IE903098A1 - Use of iodopropargyl esters of ó-amino acid derivatives as¹antimicrobial agents - Google Patents
Use of iodopropargyl esters of ó-amino acid derivatives as¹antimicrobial agentsInfo
- Publication number
- IE903098A1 IE903098A1 IE309890A IE309890A IE903098A1 IE 903098 A1 IE903098 A1 IE 903098A1 IE 309890 A IE309890 A IE 309890A IE 309890 A IE309890 A IE 309890A IE 903098 A1 IE903098 A1 IE 903098A1
- Authority
- IE
- Ireland
- Prior art keywords
- iodopropargyl ester
- iodopropargyl
- compound
- ester
- benzyl
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C271/00—Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
- C07C271/06—Esters of carbamic acids
- C07C271/08—Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
- C07C271/10—Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
- C07C271/22—Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by carboxyl groups
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N37/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
- A01N37/44—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N37/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
- A01N37/44—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids
- A01N37/46—N-acyl derivatives
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N47/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
- A01N47/08—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
- A01N47/10—Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C229/00—Compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C229/02—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C229/04—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C229/06—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton
- C07C229/08—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to hydrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/01—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
- C07C233/45—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
- C07C233/46—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
- C07C233/49—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a carbon atom of an acyclic unsaturated carbon skeleton
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/55—Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Plant Pathology (AREA)
- Engineering & Computer Science (AREA)
- Dentistry (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Pest Control & Pesticides (AREA)
- Agronomy & Crop Science (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Peptides Or Proteins (AREA)
Abstract
Antimicrobial compounds of the formula wherein R<1> is selected from the group consisting of H, an amine protective group, and a moiety of the formula wherein R<2>, R<5>, and R<6> are independently selected from H and an amine protective group; R<3> and R<4> are indpendently selected from H, lower alkyl, aryl, arylalkyl, CH2OR, CH2SR or CH(CH3)OR; R = H, lower alkyl, arylalkyl or aryl; wherein R<1> and R<2> or R<5> and R<6> can be joined to form a ring; and wherein when R<1> and R<2> or R<5> and R<6> are both H, the compound is either in free base form or in salt form.
Description
USE OF IODOPROPARGYL ESTERS OF α-AMINO ACID DERIVATIVES AS ANTIMICROBIAL AGENTS This invention relates to the field of microbicides.
DE-A-2515091 (1975), Ciba Geigy AG, discloses microbicidal anilides which are acylanilides having an amino acid moiety and an iodopropargyl fragment as shown, but the point of attachment of the iodopropargyl fragment is not directly on the amino acid portion of the molecule. These compounds are N-iodopropargyloxy add amides.
JP-A-54/125614 (1979), Shigaken Pharmaceutical Co., Ltd. discloses antimicrobial iodopropargyloxy acid amide derivatives useful for bactericides and agricultural fungirides.
As used herein, the term microbicide is intended to include but is not restricted to bactericides, fungiddes and algiddes, and microbicidal activity encompasses both the elimination of and also the inhibition of growth of bacteria, fungi and algae and also viruses.
U.S. -A- 4,535,088 (1985) assigned to Shionogi and Co., shows 2-(3Iodo)propynvl-amino-thiazole derivatives as useful as antimicrobials, i.e. antibacterial and antifungal agents.
Peptides: Synthesis, Structure and Function; Proc. Am. Pept. Symposium, 7th, (1981), pp 101-4 describes the synthesis of C-iodopropargyl glycine. There is no mention of antibacterial or antifungal activity.
Many of the antimicrobials of the prior art have toxicity and/or environmental problems.
It is an object of the present invention to provide novel antimicrobial compounds which have improved toxidty profiles and which are not harmful to the environment.
Accordingly, the present invention provides in one aspect a compound of the formula |2 in which R] and R2 are either joined to form a ring; or alternatively R2 is H or an amine protective group, Rj is H, an amine protective group or a moiety of the formula (ll) in which R5 and R6 are either joined to form a ring or are each independently H or an amine protective group; and R3 and R4 are each independently H, lower alkyl, aryl, arylalkyl, CH2OR, CH2SR or CH(CH3)OR where R = H, lower alkyl, arylalkyl or aryl; wherein when R1 and R2 or R5 and R6 are both H, the compound is either in free base form or in salt form.
A further aspect of the invention are the compounds in salt form.
The compounds of the invention have been discovered to be unexpectedly effective microbicides, and another aspect of the invention comprises the use of those compounds as microbicides. In a further aspect the invention also provides a method for preventing or inhibiting the growth of bacteria, fungi, algae or viruses in a locus susceptible or subject to contamination thereby, comprising incorporating into or onto the locus a compound as defined above in an amount effective to adversely affect the growth thereof. A major advantage of these compounds is that they are designed to biodegrade down into non-toxic amino acid components.
The compounds of the invention can have R1 as an amine protective group. Suitable amine protective groups are amides, carbamates, imines, IE 903098 - 3 enamines, aminoacetals, N-alkyl, N-benzyl, N-sulfenyl or N-sulfonyl, and the like. For detailed examples of the suitable amine protective groups, see Greene, T.; Protective Groups in Organic Synthesis, John Wiley «Sc Sons, Inc., New York, (1981), pages 218-87.
When R1 and R2 are H, or when Rt is structure II and both R5 and R6 are H, the compound can be in either free base or salt form. Suitable conjugate acids to form the salts are either organic or inorganic acids, for example hydrochloric acid, sulfuric acid, acetic add, propionic acid, sorbic acid, trifluoroacetic acid, hydrobromic acid, formic acid, and the like.
When Rt and R2 or R5 and R6 are joined to form a ring, suitable rings are cyclic imide derivatives such as phthaloyl, diphenylmaleovl, dithiasuccinoyl, and the like.
When R3, R4 and R are lower alkyl, said alkyl can have 1 to 8, preferably 1 to 4 carbon atoms and can be substituted. When R3, R4 or R are aryl, suitable aryls are phenyl, sustituted phenyl, and the like.
When R3, R4 or R are arylalkyl, suitable moities are benzyl, diphenylmethyl, substituted benzyl, and the like.
