HUE025791T2 - Compression and cooling of a gas - Google Patents

Compression and cooling of a gas Download PDF

Info

Publication number
HUE025791T2
HUE025791T2 HUE12198468A HUE12198468A HUE025791T2 HU E025791 T2 HUE025791 T2 HU E025791T2 HU E12198468 A HUE12198468 A HU E12198468A HU E12198468 A HUE12198468 A HU E12198468A HU E025791 T2 HUE025791 T2 HU E025791T2
Authority
HU
Hungary
Prior art keywords
gas
cooling
amelynek
compression
compressed
Prior art date
Application number
HUE12198468A
Other languages
Hungarian (hu)
Inventor
Jan Silfwerbrand
Olle Ljungberg
Original Assignee
Linde Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Ag filed Critical Linde Ag
Publication of HUE025791T2 publication Critical patent/HUE025791T2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/032Orientation with substantially vertical main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/058Size portable (<30 l)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • F17C2205/0134Two or more vessels characterised by the presence of fluid connection between vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/011Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/013Carbone dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/015Carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • F17C2221/017Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/018Acetylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • F17C2227/0164Compressors with specified compressor type, e.g. piston or impulsive type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0192Propulsion of the fluid by using a working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/039Localisation of heat exchange separate on the pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/04Methods for emptying or filling
    • F17C2227/047Methods for emptying or filling by repeating a process cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/023Avoiding overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/02Mixing fluids
    • F17C2265/025Mixing fluids different fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

Description
Technical field [0001] The present invention relates to a method of treating a gas, the method comprising one or more compression step(s) in which a pressurised drive gas actuates a piston which compresses the gas, a cooling step in which expanded drive gas cools the compressed gas, and a filling step in which the cooled compressed gas, or a condensate thereof, is filled on a receiving gas cylinder. The present invention also relates to a method of recovering a gas, in which the gas is treated with the aforementioned method of treating a gas, to a gas compression system, and to a use of an expanded drive gas from a gas compression device utilizing a pressurised drive gas for providing a compressed gas.
Background art [0002] A pneumatically driven gas booster is a compressor comprising a compression chamber for the gas to be compressed, a work chamber for a pressurised drive gas, typically pressurised air, and a piston actuated by the pressurised drive air and compressing the gas in the compression chamber. In order to obtain a desirably high pressure increase of the gas to be compressed, pressurised air in the work chamber exerts its pressure on a large area air piston coupled by a connecting rod to a small area gas piston compressing the gas in the compression chamber. The compression and work chambers are provided with valves controlling the flows of drive air and gas to be compressed, respectively, and allowing reciprocating action of the coupled air and gas pistons. Cooling of the gas booster may be provided by routing cold expanded drive gas through a jacket surrounding the compression chamber.
[0003] Gases may be stored and distributed at high pressure, or in liquid (condensed) form, in gas cylinders. Filling a gas cylinder with a gas to a high pressure may involve raising the pressure of the gas with a gas booster. The temperature increase of the gas being a result of compression of the gas in the gas booster is, however, generally undesirable when filling a gas cylinder to a nominal filling pressure defined at a predetermined temperature, such as room temperature. Liquefying a gas before filling it on a gas cylinder may involve raising the pressure of the gas with agas booster and subsequently condensing the pressurised gas by cooling of said gas. In this case, the temperature increase of the gas being a result of compression of the gas in the gas booster negatively affects the efficiency of the subsequent cooling aiming at condensation of the compressed gas.
[0004] DE 10 2006 039 616 B3 discloses a method in which compressed fuel gas is divided into a first martial gas stream and a second partial gas stream. The first partial gas stream is expanded by means of a work machine, in particular an expansion turbine. The second par tial gas stream is compressed by means of a compressor, which is driven by means of the at least one work machine. Heat, which is generated in the second partial gas stream by the compression thereof, is dissipated and is used for heating the first partial gas stream . Liquefied fuel gas is stored in a heat-insulated container.
Summary of the invention [0005] An object of the present invention is to alleviate the abovementioned disadvantages related to the temperature increase of the gas being a result of compression of the gas. As is reflected by the appended claims, the invention is based on the utilization of a hitherto unidentified cooling capacity of expanded drive gas from a gas booster to match downstream cooling requirements of the gas compressed by the gas booster.
