IE55147B1 - An improved process for forming a dried coating upon a substrate - Google Patents

An improved process for forming a dried coating upon a substrate

Info

Publication number
IE55147B1
IE55147B1 IE93984A IE93984A IE55147B1 IE 55147 B1 IE55147 B1 IE 55147B1 IE 93984 A IE93984 A IE 93984A IE 93984 A IE93984 A IE 93984A IE 55147 B1 IE55147 B1 IE 55147B1
Authority
IE
Ireland
Prior art keywords
vehicle
substrate
drying agent
catalyst
gun
Prior art date
Application number
IE93984A
Other versions
IE840939L (en
Original Assignee
Vapocure Int Pty
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vapocure Int Pty filed Critical Vapocure Int Pty
Priority to IE93984A priority Critical patent/IE55147B1/en
Priority to IE1699/88A priority patent/IE55148B1/en
Publication of IE840939L publication Critical patent/IE840939L/en
Publication of IE55147B1 publication Critical patent/IE55147B1/en

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Description

The Invention relates to the drying of coatings, films and the like. By the Invention there Is provided an Improved process (and resultant product) whereby said drying Is carried out more efficaciously than heretofore.
Patent Specification No. 5 514 8χΞ divided from this application and discloses and claims an apparatus adapted simultaneously to apply a vehicle and a drying agent upon a substrate.
In one broad aspect, the Invention provides a process for forming a dried coating upon a suitable substrate comprising coating a vehicle upon said substrate, and subjecting the coated vehicle to treatment with a drying agent, the said agent being electrostatically deposited upon the coated vehicle. The invention has other aspects as will be evidenced hereafter.
The invention finds application in the drying of paints, lacquers, varnishes, printing vehicles and printing inks, liquid adhesives, surface coatings, caulking compounds and the like. In the above definition, the following are to be understood: 1. In respect of coating, film or the like - which is to be, or has been, subjected to the process of the invention - the term "drying" is to be understood as (i) including within its ambit "curing" and as (ii) indicating that the coating is either free from "tack", insoluble in solvent, possessed of an advanced degree of integrity, or able to withstand reasonable abrasidh or pressure without damage. It will also be appreciated that, in some circumstances, a dry coating may evidence all of the foregoing qualities. The expression "coating", when used as a noun, is, for the purposes of this invention, to be understood as synonymous with "film" (or the like). 2. The expression "substrate" 1s to be construed in the widest possible sense, any surface to which the·- 3 3 55147 vehicle can be adheringly applied, and upon which it will be retained while treatment with the agent is being effected, being within the ambit of the invention. Thus, such wide-ranging materials as paperboard, metal foil, steel plate, plastic material, thermally sensitive material and so on may (depending upon other circumstances) be employed. 3. The expression "vehicle" includes within its ambit the paints et al as particularised heretofore. 4. The expression “agent" connotes the at least one chemical compound which effect(s) the curing or drying of the vehicle.
It may be sometimes alternatively referred to, in this text, as a catalytic agent, or simply as a catalyst.
In one form of the invention, the vehicle may be of the type which contains free isocyanate groups. The expression "free isocyanate groups" includes within its ambit potentially free such groups, the meaning to be conveyed being that the pre-polymer has isocyanate groups which are releasable, or available, for reaction with any other compound possessing active hydrogen sites (for the purposes of polymer propagation and/or film formation). Compounds containing free isocyanate groups are to be understood as embracing all such compounds. Accordingly, comprehended thereby are, not only isocyanates with urethane structure and polyisocyanates, but also those with polyisocyanurate, biuret, and allophanate structure.
The drying (or catalytic) agent, which may effect its treatment in vapour-phase, may be anmonia, or an amine, or any other compound, such as organo metals capable of accelerating the desired reaction pathway. The expression "amine" includes within its ambit not only 4 55147 those of simple primary aliphatic monofunctional structure, but also amines characterised by (i) polyfunctionality and (ii) a more advanced . degree of hydrogen substitution. The expression “vapour-phase" denotes that the agent - namely amnonia, an amine et al - is in 5 gaseous, vapour, or any other entrained air-borne form (e.g. dispersion, fog or aerosol) in which it is available for reaction.
