IL169830A - Stent - Google Patents

Stent

Info

Publication number
IL169830A
IL169830A IL169830A IL16983005A IL169830A IL 169830 A IL169830 A IL 169830A IL 169830 A IL169830 A IL 169830A IL 16983005 A IL16983005 A IL 16983005A IL 169830 A IL169830 A IL 169830A
Authority
IL
Israel
Prior art keywords
stent
section
lumen
stent according
prostatic
Prior art date
Application number
IL169830A
Other versions
IL169830A0 (en
Original Assignee
Allium Medical Solutions Ltd
Allium Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/370,592 external-priority patent/US9333102B2/en
Application filed by Allium Medical Solutions Ltd, Allium Medical Inc filed Critical Allium Medical Solutions Ltd
Priority to IL169830A priority Critical patent/IL169830A/en
Publication of IL169830A0 publication Critical patent/IL169830A0/en
Publication of IL169830A publication Critical patent/IL169830A/en

Links

Landscapes

  • Prostheses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Description

Stent Allium Inc.
C. 161424 STENT FIELD OF THE INVENTION This invention relates to endoluminal medical devices and more specifically to such devices for mamtaining patency of a lumen.
BACKGROUND OF THE INVENTION Stents are endoluminal devices that are inserted into body lumens and expanded in order to maintain the patency of the lumen. It is known for example, to use a stent to maintain the patency of an artery, a urethra, or a gastrointestinal organ. A temporary stent is left in the lumen for a predetermined period of time, while a permanent stent is intended to remain permanently in the body.
A stent is an elongated device that can exist in two conformations. In the small caliber conformation, the stent is inserted into the body and delivered to the lumen to be treated. Once correctly positioned in the lumen, the stent is deployed by being brought into a large caliber in which it applies radially outward forces against the inner wall of Hie lumen. The stent is constructed so as to be able to withstand radially inward forces applied to it by the lumen wall, so that the caliber of the stent is maintained after deployment in the lumen.
A stent may be formed, for example, from an elastic material that is unstrained when the stent is in the large caliber conformation. The stent is then mechanically constrained to bring it into the small caliber conformation. This stent may be maintained in the small caliber conformation by inserting it into a restraining sleeve. After positioning in the body, the restraining sleeve is removed. Due to the elastic properties of the stent, the stent spontaneously transforms into the large caliber conformation.
It is also known to form a stent from a material that becomes plastic when strained. The stent is formed in the small caliber conformation in which it is unstrained. A balloon is inserted into the lumen of the stent. The stent is then positioned in the body and the balloon is inflated. This expands the stent into the large caliber conformation by causing a plastic deformation of the stent material.
It is further known to form a stent from a shape memory alloy, such as Nitinolâ„¢. A shape memory alloy may exist in two states: a state in which it is super-elastic (the austenitic state) and a state in which it is soft (the martensitic state). The alloy in the austenitic state is formed into a stent in its large caliber conformation. The alloy is then brought into the martensitic state either by cooling the alloy or staining it. In the martensitic state, the alloy is deformed into the small caliber conformation in which it is delivered to the lumen to be treated. After positioning, the alloy is brought into the austenitic state by heating the alloy. In the austenitic state, the stent regains the large caliber conformation due to the shape-memory properties of the alloy.
It is further known to form a stent from a biostable or biodegradable elastic shape memory polymer. The shape memory capability of these polymers allows stents made of these materials to be inserted through small openings and then enlarging their caliber by an increase in temperature. The shape memory effect of polymers is a physical property exhibited best by amorphous polymers whose glass transition temperature is marginally higher than room temperature and whose transition from glass to rubber is particularly sharp. In this case, strain energy can be stored in the polymer by mechanical deformation (e.g. by stretching) followed by cooling. Recovery of the shape memory is exhibited upon reheating the material above the temperature to which it was cooled, allowing a return of the stretched polymer chains to more equilibrium,coiled structures.
In the vascular system a typical stent is about 1.2 times the vessel diameter to ensure appropriate anchoring without causing excessive pressure to the vessel wall. Due to the circular cross-section of the vessel lumen and the stent, after deployment, the entire stent is in contact with the entire surrounding vessel wall.
If the wall of the stent is fenestrated, as it expands and presses all around against the vessel wall, some pressure damage to the vessel endothelium occurs. This damage induces a chain tissue reaction until the stent becomes covered with endothelium.
Benign Prostate Hyperplasia (BPH) is the most common tumor affecting human males. As the tumor grows in the prostate, it constricts the prostatic urethral lumen. This constriction reaches a point where the prostatic urethra becomes obstructed, and voiding of urine is inhibited.
