IE902564A1 - Evaporation covers - Google Patents

Evaporation covers

Info

Publication number
IE902564A1
IE902564A1 IE256490A IE256490A IE902564A1 IE 902564 A1 IE902564 A1 IE 902564A1 IE 256490 A IE256490 A IE 256490A IE 256490 A IE256490 A IE 256490A IE 902564 A1 IE902564 A1 IE 902564A1
Authority
IE
Ireland
Prior art keywords
cover
test element
station
groove
analyzer
Prior art date
Application number
IE256490A
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Publication of IE902564A1 publication Critical patent/IE902564A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0825Test strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/52Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00079Evaporation covers for slides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00455Controlling humidity in analyser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

It is well known to use covers in clinical analyzers to prevent significant evaporation of a patient sample retained on a test element. In many cases, the cover includes a groove which accommodates protruding drops of patient sample and/or reference fluid retained on a potentiometric test element. However, due to the increased efficiency and faster operating rates of newer analyzers, colorimetric test elements are now being moved into stations in the analyzer with drops of patient sample protruding above their surface. Described herein is a cover (52) for use with colorimetric test elements (E) for use in stations which are downstream of a sample-spotting station (40) of the analyzer. Undersurface (62) of the cover (52) has a lengthwise groove (60) formed in it to accommodate a drop of patient sample protruding from the test element (E), the groove (60) not extending the full length of the cover (52) thereby preventing significant evaporation of the sample.

