HUE026795T2 - Printhead die - Google Patents

Printhead die Download PDF

Info

Publication number
HUE026795T2
HUE026795T2 HUE11866663A HUE11866663A HUE026795T2 HU E026795 T2 HUE026795 T2 HU E026795T2 HU E11866663 A HUE11866663 A HU E11866663A HU E11866663 A HUE11866663 A HU E11866663A HU E026795 T2 HUE026795 T2 HU E026795T2
Authority
HU
Hungary
Prior art keywords
slot
slit
length
full
column
Prior art date
Application number
HUE11866663A
Other languages
Hungarian (hu)
Inventor
James P Axtell
Joseph M Torgerson
Trudy Benjamin
Original Assignee
Hewlett Packard Development Co Lp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co Lp filed Critical Hewlett Packard Development Co Lp
Publication of HUE026795T2 publication Critical patent/HUE026795T2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14016Structure of bubble jet print heads
    • B41J2/14072Electrical connections, e.g. details on electrodes, connecting the chip to the outside...
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/145Arrangement thereof
    • B41J2/155Arrangement thereof for line printing

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Description

Description
Background [0001] Inkjet printheads are widely used in printing mechanisms today. Those mechanisms, in turn, go into many products such desktop printers, portable printers, plotters, copiers, camera printers, transaction printers, video printers, point-of-sale terminals, facsimile machines, and all-in-one devices (e.g. a combination of at least two of a printer, scanner, copier, and fax), to name a few.
[0002] Printheads typically have a number of liquid ejection elements, often referred to as "nozzles", that are arranged in a linear orientation having a particular length along the major axis of the linear array. This length may be referred to as the "height" of the printhead, although the printhead can be orientated in any direction. The length along the minor axis of the linear array, a direction that is orthogonal to the height of the printhead, may be referred to as the "width". In general, the wider the print-head for a given length, the larger the area of the print-head, and the higher the cost of the printhead.
[0003] US 2003/052944 A1 describes a printhead assembly which includes a carrier having a fluid manifold defined therein, and a plurality of printhead dies each mounted on the carrier and including a first nozzle set and a second nozzle set. The fluid manifold includes a first chamber and a second chamber such that the first nozzle set of each of the printhead dies communicates with the first chamberof the fluid manifold and the second nozzle set of each of the printhead dies communicates with the second chamber of the fluid manifold.
Brief Description of the Drawings [0004] FIG. 1 is a schematic representation of a printhead die for emitting drops of a particular liquid, in accordance with an embodiment of the present disclosure. FIG. 2 is an enlarged schematic representation of a portion of the printhead die of FIG. 1 showing an end of adjacent nozzle packages in two columns, in accordance with an embodiment of the present disclosure. FIG. 3 is a schematic representation of a printhead die for emitting drops of a plurality of different liquids, in accordance with another embodiment of the present disclosure. FIG. 4 is a flowchart according to an embodiment of the present disclosure of a method of making a print-head die.
Detailed Description [0005] In an inkjet printer, drops are deposited on a print medium, as the printer’s printhead, the print medi um, or both, are moved relative to each other. In order to enhance printer throughput, the printer may be configured such that the printhead has a height that is at least as large as a corresponding dimension of the print medium. In operation, the print medium thus may pass beneath the printhead, and drops may be deposited on the entire printable area in a single pass. This may effectively eliminate the delay otherwise associated with reciprocating the printhead across the print medium to cover the entire printable area.
[0006] Inkjet printheads typically are fabricated on a substrate, such as a silicon die, using integrated circuit and/or micromachining fabrication techniques. Nozzles may be disposed on either side of a feed slot that is formed completely through the die. The feed slot feeds liquid to the nozzles for ejection. In one type of inkjet technology, referred to as "thermal inkjet", a heating element, such as a resistor, rapidly heats a small volume of liquid, forming a bubble which causes at least one drop of the liquid to be ejected. The electrical energy needed to operate the nozzles is typically connected to the die at a surface edge.
[0007] As defined herein and in the appended claims, a "liquid" shall be broadly understood to mean a fluid not composed primarily of a gas or gases. In addition, terms of orientation and relative position (such as "top", "bottom", "side", "height", "width", "length", and the like) are not intended to require a particular orientation of any element or assembly, and are used for convenience of illustration and description.
[0008] In theforgoing arrangement, since the feed slot extends completely through the die, the electrical traces carrying energy to the firing resistors must be routed around the slot. The longerthe length of a slot, the longer the electrical traces used to get the energy from one side of the slot to the other. Com paratively long electrical traces on the die result in an electrical voltage drop (due to the parasitic resistance of the traces) that increases along the length of a trace, particularly for those traces that carry significant amounts of electrical current.
[0009] In printheads having a height of more than about one inch, these voltage drops can become large enough to prevent the nozzles nearest to the electrical connection to the die, and/or the nozzles furthest from the electrical connection to the die, from operating in their allowable voltage range. If this occurs, the size of the drops ejected from different nozzles may vary, some nozzles may be unable to emit drops, and some nozzles may be damaged. All of these effects result in the quality of the printed output being degraded.
