HUE027866T2 - Matrix means for reducing combustion volume - Google Patents
Matrix means for reducing combustion volume Download PDFInfo
- Publication number
- HUE027866T2 HUE027866T2 HUE06718277A HUE06718277A HUE027866T2 HU E027866 T2 HUE027866 T2 HU E027866T2 HU E06718277 A HUE06718277 A HU E06718277A HU E06718277 A HUE06718277 A HU E06718277A HU E027866 T2 HUE027866 T2 HU E027866T2
- Authority
- HU
- Hungary
- Prior art keywords
- matrix
- fuel
- combustion
- matrix element
- steam
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C6/00—Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
- F23C6/04—Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
- F23C6/045—Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B21/00—Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
- F22B21/34—Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers
- F22B21/341—Vertical radiation boilers with combustion in the lower part
- F22B21/343—Vertical radiation boilers with combustion in the lower part the vertical radiation combustion chamber being connected at its upper part to a sidewards convection chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D3/00—Burners using capillary action
- F23D3/40—Burners using capillary action the capillary action taking place in one or more rigid porous bodies
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/46—Details, e.g. noise reduction means
- F23D14/84—Flame spreading or otherwise shaping
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D17/00—Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
- F23D17/002—Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2201/00—Staged combustion
- F23C2201/40—Intermediate treatments between stages
- F23C2201/401—Cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2900/00—Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
- F23C2900/06041—Staged supply of oxidant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2203/00—Gaseous fuel burners
- F23D2203/10—Flame diffusing means
- F23D2203/102—Flame diffusing means using perforated plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2203/00—Gaseous fuel burners
- F23D2203/10—Flame diffusing means
- F23D2203/105—Porous plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2203/00—Gaseous fuel burners
- F23D2203/10—Flame diffusing means
- F23D2203/106—Assemblies of different layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2900/00—Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
- F23D2900/00003—Fuel or fuel-air mixtures flow distribution devices upstream of the outlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2900/00—Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
- F23D2900/00012—Liquid or gas fuel burners with flames spread over a flat surface, either premix or non-premix type, e.g. "Flächenbrenner"
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2900/00—Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
- F23D2900/14—Special features of gas burners
- F23D2900/14582—Special features of gas burners with outlets consisting of layers of spherical particles
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Combustion Of Fluid Fuel (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
- Feeding And Controlling Fuel (AREA)
- Massaging Devices (AREA)
Description
Description
Field of the Invention [0001] The present invention relates generally to fossil fuel combustion, and in particular, to an apparatus for gaseous fuel combustion in a steam generating boiler.
Background of the Invention [0002] Fossil fuel burners convert chemical energy stored in fossil fuels to thermal heat by combusting the fossil fuel in the presence of an oxidant. In power generating applications, thermal heat may be transferred to water in order to produce steam for driving electricity producing turbines. In non power generating applications, thermal heat can be transferred to any number of conceivable objects or processes.
[0003] Conventional steam generating boilers generally comprise of one or more burners, one or more fuel injection points, one or more oxidant injection points, and a means for propelling the injected fuel and oxidant into a combustion furnace. Upon ignition of the oxidant/fuel mixture (Fig. 1) a combustion envelope 4 is formed comprising a flame 3 and an oxidant/fuel mixing zone 2 between the flame 3 and the burner 1.
[0004] Figures 2 and 3 are schematic representations of conventional steam generating boilers utilizing a single and multiple burner(s) respectively. The interiorwalls 10 comprise a plurality of steam generating tubes 6 fluidly connected to a boiler bank (not shown). Thermal energy produced within the combustion envelope 4 radiantly heats the tubes 6 which in turn coduct thermal energy to the water in the tubes 6 for the purpose of generating steam.
[0005] In many steam generating boilers, the length and width of the combustion envelope 4 play an integral role in the design of the combustion furnace 5. In FM boilers, for example, the combustion furnace 5 is preferably designed sufficiently large enough to avoid excessive contact of the combustion envelope 4 with the furnace walls 10. Also known as flame impingement, seen in Fig 3, excessive flame 3 contact with a furnace wall 10 may result in incomplete combustion, leading to higher emissions of CO and other combustion byproducts, or premature degradation, leading to costly repairs and boiler downtime. Accordingly, combustion furnaces 5 are generally designed to accommodate a given burner combustion envelope 4 while minimizing the possibility of flame impingement.
[0006] Conventional burners generally utilize flow control mechanisms to control the axial and radial expansion of the combustion envelope 4. Radial expansion of the combustion envelope 4 is generally a function of swirl and the natural expansion of the fuel, oxidant, and flame. Some conventional burner designs utilize flow control mechanisms to restrict the natural radial expansion of the combustion envelope 4, resulting in a longer narrower flame. Shearing forces created by flow control mechanisms may also be used to influence the extent of oxidant/fuel mixing prior to combustion, thereby having an effect on emissions such as CO and NOx.
