IL224838A - Spark plug - Google Patents

Spark plug

Info

Publication number
IL224838A
IL224838A IL224838A IL22483813A IL224838A IL 224838 A IL224838 A IL 224838A IL 224838 A IL224838 A IL 224838A IL 22483813 A IL22483813 A IL 22483813A IL 224838 A IL224838 A IL 224838A
Authority
IL
Israel
Prior art keywords
distal
spark plug
peripheral
electrode
central electrode
Prior art date
Application number
IL224838A
Other languages
Hebrew (he)
Original Assignee
Vomar Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vomar Tech Inc filed Critical Vomar Tech Inc
Publication of IL224838A publication Critical patent/IL224838A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/46Sparking plugs having two or more spark gaps
    • H01T13/467Sparking plugs having two or more spark gaps in parallel connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/32Sparking plugs characterised by features of the electrodes or insulation characterised by features of the earthed electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/52Sparking plugs characterised by a discharge along a surface

Landscapes

  • Spark Plugs (AREA)

Description

SPARK PLUG CROSS-REFERENCE TO RELATED APPLICATIONS This application claims the benefit of Provisional Application Serial No, 61/215,329, filed May 4, 2009, entitled, “ION GUN SPARK PLUG FOR INTERNAL COMBUSTION ENGINES,” and claims priority from US Patent Application No. 12/772,680, entitled, "SPARK PLUG", filed May 3, 2010, 2001, the contents of which are incorporated herein by reference in their entirety.
FIELD OF THE INVENTION The invention relates generally to spark plugs for internal combustion engines.
BACKGROUND OF THE INVENTION Spark plugs for internal combustion engines have been known for more than 100 years. Although the design of spark plugs has improved considerably during that time, there is a continuing need for spark plugs which will further enhance engine performance and, hopefully, reduce the rate of fuel consumption.
The need for spark plugs which yield improved engine performance is especially acute in the racing industry, where even small increases in engine performance and/or small decreases in engine fuel consumption can mean the difference between winning and losing.
SUMMARY OF THE INVENTION The invention satisfies this need. The invention is a spark plug comprising (a) a central electrode having a proximal portion and a distal portion, the distal portion having a circular cross section with a longitudinal axis and terminating in a distal end; and (b) a plurality of peripheral electrodes, each peripheral electrode having a lower portion and an upper portion and being substantially identical in shape and dimensions, each upper portion having a distalmost point, each distal-most point being disposed in a central plane within which the longitudinal axis of the distal portion of the central electrode is wholly disposed, the crosssection of each upper portion taken along its central plane defining a convex outer side and a non-convex inner side, each convex outer side having a curved surface which is tangent to a plurality of tangent planes, all of which tangent planes intersect the longitudinal axis of the distal portion of the central electrode at points at or above the distal end of the distal point of the central electrode.
DRAWINGS These and other features, aspects and advantages of the present invention will become better understood with reference to the following description, appended claims and accompanying drawings where: Figure 1 is a perspective view of a spark plug having features of the invention; Figure 2 is a plan view of one end of the spark plug illustrated in Figure 1 ; Figure 3A is a cross-sectional view of the spark plug illustrated in Figure 2, taken along line 3-3; Figure 3B is an alternative cross-sectional view of the spark plug illustrated in Figure 2, take along line 3-3; Figure 4A is diagrammatic illustration of a first lower portion of a peripheral electrode useable in the invention; Figure 4B is a diagrammatic illustration of a second lower portion of a peripheral electrode useable in the invention; Figure 4C is a diagrammatic illustration of a third lower portion of a peripheral electrode useable in the invention; Figure 4D is a diagrammatic illustration of a fourth lower portion of a peripheral electrode useable in the invention; Figure 4E is a diagrammatic illustration of a fifth lower portion of a peripheral electrode useable in the invention; Figure 4F is a diagrammatic illustration of a sixth lower portion of a peripheral electrode useable in the