[0010] Referring now to the drawings, example print-head die are illustrated wherein electrical traces provide proper electrical power to the various nozzles of the die in order to produce print output of the desired quality. As indicated, the die may provide plural feed slots to feed the same liquid to different nozzle subsets within a broader nozzle array. Feed slots, and nozzle subsets may extend along a major axis ofthedie. The shaping and layout of the various components on the printhead die minimize the width (along a minor axis) of the die while providing proper power distribution to all nozzles, thus reducing the cost of the printhead die.
[0011] An example printhead die 10 is shown in FIG. 1, the printhead die having a slot arrangement in which a full-length slot 20 is formed through a substrate 11, the full-length slot being segmented into a plurality of smaller discrete slot segments 20a-20d for feeding a same liquid (represented generally by cross-hatch in Fig. 1) through the die. As shown, the slot segments may form plural columns, each column including at least one slot segment. In this regard, slot segments 20a-20d define two substantially parallel columns 12, 14, each column including a pair of aligned slot segments, parallel to the slot segments in the other column. Although each column is shown with two slot segments in Fig. 1, more or fewer slot segments may be employed.
[0012] As indicated, column 12 is offset from column 14 in the minor axis direction 4 by a slot-to-slot spacing 30. In some examples, the slot-to-slot spacing 30 may be approximately 1000 microns. It will be understood that slot-to-slot spacing 30 may be determined, in part, by the desire to run electrical traces between the slot segments. It also will be understood that the slot-to-slot spacing 30 affects the width 35 of die 10. Width 35, in turn, affects the cost of the die.
[0013] The slot segments may be staggered such that adjacent slot segments are in different rows. Adjacent slot segments (in different columns), such as slot segments 20a, 20b, are also offset from each other along the major axis direction 2. Typically, adjacent slot segments (again, in different columns) are arranged such that adjacent ends of the slot segments are positioned along the same minor axis. For example, the adjacent ends of slot segments 20b, 20c are along the same minor axis 32. Similarly, the adjacent ends of slot segments 20a, 20b are along the same minor axis, as are the adjacent ends of slot segments 20c, 20d, and so on. This positioning facilitates treating the nozzles associated with the slot segments of both columns 12,14 as a virtual linear array of nozzles of height 37 during printing operations, where the nozzles are equally spaced along the major axis 2. The slot segments thus may act as a single full-length slot.
[0014] In some examples, the adjacent ends of adjacent slot segments (in different columns) may overlap the minor axis 32 by a few nozzles in order to allow for compensation of effects such as misdirection of drops ejected from end nozzles or to provide sufficient liquid flow to the end nozzles. In such examples, the overlapping nozzles that achieve the desired printing performance may be chosen for use during printing operations. Where the die is a page wide array die, the height 37 may be one to four inches, or more.
[0015] Electrical power, as well as data and/or control signals, may be connected to printhead die 10 via contact pads 42. Each contact pad 42 is associated with an in dividual power connection, data signal, or control signal. Typically, at least one contact pad 42 is disposed on die 10 between each two slot segments in a particular column. For example, contact pad 42a is disposed in column 12 between slot segments 20a, 20c.
[0016] From contact pads 42, electrical traces 40 are run across die 10 in minor axis direction 4. Since the slot segments pass completely through the die, the electrical traces are routed around the slot segments. The slot-to-slot spacing 30 thus selected to be sufficient to allow, for example, electrical trace 40a to pass between the lower end of slot segment 20a and the upper end of slot segment 20b. Electrical trace 40a thus can be connected to electronics disposed on the side of slot segments 20a, 20b that is opposite contact pad 42a. While not illustrated for reasons of clarity, it is understood that electrical traces from pad 42a also may directly connect to electronics on the side of slot segments 20a, 20b that is nearest contact pad 42a.
[0017] Based on theforegoing, the total length of electrical trace 40a may be considerably shorter than it would be if, for example, slot segments 20a-20d were all combined into a single slot of height 37. In that case, the trace 40a would be far longer, as it would be routed around the top or bottom end of the die to get to the electronics on the other side of the slot from the pad. In page wide arrays, and particularly for power traces that carry a significant amount of current, such as up to one ampere, this excessive distance would result in unacceptable voltage drops due to the parasitic resistance of the trace.
[0018] However, in the present example, the lengths of electrical traces 40a, 40b are short enough to ensure that the voltages applied to all nozzles, regardless of location, are within tolerance. This, in turn, helps ensure that the size of the drops ejected from different nozzles is consistent, and that all nozzles are able to emit drops, which in turn helps ensure that the printed output is of high quality.
[0019] Considering now in greater detail, and with reference to FIG. 2, two adjacent slot clusters 60a, 60b of printhead die 10 are shown, each cluster being positioned in a different column. As indicated, a nozzle package 50 is disposed adjacent to, or abutting, each long side of a slot. Each nozzle package 50 may be substantially rectangular, and has a height substantially the same as the slot segment height.
[0020] As used herein, a "slot cluster" shall be broadly understood to mean the arrangement of a slot segment and at least one nozzle package disposed abutting or adjacent to a long side of the slot segment. A "nozzle package" shall be broadly understood to include an array of spaced nozzles abutting or adjacent to a long side of a slot segment, such that the liquid fed through the slot segment can flow into each nozzle of the nozzle package for subsequent ejection. Each nozzle package also shall be understood to include electronics that receive power, data, and/or control signals that cause drops of the liquid to be controllably ejected from the individual nozzles. The form factor of the electronics is shown as a simple rectangle, but other arrangements are contemplated. The power data and/or control signals are received by the electronics via traces which may be connected to signal source locations such as, for example, pads 42a. The power, data and/or control signals may be routed through a diagonal pathway 70 between adjacent clusters 60a, 60b.
