a and R4b is independently H, halogen, hydroxy, methyl or methoxy;each R5 is independently cyano, halogen, methyl or methoxy;each R6 is independently H, cyano, halogen methyl or methoxy;each R7 is independently C । -C4 alkoxy, C2־C4 alkenyloxy or C2־C4 alkynyloxy;each R10 is independently halogen, C؛-C4 alkyl, CpC4 haloalkyl, CpC4 alkoxy, C؛-Chaloalkoxy, C2־C4 alkylcarbonyl, C2־C4 haloalkylcarbonyl, C2-Calkoxycarbonyl or C(R13)=NOR14;each U is independently a direct bond, C(=O)O or C(=O)NR17;each V is independently a direct bond; or C । -Co alkylene optionally substituted with up to 1 substituent selected from C!־C2 alkyl, CpC2 alkoxy and C!־C2 haloalkoxy;each Q is independently phenyl optionally substituted with up to 2 substituents independently selected from R12; or pyridinyl or pyrazolyl, each ring optionally substituted with up to 2 substituents independently selected from R12;each R12 is independently halogen, cyano, C । -C3 alkyl, C । -C3 haloalkyl or C1-Calkoxy;each R13 is independently H, halogen, methyl or methoxy;each R14 is independently H, methyl, halomethyl, C2־C4 alkylcarbonyl or C2־Calkoxycarbonyl; andeach R17 is independently H, cyano, methyl or halomethyl.
3. The composition of Claim 2 wherein component (a) comprises a compound of Formula or salt thereof, whereinR1 is U-l, U-2, U-3, U-4, U-5, U-7, U-8, U-10, U-ll, U-12 or U-29;x is 1 or 2;L is (CR4aR4b)n, CH2O or CH2OCH2, wherein the atom to the left is connected to R1, and the atom to the right is connected to J, each carbon atom is optionally WO 2022/133114 PCT/US2021/063852 271 substituted with up to 1 substituent selected from halogen, cyano, hydroxy, methyl, halomethyl or methoxy;J is J-4, J-18, J-27, J-40 or J-63;each R2 is independently C(=O)NR3aR3b or -U-V-Q; or C । -C3 alkyl, C2־Cg alkoxycarbonyl, C3-C6 alkenyloxycarbonyl or C3-C6 alkynyloxycarbonyl, each optionally substituted with up to 1 substituent selected from R10;each R3a is independently H, C । -C4 alkyl, C । -C4 haloalkyl, C2־C4 alkenyl, C2־Calkynyl, C2־C4 alkoxyalkyl or C3-C5 alkoxycarbonylalkyl;each R3b is independently H, Cj-Cgalkyl, Cj-Cghaloalkyl, C2־Cgalkoxyalkyl or C2־Cg haloalkoxyalkyl, each optionally substituted with up to 1 substituent selected from cyano, C2־C4 alkylcarbonyl and C2־C4 alkoxy carbonyl; ora pair of R3a and R3b substituents attached to the same nitrogen atom are taken together to form a pyrrolidinyl ring optionally substituted with up to 2 fluorine atoms;each R4a and R4b is independently H or methyl;each R5 is independently methyl or methoxy;each R10 is independently halogen, C؛-C4 alkyl, CpC4 alkoxy, C2־C4 alkylcarbonyl, C2-C4haloalkylcarbonyl or C2-C5 alkoxycarbonyl;each U is independently C(=O)O or C(=O)NR17;each V is independently C!־C2 alkylene; andeach R12 is independently halogen, methyl or methoxy.