invention; Figure 4G is a diagrammatic illustration of a seventh lower portion of a peripheral electrode useable in the invention; Figure 4H is a diagrammatic illustration of an eighth lower portion of a peripheral electrode useable in the invention; Figure 41 is a side view of the lower portion of the peripheral electrode illustrated in Figure 4H; Figure 4J is a diagrammatic illustration of an ninth lower portion of a peripheral electrode useable in the invention; Figure 4K is a side view of the lower portion of the peripheral electrode illustrated in Figure 4J; Figure 4L is a diagrammatic illustration of a tenth lower portion of a peripheral electrode useable in the invention; Figure 4M is a side view of the lower portion of the peripheral electrode illustrated in Figure 4L; Figure 4N is an alternative side view of the lower portion of the peripheral electrode illustrated in Figure 4L.
DETAILED DESCRIPTION The following discussion describes in detail one embodiment of the invention and several variations of that embodiment. This discussion should not be construed, however, as limiting the invention to those particular embodiments. Practitioners skilled in the art will recognize numerous other embodiments as well.
As used herein, except where the context requires otherwise, the term "comprise" and variations of the term, such as "comprising," "comprises" and "comprised" are not intended to exclude other additives, components, integers or steps. Thus, throughout this specification, unless the context requires otherwise, the words "comprise", "comprising" and the like, are to be construed in an inclusive sense as opposed to an exclusive sense, that is to say, in the sense of "including, but not limited to".
As depicted in the figures, all dimensions specified in this disclosure are by way of example only and are not intended to be limiting. Further, the proportions shown in these figures are not necessarily to scale. As will be understood by those with skill in the art with reference to this disclosure, the actual dimensions of any device or part of a device disclosed in this disclosure will be determined by its intended use.
The invention is a spark plug 10 for an internal combustion engine which is capable of providing extraordinary performance. The spark plug 10 comprises a central electrode 12 and a plurality of peripheral electrodes 14. The invention is illustrated in Figures 1-3.
The central electrode 12 has a proximal portion 16 and a distal portion 18. The distal portion 18 has a circular cross-section with a longitudinal axis 20. The distal portion J 8 terminates at a distal end 22. In one embodiment, the distal end 22 of the central electrode 12 is dome-shaped for a congruous blunt shape. For ease of manufacturing, the central electrode 12 is cylindrical as with a typical spark plug.
In a preferred embodiment, the diameter of the distal portion 18 is between about 0.125 inches and about 0.265 inches. This diameter of the distal portion 18 is about two to three times larger than in a typical spark plug. The central electrode 12 is enlarged for several reasons. One purpose is for spark stabilization. The enlarged electrode stores up more energy, thereby releasing a greater amount of electricity at the spark event. A second purpose is to cause continuous rapid ion movement during the ignition cycle that will not break down, even under extreme combustion pressure, as with racing engines.
The plurality of peripheral electrodes 14 are disposed equidistant from one another around the central electrode 12 so as to define a circle having the central electrode 12 disposed at its center. The peripheral electrodes 14 are typically integral with a threaded base cylinder 24. in the embodiment illustrated in the drawings, the plurality of peripheral electrodes 14 constitutes 8 peripheral electrodes 14. in all cases, it is important that the number of peripheral electrodes 14 is between about 3 and about 12. When the number of peripheral electrodes 14 is less than 3 or greater than 12, performance in an internal combustion engine is markedly reduced.
Each of the peripheral electrodes 14 is substantially identical in shape and dimensions. Each peripheral electrode 14 has a lower portion 25 and an upper portion 26. The upper portion 26 has a distal-most point 28. As illustrated in Figures 1 and 2, the distal-most point 28 of each of the peripheral electrodes 14 can be relatively sharp. However, in other embodiments, the distal-most point 28 of each of the peripheral electrodes 14 may be more rounded or flat.