Some representative compounds include the following: 1. N-t-butoxycarbonylglycine iodopropargyl ester 2. N-t-butoxycarbonyl-L-alanine iodopropargyl ester 3. N-t-butoxycarbonyl-O-benzyl-L-serine iodopropargyl ester 4. N-t-butoxycarbonyl-S-benzyl-L-cysteine iodopropargyl ester . N-t-butoxycarbonyl-O-benzyl-L-threonine iodopropargyl ester 6. N-t-butoxycarbonyl-S-propargyl-L-cysteine iodopropargyl ester 7. glycine iodopropargyl ester trifluoroacetate 8. L-alanine iodopropargyl ester trifluoroacetate 9. O-benzyl-L-serine iodopropargyl ester trifluoroacetate . S-benzyl-L-cysteine iodopropargyl ester trifluoroacetate 11. O-benzyl-L-threonine iodopropargyl ester trifluoroacetate 12. N-t-butoxy carbonyl-L-alanylglycine iodopropargyl ester 13. N-t-butoxy carbon yl-L-alanyl-L-alanine iodopropargyl ester 14. N-t-butoxycarbonyl-L-alanyl-O-benzyl-L-serine iodopropargyl ester . N-t-butoxycarbonyl-L-alanyl-S-benzyl-L-cysteine iodopropargyl ester 16. N-t-butoxycarbonyl-L-alanyl-O-benzyl-L-threonine iodopropargyl ester 17. L-alanylglycine iodopropargyl ester trifluoroacetate 18. L-alanyl-L-alanine iodopropargyl ester trifluoroacetate 19. L-alanyl-O-benzyl-L-serine iodopropargyl ester trifluoroacetate . L-alanyl-S-benzyl-L-cysteine iodopropargyl ester trifluoroacetate 21. L-alanyl-O-benzyl-L-threonine iodopropargyl ester trifluoroacetate 22. L-alanine iodopropargyl ester 23. N-t-butoxycarbonyl-D-alanine iodopropargyl ester 24. D-alanine iodopropargyl ester trifluoroacetate . N-t-butoxycarbonyl-D-alanyl-D-alanine iodopropargyl ester 26. N-t-butoxycarbonyl-D-alanyl-L-alanine iodopropargyl ester 27. N-t-butoxycarbonylglycyl-L-alanine iodopropargyl ester 28. N-acetylglycine iodopropargyl ester 29. N-benzoylglydne iodopropargyl ester . N-phthaloylglydne iodopropargyl ester 31. N-benzyloxycarbonylglycine iodopropargyl ester 32. N-formylglydne iodopropargyl ester 33. N-propionylglycine iodopropargyl ester 34. N-octanoylglycine iodopropargyl ester . N-sorbylglydne iodopropargyl ester '©«NOsUl^WWΛίππηπηηοπηη 8888888888 ΪΙΙΙΙΙΙΙΪΪ χχχχχχχχχχ zzzzzzzzzz soSaaS»»»»» ι/ιςηςπσιςηνίζηνιυιιη Χ»»5β5β»?0305β50 ^h· Ch ^h O* 9* w** i s Ξ 3 S a c c o o 3 3 bi 01 η n rt rt ff ff M M M X*. X*k X*N X-S X*N Z'^z-nnnnnn -Ο-ΙΙΪΧΙΧ *MWH**>(Mb>blMUI = 5=<5'ώ'<ΪΓ,ύΤ<3'ύ·' nnnnnn 888888 oooooo a a CCC ο ο o 3 3 01 01 n r> n rt rt rt ff ff S> rt rt rt rt rt sun ΪΙΙΙΪΙΙΪΙΙΙΪΙΪΙ2ΙΙΪΙΙΙΙ Ig ΙΪΙΙ □. □. a a c c o o -» -, o o 01 01 r, n η n Μ» *» fi> ft> ft ft ft ft ft yi yi ui ui ui w w w W w x η η η η n ClISII «2 w w u* u> w U> LM W U> c r> η η n r> |88888 8OOOOO rt ff '£ nnonnnnnnn ΙΙΙΙΪΙΪΙΙΙ ΙΙΙΙΙΪΙΙΪΪ ηΓιοηηηχηηηηϊηηηπζ ----------ιιχχ S> M U> 388 I*’ ΪΪΪΙΙΙ u> w w w ω 388 w I -p Xw 8?3 I Nl fl x I2II -*N Nl N, < X? a i r> π ΙΛ '(5 •a x I X w o <Λ Π Q x χ n Q x ? — X Nl •fl X π η η χ III Nl Nl W X X kJ .·*· •s » ©ai6i©oa>ft»fi>&>&>o i-i mil x ’ xxx O—O O CO O 'MO -- ω — — i. — — Ul — O' w ® rt S 8 5; £. =-3 8 8 E E E SI 'rt S’ STRUCTURES and melting points of the representative compounds - s IE 903098 CM V» W u W ω N) NJ NJ NM NJ P ’8 c ι π -, Ο I σ1 Dw ** X Π o o n I N> o n o "3 3Γ) O η η η n =m III 90 90 90 * *. * zzz 90 90 m in m 5β 70 50 O' O' O' © c o © ft) D n> O — I I II If I III! I Igo η η n X X X U> U> UJ w w ω* ο η n m ooo 'S’ son X X Ui Ui '£ XXX »£ χχιιχιιχηηοη w X X X X W W W W 00 < 00 M mJ M* UJ *4 1 M* CM cn V » 00 1 00 1 N4 Cn cn Cn Mt cm NJ 00 © tn ft) ft) 3 δ O STRUCTURES and melting points of the representative compounds u> S 8 8 Ex Ex & I» O ΙΕ 9030θ® - 7 The compounds of the invention wherein R1 is H or an amine protective group can be prepared by esterification of the appropriately N-protected D- or L- amino add with iodopropargyl alcohol.
A variety of esterification methods may be utilized to prepare the compounds of the invention. For example, a solution or suspension of the N-protected D- or L- amino acid in anhydrous solvents such as dichloromethane, 1,4-dioxane, tetrahydrofuran, dimethoxyethane, toluene or Ν,Ν-dimethylformamide is allowed to react with iodopropargyl alcohol in the presence of 4dimethylaminopyridine and l-(3-dimethylaminopropyl)-3ethylcarbodiimide hydrochloride. The reaction time usually takes place within a range of 1 to 18 hours. The reaction temperature is usually conducted between 0° and 25°C.
Numerous other peptide synthesis coupling reagents may be used as esterification agents. Alternatively, the N-protected D- or Lamino add may be converted to an add chloride or to an activated ester and then reacted with iodopropargyl alcohol to form the desired ester. Such coupling and activation procedures are discussed in the text Principles of Peptide Synthesis, Bodanszky, M.; Springer-Verlag: New York, NY, (1984).
Iodopropargyl alcohol can be prepared by the procedure described in Bulletin of the Chemical Society of Tapan, Ando, T., Shioi, 5., Nakagawa, M., (1972), 45,2611.
The N-protected D- or L- amino acid where Rt = (CH^COCO, PhCH2OCO, CH3CO, PhCO, HCO, R2=H and R\ R2= phthaloyl are commercially available.
The N-protected D- or L- amino acid where R1 = CH3CH2CO, H(CH2)tCO, and R2, R3=H can be prepared via N-acylation of commercially available glycine methyl ester hydrochloride with the - 8 corresponding acid chloride in the presence of a base such as 4dimethylaminopyridine or triethylamine in an appropriate anhydrous solvent such as dichloromethane.
The N-protected D- or L- amino add where R1 =sorbyl and R2, R3=H can be prepared via N-acylation of glycine methyl ester hydrochloride with sorbic acid in the presence of a base (triethylamine or 4-dimethylaminopyridine) and a peptide coupling reagent (dicyclohexylcarbodiimide or l-(3-dimethylaminopropyl)-3ethylcarbodiimide hydrochloride) in an appropriate anhydrous solvent (dichloromethane or 1,4-dioxane). The resultant N-acylated glycine methyl ester can be hydrolyzed to the N-protected D- or L- amino acid with lithium hydroxide or sodium hydroxide in aqueous tetrahydrofuran followed by acidification with an aqueous inorganic acid such as potassium hydrogen sulfate or hydrochloric acid.
Compound numbers 7-11, and 24, which are in the form of trifluoroacetate salts where R1, R2=H, R3= H, CH3, CH/DCF^Ph, CH2SCH2Ph, CH(CH3)OCH2Ph can be prepared from the corresponding N-tert-butoxycarbonyl iodopropargyl ester (compound numbers 1-5, 23) by treatment with trifluoroacetic acid in dichloromethane.
Dipeptide compounds wherein R1 is II can be synthesized as follows: A previously prepared iodopropargyl ester amine trifluoroacetate salt (compound numbers 7-11, 24) can be coupled with readily available N-tert-butoxycarbonyl protected D- or L- amino acids utilizing the various known peptide coupling methods described above. More specifically, to a solution or suspension of iodopropargyl ester amine trifluoroacetate salt (I) in anhydrous solvents such as dichloromethane, 1,4-dioxane, tetrahydrofuran, Ν,Νdimethylformamide, dimethoxyethane or toluene at a temperature between 0 and 25°C under inert atmosphere is added a base such as - 9 triethylamine, N-methylmorpholine or 4-dimethylaminopyridine, followed by a readily available N-tert-butoxycarbonyl protected D- or Lamino acid, followed by N-hydroxybenzotriazole as a racemization suppression additive and catalyst, followed by the coupling agent such as dicydohexycarbodiimide or l-(3-dimethylaminopropyl)-3ethylcarbodiimide hydrochloride. The reaction mixture is then stirred at a temperature between 0 and 25°C for a time range between 1 to 24 hours. The product N-tert-butoxycarbonyl dipeptide iodopropargyl ester is then isolated in the usual manner.