4. The composition of Claim 3 wherein component (a) comprises a compound of Formula or salt thereof, whereinR1 is U-l,U-2, U-8orU-12;L is (CR4aR4b)n or CH2O;n is 1;J is J-63;each R2 is independently C(=O)NR3aR3b; or C । -C2 alkyl, C2־Cg alkoxycarbonyl, C3-Calkenyloxycarbonyl or C3-C6 alkynyloxycarbonyl, each optionally substituted with up to 1 substituent selected from R10;each R3a is independently H, C । -C3 alkyl, C । -C3 haloalkyl or C2-C3 alkoxyalkyl;each R3b is independently H, C । -C3 alkyl, C । -C3 haloalkyl, C2-C3 alkoxyalkyl or C2-Chaloalkoxyalkyl, each optionally substituted with up to 1 substituent selected from cyano;each R4a and R4b is H;each R5a is H; andeach R10 is independently halogen, C |-C2 alkoxy, C2-C3 alkylcarbonyl or C2-Chaloalkylcarbonyl. WO 2022/133114 PCT/US2021/063852 272
5. The composition of Claim 4 wherein component (a) comprises a compound of Formula 1 or salt thereof, whereinR1 is U-2 orU-12;x is 1;R2 is C(=O)NR3aR3b or C2-Cg alkoxycarbonyl;R3a is H; andR3b is H, CrC3 alkyl, CrC3 cyanoalkyl, CrC3 haloalkyl, C2-C3 alkoxyalkyl or C2-Chaloalkoxyalkyl.
6. The composition of Claim 5 wherein component (a) comprises a compound of Formula 1 or salt thereof, whereinR1 is U-2 connected at its 2-position to L and L is CH2; orR1 is U-12 connected at its !-position to L and L is CH2O; andR2 is C(=O)NR3aR3b or C2-C3 alkoxycarbonyl.
7. The composition of Claim 1 wherein component (a) comprises a compound selected from the group consisting ofmethyl 1 - [ [4- [5 - (trifluoromethyl)-1,2,4-oxadiazol- 3 -y !]phenyl] methyl] -1 H-pyrazole-4- carboxylate;cyanomethyl l-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-lH-pyrazole- 4-carboxylate;ethyl 5-methyl-l-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-lH- pyrazole- 3 -carboxylate;7V-(2-methoxyethyl)-5-methyl-l-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl] methyl] -1 H-pyrazole-3 -carboxamide;propyl l-[[5-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]-2-thienyl]methyl]-lH-pyrazole-4- carboxylate;7V-(2-chloroethyl)-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-4- oxazolecarboxamide;7/-(2,2-difluoroethyl)-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-4- oxazolecarboxamide;7V-(2-cyanoethyl)-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-4- oxazolecarboxamide;7V-(2-methoxyethyl)-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-4- oxazolecarboxamide;7V-[2-(lH-pyrazol-l-yl)ethyl]-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3- yl]phenyl]methyl]-4-oxazolecarboxamide;7V-(2,2,2-trifluoroethyl)-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-4- oxazolecarboxamide; WO 2022/133114 PCT/US2021/063852 273 2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-7/-(3,3,3-trifluoropropyl)- 4-oxazolecarboxamide;ethyl l-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenoxy]methyl]-lH-pyrazole-4- carboxylate;A-(2-methoxyethyl)-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-4- thiazolecarboxamide;7V-(2-fluoroethyl)-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-4- Oxazolecarboxamide;A-[2-(trifluoromethoxy)ethyl]-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3- yl]phenyl]methyl]-4-oxazolecarboxamide;(3,3-difluoro-l-pyrrolidinyl)[2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl] methyl] -4-oxazolyl] methanone;7V-(2,2,2-trifluoroethyl)-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-4- thiazolecarboxamide;7V-(2,2-difluoroethyl)-2-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-4- thiazolecarboxamide;7V-(2,2,2-trifluoroethyl)-5-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]- l,2,4-oxadiazole-3-carboxamide;3-[4-[(l-cyanomethyl-lH-pyrazol-3-yl)methyl]phenyl]-5-(trifluoromethyl)-l,2,4- oxadiazole;7V-ethyl-1 - [ [ [4- [5 - (trifluoromethyl)-1,2,4-oxadiazol- 3 -y !]phenyl] methoxy] methyl] -1H- pyrazole-4-carboxamide;l-methyl-7V-(2,2,2-trifluoroethyl)-5-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3- yl]phenyl]methyl]-lH-pyrazole-3-carboxamide;5-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-3-isoxazoleacetonitrile;7V-(2-methoxyethyl)-5-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3-yl]phenyl]methyl]-l,2,4- oxadiazole-3-carboxamide; andl-methyl-7V-(2,2,2-trifluoroethyl)-3-[[4-[5-(trifluoromethyl)-l,2,4-oxadiazol-3- yl]phenyl]methyl]-lH-pyrazole-5-carboxamide.