[0021] The electronics of each nozzle package may include, for example, a drive switch array disposed adjacent, or abutting, the linear nozzle array. Each nozzle in the linear array is associated with a corresponding drive switch in the drive switch array. Typically, a power trace (also referred to as a "fire line") is connected to one side of the firing resistor of the nozzle, and the corresponding drive switch is connected to the other side of the firing resistor. The drive switch is also connected to a reference voltage (typically ground) trace. The drive switch controls the flow of current through the firing resistor. When the drive switch is turned on, current sufficient to heat the liquid and eject the drop from the nozzle flows from the power trace, through the firing resistor, to ground. In some examples, the drive switch is a field-effect transistor (FET) switch in which the firing resistor and ground are connected to the drain-source path of the FET, and the drive switch array is an array of such FETs.
[0022] The electronics also may include a control logic array disposed adjacent, or abutting, the drive switch array. The control logic array receives data and control signals and determines whether and when drops of the liquid are ejected from a particular nozzle. An output from the control logic array is connected to the control input of each drive switch, such as the gate of a FET switch. In some examples, the control logic array includes about five to ten logic-type control transistors for each FET drive switch. Flowever, these control transistors each typically occupy a smaller area than the FET drive switch.
[0023] In some examples, the width 54 of each slot segment in the minor axis direction 4 is about 150 microns. The height 39 of each slot segment in the major axis direction 2 may be about 15,000 to 30,000 microns. Thus the slot may have an aspect ratio of about 100 to 1, or greater. Consequently, for a page wide printhead die wherein each slot segment has a height of approximately 1/2-inch, there will be eight slot segments in each column (a total of 16 slot segments) in order to for a achieve an 8-inch swath height. It will be appreciated that the drawings of FIGS. 1 through 3, accordingly, are, for purposes of clarity, not drawn to scale and do not show all of the slot segments.
[0024] In some examples, the width 52 of a nozzle package 50, including the nozzle array and the electronics, may be about 400 microns. Where the slot segment width 54 is about 150 microns, as described above, and where there is a nozzle package on each side of the slot segment, the corresponding slot cluster 60a is about 950 microns wide. The slot-to-slot spacing 30 is based not just on the width 52 of the nozzle packages 50a, 50b, however, but also on the width, in minor axis direction 4, of the pathway 70 through which electrical trace 40a is routed to at least nozzle package 50d. In addition, power, data and/or control signals may be provided to the electronics of nozzle package 50a via a trace that is coupled to electrical trace 40a (as shown), or connected directly from pad 42a. Such electrical trace could connect to the electronics of nozzle package 50a without being run through pathway 70.
[0025] The length and the width of trace 40a, in turn, depend not just on the width of the slot clusters, but also on the slot-to-slot spacing 30 between slot segments 20a and 20b in minor axis direction 4. A longer trace 40a occurs with a larger spacing 30. With regard to the width of trace 40a, although one trace 40a and pad 42a are illustrated for clarity, it can be appreciated that a number of different traces for power, data, and/or control signals may run through pathway 70. The dimensions of pathway 70 are typically chosen to accommodate the number and the width of the traces that are routed through the pathway 70. Or, stated conversely, the dimensions of the pathway 70 may limit the number and/or the width of the traces that can be routed through the pathway 70.
[0026] It will be appreciated that the width of power traces is typically considerably wider than that of data or signal traces, due to the larger amount of current carried by the power traces. The more and/or wider the traces that run through the pathway 70 are, the wider the pathway itself. Because the adjacent ends of slot segments 20a, 20b are constrained to remain along the same minor axis 32 in order to maintain the equidistant spacing of nozzles in the major axis direction 2 across both slot segment 20a and slot segment 20b, widening the pathway 70 is accomplished by increasing the slot-to-slot spacing 30.
[0027] Considering now a printhead die for emitting drops of a plurality of different liquids in accordance with another example of the present disclosure, and with reference to FIG. 3, the die may be a rectangular page wide array printhead die 410. The die 410 takes the form of a substrate having an arrangement of generally rectangular printhead slot clusters 460 formed thereon. Each print-head slot cluster 460 has a liquid feed slot 420 that substantially bisects the slot cluster 460 in a bisecting direction 402. Each slot cluster 460 also has a nozzle package 450 adjacent, or abutting, each side of the liquid feed slot segment 420. One example of a nozzle package 450 may include a nozzle array and electronics. Another example of a nozzle package 450 may include a nozzle array, a drive switch array, and a control logic array as described with reference to FIG. 2 above.
[0028] As shown, nozzle packages for a given liquid -such as, for example, a liquid of a particular color - are staggered in two alternating columns 412, 414 in the bisecting direction 402. The die 410 has a diagonal pathway 470a between a first slot cluster 460a for the given liquid in the first column 412 and an adjacent second slot cluster 460b for the given liquid in the second column 414. A electrical trace 440a can be routed from a first location in the first column (i.e. a location in the first column between the first slot cluster 460a and a third slot cluster 460c), through the diagonal pathway 470a, and connect to the nozzle package 450b of the second slot cluster 460b disposed on the opposite side of the liquid feed slot 420b from the first location. The electrical trace 440a may alsoconnecttooneormoreofthe nozzle package 450a, 450c and 450d.