[0007] The availability of oxidant and fuel and their ability to mix prior to combustion influences the length of a combustion envelope 4 within a combustion furnace 5. Longerflames generally result from an insufficient supply of oxidant or inadequate mixing of the oxidant and fuel within the combustion envelope 4. Shorter flames generally result from a sufficient supply of oxidant and adequate mixing of the oxidant and fuel within the combustion envelope 4. Flame length may also be influenced by the velocity at which fuel and/or oxidant streams enter the combustion envelope 4. Excessive velocities or momentary interruptions of fuel and/or oxidant streams may cause the burner flame 3 to lose ignition. Such loss of ignition is especially undesirable, as it may result in an accumulation of combustibles susceptible to violent explosion upon reignition.
[0008] The U .S Department of Energy has articulated that a long felt need exists to reduce the size and weight of steam generator boilers such as industrial boilers. Conventional steam generating boilers are built to accommodate the size of the combustion envelope 4 produced. Accordingly, a long felt need exists to develop a combustion envelope 4 capable of producing sufficient thermal energy for steam production in a significantly smallervolume, thereby allowing the production of smaller, lighter, and more compact steam generating boiler designs.
[0009] US 2 362 972 describes a gas burner having a mixing chamber at one end and having its opposite end open; means for introducing gas and air into said chamber; non-combustible porous packing in the open end of said burner through which the gas-air mixture diffuses; an insulated casing forming a primary combustion chamber into which the open end of the burner projects; means for adm itting secondary air into the combustion chamber; said casing also forming a secondary combustion chamber adjacent said primary chamber; and a porous relatively thick layer of non-combustible material separating said primary and secondary combustion chambers and adapted to be heated to a high degree by the products of combustion.
Summary of the Invention [0010] Particularaspectsand embodiments are setout in the appended independent claim and the dependent claims.
[0011] The present invention solves the aforementioned problems and provides a steam generating boiler capable of firing liquid fuels, gaseous fuels, or any combination thereof.
[0012] An objective of the present invention is to provide a compact steam generating boiler.
[0013] Another objective of the present invention is to provide a steam generating boiler with a radially wider and axially shorter combustion envelope than that of conventional steam generating boilers.
[0014] Another objective of the present invention is to provide a low NOx and low CO steam generating boiler.
[0015] Another objective of the present invention is to provide a steam generating boiler capable of passively maintaining a constant ignition source.
[0016] Yet another objective of the present invention is to provide a means for designing a steam generating boiler of reduced size and weight as compared to that of a conventional steam generating boiler.
[0017] The present invention discloses a steam generating boiler. A steam generating boiler according to the present invention comprises a combustion furnace (5), an oxidant inlet, a fuel inlet, a matrix means (8), and steam tubes (6).
[0018] The various features which characterize the present invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. Fora better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which the preferred embodiments of the invention are illustrated.
Brief Description of The Drawings [0019] In the accompanying drawings, forming a part of this specification, and in which reference numerals shown in the drawings designate like or corresponding parts throughout the same: FIG. 1 is a schematic representation of a combustion envelope. FIG. 2 is a schematic representation of a conventional industrial boiler utilizing a single burner. FIG. 3 is a schematic representation of a conventional industrial boiler utilizing more than one burner. FIG. 4 is a schematic representation of an undesirable combustion envelope wherein excessive flame contact occurs along the length and width of the combustion furnace. FIG. 5 is an embodiment of the present invention, wherein a matrix means is retrofitted into the combustion furnace of an existing steam generating boiler. FIG. 6 is an illustration of an embodiment of the present invention wherein a fuel and an oxidant are introduced upstream of the a matrix means. FIG. 7 is an illustration of an embodiment of the present invention wherein a fuel and an oxidant are introduced in the sides of a matrix means. FIG. 8 is an illustration of an embodiment of the present invention wherein a fuel and an oxidant are introduced in both the front and theside(s)ofa matrix means.
Fig 9. is an embodiment of a matrix means according to the present invention, wherein matrix cross sections are illustrated.
Figure 10 is a graphic representation of an embodiment of the present invention where two matrix means are used to facilitate staged combustion.
Fig 11 is a graphic representation of a staged combustion embodiment of the present invention wherein interstaged cooling is used in a two matrix means staged combustion boiler.
Fig. 12 is a graphical illustration of an example of a matrix means not according to the present invention.
Fig. 13 is a graphical illustration of another example of a matrix means not according to the present invention.
Description of the Preferred Embodiments [0020] The present invention utilizes a combination of features to improve upon the design of conventional oil and gas fired steam generating boilers. Conventional oil and gas fired steam generating boilers include, but are not limited to: FM, High Capacity FM, PFM, PFI, PFT, SPB, and RB; all of which are described in Chapter 27 of Steam/its Generation and Use, 41th Edition, Kitto and Stultz, Eds., © 2005 The Babcock & Wilcox Company.