8. The composition of any one of Claims 1 through 7 wherein component (b) includes at least one fungicidal compound selected from the group consisting of:(bl) methyl benzimidazole carbamate (MBC) fungicides;(b2) dicarboximide fungicides;(b3) demethylation inhibitor (DMI) fungicides;(b4) phenylamide (PA) fungicides;(b5) amine/morpholine fungicides;(b6) phospholipid biosynthesis inhibitor fungicides;(b7) succinate dehydrogenase inhibitor (SDHI) fungicides; WO 2022/133114 PCT/US2021/063852 274 (b8) hydroxy(2-amino-)pyrimidine fungicides;(b9) anilinopyrimidine (AP) fungicides;(biO) A-phenyl carbamate fungicides;(bll) quinone outside inhibitor (Qol) fungicides;(bl2) phenylpyrrole (PP) fungicides;(bl3) azanaphthalene fungicides;(bl4) cell peroxidation inhibitor fungicides;(bl5) melanin biosynthesis inhibitor-reductase (MBI-R) fungicides;(bl6a) melanin biosynthesis inhibitor-dehydratase (MBI-D) fungicides;(bl6b) melanin biosynthesis inhibitor-polyketide synthase (MBI-P) fungicides;(bl7) keto reductase inhibitor (KRI) fungicides;(bl8) squalene-epoxidase inhibitor fungicides;(bl9) polyoxin fungicides;(b20) phenylurea fungicides;(b21) quinone inside inhibitor (Qil) fungicides;(b22) benzamide and thiazole carboxamide fungicides;(b23) enopyranuronic acid antibiotic fungicides;(b24) hexopyranosyl antibiotic fungicides;(b25) glucopyranosyl antibiotic: protein synthesis fungicides;(b26) glucopyranosyl antibiotic fungicides;(b27) cyanoacetamideoxime fungicides;(b28) carbamate fungicides;(b29) oxidative phosphorylation uncoupling fungicides;(b30) organo tin fungicides;(b31) carboxylic acid fungicides;(b32) heteroaromatic fungicides;(b33) phosphonate fungicides;(b34) phthalamic acid fungicides;(b35) benzotriazine fungicides;(b36) benzene-sulfonamide fungicides;(b37) pyridazinone fungicides;(b38) thiophene-carboxamide fungicides;(b39) complex I NADH oxido-reductase inhibitor fungicides;(b40) carboxylic acid amide (CAA) fungicides;(b41) tetracycline antibiotic fungicides;(b42) thiocarbamate fungicides;(b43) benzamide fungicides;(b44) microbial fungicides; WO 2022/133114 PCT/US2021/063852 275 (b45) quinone outside inhibitor, stigmatellin binding (QoSI) fungicides;(b46) plant extract fungicides;(b47) cyanoacrylate fungicides;(b48) polyene fungicides;(b49) oxy sterol binding protein inhibitor (OSBPI) fungicides;(b50) aryl-phenyl-ketone fungicides;(b51) host plant defense induction fungicides;(b52) multi-site activity fungicides;(b53) biologicals with multiple modes of action;(b54) fungicides other than fungicides of component (a) and components (bl) through (b53); and salts of compounds of (bl) through (b54).
9. The composition of Claim 8 wherein component (b) comprises at least one fungicidal compound from each of two different groups selected from (bl) through (b54).