[0029] In some examples, two alternating columns 416, 418 of slot clusters 460e, 460f for a second liquid (e.g. yellow ink), different from the given liquid for slot clusters 460a, 460b (e.g. cyan ink), are spaced apart, in a direction 404 orthogonal to the bisecting direction 402, from the two alternating columns 412, 414 for the given liquid. The slot-to-slot spacing 431 between slot clusters 460 for two different liquids in adjacent columns (e.g., columns 414,416) may be considerably greater than the slot-to-slot spacing 430 between slot clusters 460 for the same liquid in adjacent columns (e.g., columns 412,414). The spacing 431 is typically related to the size of the physical barriers, such as vertical ribs, between columns 414,416 that are attached to the back side of the die 410 to keep the two different liquids separated from each other.
[0030] In some examples, the slot clusters 460 are arranged on the die 410 in rows and columns. Each pair of adjacent columns is associated with a different liquid. For example, columns 412 and 414 collectively include a full-length slot for delivery of cyan ink, while columns 416 and 418 collectively include a full-length slot for delivery of yellow ink.
[0031] Each slot cluster 460 is assigned to a particular row. In some examples, an electrical trace 440a is routed across the die 410 in the row direction 404 between two rows of slot clusters 460. For example, electrical trace 440a follows a serpentine path across the die that passes in a serpentine manner through a diagonal passageway 470a between a slot cluster 460a, 460e in one row and a slot cluster 460b, 460f in the other row. Typically, electrical trace 440 is routed between every other adjacent pair of rows. For example, power trace 440b passes in a serpentine manner through a diagonal passageway 470b between a slot cluster 460c in one row and a slot cluster 460d in the other row. Contact pads 442a, 442b may be disposed at or near a vertical edge of the die 410. For example, pad 442a is connected to electrical trace 440a, while pad 442b is connected to electrical trace 440b.
[0032] Considering now a method 700 for making a page wide array silicon printhead die in accordance with an example of the present disclosure, and with reference to FIG. 4, at 702, locations for slot segments for a same liquid, staggered in two alternating columns, are defined on the substrate.
[0033] At 704, nozzle electronics are provided on one or both sides of each slot location. The electronics can be fabricated on the die by integrated circuit processing techniques such as a standard NMOS or CMOS silicon fabrication process. The electronics are configured to control ejection of drops of the same liquid from a linear array of nozzles.
[0034] At 706, traces, including one or more power traces, are provided from a source point, such as a pad, between two adjacent slot locations in one column, around one end of a third slot location in the other column, to electronics on a far side of the third slot location. The traces can be fabricated on the die using integrated circuit processing techniques the same or similar to those for the electronics.
[0035] At 708, slots are formed through the substrate at each of the slot locations. The slots can be formed through the substrate by techniques such as laserdrilling. The slot is typically formed after the electronics and the traces have been fabricated.
[0036] At 710, nozzle arrays are formed on the die between each slot and each electronics. In general, there are two parts to a nozzle array: the firing resistors, and the orifice layer that defines the chambers in which the firing resistors are disposed. The firing resistors are fabricated using integrated circuit processing techniques, such as NMOS or CMOS techniques. In some examples the orifice layer is a metal orifice layer that is attached to the die. In other examples the orifice layer is an SU8 MEMS-type orifice layer formed using semiconductor processing techniques such as patterning and etching. In some examples, the firing resistors may be formed before slot formation, while the orifice layer is formed after slot formation.
[0037] In some examples, a number of die may be fabricated on a single silicon wafer, from which an individual die is cut or separated.
[0038] Although several specific examples have been described and illustrated, the disclosure is not limited to the specific methods, forms, or arrangements of parts so described and illustrated. This description should be understood to include all novel and non-obvious combinations of elements described herein, and claims may be presented in this or a later application to any novel and non-obvious combination of these elements. The foregoing examples are illustrative, and no single feature or element is essential to all possible combinations that may be claimed in this or a later application. Unless otherwise specified, steps of a method claim need not be performed in the order specified. The disclosure is not limited to the above-described implementations, but instead is defined by the appended claims in light oftheirfull scope of equivalents. Where the claims recite "a" or "a first" element of the equivalent thereof, such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements.
Claims 1. A printhead die, comprising: a substrate (11); a slot (20; 420) extending through the substrate (11), the slot (20; 420) including a first slot segment (20a; 420a) and a discrete second slot segment (20b; 420b), the second slot segment (20b; 420b) being offset from the first slot segment (20a; 420a) along a major axis (2) and along an orthogonal minor axis (4), wherein offset of the first slot segment (20a; 420a) and the second slot segment (20b; 420b) defines a pathway (70; 470a) between thefirstslotsegment(20a; 420a) and the second slot segment (20b; 420b); and an electrical trace (40a, 40b; 440a, 440b) routed across the substrate (11) through the pathway (70; 470a). 2. The printhead die of claim 1, wherein the first slot segment (20a; 420a) and the second slot segment (20b; 420b) have adjacent ends along a same minor axis (4). 3. The printhead die of claim 1, wherein the first slot segment (20a; 420a) is in a first column (12; 412) and the second slot segment (20b; 420b) is in a second column (14; 414) parallel to the first column (12; 412). 4. The printhead die of claim 1, wherein the slot (20) further includes a third slot segment, consecutive slot segments along the major axis (2) alternating between a first column (12; 412) and a second column (14; 414). 