Description

EASTMAN KODAK COMPANY, a Corporation organised and existing under the laws of the State of New Jersey, United States of America, of 343 State Street, Rochester, New York, 14650, United States of America EVAPORATION COVERS The invention concerns evaporation covers which are used in analyzers, especially such covers for test elements which have sample drops protruding therefrom.
Clinical analyzers have for years provided rapid and accurate tests using slide-like test elements, as described, for example, in US Patent Specification US—A-4298571. Incubators have been used in such analyzers, along with preheat stations, to control the temperature of the test element while a patient sample drop spotted thereon undergoes a chemical reaction to produce a detectable change. In such incubators, a test element is transferred from a spotting station to a preheat station, to an incubator, and then to a change-detecting station.
In most of the stations following the spotting station, a cover is used to contact the spotted test element to prevent significant evaporation of the sample. Such a cover is disclosed in US-A-4298571. Because some of the test elements are potentiometric types which have sample and/or reference drops protruding from the test element for a long time, the cover is grooved from side to side to allow clearance of the sample or drop. There is no need and no provision, however, in such covers, for the grooves to run from the exterior edge at which the test element enters, lengthwise along the direction of movement of the test element, since a piston is used to raise and lower the cover.
Instead, the groove runs perpendicular to the direction of slide movement. Furthermore, the groove does not extend to any edge surface of the cover.
Covers with undercut grooves have been used for potentiometric test elements because the drops on such elements have protruded above the rest of the —2— test element. Such protrusion after spotting has not been a significant problem with most colorimetric elements, at least, not the type also useful with the analyzer disclosed in US-A-4298571, since sample absorption is much more rapid in such colorimetric elements.
A problem has arisen, however, in the design of new analyzers which are to operate at higher throughput speeds to provide increased efficiency.
Such new analyzers utilize a preheat station which receives colorimetric or rate test elements soon after spotting, e.g. 500ms afterwards, that the drop still protrudes above the test element. Conventional covers in stations following the spotting station, e.g. the preheat station, have been unsatisfactory since they are designed to fit with an undersurface which is in flush contact with the test element.
Such flush fit means the drop is wiped onto the undersurface as the test element is advanced into the particular station. This in turn produces unacceptable contamination of the cover and loss of sample volume.
One attempt at solving this problem was to provide a longitudinal groove extending the full length of the cover. However, this was a failure due to the rapid evaporation which such a groove allowed to the drop.
It is therefore an object of the present invention to provide a solution which meets three competing goals, namely: 1) to provide a cover undersurface constructed in such a way that it does not wipe the drop of a colorimetric element, 2) to keep such a drop from experiencing ^5 significant evaporation, and 3) to minimize gaseous carryover.
\E 902564 In accordance with one aspect of the present invention, there is provided a clinical analyzer for use with slide—like test elements comprising a spotting station for placing a drop of patient sample onto a test element, and a plurality of further stations following the spotting station, at least one of the further stations including a cover having a contact surface which is in contact with each test element after it has been spotted, each contact surface having a groove extending inward from an edge of the cover adjacent to an exterior location, and transfer means for transferring each test element from the exterior location to an interior location under the cover in a predetermined direction into each station, each test element being transferred whilst in contact with the cover; characterized in that the groove a) is closed at an end at the interior location, b) has an axis of orientation which is parallel to the predetermined direction, c) has a clearance and shape adequate to accommodate without contact any sample drop of a predetermined volume protruding from the test element, and d) has a width which is less than the width of a covered test element.
It is an advantageous feature of the invention that a cover is provided for already-spotted colorimetric or rate test elements which avoids contacting drops of sample not yet absorbed, without significant evaporation occurring.
Another advantageous feature is that such a cover can be constructed of a variety of materials 35 and still prevent undesired carry-over of gaseous byproducts to subsequent test elements. -4The present invention will now be described by way of example only with reference to the accompanying drawings in which:— Figure 1 is a perspective view of the 5 undersurface of a cover of the prior art; Figure 2 is a fragmentary schematic view of an analyzer constructed in accordance with the present invention; Figure 3 is a fragmentary sectioned view 10 taken generally along line III-III of Figure 2; Figure 4 is a bottom plan view of the cover shown in Figure 3;and Figure 5 is a fragmentary sectioned view taken generally along V of Figure 3.
The invention is particularly described regarding its use in a preheat station of an analyzer which is positioned between a spotting station and an incubator, the analyzer being used to process colorimetric-type test elements. In addition, it is useful with other types of test elements and in other stations which follow the spotting station, including the incubator, provided that the residence time of the test element in such other stations, and the flow rate of air in the vicinity of the cover, are such as to restrict significant evaporation. As used herein, evaporation is ’’significant if the loss of fluid exceeds 0.5μ1.
A cover constructed in accordance with US—A—4298571 is shown in Figure 1. The cover 10 has a groove 12 in undersurface 14 which extends transversely to the direction of movement of a test element under the cover 10, as shown by arrow 16.
Groove 12 does not extend the full width, but is closed at both ends 18, 20. The depth of the groove 12 is such as to accommodate two drops (without touching). The drops are shown in phantom as d and d’ on a potentiometric test element E', which is also in phantom. —5— According to the present invention, an improved cover is preferably used in a preheat station 30 of an analyzer as shown in Figure 2. The preheat station 30 receives test elements from transfer means 32, which in turn receives each test element from a spotting station 40 and sends preheated elements on to an incubator 42, which can be any conventional incubator such as the rotating type illustrated. Transfer means 32, shown in Figure 3, preferably comprises a support platform 34 and a pusher blade 36 which pushes a spotted test element E into station 30 (also shown in phantom in Figure 4).
A conventional pusher blade 38 can be used to return preheated elements to transfer means 32, where another mechanism (not shown) is effective to forward a test element to the incubator 42 as shown by arrow 44 in Figure 2. Alternatively, a more complicated finger arrangement (not shown) can be used to replace blades 36 and 38, as shown in Figure 3, so that the fingers both feed elements into preheat station 30, and return elements from that preheat station.
Preheat station 30 preferably comprises an element support surface 50, a cover 52, and biasing means 54 for biasing the cover down onto a test element E. Any biasing means will suffice, such as conventional compression springs. Cover 52 includes a boss 56 which cooperates with the biasing means 54, and a camming lip 58 to encourage a test element to be inserted between the cover 52 and support surface 50.
In accordance with one aspect of the invention, as shown in Figures 3, 4 and 5,-cover 52 comprises a groove 60 in undersurface 62 extending lengthwise from lower edge 64 of lip 58. In particular, edge 64 is the leading edge of undersurface 62, as shown in Figure 3, which is —6— adjacent the exterior of the station 30 from whence comes a test element for insertion. However, groove 60 having bottom surface 63 is closed at end wall 66 which is interior of the station 30, leaving sidewalls 68 extending from end wall 66 to edge 64. The purpose of closed end 66 is to prevent circulating air from readily reaching a drop surrounded by sidewalls 18 and end wall 66, as shown in Figure 4, the position of a drop D being shown in phantom. The width w of the groove (Figure 4) as well as its depth t (Figure 3) are selected to keep the drop from contacting any part of the cover 52 for drop volumes no greater than 20μ1, and preferably volumes of 10μ1. Recognizing that some static electricity can attract the drop, t is most preferably at least about 0.254mm. The reason is that the clearance between bottom surface 63 of the groove and the top of a protruding drop is preferably at least 0.18mm, the drops having a volume no greater than about 12μ1 and thus a protrusion above the plane of the test element’s exterior surface which is preferably about 0.17mm.
End wall 66 can be made quite thin, that is, can closely approach opposite edge 72 of cover 52.
However, if groove 60 were to extend the full length as suggested by phantom lines 74 in Figure 4, it would provide too much evaporation of drop D, and therefore produce undesirable results.
Groove 60 has its long axis 76 oriented so as to be parallel to the direction of movement of the test element, as shown by arrows 78 in Figure 4.
Any material is useful for surfaces 62 and 63. Preferably, however, it is Teflon (Registered Trade Mark) or polyethylene. Surprisingly, Teflon is equally as good in this configuration in preventing carryover of SO2 gas generated by —7— phosphorus—testing test elements, compared to polyethylene. This result was found not to exist heretofore. —8—