[0021] For the purposes of explaining the present invention, schematic views of FM boiler are used herein. However, asone of ordinary skill in the art can appreciate, the intent of utilizing FM boiler schematics is merely for reason of example and not intended to limit the present invention to that of FM boiler embodiments.
[0022] Referring to Figures 2 and 3, schematic representations of prior art FM boilers are shown. Within the FM boiler a baffle wall 20 separates a combustion furnace 5 from a boiler bank (not shown). Combustion envelope 4 is located inside the combustion furnace 5. Fuel and oxidant are delivered to burner 1, producing a combustion envelope 4 upon ignition.
[0023] The interior walls 10 of the combustion furnace comprise a series of tubes 6 fluidly connected to a steam drum 7, producing steam used for process of electrical generation purposes. The conically diffusing shape of the combustion envelope 4 results in significant unused combustion furnace volume along side the combustion envelope 4 as it expands.
[0024] An object of the present invention is to reduce unused combustion furnace volume. The present invention provides a matrix 8, placed either within or prior to the flame of the combustion envelope. Referring to Figure 5, a retrofit embodiment of the present invention is shown. Matrix 8 is placed with combustion furnace 5 downstream of the burner 1. Fuel and oxidant enter matrix 8, wherein the cross sectional design of matrix 8 provides a means for passively mixing gaseous streams and radially dispersing the resulting combustion envelope 9.
[0025] Provided to the matrix 8 is at least one gaseous fuel stream and at least one gaseous oxidant stream, or combinations thereof. The gaseous streams may enter the matrix 8 from any side. Fig. 6 illustrates a preferred embodiment where the fuel stream 12 and oxidant stream 11 are introduced upstream of the matrix 8. Alternatively, as shown in Fig. 7 and Fig. 8, the gaseous streams 11,12 may enter the matrix 8 from the side(s) only ora combination of the front and side(s) of the matrix 8.
[0026] Referring to Fig. 9, an embodiment of a matrix 8 according to the present invention is illustrated. In this embodiment, the combustion apparatus is a matrix 8 comprising at least one layer of spheres. The spheres may be arranged in either a random or ordered manner within the matrix 8. The spheres may be hollow, solid, or porous in nature, or any combination thereof. The spheres may vary in size or be of a substantially similar size. The spheres comprise a high temperature metal capable of withstanding the extreme temperatures to which the matrix 8 may be exposed during the combustion of fossil fuels.
[0027] Referring to Figure 9, four cross sectional matrix planes are identified to schematically represent variations in open area for gaseous flow across the matrix 8. Plane 1 is approximately 46 percent open, plane two is approximately 31 percent open, plane 3 is about 9 percent open, and plane 4 is about 58 percent open.
[0028] An object of the present invention is improved mixing of the gaseous streams. Improved mixing is achieved in the presence of a matrix 8 comprising at least two cross sectional planes having different percentages of open area, such that a first cross sectional plane possesses a greater percentage of open area for gaseous flow than a second cross sectional plane. Plane 1 and plane 2 of Fig. 9 are two cross sectional planes having different percentages of open area for gaseous flow. As the gaseous streams pass between the two planes, a pressure differential is encountered forcing the gas streams to compress or expand; thereby creating shearing forces and mixing the gaseous streams. The superior mixing provided by the matrix 8, minimizes CO and excess air need to complete combustion.
[0029] Another object of the present invention is to radially disperse the combustion envelope. Radial dispersion is achieved in the presence of matrix 8 comprising at least two cross sectional planes having different percentages of open area, wherein the two planes are taken from different axes, and a first cross sectional plane pos sesses a greater percentage of open area for gaseous flow than a second cross sectional plane. Plane 3 and plane 4 of Fig. 9 are cross sectional planes of different axes having different percentages of open area for gaseous flow. As the gaseous streams approach plane 3, resistance is encountered due to the relatively low open area for gaseous flow across plane 3, forcing a portion of gas to change its vector towards a plane of lower flow resistance, such as plane 4; thereby axially suppressing and radially dispersing the combustion envelope.
[0030] The present invention provides a combustion apparatus that allows for improved steam generating boiler designs while retaining similar heat output. Referring back to Figs. 5, a schematic representation of the present invention retrofitted into a convention FM boiler is shown. The present invention radially expands the combustion envelope 4, resulting in a shorter combustion envelope 9, wherein unused combustion volume is shifted downstream of the combustion envelope 9. In retrofit applications, additional steam generating equipment can be placed in the unused combustion volume, thereby maximizing energy generation potential.