5. The printhead die of claim 4, wherein each slot segment in a given column is aligned with all other slot segments in the given column. 6. The printhead die of claim 1, wherein the slot (20) comprises: a first full-length slot segmented into a plurality of discrete slot segments to deliver a first liquid through the substrate (11), the first full-length slot having pathways (70; 470a) defined between adjacent slot segments of the first full-length slot, and a second full-length slot segmented into a plurality of discrete slot segments to deliver a different second liquid through the substrate (11 ), the second full-length slot having pathways (70; 470a) defined between adjacent slot segments of the second full-length slot; and wherein the electrical trace (40a, 40b; 440a, 440b) is routed across the substrate (11) via the pathways (70; 470a). 7. The printhead die of claim 6, wherein the slot segments are arranged in rows, each row including a slot segment of the first full-length slot and a slot segment of the second full-length slot. 8. The printhead die of claim 7, wherein the pathways (70; 470a) between adjacent slot segments of the first full-length slot and second full length slot define a serpentine path between adjacent rows of the slot segments. 9. The printhead die of claim 7, wherein the slot segments of each full-length slot are arranged in plural columns with adjacent slot segments in different columns. 10. The printhead die of claim 9, wherein pathways (70; 470a) defined between adjacent slot segments of each full-length slot are diagonal pathways (70; 470a). 11. The printhead die of claim 10, which further comprises a plurality of nozzle packages, each nozzle package associated with a slot segment. 12. The printhead die of claim 11, wherein the electrical trace (40a, 40b; 440a, 440b) routed via the between adjacent slot segments of the first full-length slot is in electrical communication with a nozzle package associated with a slot segment of the second full-length slot. 13. A method of making a printhead die, comprising: defining (702) slot locations on a substrate (11), staggered in two alternating columns, for a plurality of slot segments (20a, 20b; 420a; 420b) fordelivering a same liquid through the substrate (11); providing (704), adjacent each slot location, electronics to control an array of nozzles associated with the slot location; providing (706) an electrical trace (40a, 40b; 440a, 440b) from between two adjacent slot locations in one column, around one end of a third slot location in another column, to electronics on a far side of the third slot location; forming (708) slots through the substrate (11 ) at the slot locations; and forming (710) nozzle arrays on the die adjacent each slot and each electronics.
Patentansprüche 1. Druckkopfprägeplatte, die Folgendes umfasst: ein Substrat (11); einen Schlitz (20; 420), der durch das Substrat (11) hindurch verläuft, wobei der Schlitz (20; 420) ein erstes Schlitzsegment (20a; 420a) und ein eigenständiges zweites Schlitzsegment (20b; 420b) enthält, wobei das zweite Schlitzsegment (20b; 420b) vom ersten Schlitzsegment (20a; 420a) entlang einer Hauptachse (2) und entlang einer rechtwinklig verlaufenden Nebenachse (4) versetzt ist, wobei der Versatz des ersten Schlitzsegments (20a; 420a) und des zweiten Schlitzsegments (20b; 420b) eine Leitung (70; 470a) zwischen dem ersten Schlitzsegment (20a; 420a) und dem zweiten Schlitzsegment (20b; 420b) definiert; und eine elektrische Leiterbahn (40a, 40b; 440a, 440b), die überdas Substrat (11) durch die Leitung (70; 470a) führt. 2. Druckkopfprägeplatte nach Anspruch 1, wobei das erste Schlitzsegment (20a; 420a) und das zweite Schlitzsegment (20b; 420b) benachbarte Enden entlang einer gleichen Nebenachse (4) aufweisen. 3. Druckkopfprägeplatte nach Anspruch 1, wobei das erste Schlitzsegment (20a; 420a) in einer ersten Säule (12; 412) und das zweite Schlitzsegment (20b; 420b) in einer zweiten Säule (14; 414) parallel zur ersten Säule (12; 412) angeordnet ist. 4. Druckkopfprägeplatte nach Anspruch 1, wobei der Schlitz (20) weiter ein drittes Schlitzsegment enthält, wobei sich aufeinanderfolgende Schlitzsegmente entlang der Hauptachse (2) zwischen einer ersten Säule (12; 412) und einer zweiten Säule (14; 414) abwechseln. 5. Druckkopfprägeplatte nach Anspruch 4, wobei jedes Schlitzsegment in einer gegebenen Säule nach allen anderen Schlitzsegmenten in der gegebenen Säule ausgerichtet ist. 6. Druckkopfprägeplatte nach Anspruch 1, wobei der Schlitz (20) Folgendes umfasst: einen ersten durchgehenden Schlitz, der in eine Vielzahl von eigenständigen Schlitzsegmenten unterteilt ist, um eine erste Flüssigkeit durch das Substrat (11 ) zu fördern, wobei der erste durchgehende Schlitz Leitungen (70; 470a) aufweist, die zwischen benachbarten Schlitzsegmenten des ersten durchgehenden Schlitzes definiert sind, und einen zweiten durchgehenden Schlitz, der in ei ne Vielzahl von eigenständigen Schlitzsegmenten aufgeteilt ist, um eine unterschiedliche zweite Flüssigkeit durch das Substrat ( 11 ) zu fördern, wobei der zweite durchgehende Schlitz Leitungen (70; 470a) aufweist, die zwischen benachbarten Schlitzsegmenten des zweiten durchgehenden Schlitzes definiert sind; und wobei die elektrische Leiterbahn (40a, 40b; 440a, 440b) über das Substrat (11) durch die Leitungen (70; 470a) führt. 7. Druckkopfprägeplatte nach Anspruch 6, wobei die Schlitzsegmente in Reihen angeordnet sind, wobei jede Reihe ein Schlitzsegment des ersten durchgehenden Schlitzes und ein Schlitzsegment des zweiten durchgehenden Schlitzes enthält. 8. Druckkopfprägeplatte nach Anspruch 7, wobei die Leitungen (70; 470a) zwischen benachbarten Schlitzsegmenten des ersten durchgehenden Schlitzes und des zweiten durchgehenden Schlitzes einen gewundenen Weg zwischen benachbarten Reihen der Schlitzsegmente definieren. 9. Druckkopfprägeplatte nach Anspruch 7, wobei die Schlitzsegmente eines jeden durchgehenden Schlitzes in mehreren Säulen angeordnet sind, mit benachbarten Schlitzsegmenten in unterschiedlichen Säulen. 10. Druckkopfprägeplatte nach Anspruch 9, wobei es sich bei Leitungen (70; 470a), die zwischen benachbarten Schlitzsegmenten eines jeden durchgehenden Schlitzes definiert sind, um diagonale Leitungen (70; 470a) handelt. 11. Druckkopfprägeplatte nach Anspruch 10, die weiter eine Vielzahl von Düsenpaketen umfasst, wobei jedes Düsenpaket einem Schlitzsegment zugeordnet ist. 12. Druckkopfprägeplatte nach Anspruch 11, wobei die elektrische Leiterbahn (40a, 40b; 440a, 440b), die überden zwischen benachbarten Schlitzsegmenten des ersten durchgehenden Schlitzes verläuft, in elektrischer Verbindung mit einem Düsenpaket steht, das einem Schlitzsegment des zweiten durchgehenden Schlitzes zugeordnet ist. 13. Verfahren zum Herstellen einer Druckkopfprägeplatte, das Folgendes umfasst:
