IE42536B1 - Propulsion apparatus for a metallic sheet - Google Patents

Propulsion apparatus for a metallic sheet

Info

Publication number
IE42536B1
IE42536B1 IE65276A IE65276A IE42536B1 IE 42536 B1 IE42536 B1 IE 42536B1 IE 65276 A IE65276 A IE 65276A IE 65276 A IE65276 A IE 65276A IE 42536 B1 IE42536 B1 IE 42536B1
Authority
IE
Ireland
Prior art keywords
cushion
sheet
assembly
motor
progress direction
Prior art date
Application number
IE65276A
Inventor
J Boquet
Original Assignee
Bertin & Cie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bertin & Cie filed Critical Bertin & Cie
Priority to IE65276A priority Critical patent/IE42536B1/en
Publication of IE42536B1 publication Critical patent/IE42536B1/en

Links

Landscapes

  • Advancing Webs (AREA)

Description

The present invention relates to an apparatus for propelling a metal sheet or continuous strip in a predetermined progress direction with respect to a stationary frame of the kind operating by means of a motor and cushion assembly.
The flat transfer of metal sheets is at present carried out either by pneumatic suction cups or electro-magnets suspended from an overhead crane, when the said metal sheets are cut up, or on rollers, TO or more recently on cushions of fluid under pressure (called ground effect) for example when a strip of sheet metal is circulating continuously.
In all these known systems, particular means ensure the transfer movement; wheels on the overhead crane in the first case, moving rollers or moving reels in the second case.
At present, all these systems require contact between the surface of the metal sheet and a fixed or rotary object which causes shocks generating noise and faults in the surface of the sheet metal.
( It is an object of the invention to enable the transfer of metal sheets without contact other than with guides for the edges of the sheets and with very little effort so as to eliminate the faults mentioned above whilst producing at the same time, an apparatus more simple to install and to service, thus more - 2 42536 economi ca1.
It is known in the field of vehicles for the transfer of steel sheets to use a linear motor disposed adjacent a single face Of these sheets which develops an attractive force around ten times greater than the longitudinal thrust which it is capable of exerting. A cushion of fluid, under quite a high pressure associated with such a linear motor can then be used to counter balance the said attractive force, for instance as provided by an electromagnet having a static magnetic field.
The unit associating the linear motor and the cushion of fluid, although not in contact with the steel sheet, attracts the latter strongly up to the immediate proximity of the cusion of fluid shoe, only allowing a very small clearance between it and the latter so that the consumption of fluid under pressure which escapes due to this clearance is not excessive.
Nevertheless, such a proximity between the moving sheet and the propulsion unit is an inconvenience for the transfer of metal sheets since they always have undulations or displacements as regards their position greater than this very small clearance.
According to the invention, there is provided an apparatus for propelling a metal sheet in a predetermined progress direction with respect to a stationary frame, of the kind operating by means of a motor-and-cushion assembly comprising (i) a linear induction motor adapted to subject said metal sheet to an electric field which has the twofold effect of developing between said motor and said sheet both an attraction force component normal to said progress direction and a propulsion force component parallel to said progress direction, and (ii) a pressure fluid cushion generating means arranged to extend in use adjacent said sheet with but a slight clearance with respect thereto, for building up a pressure fluid cushion in said clearance and against said sheet in antagonism with said attraction force component, to keep said sheet and said motor-and15 cushion relationship, apart from each other and in noncontaccing relationship, said apparatus being characterised by the provision of (iii) connecting means between said stationary frame and said motor-and-cushion assembly allowing relative displacement of said assembly normal to said progress direction while restraining said assembly against relative displacement parallel to said progress direction.