[0031] A benefit of reducing the depth of a combustion furnace is the ability to develop new compact boiler designs without sacrificing heat output. Combustion furnaces 5 in steam generating boilers are generally designed to accommodate a given combustion envelope 4 while minimizing risk of flame impingement. Shortening the combustion envelope 4 allows for significant furnace depth reduction at any given heat output. Use of the present invention reduces boiler size, thus weight, as shorter boilers utilize considerably less raw materials to make boiler walls and tubes 6.
[0032] A matrix 8 according to the present invention may be placed anywhere within the com bustion envelope 4. Preferably the matrix 8 is placed within the mixing zone 2 and will be of a depth sufficient to allow combustion to begin within the matrix 8 and combustion flames 3 to exit the matrix 8 downstream of where fuel and oxidant are introduced. In this embodiment, flame width is maximized as ignition of the combustible stream creates expansive forces, enabling further radial expansion within the matrix 8.
[0033] An additional benefit of the present invention is passively maintaining a constant ignition source. In this embodiment, the matrix 8 is comprised of a material capable of retaining thermal heat. When aflame would otherwise lose ignition due to excessive velocities or fluctuations in fuel and/or oxidant streams, the thermal heat retained within the matrix elements provides a thermal reservoir sufficient to maintain ignition; thereby avoiding undesirable situations associated with delayed reignition.
[0034] I n another em bodiment of the present invention, a steam generating boiler may utilize more than one matrix 8. Figure 10 is a graphic representation of an embodiment of the present invention where two matrixes are used to facilitate staged combustion. In this embodiment, a second matrix 14 is located downstream of a first matrix 8. The first matrix 8 is provided with a fuel stream 18 and substoichiometric oxidant 17 to inhibit the production of undesirable combustion byproducts such as NOx. A second oxidant stream 13, providing sufficient oxygen to burn remaining fuel, is provided downstream of the first matrix 8 and upstream of the second matrix 14.
[0035] Fig 11 illustrates an alternative two matrix staged combustion embodiment according to the present invention. In this embodiment, cooling tubes 15 are placed between the two matrixes 8, 14 for the purpose of controlling flame temperature and the formation of thermal NOx. A perforated plate 150 may also be placed upstream of the first matrix 8, serving the function of acting as a flame arrestor and/or pre distributing the substoichiometric oxidant 17.
[0036] In another embodiment of the present invention, a sensor 16 may be placed within the combustion furnace forobserving the combustion process within the combustion furnace 5.
[0037] In another embodiment of the present invention, a igniter 160 may be placed within the combustion furnace for preheating the matrix 8 or igniting a fuel and oxidant.
[0038] Fig. 12 provides a graphical representation of an example not according to the invention. In this example the matrix 8 comprises a random or ordered block of fibers or interlaced particles. Between the fibers and particles of this embodiment are series of internal passage having cross sections of varying open area for gaseous flow providing a means for gaseous fuel and oxidant streams to passively mix and radially disperse within the matrix 8. Section A-A provides a cross section view of the present embodiment.
[0039] Fig. 13 provides a graphical representation of another exemple not according to the invention. In this exemple the matrix 8 comprises fired or fitted tiles with venturi holes 19. An expanded view of a Section B-B of this embodiment is shown where the cross sectional dimensions of the venturi holes 19 are shown varying along the depth of the matrix 8.
[0040] In anotherembodimentofthepresentinvention, oxidant and/fuel may be fed to the matrix 8 in multiple streams.
[0041] In yet another embodiment of the present invention, the spheres may be coated with any number of chemical substrates known to one of ordinary skill in the art for the purpose of altering the chemistry of the fuel, enhancing combustion, and reducing pollutant emissions.
[0042] The matrix 8 itself can be rectangular, circular, or of any other geometric design. Generally, the matrix 8 elements of the present invention are held captive by a suitable apparatus for preventing movement between the spheres. Examples of suitable apparatus are, but are not limited to, wire frames and/or chemically or mechanically bonding the matrix 8 elements to one another.
[0043] In yet another example, multiple matrixes may be arranged in parallel within a boiler. In such an example, multiple fuels may be combusted simultaneously, thereby providing combustion fuel flexibility to boiler designs.
[0044] In yet another example, forced air or recirculation fans may be utilized to create a pressure differential across the matrix 8 to either promote or restrict gaseous flow there through.