There are several methods for treating BPH. The most common treatments include medication to reduce the pressure on the prostatic urethra or reduce the size of the prostate, and in more extreme cases, open or endoscopic surgery, to remove the tumor and widen the prostatic urethra. Surgical BPH treatments typically include open surgery, such as open prostatectomy, and endoscopic surgery such as Transurethral Prostatectomy (TURP), Transurethral Incision of the Prostate (TUIP), and Transurethral Laser or Radiofrequency (RF) vaporization of the prostate. Minimally invasive surgical procedures based on inducing thermal damage to the enlarged prostatic tissues have also been developed. After heating or freezing the prostatic tissue, a scarring process gradually occurs that shrinks the bulk of the tissue, relieving the obstruction.
In all surgical procedures for the treatment of BPH, a catheter is left indwelling in the urethra for a few days. After minimally invasive treatments, many patients often cannot void at all following catheter removal and they must therefore be recatheterized. This is typically due to the continuing oedematous swelling of the tissues. Discomfort can continue for the duration of the natural healing of the wound which may take several weeks. It is well documented that urethral catheters left indwelling more than 48 hours increase the risk of infection, in addition to the discomfort the catheter causes the patient. The infection occurs due to communication between the bladder and the outside world. Bacteria ascends from the urethral opening toward the bladder over the outer surface of the catheter or through its lumen. In such cases, insertion of a temporary sent instead of an indwelling catheter is usually more comfortable for the patient and minimizes the risk of urinary infection.
The use of a temporary stent having a round cross-section that does not conform to the shape of the prostatic urethral lumen may cause discomfort and pain to the patient. Some temporary stents used for BPH treatment include an anchor that is connected to the stent by a wire. The stent is deployed in the prostatic urethra, with the anchor positioned in the bulbar urethra, the stent and anchor being connected by a wire through the voluntary urethral sphincter between the prostatic and bulbar urethra that controls the flow of urine from the urinary bladder. This sphincter is a formation of muscle tissue encircling the urethra, contraction of which occludes the urethra to prevent flow of urine from the bladder. Examples of such stents are the Prostakath and the Prostacoil. Other temporary stents, such as the Memokath and the Horizon stent have a bell-shaped end at its sphincteric part for anchoring. Temporary stents without cross-sphincteric parts are more prone to migration It is also known to insert a permanent stent into the prostatic urethra for the treatment of BPH obstructions. Most permanent prostatic stents were originally designed for vascular use and were adopted for prostatic use by mainly changing the caliber and length of the basic design. From among the different vascular stents, the ones that have been used in the urinary tract are the balloon expandable Palmaz stent (marketed as the Titan); the self expanding Strecker, and the Wallstent. The use of the balloon-expandable Palmaz stent was abandoned because of its rigidity, the unacceptably high migration rates of the stent in the urethra, and its inability to become completely embedded into the wall. The braided Wallstent and the knitted Strecker stent have also been used in the urinary tract as permanent stents. However it was the Wallstent which became the most popular permanent stent in urology despite its limitations.
A fenestrated permanent prostatic stent, like a vascular stent, would be expected to react with the urethral tissues, resulting in its becoming embedded in the wall and being covered by a layer of epithelium. However, a prostatic urethral stent does not always become fully embedded in tissue. Milroy and Ng (KJ. Milroy E J.G., Anatomical limitations of the prostatic urethra in using cylindrical stents. In: Stenting the Urinary System. Ed. D. Yaehia. ISIS Medical Media, 1998. Chapter 42. Pages 319-321] studied the failure of permanent prostatic stents to become fully embedded in tissue. They performed 3 -Dimensional ultrasonographic scans and found that in BPH the prostatic urethra is deformed by the enlarged prostate lobes and thus does not have a circular cross section. Because of the non-circular cross-section of the prostatic urethra, the tissue coverage of the stent in many cases is not complete. The uncovered, bare wires that remain in constant contact with urine become gradually covered by urinary salts and cause stone development and infection.
Fig. 1 shows schematically views of the lumen of the prostatic urethra in different individuals as might be observed, for example, by an endoscope inserted in the urethra. In Fig. la, a prostatic urethra is represented whose lumen 105 has a so-called "A" shaped cross section. In Fig. lb, a prostatic urethra is represented whose lumen 110 has a so-called "I" shaped cross section. In Fig. lc, a prostatic urethra is represented whose lumen 100 has a circular or, so-called "O" shaped, cross section.