With this connecting means, the linear motor or propulsion unit in question may be brought into the desired position with respect to the sheet whatever the vertical position or the deformation of the latter may be.
If, for example, pieces of ferromagnetic sheet metal are stacked, the connecting means permits a manual or automatic approach of a combined propulsion unit in accordance with the invention. With a suitable regulation of its electrical supply, the linear motor will bring about raising of the top most piece of sheet metal and its transfer in the sense of displacement of the magnetic field of the linear motor of the (propulsion) element, whilst the associated fluid cushion will prevent contact with the sheet. Thus, the de-stacking of a pile of pieces of sheet metal is carried out very simply whatever the height of the said pile may be.
In the case where a continuous strip of sheet metal supported on rollers or on other fluid cushions, has to be transferred, the propulsion unit, the mass of which will be suitably balanced by means of a spring or of a counter weight, will automatically position itself, by virtue of the vertical movement which the connecting member allows it, at small distance determined by the fluid flow, and that will happen whatever may be the casual undulations or the thickness of the metal sheet.
Preferred embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings, in which:Figure 1 shows a machine in elevation for 5 de-stacking and transferring a pile of ferro-raagnetic metal sheets.
Figure 2 shows a part of the same machine in an end view and partial section with its propulsion unit.
Figure 3 is a view from below of the same propulsion unit specifying one disposition of the associated fluid cushion.
Figure 4 is a section in elevation of a transfer chute for thick sheet metal in a strip or in sections together with a propulsion unit according to the invention.
Figure 5 is a plan view of the propulsion unit according to Figure 4 and its connecting member.
The de-stacking machine of Figures 1 and 2 comprises a column 1 fixed to the ground and carrying a bracket 2 with a winch 3 as well as a transfer chute 4 having rollers such as 5, the rollers of which may be covered with a transfer strip or belt (not shown) in the case where the metal sheets risk being damaged by the rollers. The winch 3 supports a horizontal frame which is formed of two side beams 6 and and of cross beams, and which supports a linear motor 7 supplied with three phase electric current through a cable 8 connected to a suitable source. Such linear motors are available on the market. Furthermore, the side beam 6 supports the movable end of a transfer chute 9 hinged to the end of the transfer chute 4 so that the said movable end is constantly slightly below the active surface of the linear motor. This hinged chute 9 also serves as a member connecting with the frame 10 of the transfer chute 4 in such a manner as to receive the reaction of the thrust of the linear motor 7 whilst permitting its vertical displacement according to the invention.
On the other hand, the linear motor 7 is combined with a fluid cushion device constituted in this embodiment by an intermediate shoe or plate 11 which comprises fluid inlets 12, 121 at its ends and internal conduits for the said fluid, issuing through small orifices or nozzles such as 13 formed at the lower side as shown in Figure 3. This plate adheres by the other side to the active surface of the linear motor and is thus disposed between the latter and the top20 most metal sheet 14 of the pile of metal sheets 15.
This plate 11 forming a fluid cushion must be nonmagnetic and preferably of plastics material so as to avoid noise and damage i n the case of contact with the metal sheet. It ΐ s supplied for example 25 by a conduit 16 connected to a source of compressed air at a pressure of for example 1 bar so as to form the fluid cushion associated with the linear motor.