Claims 1. A steam generating boiler, comprising: a combustion furnace (5) having a baffle wall (20) and a plurality of furnace walls (10), each furnace wall (10) comprising a plurality of steam tubes (6) in fluid connection with a steam drum (7) located downstream of the combustion chamber, a first oxidant inlet for providing a first oxidant, a fuel inlet for providing a fuel, a first matrix means (8) comprising spherical metallic elements for passively mixing the oxidant and the fuel, located on the opposite side of the baffle wall (20) from the steam drum (7) and located downstream of the oxidant and fuel inlets, wherein the edges of the first matrix means (8) do not contact the furnace walls (10) and baffle wall (20). 2. The steam generating boiler of claim 1, wherein the first matrix means (8) radially disperses a combustion envelope (4) produced by igniting the fuel and the oxidant. 3. The steam generating boiler of claim 2, wherein the first matrix means (8) comprises a first cross section having an open area for gaseous flow, a second cross section having an open area for gaseous flow, and the open area for gaseous flow across the first cross section is greater than the open area for gaseous flow across the second cross section. 4. The steam generating boiler of claim 3, wherein the first matrix means (8) further comprises a third cross section and the open area for gaseous flow across the third cross sectional area is substantially equal to the open area for gaseous flow across the first cross section. 5. The steam generating boiler of claim 3, wherein the first matrix means (8) further comprises a third cross section and the open area for gaseous flow across the third cross sectional area is greater than the open area for gaseous flow across the second cross section. 6. The steam generating boiler of claim 2, wherein the combustion envelope (4) protrudes the matrix means downstream of the fuel injection inlet. 7. The steam generating boiler of claim 6, wherein the first matrix means (8) comprises a thermal reservoir capable of maintaining ignition of the fuel and the first oxidant. 8. The steam generating boiler of claim 2, wherein the fuel inlet is located within the first matrix mean (8). 9. The steam generating boiler of claim 2, wherein the first oxidant inlet is located within the first matrix means (8). 10. The steam generating boiler of claim 2, further comprising a perforated plate (150) located upstream of the first matrix means (8). 11. The steam generating boiler of any preceding claim, further comprising, a second oxidant inletfor providing a second oxidant, and a second matrix (14) means comprising spherical metallic elements and located downstream of the second oxidant inletfor passively mixing the second oxidant and the fuel. 12. Thesteam generating boiler of claim 11 .further comprising cooling tubes (15) located between the first matrix means (8) and the second matrix means (14). 13. Thesteam generating boiler of claim 11 .further comprising an ignited (160) located between the first matrix means (8) and the second matrix means (14). 14. Thesteam generating boiler of claim 11 .further comprising a sensor (16) located between the first matrix means (8) and the second matrix means (14).
Patentanspriiche 1. Dampferzeugungskessel, umfassend: einen Verbrennungsofen (5) mit einer Umlenk-wand (20) und mehreren Ofenwánden (10), wo-bei jede Ofenwand (10) mehrere Dampfrohre (6) in Fluidverbindung mit einer Dampftrommel (7), die stromabwarts der Verbrennungskammer angeordnet ist, umfasst: einen ersten Oxidationsmitteleinlass zum Bereitstellen eines ersten Oxidationsmit-tels, einen Brennstoffeinlass zum Bereitstellen eines Brennstoffs, ein erstes Matrixmittel (8), umfassend ku-gelförmige metallische Elemente zum pas-siven Mischen des Oxidationsmittels mit dem Brennstoff, das auf der gegenüberlie-genden Seite der Umlenkwand (20) der Dampftrommel (7) angeordnet ist und stromabwarts des Oxidationsmittel- und Brennstoffeinlasses angeordnet ist, wobei die Kantén des ersten Matrixmittels (8) die Ofenwánde(IO) und die Umlenkwand (20) nicht beriihren. 2. Dampferzeugungskessel nach Anspruch 1, wobei das erste Matrixmittel (8) radial eine Verbrennungs-tasche (4) verteilt, die durch Zünden des Brennstoffs und des Oxidationsmittels erzeugt wird. 3. Dampferzeugungskessel nach Anspruch 2, wobei das erste Matrixmittel (8) einen ersten Querschnitt mit einem offenen Bereich fürdie Gasströmung und einen zweiten Querschnitt mit einem offenen Bereich fürdie Gasströmung umfasst, wobei der offene Bereich fürdie Gasströmung überdem ersten Querschnitt gröBer als derofFene Bereich fürdie Gasströmung über dem zweiten Querschnitt ist. 4. Dampferzeugungskessel nach Anspruch 3, wobei das erste Matrixmittel (8) ferner einen dritten Querschnitt umfasst und der offene Bereich für die Gasströmung über dem dritten Querschnittsbereich im Wesentlichen dem offenen Bereich fürdie Gasströmung über dem ersten Querschnitt entspricht. 5. Dampferzeugungskessel nach Anspruch 3, wobei das erste Matrixmittel (8) ferner einen dritten Querschnitt umfasst und derofFene Bereich fürdie Gasströmung überdem dritten Querschnittsbereich grö-ββΓ als der offene Bereich fürdie Gasströmung über dem zweiten Querschnitt ist. 6. Dampferzeugungskessel nach Anspruch 2, wobei die Verbrennungstasche (4) über das Matrixmittel stromabwarts des Brennstoffeinspritzeinlasses her-vorsteht. 