HUE035842T2 - Knowledge-based segmentation of domains relevant to attenuation of the head - Google Patents
Knowledge-based segmentation of domains relevant to attenuation of the head Download PDFInfo
- Publication number
- HUE035842T2 HUE035842T2 HUE10724535A HUE10724535A HUE035842T2 HU E035842 T2 HUE035842 T2 HU E035842T2 HU E10724535 A HUE10724535 A HU E10724535A HU E10724535 A HUE10724535 A HU E10724535A HU E035842 T2 HUE035842 T2 HU E035842T2
- Authority
- HU
- Hungary
- Prior art keywords
- class
- area
- voxels
- region
- attenuation
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/037—Emission tomography
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
- G06T11/005—Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4808—Multimodal MR, e.g. MR combined with positron emission tomography [PET], MR combined with ultrasound or MR combined with computed tomography [CT]
- G01R33/481—MR combined with positron emission tomography [PET] or single photon emission computed tomography [SPECT]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/5608—Data processing and visualization specially adapted for MR, e.g. for feature analysis and pattern recognition on the basis of measured MR data, segmentation of measured MR data, edge contour detection on the basis of measured MR data, for enhancing measured MR data in terms of signal-to-noise ratio by means of noise filtering or apodization, for enhancing measured MR data in terms of resolution by means for deblurring, windowing, zero filling, or generation of gray-scaled images, colour-coded images or images displaying vectors instead of pixels
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30016—Brain
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Optics & Photonics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- High Energy & Nuclear Physics (AREA)
- Biophysics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
- Nuclear Medicine (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102009027448A DE102009027448A1 (de) | 2009-07-03 | 2009-07-03 | Wissensbasierte Segmentierung schwächungsrelevanter Regionen des Kopfes |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| HUE035842T2 true HUE035842T2 (en) | 2018-05-28 |
Family
ID=42313930
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| HUE10724535A HUE035842T2 (en) | 2009-07-03 | 2010-06-22 | Knowledge-based segmentation of domains relevant to attenuation of the head |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US8761482B2 (enExample) |
| EP (1) | EP2449528B1 (enExample) |
| JP (1) | JP5840125B2 (enExample) |
| DE (1) | DE102009027448A1 (enExample) |
| HU (1) | HUE035842T2 (enExample) |
| WO (1) | WO2011000739A1 (enExample) |
Families Citing this family (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102009027448A1 (de) * | 2009-07-03 | 2011-01-05 | Forschungszentrum Jülich GmbH | Wissensbasierte Segmentierung schwächungsrelevanter Regionen des Kopfes |
| US10267882B2 (en) * | 2010-10-13 | 2019-04-23 | Toshiba Medical Systems Corporation | MRI T1 image-guided tissue diagnostics |
| ES2692163T3 (es) * | 2012-03-28 | 2018-11-30 | Shimadzu Corporation | Método para generar imagen corregida en absorción pet a partir de imagen de rm y programa informático |
| AU2014208379A1 (en) | 2013-01-24 | 2015-07-23 | Tylerton International Holdings Inc. | Body structure imaging |
| US9836879B2 (en) * | 2013-04-16 | 2017-12-05 | Autodesk, Inc. | Mesh skinning technique |
| EP3041405A4 (en) | 2013-09-08 | 2017-07-19 | Tylerton International Inc. | Apparatus and methods for diagnosis and treatment of patterns of nervous system activity affecting disease |
| US10074173B2 (en) | 2013-12-06 | 2018-09-11 | The Johns Hopkins University | Methods and systems for analyzing anatomy from multiple granularity levels |
| US10646183B2 (en) | 2014-01-10 | 2020-05-12 | Tylerton International Inc. | Detection of scar and fibrous cardiac zones |
| US10064589B2 (en) * | 2014-06-27 | 2018-09-04 | General Electric Company | Method, apparatus, and article for pet attenuation correction utilizing MRI |
| CN105491952B (zh) | 2014-07-30 | 2020-08-04 | 纳维斯国际有限公司 | 探头定位 |
| KR102298249B1 (ko) * | 2019-03-05 | 2021-09-06 | 뉴로핏 주식회사 | 뇌 구조를 이용한 뇌 영상 보정 방법 및 장치 |
| KR102207824B1 (ko) * | 2019-03-05 | 2021-01-26 | 뉴로핏 주식회사 | 뇌 구조를 이용한 뇌 영상 보정 방법 및 장치 |
| KR102298253B1 (ko) * | 2019-03-05 | 2021-09-06 | 뉴로핏 주식회사 | 뇌 구조를 이용한 뇌 영상 보정 방법 및 장치 |
| JP2021145881A (ja) * | 2020-03-18 | 2021-09-27 | 国立大学法人福井大学 | 画像処理方法、画像合成方法、データの取得方法、学習モデルの生成方法、鼻および副鼻腔疾患の診断支援システム、並びに鼻および副鼻腔疾患の診断支援方法 |
| US11701067B2 (en) * | 2021-09-08 | 2023-07-18 | Siemens Medical Solutions Usa, Inc. | Attenuation correction-based weighting for tomographic inconsistency detection |
| CN116485819B (zh) * | 2023-06-21 | 2023-09-01 | 青岛大学附属医院 | 一种耳鼻喉检查图像分割方法及系统 |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6430430B1 (en) * | 1999-04-29 | 2002-08-06 | University Of South Florida | Method and system for knowledge guided hyperintensity detection and volumetric measurement |
| US6567684B1 (en) * | 2000-11-08 | 2003-05-20 | Regents Of The University Of Michigan | Imaging system, computer, program product and method for detecting changes in rates of water diffusion in a tissue using magnetic resonance imaging (MRI) |