When the latter is energised electrically with a suitable voltage, the fluid cushion is supplied at the desired pressure and the unit is brought near to the metal sheet 14 by means of the winch 3, then only the top-most metal sheet 14 is raised from the pile 15, maintained at some tenths of a millimetre from the lower surface of the plate 11 due to the fluid cushion, and projected on to the articulated chute 9, then on to the transfer chute 4.
Other combined propulsion devices identical to the propulsion unit 7 - 11 or similar, may then continue the transfer of the metal sheet.
Figures 4 and 5 show another embodiment applied to the transfer of metal sheets separated or in continuous strips on a chute designed to support the metal sheets on a cushion of air. To this end, the chute comprises a lower chamber 21 under low pressure for example millibars, by means of a fan 22 and a transfer •j platform 23 provided with orifices such as 23 · At right-angles to the propulsion system, the chamber 21 forms a cavity 24 below the platform 23 with abutments in front and behind 25, 25^ between which the movable chassis 26 of the propulsion unit may be displaced vertically. These abutments, together with springs 27, 27^ balancing the weight of the propulsion unit, constitute the connecting member according to the invention.
In this embodiment, the said unit is constituted by a linear motor 28 and three independent air cushion shoes 29, 2θ\ 29^, fixed at three points to the chassis 26. Each of these three shoes is articulated on a ball joint such as 30 and penetrated by a nozzle 31 connected to a common source of compressed air 32, for example at 500 millibars, by the coupling connection 33 and flexible tubes such as 34 permitting the vertical movement of the unit. The linear motor 28 is fixed to the chassis 26 by bolts with adjusting washers 35 permitting the adjustment of the active surface of the said motor at a precise distance from the level which the three shoes such as 29 determine, for example at 1.5 millimetres, which constitutes substantially the magnetic air gap of the motor in operation. In fact, the clearance between the metal sheet 37 and the discs is reduced to some hundredths of a millimetre.
This arrangement can be used when the metal sheet 37, supposedly ferromagnetic_is thick enough not to curve noticeably under the attraction of the linear motor between the three air cushions.
In these circumstances, bringing the metal sheets into proximity with the propulsion unit whatever the vertical height of the metal sheet above the platform 23 may be according to the intensity of the cushion created by the orifices such as 23\ or whatever the possible deformations may be, determines, by magnetic attraction, the raising of the propulsion unit within its maintaining members 25, 2δ\ the support without contact of the shoes Such as 29 against the lower surface of the metal sheet permitting the propulsion of the latter under the action of the magnetic field. The magnetic attraction being compensated by the reaction of the fluid cushions on the one hand, and the weight of the unit being balanced by the springs 27, 271 on the other hand, ore then without effect on the metal sheet 37 the position of which is not disturbed.
It will be noted that the use of three spaced shoes permits a good stabilization of the propulsive unit despite the possible inclinations or deformations of the metal sheet. In fact, it is known that to support a'load stably, at least three fluid cushions having independent characteristics are required if the stability of the load is not ensured in other ways. Means for ensuring the said independence are described for example in British Patent 997,518 of the Societe Bertin & Cie.
The ball joint mounting for each of them also enables them to be applied quite flat against each facing portion of the metal sheet.
So as to avoid any premature operation of the linear motor, an improvement consists in a safety relay which delays the supply of electric current until the establishment of a sufficient pressure for feeding the fluid cushions. An example of this is shown in Figure 4 where 40 defines an electric supply switch for the linear motor 28, which is controlled by pressure transmitted through the pneumatic duct 41 which is connected to the coupling 33.
In this manner, shocks or rubbing on the metal sheet by shoes not supplied with fluid are precluded.