7. Dampferzeugungskessel nach Anspruch 6, wobei das erste Matrixmittel (8) einen Warmespeicher umfasst, der die Zündung des Brennstoffs und des ersten Oxidationsmittels beibehalten kann. 8. Dampferzeugungskessel nach Anspruch 2, wobei der Brennstoffeinlass innerhalb des ersten Matrixmittels (8) angeordnet ist. 9. Dampferzeugungskessel nach Anspruch 2, wobei der erste Oxidationsmitteleinlass innerhalb des ersten Matrixmittels (8) angeordnet ist. 10. Dampferzeugungskessel nach Anspruch 2, ferner umfassend eine perforierte Platte (150), die strom-aufwárts des ersten Matrixmittels (8) angeordnet ist. 11. Dampferzeugungskessel nach einem der vorherge-henden Anspriiche, ferner umfassend: einen zweiten Oxidationsmitteleinlass zur Be-reitstellung eines zweiten Oxidationsmittels, und ein zweites Matrixmittel (14), das kugelförmige metallische Elemente umfasst und stromab-wárts des zweiten Oxidationsmitteleinlasses zum passiven Mischen des zweiten Oxidationsmittels mit dem BrennstofF angeordnet ist. 12. Dampferzeugungskessel nach Anspruch 11, ferner umfassend Kiihlleitungen (15) zwischen dem ersten Matrixmittel (8) und dem zweiten Matrixmittel (44). 13. Dampferzeugungskessel nach Anspruch 11, ferner umfassend einen Ziinder (160), der zwischen dem ersten Matrixmittel (8) und dem zweiten Matrixmittel (14) angeordnet ist. 14. Dampferzeugungskessel nach Anspruch 11, ferner umfassend einen Sensor (16), der zwischen dem ersten Matrixmittel (8) und dem zweiten Matrixmittel (14) angeordnet ist.
Revendications 1. Chaudiére génératrice de vapeur, comprenant: un four á combustion (5) ayant une paroi de dé- flection (20) et une pluralité de parois de four (10), chaque paroi defour(10) comprenant une pluralité de tubes de vapeur (6) en connexion fluidique avec un tambour de vapeur (7) situé en aval de la chambre de combustion, une premiére entrée d’agent oxydant pourfour- nir un premier agent oxydant, une entrée de carburant pourfournir un carbu- rant, un premier moyen de matrice (8) comprenant des éléments métalliques sphériques pour mé-langer passivement I’agent oxydant et le carburant, situé sur le cöté de la paroi de déflection (20) opposé au tambour de vapeur (7) et situé en aval des entrées d’agent oxydant et de carburant, les bords du premier moyen de matrice (8) ne venant pas en contact avec les parois de four (10) et la paroi de déflection (20). 2. Chaudiére génératrice de vapeur selon la revendi-cation 1, dans laquelle le premier moyen de matrice (8) disperse radialement une enveloppe de combus tion (4) produite en brülant le carburant et l’agent oxydant. 3. Chaudiére génératrice de vapeur selon la revendi-cation 2, dans laquelle le premier moyen de matrice (8) comprend une premiére section transversale ayant une zone ouverte permettant l’écoulement ga-zeux, une deuxiéme section transversale ayant une zone ouverte permettant l’écoulement gazeux, et la zone ouverte permettant l’écoulement gazeux en travers de la premiére section transversale est su-périeure á la zone ouverte permettant l’écoulement gazeux en travers de la deuxiéme section transversale. 4. Chaudiére génératrice de vapeur selon la revendi-cation 3, dans laquelle le premier moyen de matrice (8) comprend en outre une troisiéme section transversale et la zone ouverte permettant l’écoulement gazeux en travers de la troisiéme zone en section transversale est substantiellement égale á la zone ouverte permettant l’écoulement gazeux en travers de la premiére section transversale. 5. Chaudiére génératrice de vapeur selon la revendi-cation 3, dans laquelle le premier moyen de matrice (8) comprend en outre une troisiéme section transversale et la zone ouverte permettant l’écoulement gazeux en travers de la troisiéme zone en section transversale est supérieure á la zone ouverte permettant l’écoulement gazeux en travers de la deuxiéme section transversale. 6. Chaudiére génératrice de vapeur selon la revendi-cation 2, dans laquelle l’enveloppe de combustion (4) fait saillie au-delá du moyen de matrice en aval de l’entrée d’injection de carburant. 7. Chaudiére génératrice de vapeur selon la revendi-cation 6, dans laquelle le premier moyen de matrice (8) comprend un réservoir thermique capable de maintenir la combustion du carburant et du premier agent oxydant. 8. Chaudiére génératrice de vapeur selon la revendi-cation 2, dans laquelle l’entrée de carburant est si-tuée á l’intérieurdu premier moyen de matrice (8). 9. Chaudiére génératrice de vapeur selon la revendi-cation 2, dans laquelle la premiére entrée d’agent oxydant est située á l’intérieur du premier moyen de matrice (8). 10. Chaudiére génératrice de vapeur selon la revendi-cation 2, comprenant en outre une plaque perforée (150) située en amont du premier moyen de matrice (8). 11. Chaudiére génératrice de vapeur selon l’une quel-conque des revendications précédentes, compre-nant en outre une deuxiéme entrée d’agent oxydant pour fournir un deuxiéme agent oxydant, et un deuxiéme moyen de matrice (14) comprenant des éléments métalliques sphériques et situé en aval de la deuxiéme entrée d’agent oxydant pour mélanger passivement le deuxiéme agent oxydant et le car-burant. 12. Chaudiére génératrice de vapeur selon la revendi-cation 11, comprenant en outre des tubes de refroi-dissement (15) situés entre le premier moyen de matrice (8) et le deuxiéme moyen de matrice (14). 13. Chaudiére génératrice de vapeur selon la revendi-cation 11, comprenant en outre un dispositif d’allu-mage (160) situé entre le premier moyen de matrice (8) et le deuxiéme moyen de matrice (14). 14. Chaudiére génératrice de vapeur selon la revendi-cation 11, comprenant en outre un capteur (16) situé entre le premier moyen de matrice (8) et le deuxiéme moyen de matrice (14).
