HUE029259T2 - Methods and compositions for administration of iron - Google Patents

Methods and compositions for administration of iron Download PDF

Info

Publication number
HUE029259T2
HUE029259T2 HUE07716309A HUE07716309A HUE029259T2 HU E029259 T2 HUE029259 T2 HU E029259T2 HU E07716309 A HUE07716309 A HU E07716309A HU E07716309 A HUE07716309 A HU E07716309A HU E029259 T2 HUE029259 T2 HU E029259T2
Authority
HU
Hungary
Prior art keywords
iron
anemia
complex
tartalmazza tartalmazza
disease
Prior art date
Application number
HUE07716309A
Other languages
Hungarian (hu)
Inventor
Mary Jane Helenek
Marc L Tokars
Richard P Lawrence
Original Assignee
Vifor (International) Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vifor (International) Ag filed Critical Vifor (International) Ag
Publication of HUE029259T2 publication Critical patent/HUE029259T2/en

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

Description
FIELD OF THE INVENTION
[0001] The present invention generally relates to iron carbohydrate complexes for use in the treatment of iron-related conditions.
BACKGROUND
[0002] Parenteral iron therapy is known to be effective in a variety of diseases and conditions including, but not limited to, severe iron deficiency, iron deficiency anemia, problems of intestinal iron absorption, intestinal iron intolerance, cases where regular intake of an oral iron preparation is not guaranteed, iron deficiency where there is no response to oral therapy (e.g., dialysis patients), and situations where iron stores are scarcely or not at all formed but would be important for further therapy (e.g., in combination with erythropoietin). Geisser et al., Arzneimittelforschung (1992) 42(12), 1439-1452. There exist various commercially available parenteral iron formulations. But many currently available parenteral iron drugs, while purportedly effective at repleting iron stores, have health risks and dosage limitations associated with their use.
[0003] Currently available parenteral iron formulations approved for use in the U.S. include iron dextran (e.g., InFed, Dexferrum), sodium ferric gluconate complex in sucrose (Ferrlecit), and iron sucrose (Venofer). Although serious and life-threatening reactions occur most frequently with iron dextran, they are also known to occur with other parenteral iron products. In addition, non-life threatening reactions such as arthralgia, back pain, hypotension, fever, myalgia, pruritus, vertigo, and vomiting also occur. These reactions, while not life-threatening, often preclude further dosing and therefore iron repletion.
[0004] Iron dextran, the first parenteral iron product available in the United States (US), has been associated with an incidence of anaphylactoid-type reactions (/'.e., dyspnea, wheezing, chest pain, hypotension, urticaria, angioedema). See generally Fishbane, Am J Kidney Dis (2003) 41(5Suppl), 18-26; Landry et al. (2005) Am J Nephrol 25, 400-410, 407. This high incidence of anaphylactoid reactions is believed to be caused by the formation of antibodies to the dextran moiety. Other parenteral iron products (e.g., iron sucrose and iron gluconate) do not contain the dextran moiety, and the incidence of anaphylaxis with these products is markedly lower. Fishbane, Am J Kidney Dis (2003) 41(5Suppl), 18-26; Geisser et al., Arzneimittelforschung (1992)42(12), 1439-52. However, the physical characteristics of, for example, iron gluconate and iron sucrose lead to dosage and administration rate limitations. Negative characteristics include high pH, high osmolarity, low dosage limits (e.g., maximum 500 mg iron once per week, not exceeding 7 mg iron/kg body weight), and the long duration of administration (e.g., 100 mg iron over at least 5 minutes as an injection; 500 mg iron over at least 3.5 hours as a drip infusion). Furthermore, injectable high molecular mass substances produce more allergic reactions than the corresponding low molecular mass substances. Geisser et al. (1992) Arzneimittelforschung 42: 1439-1452.
[0005] Ferumoxytol is a newer parenteral iron formulation but limited information is available as to its efficacy and administration. See e.g., Landry et al. (2005) Am J Nephrol 25, 400-410, 408; and Spinowitz et al. (2005) Kidney Inti 68, 1801-1807; U.S. Patent No. 6,599,498.
[0006] Various pharmacokinetic studies suggest that doses of iron complexes higher than 200 mg of iron are generally unsuitable and that the conventional therapy model prescribes repeated applications of lower doses over several days. See Geisser et al., (1992) Arzneimittelforschung 42: 1439-1452. For example, to achieve iron repletion under current therapy models, a total dose of 1 g typically requires 5 to 10 sessions over an extended period of time. These delivery modes incur significant expense for supplies such as tubing and infusate, costly nursing time, multiple administrations, and patient inconvenience.
[0007] Marchasin et al (1964) Blood 23(3), 354-358 discloses the treatment of iron-deficiency anemia with intravenous iron dextran and mentions single doses of 1000mg and 2000-3000mg of iron dextran.
SUMMARY OF THE INVENTION
[0008] Among the various aspects of the present invention is the provision of a treatment for iron-associated diseases, disorders, or conditions with iron formulations. Briefly, therefore, the present invention is directed to iron carbohydrate complexes for use in treatment that can be administered parenterally at relatively high single unit dosages, thereby providing a safe and efficient means for delivery of a total dose of iron in fewer sessions over the course of therapeutic treatment.
[0009] Specifically, the invention relates to an iron carbohydrate complex in a single dosage unit of at least 0.6 grams and up to 1.5 grams of elemental iron for use in the treatment of a disease, disorder, or condition characterized by iron deficiency or dysfunctional iron metabolism, wherein the iron carbohydrate complex is an iron carboxymaltose complex; wherein the iron carbohydrate complex has a substantially non-immunogenic carbohydrate component; and wherein the single dosage unit is administered parenterally to a patient in 15 minutes or less.
[0010] The present teachings include the use of the iron carbohydrate complex in treating a disease, disorder, or condition characterized by iron deficiency or dysfunctional iron metabolism through the administration of at least 0.6 grams of elem entai iron via a sing le unit dosage of an iron carbohydrate complex to a subject that is in need of such therapy.
[0011] In various embodiments, the use is in treating anemia. In some embodiments, the anemia is an iron deficiency anemia, such as that associated with chronic blood loss; acute blood loss; pregnancy; childbirth; childhood development; psychomotor and cognitive development in children; breath holding spells; heavy uterine bleeding; menstruation; chronic recurrent hemoptysis; idiopathic pulmonary siderosis; chronic internal bleeding; gastrointestinal bleeding; parasitic infections; chronic kidney disease; dialysis; surgery or acute trauma; and chronic ingestion of alcohol, chronic ingestion of salicylates, chronic ingestion of steroids; chronic ingestion of non-steroidial anti-inflammatory agents, or chronic ingestion of erythropoiesis stimulating agents. In some aspects, the anemia is anemia of chronic disease, such as rheumatoid arthritis; cancer; Hodgkins leukemia; non-Hodgkins leukemia; cancer chemotherapy; inflammatory bowel disease; ulcerative colitis thyroiditis; hepatitis; systemic lupus erythematosus; polymyalgia rheumatica; scleroderma; mixed connective tissue disease; Sojgren’s syndrome; congestive heart failure / cardiomyopathy; or idiopathic geriatric anemia. In some embodiments, the anemia is due to impaired iron absorption or poor nutrition, such as anemia associated with Crohn’s Disease; gastric surgery; ingestion of drug products that inhibit iron absorption; and chronic use of calcium. In various embodiments, the use is in treating restless leg syndrome; blood donation; Parkinson’s disease; hair loss; or attention deficit disorder.
[0012] In some embodiments, the single dosage unit of elemental iron is at least about 0.7 grams; at least about 0.8 grams; at least about 0.9 grams; at least about 1.0 grams; at least about 1.1 grams; at least about 1.2 grams; at least about 1.3 grams; at least about 1.4 grams.
[0013] In some embodiments, the single dosage unit of elemental iron is administered in about 10 minutes or less, about 5 minutes or less, or about 2 minutes or less.
[0014] In various embodiments, the subject does not experience a significant adverse reaction to the single dosage unit administration.
[0015] In various embodiments, the iron carbohydrate complex has a pH between about 5.0 to about 7.0; physiological osmolarity; an iron core size no greater than about 9 nm; a mean diameter particle size no greater than about 35 nm; a blood half-life of between about 10 hours to about 20 hours; a substantially non-immunogenic carbohydrate component; and substantially no cross reactivity with anti-dextran antibodies.
[0016] In various embodiments, the iron carbohydrate complex contains about 24% to about 32% elemental iron; contains about 25% to about 50% carbohydrate; has a molecular weight of about 90,000 daltons to about 800,000 daltons, or some combination thereof.
[0017] In some preferred embodiments, the iron carboxymaltose complex contains about 24% to about 32% elemental iron, about 25% to about 50% carbohydrate, and is about 100,000 daltons to about 350,000 daltons. In some preferred embodiments, the iron carboxymaltose complex is obtained from an aqueous solution of iron (III) salt and an aqueous solution of the oxidation product of one or more maltodextrins using an aqueous hypochlorite solution at a pH value within the alkaline range, wherein, when one maltodextrin is applied, its dextrose equivalent lies between 5 and 20, and when a mixture of several maltodextrins is applied, the dextrose equivalent lies between 5 and 20 and the dextrose equivalent of each individual maltodextrin contained in the mixture lies between 2 and 20. In some preferred embodiments, the iron carboxymaltose complex has a chemical formula of [FeOx(OH)y(H20)z]n [{(C6H10O5)m (C6H1207)}| ]k, where n is about 103, m is about 8, I is about 11, and k is about 4; contains about 28% elemental iron; and has a molecular weight of about 150,000 Da. In some preferred embodiments, the iron carboxymaltose complex is polynuclear iron (lll)-hydroxide 4(R)-(poly-(1-»4)-0-a-glucopyranosyl)-oxy-2(R),3(S),5(R),6-tetrahydroxy-hexanoate.
[0018] In various embodiments, the iron carbohydrate complex comprises an iron core with a mean iron core size of no greater than about 9 nm. In some embodiments, the mean iron core size is at least about 1 nm but no greater than about 9 nm; at least about 3 nm but no greater than about 7 nm; or at least about 4 nm but not greater than about 5 nm.
[0019] In various embodiments, the mean size of a particle of the iron carbohydrate complex is no greater than about 35 nm. In some embodiments, the particle mean size is no greater than about 30 nm. In some embodiments, the particle mean size is no greater than about 25 nm. In some embodiments, the particle mean size is no greater than about 20 nm; no greater than about 15 nm; no greater than about 10 nm; or at least about 6 nm but no greater than about 7 nm.
[0020] The iron carbohydrate complex is administered parenterally, for example intravenously or intramuscularly. In some embodiments, the iron carbohydrate complex is intravenously infused. In certain embodiments, the single unit dose of iron carbohydrate complex is intravenously infused at a concentration of about 1000 mg elemental iron in about 200 ml to about 300 ml of diluent, for example, about 250 ml of diluent or about 215 ml of diluent. In some embodiments, the iron carbohydrate complex is intravenously injected as a bolus. In certain embodiments, the iron carbohydrate complex is intravenously injected as a bolus at a concentration of about 1000 mg elemental iron in about 200 ml to about 300 ml of diluent, for example, about 250 ml of diluent or about 215 ml of diluent. In some embodiments, the iron carbohydrate complex is intramuscularly infused at a concentration of about 1000 mg elemental iron in about 200 ml to about 300 ml of diluent, for example, about 250 ml of diluent or about 215 ml of diluent. In some embodiments, the iron carbohydrate complex is intramuscularly infused at a concentration of about 500 mg elemental iron in less than about 10 ml diluent.
[0021] In various embodiments, the use in treating also includes a second administration of the iron carbohydrate complex upon recurrence of at least one symptom of the treated disease, disorder, or condition.
[0022] In various embodiments, the use in treating also includes a second administration of the iron carbohydrate complex after 1 day to 12 months after the first administration.
[0023] In a preferred embodiment, the treating of a disease, disorder, or condition characterized by iron deficiency or dysfunctional iron metabolism comprises intravenously administering to a subject in need thereof an iron carboxymaltose complex in a single dosage unit of at least about 1000 mg of elemental iron in about 200 ml to about 300 ml of diluent in about 5 minutes or less; wherein the iron carboxymaltose complex comprises an iron core with a mean iron core size of at least about 1 nm but no greater than about 9 nm; mean size of a particle of the iron carboxymaltose complex is no greater than about 35 nm; and the iron carboxymaltose complex is administered intravenously infused or intravenously injected at a concentration of about 1000 mg elemental iron in about 200 ml to about 300 ml of diluent. In some these embodiments, the iron carboxymaltose complex is polynuclear iron (lll)-hydroxide 4(R)-(poly-(1-»4)-0-a-glucopyrano-syl)-oxy-2(R),3(S),5(R),6-tetrahydroxy-hexanoate. In some these embodiments, the iron carboxymaltose complex is obtained from an aqueous solution of iron (III) salt and an aqueous solution of the oxidation product of one or more maltodextrins using an aqueous hypochlorite solution at a pH value within the alkaline range, wherein, when one mal-todextrin is applied, its dextrose equivalent lies between about 5 and about 20, and when a mixture of several maltodextrins is applied, the dextrose equivalent lies between about 5 and about 20 and the dextrose equivalent of each individual maltodextrin contained in the mixture lies between about 2 and about 20.
[0024] Other objects and features will be in part apparent and in part pointed out hereinafter.
BRIEF DESCRIPTION OF THE DRAWINGS
[0025] FIG 1 is a series of electron micrographs that depict the particle size of three iron carbohydrate complexes. FIG 1A is an electron micrograph depicting the particle size of Dexferrum (an iron dextran). FIG 1B is an electron micrograph depicting the particle size of Venofer (an iron sucrose). FIG 1C is an electron micrograph depicting the particle size of polynuclear iron (lll)-hydroxide 4(R)-(poly-(1->4)-0-a-glucopyranosyl)-oxy-2(R),3(S),5(R),6-tetrahy-droxy-hexanoate ("VIT-45", an iron carboxymaltose complex).
[0026] FIG 2 is a schematic representation of an exemplary iron carboxymaltose complex.
DETAILED DESCRIPTION OF THE INVENTION
[0027] The present invention makes use of iron carbohydrate complexes that can be administered parenterally at relatively high single unit dosages for the therapeutic treatment of a variety of iron-associated diseases, disorders, or conditions. Generally, states indicative of a need for therapy with high single unit dosages of iron carbohydrate complexes include, but are not limited to iron deficiency anemia, anemia of chronic disease, and states characterized by dysfunctional iron metabolism. Efficacious treatment of these, and other, diseases and conditions with parenteral iron formulations (supplied at lower single unit dosages than those described herein) is generally known in the art. See e.g., Van Wyck et al. (2004) J Am Soc Nephrol 15, S91-S92. The present invention is directed to use of iron carbohydrate complexes that can be administered parenterally at relatively high single unit dosages, thereby providing a safe and efficient means for delivery of a total dose of iron in fewer sessions over the course of therapeutic treatment.
[0028] Iron deficiency anemia is associated with, for example, chronic blood loss; acute blood loss; pregnancy; childbirth; childhood development; psychomotor and cognitive development in children; breath holding spells; heavy uterine bleeding; menstruation; chronic recurrent hemoptysis; idiopathic pulmonary siderosis; chronic internal bleeding; gastrointestinal bleeding; parasitic infections; chronic kidney disease; dialysis; surgery or acute trauma; and chronic ingestion of alcohol, chronic ingestion of salicylates, chronic ingestion of steroids; chronic ingestion of non-steroidial anti-inflammatory agents, or chronic ingestion of erythropoiesis stimulating agents.
[0029] Anemia of chronic disease is associated with, for example, rheumatoid arthritis; cancer; Hodgkins leukemia; non-Hodgkins leukemia; cancer chemotherapy; inflammatory bowel disease; ulcerative colitis thyroiditis; hepatitis; systemic lupus erythematosus; polymyalgia rheumatica; scleroderma; mixed connective tissue disease; Sojgren’s syndrome; congestive heart failure / cardiomyopathy; and idiopathic geriatric anemia.
[0030] Anemia is also associated with, for example, Crohn’s Disease; gastric surgery; ingestion of drug products that inhibit iron absorption; and chronic use of calcium.
[0031] States characterized by dysfunctional iron metabolism and treatable with the single unit dosages of iron car- bohydrate complexes described herein include, but are not limited to, restless leg syndrome; blood donation; Parkinson’s disease; hair loss; and attention deficit disorder.
[0032] Again, each of the above listed states, diseases, disorders, and conditions, as well as others, can benefit from the treatment methodologies described herein. Generally, treating a state, disease, disorder, or condition includes preventing or delaying the appearance of clinical symptoms in a mammal that may be afflicted with or predisposed to the state, disease, disorder, or condition but does not yet experience or display clinical or subclinical symptoms thereof. Treating can also include inhibiting the state, disease, disorder, or condition, e.g., arresting or reducing the development of the disease or at least one clinical or subclinical symptom thereof. Furthermore, treating can include relieving the disease, e.g., causing regression of the state, disease, disorder, or condition or at least one of its clinical or subclinical symptoms.