As illustrated in Figure 2, each distal-most point 28 is disposed in a central plane 30 within which the longitudinal axis 20 of the distal portion 18 of the central electrode 12 is wholly disposed. The cross-section of each upper portion 26 of each of the peripheral electrodes 14, taken along its central plane 30, defines a convex outer side 32 and a non-convex inner side 34.
As illustrated in Figure 3A, each convex outer side 32 has a curved surface 36 which is tangent to a plurality of tangent planes 38, all of which tangent planes 38 intersect the longitudinal axis 20 of the distal portion 18 of the central electrode 12 at points at or above the distal end 22 of the distal point of the central electrode 12. In a typical embodiment, the curved surface 36 of the convex outer side 32 is smooth with preferably no discontinuities.
Figure 3S illustrates an alternative cross-sectional view identical to that which is illustrated in Figure 3A, except that the inner side 34 defines a small flat section 37 near the distal-most point 28.
By the aforementioned design, the plurality of peripheral electrodes 14 resembles a fork that has been bent into a loop with the tines arcing inwards to point at the central electrode 12.
As also illustrated in Figure 3, the peripheral electrodes 14 are electrically insulated from the central electrode 12 by a layer of bakelite 40 or other suitable insulator.
As illustrated in Figures 4A-4M, the peripheral electrodes 14 can be provided in a variety of shapes. Figure 4A illustrates the cross-sectional shape of the lower portion 25 of a peripheral electrode 14 having a generally square cross-section. Figure 4B illustrates the lower portion 25 of a peripheral electrode 14 having a generally rectangular cross-section. Figure 4C illustrates the lower portion 25 of a peripheral electrode 14 having a generally oval shape. Figure 4D illustrates the lower portion 25 of a peripheral electrode 14 having a generally circular shape. Figure 4E illustrates the lower portion 25 of a peripheral electrode 14 having a generally square shape but with rounded corners. Figure 4F illustrates the lower portion 25 of a peripheral electrode 14 having a generally rectangular cross-section, but with rounded comers. Figure 4G illustrates the lower portion 25 of a peripheral electrode 14 having a generally triangular cross-section.
Figures 4H and 4Ϊ illustrates the upper portion 26 of a peripheral electrode 1 having the shape of an eccentric cone. Similarly, Figures 4J and 4K illustrate the upper portion 26 of a peripheral electrode 14 having a shape of an alternative eccentric cone.
Figures 4L and 4M illustrate the upper portion 26 of a peripheral electrode 14 having a generally flat inner side 34 and an outer side 32 which in cross-section taken along its central plane 30, the inner side 34 has a generally flat surface and the outer side 32 has a surface having the shape of a circular arc.
Figure 4N illustrates the cross-section of an alternative upper portion 26 of the peripheral electrode 14 illustrated in Figure 4L wherein the inner side 34 is somewhat concave.
Typically, the distal-most point 28 of each of the peripheral electrodes 14 is spaced apart from the central electrode 12 by a distance of between about 0.04 inches and about 0.095 inches, most typically between about 0.05 inches and about 0.07 inches.
By the above-described unique design of the spark plug 10 of the invention, the spark plug 10 is capable of providing improved engine performance, including the increasing of horsepower and torque, by utilizing the excess energy from an ignition source to cause rapid ion movement that mixes with the incoming air/fuel in the combustion chamber. A blast of negative ions is mixed into the air fuel in the combustion chamber just prior to ignition, during the spark event and during combustion. This blast of ions changes the bum characteristics of the fuel by releasing more potential energy and slowing down the actual combustion event. This phenomenon is similar to raising the octane level of the fuel. During the firing event ions are cooling the tips. This event often results in rapid circular flow around the central electrode.
This phenomenon has the further advantage that the spark plug of the invention need not be designed for one of a large number of specific heat ranges. For most applications, only one heat range is required. In contrast, with conventional spark plugs, as many as 20 different designs are required, one for a different heat range.