Definieren (702) von Schlitzpositionen auf einem Substrat (11), versetzt zwischen zwei abwechselnden Säulen, für eine Vielzahl von Schlitzsegmenten (20a, 20b; 420a; 420b) zum Abgeben derselben Flüssigkeit durch das Sub- strat (11) hindurch;
Bereitstellen (704) einer Elektronik neben jeder Schlitzposition zum Ansteuern einer Anordnung von der Schlitzposition zugeordneten Düsen; Bereitstellen (706) einer elektrischen Leiterbahn (40a, 40b; 440a, 440b), beginnend zwischen zwei aneinander angrenzenden Schlitzpositionen in einer Säule, um ein Endeeinerdrit-ten Schlitzposition in einer anderen Säule zur Elektronik an einer anderen Seite der dritten Schlitzposition verlaufend;
Ausbilden (708) von Schlitzen durch das Substrat (1 1 ) hindurch an den Schlitzpositionen; und Ausbilden (710) von Düsenanordnungen auf der an jeden Schlitz und jede Elektronik angrenzenden Prägeplatte.
Revendications 1. Matrice de tête d’impression, comprenant : un substrat (11) ; une fente (20 ; 420) s’étendant à travers le substrat (11), la fente (20 ; 420) comprenant un pre-miersegment de fente (20a ; 420a) et un deuxième segment de fente discret (20b ; 420b), le deuxième segment de fente (20b ; 420b) étant décalé par rapport au premier segment de fente (20a ; 420a) le long d’un grand axe (2) et le long d’un petit axe orthogonal (4), le décalage du premier segment de fente (20a ; 420a) et du deuxième segment de fente (20b ; 420b) définissant un passage (70 ; 470a) entre le premier segment de fente (20a ; 420a) et le deuxième segment de fente (20b ; 420b) ; et une piste électrique (40a, 40b ; 440a, 440b) s’étendant d’un bout à l’autre du substrat (11) par le biais du passage (70 ; 470a). 2. Matrice de tête d’impression selon la revendication 1, dans laquelle le premier segment de fente (20a ; 420a) et le deuxième segment de fente (20b ; 420b) ont des extrémités adjacentes le long du même petit axe (4). 3. Matrice de tête d’impression selon la revendication 1, dans laquelle le premier segment de fente (20a ; 420a) est située dans une première colonne (12 ; 412) et le deuxième segment de fente (20b ; 420b) est situé dans une seconde colonne (14 ; 414) parallèle à la première colonne (12 ; 412). 4. Matrice de tête d’impression selon la revendication 1, dans laquelle la fente (20) comprend en outre un troisième segment de fente, des segments de fentes consécutifs le long du grand axe (2) alternant entre une première colonne (12 ; 412) et une seconde colonne (14 ; 414). 5. Matrice de tête d’impression selon la revendication 4, dans laquelle chaque segment de fente d’une colonne donnée est aligné avec tous les autres segments de fente de la colonne donnée. 6. Matrice de tête d’impression selon la revendication 1, dans laquelle la fente (20) comprend : une première fente de pleine longueur segmentée en une pluralité de segments de fente discrets pour distribuer un premier liquide à travers le substrat (11), la première fente de pleine longueur comportant des passages (70 ; 470a) définis entre des segments de fente adjacents de la première fente de pleine longueur, et une seconde fente de pleine longueur segmentée en une pluralité de segments de fente discrets pour distribuer un second liquide différent à travers le substrat (11), la seconde fente de pleine longueur comportant des passages (70 ; 470a) définis entre les segments de fente adjacents de la seconde fente de pleine longueur ; et la piste électrique (40a, 40b ; 440a, 440b) s’étendant d’un bout à l’autre du substrat (11) par le biais des passages (70 ; 470a). 7. Matrice de tête d’impression selon la revendication 6, dans laquelle les segments defente sontdisposés en rangées, chaque rangée comprenant un segment de fente de la première fente de pleine longueur et un segment de fente de la deuxième fente de pleine longueur. 8. Matrice de tête d’impression selon la revendication 7, dans laquelle les passages (70, 470a) entre les segments de fente adjacents de la première fente de pleine longueur et de la seconde fente de pleine longueur définissent un trajet sinueux entre des rangées adjacentes des segments de fente. 9. Matrice de tête d’impression selon la revendication 7, dans laquelle les segments de fente de chaque fente de pleine longueur sont disposés en une pluralité de colonnes pourvues de segments de fente adjacents dans des colonnes différentes. 10. Matrice de tête d’impression selon la revendication 9, dans laquelle les passages (70 ; 470a) définis entre les segments de fente adjacents de chaque fente de pleine longueur sont des passages en diagonal (70, 470a). 11. Matrice de tête d’impression selon la revendication 10, qui comprend en outre une pluralité de paquets de buses, chaque paquet de buses étant associé à un segment de fente. 12. Matrice de tête d’impression selon la revendication 11, dans laquelle la piste électrique (40a, 40b ; 440a, 440b) orientée entre des segments de fente adjacents de la première fente de pleine longueur est en communication électrique avec un ensemble de paquets de buses associé à un segment de fente de la seconde fente de pleine longueur. 13. Procédé de fabrication d’une matrice de tête d’impression, comprenant les opérations consistant : à définir (702) des emplacements de fente sur un substrat (11), en quinconce dans deux colonnes alternées, pour une pluralité de seg-mentsdefente(20a,20b ;420a ;420b)destinés à distribuer un même liquide à travers le substrat (11); à placer (704), de façon adjacente à chaque emplacement de fente, une électronique de commande d’un réseau de buses associé à l’emplacement de fente ; à placer (706) une piste électrique (40a, 40b ; 440a, 440b) allant d’une position située entre deux emplacements de fente adjacents dans une colonne, autour d’une extrémité d’un troisième emplacement de fente dans une autre colonne, à l’électronique sur un côté éloigné du troisième emplacement de fente ; à former (708) des fentes à travers le substrat (11) aux emplacements de fente ; et à former (710) des réseaux de buses sur la matrice au voisinage de chaque fente et de chaque électronique.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description • US 2003052944 A1 [0003]