The amine itself may be widely exemplified. Thus, typical examples are mono compounds such as methyl amine, ethyl amine, propylamine, isopropylamine and the numerous isomers of butyl amine, 10 and polyfunctional amines such as hydrazine, ethylene-diamine, propylene diamine and diethylene triamine. Further examples are diethyl amine, triethylamine and dimethyl ethanol amine (DMEA) the latter being an alkanolamine, and ditertiary amines such as Ν,Ν,Μ',N'-tetra-methy1 ethylenediamine (THEDA) and H,N,H',H' ,2-pentamethyl-1, 15 2-propanediamine (PHT) - and, indeed, any combination of such amines, proportioned as required, whereby advantage may be taken of the synergistic effect of such a conbination.
The organo metals may also be widely exemplified. Thus, typical examples are dibutyl tin dilaurate, lead tetraethyl, titanium acetyl 20 acetonate, dimethyl tin dichloride, and stannous and zinc octoates. Likewise, advantage can be taken of the synergistic effect of these compounds in association both with one another and with the above-mentioned amine(s).
The vehicle may be a one- or two- component paint et al which 25 contains free isocyanate groups (as defined above). A typical such 5 55147 otherwise deposited upon a substrate to be coated, and speedily dried by a vapour-phase drying agent as further demonstrated hereafter - is a two-component preparation formulated front a hydroxyl-bearing synthetic resinous first component, and an isocyanate terminated pre-polymer second component. It will be appreciated that these components are themselves capable of wide exemplification.
One suitable such paint is a two-component white polyurethane preparation in which pigment dispersion has been carried out using a coconut alkyd based resin which is subsequently mixed with an isocyanate terminated pre-polymer based on XDI (xylene diisocyanate). In alternative formulations, the XDI- based isocyanate terminated pre-polymer can be replaced by one or more pre-polymer(s) based on (using the standard abbreviations) MDI, TDI, HDI, Ηΐ2Μ°Ι> IPDI» and HgXDI - or the reaction products of these diisocyanate monomers with appropriate polyols, polycarboxy or polyamine intermediates.
Likewise, the first component can be alternatively chosen from inter alia (using generic designations) acrylic, epoxy, polyether, polyester and polysiloxane resins.
A further exemplary vehicle, which is able to be electrostatically or otherwise coated upon the substrate, and speedily dried in accordance with the invention, is a two-part vehicle in which the first part comprises a polyepoxide resin containing hydroxyl groups, and the second part comprises a resin containing free polyamide groups.
According to the invention there is provided a process for forming a dried coating upon a substrate employing a vehicle to be coated upon the substrate and a drying agent for drying the vehicle upon the substrate, comprising vaporising the drying agent and employing an electrostatic field to direct the vaporised drying agent towards the substrate with the vehicle or subsequent to the coating of the substrate with the vehicle.
In one form of the invention, the electrostatic field may be established in orthodox fashion, typically per medium of an electrostatic gun of the type conventionally known for that purpose. 6 55147 Electrostatic co-deposition, that is, simultaneous application of both coating and drying agent by action of an electrostatic field, is also within the ambit of the invention. From this aspect the invention provides a process for forming a dried coating upon a 5 substrate, comprising subjecting a vehicle to be coated upon the substrate to an electrostatic field which is operable to mobilise the vehicle, vaporising a drying agent, and employing the electrostatic field to effect co-deposition of the vaporised drying agent and the vehicle on to the substrate.
The vehicle, typically a paint, may be coated by hand painting (using a brush), dipping, spraying - or by using apparatus whereby- the coating of the paint upon the substrate is itself electrostatically performed. Such electrostatic deposition of paint may be effected by 7 55147 The vapour-phase drying agent can be generated in a variety of ways, Including evaporative or injection techniques.
An embodiment of the Invention will now be described, by way of example, with reference to the accompanying drawings, in which:- 5 Figure 1 is a perspective-type view of apparatus for providing (generating) the drying agent in vapour-phase, and Figure 2 is a perspective-type view of apparatus for carrying out the process of the invention by effecting deposition of drying agent - or co-deposition of 5 514? « vehicle and drying agent.