Fig. 2 shows schematic views of the lumens shown in Fig. 1 after deployment of a prior art stent 200. In Figs. 2a and b, a stent 200 was deployed in the lumens 105 and 110, respectively. However, since the lumens 105 and 110 did not have an O shape prior to deployment of the stent 200, regions 210 of the outer surface of the stent 200 are not in contact with the wall 205 of the urethra. Under these anatomical conditions, some regions 210 of the permanent stent will not become covered by epithelium. In Fig. 2c, a stent 200 having a circular cross section was deployed in the lumen 100. In contrast to Figs. 2a and 2b, since the lumen 100 had an O shape prior to deployment of the stent 205, the entire outer surface of the stent 200 is substantially in contact with the wall 205 of the urethra. The entire stent 200 in Fig. 2c can thus be expected to become covered by epithelium.
SUMMARY OF THE INVENTION The present invention provides a stent for insertion into a region of a body lumen having a non-circular cross section. In accordance with the invention, the stent has at least one cross section in which either (a) there is a vertex or (b) there is at least one pair of points on the contour of the cross-section where the radius of curvature at one of the points in the pair is 2.5 times the radius of curvature of the other point of the pair. As used herein, the term "vertex" denotes a point on the boundary of a cross-section where the boundary has an abrupt change in direction. A vertex may thus be a common endpoint of two con-collinear line segments, or the common endpoint of two curves, or a curve and a line segment. A stent in accordance with the invention may thus have, for example, a closed triangular, polygonal, crescent or hourglass cross-sectional shape. The stent may alternatively have an open triangular polygonal cross section, such as a "V" shaped cross section.
A stent having at least one vertex in a cross-section may be configured to conform to a lumen having a non-circular cross-sectional shape better than a stent having a circular cross-sectional shape. For example, a stent in accordance with the invention having a triangular cross-sectional shape conforms to most of the cross-sectional shape of the prostatic urethra in BPH, better than a stent having a circular cross-section. The triangular cross-section maximizes patient comfort by conforming to the A or I prostate lumenal shapes while maintaining a relatively large and effective opening for urine flow.
The stent may be formed from any material known in the art for manufacturing stents, and includes, elastic materials, plastics and shape-memory alloys and polymers. Furthermore, any device or method known in the art for delivering a stent to the site of its deployment and for expanding a stent may be used with the stent of the invention. In accordance with another of its aspects, the invention provides a stent and a device for deploying the stent in a body lumen.
A stent of the invention may be a permanent stent or a temporary stent. In the case of permanent stent, in a preferred embodiment, the stent is fenestrated so sharp pressure gradient that otherwise exists on the lumen wall around the ends of the stent. A region of a steep pressure gradient is known to induce ingrowth of tissue at the ends of a stent that partially or completely occludes the lumen at the ends of the stent.
Using a lumenal lining with a stent of the invention is also advantageous when the stent is to be deployed near a sphincter. The stent is positioned in the lumen with the lining intervening between the stent and the sphincter. The lining and the stent may be fabricated as a single unit or may be formed as two separate units that are joined together before insertion into the urethra and inserted together as a single integral unit, or the lining and stent may be inserted separately. The stent maintains the patency of the lumen in a region that is separated from the sphincter by the lining. When the sphincter contracts and the diameter of the lumen adjacent to the sphincter decreases, the diameter of the lining also decreases while conforming to the shape of the lumen wall. When the sphincter relaxes, and the diameter of lumen adjacent to the sphincter increases, the diameter of the lining also increases while conforming to the shape of the lumen wall. The lining thus dynamically conforms to the lumen shape adjacent to the sphincter during opening and closing of the sphincter and prevents reactive proliferative tissue growth at the sphincteric end of the stent. The lining also allows the stent to be more accurately positioned in the lumen near a sphincter. The distance between the sphincter and a region of the prostatic urethra is measured, and a lining is used having a length equal to this distance. The stent and the lining are then positioned as explained above. The presence of the lining near the sphincter also provides some support to the lumen wall adjacent to the sphincter without interfering with the functioning of the sphincter.
The stent may be enclosed in an outer covering material that is made of a biostable, biodegradable or bioabsorbable material, and may contain drugs to prevent excessive tissue proliferation, antibiotics, anti-neoplastic agents or drugs, such as finasteride to reduce an enlarged prostatic mass, in the case of a prostatic urethral stent. For temporary stents, the covering may be made of a biostable - im ¬ material, and for permanent stents, the covering may be made of a biodegradable or bioabsorbable material, which disintegrates within a few days so as to allow the stent to be covered by tissue.