10. The composition of any one of Claims 1 through 9 wherein component (b) includes at least one compound selected from acibenzolar-S-methyl, aldimorph, ametoctradin, amisulbrom, anilazine, azaconazole, azoxystrobin, benalaxyl, benalaxyl-M, benodanil, benomyl, benthiavalicarb, benthiavalicarb-isopropyl, benzovindiflupyr, bethoxazin, binapacryl, biphenyl, bitertanol, bixafen, blasticidin-S, boscalid, bromuconazole, bupirimate, carboxin, carpropamid, captafol, captan, carbendazim, chloroneb, chlorothalonil, chlozolinate, clotrimazole, copper salts, copper hydroxide, cyazofamid, cyflufenamid, cymoxanil, cyproconazole, cyprodinil, dichlofluanid, diclocymet, diclomezine, dicloran, diethofencarb, difenoconazole, diflumetorim, dimethirimol, dimethomorph, dimoxystrobin, diniconazole, diniconazole-M, dinocap, dithianon, dodemorph, dodine, edifenphos, enestroburin, epoxiconazole, ethaboxam, ethirimol, etridiazole, famoxadone, fenamidone, fenarimol, fenbuconazole, fenfuram, fenhexamid, fenoxanil, fenpiclonil, fenpropidin, fenpropimorph, fenpyrazamine, fentin acetate, fentin chloride, fentin hydroxide, ferbam, ferimzone, fluazinam, fludioxonil, fluindapyr, flumetover, flumorph, fluopicolide, fluopyram, fluoroimide, fluoxastrobin, fluquinconazole, flusilazole, flusulfamide, flutianil, flutolanil, flutriafol, fluxapyroxad, folpet, fosetyl-aluminum, fuberidazole, furalaxyl, furametpyr, hexaconazole, hymexazol, guazatine, imazalil, imibenconazole, iminoctadine, iodocarb, ipconazole, ipfentrifluconazole, iprobenfos, iprodione, iprovalicarb, isoprothiolane, isopyrazam, isotianil, kasugamycin, kresoxim-methyl, mancozeb, mandipropamid, maneb, mepronil, meptyldinocap, metalaxyl, metalaxyl-M, metconazole, methasulfocarb, metiram, metominostrobin, mepanipyrim, metrafenone, myclobutanil, naftifine, neo-asozin (ferric methanearsonate), nuarimol, octhilinone, ofurace, orysastrobin, oxadixyl, oxolinic acid, oxpoconazole, oxycarboxin, oxytetracycline, penconazole, pencycuron, penflufen, penthiopyrad, pefurazoate, phosphorous acid and salts thereof, phthalide, picoxystrobin, piperalin, polyoxin, probenazole, prochloraz, procymidone, WO 2022/133114 PCT/US2021/063852 276 propamocarb, propamocarb-hydrochloride, propiconazole, propineb, proquinazid, prothiocarb, prothioconazole, pydiflumetofen, pyraclostrobin, pyrametostrobin, pyraoxystrobin, pyrazophos, pyribencarb, pyributicarb, pyrifenox, pyrimethanil, pyriofenone, pyrisoxazole, pyroquilon, pyrrolnitrin, quinomethionate, quinoxyfen, quintozene, sedaxane, silthiofam, simeconazole, spiroxamine, streptomycin, sulfur, tebuconazole, tebufloquin, tecloftalam, tecnazene, terbinafine, tetraconazole, thiabendazole, thifluzamide, thiophanate, thiophanate-methyl, thiram, tiadinil, tolclofos-methyl, tolylfluanid, tolnifanide, triadimefon, triadimenol, triazoxide, tricyclazole, tridemorph, triflumizole, tricyclazole, trifloxystrobin, triforine, trimorphamide, triticonazole, uniconazole, validamycin, valifenalate, vinclozolin, zineb, ziram, zoxamide, A-[4-[4-chloro- -(trifluoromethy !)phenoxy ] -2,5 -dimethylphenyl] - A-elh y I - A- meth y I meth an i m i dam i de, 5-chloro-6-(2,4,6-trifluorophenyl)-7-(4-methylpiperidin-l-yl)[l,2,4]triazolo[l,5a]pyrimidine (DPX-B AS600F), N- [2- [4- [ [3 -(4-chlorophenyl)-2-propyn-1 -yl]oxy ] -3 -methoxy- phenyl]ethyl]-3-methyl-2-[(methylsulfonyl)amino]butanamide, A-[2-[4-[[3-(4-chloro- phenyl)-2-propyn-1 -yl]oxy] -3 -methoxyphenyl]ethyl]-3 -methyl-2- [(ethylsulfonyl) amino] - butanamide, 4-fluorophenyl N- [ 1 - [ [[ 1 -(4-cyanopheny !)ethyl] sulfonyl]- methyl]propyl]carbamate, A-[[(cyclopropylmethoxy)amino] [6-(difluoromethoxy)- 2,3-difluorophenyl]methylene]benzeneacetamide, a-(methoxyimino)-A-methyl-2-[[[l-[3- (trifluoromethyl)phenyl]ethoxy]imino]methyl]benzeneacetamide, A-[4-[4-chloro-3-(trifluoromethy!)phenoxy] -2,5-dimethylphenyl]- A-ethyl-A-methylmethanimidamide, 2- [[[[3-(2,6-dichlorophenyl)-l-methyl-2-propen-l-ylidene]amino]oxy]methyl]-a- (methoxyimino)-A-methylbenzeneacetamide, l-[(2-propenylthio)carbonyl]-2-(l-methyl- ethyl )-4-(2-methylphenyl )-5-amino- 17/-pyrazol-3-one, 5-ethyl-6-octyl-[l,2,4]triazolo[l,5- a]pyrimidin-7-ylamine, methyl A-[[5-[ 1-[2,6-difluoro-4-( 1 -methylethy!)phenyl]- IH-pyrazol- 3-yl]-2-methylphenyl]methyl]carbamate, methyl A-[[5-[l-(4-cyclopropyl-2,6-di lluorophenyl)-1 A-pyrazol-3-yl |-2-melhylphenyl ]methyl ]carbamate, ethyl l-[[4-[[(lZ)-2- ethoxy-3,3,3-lrilluoro-1-propen-1-yl|oxy|phenyl ]methyl |-1 H-pyrazole-4-carboxylale and its (E)-isomer and ethyl l-[[4-[[2-(trifluoromethyl)-l,3-dioxolan-2-yl]methoxy]phenyl]methyl]- 177-pyrazole-4-carboxylate.
11. The composition of Claim 10 wherein component (b) includes at least one compound selected from azoxystrobin, benzovindiflupyr, bixafen, chlorothalonil, copper hydroxide, cyproconazole, epoxiconazole, fenpropimorph, fluindapyr, fluxapyroxad, mancozeb, picoxystrobin, prothioconazole, pydiflumetofen, tebuconazole, trifloxystrobin, methyl A-[[5-[l-[2,6-difluoro-4-(l-methylethyl)phenyl]-lH-pyrazol-3-yl]-2-methylphenyl] methyl]carbamate, methyl A-[[5-[l-(4-cyclopropyl-2,6-difluorophenyl)-lH-pyrazol-3-yl]-2- methylphenyl]methyl]carbamate, ethyl 1 -[[4-[[(lZ)-2-ethoxy-3,3,3-trifluoro-1 -propen-1 - yl |oxy ]phenyl ]methyl |-17/-pyrazole-4-carboxylale and its (E)-isomer and ethyl l-[[4-[[2- (trifluoromethyl)-1,3-dioxolan-2-yl]methoxylphenyl]methyl]-1H-pyrazole-4-carboxylate. WO 2022/133114 PCT/US2021/063852 277
12. A composition comprising: (a) at least one compound selected from the compounds of Formula 1as defined in Claim 1, A-oxides, and salts thereof; and at least one invertebrate pest control compound or agent.
13. A composition comprising the composition of any one of Claims 1 through 5 and at least one additional component selected from the group consisting of surfactants, solid diluents and liquid diluents.