The apparatus of figure 1 (generally designated by the numeral 1) is comprised of a box-like outer structure 2 containing a tank 3 for the liquid catalyst. The catalyst is 5 atomized within an inner chamber 4, situated beneath tank 3, by means of atomizing nozzles 5 which receive catalyst from the tank 3 under gravity, air is admitted to the chamber 4 via an air inlet filter 7 in a side 8 of the structure. Within the chamber 4, a turbulent air flow is created in order to facili-10 tate mixing and atomization therein. This is achieved by a turbulence-creating fan 6 in the base of the chamber.
The atomizing nozzles 5, whilst being fed with catalyst from the tank 3, receive compressed air via a hose 9 which is used to produce a fine atomizing spray at the nozzle 5.
To deliver the vapour-phase catalyst from the chamber 4, a variable-speed turbulence fan 10, the operation of which is controlled from mechanism 16, is located in a side 11 of the structure opposite the side 8 containing the air filter 7.
The fan 10 directs vapour-phase catalyst to a required 20 location - in a particular instance to the co-deposition apparatus as defined above and described hereafter with reference to Figure 2 - via a flexible conduit 12. Located in a cowling 13 disposed around the fan 10 is a catalyst sensor 14. This sensor measures the concentration of vapour-phase 25 catalyst passing along the conduit and provides a concentration reading which is fed back to, and recorded on, a dial 15.
By adjusting the atomization and vapourization of the liquid catalyst stored in the tank 3, which can be controlled within pre-determined limits from the dial 15, the concentrat-3° ion of the vapour-phase catalyst being delivered from the . 9 55147 apparatus can be monitored as required. Also, as indicated heretofore, the rate of delivery of the catalyst is controlled by operation of the variable speed fan 10. In this manner, preset concentrations of catalyst can be maintained with accuracy.
In the case of molecular solution of the vapour-phase catalyst in air, the concentrations will of course vary between zero and the saturation concentration for the particular catalyst used at the temperature under consideration. In the case of aerosol fogs this restriction does not exist.
As indicated above, the apparatus of Figure 1 can use flexible conduit 12 to feed vapour-phase catalyst to the apparatus illustrated in Figure 2 (and generally designated by the numeral 20). This apparatus can be used for electrostatic deposition of catalyst only, or for the electrostatic codeposition of catalyst and a vehicle - typically paint.
The apparatus 20 comprises a standard electrostatic gun 21 having a barrel 22 from whence the electrostatic charge is emitted. Feeding into the rear of the gun 21 is a supply conduit 23 which delivers the paint to the barrel 22 of the gun, from which it is likewise emitted with an electrostatic charge. Power lead 24 provides the power for the production of the electrostatic charge in the gun 21. Thus far, the gun is conventional - and well known in the art.
As indicated above, the flexible conduit 12 can connect the apparatus of Figure 1 to the gun 21. The vapour-phase catalyst is projected to the barrel of the electrostatic gun by means of the pressure difference created by the fan 10 of Figure 1. In the apparatus of Figure 2, a barrel shroud 25, concentrically deposed around the barrel 22, ensures that the 10 551 47 vapour-phase catalyst is not anitted from the gun 21 before the tip 26 of the barrel is reached. In this way, the catalyst is also charged by the electrostatic field produced at the tip of the barrel 22 - and -is charged sufficiently to allow the vapourized, and now charged, 5 catalyst to deposit itself on an earthed substrate at which the gun is being pointed.
If the gun is to be used, in one mode, for electrostatic deposition of drying agent only (following previous painting of the substrate), actuation of trigger mechanism 27 will achieve this end.
If, in another mode, co-deposition is required, the gun 21, controlled by operation of trigger mechanism 27, will be simultaneously Supplied with paint via conduit 23, vapour-phase catalyst via conduit 12 (and electrostatic charge via lead 24). When the trigger 27 is depressed in this mode, paint from the barrel 22 and catalyst from the shroud 25 15 will be simultaneously electrostatically charged. Both the flow of paint and the flow and concentration of catalyst can be controlled to achieve a desired ratio in the co-deposition of paint and catalyst.
It will of course be readily appreciated that, when the components of Figure 1 deliver the drying agent in vapour-phase to the components of 20 Figure 2, via flexible conduit 12, the so associated components function as a single apparatus.