By the design of the peripheral electrodes in the invention, negative ions are separated out of the electrical charge flowing from the coil. The ions travel along the periphery of the negative electrodes, building momentum along the curves of the peripheral electrodes culminating at the distal portion and then blasting a pathway toward the center electrode for the spark plasma to travel. As the piston nears top dead center of the compression/combustion stroke the combustion chamber becomes highly pressurized. In this atmosphere the spark plasma is amplified and split so a plurality of sparks are emitted from the variety of the ground electrodes. As many as three distinct, highly energized spark kernels have been observed during high pressure testing.
The rapid ion movement impacts upon the central electrode and splays out into the air/fuel charge, heavily ionizing said charge before, during and shortly after the spark event. Thus folly utilizing, completely, the electrical charge provided by the coil.
Another phenomenon that occurs in the use of the invention is that the moving ions create a pressure shield beneath the central electrode and in the cavity between the insulator and the inner wall of the base shell. This pressure shield keeps carbon from partially burnt fuel and oil from contaminating the insulator and the inner wall of the base shell, thus avoiding potential shorting of the spark.
After ignition, the rapid ion movement cools down the flame front, thus slowing down the combustion event This rapid ion movement process causes an increased duration of pressure on the descending piston top. This rapid ion movement combustion process also ensures a more complete bum, thus lowering the percentage of unbumed hydrocarbons.
Another positive benefit concerning emissions is that the cooling aspect of the rapid ion movement keeps the NO* from rising. This is contrasted with conventional spark plugs wherein a higher heat range must be utilized to bum more hydrocarbons (and such higher heat necessarily produces more NO,:).
Finally, the design of the in vention also produces a veiy strong and stable spark that can jump large spark gaps and under extreme combustion pressure, thereby greatly reducing misfires.
EXAMPLES Dynometer charts are re-produced utilizing a high performance V-8 test engine.
These tests were conducted by an independent facility. No changes or alterations were made to the engine with the exception of the changing of spark plugs.
These charts demonstrate the increase in horsepower and torque achieved by the sparkplug of the invention compared to a typical racing spark plug of the prior art.
Example 1 In this example, the engine for testing was a 420 cubic inch Ford FE engine with an 850 cftn Holly carburetor and 38 degrees of timing. The stock spark plugs were Autolite 3924 stock plugs set at a gap of .040 inches. The spark plugs of the invention were Autolite 3924 stock plugs modified as illustrated in Figure 1, with a gap of .058 inches.
Stock Flue Invention Plug RFM Trq Pwr Tra Pwr 3900 470.7 349.5 462.7 343.6 4000 505.1 384.7 503.5 383.4 4100 500.6 390.8 505.5 394.6 4200 499.8 399.7 507.6 405.9 4300 499.5 408.9 503.7 412.4 4400 498.2 417.4 501.8 420.4 4500 502.0 430.1 508.3 435.5 RPM Trq Pwr Im Pwr 4600 512.8 449.2 511.9 448.3 4700 516.2 461.9 523.0 468.0 4800 514.9 470.6 522.0 477.1 4900 519.0 484.2 521.7 486.7 5000 518.8 493.9 525.4 500.2 5100 520.9 505.8 522.4 507.3 5200 523.2 518.0 520.5 515.3 5300 519.4 524.1 524.3 529.1 5400 514.2 528.7 521.4 536.1 5500 514.3 538.6 518.6 543.1 5600 505.6 539.1 511.7 545.6 5700 500.0 542.6 501.6 544.4 5800 493.5 545.0 493.1 544.6 5900 483.5 543.1 487.0 547.1 6000 476.6 544.5 483.6 550.1 6100 471.4 547.5 469.4 545.2 6200 462.3 545.8 462.2 545.6 6300 452.7 543.0 458.0 549.4 6400 447.3 545.1 446.5 544.1 6500 437.6 541.6 435.8 539.3 Example 2 The engine for testing was an 812 cubic inch Ford engine with an 850 cfin Holly carburetor and 38 degrees of timing. The stock spark plugs were Autolite 3924 stock plugs set at a gap of 0,45 inches. The spark plugs of the invention were Autolite 3924 stock plugs modified as illustrated in Figure 1, with a gap of .062 inches. In Example 2, two tests were run with the spark plugs of the invention.
Stock invention 1 invention 2 RPM Trq Pwr Trq Pwr Trq Pwr 4000 495.9 377.6 496.6 378.2 506.0 385.4 4100 505.4 394.5 496.9 387.9 504.1 393.5 4200 503.5 402.6 501.1 400.7 505.0 403.8 4300 506.1 414.4 498.9 408.5 511.2 418.6 4400 511.9 428.9 508.8 426.2 510.0 427.2 4500 513.5 440.0 514.4 440.7 511.4 438.2 4600 512.3 448.7 515.4 451.5 517.6 453.3 4700 523.3 468.3 519.4 464.8 526.2 470.9 4800 530.2 484,6 531.2 485.4 527.9 482.4