[0033] The benefit to a subject to be treated is either statistically significant or at least perceptible to the patient or to the physician. Measures of efficacy of iron replacement therapy are generally based on measurement of iron-related parameters in blood. The aim of treatment is usually to return both Hb and iron stores to normal levels. Thus, efficacy of iron replacement therapy can be interpreted in terms of the ability to normalise Hb levels and iron stores. The effectiveness of treatment with one or more single unit doses of iron carbohydrate complex, as described herein, can be demonstrated, for example, by improvements in ferritin and transferrin saturation, and in raising hemoglobin levels in anemic patients. Iron stores can be assessed by interpreting serum ferritin levels. TfS is frequently used, in addition, to diagnose absolute or functional iron deficiencies. In patients with iron deficiency, serum transferrin is elevated and will decrease following successful iron treatment.
Administration [0034] Iron complex compositions for use in the treatment of various diseases, disorders, or conditions are administered in single unit dosages of 0.6 grams of elemental iron to 1.5 grams of elemental iron. Administration of single unit dosages can be, for example, over pre-determined time intervals or in response to the appearance and/or reappearance of symptoms. For example, the iron carbohydrate complex can be re-administered upon recurrence of at least one symptom of the disease or disorder. As another example, the iron carbohydrate complex can be re-administered at some time period after the initial administration (e.g., after 4 days to 12 months).
[0035] Any route of delivery of the single unit dose of iron carbohydrate complex is acceptable so long as iron from the iron complex is released such that symptoms are treated. The single unit dose of iron carbohydrate complex can be administered parenterally, for example intravenously or intramuscularly. Intravenous administration can be delivered as a bolus or preferably as an infusion. For example, the single unit dose of iron carbohydrate complex can be intravenously infused at a concentration of about 1000 mg elemental iron in about 200 ml to about 300 ml of diluent, preferably about 215 ml of diluent or about 250 ml of diluent. The iron carbohydrate complex can be intravenously injected as a bolus. For example, the iron carbohydrate complex can be intravenously injected as a bolus at a concentration of about 1000 mg elemental iron in about 200 ml to about 300 ml of diluent, preferably about 215 ml of diluent or about 250 ml of diluent. The iron carbohydrate complex can be intramuscularly infused at a concentration of, for example, about 1000 mg elemental iron in about 200 ml to about 300 ml of diluent, preferably, about 250 ml of diluent or about 215 ml of diluent. If applied as an infusion, the iron carbohydrate complex can be diluted with sterile saline (e.g., polynuclear iron (lll)-hydroxide 4(R)-(poly-(1->4)-0-a-glucopyranosyl)-oxy-2(R),3(S),5(R),6-tetrahydroxy-hexanoate ("VIT-45") 0.9% m/V NaCI or 500 mg iron in up to 250 mL NaCI). The iron carbohydrate complex can be intravenously injected as a bolus without dilution. As an example, the iron carbohydrate complex can be intramuscularly injected at a concentration of about 500 mg elemental iron in less than about 10 ml diluent, preferably about 5 ml.
[0036] Generally, total iron dosage will depend on the iron deficit of the patient. One skilled in the art can tailor the total iron dose required for a subject while avoiding iron overload, as overdosing with respect to the total required amount of iron has to be avoided, as is the case for all iron preparations.
[0037] The total iron dosage can be delivered as a single unit dosage ora series of single unit dosages. An appropriate single unit dosage level will be at least 0.6 grams of elemental iron, particularly at least 0.7 grams; at least 0.8 grams; at least 0.9 grams; at least 1.0 grams; at least 1.1 grams; at least 1.2 grams; at least 1.3 grams; at least 1.4 grams. For example, a single unit dosage is at least 1.0 grams of elemental iron. As another example, a single unit dosage is 1.5 grams of elemental iron.
[0038] An appropriate single unit dosage level can also be determined on the basis of patient weight. For example, an appropriate single unit dosage level will generally be at least 9 mg of elemental iron per kg body weight, particularly at least 10.5 mg/kg, at least 12 mg/kg, at least 13.5 mg/kg, at least 15 mg/kg, at least 16.5 mg/kg, at least 18 mg/kg, at least 19.5 mg/kg, at least 21 mg/kg, at least 22.5 mg/kg, at least 24 mg/kg, at least 25.5 mg/kg, at least 27 mg/kg, at least 28.5 mg/kg, at least 30 mg/kg, at least 31.5 mg/kg, at least 33 mg/kg, at least 34.5 mg/kg, at least 36 mg/kg, or at least 37.5 mg/kg.
[0039] A single unit dosage is administered in 15 minutes or less. For example, the single unit dosage can be admin- istered in 14 minutes or less, 13 minutes or less, 12 minutes or less, 11 minutes or less, 10 minutes or less, 9 minutes or less, 8 minutes or less, 7 minutes or less, 6 minutes or less, 5 minutes or less, 4 minutes or less, 3 minutes or less, or 2 minutes or less.
[0040] Administration of iron can occur as a one-time delivery of a single unit dose or over a course of treatment involving delivery of multiple single unit doses. Multiple single unit doses can be administered, for example, over predetermined time intervals or in response to the appearance and reappearance of symptoms. The frequency of dosing depends on the disease or disorder being treated, the response of each individual patient, and the administered amount of elemental iron. An appropriate regime of dosing adequate to allow the body to absorb the iron from the bloodstream can be, for example, a course of therapy once every day to once every eighteen months.
[0041] Such consecutive single unit dosing can be designed to deliver a relatively high total dosage of iron over a relatively low period of time. For example, a single unit dose (e.g., 1000 mg) can be administered every 24 hours. As illustration, a total dose of 2000, 2500, 3000, 3500, 4000, 4500, or 5000 mg of elemental iron can be delivered via consecutive daily single unit doses of 600 mg to about 1000 mg of elemental iron. Given that a single unit dose of 1000 mg can be intravenously introduced into a patient in a concentrated form over, for example, two minutes, such administrative protocol provides a practitioner and patient with an effective, efficient, and safe means to deliver elemental iron.
[0042] As another example, a single unit dose can be administered every 3-4 days. As a further example, a single unit dose can be administered once per week. Alternatively, the single unit doses of iron complex may be administered ad hoc, that is, as symptoms reappear, as long as safety precautions are regarded as practiced by medical professionals.
[0043] It will be understood, however, that the specific dose and frequency of administration for any particular patient may be varied and depends upon a variety of factors, including the activity of the employed iron complex, the metabolic stability and length of action ofthat complex, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity and nature of the particular condition, and the host undergoing therapy.
[0044] The following provides but a few examples of treatment protocols for various diseases or disorders.
[0045] Iron carbohydrate complex can be given as a single unit dose for the treatment of Restless Leg Syndrome. For example, 1000 mg of elemental iron from an iron carboxymaltose (e.g., polynuclear iron (lll)-hydroxide 4(R)-(po-ly-(1->4)-0-a-glucopyranosyl)-oxy-2(R),3(S),5(R),6-tetrahydroxy-hexanoate) can be intravenously injected as a single dose (e.g., 1.5-5 mg iron/ml in normal saline) to a subject suffering from Restless Leg Syndrome. A single intravenous treatment can provide relief of symptoms for an extended period of time, approximately two to twelve months, although relief may be granted for shorter or longer periods. See U.S. Patent Pub. No. 2004/0180849, incorporated herein by reference. If desired, post-infusion changes in central nervous system iron status can be monitored using measurements of cerebral spinal fluid (CSF) ferritin (and other iron-related proteins) and of brain iron stores using MRI. Post-infusion changes in Restless Leg Syndrome are assessed using standard subjective (e.g., patientdiary, rating scale) and objective (e.g., P50, SIT, Leg Activity Meters) measures of clinical status. If desired, to better evaluate RLS symptom amelioration, CSF and serum iron values, MRI measures of brain iron and full clinical evaluations with sleep and immobilization tests are obtained prior to treatment, approximately two weeks after treatment, and again twelve months later or when symptoms return. Clinical ratings, Leg Activity Meter recordings and serum ferritin are obtained monthly after treatment. CSF ferritin changes can also be used to assess symptom dissipation.
[0046] Iron carbohydrate complex can be given as a single unit dose for the treatment of iron deficiency anemia secondary to heavy uterine bleeding. For example, a single unit dose of 1,000 mg of elemental iron from an iron carboxymaltose in about 250 cc normal saline can be intravenously injected into a subject suffering from iron deficiency anemia secondary to heavy uterine bleeding over 15 minutes every week until a calculated iron deficit dose has been administered. The iron deficit dose can be calculated as follows:
If baseline TSAT < 20% or Baseline Ferritin < 50 ng/ml:
Dose = Baseline weight (kg) x (15-Baseline Hgb [g/dL]) x 2.4 + 500 mg
OR
If baseline TSAT >20% and Baseline Ferritin > 50 ng/mL:
Dose = Baseline weight (kg) x (15-Baseline Hgb [g/dL]) x 2.4 (NOTE: Baseline Hgb equals the average of the last two central lab Hgb’s) [0047] Iron carbohydrate complex can be given as a single unit dose for the treatment of iron deficiency anemia. A subject diagnosed as suffering from iron deficiency anemia can be, for example, intravenously injected with a dose of 1,000 mg of iron as VIT- 45 (or 15 mg/kg for weight < 66 kg) in 250 cc of normal saline over 15 minutes. Subjects with iron deficiency anemia secondary to dialysis or non-dialysis dependent-Chronic Kidney Disease (CKD) as per K/DOQI guidelines will generally have Hgb <12 g/dL; TSAT < 25%; and Ferritin < 300 ng/mL. Subjects with iron deficiency anemia secondary to Inflammatory Bowel Disease will generally have Hgb < 12 g/dL; TSAT < 25%; and Ferritin < 300 ng/mL. Subjects with iron deficiency anemia secondary to other conditions will generally have Hgb < 12 g/dL; TSAT < 25%; and Ferritin <100 ng/mL.
Subject in need thereof [0048] Single unit dosages of intravenous iron described herein can be administered to a subject where there is a clinical need to deliver iron rapidly or in higher doses and/or in subjects with functional iron deficiency such as those on erythropoietin therapy. A determination of the need for treatment with parenteral iron is within the abilities of one skilled in the art. For example, need can be assessed by monitoring a patient’s iron status. The diagnosis of iron deficiency can be based on appropriate laboratory tests, for example, haemoglobin (Hb), serum ferritin, serum iron, transferrin saturation (TfS), and hypochromic red cells.
[0049] A determination of the need for treatment with high dosages of parenteral iron can be also be determined through diagnosis of a patient as suffering from a disease, disorder, or condition that is associated with iron deficiency or dysfunctional iron metabolism. For example, many chronic renal failure patients receiving erythropoietin will require intravenous iron to maintain target iron levels. As another example, most hemodialysis patients will require repeated intravenous iron administration, due to dialysis-associated blood loss and resulting negative iron balance.
[0050] Monitoring frequency can depend upon the disease, disorder, or condition the patient is afflicted with or at risk for. For example, in a patient initiating erythropoietin therapy, iron indices are monitored monthly. As another example, in patients who have achieved target range Hb or are receiving intravenous iron therapy, TSAT and ferritin levels can be monitored every 3 months.
[0051] A patient’s iron status can be indicative of an absolute or a functional iron deficiency, both of which can be treated with the compositions and methods described herein. An absolute iron deficiency occurs when an insufficient amount of iron is available to meet the body’s requirements. The insufficiency may be due to inadequate iron intake, reduced bioavailability of dietary iron, increased utilization of iron, or chronic blood loss. Prolonged iron deficiency can lead to iron deficiency anemia-a microcytic, hypochromic anemia in which there are inadequate iron stores. Absolute iron deficiency is generally indicated where TSAT <20% and Ferritin <100 ng/mL.
[0052] Functional iron deficiency can occur where there is a failure to release iron rapidly enough to keep pace with the demands of the bone marrow for erythropoiesis, despite adequate total body iron stores. In these cases, ferritin levels may be normal or high, but the supply of iron to the erythron is limited, as shown by a low transferrin saturation and an increased number of microcytic, hypochromic erythrocytes. Functional iron deficiency can be characterized by the following characteristics: Inadequate hemoglobin response to erythropoietin; Serum ferritin may be normal or high; Transferrin saturation (TSAT) usually <20%; and/or reduced mean corpuscular volume (MCV) or mean corpuscular hemoglobin concentration (MCHC) in severe cases. Functional iron deficiency (/.e., iron stores are thought to be adequate but unavailable for iron delivery) is generally indicated where TSAT <20% and Ferritin >100 ng/mL.
[0053] Assessing the need for intravenous iron therapy as described herein can be according to the National Kidney Foundation’s Kidney Disease Outcomes Quality Initiative. See NKF-K/DOQI, Clinical Practice Guidelines for Anemia of Chronic Kidney Disease (2000); Am J Kidney Dis (2001) 37(supp 1), S182-S238. The DOQI provides optimal clinical practices for the treatment of anemia in chronic renal failure. The DOQI guidelines specify intravenous iron treatment of kidney disease based on hemoglobin, transferrin saturation (TSAT), and ferritin levels.
[0054] Assessment of need for intravenous iron therapy can also be according to a patient’s target iron level. For example, the target hemoglobin level of a patient can be selected as 11.0 g/dL to 12.0 g/dL (hematocrit approximately 33% to 36%). To achieve target hemoglobin with optimum erythropoietin doses, sufficient iron, supplied via an iron carbohydrate complex, is provided to maintain TSAT >20% and ferritin >100 ng/mL. In erythropoietin-treated patients, if TSAT levels are below 20%, the likelihood that hemoglobin will rise or erythropoietin doses fall after iron administration is high. Achievement of target hemoglobin levels with optimum erythropoietin doses is associated with providing sufficient iron to maintain TSAT above 20%.
[0055] Iron therapy can be given to maintain target hemoglobin while preventing iron deficiency and also preventing iron overload. Adjusting dosage of iron to maintain target levels of hemoglobin, hematocrit, and laboratory parameters of iron storage is within the normal skill in the art. For example, where a patient is anemic or iron deficient, intravenous iron can be administered when a patient has a ferritin <800, a TSAT<50, and/or a Hemoglobin <12. Iron overload can be avoided by withholding iron for TSAT >50% and/or ferritin >800 ng/mL.
[0056] Where a patient is not anemic or iron deficient but is in need of iron administration, for example a patient suffering from Restless Leg Syndrome, hemoglobin and TSAT levels are not necessarily relevant, while ferritin >800 can still provide a general cut off point for administration.
Iron Carbohydrate Complex [0057] Iron carbohydrate complexes are commercially available, or have well known syntheses. The iron carbohydrate complexes are iron polysaccharide complexes, namely iron carboxymaltose complexes.
[0058] Applicants have discovered that certain characteristics of iron carbohydrate complexes make them amenable to administration at dosages far higher than contemplated by current administration protocols. Preferably, iron carbohydrate complexes for use in the methods described herein are those which have one or more of the following characteristics: a nearly neutral pH (e.g., about 5 to about 7); physiological osmolarity; stable carbohydrate component; an iron core size no greater than about 9 nm; mean diameter particle size no greater than about 35 nm, preferably about 25 nm to about 30 nm; slow and competitive delivery of the complexed iron to endogenous iron binding sites; serum half-life of over about 7 hours; low toxicity; non-immunogenic carbohydrate component; no cross reactivity with anti-dextran antibodies; and/or low risk of anaphylactoid / hypersensitivity reactions.
[0059] It is within the skill of the art to test various characteristics of iron carbohydrate complexes as so determine amenability to use in the methods described herein. For example, pH and osmolarity are straightforward determinations performed on a sample formulation. Likewise, techniques such as electron micrograph imaging, transmission electron microscopy, and atomic force microscopy provide direct methods to analyze both iron core and particle size. See e.g., Figure 1 ; Table 1. The stability of the carbohydrate complex can be assessed through physicochemical properties such as kinetic characteristics, thermodynamic characteristics, and degradation kinetics. See Geisser et al., Arzneimittelforschung (1992) 42(12), 1439-1452. Useful techniques to assess physical and electronic properties include absorption spectroscopy, X-ray diffraction analysis, transmission electron microscopy, atomic force microscopy, and elemental analysis. See Kudashevaetal. (2004) J Inorg Biochem98,1757-1769. Pharmacokinetics can be assessed, for example, by iron tracer experiments. Hypersensitivity reactions can be monitored and assessed as described in, for example, Bailie et al. (2005) Nephrol Dial Transplant, 20(7), 1443-1449. Safety, efficacy, and toxicity in human subjects can be assessed, for example, as described in Spinowitz et al. (2005) Kidney Inti 68, 1801-1807.
[0060] A particularly preferred iron carbohydrate complex will have a pH between 5.0-7.0; physiological osmolarity; an iron core size no greater than 9 nm; mean diameter particle size no greater than 30 nm; serum half-life of over 10 hours; a non-immunogenic carbohydrate component; and no cross reactivity with anti-dextran antibodies. One example of a preferred iron carbohydrate complex for use in the methods described herein is an iron carboxy-maltose complex (e.g., polynuclear iron (lll)-hydroxide 4(R)-(poly-(1->4)-0-a-glucopyranosyl)-oxy-2(R),3(S),5(R),6-tetrahydroxy-hex-anoate, "VIT-45"). Another example of a preferred iron carbohydrate complex for use in the methods described herein is a carboxyalkylated reduced polysaccharide iron oxide complex (e.g., ferumoxytol, described in U.S. Patent No. 6,599,498).