The process by which electrostatically charged catalyst is applied to pre-painted articles (to all surfaces thereof) or where co-deposition of electrostatically charged catalyst and paint is 25 effected (to all such surfaces), results in a significant acceleration of the curing of the paint film, to give drying times of obvious conrnercial significance. The manner In which deposition or co-deposition is effected at all surfaces will be understood from 11 55147 divergent path of drying agent and vehicle as the said agent and vehicle leave the apparatus.
The invention will now be described with reference to five numerical examples. In relation thereto, the following should be noted.
The paint employed in these examples is a two-component white polyurethane preparation as mentioned hereinbefore.
In so far as it is of known structure, the electrostatic gun is of three basic types - which, for convenience, are referred to hereafter as types I, II and III respectively. Briefly, the type I gun performs the electrostatic deposition Of paint (or other vehicle) by means of a rotating disc which atomizes the paint within an electrostatic field generated at the tip of a wire filauent disposed for that purpose (the thus charged paint being delivered to the substrate being coated). The type II gun generates an electrostatic field per medium of a filament disposed at the end of a barrel, through which is delivered the paint to be carried by the electrostatic charge (the paint being delivered to and through the barrel by means of air assistance). The type III gun operates in substantially the same manner as the type II gun; however, the paint to be electrostatically charged is delivered to the barrel hydraulically.
EXAMPLE 1 (sequential deposition) A metal panel, earthed properly, is coated on both faces with a paint as previously described, using an electrostatic hand type I gun. Air containing approximately 2,000 parts per million of dimethylethanolamine in vapour form which has been generated from the apparatus of Figure 1, is passed at right angles to the painted plate - and within two minutes of elapsed 12 55147 time, the vapour-phase catalyst is charged using an electrostatic type III gun, with no paint being supplied to the gun, and only a charge being generated. The gun is arranged opposite the plate thus allowing the charged field to intersect the catalyst 5 flow. The passage of vapour-phase catalyst and the electrostatic field from the type III gun is run continuously for approximately two minutes after which time both catalyst and electrostatic charge are discontinued. After a further eight minutes post-curing time in slightly turbulent air, the film is 10 found to have been accelerated in drying on both sides of the plate to give a satisfactorily dried film.
EXAMPLE 2 (sequential deposition) Vapourized dimethylethanolamine (DMEA hereafter) from the apparatus of Figure 1 is passed through flexible tube 12 to 15 plastic barrel shroud 25 around the barrel 22 of an electrostatic gun. This is the apparatus of Figure 2 with the gun, in this case, being an electrostatic type XI gun. Painted panels prepared in a manner as described in Example 1 above, are exposed to a flow of the vapour-phase catalyst from the gun 20 as illustrated in Figure 2. The vapour-phase catalyst is applied at a concentration of approximately 2,500 parts per million, for approximately sixty seconds after painting. This flow of catalyst is maintained, for approximately two minutes, after which it is cut out and the plate exposed to gently 25 turbulent air for approximately eight minutes. After this post-curing period, drying of the painted film is found to have been markedly accelerated on both sides of the plate.
EXAMPLE 3 (co-deposition) A deposition gun, as described in Example 2 and illustrated in Figure 2, is set up and connected to the apparatus of Figure 30 13 *>5147 1. Paint, as previously described, is then passed through the gun -and simultaneously, the vapour-phase catalyst (DMEA) was introduced in a concentration of approximately 4,000 parts per million of DMEA as a molecular solution in air. Properly earthed panels were painted by 5 the simultaneous application of paint and catalyst. Under these conditions, the painted plates showed equally rapid attainment of touch-dry condition and overall commercial dryness.
EXAMPLE 4 This example is similar to that described in Example 3 above, 10 1.e. the same procedures were repeated but in this instance, the vapour-phase catalyst employed was PMT (all other parameters were the same). The degree of accelerated drying was even more marked than with DMEA and an even more rapid commercial dryness was effected.
EXAMPLE 5 15 In this example, the vapour-phase catalyst was lead tetraethyl.
All other conditions as detailed In Example 3 above were identical. Once again an equally marked acceleration in the curing of the paint was achieved.