14. A method for protecting a plant or plant seed from diseases caused by fungal pathogens comprising applying a fungicidally effective amount of the composition of any one of Claims 1 through 13 to the plant or plant seed. 10
15. A method for protecting a plant from a rust disease comprising applying to theplant a fungicidally effective amount of the composition of any one of Claims 1 through wherein component (b) includes at least one fungicidal compound selected from (b3) demethylation inhibitor fungicides, (b5) amine/morpholine fungicides, (b7) succinate dehydrogenase inhibitor fungicides, (bll) quinone outside inhibitor (Qol) fungicides, (bl3)methyl benzimidazole carbamate fungicides and (b52) multi-site activity fungicides.
IL303145A 2020-12-17 2021-12-16 Fungicidal oxadiazoles and their mixtures IL303145A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063127068P 2020-12-17 2020-12-17
PCT/US2021/063852 WO2022133114A1 (en) 2020-12-17 2021-12-16 Fungicidal oxadiazoles and their mixtures

Publications (1)

Publication Number Publication Date
IL303145A true IL303145A (en) 2023-07-01

Family

ID=79165080

Family Applications (1)

Application Number Title Priority Date Filing Date
IL303145A IL303145A (en) 2020-12-17 2021-12-16 Fungicidal oxadiazoles and their mixtures

Country Status (13)

Country Link
US (1) US20240090503A1 (en)
EP (2) EP4262396A1 (en)
JP (1) JP2023554622A (en)
CN (1) CN116634874A (en)
AR (1) AR124367A1 (en)
AU (1) AU2021401041A1 (en)
CA (1) CA3204598A1 (en)
CL (1) CL2023001674A1 (en)
CO (1) CO2023008871A2 (en)
IL (1) IL303145A (en)
MX (1) MX2023007055A (en)
UY (1) UY39571A (en)
WO (1) WO2022133114A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202342431A (en) * 2022-02-15 2023-11-01 美商富曼西公司 Fungicidal halomethyl ketones, hydrates and enol ethers
WO2024013106A1 (en) * 2022-07-11 2024-01-18 Syngenta Crop Protection Ag Fungicidal compositions
WO2024069011A1 (en) * 2022-09-30 2024-04-04 Syngenta Crop Protection Ag Fungicidal compositions

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2891855A (en) 1954-08-16 1959-06-23 Geigy Ag J R Compositions and methods for influencing the growth of plants
US3235361A (en) 1962-10-29 1966-02-15 Du Pont Method for the control of undesirable vegetation
US3060084A (en) 1961-06-09 1962-10-23 Du Pont Improved homogeneous, readily dispersed, pesticidal concentrate
US3299566A (en) 1964-06-01 1967-01-24 Olin Mathieson Water soluble film containing agricultural chemicals
US3309192A (en) 1964-12-02 1967-03-14 Du Pont Method of controlling seedling weed grasses
US4144050A (en) 1969-02-05 1979-03-13 Hoechst Aktiengesellschaft Micro granules for pesticides and process for their manufacture
US3920442A (en) 1972-09-18 1975-11-18 Du Pont Water-dispersible pesticide aggregates
US4172714A (en) 1976-12-20 1979-10-30 E. I. Du Pont De Nemours And Company Dry compactible, swellable herbicidal compositions and pellets produced therefrom
GB2095558B (en) 1981-03-30 1984-10-24 Avon Packers Ltd Formulation of agricultural chemicals
DE3246493A1 (en) 1982-12-16 1984-06-20 Bayer Ag, 5090 Leverkusen METHOD FOR PRODUCING WATER-DISPERSIBLE GRANULES
US5180587A (en) 1988-06-28 1993-01-19 E. I. Du Pont De Nemours And Company Tablet formulations of pesticides
ATE208560T1 (en) 1989-08-30 2001-11-15 Kynoch Agrochemicals Proprieta PRODUCTION OF A DOSAGE AGENT
AU651335B2 (en) 1990-03-12 1994-07-21 E.I. Du Pont De Nemours And Company Water-dispersible or water-soluble pesticide granules from heat-activated binders
DE69122201T2 (en) 1990-10-11 1997-02-06 Sumitomo Chemical Co Pesticides composition
FR2704387B1 (en) 1993-04-28 1995-06-09 Rhone Poulenc Agrochimie CONCENTRATED COMPOSITIONS OF MATERIALS ACTIVE IN AGRICULTURE.