[0061] Preferably, an iron carbohydrate complex, for use in methods disclosed herein, contains about 24% to about 32% elemental iron, more preferably about 28% elemental iron. Preferably, an iron carbohydrate complex, for use in methods disclosed herein, contains about 25% to about 50% carbohydrate (e.g., total glucose). Preferably, an iron carbohydrate complex, for use in methods disclosed herein, is about 90,000 daltons to about 800,000 daltons, more preferably 100,000 daltons to about 350,000 daltons.
Iron carboxymaltose complex [0062] The iron carbohydrate complex for use in the methods described herein is an iron carboxymaltose complex. An example of an iron carboxymaltose complex is polynuclear iron (lll)-hydroxide 4(R)-(poly-(1—>4)-0-a-glucopyrano-syl)-oxy-2(R),3(S),5(R),6-tetrahydroxy-hexanoate ("VIT-45"). VIT-45 is a Type I polynuclear iron (III) hydroxide carbohydrate complex that can be administered as parenteral iron replacement therapy for the treatment of various anemia-related conditions as well as other iron-metabolism related conditions. VIT-45 can be represented by the chemical formula: [FeOx(OH)y(H20)z]n [{(C6H10O5)m (C6H 1207))1 ]k, where n is about 103, m is about 8, I is about 11, and k is about 4). The molecular weight of VIT-45 is about 150,000 Da. An exemplary depiction of VIT-45 is provided in Figure 2.
[0063] The degradation rate and physicochemical characteristics of the iron carbohydrate complex (e.g., VIT-45) make it an efficient means of parenteral iron delivery to the body stores. It is more efficient and less toxic than the lower molecular weight complexes such as iron sorbitol/citrate complex, and does not have the same limitations of high pH and osmolarity that leads to dosage and administration rate limitations in the case of, for example, iron sucrose and iron gluconate.
[0064] The iron carboxymaltose complex (e.g., VIT-45) generally does not contain dextran and does not react with dextran antibodies; therefore, the risk of anaphylactoid /hypersensitivity reactions is very low compared to iron dextran. The iron carboxymaltose complex (e.g., VIT-45) has a nearly neutral pH (5.0 to 7.0) and physiological osmolarity, which makes it possible to administer higher single unit doses over shorter time periods than other iron-carbohydrate complexes. The iron carboxymaltose complex (e.g., VIT-45) can mimic physiologically occurring ferritin. The carbohydrate moiety of iron carboxymaltose complex (e.g., VIT-45) is metabolized by the glycolytic pathway. Like iron dextran, the iron carboxymaltose complex (e.g., VIT-45) is more stable than iron gluconate and sucrose. The iron carboxymaltose complex (e.g., VIT-45) produces a slow and competitive delivery of the complexed iron to endogenous iron binding sites resulting in an acute toxicity one-fifth that of iron sucrose. These characteristics of the iron carboxymaltose complex (e.g., VIT-45) allow administration of higher single unit doses over shorter periods of time than, for example, iron gluconate or iron sucrose. Higher single unit doses can result in the need for fewer injections to replete iron stores, and consequently is often better suited for outpatient use.
[0065] After intravenous administration, the iron carboxymaltose complex (e.g., VIT-45) is mainly found in the liver, spleen, and bone marrow. Pharmacokinetic studies using positron emission tomography have demonstrated a fast initial elimination of radioactively labeled iron (Fe) 52Fe/59Fe VIT-45 from the blood, with rapid transfer to the bone marrow and rapid deposition in the liver and spleen. See e.g., Beshara et al. (2003) Br J Haematol 2003; 120(5): 853-859. Eight hours after administration, 5 to 20% of the injected amount was observed to be still in the blood, compared with 2 to 13% for iron sucrose. The projected calculated terminal half-life (tVfe) was approximately 16 hours, compared to 3 to 4 days for iron dextran and 6 hours for iron sucrose.
[0066] The iron in the iron carboxymaltose complex (e.g., VIT-45) slowly dissociates from the complex and can be efficiently used in the bone marrow for Hgb synthesis. Under VIT-45 administration, red cell utilization, followed for 4 weeks, ranged from 61% to 99%. Despite the relatively higher uptake by the bone marrow, there was no saturation of marrow transport systems. Thus, high red cell utilization of iron carboxymaltose complex occurs in anemic patients. In addition, the reticuloendothelial uptake of this complex reflects the safety of polysaccharide complexes. Non-saturation of transport systems to the bone marrow indicated the presence of a large interstitial transport pool (e.g., transferrin).
[0067] Other studies in patients with iron deficiency anemia revealed increases in exposure roughly proportional with VIT-45 dose (maximal total serum iron concentration was approximately 150 μg/mL and 320 μg/mL following 500 mg and 1000 mg doses, respectively). In these studies, VIT-45 demonstrated a monoexponential elimination pattern with a t1/2 in the range 7 to 18 hours, with negligible renal elimination.
[0068] Single-dose toxicity studies have demonstrated safety and tolerance in rodents and dogs of intravenous doses of an iron carboxymaltose complex (VIT-45) up to 60 times more than the equivalent of an intravenous infusion of 1,000 mg iron once weekly in humans. Pre-clinical studies in dogs and rats administered VIT-45 in cumulative doses up to 117 mg iron/kg body weight over 13 weeks showed no observed adverse effect level in dose-related clinical signs of iron accumulation in the liver, spleen, and kidneys. No treatment-related local tissue irritation was observed in intraarterial, perivenous, or intravenous tolerance studies in the rabbit. In vitro and in vivo mutagenicity tests provided no evidence that VIT-45 is clastogenic, mutagenic, or causes chromosomal damage or bone marrow cell toxicity. There were no specific responses to VIT-45 in a dextran antigenicity test.
[0069] Approximately 1700 subjects have been treated with an iron carboxymaltose complex (VIT-45) in open label clinical trials (see e.g., Exam pie 5). Many of these subjects have received at least one dose of 15mg/kg (up to a maximum dose of 1,000 mg) of VIT-45 over 15 minutes intravenously. Few adverse events and no serious adverse events or withdrawals due to adverse events related to VIT-45 administration have been reported. No clinically relevant adverse changes in safety laboratories have been seen.
[0070] The physicochemical characteristics of the iron carboxymaltose complex (e.g., VIT-45), the pattern of iron deposition, and the results of the above described studies demonstrate that iron carboxymaltose complex can be safely administered at high single unit therapeutic doses as described herein.
Core and Particle Size [0071] Intravenous iron agents are generally spheroidal iron-carbohydrate nanoparticles. At the core of each particle is an iron-oxyhydroxide gel. The core is surrounded by a shell of carbohydrate that stabilizes the iron-oxyhydroxide, slows the release of bioactive iron, and maintains the resulting particles in colloidal suspension. Iron agents generally share the same core chemistry but differ from each other by the size of the core and the identity and the density of the surrounding carbohydrate. See Table 1; Figure 1.
Table 1: Core and Particle Size of Iron Carbohydrate Complexes
[0072] Differences in core size and carbohydrate chemistry can determine pharmacological and biological differences, including clearance rate after injection, iron release rate in vitro, early evidence of iron bioactivity in vivo, and maximum tolerated dose and rate of infusion.
[0073] One of the primary determinants of iron bioactivity is the size of the core and the surface area to volume ratio. Generally, the rate of labile iron release in each agent is inversely related to the size of its iron core. Van Wyck (2004) J. Am. Soc. Nephrology 15, S107-S111, S109. Furthermore, in vitro iron donation to transferrin is inversely related to coresize. Coresize can depend upon the number of iron atoms contained within. For example, the number of iron atoms contained within a 1 nm core is calculated to be 13, while a 10 nm core is calculated to contain 12770 iron atoms. Where agents share the same core chemistry, the rate of iron release per unit surface area is likely similar, differing perhaps by the strength of the carbohydrate ligand-core iron bound. But for the same total amount of core iron, surface area available for iron release increases dramatically as core radius decreases. That is to say, for equal amounts of iron, the smaller the core, the greater the surface area available for iron release. Of course, the explanation for this non-linear trend is the fact that volume is radius cubed. In short, a collection of many small spheres exposes a greater total surface area than does a collection of an equal mass of fewer, larger spheres.
[0074] A smaller iron core size of an iron complex administered for the treatment of various diseases, disorders, or conditions allows wider distribution through tissues, a greater rate of labile iron release, and increased in vitro iron donation to transferrin. Furthermore, the iron complex is more evenly distributed and metabolizes faster due to the smaller core size. But if the core size is too small, the iron complex can move into cells unable to metabolize iron. In one embodiment, an iron complex with a mean iron core size of no greater than about 9 nm is administered. In various embodiments, mean iron core size is less than about 9 nm but greater than about 1 nm, about 2 nm, about 3 nm, about 4 nm, about 5 nm, about 6 nm, about 7 nm, or about 8 nm. Mean iron core size can be, for example, between about 1 nm and about 9 nm; between about 3 nm and about 7 nm; or between about 4 nm and about 5 nm.
[0075] The molecular weight (/'.e., the whole molecular weight of the agent) is considered a primary determinant in the pharmacokinetics, or in other words, how quickly it is cleared from the blood stream. The amount of labile (/. e., biologically available) iron is inversely correlated with the molecular weight of the iron-carbohydrate complex. Van Wyck (2004) J. Am. Soc. Nephrology 15, S107-S111, S109. That is to say, the magnitude of labile iron effect is greatest in iron-carbo-hydrate compounds of lowest molecular weight and least in those of the highest molecular weight. Generally, there is a direct relationship between the molecular weight of the agent and the mean diameter of the entire particle (i.e., the iron core along with the carbohydrate shell). In various embodiments, the mean diameter size of a particle of the iron carbohydrate complex is no greater than about 35 nm. For example, the particle mean size can be no greater than about 30 nm. As another example, the particle mean size can be no greater than about 25 nm. As another example, the particle mean size can be no greater than about 20 nm. As another example, the particle mean size can be no greater than about 15 nm. As a further example, the particle mean size can be no greater than about 10 nm. As another example, the particle mean size can be no greater than about 7 nm.
Absence of Significant Adverse Reaction to the Single Dosage Unit Administration [0076] Generally, a safe and effective amount of an iron carbohydrate complex is, for example, that amount that would cause the desired therapeutic effect in a patient while minimizing undesired side effects. The dosage regimen will be determined by skilled clinicians, based on factors such as the exact nature of the condition being treated, the severity of the condition, the age and general physical condition of the patient, and soon. Generally, treatment-emergent adverse events will occur in less than about 5% of treated patients. For example, treatment-emergent adverse events will occur in less than 4% or 3% of treated patients. Preferably, treatment-emergent adverse events will occur in less than about 2% of treated patients.
[0077] For example, minimized undesirable side effects can include those related to hypersensitivity reactions, sometimes classified as sudden onset closely related to the time of dosing, including hypotension, bronchospasm, layngos-pasm, angioedema or uticaria or several of these together. Hypersensitivity reactions are reported with all current intravenous iron products independent of dose. See generally Bailie et al. (2005) Nephrol Dial Transplant, 20(7), 1443-1449. As another example, minimized undesirable side effects can include those related to labile iron reactions, sometimes classified as nausea, vomiting, cramps, back pain, chest pain, and/or hypotension.
Pharmaceutical Formulations [0078] In many cases, a single unit dose of iron carbohydrate complex may be delivered as a simple composition comprising the iron complex and the buffer in which it is dissolved. However, other products may be added, if desired, for example, to maximize iron delivery, preservation, or to optimize a particular method of delivery.
[0079] A "pharmaceutically acceptable carrier" includes any and all solvents, dispersion media, coatings, antibacterial and anti-fungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical adminis tration (see e.g., Banker, Modern Pharmaceutics, Drugs and the Pharmaceutical Sciences, 4th ed. (2002) ISBN 0824706749; Remington The Science and Practice of Pharmacy, 21st ed. (2005) ISBN 0781746736). Preferred examples of such carriers or diluents include, but are not limited to, water, saline, Finger’s solutions and dextrose solution. Supplementary active compounds can also be incorporated into the compositions. For intravenous administration, the iron carbohydrate complex is preferably diluted in normal saline to approximately 2-5 mg/ml. The volume of the pharmaceutical solution is based on the safe volume for the individual patient, as determined by a medical professional.
[0080] An iron complex composition of the invention for administration is formulated to be compatible with the intended route of administration, such as intravenous injection. Solutions and suspensions used for parenteral application can include a sterile diluent, such as water for injection, saline solution, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose. The pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. Preparations can be enclosed in ampules, disposable syringes or multiple dose vials made of glass or plastic.
[0081] Pharmaceutical compositions suitable for injection include sterile aqueous solutions or dispersions for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL™ (BASF; Parsippany, N.J.) or phosphate buffered saline (PBS). The composition must be sterile and should be fluid so as to be administered using a syringe. Such compositions should be stable during manufacture and storage and must be preserved against contamination from microorganisms, such as bacteria and fungi. The carrier can be a dispersion medium containing, for example, water, polyol (such as glycerol, propylene glycol, and liquid polyethylene glycol), and other compatible, suitable mixtures. Various antibacterial and anti-fungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, and thimerosal, can contain microorganism contamination. Isotonic agents such as sugars, polyalcohols, such as manitol, sorbitol, and sodium chloride can be included in the composition. Compositions that can delay absorption include agents such as aluminum monostearate and gelatin.
[0082] Sterile injectable solutions can be prepared by incorporating an iron complex in the required amount in an appropriate solvent with a single or combination of ingredients as required, followed by sterilization. Methods of preparation of sterile solids for the preparation of sterile injectable solutions include vacuum drying and freeze-drying to yield a solid containing the iron complex and any other desired ingredient.
[0083] Active compounds may be prepared with carriers that protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable or biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolicacid, collagen, polyorthoesters, and polylactic acid. Such materials can be obtained commercially from ALZA Corporation (Mountain View, CA) and NOVA Pharmaceuticals, Inc. (Lake Elsinore, CA), or prepared by one of skill in the art.
[0084] A single unit dose of iron carbohydrate complex may be intravenously administered in a volume of pharmaceutically acceptable carrier of, for example, about 1000 mg of elemental iron in about 200 ml to about 300 ml of diluent. For example, a single unit dose of iron carbohydrate complex may be intravenously administered in a volume of pharmaceutically acceptable carrier of about 1000 mg of elemental iron in about 250 ml of diluent. As another example, a single unit dose of iron carbohydrate complex may be intravenously administered in a volume of pharmaceutically acceptable carrier of about 1000 mg of elemental iron in about 215 ml of diluent.
[0085] A preferred pharmaceutical composition for use in the methods described herein contains VIT-45 as the active pharmaceutical ingredient (API) with about 28% weight to weight (m/m) of iron, equivalent to about 53% m/m iron (lll)-hydroxide, about 37% m/m of ligand, <6% m/m of NaCI, and <10% m/m of water.
Kits for pharmaceutical compositions [0086] Iron complex compositions can be included in a kit, container, pack or dispenser, together with instructions for administration according to the methods described herein. When the invention is supplied as a kit, the different components of the composition may be packaged in separate containers, such as ampules or vials, and admixed immediately before use. Such packaging of the components separately may permit long-term storage without losing the activity of the components. Kits may also include reagents in separate containers that facilitate the execution of a specific test, such as diagnostic tests.
[0087] The reagents included in kits can be supplied in containers of any sort such that the life of the different components are preserved and are not adsorbed or altered by the materials of the container. For example, sealed glass ampules or vials may contain lyophilized iron complex or buffer that have been packaged under a neutral non-reacting gas, such as nitrogen. Ampules may consist of any suitable material, such as glass, organic polymers, such as polycarbonate, polystyrene, etc., ceramic, metal or any other material typically employed to hold reagents. Other examples of suitable containers include bottles that are fabricated from similar substances as ampules, and envelopes that consist of foil-lined interiors, such as aluminum or an alloy. Other containers include test tubes, vials, flasks, bottles, syringes, etc.. Containers may have a sterile access port, such as a bottle having a stopper that can be pierced by a hypodermic injection needle. Other containers may have two compartments that are separated by a readily removable membrane that, upon removal, permits the components to mix. Removable membranes may be glass, plastic, rubber, etc.