Claims (5)

1. WHAT WE CLAIM IS:1. An apparatus for propelling a metal sheet in a predetermined progress direction with respect to a stationary frame, of the kind operating hy means of 5 a motor-and-cushion assembly comprising (i) a linear induction motor adapted to subject said metal, sheet to an electric field which has the twofold effect of developing between said motor and said sheet both an attraction force component normal 10 to said progress direction and a propulsion force component parallel to said progress direction, and (ii) a pressure fluid cushion generating means arranged to extend in use adjacent said sheet with but a slight clearance with respect thereto, for building up a 15 pressure fluid cushion in said clearance and against said sheet in antagonism with said attraction force component, to keep said sheet and said motor-andcushion assembly apart from each other and in noncontacting relationship^ 20 said apparatus being characterised by the provision of (iii) connecting means between said stationary frame and said motor-and-cushion assembly allowing relative displacement of said assembly normal to said progress direction while restraining said assembly against 25 relative displacement parallel to said progress direction. 12 4 2 5 3 6
2. Apparatus as claimed in claim 1, further comprising an electric energizing circuit for said linear induction motor, and cushion fluid supply pressure responsive switching means in said energizing circuit for making said circuit upon pressure fluid being supplied to said cushion generating means.
3. Apparatus as claimed in claim 1 or 2, wherein said metal sheet is caused to progress along a generally horizontal path, and wherein said motor-and-cushion assembly is positioned underneath said path and is susceptible of generally vertical relative displacement while being restrained against generally horizontal relative displacement.
4. Apparatus as claimed in claim 3, further comprising a fixed fluidic track integral wi‘th said stationary frameand extending generally horizontally beneath said path adjacent thereto, means for feeding said fixed fluidic track with cushion fluid at a relatively low pressure, and means for feeding said cushion generating means of said vertically movable assembly with cushion fluid at a relatively high pressure. 5. Apparatus as claimed in claim 4, wherein said cushion generating means fed with high-pressure fluid comprises three separate and distinct shoes positioned around said linear induction motor and individually supplied with said high-pressure fluid. 4253® 6. Apparatus as claimed in claim 3, 4 or 5, further comprising means for counter-balancing the weight of said motor-and-cushion assembly. 7. Apparatus as claimed in claim 1 or 2, wherein 5 said connecting means comprises a sheet transfer chute generally extending said motor-and-cushion assembly in said sheet progress direction and having two opposite ends respectively hinged to said stationary frame and to said displaceable assembly. 10 8. Apparatus as claimed in Claim 7, wherein the transfer chute end which is hinged to said displaceable assembly is underslung with respect to said linear induction motor to receive in use a propelled sheet fed thereto. 15 9. Apparatus as claimed in any of the preceding claims, wherein said cushion generating means is fast with said linear induction motor to be bodily movable therewith normal to said sheet progress direction. 20 10, Apparatus as claimed in claim 9, wherein said cushion generating means is positioned intermediate said linear induction motor and said metal sheet, and comprises nozzles opening opposite said metal sheet. 11. Apparatus as claimed in claim 10, wherein said 25 cushion generating means comprises a plate of non-magnetic material and said nozzles extend through said nonmagnetic plate. 12. A metal sheet propelling apparatus of the kind operating by means of an assembly formed of a linear
5. Induction motor and a pressure fluid cushion, said apparatus being constructed and arranged substantially as herein described with reference to Figures 1 - 3 or Figures 4 - 5 of the accompanying drawings.
IE65276A 1976-03-29 1976-03-29 Propulsion apparatus for a metallic sheet IE42536B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
IE65276A IE42536B1 (en) 1976-03-29 1976-03-29 Propulsion apparatus for a metallic sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IE65276A IE42536B1 (en) 1976-03-29 1976-03-29 Propulsion apparatus for a metallic sheet

Publications (1)

Publication Number Publication Date
IE42536B1 true IE42536B1 (en) 1980-08-27

Family

ID=11016246

Family Applications (1)

Application Number Title Priority Date Filing Date
IE65276A IE42536B1 (en) 1976-03-29 1976-03-29 Propulsion apparatus for a metallic sheet

Country Status (1)

Country Link
IE (1) IE42536B1 (en)

Similar Documents

Publication Publication Date Title
US4077507A (en) Metal sheet conveyor with linear electric motor and ground-effect shoe
EP2146883B1 (en) Transferring system using aero-levitation style
US4055123A (en) Systems for magnetically supporting a vehicle
US3385228A (en) Transportation system
JPS60198B2 (en) Sheet material processing equipment with magnetic holding device
US3122232A (en) Conveyor apparatus
US3332361A (en) Pressure fluid cushion guiding system for tracked ground effect machines
JP4169434B2 (en) Storage conveyor for hybrid transport cart
KR960010485A (en) Maglev Carrier
IE42536B1 (en) Propulsion apparatus for a metallic sheet
GB1353281A (en) Railway system
US5601029A (en) Noncontact lateral control system for use in a levitation-type transport system
US3861321A (en) Transportation system and vehicles for the system
US3827370A (en) Passive switching system
JP3529853B2 (en) Magnet orbit arrangement type magnetic levitation transfer device
US3685634A (en) Conveyor belt for sheet metal
US3804997A (en) Contact system for high-speed electrically operated vehicles
KR20120004865A (en) Magnetic levitation conveyance system having spring
JPS62225106A (en) Conveyor using linear motor
JPS62173907A (en) Magnetic levitationary transporting facilities by use of linear motor
JPS627305A (en) Levitating conveying apparatus
JP2896170B2 (en) Transfer device using linear motor
US20220380180A1 (en) Elevator system with air-bearing linear motor
JP2700686B2 (en) Magnetic levitation type transfer equipment
JP2000297402A (en) End joint device of carrier travelling rail