[0006] This object as well as other objects of the invention, which should be apparent to a person skilled in the art after having studied the description below, is thus accomplished by a method of treating a gas, the method comprising one or more compression step(s) preceding, in the direction of flow of the gas, filling of the gas, or a condensate thereof, on a gas cylinder, in which compression step(s) the gas is passed to a compression chamber, a pressurised drive gas is passed to a work chamber, the pressurised drive gas in the work chamber actuates a piston which compresses the gas in the compression chamber, the compressed gas is discharged from the compression chamber, and the pressurised drive gas is discharged from the work chamber and expands, a cooling step for cooling with expanded drive gas in which cooling step the discharged compressed gas from the last, in the direction of flow of the gas, of the one or more compression step(s) is brought in indirect heat exchange contact with the expanded drive gas from at least one of said compression step(s), and heat is transferred from the compressed gas to the drive gas, thereby cooling the compressed gas, and a filling step in which the cooled compressed gas, or a condensate thereof, is filled on a receiving gas cylinder.
[0007] The gas to be treated may be any gas that is stored and distributed on gas cylinders, e.g. a gas having industrial or medical application, such as carbon monoxide, nitrogen monoxide, acetylene, methane, nitrogen, oxygen, carbon dioxide, neon, xenon, nitrous oxide or helium, or a mixture thereof.
[0008] A "compression step" as used herein refers to a step for compression of the gas to be treated. A "compression step" as used herein may be performed in a gas booster as disclosed in the background section above. The pressure of the gas to be treated may be increased in one compression step or in more than one compression step, such as in two, three or more, typically serial, compression steps. In the case of serial compression steps, the gas to be treated is treated sequentially by said compression steps, thereby increasing its pressure in several steps. The pressurised drive gas is typically pressurised air. Compression of the gas to be treated, i.e. the gas in the compression chamber, may cause said gas to warm. Expansion of discharged drive gas may cause the discharged drive gas to cool.
[0009] A "cooling step" as used herein refers to a step for cooling of the gas to be treated. The phrase "indirect heat exchange contact" as used herein refers to a contact between two fluids allowing heat transfer, but not mass transfer, between thefluids. In the cooling stepfor cooling with expanded drive gas, the discharged compressed gas may be brought in indirect heat exchange contact with the expanded drive gas by passing the respective gases through a heat exchanger, such as a double-walled pipe, as laid out below. Indirect heat exchange contact between warm compressed gas and cold drive gas results in heat transfer from the compressed gas to the drive gas and thus to cooling of the compressed gas. Compressed gas that has been treated in more than one compression step may be cooled in the cooling step for cooling with expanded drive gas by expanded drive gas from any of said compression steps.
[0010] In the filling step, gas that has been compressed in the one or more compression step(s) and cooled in the cooling step for cooling with expanded drive gas may be filled on a receiving gas cylinder. Alternatively, a condensate of a gas that has been compressed in the one or more compression step(s) and cooled in the cooling step for cooling with expanded drive gas may be filled on a receiving gas cylinder. A "gas cylinder" as used herein refers to a pressure vessel, which may be stationary or portable. The gas cylinder may be one of a bundle of gas cylinders, i.e. one of several, such as 4,8 or 12, aggregate gas cylinders sharing a common charge/discharge manifold. The gas cylinder may thus be arranged to store and/or to distribute the compressed and cooled, and optionally condensed, gas.
[0011] In other words, the method may be devoid of compression step(s) of the abovementioned kind between treatment of the discharged compressed gas in the cooling step for cooling with expanded drive gas and treatment of the cooled compressed gas, or the condensate thereof, in the filling step. The phrase "compression step(s) of the abovementioned kind" as used herein refers to the compression step(s) initially mentioned in the above description of the present method, i.e. to compression step(s) in which a gas is passed to a compression chamber, a pressurised drive gas is passed to a work chamber, the pressurised drive gas in the work chamber actuates a piston which compresses the gas in the compression chamber, the compressed gas is discharged from the compression chamber, and the pressurised drive gas is discharged from the work chamber and expands. That the present method "is devoid of compression step(s) of the abovementioned kind between treatment of the discharged compressed gas in the cooling step for cooling with expanded drive gas and treatment of the cooled compressed gas, or the condensate there of, in the filling step" thus means that the gas to be treated, after having been initially compressed by the one or more compression step(s) and cooled in the cooling step for cooling with expanded drive gas, is not further compressed in a way similar to the initial compression before said gas, or a condensate thereof, has been filled on a gas cylinder.
[0012] By the present method, a hitherto unidentified cooling capacity of expanded drive gas from a compression step driven by a compressed drive gas is utilized to decrease the temperature of compressed gas resulting from a compression step driven by a compressed drive gas. The heat increase of a gas resulting from compression thereof may accordingly be efficiently counteracted, thereby facilitating filling of a gas cylinder with the compressed gas to a nominal filling pressure defined at a predetermined temperature or matching other downstream cooling requirements of the compressed gas.