[0088] Kits may also be supplied with instructional materials. Instructions may be printed on paper or other substrate, and/or may be supplied on an electronic-readable medium, such as a floppy disc, CD-ROM, DVD-ROM, mini-disc, SACD, Zip disc, videotape, audio tape, etc. Detailed instructions may not be physically associated with the kit; instead, a user may be directed to an internet web site specified by the manufacturer or distributor of the kit, or supplied as electronic mail.
EXAMPLES
[0089] The following non-limiting examples are provided to further illustrate the present invention.
Example 1: Non-Toxicity Studies [0090] Nonclinical toxicity of VIT-45 is very low, as is normal for Type I polynuclear iron (lll)-hydroxide carbohydrate complexes. The single dose toxicity is so low that the LD50 could not be estimated and is higher than 2000 mg iron/kg b.w. Mice tested with a single dose of 250 mg iron/kg b.w., injected within 2 seconds, showed no signs of illness. The highest non-lethal dose level of 1000 mg iron/kg b.w. in mice and rats is also very high in comparison to a single unit dose of, for example, 15 mg iron/kg b.w. once per week in humans. These results provide factors of about 70-fold a human dose, demonstrating a large safety margin for acute toxicity of the product.
Example 2: Pharmokinetic Studies [0091] Pharmacokinetic and red blood cell measurements of 52Fe/59Fe labelled VIT-45 following i.v. administration using PET in 6 patients showed a red blood cell utilization from 61 to 99%. The 3 patients with iron deficiency anemia showed a utilization of radiolabelled iron of 91 to 99% after 24 days, compared to 61 to 84% for 3 patients with renal anaemia. The terminal t1/2 for VIT-45 was calculated to be approximately 16 hours, compared to about 6 hours for iron sucrose. In two further studies in patients with iron deficiency anemia, pharmacokinetic analyses revealed increases in exposure roughly proportional with VIT-45 dose (Cmax approximately 150 μg/mL and 320 μg/mL following 500 mg and 1000 mg doses, respectively). VIT-45 demonstrated a monoexponential elimination pattern with a t1/2 in the range 7 to 18 hours. There was negligible renal elimination.
Example 3: Efficacy Studies [0092] The main pharmacodynamic effects of VIT-45 were transient elevations of serum iron levels, TfS and serum ferritin. These effects were seen in all studies (where measured), following both single doses and repeated doses. The increase in serum ferritin levels illustrated the replenishment of the depleted iron stores, which is a well-identified and desired effect of iron therapy. In addition, transiently elevated TfS indicated that iron binding capacity was almost fully utilized following VIT-45 infusion.
[0093] Efficacy of iron replacement therapy is interpreted mainly in terms of the ability to normalise Hb levels and iron stores. In the multiple dose studies, patients demonstrated a slowly-developing, sustained increase in Hb levels during study participation. In one study, 37% and 48% of patients in Cohorts 1 and 2, respectively, had achieved normal Hb levels at the 4-week follow-up visit, and 75% and 73%, respectively, had achieved a >20 g/L increase in Hb on at least 1 occasion.
[0094] In another study (patients receiving regular haemodialysis), the majority of patients (61.7%) achieved an increase of Hb of >10 g/L at any point during the study. Serum ferritin and TfS levels showed a more prolonged elevation following repeated VIT-45 infusions, indicating a sustained replenishment of iron stores. However, elevated levels of ferritin and TfS indicating iron overload were avoided. In both of these studies, there was a gradual decrease in transferrin overtime, also indicating successful iron replacement.
Example 4: Safety Assessments [0095] Safety assessments were made in 73 patients with iron deficiency anemia (27 single-dose, 46 repeated-dose), and 166 patients with renal anaemia (3 single-dose, 163 repeated-dose) who received VIT-45 at individual iron doses of 100 mg up to 1000 mg (cumulative doses of 100 to 2200 mg). These studies showed a safety profile equal to, or exceeding, currently available parenteral iron formulations.
[0096] In the single-dose studies, there were few adverse events and no serious adverse events or withdrawals due to adverse events. There were also no related clinically relevant adverse changes in vital signs, 12-lead ECGs or laboratory safety tests.
[0097] In the repeated-dose studies, there were no deaths attributed to VIT-45, while 10 patients experienced serious adverse events. All of these cases occurred in patients with renal anaemia receiving haemodialysis and were considered not related to the VIT-45 treatment. Very few patients were withdrawn from the studies due to treatment-emergent adverse events, and only 2 withdrawals (due to allergic skin reactions) were considered possibly related to treatment. In each of the repeated-dose studies, no patients experienced clinically significant changes in 12-lead ECGs that were related to treatment. There were no consistent changes in laboratory safety parameters, although there was a low incidence (total 6 patients) of laboratory values reported as treatment-related treatment-emergent adverse events (elevated CRP, AST, ALT and GGT, abnormal liver function tests and elevated WBC).
[0098] Although many patients in these 2 studies had serum ferritin above 500 μg/L on at least 1 occasion during the study, very few patients also had TfS values >50%. Generally, the elevations of ferritin and TfS were of short duration. Iron overload was avoided using the dosing schedules defined in the studies.
Example 5: Integrated Safety Studies [0099] The following example demonstrates the safety and effectiveness of parenteral VIT-45 in the treatment of anemia in a variety of patient populations, as determined from several integrated safety studies.
[0100] A total of 2429 subjects were treated with VIT-45 or control agents over 10 studies that provide safety data for VIT-45. Of these, 1709 subjects received VIT-45 (1095 in completed multicenter studies, 584 in placebo-controlled, single-dose, crossover studies and 30 in pharmacokinetic studies). The mean total dose of VIT-45 administered among the 1095 subjects in the completed multicenter studies was approximately 1300 mg; however, some subjects received VIT-45 doses as high as 3400 mg. The majority of the subjects treated were able to receive their calculated iron requirement in only 1 or 2 doses.
[0101] Table 2 provides a summary of VIT-45 studies described in this example.
[0102] Study A was a single-center, single-dose escalation, randomized, double-blind, placebo-controlled pharmacokinetic study. Subjects were male and female, between 18 and 45 years of age, inclusive, with mild iron-deficiency anemia. Treatment was a single IV bolus injection of VIT-45 at 100 mg, 500 mg, 800 mg, or 1000 mg. Examined pharmacokinetic parameters included total serum iron and pharmacodynamic (serum ferritin and transferrin, iron binding capacity, %TSATpost, hemoglobin, reticulocyte, and serum transferrin receptor concentrations) endpoints. Examined safety parameters included adverse events, clinical laboratory evaluations, vital signs, ECG, and physical examinations.
[0103] Study B was a single-center, single-dose, open label, uncontrolled pharmacokinetic study. Subjects were between 18 and 75 years of age with iron-deficiency or renal anemia with no other cause of anaemia. Inclusion criteria included hemoglobin concentration between 9 and 13 g/dL, no blood transfusions in the previous 3 months, and no history of treatment with intravenous iron in the Iast2 weeks. Treatment was a single IV bolus injection ofVIT-45 at 100 mg labelled with 52Fe and 59Fe. Examined primary pharmacokinetic parameters included the distribution of 52Fe and incorporation of 59Fe into red blood cells. Examined safety parameters included adverse events, clinical laboratory evaluations, vital signs, and physical examinations.
[0104] Study C was an open-label, multicenter, randomized, multiple-dose, active-controlled postpartum anemia study. Subjects were female, postpartum within 10 days after delivery, with hemoglobin <10 g/dL at Baseline based on the average of 2 hemoglobin values drawn >18 hours postpartum. Treatment was once weekly doses of VIT-45 for six weeks. VIT-45 dosage was based on the calculated iron deficit (<2500 mg total). Where screening serum transferrin saturation (TSAT) was <20% or screening ferritin was <50 ng/mL, dosage = pre-pregnancy weight (kg) x (15-baseline hemoglobin [g/dL]) x 2.4 + 500 mg. Where screening TSAT was >20% and screening ferritin was >50 ng/mL, dosage = pre-pregnancy weight (kg) x (15-baseline hemoglobin [g/dL]) x 2.4. Infusion of VIT-45 was as follows: <200 mg, administered as an undiluted intravenous push (IVP) over 1-2 minutes; 300-400 mg, administered in 100 cc normal saline solution (NSS) over 6 minutes; 500-1,000 mg administered in 250 cc NSS over 15 minutes. For primary efficacy, "success" was defined as an increase in hemoglobin of >2 g/dL anytime between baseline and end of study or time of intervention, while "failure" was defined as <2 g/dL increase in hemoglobin at all times between baseline and end of study or time of intervention. Examined safety parameters included adverse events, clinical laboratory evaluations, vital signs, and physical examinations.
[0105] Study D was a multicenter, open-label, randomized, active-controlled, multiple-dose postpartum anemia study. Subjects were adult women >18 years old with postpartum anaemia within 6 days after delivery. Treatment was administered once-weekly for a maximum of 3 infusions. Patients received IV infusions of 16.7 mL/min to deliver a maximum dose of 1000 mg iron per infusion. Patients received VIT-45 infusions once weekly for up to 3 occasions until the calculated cumulative dose was reached. Patients <66 kg received a minimum dose of 200 mg and a maximum dose of 15 mg iron/kg during each infusion. Patients >66 kg received a dose of 1000 mg on the first dosing occasion, and a minimum dose of 200 mg and a maximum dose of 1000 mg at each subsequent dosing. Doses of 200-400 mg were diluted in 100 cc NSS and 500-1000 mg were diluted in 250 cc NSS. Primary efficacy was examined as change from baseline levels of hemoglobin to Week 12. Examined safety parameters included adverse events in the mother and breast-fed infant, adverse events leading to discontinuation of treatment, vital signs, 12-lead electrocardiogram (ECG), physical examinations, and clinical laboratory panels.
[0106] Study E was a multicenter, open-label, randomized, active-controlled, multiple-dose hemodialysis-associated anemia study. Subjects were adult male or female subjects between the ages of 18 and 80 years (inclusive) requiring haemodialysis with iron deficiency secondary to chronic renal failure. Dosing started on Day 1, Week 0 for both treatment arms and continued 2 or 3 times weekly until the individual calculated cumulative dose was reached. Patients received 200 mg VIT-45 during their scheduled haemodialysis sessions (2-3 sessions/week) until the calculated cumulative dose was reached. Cumulative total iron requirement was calculated for each patient using the Ganzoni formula. Primary Efficacy was examined as the percentage of patients reaching an increase in hemoglobin >10 g/L at 4 weeks after baseline. Examined safety parameters included adverse events, vital signs, 12-lead ECG, physical examinations, and clinical laboratory evaluations.
[0107] Study F was a multicenter, open-label, multiple dose, uncontrolled hemodialysis-associated anemia study. Subjects were male and female patients 18-65 years of age, inclusive, with haemodialysis-associated anaemia undergoing maintenance haemodialysis. Treatment duration was a maximum of six weeks. Patients received 200 mg VIT-45 during their scheduled haemodialysis sessions (2-3 sessions/week) until the calculated cumulative dose was reached. Cumulative total iron requirement was calculated for each patient using the Ganzoni formula. Efficicacy was examined as correction of iron deficiency and hemoglobin concentration of the patient. Examined safety parameters included adverse events, vital signs, 12-lead ECG, physical examinations, haematology and blood chemistry profiles, and urea reduction ratio.
[0108] Study G was a multicenter, multiple-dose open-label, uncontrolled gastrointestinal disorder-associated anemia study. Subjects were males and females between 18 and 60 years of age, inclusive, with moderate stable iron-deficiency anemia secondary to a gastrointestinal disorder and a calculated total iron requirement >1000 mg; >50% of patients in each cohort were to require >1500 mg total iron. Duration of treatment was single doses at weekly intervals for up to 4 weeks (Cohort 1) or 2 weeks (Cohort 2). Administration of VIT-45 was by IV bolus injection of 500 mg (Cohort 1) or 1000 mg (Cohort 2), where total iron requirement for each patient, which determined how manyweekly infusions were received, was calculated using the formula of Ganzoni. Examined pharmacokinetic parameters included total serum iron and pharmacodynamic (hemoglobin, ferritin, TSAT) endpoints. Examined safety parameters included adverse events, clinical laboratory evaluations, vital signs, ECG, physical examinations, and elevated serum ferritin (>500 μο/ί) AND elevated TSAT (>45%).
[0109] Study H was a multicenter, multiple-dose randomized, open-label, active-controlled gastrointestinal disorder-associated anemia study. Subjects were males and females aged 18 to 80 years, inclusive, with iron-deficiency anaemia secondary to chronic inflammatory bowel disease (ulcerative colitis or Crohn’s disease) and a calculated total iron requirement of at least 1000 mg total iron. Treatment was weekly VIT-45 infusions, with a maximum of 3 infusions permitted in a single treatment cycle. Administration consisted of an infusion on Day 1, with subsequent infusions at weekly intervals up to a maximum of 1000 mg iron per dose. The doses were continued until the patient received the cumulative dose based on their individual requirement for iron. Primary efficacy was examined as change from baseline to Week 12 in hemoglobin. Examined safety parameters included adverse events, vital signs, 12-lead ECG, physical examinations, and clinical laboratory evaluations.
[0110] Study I was an open label, multiple-dose, multicenter, randomized, active-control anemia due to heavy uterine bleeding study. Subjects were females at least 18 years of age with iron-deficiency anemia secondary to heavy uterine bleeding. Duration of treatment was six weeks. VIT-45 dosage was based on the calculated iron deficit as follows: where baseline TSAT <20% or baseline ferritin <50 ng/mL, VIT-45 total dose in mg = baseline weight (kg) x (15-baseline hemoglobin [g/dL]) x 2.4 + 500; where baseline TSAT >20% and baseline ferritin >50 ng/mL, VIT-45 total dose in mg = baseline weight (kg) x (15-baseline hemoglobin [g/dL]) x 2.4. For administration, <200 mg was administered as an undiluted IVP over 1-2 minutes; 300-400 mg was administered in 100 cc NSS over 6 minutes; and 500-1,000 mg was administered in 250 cc NSS over 15 minutes. Primary efficacy was examined as the proportion of subjects achieving success, defined as an increase in hemoglobin of >2.0 g/dL anytime between baseline and end of study or time of intervention. Examined safety parameters included adverse events, clinical laboratory evaluations, vital signs, and physical examinations.
[0111] Study J was a multicenter, single-dose blinded, randomized, placebo-controlled crossover iron deficiency anemia study. Subjects were male or female, at least 18 years of age, with a hemoglobin <12 g/dL, TSAT <25%, and ferritin <300 ng/mL (iron-deficiency anemia due to dialysis or non-dialysis dependent chronic kidney disease or inflammatory bowel disease), or ferritin <100 ng/mL (iron-deficiency anemia due to other conditions). Treatment was two single doses seven days apart. Administration ofVIT-45 occurred over 15 minutes and was <1000 mg (15 mg/kg for weight <66 kg). For pharmacokinetic variables, total serum iron was assessed using Atomic Absorption methodology. Examined safety parameters included adverse events, clinical laboratory evaluations, vital signs, and physical examinations.
[0112] The majority of the subjects who received VIT-45 completed the study. The incidence of premature discontinuations in the completed multicenter studies was 10% in the VIT-45 group which is comparable to that observed in the oral iron (9.6%) and Venofer (13.6%) groups. Reasons for premature discontinuation were generally comparable among the treatment groups, except that the incidence of adverse events leading to discontinuation were higher in the Venofer group (5.9%) compared to the VIT-45 (1.8%) and oral iron (2.1 %) groups, demonstrating the overall tolerability of VIT-45.
[0113] The overall incidences of treatment-emergent adverse events were comparable between the VIT-45 (49.5%) and oral iron (51.2%) groups in the completed multicenter studies; the incidence in the Venofer group was lower (39.0%); however, the number of subjects in the VIT-45 group is almost 10-fold that of the Venofer group. Treatment-emergent adverse events experienced by >2% of the 1095 VIT-45 subjects included headache (8.6%), abdominal pain (2.5%), nausea (2.4%), blood phosphate decreased (2.4%), hypertension (2.2%), nasopharyngitis (2.0%), and hypotension (2.0%). As expected, the most notable difference between subjects treated with VIT-45 and those treated with oral iron was for the incidence of gastrointestinal events (31.0% vs. 12.8%), specifically the incidences of constipation, diarrhea, nausea, and vomiting, which were more than double that observed in the VIT-45 group.
[0114] In the calculated dose/first-dose 1,000 mg studies, no statistically significant difference was observed between the VIT-45 (49.5%) and oral iron (51.2%) groups for the overall incidence of treatment-emergent adverse events. The incidence of gastrointestinal disorders was statistically significantly (p<0.0001) higher in the oral iron group (31.0%) compared to the VIT-45 group (15.2%), while the incidences of adverse events associated with investigations and skin and subcutaneous tissue disorders were statistically significantly higher in the VIT-45 group (9.1% and 7.3%, respectively) compared to the oral iron group (3.9% and 2.4%, respectively). Among the gastrointestinal disorders, greater proportions of subjects in the oral iron group than the VIT-45 group experienced constipation, nausea, diarrhoea, and vomiting, while a greater proportion of VIT-45 subjects experienced abdominal pain than oral iron subjects. Among the adverse events associated with investigations, greater proportions of VIT-45 subjects experienced blood phosphate decreased and GGT increased than oral iron subjects. Among the adverse events associated with skin and subcutaneous tissue disorders, greater proportions of VIT-45 subjects experienced rash and pruritus than oral iron subjects.