Claims (6)

What is Claimed is:
1. A spark plug comprising: (a) a central electrode having a proximal portion and a distal portion, the distal portion having a circular cross section with a longitudinal axis and terminating in a distal end; (b) a plurality of peripheral electrodes, each peripheral electrode having a lower portion and an upper portion and being substantially identical in shape and dimensions, each upper portion having a distal-most point, each distal-most point being disposed in a central plane within which the longitudinal axis of the distal portion of the central electrode is wholly disposed, the cross-section of each upper portion taken along its central plane defining a convex outer side and a non-convex inner side, each convex outer side having a curved surface which is tangent to a plurality of tangent planes, all of which tangent planes intersect the longitudinal axis of the distal portion of the central electrode at points at or above the distal end of the distal point of the central electrode.
2. The spark plug of claim 1 wherein the distal portion of the central electrode has a diameter between about 0.125 inches and about 0.265 inches.
3. The spark plug of claim 1 wherein the central electrode has a distal end which is dome-shaped.
4. The spark plug of claim 1 wherein the number of the plurality of peripheral electrodes is between about 3 and about 12 peripheral electrodes.
5. The spark plug of claim 1 wherein the lower portion of each of the peripheral electrodes has a square cross-section.
6. The spark plug of claim 1 wherein the lower portion of each of the peripheral electrodes has a rectangular cross-section.
IL224838A 2010-08-23 2013-02-21 Spark plug IL224838A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2010/046386 WO2012026919A1 (en) 2010-08-23 2010-08-23 Spark plug

Publications (1)

Publication Number Publication Date
IL224838A true IL224838A (en) 2016-05-31

Family

ID=45723696

Family Applications (1)

Application Number Title Priority Date Filing Date
IL224838A IL224838A (en) 2010-08-23 2013-02-21 Spark plug

Country Status (17)

Country Link
EP (1) EP2443711B1 (en)
JP (1) JP5600211B2 (en)
KR (1) KR101439801B1 (en)
CN (1) CN103155313B (en)
AU (1) AU2010359601C1 (en)
BR (1) BR112013003947B1 (en)
CA (1) CA2809015C (en)
DK (1) DK2443711T3 (en)
ES (1) ES2443956T3 (en)
HK (1) HK1163943A1 (en)
IL (1) IL224838A (en)
MX (1) MX2013002090A (en)
PL (1) PL2443711T3 (en)
PT (1) PT2443711E (en)
RU (1) RU2542351C2 (en)
WO (1) WO2012026919A1 (en)
ZA (1) ZA201302062B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20131014A1 (en) * 2013-06-19 2014-12-20 Eldor Corp Spa IGNITION DEVICE FOR INTERNAL COMBUSTION ENGINES