[0013] The method is operable within a large pressure range and may, as an example, be used for increasing the pressure of a gas from a lower pressure within the range of about 0.1 -200 bar(g) to a higher pressure within said range. Typically, each compression step provides a fivefold to twentyfold pressure increase, such as a tenfold pressure increase, within said pressure range. As used throughout this text, the abbreviation "bar(g)" is to be understood as "bar (gauge)", i.e. as a unit of gauge pressure identifying the pressure in bars above atmospheric pressure.
[0014] A suitable application of the method is the filling of a receiving gas cylinder with a gas from a supplying gas cylinder, the gas pressure of the supplying gas cylinder being lower than the gas pressure of the receiving gas cylinder. Such filling, from a lower pressure gas cylinder to a higher pressure gas cylinder, allows for a more complete emptying of the supplying gas cylinder, and thus for more efficient use of the gas, than if a filling operation is to be discontinued as soon as the gas pressure of the supplying gas cylinder falls below the gas pressure of the receiving gas cylinder. One embodiment of this application relates to the preparation of gas mixtures, specifically when a component of a gas mixture is to be added from a supplying gas cylinder at a lower pressure, to another gas component already present in the receiving gas cylinder at a higher pressure. Such gas mixtures may be used for medical purposes. Examples of such medical gas mixtures are a mixture of nitrous oxide and oxygen (such as about 50 % N20 and about 50 % 02, provided under the names of Medimix® and Livopan®), a mixture of carbon monoxide, acetylene, methane and oxygen in nitrogen (such as about 0.3 % CO, about 0.3 % C2H2, about 0.3 % CH4 and about 20.9 % 02 in N2, used as a lung test gas), a mixture of carbon monoxide, helium and oxygen in nitrogen (such as about 0.28 % CO, about 9.3 % He and about 20.9 % 02 in N2, used as a lung test gas) and a mixture of nitrogen monoxide in nitrogen (such as 400 ppm NO in N2, provided under the name of INOmax®).
[0015] The method may further comprise a cooling step forfurther cooling in which the compressed gas from the cooling step for cooling with expanded drive gas is brought in indirect heat exchange contact with a cooling medium, thereby further cooling the compressed gas before treatment thereof in the filling step. The term "cooling step" and the phrase "indirect heat exchange contact" have their abovementioned meanings. In the cooling step for further cooling the cooling medium may be any fluid colder than the compressed gas to be further cooled. Alternatively, the cooling medium may be anyfluid colder than the compressed gas but for an expanded drive gas from the one or more compression step(s). A suitable cooling medium is water. In the cooling step forfurther cooling, the compressed gas from the cooling step for cooling with expanded drive gas may be brought in indirect heat exchange contact with the cooling medium by use of a heat exchanger, e.g. by passing the compressed gas through a pipe being arranged in a vessel comprising the cooling medium, as laid out below. Indirect heat exchange contact between the compressed gas and the cooling medium results in heat transfer from the gas to the cooling medium, and thus to further cooling of the compressed gas. When a cooling step forfurther cooling is present to fulfil any downstream cooling requirement of the compressed gas, the cooling capacity requirements on such a cooling step for further cooling are advantageously eased by the cooling step for cooling with expanded drive gas of the present method.
[0016] The compressed gas may be condensed in the cooling step forfurther cooling and the condensate may be filled on the receiving gas cylinder in the filling step. It is preferred to store and distribute certain gases, such as nitrous oxide, in liquid form. The cooling stepforfurther cooling may in such a case serve to condense, i.e. liquefy, the compressed gas. By cooling in the cooling step for further cooling the compressed gas to, or below, its condensation point, as obtainable from handbooks or routine experimentation, for the gas in question at the relevant pressure, the gas may be condensed. When the cooling step for further cooling is present to liquefy the compressed gas in preparation for filling of the gas cylinder with a condensate of the gas, the cooling capacity requirements on such a cooling step for further cooling is advantageously eased by the cooling step for cooling with expanded drive gas of the present method.
[0017] In the cooling step for cooling with expanded drive gas the discharged compressed gas from each of the compression steps may be brought in indirect heat exchange contact with the expanded drive gas from each respective compression step. In the case of serial compression steps, the expanded drive gas from the last, as seen by the gas to be treated, compression step of the series is the expanded drive gas with which the compressed gas from the compression steps is brought in contact in the cooling stepfor cooling with expanded drive gas. Accordingly, it is the expanded drive gas from the last compression step that provides the hitherto uniden tified cooling capacity that is utilized to facilitate filling of a gas cylinder with the compressed gas to a nominal filling pressure defined at a predetermined temperature or matching other downstream cooling requirements of the compressed gas.