[0115] The only drug-related treatment-emergent adverse events reported by at least 2% of VIT-45 subjects in the calculated dose/first-dose 1,000 mg studies were headache (3.9%) and blood phosphate decreased (3.3%). The incidence of treatment-emergent adverse events reported on the first day of dosing in the calculated dose/first-dose 1,000 mg studies was statistically significant higher in the VIT-45 group compared to the oral iron group (6.8% vs. 2.7%). On the first day of dosing, the VIT-45 group had statistically significantly greater proportions of subjects who experienced general disorders and administration site conditions, primarily events associated with the site of study drug infusion, and skin and subcutaneous tissue disorders, primarily rash and urticaria, compared to the oral iron group.
[0116] The overall incidence of treatment-emergent adverse events was similar among VIT-45 subjects treated with either the 200 mg or 1000 mg doses. The only notable difference was for the higher incidence of headache in the 1000- mg group, which was almost double that observed for the 200-mg group. No meaningful trends were apparent with respect to the incidence of treatment-emergent adverse events when analyzed by gender, age, race, weight, or etiology of anemia.
[0117] There were no deaths in the study attributed to VIT-45. The incidence of other serious adverse events among VIT-45 subjects was low (3% in all completed multicenter studies and 0.3% in the placebo-controlled, single-dose crossover study) and none were considered related to study drug. The incidence of premature discontinuation due to adverse events was comparable between the VIT-45 group (2.1 %) and the other active treatment groups (3.1% oral iron and 2.5% Venofer). The incidence of drug-related treatment-emergent adverse events of hypersensitivity was 0.2%, the same as that observed with oral iron (0.2%). Drug-related mild or moderate hypotension was observed in 4 (0.2%) VIT-45 subjects, none of which were considered serious, led to premature discontinuation, or were symptomatic. Treatment-emergent adverse events indicative of potential allergic reactions including rash, pruritus, and urticaria were reported by <2% of subjects who were treated with VIT-45; none of these events was considered serious and few led to premature discontinuation.
[0118] Laboratory evaluations of mean changes from baseline and potentially clinically significant values demonstrated no clinically meaningful changes for the majority of the parameters evaluated. However, during the conduct of the latter portion of the clinical program, transient, asymptomatic decreases in blood phosphate levels were observed among subjects treated with VIT-45. The decreases were apparent approximately 7 days after the initial dose of VIT-45 and the median time to recovery was approximately 2 weeks. No subjects reported an adverse event that was related to serum phosphate and no subject discontinued from the study due to decreased serum phosphate. The only predictor of change in serum phosphate was that subjects with higher baseline serum phosphate values had larger decreases in serum phosphate. The fact that the majority of oral iron-treated subjects also had a post-baseline decrease in phosphate and the negative correlation of baseline serum phosphate with changes in serum phosphate for both the VIT-45 and oral iron treatment groups suggest that the mechanism is intrinsic to iron therapy in this severely anemic population.
[0119] Overall, no clinically meaningful changes in vitals signs evaluations were associated with VIT-45 administration.
[0120] Safety data from more than 1700 subjects demonstrate the safety and tolerability of VIT-45.
Claims 1. An iron carbohydrate complex in a single dosage unit of at least 0.6 grams and up to 1.5 grams of elemental iron for use in the treatment of a disease, disorder, or condition characterized by iron deficiency or dysfunctional iron metabolism, wherein the iron carbohydrate complex is an iron carboxymaltose complex; wherein the iron carbohydrate complex has a substantially non-immunogenic carbohydrate component; and wherein the single dosage unit is administered parenterally to a patient in 15 minutes or less. 2. The use of an iron carbohydrate complex in a single dosage unit of at least 0.6 grams and up to 1.5 grams of elemental iron in the manufacture of a medicament for treatment of a disease, disorder, or condition characterized by iron deficiency or dysfunctional iron metabolism, wherein the iron carbohydrate complex is an iron carboxymaltose complex; wherein the iron carbohydrate complex has a substantially non-immunogenic carbohydrate component; and wherein the medicament is administered parenterally to a patient in 15 minutes or less. 3. An iron carbohydrate complex for use in the treatment of a disease, disorder, or condition characterized by iron deficiency or dysfunctional iron metabolism according to claim 1 or the use according to claim 2, wherein the disease, disorder, or condition is at least one type of anemia selected from the group consisting of iron deficiency anemia, anemia of a chronic disease, anemia due to impaired iron absorption or poor nutrition. 4. An iron carbohydrate complex for use in the treatment of a disease, disorder, or condition characterized by iron deficiency or dysfunctional iron metabolism or use according to any one of claims 1-3, wherein the disease, disorder, or condition is at least one type of anemia selected from: anemia associated with chronic blood loss; anemia associated with acute blood loss; anemia associated with pregnancy; anemia associated with childbirth; anemia associated with childhood development; anemia associated with psychomotor and cognitive development in children; anemia associated with breath holding spells; anemia associated with heavy uterine bleeding; anemia associated with menstruation; anemia associated with chronic recurrent hemoptysis; anemia associated with idiopathic pulmonary siderosis; anemia associated with chronic internal bleeding; anemia associated with gastrointestinal bleeding; anemia associated with parasitic infections; anemia associated with chronic kidney disease; anemia associated with dialysis; anemia associated with surgery or acute trauma; anemia associated with chronic ingestion of alcohol; anemia associated with chronic ingestion of salicylates; anemia associated with chronic ingestion of steroids; anemia associated with chronic ingestion of non-steroidal anti-inflammatory agents; anemia associated with chronic ingestion of erythropoiesis stimulating agents; anemia associated with rheumatoid arthritis; anemia associated with cancer; anemia associated with Hodgkin’s leukemia; anemia associated with non-Hodgkin’s leukemia; anemia associated with cancer chemotherapy; anemia associated with inflammatory bowel disease; anemia associated with ulcerative colitis thyroiditis; anemia associated with hepatitis; anemia associated with systemic lupus erythematosus; anemia associated with polymyalgia rheumatica; anemia associated with scleroderma; anemia associated with mixed connective tissue disease; anemia associated with Sojgren’s syndrome; anemia associated with congestive heart failure / cardiomyopathy; anemia associated with idiopathic geriatric anemia; anemia associated with Crohn’s Disease; anemia associated with gastric surgery; anemia associated with ingestion of drug products that inhibit iron absorption; anemia associated with chronic use of calcium; anemia associated with restless leg syndrome; anemia associated with blood donation; anemia associated with Parkinson’s disease; anemia associated with hair loss; or anemia associated with attention deficit disorder. 5. An iron carbohydrate complex for use in the treatment of a disease, disorder, or condition characterized by iron deficiency or dysfunctional iron metabolism or use according to any one of claims 1-4, wherein the single dosage unit of elemental iron is at least 0.7 grams; at least 0.8 grams; at least 0.9 grams; at least 1.0 grams; at least 1.1 grams; at least 1.2 grams; at least 1.3 grams; or at least 1.4 grams. 6. An iron carbohydrate complex for use in the treatment of a disease, disorder, or condition characterized by iron deficiency or dysfunctional iron metabolism or use according to any one of claims 1-5, wherein the single dosage unit of elemental iron is administered in 10 minutes or less; 5 minutes or less; or 2 minutes or less. 7. An iron carbohydrate complex for use in the treatment of a disease, disorder, or condition characterized by iron deficiency or dysfunctional iron metabolism or use according to any one of claims 1-6, wherein the single dosage unit iron carbohydrate complex does not cause a significant adverse reaction. 8. An iron carbohydrate complex for use in the treatment of a disease, disorder, or condition characterized by iron deficiency or dysfunctional iron metabolism or use according to any one of claims 1-7, wherein the iron carbohydrate complex is comprised in a pharmaceutical formulation having a pH between 5.0 to 7.0 and physiological osmolarity; and the iron carbohydrate complex has an iron core size no greater than 9 nm; a mean diameter particle size no greater than 35 nm; a blood half-life of between 10 hours to 20 hours; contains 24% to 32% elemental iron; contains 25% to 50% carbohydrate; and a molecular weight of 90,000 Daltons to 800,000 Daltons. 9. An iron carbohydrate complex for use in the treatment of a disease, disorder, or condition characterized by iron deficiency or dysfunctional iron metabolism or use according to any one of claims 1 to 8, wherein the iron carbox-ymaltose complex has a molecular weight of 100,000 Daltons to 350,000 Daltons. 10. An iron carbohydrate complex for use in the treatment of a disease, disorder, or condition characterized by iron deficiency or dysfunctional iron metabolism or use according to claims 1-8, wherein the iron carbohydrate complex is: an iron carboxymaltose complex that contains 24% to 32% elemental iron, 25% to 50% carbohydrate, and is 100,000 Daltons to 350,000 Daltons; or an iron carboxymaltose complex obtained from an aqueous solution of iron (III) salt and an aqueous solution of the oxidation product of one or more maltodextrins using an aqueous hypochlorite solution at a pH value within the alkaline range, wherein, when one maltodextrin is applied, its dextrose equivalent lies between 5 and 20, and when a mixture of several maltodextrins is applied, the dextrose equivalent lies between 5 and 20 and the dextrose equivalent of each individual maltodextrin contained in the mixture lies between 2 and 20; or an iron carboxymaltose complex with a chemical formula of [F20x(0H)y(H20)z]n [{(C6H10O5)m(C6H12O7)}|]k, where n is 103, m is 8, I is 11, and k is 4; contains 28% elemental iron; and has a molecular weight of 150,000 Daltons; or polynuclear iron (lll)-hydroxide 4(R)-(poly-(1->4)-0-a-glucopyranosyl)-oxy-2(R),3(S),5(R),6-tetrahydroxy-hex-anoate. 11. An iron carbohydrate complex for use in the treatment of a disease, disorder, or condition characterized by iron deficiency or dysfunctional iron metabolism or use according to claim 10, wherein the iron carbohydrate complex is polynuclear iron (lll)-hydroxide 4(R)-(poly-(1-»4)-0-a-glucopyranosyl)-oxy-2(R),3(S),5(R),6-tetrahydroxy-hex-anoate. 12. An iron carbohydrate complex for use in the treatment of a disease, disorder, or condition characterized by iron deficiency or dysfunctional iron metabolism or use according to anyone of claims 1-11, wherein the iron carbohydrate complex comprises an iron core with a mean iron core size of no greater than 9 nm; at least 1 nm but no greater than 9 nm; at least 3 nm but no greater than 7 nm; or at least 4 nm but not greater than 5 nm. 13. An iron carbohydrate complex for use in the treatment of a disease, disorder, or condition characterized by iron deficiency or dysfunctional iron metabolism or use according to any one of claims 1-12, wherein the mean size of a particle of the iron carbohydrate complex is no greater than 35 nm; no greater than 30 nm; no greater than 25 nm; no greater than 20 nm; no greater than 15 nm; no greater than 10 nm; or at least 6 nm but no greater than 7 nm. 14. An iron carbohydrate complex for use in the treatment of a disease, disorder, or condition characterized by iron deficiency or dysfunctional iron metabolism or use according to anyone of claims 1-13, wherein the iron carbohydrate complex is administered intravenously or intramuscularly as an infusion or bolus injection. 15. An iron carbohydrate complex for use in the treatment of a disease, disorder, or condition characterized by iron deficiency or dysfunctional iron metabolism or use according to any one of claims 1-14, wherein the single unit dose of iron carbohydrate complex is administered at a concentration of 1000 mg elemental iron in (i) 200 ml to 300 ml of diluent; (ii) 250 ml of diluent; or (iii) 215 ml of diluent. 16. An iron carbohydrate complex for use in the treatment of a disease, disorder, or condition characterized by iron deficiency or dysfunctional iron metabolism or use according to any one of claims 1-14, wherein the single unit dose of iron carbohydrate complex is intramuscularly infused at a concentration of 500 mg elemental iron in less than 10 ml diluent. 17. An iron carbohydrate complex for use in the treatment of a disease, disorder, or condition characterized by iron deficiency or dysfunctional iron metabolism or use according to any one of claims 1-14, wherein the single unit dose of iron carbohydrate complex is administered as an intravenous bolus injection. 18. An iron carbohydrate complex for use in the treatment of a disease, disorder, or condition characterized by iron deficiency or dysfunctional iron metabolism or use according to any one of claims 1-17, wherein the single unit dose of iron carbohydrate complex is administered once per week. 19. An iron carbohydrate complex for use in the treatment of a disease, disorder, or condition characterized by iron deficiency or dysfunctional iron metabolism or use according to anyone of claims 1-18, wherein the iron carbohydrate complex has substantially no cross reactivity with anti-dextran antibodies.
Patentansprüche 1. Eisen-Kohlenhydrat-Komplex in einer Einzeldosierungseinheit von wenigstens 0,6 Gramm und bis zu 1,5 Gramm an elementarem Eisen zur Verwendung bei der Behandlung einer Krankheit, Erkrankung oder Störung, die durch Eisenmangel oder dysfunktionellen Eisenstoffwechsel gekennzeichnet ist, wobei der Eisen-Kohlenhydrat-Komplex ein Eisen-Carboxymaltose-Komplex ist; wobei der Eisen-Kohlenhydrat-Komplex eine im Wesentlichen nicht immunogene Kohlenhydratkomponente aufweist; und wobei die Einzeldosierungseinheit in 15 Minuten oder weniger parenteral an einen Patienten verabreicht wird. 2. Verwendung eines Eisen-Kohlenhydrat-Komplexes in einer Einzeldosierungseinheit von wenigstens 0,6 Gramm und bis zu 1,5 Gramm an elementarem Eisen bei der Herstellung eines Medikaments zur Behandlung einer Krankheit, Erkrankung oder Störung, die durch Eisenmangel oder dysfunktionellen Eisenstoffwechsel gekennzeichnet ist, wobei der Eisen-Kohlenhydrat-Komplex ein Eisen-Carboxymaltose-Komplex ist; wobei der Eisen-Kohlenhydrat-Komplex eine im Wesentlichen nicht immunogene Kohlenhydratkomponente aufweist; und wobei das Medikament in 15 Minuten oder weniger parenteral an einen Patienten verabreicht wird. 3. Eisen-Kohlenhydrat-Komplex zur Verwendung bei der Behandlung einer Krankheit, Erkrankung oder Störung, die durch Eisenmangel oder dysfunktionellen Eisenstoffwechsel gekennzeichnet ist, nach Anspruch 1 oder Verwendung nach Anspruch 2, wobei die Krankheit, Erkrankung oder Störung wenigstens eine Art von Anämie ist, ausgewählt aus der Gruppe bestehend aus Eisenmangelanämie, Anämie einer chronischen Krankheit, Anämie aufgrund beeinträchtigter Eisenaufnahme oder Mangelernährung. 4. Eisen-Kohlenhydrat-Komplex zur Verwendung bei der Behandlung einer Krankheit, Erkrankung oder Störung, die durch Eisenmangel oder dysfunktionellen Eisenstoffwechsel gekennzeichnet ist, oder Verwendung nach einem der Ansprüche 1-3, wobei die Krankheit, Erkrankung oder Störung wenigstens eine Art von Anämie ist, ausgewählt aus: Anämie im Zusammenhang mit chronischem Blutverlust; Anämie im Zusammenhang mit akutem Blutverlust; Anämie im Zusammenhang mit Schwangerschaft; Anämie im Zusammenhang mit Entbindung; Anämie im Zusammenhang mit kindlicher Entwicklung; Anämie im Zusammenhang mit psychomotorischer und kognitiver Entwicklung von Kindern; Anämie im Zusammenhang mit Atemkrämpfen; Anämie im Zusammenhang mit schweren Uterusblutungen; Anämie im Zusammenhang mit Menstruation; Anämie im Zusammenhang mit chronisch rekursiver Hämoptyse; Anämie im Zusammenhang mit Ceelen-Gellerstedt-Syndrom; Anämie im Zusammenhang mit chronischen internen Blutungen; Anämie im Zusammenhang mit Magen-Darm-Blutungen; Anämie im Zusammenhang mit parasitären Infektionen; Anämie im Zusammenhang mit chronischem Nierenleiden; Anämie im Zusammenhang mit Dialyse; Anämie im Zusammenhang mit chirurgischen Eingriffen oder akutem Trauma; Anämie im Zusammenhang mit chronischer Aufnahme von Alkohol; Anämie im Zusammenhang mit chronischer Aufnahme von Salicylaten; Anämie im Zusammenhang mit chronischer Aufnahme von Steroiden; Anämie im Zusammenhang mit chronischer Aufnahme von nicht-steroiden Entzündungshemmern; Anämie im Zusammenhang mit chronischer Aufnahme von Erythropoesestimulationsmitteln; Anämie im Zusammenhang mit Gelenkrheumatismus; Anämie im Zusammenhang mit Krebs; Anämie im Zusammenhang mit Hodgkin-Leukämie; Anämie im Zusammenhang mit Nicht-Hodgkin-Leukämie; Anämie im Zusammenhang mit Krebschemotherapie; Anämie im Zusammenhang mit chronisch-entzündlicher Darmerkrankung; Anämie im Zusammenhang mit Colitis ulcerosa-Schilddrüsenentzündung; Anämie im Zusammenhang mit Hepatitis; Anämie im Zusammenhang mit systemischem Lupus erythematodes; Anämie im Zusammenhang mit Polymyalgia rheumatica; Anämie im Zusammenhang mit Sklerodermie; Anämie im Zusammenhang mit Mischkollagenose; Anämie im Zusammenhang mit Sjögren-Syndrom; Anämie im Zusammenhang mit Pumpversagen des Herzens / Kardiomyopathie; Anämie im Zusammenhang mit idiopathischer geriatrischer Anämie; Anämie im Zusammenhang mit Morbus Crohn; Anämie im Zusammenhang mit Darmchirurgie; Anämie im Zusammenhang mit der Aufnahme von Arzneistoffprodukten, die die Eisenaufnahme hemmen; Anämie im Zusammenhang mit der chronischen Verwendung von Kalzium; Anämie im Zusammenhang mit dem Ruhelose-Beine-Syndrom; Anämie im Zusammenhang mit Blutspenden; Anämie im Zusammenhang mit Parkinson-Krankheit; Anämie im Zusammenhang mit Haarausfall; oder Anämie im Zusammenhang mit Aufmerksamkeitsstörung. 5. Eisen-Kohlenhydrat-Komplex zur Verwendung bei der Behandlung einer Krankheit, Erkrankung oder Störung, die durch Eisenmangel oder dysfunktionellen Eisenstoffwechsel gekennzeichnet ist, oder Verwendung nach einem der Ansprüche 1-4, wobei die Einzeldosierungseinheit von elementarem Eisen wenigstens 0,7 Gramm; wenigstens 0,8 Gramm; wenigstens 0,9 Gramm; wenigstens 1,0 Gramm; wenigstens 1,1 Gramm; wenigstens 1,2 Gramm; wenigstens 1,3 Gramm; oder wenigstens 1,4 Gramm beträgt. 6. Eisen-Kohlenhydrat-Komplex zur Verwendung bei der Behandlung einer Krankheit, Erkrankung oder Störung, die durch Eisenmangel oder dysfunktionellen Eisenstoffwechsel gekennzeichnet ist, oder Verwendung nach einem der Ansprüche 1-5, wobei die Einzeldosierungseinheit von elementarem Eisen in 10 Minuten oder weniger; 5 Minuten oder weniger; oder 2 Minuten oder weniger verabreicht wird. 7. Eisen-Kohlenhydrat-Komplex zur Verwendung bei der Behandlung einer Krankheit, Erkrankung oder Störung, die durch Eisenmangel oder dysfunktionellen Eisenstoffwechsel gekennzeichnet ist, oder Verwendung nach einem der Ansprüche 1-6, wobei die Einzeldosierungseinheit Eisen-Kohlenhydrat-Komplex keine wesentliche Nebenwirkung verursacht. 8. Eisen-Kohlenhydrat-Komplex zur Verwendung bei der Behandlung einer Krankheit, Erkrankung oder Störung, die durch Eisenmangel oder dysfunktionellen Eisenstoffwechsel gekennzeichnet ist, oder Verwendung nach einem der Ansprüche 1-7, wobei der Eisen-Kohlenhydrat-Komplex in einer pharmazeutischen Rezeptur mit einem pH-Wert zwischen 5,0 und 7,0 und physiologischer Osmolarität enthalten ist; und der Eisen-Kohlenhydrat-Komplex eine Eisenkerngröße von nicht mehr als 9 nm; einen mittleren Teilchendurchmesser von nicht mehr als 35 nm; eine Halbwertzeit im Blut zwischen 10 Stunden und 20 Stunden aufweist; 24 % bis 32 % elementares Eisen enthält; 25 % bis 50 % Kohlenhydrat enthält; und ein Molekulargewicht von 90.000 Dalton bis 800.000 Dalton aufweist. 9. Eisen-Kohlenhydrat-Komplex zur Verwendung bei der Behandlung einer Krankheit, Erkrankung oder Störung, die durch Eisenmangel oder dysfunktionellen Eisenstoffwechsel gekennzeichnet ist, oder Verwendung nach einem der