Claims (7)

1. A process for forming a dried coating upon a substrate employing a vehicle to be coated upon the substrate and a drying agent for drying the vehicle upon the substrate, comprising vaporising the drying agent and employing an electrostatic field to direct the vaporised drying agent towards the substrate with the vehicle or subsequent to the coating of the substrate with the vehicle.
2. A process for forming a dried coating upon a substrate, comprising subjecting a vehicle to be coated upon a substrate to an electrostatic field which is operable to mobilise the vehicle, vaporising a drying agent, and employing the electrostatic field to effect co-deposition of the vaporised drying agent and the vehicle on the substrate.
3. A process as claimed in Claim 1 or Claim 2, in which the vehicle is a one- or two-part vehicle which contains free isocyanate groups.
4. A process as claimed in any one of Claims 1 to 3, wherein the drying agent is selected from amaonia, an amine, an organo metal catalyst, or any combination thereof.
5. A process as claimed in Claim 4, wherein the drying agent is an alkanol amine.
6. A process as claimed in any one of Claims 1 to 5, when appended thereto, 1n which the drying agent is prepared in vapour-phase by controlled atomization of a precursor liquid drying agent.
7. A process as claimed in Claim 1, substantially as herein described with reference to any one of the foregoing examples and/or accompanying drawings. F. R. KELLY & CO., AGENTS FOR THE APPLICANTS
IE93984A 1984-04-16 1984-04-16 An improved process for forming a dried coating upon a substrate IE55147B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
IE93984A IE55147B1 (en) 1984-04-16 1984-04-16 An improved process for forming a dried coating upon a substrate
IE1699/88A IE55148B1 (en) 1984-04-16 1984-04-16 Coating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IE93984A IE55147B1 (en) 1984-04-16 1984-04-16 An improved process for forming a dried coating upon a substrate

Publications (2)

Publication Number Publication Date
IE840939L IE840939L (en) 1985-10-16
IE55147B1 true IE55147B1 (en) 1990-06-06

Family

ID=11020024

Family Applications (2)

Application Number Title Priority Date Filing Date
IE1699/88A IE55148B1 (en) 1984-04-16 1984-04-16 Coating apparatus
IE93984A IE55147B1 (en) 1984-04-16 1984-04-16 An improved process for forming a dried coating upon a substrate

Family Applications Before (1)

Application Number Title Priority Date Filing Date
IE1699/88A IE55148B1 (en) 1984-04-16 1984-04-16 Coating apparatus

Country Status (1)

Country Link
IE (2) IE55148B1 (en)

Also Published As

Publication number Publication date
IE55148B1 (en) 1990-06-06
IE840939L (en) 1985-10-16

Similar Documents

Publication Publication Date Title
CA1210651A (en) Electrostatic drying process
AU2005265006B2 (en) Method and apparatus for mixing and applying a multi-component coating composition
US3873023A (en) Apparatus for and method of spraying plural component materials
US8210452B2 (en) Device for introducing catalyst into atomized coating composition
JPH0351474B2 (en)
EP1458497B1 (en) Method for mixing and applying a multi-component coating composition
KR970011709B1 (en) Subcritical compressed fluids as viscosity reducing diluents for transportable compositions
IE55147B1 (en) An improved process for forming a dried coating upon a substrate
AU614753B2 (en) Vaporous amine catalyst spray method
CN102458671A (en) Spray method and use thereof
US20110245411A1 (en) Method for producing sprayable lacquer
SU939106A1 (en) Powder paint sprayer
JPS60501247A (en) Coating curing method and device
GB2251396A (en) Application of reactive materials
JPH06343915A (en) Application of highly viscous two-pack coating
JPH01270980A (en) Method for applying urethane resin paint
EP2393608A2 (en) Method for producing sprayable mixture containing protected crosslinkable groups

Legal Events

Date Code Title Description
MM4A Patent lapsed