BRIEF DESCRIPTION OF THE DRAWINGS In order to understand the invention and to see how it may be carried out in practice, a preferred embodiment will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which: Fig. 1 shows schematic views of the lumens of prostatic urethras; Fig. 2 shows the lumens of Fig. 1 after deployment of a stent having a circular cross-sectional shape; Fig. 3a shows a stent having a closed triangular cross-sectional shape in accordance with one embodiment of the invention, Fig. 3 b shows a stent having a closed triangular cross-sectional shape in which the vertices are rounded, Figs. 3c, 3d, and 3e show stents of the invention having a closed triangular cross-sectional shape in which the sides are bent into different configurations, and Figs. 3f and 3g shows stents having open polygonal cross-sectional shapes in accordance with other embodiments of the invention; Fig. 4 shows schematic views of lumens of a prostatic urethra after deployment of a stent in accordance with the invention; Fig. 5 shows a system comprising a stent of the invention and a lumenal lining; and Fig. 6a shows a system comprising a stent of the invention and an anchor; and Fig. 6b shows a system comprising a stent of the invention, a lumenal lining, and an anchor.
DETAILED DESCRIPTION OF THE INVENTION For the sake of convenience and clarity of the description, the invention will be described with reference to a prostatic urethral stent. This is by way of example only, and the stent of the invention may be adapted for use in any body lumen having a non-circular cross-sectional shape.
Fig. 3 a shows a prostatic lumenal stent 300 having a complete triangular cross-sectional shape. In accordance with the invention, each cross-section of the stent 300 is formed from three line segments 301 that meet at three vertices 302. Fig. 3b shows a second prostatic lumenal stent 305 having a cross section formed by three line segments 306 joined by three arcs 307. Each line segment 306 has an infinite radius of curvature that is clearly more than 2.5 times the radius of curvature at any point on the arcs. Figs. 3c, 3d, and 3e show three additional prostatic lumenal stents 320, 321, and 322, respectively, having a closed triangular cross-sectional shape in which the sides are bent into different configurations. There is at least one pair of points on each cross section (e.g. the pair of points 303 and 304) where the radius of curvature at one of the points in the pair (e.g. the point curvature at the other point of the pair (the additional prostatic lumenal stents 310 and 312, respectively, having an incomplete triangular cross-sectional shape. In the stent 312, each cross-section is formed from three line segments 309 and three vertices 311. In the stent 310, each cross-section is formed from two circular or elliptical arcs 314 and three circular arcs 316. The arcs 314 have a maximal radius of curvature (e.g. at the points 315 on the elliptical arcs 314) that is at least 2.5 times radius of the circular arcs 316.
The stent of the invention may be formed from a mesh material so that the stent is fenestrated. As explained above, this allows the stent to become embedded in tissue.
The stent of the invention may be formed from any material known in the art for manufacturing stents, and includes, elastic materials, plastics and shape-memory alloys and polymers. Furthermore, any device or method known in the art for delivering a stent to the site of its deployment and for expanding a stent may be used with the stent of the invention.
Fig. 4a shows the stent 300 after insertion into the prostatic urethra 105 1 1 169830/2 shown in Fig. la ("A" shape prostatic urethra), Fig. 4b shows the stent 300 after insertion into the prostatic urethra 110 shown in Fig. lb ("I" shape prostatic urethra), and Fig. 4c shows a stent 405 having open polygonal cross-sectional shapes after insertion into the prostatic urethra 100 shown in Fig. la ("A" shaped urethra), as might be observed using an endoscope inserted into the urethra. As can be seen, after deployment of the stent 300, the urethral lumens 105 and 110 conform to the shape of the stent 300. This promotes embedding of the stent by tissue growth.
Fig. 5 shows a system 500 comprising the stent 300 attached to a lumenal lining 510. The lining 510 is dimensioned so as to have an unstrained large caliber that is slightly larger than the maximal caliber prostatic urethra in which it is to be deployed and its shape can be different from the main body shape, for example, the cross section of one end can be triangle as the main body shape and the other end, toward the external sphincter, can be round. The elastic resistance 0f the lining 510 is less than the radially inward force applied to it by the lumen wall in which it is to be deployed when the lumen constricts. The system 500 is deployed in the urethra with the stent located in the prostatic urethra and the lining adjacent to the external sphincter.
Fig. 6a shows a system 600 comprising the stent 300 and an anchor 610. The system 600 is deployed in the urethra with the stent 300 in the prostatic urethra and the anchor 610 in the urethra on the opposite side of the external sphincter. The stent 300 and the anchor 610 are joined by a tether 625 that passes through the sphincter after deployment of the system 600. The anchor 610 prevents the stent 300 from migrating away from the prostatic urethra while not interfering with the activity of the sphincter.
Fig. 6b shows a system comprising the stent 300 attached to a luminal lining 605 and an anchor 610.
While the stents described herein have been described for use in the urinary tract and in particular the male urinary tract, this is exemplary only. These stents could be used in other organs including other tubular organs if modified for the dimensions of and cross sectional shapes of these organs.