Ansprüche 1 bis 8, wobei der Eisen-Carboxymaltose-Komplex ein Molekulargewicht von 100.000 Dalton bis 350.000 Dalton aufweist. 10. Eisen-Kohlenhydrat-Komplex zur Verwendung bei der Behandlung einer Krankheit, Erkrankung oder Störung, die durch Eisenmangel oder dysfunktionellen Eisenstoffwechsel gekennzeichnet ist, oder Verwendung nach den Ansprüchen 1-8, wobei der Eisen-Kohlenhydrat-Komplex Folgendes ist: ein Eisen-Carboxymaltose-Komplex, der 24 % bis 32 % elementares Eisen, 25 % bis 50 % Kohlenhydrat enthält und 100.000 Dalton bis 350.000 Dalton beträgt; oder ein Eisen-Carboxymaltose-Komplex, der aus einer wässrigen Lösung von Eisen(lll)-Salz und einer wässrigen Lösung des Oxidationsprodukts von einem oder mehreren Maltodextrinen unter Verwendung einer wässrigen Hypochloritlösung bei einem pH-Wert im alkalischen Bereich gewonnen wird, wobei bei Anwendung eines Maltodextrins sein Dextroseäquivalent zwischen 5 und 20 liegt, und bei Anwendung eines Gemischs aus mehreren Maltodextrinen das Dextroseäquivalent zwischen 5 und 20 liegt und das Dextroseäquivalent jedes einzelnen Maltodextrins, das im Gemisch enthalten ist, zwischen 2 und 20 liegt; oder ein Eisen-Carboxymaltose-Komplex mit einer chemischen Formel [FeOx(OH)y(H2O)z]n[{(C6H10O 5)m(C6H1207) }|]k, wobei n 103 ist, m 8 ist, 111 ist und k 4 ist; der 28% elementares Eisen enthält; und ein Molekulargewicht von 150.000 Dalton aufweist; oder polynukleäres Eisen(lll)-hydroxid-4(R)-(poly-(1—>4)-0-a-glucopyranosyl)oxy-2(R),3(S),5(R)-6-tetrahydroxyhe-xanoat. 11. Eisen-Kohlenhydrat-Komplex zur Verwendung bei der Behandlung einer Krankheit, Erkrankung oder Störung, die durch Eisenmangel oder dysfunktionellen Eisenstoffwechsel gekennzeichnet ist, oder Verwendung nach Anspruch 10, wobei der Eisen-Kohlenhydrat-Komplex polynukleäres Eisen(lll)-hydroxid-4(R)-(poly-(1->4)-0-a-glucopyrano-syl)oxy-2(R),3(S),5(R)-6-tetrahydroxyhexanoat ist. 12. Eisen-Kohlenhydrat-Komplex zur Verwendung bei der Behandlung einer Krankheit, Erkrankung oder Störung, die durch Eisenmangel oder dysfunktionellen Eisenstoffwechsel gekennzeichnet ist, oder Verwendung nach einem der Ansprüche 1-11, wobei der Eisen-Kohlenhydrat-Komplex einen Eisenkern mit einer mittleren Eisenkerngröße von nicht größer als 9 nm; wenigstens 1 nm, aber nicht größer als 9 nm; wenigstens 3 nm, aber nicht größer als 7 nm; oder wenigstens 4 nm, aber nicht größer als 5 nm umfasst. 13. Eisen-Kohlenhydrat-Komplex zur Verwendung bei der Behandlung einer Krankheit, Erkrankung oder Störung, die durch Eisenmangel oder dysfunktionellen Eisenstoffwechsel gekennzeichnet ist, oder Verwendung nach einem der Ansprüche 1 -12, wobei die mittlere Teilchengröße des Eisen-Kohlenhydrat-Komplexes nicht größer als 35 nm; nicht größer als 30 nm; nicht größer als 25 nm; nicht größer als 20 nm; nicht größer als 15 nm; nicht größer als 10 nm; oder wenigstens 6 nm, aber nicht größer als 7 nm ist. 14. Eisen-Kohlenhydrat-Komplex zur Verwendung bei der Behandlung einer Krankheit, Erkrankung oder Störung, die durch Eisenmangel oder dysfunktionellen Eisenstoffwechsel gekennzeichnet ist, oder Verwendung nach einem der Ansprüche 1-13, wobei der Eisen-Kohlenhydrat-Komplex intravenös oder intramuskulär als Infusion oder Bolusinjektion verabreicht wird. 15. Eisen-Kohlenhydrat-Komplex zur Verwendung bei der Behandlung einer Krankheit, Erkrankung oder Störung, die durch Eisenmangel oder dysfunktionellen Eisenstoffwechsel gekennzeichnet ist, oder Verwendung nach einem der Ansprüche 1-14, wobei die Einzeleinheitsdosis des Eisen-Kohlenhydrat-Komplexes bei einer Konzentration von 1000 mg elementarem Eisen in (i) 200 ml bis 300 ml Verdünnungsmittel; (ii) 250 ml Verdünnungsmittel; oder (iii) 215 ml Verdünnungsmittel verabreicht wird. 16. Eisen-Kohlenhydrat-Komplex zur Verwendung bei der Behandlung einer Krankheit, Erkrankung oder Störung, die durch Eisenmangel oder dysfunktionellen Eisenstoffwechsel gekennzeichnet ist, oder Verwendung nach einem der Ansprüche 1-14, wobei die Einzeleinheitsdosis des Eisen-Kohlenhydrat-Komplexes intramuskulär bei einer Konzentration von 500 mg elementarem Eisen in weniger als 10 ml Verdünnungsmittel infundiert wird. 17. Eisen-Kohlenhydrat-Komplex zur Verwendung bei der Behandlung einer Krankheit, Erkrankung oder Störung, die durch Eisenmangel oder dysfunktionellen Eisenstoffwechsel gekennzeichnet ist, oder Verwendung nach einem der Ansprüche 1-14, wobei die Einzeleinheitsdosis des Eisen-Kohlenhydrat-Komplexes als intravenöse Bolusinjektion verabreicht wird. 18. Eisen-Kohlenhydrat-Komplex zur Verwendung bei der Behandlung einer Krankheit, Erkrankung oder Störung, die durch Eisenmangel oder dysfunktionellen Eisenstoffwechsel gekennzeichnet ist, oder Verwendung nach einem der Ansprüche 1-17, wobei die Einzeleinheitsdosis des Eisen-Kohlenhydrat-Komplexes einmal wöchentlich verabreicht wird. 19. Eisen-Kohlenhydrat-Komplex zur Verwendung bei der Behandlung einer Krankheit, Erkrankung oder Störung, die durch Eisenmangel oder dysfunktionellen Eisenstoffwechsel gekennzeichnet ist, oder Verwendung nach einem der Ansprüche 1-18, wobei der Eisen-Kohlenhydrat-Komplex im Wesentlichen keine Kreuzreaktivität mit Antidextran-Antikörpern aufweist.
Revendications 1. Complexe de fer/glucide dans une unique unité de dosage d’au moins 0,6 gramme et jusqu’à 1,5 gramme de fer élémentaire pour une utilisation dans le traitement d’une maladie, d’un trouble ou d’une affection caractérisé par une carence en fer ou un disfonctionnement du métabolisme du fer, dans lequel le complexe de fer/glucide est un complexe de fer/carboxymaltose ; dans lequel le complexe de fer/glucide contient un composant glucidique essentiellement non immunogène ; et dans lequel l’unique unité de dosage est administrée par voie parentérale à un patient en 15 minutes ou moins. 2. Utilisation d’un complexe de fer/glucide dans une unique unité de dosage d’au moins 0,6 gramme et jusqu’à 1,5 gramme de fer élémentaire dans la préparation d’un médicament destiné au traitement d’une maladie, d’un trouble ou d’une affection caractérisé par une carence en fer ou un disfonctionnement du métabolisme du fer, dans lequel le complexe de fer/glucide est un complexe de fer/carboxymaltose ; dans lequel le complexe de fer/glucide contient un composant glucidique essentiellement non immunogène ; et dans laquelle le médicament est administré par voie parentérale à un patient en 15 minutes ou moins. 3. Complexe de fer/glucide pour son utilisation dans le traitement d’une maladie, d’un trouble ou d’une affection caractérisé par une carence en fer ou un disfonctionnement du métabolisme du fer selon la revendication 1 ou son utilisation selon la revendication 2, dans lequel la maladie, le trouble ou l’affection est au moins un type d’anémie choisie dans le groupe constitué par une anémie due à une carence en fer, une anémie due à une maladie chronique, une anémie due à une mauvaise absorption du fer ou à une nutrition inadéquate. 4. Complexe de fer/glucide pour son utilisation dans le traitement d’une maladie, d’un trouble ou d’une affection caractérisé par une carence en fer ou un disfonctionnement du métabolisme du fer ou son utilisation selon l’une quelconque des revendications 1 à 3, dans lequel la maladie, le trouble ou l’affection est au moins un type d’anémie choisie parmi : l’anémie associée à une perte chronique de sang ; l’anémie associée à une perte aiguë de sang ; l’anémie associée à une grossesse ; l’anémie associée à un accouchement ; l’anémie associée au développement des enfants ; l’anémie associée au développement psychomoteur et cognitif des enfants ; l’anémie associée à des spasmes du sanglot ; l’anémie associée à un saignement utérin abondant ; l’anémie associée aux menstruations ; l’anémie associée à une hémoptysie récurrente chronique ; l’anémie associée à une sidérose pulmonaire idiopathique ; l’anémie associée à un saignement interne chronique ; l’anémie associée à un saignement gastrointestinale ; l’anémie associée à une infection parasitaire ; l’anémie associée à une maladie rénale chronique ; l’anémie associée à une dialyse ; l’anémie associée à une intervention chirurgicale ou à un traumatisme aigu ; l’anémie associée à une ingestion chronique d’alcool ; l’anémie associée à une ingestion chronique de salicylates ; l’anémie associée à une ingestion chronique de stéroïdes ; l’anémie associée à une ingestion chronique d’agents anti-inflammatoires non stéroïdiens ; l’anémie associée à une ingestion chronique d’agents stimulant l’érythropoïèse ; l’anémie associée à une polyarthrite rhumatoïde ; l’anémie associée à un cancer ; l’anémie associée à leucémie hodgkinienne ; l’anémie associée à une leucémie non hodgkinienne ; l’anémie associée à une chimiothérapie anticancéreuse ; l’anémie associée à une maladie inflammatoire des intestins ; l’anémie associée à une thyroïdite rectocolite hémorragique ; l’anémie associée à une hépatite ; l’anémie associée à un lupus érythémateux disséminé ; l’anémie associée à une polymyalgie rhumatismale ; l’anémie associée à la sclérodermie ; l’anémie associée à une connectivité mixte ; l’anémie associée au syndrome de Sjögren ; l’anémie associée à une insuffisance cardiaque congestive/cardiomyopathie ; l’anémie associée à une anémie gériatrique idiopathique ; l’anémie associée à la maladie de Crohn ; l’anémie associée à une intervention chirurgicale gastrique ; l’anémie associée à l’ingestion de produits médicamenteux qui inhibent l’absorption du fer ; l’anémie associée à une utilisation chronique de calcium ; l’anémie associée au syndrome des jambes sans repos ; l’anémie associée à un don de sang ; l’anémie associée à la maladie de Parkinson ; l’anémie associée à une perte de cheveux ; ou l’anémie associée à un trouble déficitaire de l’attention. 5. Complexe de fer/glucide pour son utilisation dans le traitement d’une maladie, d’un trouble ou d’une affection caractérisé par une carence en fer ou un disfonctionnement du métabolisme du fer ou son utilisation selon l’une quelconque des revendications 1 à 4, dans lequel l’unique unité de dosage de fer élémentaire est au moins de 0,7 gramme ; au moins de 0,8 gramme ; au moins de 0,9 gramme ; au moins de 1,0 gramme ; au moins de 1,1 gramme ; au moins de 1,2 gramme ; au moins de 1,3 gramme ; ou au moins de 1,4 gramme. 6. Complexe de fer/glucide pour son utilisation dans le traitement d’une maladie, d’un trouble ou d’une affection caractérisé par une carence en fer ou un disfonctionnement du métabolisme du fer ou son utilisation selon l’une quelconque des revendications 1 à 5, dans lequel l’unique unité de dosage de fer élémentaire est administrée en 10 minutes ou moins ; en 5 minutes ou moins ; ou en 2 minutes ou moins. 7. Complexe de fer/glucide pour son utilisation dans le traitement d’une maladie, d’un trouble ou d’une affection caractérisé par une carence en fer ou un disfonctionnement du métabolisme du fer ou son utilisation selon l’une quelconque des revendications 1 à 6, dans lequel le complexe de fer/glucide de l’unique unité de dosage ne provoque pas de réaction secondaire importante. 8. Complexe de fer/glucide pour son utilisation dans le traitement d’une maladie, d’un trouble ou d’une affection caractérisé par une carence en fer ou un disfonctionnement du métabolisme du fer ou son utilisation selon l’une quelconque des revendications 1 à 7, dans lequel le complexe de fer/glucide est compris dans une formulation pharmaceutique ayant un pH entre 5,0 et 7,0 et uneosmolarité physiologique ; et le complexe de fer/glucide présente une taille de noyau de fer qui n’est pas supérieure à 9 nm ; une taille moyenne de diamètre de particule qui n’est pas supérieure à 35 nm ; une demi-vie dans le sang entre 10 heures et 20 heures ; contient 24 % à 32 % de fer élémentaire ; contient 25 % à 50 % de glucide ; et possède un poids moléculaire de 90 000 Daltons à 800 000 Daltons. 9. Complexe de fer/glucide pour son utilisation dans le traitement d’une maladie, d’un trouble ou d’une affection caractérisé par une carence en fer ou un disfonctionnement du métabolisme du fer ou son utilisation selon l’une quelconque des revendications 1 à 8, dans lequel le complexe defer/carboxymaltose possède un poids moléculaire de 100 000 Daltons à 350 000 Daltons. 10. Complexe de fer/glucide pour son utilisation dans le traitement d’une maladie, d’un trouble ou d’une affection caractérisé par une carence en fer ou un disfonctionnement du métabolisme du fer ou son utilisation selon l’une quelconque des revendications 1 à 8, dans lequel le complexe de fer/glucide est : un complexe de fer/carboxymaltose qui contient 24 % à 32 % de fer élémentaire, 25 % à 50 % de glucide et de 100 000 Daltons à 350 000 Daltons ; ou un complexe de fer/carboxymaltose obtenu à partir d’une solution aqueuse de sel de fer (III) et d’une solution aqueuse du produit d’oxydation d’une ou de plusieurs ma ltod extri nés en utilisant une solution aqueuse d’hy-pochlorite à une valeur de pH au sein de la plage alcaline, dans lequel, quand une maltodextrine est appliquée, son équivalent en dextrose se trouve entre 5 et 20, et quand un mélange de plusieurs ma ltod extri nés est appliqué, l’équivalent en dextrose se trouve entre 5 et 20 et l’équivalent en dextrose de chaque maltodextrine individuelle contenue dans le mélange se trouve entre 2 et 20 ; ou un complexe de fer/carboxymaltose ayant la formule chimique [FeOx(OH)y(H2O)z]n[{(C6H10O5)m(C6H12O7)}|]k, où n est 103, m est 8, 1 est 11 et k est 4 ; contient 28 % de fer élémentaire ; et possède un poids moléculaire de 150 000 Daltons ; ou le 4(R)-(poly-(1->4)-0-a-glucopyranosyl)-oxy-2(R),3(S),5(R),6-tétra-hydroxy-hexanoate d’hydroxyde de fer (III) polynucléaire. 11. Complexe de fer/glucide pour son utilisation dans le traitement d’une maladie, d’un trouble ou d’une affection caractérisé par une carence en fer ou un disfonctionnement du métabolisme du fer ou son utilisation selon la revendication 10, dans lequel le complexe de fer/glucide est le 4(R)-(poly-(1->4)-0-a-glucopyranosyl)-oxy-2(R),3(S),5(R),6-tétrahydroxy-hexanoate d’hydroxyde de fer (III) polynucléaire. 12. Complexe de fer/glucide pour son utilisation dans le traitement d’une maladie, d’un trouble ou d’une affection caractérisé par une carence en fer ou un disfonctionnement du métabolisme du fer ou son utilisation selon l’une quelconque des revendications 1 à 11, dans lequel le complexe de fer/glucide comprend un noyau defer ayant une taille moyenne de noyau de fer qui n’est pas supérieure à 9 nm ; d’au moins 1 nm, mais pas supérieure à 9 nm ; d’au moins 3 nm, mais pas supérieure à 7 nm; ou d’au moins 4 nm, mais pas supérieure à 5 nm. 13. Complexe de fer/glucide pour son utilisation dans le traitement d’une maladie, d’un trouble ou d’une affection caractérisé par une carence en fer ou un disfonctionnement du métabolisme du fer ou son utilisation selon l’une quelconque des revendications 1 à 12, dans lequel la taille moyenne d’une particule du complexe de fer/glucide n’est pas supérieure à 35 nm ; pas supérieure à 30 nm ; pas supérieure à 25 nm ; pas supérieure à 20 nm ; pas supérieure à 15 nm ; pas supérieure à 10 nm ; ou d’au moins 6 nm, mais pas supérieure à 7 nm. 14. Complexe de fer/glucide pour son utilisation dans le traitement d’une maladie, d’un trouble ou d’une affection caractérisé par une carence en fer ou un disfonctionnement du métabolisme du fer ou son utilisation selon l’une quelconque des revendications 1 à 13, dans lequel le complexe de fer/glucide est administré par voie intraveineuse ou intramusculaire sous la forme d’une perfusion ou d’une injection bolus. 15. Complexe de fer/glucide pour son utilisation dans le traitement d’une maladie, d’un trouble ou d’une affection caractérisé par une carence en fer ou un disfonctionnement du métabolisme du fer ou son utilisation selon l’une quelconque des revendications 1 à 14, dans lequel l’unique unité de dosage de complexe de fer/glucide est administrée à une concentration de 1 000 mg de fer élémentaire dans (i) 200 ml à 300 ml de diluant ; (ii) 250 ml de diluant ; ou (iii) 215 ml de diluant. 16. Complexe de fer/glucide pour son utilisation dans le traitement d’une maladie, d’un trouble ou d’une affection caractérisé par une carence en fer ou un disfonctionnement du métabolisme du fer ou son utilisation selon l’une quelconque des revendications 1 à 14, dans lequel l’unique unité de dosage de complexe de fer/glucide est injectée par voie intramusculaire à une concentration de 500 mg de fer élémentaire dans moins de 10 ml de diluant. 17. Complexe de fer/glucide pour son utilisation dans le traitement d’une maladie, d’un trouble ou d’une affection caractérisé par une carence en fer ou un disfonctionnement du métabolisme du fer ou son utilisation selon l’une quelconque des revendications 1 à 14, dans lequel l’unique unité de dosage de complexe de fer/glucide est administrée sous la forme d’une injection bolus intraveineuse. 18. Complexe de fer/glucide pour son utilisation dans le traitement d’une maladie, d’un trouble ou d’une affection caractérisé par une carence en fer ou un disfonctionnement du métabolisme du fer ou son utilisation selon l’une quelconque des revendications 1 à 17, dans lequel l’unique unité de dosage de complexe de fer/glucide est administrée une fois par semaine. 19. Complexe de fer/glucide pour son utilisation dans le traitement d’une maladie, d’un trouble ou d’une affection caractérisé par une carence en fer ou un disfonctionnement du métabolisme du fer ou son utilisation selon l’une quelconque des revendications 1 à 18, dans lequel le complexe de fer/glucide ne présente essentiellement aucune réactivité croisée avec des anticorps anti-dextrane.