The trifluoroacetate salts of the dipeptides, (compound numbers 17-21) can be prepared from the corresponding N-t-butoxycarbonyl dipeptide iodopropargyl esters (Π), (compound numbers 12-16) by treatment with trifluoroacetic acid in dichloromethane.
As stated above, compositions comprising a compound according to formula I and either an agronomically acceptable carrier, a cosmetic agent, a cutting oil, a soap or synthetic detergent, a stabilizer, or a film forming material, and the like have a wide range of utility for protecting against or controlling microorganisms from a wide variety of classes including fungus, bacteria, algae, viruses and yeasts. The preferred utilities of the compositions are to protect wood, paint, adhesive, glue, paper, textile, leather, plastics, cardboard, lubricants, cosmetics, food, caulking, feed and industrial cooling water from microorganisms.
The following lists specific industries and applications of the compounds or compositions: - 10 - Industry Application Adhesives, Sealants adhesives caulks sealants agriculture/food chain adjuvant preservation agricultural active ingredient agricultural chemical preservative agricultural formulations preservation animal feed preservation dairy chemicals fertilizer preservation food preservation food processing chemicals grain preservation post-harvest produce protection sugar processing tobacco Construction products asphalt / concrete cement modifiers construction products roof mastics synthetic stucco wall mastics joint cement Cosmetics and toiletries cosmetics raw materials for cosmetics, toiletries toiletries Disinfectants, antiseptics antiseptic disinfectant Emulsions, dispersions aqueous dispersions dispersed pigments latex photographic emulsions - 11 - pigment slurries polymer latices formulated household products fabric softeners polishes waxes hand dish detergents raw materials liquid detergents hand soaps Industrial processing, misc electrodeposition paint, baths, rinses, electrodeposition pre-treatment, post rinses Industrial fluids preservation pasteurization baths process aid preservation Industrial water treatment air washers cooling towers cooling water water cooling preservation/treatment of wooden cooling tower slats and structural members can warmers brewery pasteurization closed loop water cooling systems Laundry household laundry products laundered goods laundry wash water sanitizers-laundry Leather, Leather products leather and hide leather and hide products Lubricants, hydraulic aids automotive lubricants and fluids conveyor lubricants - 12 - Medical devices greases hydraulic fluids lubricants diagnostic enzymes diagnostic kits medical devices Metalworking & related app's cutting fluids metal cleaning metalworking fluids Odor control (active ingredient) air conditioning animal bedding cat litter chemical toilet prep'ns deodorizers humidifiers industrial deodorants sanitary formulations toilet bowls Paints and coatings coating emulsions paints Paper and wood pulp, their products absorbant materials of paper and wood pulp packaging materials of paper and wood pulp paper paper products paper treatment soap wrap wood pulp wood pulp products paper mill paper mill slimicides pulp and paper slurries - 13 - Petroleum refining, fuels aviation fuels (jet fuel, aviation gas) crude oils burner, diesel and turbine fuel oils coal slurries diesel fuel additives diesel fuels fuels gasoline heating oils hydrocarbons kerosene liquefied petroleum gas petrochemical feedstocks petroleum products, storage, transportation and production recycled petroleum products residual fuel oils turbine oils Photographic Chemicals and process photographic processing - wash water, rinses photoprocessing photoplate processing chemicals (developers, stabilizers etc) Printing fountain solutions (printing) ink components (pigments, resins, solvents, etc) inks Sanitizers (active) sanitizers sanitizers-dairy sanitizers-dental sanitizers-fermentation sanitizers-food preparation sanitizers-food processing sanitizers-medical - 14 sanitizers-rendering sanitizers-veterinary Soaps, detergents, cleaners cleaners detergents household cleaners industrial cleaners liquid soaps oil and grease remover powdered soaps raw materials for cleaning products soaps surfactants - 15 - Textiles, textile products bonded fabrics burlap canvas canvas goods carpet backing carpets clothing coated fabrics curtains draperies engineering textiles fibers geotextiles goods made of textiles knitted fabrics nets nonwoven fabrics rope rugs textile accessories textile products textiles upholstery woven fabrics yarn Textile processing dye fixatives dyes fiber lubricants hand modifiers sizes textile processing fluids Therapeutic (active or preservative) animal health/veterinary aquaculture dental human health pharmaceutical / therapeutic IE 90309® - 16 - Water purification charcoal beds deionization resins filters membranes reverse osmosis membranes ultrafilters water purification water purification pipes, tubing Wood applications lazures (wood stains) wood wood products Miscellaneous alcohols bedding incorporating water or gels ceramic contact lens cases-leaching electronic circuitry electronics chemicals enzymes-food production enzymes enzymes-indus trial gel cushions marine antifoulants mildewcides wood plastics laundry mining natural rubber latex oil field injection waters including enhanced recover injection fluids, drilling, fracturing and completion fluids pipes plastics polymer systems polymers and resins (synthetic and natural) - 17 reagent preservation rubber rubber products skin remover solid protective/decorative films stains swimming pools waste treatment water beds The amounts of the compound to be used depend on the application. The useful amounts for a particular application are similar to amounts used for other microbicide compounds.
The compound can be used in combination with other microbicides. The term microbicide is considered equivalent to antimicrobial as used herein.
Suitable methods of application of compounds of formula I to control fungi (including yeasts), bacteria, algae, and the like are in amounts and with carriers, etc., as well known in the art.