Claims (14)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US64321905P | 2005-01-12 | 2005-01-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
HUE027866T2 true HUE027866T2 (en) | 2016-11-28 |
Family
ID=36677968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
HUE06718277A HUE027866T2 (en) | 2005-01-12 | 2006-01-12 | Matrix means for reducing combustion volume |
Country Status (17)
Country | Link |
---|---|
EP (1) | EP1836439B1 (en) |
JP (1) | JP5232474B2 (en) |
KR (1) | KR101362671B1 (en) |
CN (1) | CN101120208B (en) |
AU (1) | AU2006204840B2 (en) |
BR (1) | BRPI0606693B1 (en) |
CA (1) | CA2594739C (en) |
DK (1) | DK1836439T3 (en) |
ES (1) | ES2546645T3 (en) |
HU (1) | HUE027866T2 (en) |
MX (1) | MX2007008516A (en) |
NO (1) | NO340477B1 (en) |
PL (1) | PL1836439T3 (en) |
PT (1) | PT1836439E (en) |
RU (1) | RU2410599C2 (en) |
WO (1) | WO2006076549A1 (en) |
ZA (1) | ZA200705847B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2747398T3 (en) * | 2016-12-16 | 2020-03-10 | Ikerlan S Coop | Gas burner |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US65846A (en) * | 1867-06-18 | van tine | ||
US2362972A (en) | 1939-12-26 | 1944-11-21 | Brownback Henry Lowe | Gas burner |
US3322179A (en) * | 1963-04-09 | 1967-05-30 | Paul H Goodell | Fuel burner having porous matrix |
US4027476A (en) * | 1973-10-15 | 1977-06-07 | Rocket Research Corporation | Composite catalyst bed and method for making the same |
JPS61147010A (en) * | 1984-12-19 | 1986-07-04 | Nippon Steel Corp | High temperature radiation panel burner |
JPS62258917A (en) * | 1986-04-18 | 1987-11-11 | Miura Co Ltd | Combustion promoting body for surface combustion consisting of ceramic particles |
JPH0611102A (en) * | 1992-06-30 | 1994-01-21 | Ishikawajima Harima Heavy Ind Co Ltd | Combustion device for boiler |
US5511974A (en) * | 1994-10-21 | 1996-04-30 | Burnham Properties Corporation | Ceramic foam low emissions burner for natural gas-fired residential appliances |
JP3082826B2 (en) * | 1994-10-24 | 2000-08-28 | 三菱重工業株式会社 | Exhaust heat recovery device |
JP2663933B2 (en) * | 1995-11-29 | 1997-10-15 | 三浦工業株式会社 | boiler |
DE29816864U1 (en) * | 1998-09-19 | 2000-01-27 | Viessmann Werke GmbH & Co., 35108 Allendorf | Boiler fan burner |
US6289851B1 (en) * | 2000-10-18 | 2001-09-18 | Institute Of Gas Technology | Compact low-nox high-efficiency heating apparatus |
US6921516B2 (en) * | 2001-10-15 | 2005-07-26 | General Motors Corporation | Reactor system including auto ignition and carbon suppression foam |
JP2003262313A (en) * | 2002-03-08 | 2003-09-19 | Osaka Gas Co Ltd | Combustor |
JP3722775B2 (en) * | 2002-04-05 | 2005-11-30 | 株式会社タクマ | Premixed gas combustion device |
US6971336B1 (en) * | 2005-01-05 | 2005-12-06 | Gas Technology Institute | Super low NOx, high efficiency, compact firetube boiler |
-
2006
- 2006-01-12 DK DK06718277.4T patent/DK1836439T3/en active
- 2006-01-12 RU RU2007144255/06A patent/RU2410599C2/en not_active IP Right Cessation
- 2006-01-12 ES ES06718277.4T patent/ES2546645T3/en active Active
- 2006-01-12 CN CN200680005070XA patent/CN101120208B/en not_active Expired - Fee Related
- 2006-01-12 MX MX2007008516A patent/MX2007008516A/en active IP Right Grant
- 2006-01-12 BR BRPI0606693-3A patent/BRPI0606693B1/en not_active IP Right Cessation