Claims (12)

Bzafeáöoimt tgénypopfokBzafeáöoimt tgénypopfok 1.. Legalább 0,6 gramm as legfeljebb i J gramm ebről vas vas-szénhidrát komplexe ;>pVSXers dózis egységben egy bélepég, rendellenesség vagy állapéi kezelésében történő alkal-amelyet vashiánv vaáv vas meiabebzrnaa rsndeliepes működése jplleípfz, ahrà a. Yas-szénhtörm b®mp\m vm-karboxi-makéz komplex; ^hoi a szénhidrát összetevő vet rendelke zi Ki es fihDr az egyszeri dózis egysége* a betegnek parenteráüsrtn adagoljuk 15 vagy kevesebb perc aludik legalább 0 J gramm és iegMIehb 1J gass elemi, vas vasmzénltídfot kohiple- sép A ékviszerr dózis egységben #óénŐ alMimazisa egy betegség, rendelleneáség; vagy állapot, .,.<-!civet vashiány vagy vas togtabéMzmus vendallenes működése jíökma% kezelésére szolgáié .^vegyszer előállítására, ^hoi a vasmzóobicirát komplex vsmkmböxi-raaltóz komplex; «hol a vas-szenbibrat komplex lényegiben oembmmuaógéo. séénlndrái Ümmm&amp;M rendelke-zik; és ahol a gyógyszert a betegnekpmotnéráilátn adagoljuk IS vagy kevesebb perc alap.A iron iron carbohydrate complex of at least 0.6 grams up to about 1 gram grams; &lt; RTI ID = 0.0 &gt; pVSXers &lt; / RTI &gt; in unit dosage form for treating a dyspnoea, disorder, or condition with vasodilatate vasodilator rsndeliepes jplleípfz, ahrà a. Yas-Carboxylic acid (Vm-Carboxy-Macae) complex; ho i i zi zi zi át Ki Ki Ki Ki ih ih ih ih ih ih ih ih ih ih ih ih ih ih ih ih ih ih ih ih ih ih ih ih ih ih ih ih ih ih ih ih ih ih ih ih ih ih ih ih vagy vagy perc perc perc perc perc perc perc perc perc MI MI MI MI J J J J ass ass ass ass ass vas vas vas vas vas én én én én M M M M M rendelleneáség; or condition,.,. <.! civet iron deficiency or iron togtabéMzmus vendallenes for the treatment of ectopic%. ^ for the production of a chemical; Where the iron barber complex is essentially an oemembrane. Séénlndralai Ummm &amp;M; and wherein the medicament is administered to the patient by means of an IS or less per minute base. 1. Vasmxéükldrát komplex egy betegség, rendellenesség vagy állapot, arnelÿet vashiány vagy; vas pífoábbBzmus rendellenes működése jéiem®% kezelésében; történő 1; .-Igény*· poPt szerinti alkalmazásra, vagy a 2- igénypont szerinti alkalmazás, ahol a betegség, rendellenesség vagy állapot az anémia legalább egy faj tája, amelyet az alábbiakból álló csoportból választunk: vashiányos anémia, krónikus betegség okozta anémia, károsodott vas felszívódás vagy gyönge táplálkozás következtében kialakuló anémia,1. Ironmixenate complex is a disease, disorder or condition, vascular deficiency; iron powdersBzmus for dysfunctional operation in jute%; 1; The use according to claim 2, wherein the disease, disorder or condition is at least one species of anemia selected from the group consisting of iron deficiency anemia, chronic anemia caused by chronic disease, or impaired iron absorption. anemia caused by poor nutrition, 4, Vas-szénhidrái komplex egy betegség, rendellenesség vagy állapot amelyet vashiány vagy vas rnetabolizmus rendellenes működése jellemez, kezelésében történő alkalmá-zésra, vagy az 1-1,: Igénypontok bármelyike szermti alkalmazás, ahol a betegség, rendellenesség vagy állapot: m anémia legalább egy fáj iája, amelpt az alábbiak közül választunk;: krónikus vérveszteséggel járó anémia; akut vérveszteséggel járó anémia; terhességhez: kapcsolódó anémia; gyérrnekszölésbez kapcsolódó anémia; gyermekkori íejiódédmx: kapesplodo auéuúá; gyermek pszichomotoros és kognitív íejiodéséhez kapcsolódó anémia; lélegzés visszatartáshoz kapesóiódö anémia; súlyos méhvérzéshez kapcsolódó anémia; meostruáelóhöx kapcsolódó anémia; vérkőpéshez (hemoptysis) kápesolódó anémia; idiopátiás tüdő sxiderőxishoz kapcsoló·' do anémia: krónikus belső vérzéshez kapcsolódó anémia;; gyomor-bél vérzéshez kaposoibbb: anémia; parazita ;tertozések:hez kapcsolódó anémia'krónikus Vésebeiegsighez kapesolódo anemia;; diadzisbézkapcsolödó anémia; sebészeti beavatkozáshoz: vagy akut traumához kapcsolódó: anémia; alkohol krónikus fogyasztásához kapcsolódó anémlá;; szábeiMfok krónikus: fogyasztásához kápesolódó anémia; szteroidok krónikus fogyasztásához kapcsolódó anémia.; aern- sziámii! gyrdladàsosôkkenki szerek krónikus kapcsolódé logvos*aseL»*·· -<νΐ?·Λ "y : " ' ‘1U' eriüxmôiéxîs serkentő szerek krónikus fogyasztáséhoz kapeaoioeo <Mwn^> rnnmatu*« atótisxhez kapcsolódó anémia; já&amp;te tolódó anémkl mmu; kapcsolódd anémia; tpk kmno^posm<>no mz~ mía; gyulladásos béîbeicgaèghez kapcsolódó ancnua; «i^a#v kukása a.m-Uk-dó atiba; kepaíiüsxhez kapcsolódó anémia, szfczt&amp;nfe lupus orftemaiozushoz^k^2d6 anémia; polimialgra reumatikáboz kapcsolódó auénuíb -.-/-^-00)0-..:0.^0.0,-.-.- kai át ':> kevert kötöszövetl betegscghéz kapcsolódó anémia; Sí>igten-ss;möroííru^^p^r-^^un *^«*Ue pangásos sgivclégióieméuhcz. / kardiömiöpáöához kapcsosod» anenua; Rcnp«bá^ gvíLfokd mmméëm kápesóiódö anémia; Grólm-'betogségkez: ;:k#e^odo ******** ^oi-,»u. j>^lv,^vL uu, téthez kapcsolódó anémia; vas felszívódást gátlő logy^ias-dö*-· k,,^soL dó anémia; kaiéban krónikus használatához kapcsolódó anemia, byanhvvv >nl- sxlne,:mó.,moz kapcsolóid anémia; vékáshoz kapcsolódó anémia; Parfemm oetogsegnw^ A« miit; hajhulláshoz kapcsolódó: anémia; vagy Sgydemdhányos mndoieuocscghcz kapcsolódó anemia.4, Iron Carbohydrates Complex is a disease, disorder or condition characterized by an abnormal functioning of iron deficiency or iron metabolism, for use in treating it, or a method of claim 1-1, wherein the disease, disorder or condition is: m anemia at least one of the pains we have chosen: anemia associated with chronic blood loss; anemia associated with acute blood loss; pregnancy: related anemia; anemia associated with spotting; childrens curiosityx: kapesplodo auéuúá; anemia associated with the psychomotor and cognitive development of the child; breathing retention capillary anemia; severe anemia associated with severe bleeding; meostruáelóhöx related anemia; haemoptysis chromosomal anemia; anemia associated with idiopathic lung sxiderosis: anemia associated with chronic internal bleeding; more gastrointestinal bleeding: anemia; anemia, chronic chickenpox associated with parasites; diadzeseal coupling anemia; for surgical intervention: or acute trauma: anemia; anemia associated with the chronic consumption of alcohol; CasesChronic Chronic: consuming chaotic anemia; anemia associated with chronic consumption of steroids .; aerniamil! gyrdladàsosôkkenki agents chronic connection logva * aseL »* ·· - <νΐ? · Λ" y: "'' 1U 'specialty stimulants for chronic consumption capeaoeoo <Mwn ^> rnnmatu *« anemia associated with atomisx; you &amp; shrinking anemklmmu; join anemia; tpk kmno ^ posm <> no mz ~ mía; ancnua associated with inflammatory bowel disease; «I ^ a # v fall of a.m-Uk-tha; kepizilox-related anemia, sphythm &amp; nfe lupus orftemiasis ^ 2d6 anemia; polymialgra rheumatoid associated with auenib -.- / - ^ - 00) 0 - ..: 0. ^ 0.0, -.-. Ski> igten-ss; möroíru ^^ p ^ r - ^^ un * ^ «* Ue congestive sgivclégióieméuhcz. / joining your cardiomyopath »anenua; Rcnp «nghlmy m anomaly anemia; Countdown:; #: ^ # ^ ******** ^ oi -, »u. j> ^ lv, ^ vL uu, stake-related anemia; iron absorption inhibitors such as an anemia; anemia associated with chronic use in cataract, byanhvvv> nl-sxlne,: mó. anemia associated with weakness; Parfemm oetogsegnw ^ A «miit; Hair Loss Related: Anemia; or Sgydemdakoros mndoieuocscghcz related anemia. 5. Vas-szénhidrát komplex egy betegség; rcnc-cnenesseg vagy adapo:. «melyet vashiány vagy vas metabolizmus rendellenes működése jräefoßK? kezdésében immnó amehna-zásra, vagy az 1-4. igénypontok bármelyike szerinti alkalmazás,. alibi az elemi vas egyszeri do» Pis egységz legalább 0,7 gramm; legalább OJ gramm; fegmáho 0,9 gramm, legalább pÖ gramm; Ipgailbb 1,1 gramm; legalább 1,2 grmnm; Isplahb j.% gmmm; vagy Icgamnb í:í4 gramm..5. Iron-carbohydrate complex is a disease; rcnc-cnenesseg or adapo :. «What is iron deficiency or iron metabolism abnormal functioning jräefoßK? at the onset of immune induction, or in 1-4. The use according to any one of claims 1 to 3. alibi elemental iron single do »Pis unit at least 0.7 grams; at least OJ grams; fegmáho 0.9 grams, at least pÖ grams; More 1.1 grams; at least 1.2 grmnm; Isplahb j% gmmm; or Icgamnb í: 4 grams. 6. Vas-szénhidrát komplex egy betegség, rendellenesség vagy állapét amelyet vashiány vagy vas nsetabolizmns rendellenes tnűködése J^emí53h kezdésében. lemenő alkalmazásra, vagy az 1-5. igénypontok bármelyike szerinti alkuhnazesi, ahö; az eted v<e< egyszeri dózis egységet 10 vagy kevesebb perc; 5 vagy kevesebb pete; vagy 2 vagy nevesebb pere platt adagoljuk.6. Iron Carbohydrate Complex is a disease, disorder, or condition that is caused by abnormal functioning of iron deficiency or iron netsabolism at the onset of J. for downstream application or 1-5. Alkohnazesi according to any one of claims 1 to 3, wherein; the eted v <e <single dose unit is 10 minutes or less; 5 or less pe; or 2 or more prominent family platt. 7. Vas-szénhidrát komplex egy betegség, réndeilenesseg vagy állápöt, amelyet vashiány vagy vas metabolizmus rendellenes működése jclfeme®, kezelésében 'történő alkalma-zásrm vagy az l-ő. igénypontok bármelyike szerinti aikdmazás, ahol a vas-szénhidrát koupdex; egysbéri: dózis egység nem okoz jelentős mellékhatási. g. Vas-szfebidrát komplex egy betegség, rendellenesség vagy állapot, amelyet vashiány zagy vg-s melzboMzmns rendellenes működése Jdlemez,, kezelésében történő alkalmazásra. vópy: ók: 1-7- igésiJi'pöMök bápselyike szerinti alkalmazás, aböl g vas-szónhldrát komplexet egy gyégyszetkésziönény tartalmazza, amelynek pH-já 5β és Iß közötti 4* fíklológiáe nzmelaritásű; és- n 's«»«EÄiÄ€:kpmp.bx: *m wf cb&amp;l :8» nsigybb.b* .tatot 9 a részees- ke átlagos átmérőié mm nagyobb, mint 35 nm; a íekzési ideje a vérben 10 óra és 20 óra közötti; 243i - 3235 elemi vasat tartalmaz; 254¾ ~ 50% szénhidrátot tartalmaz; és molekulatömege 90,000 Dalton - 800,000 Dalion.7. An iron carbohydrate complex is a disease, disorder, or disease that is treated by the treatment of iron deficiency or abnormal iron metabolism in the treatment of jclfeme®, or in the treatment of the disease. A dressing according to any one of claims 1 to 5, wherein the iron carbohydrate coupdex; single dose: dose unit does not cause significant side effects. g. Iron-Sphydrate Complex is a disease, disorder or condition for use in the treatment of iron deficiency slurry vg melzboMzmns in a Jd disc. vópy::::: alkalmazás alkalmazás alkalmazás alkalmazás alkalmazás alkalmazás alkalmazás alkalmazás alkalmazás alkalmazás alkalmazás öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl öl g tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza g g tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza tartalmazza g 4 4 4 4 4 4 4 4 4 4 4 4 4 4 * 4 4 * 4 4 * * * * * and- n 's «» «EÄiÄ €: kpmp.bx: * m wf cb &amp; l: 8» nsigybb.b * .tatot 9 the mean diameter of the partial is greater than 35 nm; the time of ingestion in the blood is between 10 hours and 20 hours; 243i - 3235 elemental iron; Contains 254¾ ~ 50% carbohydrates; and a molecular weight of 90,000 Dalton - 800,000 Dalion. 