The following examples are presented to illustrate a few embodiments of the invention, but are not to be considered as limiting. - 18 Example 1 N-t-Butoxycarbonylglycine iodopropargyl ester (Compound #1) To a magnetically stirred solution of N-t-butoxycarbonylglycine (3.00 g., 17.12 mmole) and iodopropargyl alcohol (3.12 g., 17.15 mmole) in anhydrous dichloromethane (40 ml.) cooled to 0°C with an ice-bath was added 4-dimethylaminopyridine (0.21 g., 1.72 mmole) followed by 1 (3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (3.61 g., 18.83 mmole). After stirring at 0°C for 1/2 hour, the reaction mixture was stored in a refrigerator at 6°C overnight. The reaction mixture was transferred to a separatory funnel and diluted to 100 ml. with dichloromethane, then washed successively with water, 10% aqueous potassium hydrogen sulfate, water, saturated aqueous sodium bicarbonate, water and a final wash with saturated aqueous sodium chloride. The organic layer was dried with magnesium sulfate, filtered and concentrated in vacuo with a rotary evaporator to a clear colorless oil which crystallized on standing as N-t-Butoxycarbonylglycine iodopropargyl ester (5.60 g., 96.4% yield), m.p. =65-68°C. 1 H-NMR (200 MHz, DMSOd6)5=1.40 ppm, s, 9H; 3.73, d, 2H; 4.86, s, 2H; 7,28, t, IH. IR (CDC13) 1165,1505,1715,1760, 2205,3460 cm-L Example 2 N-t-Butoxycarbonyl-L-alanine iodopropargyl ester (Compound #2) To a magnetically stirred solution of N-t-butoxycarbonyl-Lalanine (5.00 g., 0.026 mole) and iodopropargyl alcohol (4.81 g., 0.026 mole) in anhydrous dichloromethane (100 ml.) cooled to 0°C with an ice-bath was added 4-dimethylaminopyridine (0.32 g., 0.0026 mole) followed by l-(3-dimethylaminopropyl)-3-ethylcarbodiimide - 19 hydrochloride (5.57 g., 0.029 mole). The reaction mixture continued to stir at 0°C for one hour, and then stored in a refrigerator at 5°C overnight. The reaction mixture was transferred to a separatory funnel and diluted to double volume (200 ml.) with dichloromethane, then washed successively with 100 ml. of water, 3 X 100 ml. of 10% aqueous potassium hydrogen sulfate, 100 ml. of water, 3 X 100 ml. of saturated aqueous sodium bicarbonate, 3 X 100 ml. of water and a final wash with 100 ml. of saturated aqueous sodium chloride. The organic layer was dried with magnesium sulfate, filtered and concentrated in vacuo with a rotary evaporator to a clear colorless oil which crystallized on standing. A quantitative yield (9.34 g.) of N-t-Butoxycarbonyl-L-alanine iodopropargyl ester was obtained, m.p. = 71-73°C. iH-NMR (200MHz, DMSOd6) δ =1.25 ppm, d, 3H; 1.40, s, 9H; 4.01, m, 1H; 4.85, s, 2H; 7.33, d, 1H. IR (CHC13) 1170,1375,1400,1715,1750,2205 cm-i· Example 3 Glycine iodopropargyl ester trifluoroacetate (Compound #7) N-t-Butoxycarbonyl glycine iodopropargyl ester (Compound #1) (4.20 g., 12.39 mmole) was dissolved in anhydrous dichloromethane (20 ml.), cooled to 0°C with an ice-bath, and treated with 10 ml. of trifluoroacetic acid. The reaction mixture was stirred magnetically at 0°C for 1 hour and then allowed to warm to ambient temperature. The volatile solvents were removed under reduced pressure leaving a clear syrup which crystallized on standing to a white solid (4.20 g., 96% yield) as the desired trifluoroacetate salt product, m.p. 130-131°C. Ή-NMR (200 MHz, DMSOd6) δ =3.92, s, 2H; 5.00, s, 2H; 8.4, s; 9.1, broad m. IR - 20 (KBr) 1605,1670,1765, 2205,2640 αη-ι.
Example 4 L-Alanine iodopropargyl ester trifluoroacetate (Compound #8) N-t-Butoxycarbonyl-L-alanine iodopropargyl ester (Compound #2) (3.50 g., 9.91 mmole) was dissolved in anhydrous dichloromethane (20 ml.), cooled to 0°C with an ice-bath, and treated with 10 ml. of trifluoroacetic acid. The reaction mixture was stirred magnetically at 07°C for 17 hours and then allowed to warm to ambient temperature. The volatile solvents were removed under reduced pressure leaving a clear colorless syrup as the desired trifluoroacetate salt product. 1HNMR (200 MHz, D2O) 0=1.58 ppm, d, 3H; 4.23, q, 1H; 4.99, s, 2H. IR (CHC13) 1175,1675,1765, 2230, 2250-3500 cm-T Example 5 N-t-Butoxycarbonyl-L-alanylglydne iodopropargyl ester (Compound #12) To a magnetically stirred, anhydrous dichloromethane (20 ml.) solution of glycine iodopropargyl ester trifluoroacetate (Compound #7) (2.00 g., 5.66 mmole) held at 0°C with an ice-bath was added triethylamine (0.79 ml., 5.67 mmole), followed by N-t-butoxycarbonyl-L alanine (1.07 g., 5.66 mmole), 1-hydroxybenzotriazole hydrate (0.77 g., 5.70 mmole) and l-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (1.30 g., 6.78 mmole). The reaction mixture was held at 5°C for 17 hours. The resultant solution was transferred to a separatory funnel and diluted to an approximate volume of 100 ml. with dichloromethane, then washed successively with water, 10% aqueous potassium hydrogen sulfate, water, saturated aqueous sodium - 21 bicarbonate, water and a final wash with saturated aqueous sodium chloride. The organic layer was dried with magnesium sulfate, filtered and concentrated in vacuo with a rotary evaporator to give 2.09 g. (90% yield) of the desired N-t-butoxycarbonyl-L-alanylglydne iodopropargyl ester as a dry white foam. iH-NMR (200 MHz, CDCI3) 8=1.40, d, 3H; 1.47,1.77, two s, 9H; 4.08, d, 2H; 4.24, m, IH; 4.90, s, 2H; 5.06, d, IH; 6.81, s, IH. IR (CHCI3) 1160,1375,1495,1690,1755, 2200,2985,3440 cm-T Example 6 N-t-Butoxycarbonylglycyl-L-alanine iodopropargyl ester (Compound #27) To a magnetically stirred, anhydrous dichioromethane (30 ml.) solution of L-Alanine iodopropargyl ester trifluoroacetate (Compound #8) (2.30 g., 6.27 mmole) held at 0°C with an ice-bath was added triethylamine (0.96 ml., 6.89 mmole), followed by N-tbutoxycarbonylglycine (1.10 g., 6.28 mmole), 1-hydroxybenzotriazole hydrate (0.85 g., 6.29 mmole) and l-(3-dimethylaminopropyl)-3ethylcarbodiimide hydrochloride (1.56 g., 8.14 mmole). The reaction mixture was held at 0-7°C for 17 hours. The resultant solution was transferred to a separatory funnel and diluted to an approximate volume of 100 ml. with dichioromethane, then washed successively with 3 X 50 ml. of water, 3 X 50 ml. of 10% aqueous potassium hydrogen sulfate, 3 X 50 ml. of saturated aqueous sodium bicarbonate, 3 X 50 ml. of water and a final wash with 50 ml. of saturated aqueous sodium chloride. The organic layer was dried with magnesium sulfate, filtered and concentrated in vacuo with a rotary evaporator to give 1.80 g. (70% yield) of the desired N-t-butoxycarbonylglycyl-L-alanine 9030QS iodopropargyl ester as a dry white foam. iH-NMR (200 MHz, CDCI3) 6=1.45 ppm, d, 3H; 1.45,1.72, two s, 9H; 3.82, d, 2H; 4.63, m, 1H; 4.87, s, 2H; 5.17, broad m, 1H; 6.67, d, 1H.
Example 7 N-Sorbylglydne iodopropargyl ester (Compound #35) To a magnetically stirred mixture of glycine methyl ester hydrochloride (4.14 g., 32.97 mmole) and 4-dimethylaminopyridine (4.03 g., 32.99 mmole) in anhydrous dichloromethane (75 ml.) cooled to 0°C with an ice-bath was added sorbic acid (3.36g., 29.97 mmole), followed by l-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (6.90 g., 35.99 mmole). The reaction mixture continued to stir at 0°C for 20 minutes. After storing in a refrigerator at 5°C overnight, the reaction mixture was transferred to a separatory funnel and diluted to double volume (150 ml.) with dichloromethane, then washed successively with 3 X 40 ml. of water, 3 X 40 ml. of 10% aqueous potassium hydrogen sulfate, 3 X 40 ml. of saturated aqueous sodium bicarbonate, 3 X 40 ml. of water and a final wash with 40 ml. of saturated aqueous sodium chloride. The organic layer was dried with magnesium sulfate, filtered and concentrated in vacuo with a rotary evaporator to a fluffy white solid. An 88% yield (4.84 g.) of Nsorbylglycine methyl ester was obtained, m.p. = 121-122°C. Ή-NMR (200MHz, CDCI3 )6=1.84 ppm, t, 3H; 3.77, s, 3H; 4.15, d, 2H; 5.83, d, 1H; 6.15, m, 3H; 7.24, m, 1H. IR (CHCI3) 1010,1380,1445,1525,1625,1645, 1675,1750,3000,3440 cm-i.