Claims (6)

CLAIMS:
1. A clinical analyzer for use with slide-like test elements (E) comprising a spotting station (40) for placing a drop of patient sample 5 onto a test element (E), and a plurality of further stations (30) following the spotting station (40), at least one of the further stations (30) including a cover (52) having a contact surface (62) which is in contact with each test element (E) after it has been 10 spotted, each contact surface (62) having a groove (60) extending inward from an edge (58, 64) of the cover (52) adjacent to an exterior location, and transfer means (32, 34, 36, 38) for transferring each test element (E) from the exterior location to an 15 interior location under the cover (52) in a predetermined direction into each station (30), each test element (E) being transferred whilst in contact with the cover (52); characterized in that the groove (60) 20 a) is closed at an end (66) at the interior location, b) has an axis (76) of orientation which is parallel to the predetermined direction, c) has a clearance and shape adequate to 25 accommodate without contact any sample drop (D) of a predetermined volume protruding from the test element (E), and d) has a width (w) which is less than the width of a covered test element (E). 30
2. An analyzer according to claim 1, wherein the station (30) having the cover (52) is a preheat station prior to an incubator.
3. An analyzer according to claim 1 or 2, wherein the clearance is at least about 0.18mm above 35 the height a 10μ1 drop of liquid can occupy on a test element (E) before it is absorbed therein. —9—
4. An analyzer according to claim 1 or 2, wherein the contact surface (62) comprises a material selected from TEFLON or polyethylene.
5. with reference drawings. An analyzer substantially as described herein to and as shown in Figures 2 to 5 of the accompanying
6. A cover for an analyzer substantially as described herein with reference to and as shown in Figures 3 to 5 of the accompanying drawings.
IE256490A 1989-07-14 1990-07-13 Evaporation covers IE902564A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/380,839 US4943415A (en) 1989-07-14 1989-07-14 Grooved cover for test elements

Publications (1)

Publication Number Publication Date
IE902564A1 true IE902564A1 (en) 1991-02-27

Family

ID=23502641

Family Applications (1)

Application Number Title Priority Date Filing Date
IE256490A IE902564A1 (en) 1989-07-14 1990-07-13 Evaporation covers

Country Status (8)

Country Link
US (1) US4943415A (en)
EP (1) EP0408147B1 (en)
JP (1) JP2533491Y2 (en)
KR (1) KR910003381A (en)
CA (1) CA1327281C (en)
DE (1) DE69030690T2 (en)
HK (1) HK117397A (en)
IE (1) IE902564A1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250262A (en) 1989-11-22 1993-10-05 Vettest S.A. Chemical analyzer
US5089229A (en) 1989-11-22 1992-02-18 Vettest S.A. Chemical analyzer
US5026526A (en) * 1990-02-09 1991-06-25 Eastman Kodak Company Automated capping means for analyzer pipette
US5595707A (en) 1990-03-02 1997-01-21 Ventana Medical Systems, Inc. Automated biological reaction apparatus
US5106586A (en) * 1990-05-23 1992-04-21 Eastman Kodak Company J-shaped spring used in incubator
US5266267A (en) * 1993-02-26 1993-11-30 Eastman Kodak Company Incubator with non-spotting evaporation caps
JP3051626B2 (en) * 1993-12-09 2000-06-12 富士写真フイルム株式会社 incubator
DE19753850A1 (en) 1997-12-04 1999-06-10 Roche Diagnostics Gmbh Sampling device
SG102538A1 (en) * 1998-04-24 2004-03-26 Roche Diagnostics Gmbh Storage container for analytical devices
EP1075328B1 (en) * 1998-05-01 2005-11-16 Gen-Probe Incorporated Automated diagnostic analyzing method
US8337753B2 (en) 1998-05-01 2012-12-25 Gen-Probe Incorporated Temperature-controlled incubator having a receptacle mixing mechanism
US7648678B2 (en) 2002-12-20 2010-01-19 Dako Denmark A/S Method and system for pretreatment of tissue slides
US7273591B2 (en) 2003-08-12 2007-09-25 Idexx Laboratories, Inc. Slide cartridge and reagent test slides for use with a chemical analyzer, and chemical analyzer for same
US20050079103A1 (en) * 2003-10-14 2005-04-14 Merrit Jacobs Moving evaporation control cover
US7588733B2 (en) 2003-12-04 2009-09-15 Idexx Laboratories, Inc. Retaining clip for reagent test slides
US7867768B2 (en) * 2007-02-08 2011-01-11 Ortho-Clinical Diagnostics, Inc. Two dimensional sample handler
US9116129B2 (en) 2007-05-08 2015-08-25 Idexx Laboratories, Inc. Chemical analyzer
US7766846B2 (en) * 2008-01-28 2010-08-03 Roche Diagnostics Operations, Inc. Rapid blood expression and sampling
CN103543282A (en) 2010-07-23 2014-01-29 贝克曼考尔特公司 System for processing samples
EP2776846B1 (en) 2011-11-07 2019-08-21 Beckman Coulter, Inc. Aliquotter system and workflow
WO2013070754A1 (en) 2011-11-07 2013-05-16 Beckman Coulter, Inc. Robotic arm
CN104053997B (en) 2011-11-07 2016-12-21 贝克曼考尔特公司 For processing the system and method for sample
EP2776844B1 (en) 2011-11-07 2020-09-30 Beckman Coulter, Inc. Specimen container detection
EP2776847A1 (en) 2011-11-07 2014-09-17 Beckman Coulter, Inc. Magnetic damping for specimen transport system
WO2013070755A2 (en) 2011-11-07 2013-05-16 Beckman Coulter, Inc. Centrifuge system and workflow
US9797916B2 (en) 2014-01-10 2017-10-24 Idexx Laboratories, Inc. Chemical analyzer
US10427162B2 (en) 2016-12-21 2019-10-01 Quandx Inc. Systems and methods for molecular diagnostics
CN115836207A (en) 2020-07-10 2023-03-21 Idexx实验室公司 Point-of-care medical diagnostic analyzer, and apparatus, system, and method for performing medical diagnostic analysis on a sample