9. Vas-szénhidrát komplex egy bemgség: rendellenesség vagy állapot, amelyet vashiány vagy vas melabolixrnus rendellenes működése jellemez, kezelésében történd alkahnn-zásra, vagy m 1-8, igénypontok bármelyike szerinti alkalmazás, ahol a vas-femboxi-maltóz komplex molekula tömege 100.000 Dalton ~ 350,000 Dolton.9. Iron Carbohydrate Complex is a diarrhea: a disorder or condition characterized by abnormal functioning of iron deficiency or iron melabolixrnus for use in the treatment or use according to any one of claims 1-8, wherein the weight of the iron fembox-maltose complex molecule is 100,000. Dalton ~ 350,000 Dolton. 10. Vas-szénhidrát komplex egy betegség, rendellenesség vagy a!lapon amelyet vashiány vagy vas rendellenes működése leltemen, kezelésében történő alkalma zásra, vagy ox t-i, igénypontok bármelyike szerinti alkalmazás, ahol a vas-szénhidrát komplex: egy Yas-karboxíunaltiz; komplex, amely 24% - 32% elemi vasat, 25% - 50% szénrudratoi tartalmaz, és 100,000 Dalban - 350,000 Daltony vagy egy vas-kárboxt-mMióz komplex, amelyet egy vas pill:): só vizes oldatából és bipokiorit oldattal báxikus pH tartományban végzett egy vagy több mahodexrtin oxioáoios rsrmék vizes oldatából álittunk elő, ahol ha egy maltodexirsm alkalmazunk* akkor annak bexttox ekvivalense 5 és 20 közötti, és amikor mbb maltodextrin keverékét: alkalmazzuk, akkor a délhez ekvivalens 5 és 20 közötti és á keverékben lévő mindén egyes taaliodexmm next-róz ekvivalense 2 és 20 közöd!; vagy egy vas-karboxi-mához komplex. amelynex mnnete tlDOdOdOyt^ö-bl-i [KC;dboOD;%CJ1:d)v)}:k, ahol n értéke 105, m éneke 8,1 értéke 11, és k értéké 4; ?H% sietni vasai tartalmaz; és molekulatömege IbCkOvb Dalion, vagy pofin uh leéris vus(IJI%hidröxid 4:ρ>(ροΙίΚ1~·-^;Μ>-^ -tetrahtdröxi-héxanöát:,An iron carbohydrate complex for use in treating, treating or treating iron deficiency or iron abnormalities on the sheet, or the use of any one of claims 1 to 4, wherein the iron carbohydrate complex is a Yascarboxylthio; Complex containing 24% to 32% Elemental Iron, 25% to 50% Carbonate, and 100,000 Daltons - 350,000 Dalton, or Iron-Iron-Textile-Molecule Complex, which is a iron pill :): a salt solution of water and a bipocioritic solution in a pH range one or more of the aqueous solutions of one or more of the mahodexrtin oxyarines, wherein when a maltodexir is used, its bexttox equivalent is used between 5 and 20, and when a mixture of maltodextrin is used, each of the individual balmxxes between 5 and 20 and α in the mixture. next-rose equivalence is between 2 and 20; or a complex of iron carboxamide. containing m / z dOdOdOt? -Bl [KC; dboOD;% CJ1: d) v)}: k, where n is 105, m is 8.1, 11 is, and k is 4; ? H% hurry contains iron; and molecular weight IbCkOvb Dalion, or pofin uh (iji% hydrodide 4: ρ> (ροΙίΚ1 ~ · - ^; Μ> - ^ tetrahthydroxy-hexane :, 11. Vas-szénhidrái komplex egy betegség, rende lenes ség vagy állapot, amelyet vashiány vagy vas metahoiizmus rendellenes működése kezelésében történd alkalma zásra, vagy a 10, igénypont szerinti alkalmazás, tihol a vae-szennidnn nompsex egy nolinukleárls vasCöi>-hydroxiö 4(R>.(PoU-(l .-%}%3m-giűkoplranoziI)-oxÍ-2(R},3(S?,5ίΕ)%-detrahidroxi-hexaiioat,: 12. ¥aa-szénhldrm komplex egy betegség, rendellenesség vagy állapok amelyet vashiány vagy vos rnetabniizmus rettdeiiettes möködése juf lemez, kezeiese pen ióiamro mDalnte-%sm, vagy az 1-11, igénypontok bármelyike szerinti alkalmazás, aboi a vas-szénhidrát komplex egy vas magot tartalmaz, amelynek átlagos vas otag mernie nem nagyoob, num 9 um; segal ább 1 nnt, dk: bent nagyobb:, mini 9 hin; legalább 3 om, de nem nagyobo, nnnt / mn, vagy mg-alább 4 mn, de nem nagyobb, mint 5 am.11. Iron Carbohydrates Complex is a disease, disorder or condition for use in the treatment of iron deficiency or iron metaholism, or the use according to claim 10, wherein the cytoplasmic nompsex is a nasal cavity of iron hydroxide 4 (R > (PoU- (1-.%}% 3-glycoplranosyl) oxy-2 (R}, 3 (S, 5ß)% detrahydroxyhexioate: 12. ¥ aa-carbohydrate complex is a disease, disorder or disorder. states that the iron-deficient or veto-rhythmic rettdee operation of the juf disk, the hand-held penis mDalnte-% sm, or the use according to any one of claims 1-11, the iron carbohydrate complex comprises an iron core having an average iron otag mernie is not a major nucleus. 9 µm, less than 1 nnt, dk: greater than: min 9 min, at least 3 om but not big bob, nnnt / mn, or mg below 4 mn but not greater than 5 am. 13. Vas-szénhidrát krimpte. egy betegség, repael! enessè g vagy áhapob mpetyet vashiány vagy vas metanolizrnns rendellenes működése jellemez, kezelésében történő alkalma. Zásra, vagy az 1-12. Igénypontok bármelyike szerinti alkalmazás, ahol a vas-szénhidrát |»p* léx átlagos részegske mérete nem nagyobb, miül ítüh nem .nagyoeb5: mint p-0 tim; hetn hagyó bb, mint 25 nm; nem nagyobb, mint 20 nm; nem nagyobb, mim 15 ran; nem nagyobb, mint 19 nm; vagy legalifeb ó imp de nern nagyobb, mint 7 ont. '14 Vas-szenlűdnh komplex egy betegség, rendellenesség vagy állapot, amelyet vashiány vagy -vas metabolizmus rendellenes működésé jellemez, kezelésében történő alkalmazásra. vagy az 1-13. igénypontok bármelyike szerinti alkalmazás, ahol a vas-szénhidrái komplexe; -mm vénásun vagy lotramuszknládsar!. adagoljuk ío-mzíoként vagy mítosz inj ekéiéiként,13. Cracked iron carbohydrate. a disease, repael! It is characterized by the treatment of iron deficiency or iron methanolic malnutrition with iron or malic acid. Noise, or 1-12. Use according to any one of the claims, wherein the average particle size of the iron carbohydrate is less than that of .nagyoeb5 as p-0 tim; weekly bb as 25 nm; not more than 20 nm; not bigger, mim 15 ran; not more than 19 nm; or legal imp is more than 7 ont. '14 Iron-stomach complex is a disease, disorder, or condition characterized by abnormal functioning of iron deficiency or vascular metabolism for use in its treatment. or 1-13. Use according to any one of claims 1 to 3, wherein the iron carbohydrates are complex; -mm vein or lotramus! administered as aromatherapy or mythic injections, 5. Vas-evén hidrái komplex egy betegség, rendellenesség vagy állapot, amelyet vashiány vagy vas meiabolizmos rendellenes működése jellemei, kezelésében történő alkalmazásra. vagy az 1.-14, Igénypontok bármelyike szerinti alkalmazás, ahol a vas-szénhidrát komplex egyszeri dózis egységét 1000 mg elemi vas könnentrációban adagoljuk (i ; 200 ml - 300 ml hígitószorben; (i.i) 230 ml: hígitószsrben; vagy (Ili) 215 ml hfghőszerbem5. Iron-eva hydrates are complexes for use in the treatment of a disease, disorder or condition characterized by the abnormal functioning of iron deficiency or iron myiabolism. or use according to any one of Claims 1 to 14, wherein the single dose unit of the iron carbohydrate complex is administered at 1000 mg elemental iron concentration (i.e. 200 ml to 300 ml dilution; (ii) 230 ml dilution screen; or (III) 215) ml hfgheatballs 16, Vas-szénhidrát komplex egy betegség, rendellenesség vagy állapot, amelyet vashiány vagy vas oretahoIixm.ua rendellenes működése jélleméz, késelésében történő alkalmazásra, vagy as 1-14, igénypontok bármelyike szerinti alkalmazás, ahol a vas-szénhidrát komplex egyszeri dózis egységét intratnuszkniárisan infúziósán adagoljak 500 mg elemi vas kevesebb, mint 10 mi hlghóSzer koncéntráéiöban,16, Iron Carbohydrate Complex is a disorder, disorder or condition for use in delayed delivery of a vascular deficiency or iron oretahoixix.ua, or for use according to any one of claims 1-14, wherein the single dose unit of the iron carbohydrate complex is intravenously infused. add 500 mg of elemental iron in less than 10 mi of hlghóSzer concert, 17. Vas-szénhidrái komplex egy betegség, rendellenesség vagy állapot, amelyet vashiány vagy vas métaboiizmus rendellenes működése jellemez, kezelésében történd alkalmazásra, vagy az 1-14, igénypontok bármelyike szerinti alkalmazás, ahol a vas-szénhidrát komplex egyszeri dózis egységét intravénás bői asz injefoeióban adagoljuk, 1.8. Vas-szénhidrát komplex egy betegség, rendellenesség vagy állapot, amelyet vashiány vagy vas metabolíxmns rendellenes működése jellemez* kezelésében történd alkalmazásra vagy az 1.-17, igénypontok bármelyike szerinti alkalmazás, ahol: &amp; vas-szénhidrái komplex egyszeri dózis egységét hetente egyszer adagoljuk.An iron carbohydrate complex for use in the treatment of a disease, disorder or condition characterized by abnormal functioning of iron deficiency or iron metabolism, or use according to any one of claims 1 to 14, wherein the single dose unit of iron carbohydrate complex is administered intravenously by an intravenous injection. added, 1.8. Iron Carbohydrate Complex is a disease, disorder or condition for use in the treatment of iron deficiency or iron metabolism, or for use according to any one of claims 1 to 17, wherein: &amp; a single dose unit of iron carbohydrate complex is administered once a week. 19.. Vas-szénhidrát komplex egy betegség, rendellenesség vagy állapot, amelyéí vashiány vagy vas metabolizmus rendellenes működése jellemez, kezelésében történő alkalmazásra, vagy az Ι-iS, Igénypontok bármelyike szerinti alkalmazás, almi a vas-szénhidrát komplexnek lényegében nines keresztreaktlvdasa ami-dextrán antitestekkel19. Iron carbohydrate complex for use in the treatment of a disease, disorder or condition characterized by abnormal functioning of iron deficiency or iron metabolism, or use according to any one of Claims 1 to 4, essentially as a cross-reacting amine dextran of the iron carbohydrate complex. antibodies
HUE07716309A 2006-01-06 2007-01-08 Methods and compositions for administration of iron HUE029259T2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US75711906P 2006-01-06 2006-01-06

Publications (1)

Publication Number Publication Date
HUE029259T2 true HUE029259T2 (en) 2017-02-28

Family

ID=57957787

Family Applications (1)

Application Number Title Priority Date Filing Date
HUE07716309A HUE029259T2 (en) 2006-01-06 2007-01-08 Methods and compositions for administration of iron

Country Status (4)

Country Link
ES (1) ES2602433T3 (en)
HU (1) HUE029259T2 (en)
LT (1) LT1973549T (en)
PL (1) PL1973549T3 (en)

Also Published As

Publication number Publication date
ES2602433T3 (en) 2017-02-21
LT1973549T (en) 2016-11-10
PL1973549T3 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
US11344568B2 (en) Methods and compositions for administration of iron
TWI388330B (en) Iron-carbohydrate complex compounds
JPH06507382A (en) Molecular correction in the treatment of sickle cell disease
Kalra et al. Iron isomaltoside 1000: a new high dose option for parenteral iron therapy
AU2018202715A1 (en) Methods and compositions for administration of iron
AU2013206429B2 (en) Methods and compositions for administration of iron
HUE029259T2 (en) Methods and compositions for administration of iron
Brown Cystinosis. A Clinico-pathological Study of Cystinosis in Two Siblings