US6406690B1 (en) 1995-04-17 2002-06-18 Minrav Industries Ltd. Bacillus firmus CNCM I-1582 or Bacillus cereus CNCM I-1562 for controlling nematodes
ZA964248B (en) 1995-06-23 1997-11-27 Du Pont Uniform mixtures of pesticidal granules.
TWI283164B (en) 2001-09-21 2007-07-01 Du Pont Anthranilamide arthropodicide treatment
EP2529623A3 (en) 2007-04-03 2013-03-13 E. I. du Pont de Nemours and Company Substituted benzene fungicides
EP2962568A1 (en) 2014-07-01 2016-01-06 Basf Se Mixtures comprising a bacillus amyliquefaciens ssp. plantarum strain and a pesticide
UY37062A (en) * 2016-01-08 2017-08-31 Syngenta Participations Ag DERIVATIVES OF ARYL OXADIAZOL FUNGICIDAS
AR108745A1 (en) * 2016-06-21 2018-09-19 Syngenta Participations Ag MICROBIOCIDES OXADIAZOL DERIVATIVES
TWI829634B (en) * 2017-04-06 2024-01-21 美商富曼西公司 Fungicidal oxadiazoles
WO2019012001A1 (en) * 2017-07-12 2019-01-17 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2019012011A1 (en) * 2017-07-12 2019-01-17 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
BR112020000463A2 (en) * 2017-07-13 2020-07-21 Syngenta Participations Ag microbiocidal oxadiazole derivatives
JP7158386B2 (en) * 2017-07-27 2022-10-21 日本曹達株式会社 Oxadiazole compounds and agricultural and horticultural fungicides
TW202400547A (en) 2018-09-06 2024-01-01 美商富曼西公司 Fungicidal nitroanilino substituted pyrazoles
MX2021002920A (en) 2018-09-14 2021-09-08 Fmc Corp Fungicidal halomethyl ketones and hydrates.
TWI832917B (en) 2018-11-06 2024-02-21 美商富曼西公司 Substituted tolyl fungicides
AR118673A1 (en) * 2019-04-18 2021-10-20 Syngenta Crop Protection Ag PROCEDURE FOR THE PREPARATION OF OXADIAZOLE DERIVATIVES MICROBIOCIDES

Also Published As

Publication number Publication date
MX2023007055A (en) 2023-06-23
AU2021401041A1 (en) 2023-06-29
WO2022133114A1 (en) 2022-06-23
CN116634874A (en) 2023-08-22
CO2023008871A2 (en) 2023-08-18
EP4361150A2 (en) 2024-05-01
CL2023001674A1 (en) 2024-01-19
EP4262396A1 (en) 2023-10-25
US20240090503A1 (en) 2024-03-21
JP2023554622A (en) 2023-12-28
UY39571A (en) 2022-07-29
AR124367A1 (en) 2023-03-22
CA3204598A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
EP3606920B1 (en) Fungicidal oxadiazoles
EP3558984B1 (en) Fungicidal oxadiazoles
CA3111815A1 (en) Fungicidal halomethyl ketones and hydrates
WO2015157005A1 (en) Substituted tolyl fungicide mixtures
IL303145A (en) Fungicidal oxadiazoles and their mixtures
CA3181219A1 (en) Substituted tolyl fungicides and their mixtures
AU2021233845A1 (en) Fungicidal halomethyl ketones and hydrates and their mixtures
US11540518B2 (en) Fungicidal oxadiazoles
CA3174877A1 (en) Fungicidal mixtures containing pyrazole derivatives
CA3170324A1 (en) Substituted 5,6-diphenyl-3(2h)-pyridazinones for use as fungicides
CA3167647A1 (en) Fungicidal amides
EP3140289A1 (en) Fungicidal pyrazoles
US20240122180A1 (en) Fungicidal halomethyl ketones and hydrates and their mixtures
WO2015191382A1 (en) Fungicidal tetrazolinones