N-Sorbylglycine methyl ester (4.08 g., 22.27 mmole) was dissolved in 75 ml. of a tetrahydrofuran-water mixture (3:1) and treated - 23 with 0.602 g. (24.57 mmole) of lithium hydroxide. After magnetically stirring for three hours, the reaction mixture was concentrated under reduced pressure to a dry residue which was dissolved in a minimum amount of water. With magnetic stirring, this solution was acidified to a pH of 2 with 4.1 ml. (24.6 mmole) of 6N aqueous hydrochloric acid. The desired product N-sorbylglydne was isolated by filtration and dried in vacuo over P2O5 to afford 3.13 g. (83% yield). m.p.= 164-166°C. 1HNMR (200 MHz, DMSOd6)5=1.8 ppm, d, 3H; 3.85, d, 2H; 5.9-6.4, m, 3H; 7.03, dd, IH; 8.32, t, IH; 12.6, broad m, IH.
To a magnetically stirred slurry of N-sorbylglycine (2.59 g., 15.31 mmole) and 4-dimethylaminopyridine (0.187 g., 1.53 mmole) in anhydrous dichloromethane (80 ml.) cooled to 0°C with an ice-bath was added iodopropargyl alcohol (3.06 g., 16.82 mmole) followed by 1-(3dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (4.11 g., 21.44 mmole). The reaction mixture continued to stir at 0°C and slowly warm to ambient temperature as the ice melted. After stirring for 2.5 hours, the reaction mixture was stored in a refrigerator at 5°C overnight. The reaction mixture was transferred to a separatory funnel and diluted to approximately 200 ml. with dichloromethane, then washed successively with 2 X 35 ml. of water, 2 X 35 ml. of 10% aqueous potassium hydrogen sulfate, 2 X 35 ml. of saturated aqueous sodium bicarbonate and a final wash with 50 ml. of saturated aqueous sodium chloride. The organic layer was dried with magnesium sulfate, filtered and concentrated in vacuo with a rotary evaporator to an orange solid (4.47 g.). This material was purified by flash column chromatography by dissolving in dichloromethane and adsorbing it on to 14 g. of silica - 24 gel, then removing the solvent under reduced pressure. The resultant dry powder was applied on to the head of a 134 g. silica gel column and eluted with hexanes/ethyl acetate (2:1). Desired product Nsorbylglycine iodopropargyl ester was obtained as a crystalline solid in 40.4% yield after chromatography, m.p. = 137-138.5°C. ]H-NMR (200MHz, CDC13)5=1.84 ppm, d, 3H; 4.18, d, 2H; 4.89, s, 2H; 5.80, d, 1H; 5.95-6.30, m, 3H; 7.15-7.30, m, 1H.
Example 8 - Biological Activity A. Microbicidal Activity.
Microbicidal evaluations (bactericidal, algicidal, and fungicidal) were carried out.
A minimum inhibitory concentration (MIC) value is obtained using a broth, two-fold serial dilution test performed as follows: A stock solution or dispersion of the test compound, typically at a concentration of 1%, is made in a 5:3:2 solvent solution of acetone, methanol, and water. A volume of the stock solution is dispensed into culture media to give an initial starting test concentration of 500 ppm compound.
When the test is ready to be done, each vessel in the dilution series, except the first vessel, contains an equal volume of compound free broth. The first vessel contains twice the volume of broth with the starting concentration of test compound. One half of the broth from the first vessel is transferred to the second vessel. After being mixed, one half the resulting volume is removed from the second vessel and transferred to the third vessel. The entire cycle is repeated sufficiently · to give a series of concentrations amounting to 500, 250,125, 63, 31, 16, 8, and 4 ppm (or 100,50, 25,12.5,6.2,3.1,1.6, and 0.8), respectively.
Each vessel is then inoculated with a cell suspension of the appropriate test organism. Bacteria are grown in broth, fungi on agar slants for a time and at a temperature appropriate to the species being tested, and algae are a mixture of green algae and blue-green bacteria grown in a nutrient media. At the end of the growth period, in the case of bacteria, the broth is vortexed to disperse the cells. - 26 In the case of fungi, the spores are harvested by pipetting water onto the slant and dislodging the spores with a sterile loop. The cell/spore suspension is standardized by controlling incubation time, temperature, and the volume of the diluent. The suspension is then used to inoculate the vessels containing the broth compound.
The algae culture contains green algae and blue-green bacteria, and is obtained from a cooling tower in Spring House, Pennsylvania. The algae culture is grown in Allen's medium on a rotary shaker under flourescent room lighting. This culture is further diluted with Allen's medium and then added to the test vessel.
The vessels are then incubated at the appropriate temperature. After the incubation, the vessels are examined for growth/no growth. The minimum inhibitory concentration (MIC) is defined as the lowest concentration of compound that results in complete inhibition of growth of the test organism. • 27 The organisms tested to demonstrate biocidal activity include: BACTERIA: Pseudomonas fluorescens (PSFL), gram negative Pseudomonas aerugenosa (PSAE). gram negative Escherichia coli (ECOL), gram negative Staphylococcus aureus (SAUR), gram positive FUNGI: Aspergillus niger (ANIG) Aureobasidium pullulans (APUL) The results of the minimum inhibitory concentration (MIC) tests of compounds of this invention are shown in Tables Ilia mb, IIIc, V, VI, VII, and VIII against the microorganisms shown in Table IX.
B. In-Vitro Plant Fungicidal Tests: In-vitro tests of plant diseases were carried out.
The organisms employed in the test are: PYU Pythium ultimum (Oomycete) PHY Phytophthora capsici (Oomycete) PIR Piricularia oryzae (Ascomycete) HEL Cochliobolus sativus (Ascomycete) BOC Botrytis cinerea (Ascomycete) FUS Fusarium roseum (Ascomycete) SEP Septoria nodorum (Ascomycete) RHI Rhizoctonia solani (Basidiomycete) XAN Xanthomonas campestris (bacterium) Methods: 1. Culture maintenance: Transfers in steps 1 and 2 are done in a >E 903098 - 28 laminar flow hood. All 8 fungi and the bacterium used in this test are transferred and maintaned on potato dextrose agar plates each week (2 plates/organism). Organisms are used when they are the following ages: a. 1 week old: PYU, PHY, RHI; b. 2 weeks old: XAN, PIR, BOC, HEL, FUS, SEP, COL, MON, CER, UST, ALT; c. 3 weeks old; PSH, VEN. Pythium ultimum and Phytophthora capsici are transferred to asparagine-sucrose broth shake cultures (ASB). Rhizoctonia solani, Fusarium roseum, and Zanthomonas campestris are mainted in yeast extract-dextrose broth (YDB) on a shaker. Culture flasks are inoculated with 6 mycelial plugs each (except for Pythium which is inoculated with only 3 plugs) taken from PDA plates. All liquid shaker cultrues are used after 2 days growth. 2. Inoculum preparation. Conidia and mycelium from PIR, BOC, HEL, SEP, COL, MON, CER, PSH, UST and ALT are lightly scraped off into YDB so that mostly conidia are used as inoculum. The conidial suspension is strained through a double layer of cheesecloth to remove mycelial clumps. One plate produces enough conidia or mycelium to inoculate 100 ml of YDB. XAN broth culture is poured (lml culture/100 ml broth) into YDB. PYU, PHY, RHI and FUS cultures are ground up (2-3 5 second bursts in a blender) and all but Pythium and Phytophthora are filtered through a dobule layer of sterile cheesecloth to remove large mycelial clumps. Ten ml of the culture solutions of R. solani and F. roseum are added to 90 ml of YSB and 10 ml of the R. capsici is added to 90 ml ASB. Two ml of the culture solution of P. ultimum is added to 98 ml of ASB. Care must be made not to overinoculate (e.g. solutions should appear fairly clear to the eye, yet - 29 · when held up to light a faint cloudiness should be visible) or standards will not behave properly. The inoculum mixtures are placed in microtiter plates using a 12-tipped pipet. 175 μΐ (single dose) or ΙΟΟμΙ (dose-response test) of inoculum broth is placed in each well of the microtiter plates. The plates with inoculated media are placed in the refrigerator overnight. There are two replications per treatment. 3. Addition of compounds. This operation is carried out in a hood. Six microtiter plates have 245 microliters of sterile water added to their wells ahead of time. 10 mg a.i. of the compounds are placed in 1 ml 1:1 acetone:methanol. 5 microliters of this solution is pipetted into the microtiter plates containing the sterile water according to the grid. There are 45 compounds and 3 control treatments per plate.