Claims (2)

MYOMMèF&KOCm Szabadalmi Igénypea tok L· Nyotmtôfehkocka, amely a következőket :iarisÍmÉré4; hordozd (11); rés (20; 420), amely keresztülnyűlik a »rdogés (11), a Ils £20; 4M} tarialmsz egy elad réxrészt (20a; 420a) és egy kölönllSb második résrészl (20b; 420h), a második résrész (20b; 420b) el van tolva az első résrésztől (20a; 420a) egy nagytengely (2) mentén és egy merőleges kistengely (4) mentén, altes! at llsd résrésá (2Öa; 4|0a) es a második résrész (20b; 421¾ «toiÉsa: :me^biîàrriæ ídgy :ó#ömlai ,p0; 420a) az első résrész £20a, 420a) és a második résrész (20b; 420b) között; és elektromos nyomvonal (40a, 40I; 440a, 440b)s amely a hordozón (I I) keresztül van vezetve az útvonalon (70; 410a§ át>MYOMMèF & KOCm Patent Application Case L · Nyotmtôfehkocka, which includes: iarisÍMÉRE4; carry (11); a gap (20; 420) extending through the gap (11), Ils 20; 4M} tarialmsz is a selling part (20a; 420a) and a second slit part (20b; 420h), the second slit portion (20b; 420b) being displaced from the first slit (20a; 420a) along a large axis (2) and perpendicular small axis (4), altes! at llsd slot (2a; 4 | 0a) and second slot (20b; 421¾ «to: me ^ biîàrriæ ídei: oh # ymla, p0; 420a) the first portion is 20a, 420a) and the second slot part (20b; 420b); and an electric trail (40a, 40I; 440a, 440b), which is routed through the carrier (II) along the route (70; 410a§> 2, Az 1. igénypont szerinti nyomtatéfei- ahol az első résrésznek (20a; 420a) és a második résrésznek p0b; 42§b) szomszédos végeik vannak egy azonos kistengely (4) mentén. Az: í. igénypont szerinti nymntaiőrép ahol m első résrlsz (2§a; 420a) egy első oszlopban £12; 412) van, a második résrész (20b, 420b) pedig egy második oszlopban (14; 414) van az első oszloppal (12; 412) párhuzamosam 4. : Az 1 > Igénypont szerinti nyomtatófej, ahol a rés (20) továbbá tartalmaz egy harmadik résrészt, egymást követő résrészeket a nagytengely (2) mentés* egy első oszlop (12; 412) és egy második oszlop (14; 4)4) között váltakozva, 5, A 4 Igénypont szerinti nyomtatőfej, ahol egy adott oszlopban lévő minden egyes résrész egy vonalban van az adott oszlopban lévő díszes többi résrésszel, Ő, ·Μ L igénypont szerinti nyomtatóiéi, ahol a rés (20) a kővetkezőket tartalmazza: első teljes hosszúságú rés, amely Önálló résrészek sokaságába vas beőáztva, hogy első folyadékot szállítson a hordozón (11) keresztül, az ellő telles hosszúságú βφ nek útvonalai (70; 4?0a) vannak, amelyek az első teljes hosszúságó rés m&mmé-dós résrészel között vannak meghatározva, és .második teljes hosszúságú rés, amely önálló résrészek sokaságába vasi beosztva, hogy eltérő második folyadékot szállítson a hordozón {1 h keresztöl, a második teljes hosszúságú résnek útvonalai (?Ü; 470a) vannak, amelyek a második teljes hosszúságú rés szomszédos résrészei között vannak meghatározva', és ahol az elektromos nyomvoplj |4Őa, 40|; 4Ä»· 44¾¾) lÂÈlôæô» (11} keresztül van vezetve az; úísamalakon (70; 470a) át, % A ö. igénypont szerinti nyomtatóiéi, ahol a résrészek sorokban vannak elrendezve, minden egyes sor tartalmazza az első te|pk:Í«^ágú. rés résriszit és a második teljes hosszúságú rés merészét $* A 7, igénypont szerinti nyomtatóiéi, ahol az első teljes hosszúságú rés és a második tel* jes hosszúságú rés szomszédos résrészelnek útvonalai (70; 470a) meghatározoalé ®|y szerpentínútvonalat a résrészek szomszédos sorai között, Sh Á 7, igénypont szerinti nyomtatófej, ahol az egyes teljes hosszúságú rések résrészei több oszlopban vannak elrendezve különböző oszlopokban lévő szomszédos résrészek-lel Ml* A 9. igénypont szerinti nyomtatóiéi, ahol az egyes teljes hosszúságú rések szomszédos résrészei kozott meghatározott útvonalak (70; 470a) átlós útvelak (70; 470a), II, A iOigéíiyponi szerinti nyomtatóiét, amely továbbá fovokacsomagolisökasägät iáit»!-mázzá, minden egyes íúvókaesomag társítva van egy résrésszel IS. áll. igénypont szerinti nyomtatóié). ahol az dsó teljes hosszúságó rés szomszédos rés-részei között átvezetett elektromos nyomvonal (41% #0% 440a* 44Íi>) eiekÉomos kommunikációban van a második teljes hosszúságú rls résrészével íárzltott llsÄäesö'· maggal t3L l%smíaíéfe|4cöaka hészifeének eljárása, amely a kővetkezőket tartalmazza: olyan réshelyek meghatározása. (702) egy hordozón (! I), amelyek két váltakozó oszlopba« varrnak elrendezve, résrészek (20a, 2Üb; 420a. 420b) sokaságára ugyanannak a jblyadéknak a hordozón |! tj keresztüli szállítására; minden egyes réshely szomszédságában elektronika biztosítása (?Ü4j a résbellyel társított ínvékák tömbjének vezérlésére; elektromos nyomvonal (40a* 40b; 441% 44lb) biztosítása (700} az egyik oszlopban iéyő kei szomszédos résbeUioi. eg> mastk oszlopban léte harmadik résheív egyik vége körök a harmadik resltely távol oldalán iévl eiektrordkálpz; rések kialakítása (70k) a hordozón (! I) kérésztől a réshélyeknél; és tovókatömbök kialakítása (Ί |.ö^#:k^Ä-töÄe ,#..ikteÂlîsÂ:.mfl·2, according to claim 1, wherein the first slit portion (20a; 420a) and the second slit portion are p0b; 42 (b) have adjacent ends along an identical small axis (4). The: í. The node of claim 1, wherein m is a first slot (2§a; 420a) in a first column of £ 12; 412) and the second slot portion (20b, 420b) is in a second column (14; 414) parallel to the first column (12; 412) 4. The print head according to claim 1, wherein the gap (20) further comprises a a third slot, successive slit portions alternating between the large axis (2) between a first column (12; 412) and a second column (14; 4) 4, 5, A 4 A printhead according to the claim, wherein each of the columns in a given column the slot portion is aligned with the ornamented other slit portions in the respective column, He, · according to claim L, wherein the gap (20) includes the following: a first full-length slot embedded in a plurality of Self-Slit Parts to transport the first fluid to the substrate (1); 11), the paths (70; 4? 0a) of the transverse tells length βφ are defined between the first full length gap m & a gap that divides itself into a plurality of separate slot portions to deliver a different second fluid on the substrate {1 h, the paths of the second full-length gap (? Ü; 470a) which are defined between adjacent portions of the second full-length slot, and wherein the electrical trace is 4?, 40 | 4Ä »· 44¾¾)» (11} is routed through the new form (70; 470a),%) The printer of claim 1, wherein the slots are arranged in rows, each row contains the first one: Í « slot # 1 slot slot and second full-length slot bold $ * Printer according to claim 7, wherein the first full-length slot and the second-length slot are adjacent slot portions (70; 470a) defined by the slots of the slots. print head according to claim 7, wherein the slots of each of the full-length slots are arranged in a plurality of columns with adjacent slit portions in different columns M1 * The printers of claim 9, wherein the adjacent slit portions of each full-length slot are defined paths. (70; 470a) diagonal paths (70; 470a); bá fovokacsomagolisökasägät iáit »! - glaze, each snout package is associated with a slit IS. printers according to claim 1). where the electric trail passed through the adjacent slit portions of the full length slot (41% # 0% 440a * 44Ii) is in communication with the second full length slit part llsÄäesö · k? include: defining slots. (702) on a substrate (! I) arranged in two alternating columns, stitched to a plurality of slots (20a, 2b; 420a. 420b) on the same jet on the substrate | tj; securing electronics in the vicinity of each slit (? 4) to control the array of slugs associated with the slit slot; providing an electric trace (40a * 40b; 441% 44lb) (700} in one column of the adjacent slit Uioi. forming a third (70k) slit (70k) on the substrate (! I) from the crotch to the slit gaps; and the formation of conveying blocks (Ί | .ö ^ #: k ^ Ä-darbÄe, # .. ikteÂlîsÂ: .mfl ·
HUE11866663A 2011-05-31 2011-05-31 Printhead die HUE026795T2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2011/038540 WO2012166112A1 (en) 2011-05-31 2011-05-31 Printhead die