| WO2006138702A2 (en) * | 2005-06-16 | 2006-12-28 | Russell Michael J | Guided electrical transcranial stimulation (gets) technique |
| DE102006033383A1 (de) | 2006-07-12 | 2008-01-17 | Eberhard-Karls-Universität Tübingen Universitätsklinikum | Verfahren zum Bestimmen einer Eigenschaftskarte für einen Gegenstand, insbesondere für ein Lebewesen, basierend auf zumindest einem ersten Bild, insbesondere Kernspinresonanzbild |
| WO2008064319A2 (en) * | 2006-11-22 | 2008-05-29 | The General Hospital Corporation | Attenuation correction of pet image using image data acquired with an mri system |
| CN101742963B (zh) * | 2007-06-29 | 2012-04-25 | 加藤俊德 | 白质强调处理装置以及白质强调处理方法 |
| WO2009058915A1 (en) * | 2007-10-29 | 2009-05-07 | The Trustees Of The University Of Pennsylvania | Computer assisted diagnosis (cad) of cancer using multi-functional, multi-modal in-vivo magnetic resonance spectroscopy (mrs) and imaging (mri) |
| DE102009027448A1 (de) * | 2009-07-03 | 2011-01-05 | Forschungszentrum Jülich GmbH | Wissensbasierte Segmentierung schwächungsrelevanter Regionen des Kopfes |
-
2009
- 2009-07-03 DE DE102009027448A patent/DE102009027448A1/de not_active Withdrawn
-
2010
- 2010-06-22 EP EP10724535.9A patent/EP2449528B1/de not_active Not-in-force
- 2010-06-22 US US13/380,291 patent/US8761482B2/en not_active Expired - Fee Related
- 2010-06-22 HU HUE10724535A patent/HUE035842T2/en unknown
- 2010-06-22 WO PCT/EP2010/058811 patent/WO2011000739A1/de not_active Ceased
- 2010-06-22 JP JP2012516698A patent/JP5840125B2/ja not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| EP2449528B1 (de) | 2017-11-22 |
| DE102009027448A1 (de) | 2011-01-05 |
| JP2012531229A (ja) | 2012-12-10 |
| WO2011000739A9 (de) | 2011-03-03 |
| US20120155733A1 (en) | 2012-06-21 |
| JP5840125B2 (ja) | 2016-01-06 |
| US8761482B2 (en) | 2014-06-24 |
| EP2449528A1 (de) | 2012-05-09 |
| WO2011000739A1 (de) | 2011-01-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| HUE035842T2 (en) | Knowledge-based segmentation of domains relevant to attenuation of the head | |
| Kazemifar et al. | MRI-only brain radiotherapy: Assessing the dosimetric accuracy of synthetic CT images generated using a deep learning approach | |
| Wang et al. | MRI-based treatment planning for brain stereotactic radiosurgery: Dosimetric validation of a learning-based pseudo-CT generation method | |
| Dinkla et al. | Dosimetric evaluation of synthetic CT for head and neck radiotherapy generated by a patch‐based three‐dimensional convolutional neural network | |
| Wagenknecht et al. | MRI for attenuation correction in PET: methods and challenges | |
| Aubert-Broche et al. | A new improved version of the realistic digital brain phantom | |
| Bezrukov et al. | MR-based PET attenuation correction for PET/MR imaging | |
| Zheng et al. | Magnetic resonance–based automatic air segmentation for generation of synthetic computed tomography scans in the head region | |
| Salomon et al. | Simultaneous reconstruction of activity and attenuation for PET/MR | |
| US9204817B2 (en) | Attenuation correction in positron emission tomography using magnetic resonance imaging | |
| Arabi et al. | Clinical assessment of MR-guided 3-class and 4-class attenuation correction in PET/MR | |
| Catana | Attenuation correction for human PET/MRI studies | |
| Poynton et al. | Probabilistic atlas-based segmentation of combined T1-weighted and DUTE MRI for calculation of head attenuation maps in integrated PET/MRI scanners | |
| Pannek et al. | The average pathlength map: a diffusion MRI tractography-derived index for studying brain pathology | |
| Cabello et al. | Comparison between MRI-based attenuation correction methods for brain PET in dementia patients | |
| Sanaat et al. | A cycle-consistent adversarial network for brain PET partial volume correction without prior anatomical information | |
| Roy et al. | Synthesizing CT from ultrashort echo-time MR images via convolutional neural networks | |
| Jeong et al. | Development, validation, and pilot MRI safety study of a high-resolution, open source, whole body pediatric numerical simulation model | |
| Wagenknecht et al. | Knowledge-based segmentation of attenuation-relevant regions of the head in T1-weighted MR images for attenuation correction in MR/PET systems | |
| Presotto et al. | Evaluation of a 2D UNet-based attenuation correction methodology for PET/MR brain studies | |
| Lee et al. | Metal artifacts with dental implants: Evaluation using a dedicated CT/MR oral phantom with registration of the CT and MR images | |
| Dong et al. | Air, bone and soft-tissue segmentation on 3D brain MRI using semantic classification random forest with auto-context model | |
| Speier et al. | Advanced multimodal methods for cranial pseudo-CT generation validated by IMRT and VMAT radiation therapy plans | |
| EP2711738A1 (en) | A method and a device to generate virtual X-ray computed tomographic image data | |
| Antunes et al. | Assessing multiple MRI sequences in deep learning-based synthetic CT generation for MR-only radiation therapy of head and neck cancers |