Claims (11)

13 169830/2 CLAIMS:
1. An expandable stent for insertion into a body lumen, the stent having an expanded state having an outer contour with at least one triangular cross-section, the triangular cross-section capable of exerting radially outward forces against an inner wall of the body lumen and capable of withstanding radially inward forces exerted upon it by the body lumen wall, wherein the triangular cross-section has at least one curved edge.
2. The stent according to Claim 1 having a closed triangular cross-section.
3. The stent according to Claim 1 having an open triangular cross-section.
4. The stent according to Claim 1 formed from an elastic material, a shape memory alloy, or a shape memory polymer.
5. A stent according to Claim 1 wherein the stent is fenestrated.
6. The stent according to Claim 1 being a permanent or a temporary stent.
7. A system comprising a stent according to Claim 1 and a luminal lining.
8. A system comprising a stent according to Claim 1 and a lumenal anchor.
9. A system comprising a stent according to Claim 1, a luminal lining, and a luminal anchor
10. A system comprising a stent according to Claim 1 and a device for deploying the stent.
11. A stent according to Claim 1 configured to release one or more substances. For the Applicants, REINHOLD COHN AND PARTNERS
IL169830A 2003-02-24 2005-07-21 Stent IL169830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
IL169830A IL169830A (en) 2003-02-24 2005-07-21 Stent

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/370,592 US9333102B2 (en) 2003-02-24 2003-02-24 Stent
PCT/IL2004/000174 WO2004073556A1 (en) 2003-02-24 2004-02-23 Stent
IL169830A IL169830A (en) 2003-02-24 2005-07-21 Stent

Publications (2)

Publication Number Publication Date
IL169830A0 IL169830A0 (en) 2007-07-04
IL169830A true IL169830A (en) 2012-09-24

Family

ID=42333639

Family Applications (1)

Application Number Title Priority Date Filing Date
IL169830A IL169830A (en) 2003-02-24 2005-07-21 Stent

Country Status (1)

Country Link
IL (1) IL169830A (en)

Also Published As

Publication number Publication date
IL169830A0 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
US9333102B2 (en) Stent
US20230310024A1 (en) Radial cutter implant
CA2505417C (en) Endoluminal lining
US6702846B2 (en) Urological stent therapy system and method
AU730446C (en) Urological stent therapy system and method
US5372600A (en) Stent delivery systems
JP2019072595A (en) Indwelling body lumen expander
US20080039921A1 (en) Balloon Catheter
EP4434499A2 (en) Urethral implant
IL169830A (en) Stent
AU5184601A (en) Urological stent therapy system and method
IL168532A (en) Device for insertion into a body lumen

Legal Events

Date Code Title Description
FF Patent granted
KB Patent renewed
MM9K Patent not in force due to non-payment of renewal fees