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644548B2 (en) * 1973-03-19 1981-10-20
US4439707A (en) * 1980-07-23 1984-03-27 Nippon Soken, Inc. Spark plug with a wide discharge gap
JP3589693B2 (en) * 1994-03-30 2004-11-17 日本特殊陶業株式会社 Spark plug
CZ282875B6 (en) * 1994-12-23 1997-11-12 BRISK Tábor a. s. Ignition plug
US5892319A (en) * 1996-01-04 1999-04-06 Rossi; Paul Top and side firing spark plug
AU4845899A (en) * 1998-06-29 2000-01-17 Chris W. Witherspoon Corona wind spark plug
US6583539B1 (en) * 1999-08-23 2003-06-24 Antonio Lopez Zamora Spark plug with center electrode and surrounding ground electrode
CN2515843Y (en) * 2001-12-06 2002-10-09 唐志远 Arc multi-electrode sparking plug
KR20030047417A (en) * 2001-12-10 2003-06-18 루이스 에스 카밀리 Current peaking sparkplug
JP2004022450A (en) * 2002-06-19 2004-01-22 Denso Corp Spark plug for internal combustion engine
JP2006085941A (en) * 2004-09-14 2006-03-30 Denso Corp Spark plug for internal combustion engine
KR20060030261A (en) * 2004-10-05 2006-04-10 현대자동차주식회사 Spark plug
JP4272682B2 (en) * 2006-10-30 2009-06-03 日本特殊陶業株式会社 Spark plug for internal combustion engine and method for manufacturing the same

Also Published As

Publication number Publication date
KR101439801B1 (en) 2014-09-11
BR112013003947A2 (en) 2017-12-19
ZA201302062B (en) 2014-02-26
WO2012026919A1 (en) 2012-03-01
EP2443711A4 (en) 2012-10-24
RU2542351C2 (en) 2015-02-20
MX2013002090A (en) 2013-12-02
JP2013536558A (en) 2013-09-19
HK1163943A1 (en) 2012-09-14
EP2443711A1 (en) 2012-04-25
AU2010359601B2 (en) 2014-07-31
EP2443711B1 (en) 2013-11-20
KR20130062990A (en) 2013-06-13
JP5600211B2 (en) 2014-10-01
CN103155313B (en) 2015-09-23
CA2809015C (en) 2016-02-09
RU2013110034A (en) 2014-09-27
BR112013003947B1 (en) 2024-01-09
CA2809015A1 (en) 2012-03-01
PT2443711E (en) 2014-02-17
ES2443956T3 (en) 2014-02-21
AU2010359601C1 (en) 2015-11-12
CN103155313A (en) 2013-06-12
PL2443711T3 (en) 2014-04-30
AU2010359601A1 (en) 2013-03-07
DK2443711T3 (en) 2014-02-17

Similar Documents

Publication Publication Date Title
USRE47073E1 (en) Spark plug
US9397482B2 (en) Spark plug for internal combustion engine
US6844662B2 (en) Spark plug and ignition apparatus
US8350457B2 (en) Pre-chamber spark plug including a gas thread cavity
EP2426796A3 (en) Method and apparatus for operating traveling spark igniter at high pressure
CA2809015C (en) Spark plug
AU2013100245B4 (en) Spark plug
US8928213B2 (en) Spark plug for internal-combustion engine
US9219350B1 (en) Spark plug for internal combustion engine
CN108336644B (en) Multiple gap spark plug
CN204156288U (en) A kind of energy ensures igniting reliability and can prevent from being electrically shocked the spark plug insulator worn
JP2005235789A (en) Spark plug and ignition apparatus utilizing the same
RU2504059C1 (en) Spark-plug
JP2010236389A (en) Cylinder-injection type spark-ignition internal combustion engine
RU113881U1 (en) SPARK PLUG
RU2004114083A (en) IGNITION CANDLE FOR INTERNAL COMBUSTION ENGINE
RU47579U1 (en) SPARK PLUG
CN1549412A (en) Injecting sparking plug

Legal Events

Date Code Title Description
FF Patent granted
KB Patent renewed
KB Patent renewed