Publications (1)

Publication Number Publication Date
HUE026795T2 true HUE026795T2 (en) 2016-07-28

Family

ID=47259658

Family Applications (1)

Application Number Title Priority Date Filing Date
HUE11866663A HUE026795T2 (en) 2011-05-31 2011-05-31 Printhead die

Country Status (7)

Country Link
EP (1) EP2714407B1 (en)
CN (1) CN103561958B (en)
ES (1) ES2566000T3 (en)
HU (1) HUE026795T2 (en)
PL (1) PL2714407T3 (en)
TW (1) TWI480173B (en)
WO (1) WO2012166112A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9782978B2 (en) 2014-05-29 2017-10-10 Hewlett-Packard Development Company, L.P. Serpentine direction reversal in bidirectional error diffusion halftoning
US9987845B2 (en) 2014-05-30 2018-06-05 Hewlett-Packard Development Company, L.P. Printhead assembly module
CN108705866B (en) * 2014-05-30 2020-04-24 惠普发展公司,有限责任合伙企业 Flow structure, printhead assembly module, and print bar
TWI612313B (en) * 2014-09-05 2018-01-21 惠普發展公司有限責任合夥企業 Monitoring parasitic resistance, and related fluid ejection device and electronic controllers

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563642A (en) * 1992-04-02 1996-10-08 Hewlett-Packard Company Inkjet printhead architecture for high speed ink firing chamber refill
KR19990010872U (en) * 1997-08-30 1999-03-25 윤종용 Ink cartridge with double nozzle structure
US6789878B2 (en) 1997-10-28 2004-09-14 Hewlett-Packard Development Company, L.P. Fluid manifold for printhead assembly
US6502920B1 (en) * 2000-02-04 2003-01-07 Lexmark International, Inc Ink jet print head having offset nozzle arrays
US6902252B1 (en) * 2000-08-16 2005-06-07 Hewlett-Packard Development Company, L.P. Fluid ejection device with staggered ink drop generators
US6812564B1 (en) * 2000-09-05 2004-11-02 Hewlett-Packard Development Company, L.P. Monolithic common carrier
JP4027135B2 (en) * 2002-03-25 2007-12-26 キヤノン株式会社 Inkjet recording device
US6863381B2 (en) * 2002-12-30 2005-03-08 Lexmark International, Inc. Inkjet printhead heater chip with asymmetric ink vias
US7083267B2 (en) * 2003-04-30 2006-08-01 Hewlett-Packard Development Company, L.P. Slotted substrates and methods and systems for forming same
TWI256143B (en) * 2005-10-11 2006-06-01 Integrated Crystal Technology A hybridization packaging structure and method of led chip and multiplexer/driver chip for led printer head

Also Published As

Publication number Publication date
CN103561958B (en) 2017-09-08
EP2714407B1 (en) 2016-03-16
WO2012166112A1 (en) 2012-12-06
PL2714407T3 (en) 2016-08-31
ES2566000T3 (en) 2016-04-08
CN103561958A (en) 2014-02-05
EP2714407A1 (en) 2014-04-09
EP2714407A4 (en) 2014-04-09
TWI480173B (en) 2015-04-11
TW201302494A (en) 2013-01-16

Similar Documents

Publication Publication Date Title
US8960860B2 (en) Printhead die
US8348385B2 (en) Printhead die
US6450614B1 (en) Printhead die alignment for wide-array inkjet printhead assembly
US7549734B2 (en) Liquid discharge head
RU2373064C1 (en) Printhead for inkjet printing, cartridge for inkjet printing with printhead for inkjet printing and printing device for inkjet printing
US6793319B2 (en) Printer and printer head
KR100874733B1 (en) High-performance, high-density ink jet printhead having multiple modes of operation
US7909437B2 (en) Liquid discharge head
US6860587B2 (en) Ink jet printhead
AU2001290665B2 (en) Energy balanced printhead design
HUE026795T2 (en) Printhead die
RU2279983C2 (en) Compact printing head for ink-jet printing
JP2008012688A (en) Inkjet recording head, inkjet recording apparatus and method for manufacturing inkjet recording head
US11731423B2 (en) Wafer structure
JP2008068501A (en) Recording head and inkjet recording device
US8300269B2 (en) Dot forming element arrays at different resolutions
JP2005246916A (en) Droplet ejecting head and image forming device