There are 2 replicates per treatment. 25 microliters of solution is transferred to the inoculated plates with a 96 well replicator. The replicator is flame sterilized with alcohol, rinsed with sterile water, and blotted on sterile paper towells between each transfer.
The results of % control of plant fungi at a certain concentration of compounds of this invention are shown in Tables IVa and IVb. - 30 TABLE ffla MICROBICIDES SECONDARY MIC TEST DATA IN PPM These compounds were tested in M9G (minimal, salts media with glucose) Cpd# (GzL PSFL (GzL PSAE (GdL ECOL (G+) SAUR ANIG (EL APUL 1 50 100 >100 100 2 <0.8 1 125 16 125 16 1 1 1 32 63 32 8 <4 <4 2 50 >100 >100 50 3 3 3 >100 >100 >100 25 3 <0.8 4 >10 >100 >100 25 3 3 5 >100 >100 >100 63 25 <0.8 6 >100 100 >100 >100 25 32 6 500 500 500 64 <4 <4 7 13 100 100 >100 3 2 7 125 125 64 500 <0.8 <0.8 8 125 125 64 500 <4 <4 8 25 >100 >100 >100 3 2 9 25 125 64 500 <4 <4 10 >100 100 >100 >100 3 6.3 11 >100 >100 >100 >100 6.3 3 22 100 100 100 100 <0.8 <0.8 23 63 32 16 63 <4 <4 23 16 250 125 32 <4 <4 24 63 32 32 125 <4 <4 24 32 125 63 63 <4 <4 - 31 TABLE mb MICROBICIDES SECONDARY MIC TEST DATA IN PPM These compounds were tested in trypticase soy broth (complex media) Cpd# PSFL iSci PSAE (Gz) ECOL (G+) SAUR IE) ANIG iEL APUL 28 63 63 63 63 2 4 29 32 125 125 32 0.50 30 >250 >250 >250 >250 0.12 31 32 63 250 32 2 4 32 32 63 63 63 2 8 34 63 125 >250 250 <0.12 8 35 63 125 125 63 2 4 - 32 TABLE fflc MICROBICIDES SECONDARY MICTEST DATA IN PPM FOR: IODOPROPARGYL ESTERS OF PEPTIDES glucose) Cpd# These compounds were tested in M9G (minimal salts media (G-L PSFL (G-) PSAE (G-L ECOL iS±h SAUR iEL_ ANIG ia APUL 12 50 50 50 50 6 <0.8 13 50 50 100 50 <0.8 <0.8 14 100 50 >100 100 6 <0.8 15 >100 >100 >100 >100 6 1.6 16 >100 >100 >100 6 13 <0.8 17 100 100 100 100 <0.8 <0.8 18 100 100 100 >100 <0.8 <0.8 19 50 50 100 100 <0.8 <0.8 20 100 100 100 100 <0.8 <0.8 21 100 100 100 >100 <0.8 1.6 25 125 63 63 125 <4 <4 25 32 250 63 32 <4 <4 26 125 63 63 125 <4 <4 26 32 250 63 32 16 8 26 32 125 32 8 <4 8 26 32 125 32 8 <4 8 27 125 250 250 125 <4 8 - 33 TABLE IVa IN-VITRO PLANT FUNGICIDE TEST RESULTS Compd # BOC FUS HEL PHY PIR PYU RHI SEP XAN 1 100 100 100 100 100 100 100 100 0 2 100 100 100 100 100 100 100 100 0 3 0* 100 100 100 100 100 100 100 0 4 0* 95 0* 100 100 100 100 100 0 4 75 100 75 100 100 100 100 100 0 5 0* 95 0 50 100 0 100 75 0 5 50 95 75 50 100 0 100 90 0 6 0 100 100 100 100 100 100 100 0 7 100 100 100 100 100 100 100 100 0 8 100 100 100 100 100 100 100 100 0 9 100 100 100 100 100 100 100 100 0 10 0* 100 50 100 100 100 100 100 0 11 0 100 95 100 100 100 100 100 0 12 0 0* 0* 100 100 100 100 95 0 13 50 100 100 100 100 100 100 100 0 14 0 100 50 75 100 0 90 0 0 15 0 100 0* 100 100 100 100 100 0 16 0 0* 0* 0 100 100 100 100 0 17 75 100 50 100 100 100 100 75 0 18 50 100 100 100 100 100 100 100 0 19 00 100 100 100 100 100 100 100 0 20 0 100 100 100 100 100 100 100 0 21 0 0* 0* 100 100 100 100 100 0 22 100 100 100 100 100 100 100 100 0 23 100 100 100 100 100 100 100 0 24 0 75 100 100 100 100 100 0 27 75 100 100 0 100 100 100 0 28 100 100 100 100 100 100 100 100 50 29 100 100 100 100 100 100 100 100 0 30 100 100 100 100 100 100 90 75 0 SSs5s®§8sSfe§§2SSSaSSSS2£§S E P to ®°®ciciagg ®®®©gtfSS oooogS55 l> S3 S3 OOOOOOrn — OOOOO© S3 S3 oooooo — — 8 H’ :§ IO. oooooggg ooooogS5 oooo^--88 8 ooooooog oooooooo ooooo^^sc oooooo — — oooo 8 X-fc ’W '*«· U) oooo 99^3ggg |a °oo,a§88 ooooooo— oo swgg OOOOO — — — OOOiOM — — — OOO'M'C — — — ^888 ® 8 8 8 ^888 ,O z oooo---- oooooo-- OOOjg--8888 8888 x -< oooog--- oooooo 888 OOOU> — — — — -fl °8888 § °®®<$gggg ®®®S^SS5 ΟΟ^ΞΞΞ5Ξ 1Γ7 888 88888 £ I ®®®®Sggg oooooogg ®®®gggg§ g ======s§ =agg-§-g g 38888 oooooog- ooo 8888 ooog — — — — υι,Ο — — — OOOOO — — — SiS888 *888 ™ OOOOO — — — © © V} — — — — — IC ggg o &9&SO lh 88888 oooooooo oooooooo TABLE IVb - IN-VITRO PLANT FUNGICIDE DATA V · - SE © ο © o tn mj — — & s 8 8 ooooog-88 in m bo ooooog-o o © © — — — — 8888 888 88888888 ®o©og--OOO — — — 88888 oo — — — — — — 888888 rtn X m r· °8888S88 P 88888888 OOOOtp — — — ®888 888888 ΟΟΟΟΟΟΟ© l3 H Ic lc tn Η Table IVb, (Cont’d) - 36 TABLE V MICROBICIDES BROAD SPECTRUM SECONDARY TEST RESULTS AGAINST. 7 FUNGI Cod.# PPM ANIG PFUN CRES APUL GTRA SSER RRUB 1 25 I I 1 1 1 1 1 5 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0.2 0 0 0 0 0 0 0 29 25 1 I 1 1 1 1 I 5 I 1 1 1 I 1 1 I 0 0 0 0 1 0 0 0.2 0 0 0 0 I 0 0 (Test was run on Mycophile agar, pH 5.0 1= no growth 0= growth of the indicated fungi at dose indicated in ppm. - 37 TABLE VI MICROBICIDES SECONDARY TEST RESULTS AGINST 8 FUNGI (Tested on Mycophile Agar at pH 5.0 at indicated dose level) Cpd.# PPM ANIG PFUN CRES APUL CGLO GTRA SSER RRUB 28 25 1 1 1 1 1 1 1 1 2.5 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 29 25 1 1 1 1 1 1 1 1 2.5 1 1 0 0 0 1 0 0 1.0 1 0 0 0 0 1 0 0 0.2 0 0 0 0 0 0 0 0 30 25 1 1 1 1 1 1 1 1 2.5 0 0 0 0 1 1 1 0 1.0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 31 25 1 1 1 1 1 1 1 1 2.5 1 1 0 0 1 1 0 0 1.0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 32 25 1 1 1 1 1 1 1 1 2.5 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 34 25 1 1 1 1 1 1 1 1 2.5 1 1 0 0 0 1 0 0 1.0 1 0 0 0 1 1 0 0 0.2 0 0 0 0 0 0 0 0 35 25 1 1 1 1 1 1 1 1 2.5 1 1 0 0 1 1 0 1 1.0 1 0 0 0 1 1 0 0 0.2 0 0 0 0 0 0 0 0 - 38 TABLE VII MIC TEST AGAINST THREE FUNGI (Test was in Mycophile Broth, pH 5.0, serial dilutions with a starting concentration of 50 ppm, test was read after 8 days of incubation.) Cod.