- 2006-01-12 CA CA2594739A patent/CA2594739C/en not_active Expired - Fee Related
- 2006-01-12 HU HUE06718277A patent/HUE027866T2/en unknown
- 2006-01-12 WO PCT/US2006/001185 patent/WO2006076549A1/en active Application Filing
- 2006-01-12 KR KR1020077017063A patent/KR101362671B1/en active IP Right Grant
- 2006-01-12 EP EP06718277.4A patent/EP1836439B1/en not_active Not-in-force
- 2006-01-12 AU AU2006204840A patent/AU2006204840B2/en not_active Ceased
- 2006-01-12 PL PL06718277T patent/PL1836439T3/en unknown
- 2006-01-12 PT PT67182774T patent/PT1836439E/en unknown
- 2006-01-12 JP JP2007551388A patent/JP5232474B2/en active Active
-
2007
- 2007-07-13 ZA ZA200705847A patent/ZA200705847B/en unknown
- 2007-07-24 NO NO20073886A patent/NO340477B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
RU2007144255A (en) | 2009-06-10 |
NO340477B1 (en) | 2017-05-02 |
CN101120208B (en) | 2010-05-19 |
PL1836439T3 (en) | 2015-12-31 |
CA2594739A1 (en) | 2006-07-20 |
JP5232474B2 (en) | 2013-07-10 |
KR20070101868A (en) | 2007-10-17 |
EP1836439A4 (en) | 2013-09-04 |
CA2594739C (en) | 2014-03-25 |
AU2006204840B2 (en) | 2011-09-29 |
PT1836439E (en) | 2015-10-12 |
ZA200705847B (en) | 2008-07-30 |
RU2410599C2 (en) | 2011-01-27 |
EP1836439B1 (en) | 2015-07-01 |
BRPI0606693A2 (en) | 2009-07-14 |
ES2546645T3 (en) | 2015-09-25 |
BRPI0606693B1 (en) | 2019-05-14 |
MX2007008516A (en) | 2007-09-19 |
KR101362671B1 (en) | 2014-02-12 |
JP2008527310A (en) | 2008-07-24 |
NO20073886L (en) | 2007-10-08 |
CN101120208A (en) | 2008-02-06 |
EP1836439A1 (en) | 2007-09-26 |
WO2006076549A1 (en) | 2006-07-20 |
AU2006204840A1 (en) | 2006-07-20 |
DK1836439T3 (en) | 2015-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2589587C1 (en) | Burner for gaseous fuel with high energy saving and combustion efficiency with low emission of pollutants and high heat transfer | |
US5470224A (en) | Apparatus and method for reducing NOx , CO and hydrocarbon emissions when burning gaseous fuels | |
US5482009A (en) | Combustion device in tube nested boiler and its method of combustion | |
CA2892234A1 (en) | Perforated flame holder and burner including a perforated flame holder | |
CA1143647A (en) | Burner-boiler combination and improved burner construction therefor | |
JPH0355724B2 (en) | ||
KR100973414B1 (en) | Coal breeze burner unnecessary preheating | |
HUE027866T2 (en) | Matrix means for reducing combustion volume | |
US7493876B2 (en) | Passive mixing device for staged combustion of gaseous boiler fuels | |
CN114110580A (en) | Low-nitrogen combustor | |
US5961321A (en) | Distributive integral gas burner | |
US20170138634A1 (en) | Method and Apparatus for Firetube Boiler and Ultra Low NOx Burner | |
RU50280U1 (en) | AUXILIARY BURNER DEVICE FOR PLASMA IGNITION AND STABILIZATION OF BURNING OF LOW-REACTIVE DUST-COAL FUEL OF MAIN HEATER UNIT BURNERS | |
RU2249153C1 (en) | Multi-jet burner for boiler | |
US20090029302A1 (en) | System of close coupled rapid mix burner cells | |
FI127741B (en) | Bio oil burner | |
JP7262521B2 (en) | Gas burner and combustion equipment | |
JP3302888B2 (en) | Gas combustion equipment | |
Basu et al. | Design of Novel Burners | |
JPH0960816A (en) | Vaporizing combustor for liquid fuel | |
MXPA96005152A (en) | Apparatus and method to reduce nox, co, and hydrocarbon emissions when gas combustibles are burned |