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298571A (en) * 1976-12-17 1981-11-03 Eastman Kodak Company Incubator including cover means for an analysis slide
JPS5821566A (en) * 1981-07-31 1983-02-08 Fuji Photo Film Co Ltd Incubator
US4568519A (en) * 1983-06-29 1986-02-04 Eastman Kodak Company Apparatus for processing analysis slides
US4798705A (en) * 1985-12-24 1989-01-17 Eastman Kodak Company Compact analyzer
US4814279A (en) * 1986-03-17 1989-03-21 Fuji Photo Film Co., Ltd. Incubator for chemical-analytical slide

Also Published As

Publication number Publication date
EP0408147A2 (en) 1991-01-16
KR910003381A (en) 1991-02-27
JP2533491Y2 (en) 1997-04-23
EP0408147B1 (en) 1997-05-14
CA1327281C (en) 1994-03-01
US4943415A (en) 1990-07-24
EP0408147A3 (en) 1991-10-16
JPH0322698U (en) 1991-03-08
DE69030690T2 (en) 1997-09-18
DE69030690D1 (en) 1997-06-19
HK117397A (en) 1997-09-05

Similar Documents

Publication Publication Date Title
IE902564A1 (en) Evaporation covers
JP2559688Y2 (en) Analyzer for analysis of biological fluids
EP1648608B1 (en) Reaction cuvette having anti-wicking features for use in an automatic clinical analyzer
US5219526A (en) Assay cartridge
US4731225A (en) Automatic analysis apparatus
US5632399A (en) Self-sealing reagent container and reagent container system
EP0042338A1 (en) Apparatus for processing an analysis slide
US6197597B1 (en) Solid phase immunoassay with carriers matching the shape of sample wells
KR101501316B1 (en) Reaction vessel and method for the handling thereof
JPH06308033A (en) Test strip analysis system
EP3361261A1 (en) Specimen rack transfer device and automatic analysis system
US5034191A (en) Incubator and analyzer with improved cap raising means
EP0567067A1 (en) Cartridge for storing dry analytical film slides
WO1993001739A1 (en) Reusable seal for diagnostic test reagent pack
WO2004054885A2 (en) Method for replacing used reaction cuvettes in an automatic analyzer depending upon next scheduled assay
US5053198A (en) Used test element collection apparatus and method
JP4330624B2 (en) Magazine for storing reaction cuvettes in automated analyzers
IE910422A1 (en) Automated capping means for analyzer pipette
EP0396194A2 (en) Universal evaporation cover
US6183694B1 (en) Spectrophotometric apparatus for reducing fluid carryover
US4539182A (en) Automated reagent blotter
US20050013743A1 (en) I-shaped slit in a lidstock covering an array of aliquot vessels
JP2009058322A (en) Liquid vessel and automatic analyzer
US5266267A (en) Incubator with non-spotting evaporation caps
JPS61250561A (en) Automatic chemical analyser