# ANIG APUL GTRA 1 3.2 12.5 1.6 2 3.2 25 1.6 3 25 50 3.2 4 50 50 6.2 5 >50 >50 6.2 6 12.5 25 3.2 7 25 50 12.5 8 12.5 25 12.5 9 25 50 12.5 10 6.2 12.5 6.2 11 25 50 12.5 12 25 >50 6.2 13 25 50 6.2 14 50 >50 12.5 15 >50 >50 50 16 >50 >50 25 17 12.5 50 25 18 12.5 50 12.5 19 50 50 50 20 50 50 12.5 21 50 >50 50 22 12.5 50 12.5 23 6.2 25 1.6 24 12.5 25 12.5 25 50 >50 6.2 26 25 50 6.2 27 25 50 6.2 28 12.5 50 6.2 29 1.6 12.5 3.2 30 12.5 50 6.2 31 1.6 6.2 0.8 32 12.5 25 3.2 34 1.6 12.5 3.2 35 1.6 6.2 0.4 - 39 TABLE VIH MICROBICIDES MIC TEST AGAINST MIXED COOLING TOWER ALGAE Cpd.# PPM 28 6.2 29 6.2 30 6.2 31 6.2 32 6.2 34 12.5 35 6.2 IE 90309® - 40 TABLE IX MICROORGANISMS USED IN THE MICROBICIDES TESTS Name GRAM ATCC No. Abbreviation used BACTERIA 1. Proteus mirabilis (-) 9921 PMIR 2. Pseudomonas aeruginosa (-) 15442 PSAE 3. Streptomyces spp. (+) 19930 STRP 4. Staphylococcus aureus (+) 6538 SAUR 5. Escherichia coli (-) 11229 ECOL 6. Pseudomonas fluorescens (-) 948 PSFL 7. Serratia marescens (-) 60 SMAR 8. Enterobacter aerogens (-) 13048 EEAE 9. Bacillus subtilis (+) 6633 BSUB 10. Pseudomonas cepacia (-) 17765 PSCP 11. Salmonella choleraesuis (-) 10708 SCHO 12. Flavobacterium flavescens (-) 8315 FFLA FUNGI 1. Aspergillus niger 6275 ANIG 2. Penicillium funiculosum 11797 PFUN 3. Cladosporium resinae 52833 CRES 4. Aureobasidium pullulans 9348 APUL 5. Chaetomium globosum 6205 CGLO 6. Poria placenta 11538 PPLA 7. Gloeophyllum trabeum 11539 GTRA YEAST 8. Sacharomyces cerevisiae 560 SSER 9. Rhodotorula rubra 2503 RRUB
Claims (15)
1. Compound of the formula R 3 in which Rj and R2 are either joined to form a ring; or alternatively R2 is H or an amine protective group, Ri is H, an amine protective group or a moiety of the formula in which R5 and R 6 are either joined to form a ring or are each H or an amine protective group; and R3 and R4 are each independently H, lower alkyl, aryl, arylalkyl, CH 2 OR, CH 2 SR or CH(CH 3 )OR where R = H, lower alkyl, arylalkyl or aryl; wherein when Rt and R2 or R5 and R 6 are both H, the compound is either in free base form or in salt form.
2. Compound according to claim 1 wherein said amine protective group is an amide, carbamate, imine, enamine, aminoacetal, N-alkyl, N-benzyl, N-sulfenyl or N-sulfonyl group.
3. Compound according to claim 1 or 2 wherein said compound is in salt form with a conjugate acid which is one of hydrochloric, sulfuric, acetic, propionic, sorbic, trifluoroacetic, hydrobromic, or formic.
4. Compound according to claim 1 or 2 wherein Ri and R2 or, if present, R 5 and R 6 are joined to form a ring which is a cyclic imide derivative being one of either phthaloyl, diphenylmaleoyl, or dithiasuccinoyl. - 42
5. Compound according to any preceding claim wherein said compound is N-t-butoxycarbonyl glycine iodopropargyl ester; N-tbutoxycarbonyl-L-alanine iodopropargyl ester; N-t-butoxycarbonyl-Obenzyl-L-serine iodopropargyl ester; N-t-butoxycarbonyl-S-benzyl-Lcysteine iodopropargyl ester; N-t-butoxycarbonyl-O-benzyl-L-threonine iodopropargyl ester; N-t-butoxycarbonyl-S-propargyl-L-cysteine iodopropargyl ester; glycine iodopropargyl ester trifluoroacetate; Lalanine iodopropargyl ester trifluoroacetate; O-benzyl-L-serine iodopropargyl ester trifluoroacetate; S-benzyl-L-cysteine iodopropargyl ester trifluoroacetate; O-benzyl-L-threonine iodopropargyl ester trifluoroacetate; N-t-butoxycarbonyl-L-alanylglycine iodopropargyl ester; N-t-butoxycarbonyl-L-alanyl-L-alanine iodopropargyl ester; N-tbutoxycarbonyl-L-alanyl-O-benzyl-L-serine iodopropargyl ester; N-tbutoxycarbonyl-L-alanyl-S-benzyl-L-cysteine iodopropargyl ester; N-tbutoxycarbonyl-L-alanyl-O-benzyl-L-threonine iodopropargyl ester; Lalanylglycine iodopropargyl ester trifluoroacetate; L-alanyl-L-alanine iodopropargyl ester trifluoroacetate; L-alanyl-O-benzyl-L-serine iodopropargyl ester trifluoroacetate; L-alanyl-S-benzyl-L-cysteine iodopropargyl ester trifluoroacetate; L-alanyl-O-benzyl-L-threonine iodopropargyl ester trifluoroacetate; L-alanine iodopropargyl ester; Lcysteine trifluoroacetate; N-t-butoxycarbonyl-D-alanine iodopropargyl ester; D-alanine iodopropargyl ester trifluoroacetate; N-tbutoxycarbonyl-D-alanyl-D-alanine iodopropargyl ester; N-tbutoxycarbonyi-D-alanyl-L-alanine iodopropargyl ester; N-tbutoxycarbonylglycyl-L-alanine iodopropargyl ester; N-acetylglycine iodopropargyl ester; N-benzoylglycine iodopropargyl ester; Nphthaloylglycine iodopropargyl ester; N-benzyloxycarbonylglycine iodopropargyl ester; N-formylglydne iodopropargyl ester; Npropionylglycine iodopropargyl ester; N-octanoylglycine iodopropargyl ester; or N-sorbylglycine iodopropargyl ester. - 43
6. Composition comprising a compound according to any preceding claim and an agronomically acceptable carrier, a cosmetic agent, a cutting oil, a soap or synthetic detergent, a stabilizer, or a film forming material.
7. Use of a compound or composition according to claim 1 as a microbidde.
8. Method of preventing or inhibiting the growth of bacteria, fungi, algae or viruses in a locus susceptible or subject to contamination thereby, comprising incorporating into or onto said locus a compound or composition according to any of claims 1 to 6 in an amount effective to adversely affect said growth.
9. Method according to claim 8 wherein said locus is wood, paint, adhesive, glue, paper, textile, leather, plastics, cardboard, lubricants, cosmetics, food, caulking, feed or industrial cooling water.
10. A compound of the formula (I) given and defined in claim 1, substantially as hereinbefore described and exemplified.
11. A composition according to claim 6, substantially as hereinbefore described.
12. Use according to claim 7, substantially as hereinbefore described.
13. a method according to claim 8, substantially as hereinbefore described.
14. A process for preparing a compound of the formula (I) given and defined in claim 1, substantially as hereinbefore described and exemplified.
15. A compound of the formula (I) given and defined in claim 1, whenever prepared by a process claimed in claim 14.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US39886789A | 1989-08-25 | 1989-08-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
IE903098A1 true IE903098A1 (en) | 1991-02-27 |
Family
ID=23577111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
IE309890A IE903098A1 (en) | 1989-08-25 | 1990-08-24 | Use of iodopropargyl esters of ó-amino acid derivatives as¹antimicrobial agents |
Country Status (11)
Country | Link |
---|---|
EP (1) | EP0414533A1 (en) |
JP (1) | JPH0390055A (en) |
AU (1) | AU643696B2 (en) |
BR (1) | BR9004202A (en) |
CA (1) | CA2023176A1 (en) |
HU (1) | HU206670B (en) |
IE (1) | IE903098A1 (en) |
IL (1) | IL95484A0 (en) |
NZ (1) | NZ234998A (en) |
PL (1) | PL286620A1 (en) |
ZA (1) | ZA906665B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5209930A (en) * | 1990-12-10 | 1993-05-11 | Rohm And Haas Company | Preparation and use of n-iodopropargyl oxycarbonyl amino acid esters and derivatives as antimicrobial agents |
SI2046817T1 (en) * | 2006-07-05 | 2010-04-30 | Momenta Pharmaceuticals Inc | Improved process for the preparation of copolymer-1 |
EP2174130A2 (en) | 2007-06-21 | 2010-04-14 | Momenta Pharmaceuticals, Inc. | Copolymer assay |
EP2597082A1 (en) * | 2011-11-24 | 2013-05-29 | Symrise AG | Compounds for masking an unpleasant taste |
CN103242187B (en) * | 2013-04-28 | 2016-01-06 | 华南理工大学 | Sorbic acid-amino acid ester derivate of antimicrobial preservative and preparation method thereof |
CN113287531B (en) * | 2020-02-24 | 2023-04-07 | 四川光年轮科技有限公司 | Pet sanitation system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
OA04979A (en) * | 1974-04-09 | 1980-11-30 | Ciba Geigy | New aniline derivatives useful as microbicidal agents and their preparation process. |
JPS54125614A (en) * | 1978-03-20 | 1979-09-29 | Shigaken Pharm | Novel acid amide derivative and its manufacture |
JPS59112978A (en) * | 1982-12-21 | 1984-06-29 | Shionogi & Co Ltd | Propynylaminothiazole derivative |
-
1990
- 1990-08-13 CA CA002023176A patent/CA2023176A1/en not_active Abandoned
- 1990-08-21 NZ NZ234998A patent/NZ234998A/en unknown
- 1990-08-22 EP EP90309228A patent/EP0414533A1/en not_active Withdrawn
- 1990-08-22 ZA ZA906665A patent/ZA906665B/en unknown
- 1990-08-24 HU HU905325A patent/HU206670B/en not_active IP Right Cessation
- 1990-08-24 JP JP2224170A patent/JPH0390055A/en active Pending
- 1990-08-24 BR BR909004202A patent/BR9004202A/en unknown
- 1990-08-24 IE IE309890A patent/IE903098A1/en unknown
- 1990-08-24 AU AU61317/90A patent/AU643696B2/en not_active Ceased
- 1990-08-24 PL PL28662090A patent/PL286620A1/en unknown
- 1990-08-24 IL IL95484A patent/IL95484A0/en unknown
Also Published As
Publication number | Publication date |
---|---|
BR9004202A (en) | 1991-09-03 |
AU643696B2 (en) | 1993-11-25 |
AU6131790A (en) | 1991-02-28 |
HUT56057A (en) | 1991-07-29 |
EP0414533A1 (en) | 1991-02-27 |
IL95484A0 (en) | 1991-06-30 |
CA2023176A1 (en) | 1991-02-26 |
NZ234998A (en) | 1993-01-27 |
HU905325D0 (en) | 1991-02-28 |
HU206670B (en) | 1992-12-28 |
PL286620A1 (en) | 1992-05-18 |
JPH0390055A (en) | 1991-04-16 |
ZA906665B (en) | 1991-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5209930A (en) | Preparation and use of n-iodopropargyl oxycarbonyl amino acid esters and derivatives as antimicrobial agents | |
US5149524A (en) | Antimicrobial polymeric quaternary ammonium salts | |
US5142058A (en) | Halogen-containing organic stabilizers for 3-isothiazolones | |
NO172688B (en) | Carbamic acid ester | |
US5464832A (en) | Substituted 3-thioacryloyl compounds and their use as antimicrobial agents | |
US5252745A (en) | Preparation and use of iodopropargyl esters of α-amino acid derivatives as antimicrobial agents | |
IE903098A1 (en) | Use of iodopropargyl esters of ó-amino acid derivatives as¹antimicrobial agents | |
US5391561A (en) | Halopropargyl compounds, compositions, uses and processes of preparation | |
CA2029302A1 (en) | Use of carbonyl stabilizers for 3-isothiazolones | |
US5179127A (en) | Halopropargyl acyl compound, compositions, microbicidal uses and processes of preparation | |
US4975459A (en) | Microbicidal and plant growth regulating compounds | |
AU652935B2 (en) | Halopropargyl compounds and the use thereof as microbicides | |
EP1110454A2 (en) | 5-Carboxanilido-haloalkylthiazoles as antimicrobial and marine antifouling agents | |
HU212190B (en) | Process for stabilizing 3-isothiazolones with hexamethylenetetramine and stabilized 3-isothiazolones compositions | |
JP4347421B2 (en) | Combination microbicide of propiconazole and dodecylamine or dodecylamine salt | |
US5091399A (en) | Antimicrobial compounds and methods of use | |
AU617758B2 (en) | 1-methyl-3,5,7-triaza-1-azoniatricyclodecane compounds, a method for preparing these compounds, and their use in the control of microorganisms in aqueous systems | |
IL100293A (en) | Stabilization of 3-isothiazolones by certain hydrazide compounds | |
CA2056672A1 (en) | Halopropargyl mercaptotriazole compounds, compositions, uses and processes of preparation | |
DE69010838T2 (en) | New benzoxazolone compounds and their use as a microbicide. | |
CA2049475A1 (en) | Substituted 3-thioacryloyl coumpounds and their use as antimicrobial agents | |
JPH04244055A (en) | Substituted 3-thioacryloyl compound and antimicrobial containing same |