[0018] The objects of the invention are also accomplished by a method of recovering a gas, in which the gas is provided from a supplying gas cylinder and is treated with the method presented above. Gas cylinders returned by end-users to a gas provider or gas producer for refilling typically contains a residual amount of gas at low pressure. In the case of gases distributed in liquid (condensed) form, returned gas cylinders may contain a residual amount of gas in liquid form. For economical and/or environmental reasons it may be of interest to recover such residual amounts of gas. As an example, environmental concern calls for recovery of nitrous oxide. As another example, it may be desirable to recover expensive gases such as helium. The "supplying gas cylinder" as used herein may refer to a gas cylinder containing a gas to be recovered at 10 % or less of the nominal filling pressure of said gas cylinder. Alternatively, the "supplying gas cylinder" as used herein may refer to a gas cylinder containing a gas in liquid form at 10 % or less of the nominal filling weight of said gas cylinder. The term "gas cylinder" has its abovementioned meaning. In the method for recovering a gas, the hitherto unidentified cooling capacity of said expanded drive gas is utilized to decrease the temperature of compressed gas originating from a supplying gas cylinder, thereby facilitating filling of a receiving gas cylinder with the compressed gas to a nominal filling pressure defined at a predetermined temperature or matching other downstream cooling requirements of the compressed gas. The methods allows for recovery of gases that would otherwise have been emitted to the atmosphere, leading to environmental issues or economical loss.
[0019] For environmental concerns it is preferred to recover nitrous oxide. In the one or more compression step(s) the pressure of the nitrous oxide may be raised from about 0.1-20, preferably 0.1-10, bar(g), which may represent the pressure of the nitrous oxide in the supplying gas cylinder, to about 50-75 bar(g). It is preferred to treat the nitrous oxide in two serial compression steps. In the case that the nitrous oxide is treated in two serial compression steps, the first compression step may rise the pressure of the nitrous oxide from about 0,1-20, preferably 0.1-10, bar(g) to about 10-50 bar(g) and the second compression step may raise the pressure further from about 10-50 bar(g) to about 50-75 bar(g). In the case that the nitrous oxide is treated in two serial compression steps, it is the expanded drive gas from the second compression step that provides the hitherto unidentified cooling capacity that is utilized to match downstream cooling requirements of the nitrous oxide.
[0020] In the cooling step for cooling with expanded drive gas the temperature of the nitrous oxide may be lowered from about 50-60 °C to about 20-30 °C. It thus becomes evident that the method provides a significant temperature decrease of the compressed nitrous oxide and accordingly a significant ease of any downstream cooling requirements of the nitrous oxide.
[0021] Since nitrous oxide is commonly stored and distributed in liquid form, it is preferred that the method comprises a cooling step for further cooling as laid out above. The nitrous oxide may be condensed in said cooling step for further cooling and the condensed nitrous oxide may be filled on the receiving gas cylinder in the filling step. Condensation of the nitrous oxide in the cooling step for further cooling may be obtained by cooling the nitrous oxide to about 5-10 °C. Thus, nitrous oxide that has been compressed to about 50-75 bar(g) in the compression step(s) may be cooled to about 20-30 °C in the cooling step for cooling with expanded drive gas and be further cooled to about 5-10 °C in the cooling step for further cooling. The cooling medium utilized in the cooling step for further cooling for condensing the nitrous oxide may be water at about 3-8 °C.
[0022] The objects of the invention are also accomplished by a gas compression system comprising one or more gas compression device(s) comprising a compression chamber arranged to receive a gas, a work chamber arranged to receive a pressurised drive gas, a piston arranged to be actuated by the pressurised drive gas in the work chamber and to compress the gas in the compression chamber, an indirect heat exchanger for cooling with expanded drive gas arranged to allow heat transfer from a compressed gas from the last, in the direction of flow of the gas, of the one or more compression device(s) to an expanded drive gas from at least one of the compression device(s), and a filling station arranged to receive a cooled gas, or a condensate thereof, from the indirect heat exchanger for cooling with expanded drive gas and to fill said gas or condensate on a gas cylinder.
[0023] A "compression device" as used herein may have any of the structural or functional features of a gas booster as disclosed in the background section above. The gas compression system may comprise more than one com pression device, such as two, three or more compression devices, typically connected in series as seen by the gas to be compressed. In the case of serial compression devices, the gas to be compressed is compressed sequentially by said compression devices, thereby increasing its pressure in several steps.
[0024] An "indirect heat exchanger" as used herein refers to heat exchanger allowing heat transfer, but not mass transfer, between two fluids. The indirect heat exchanger for cooling with expanded drive gas may be arranged to allow compressed gas that has been compressed in more than one compression device to be cooled by expanded drive gas from any of said compression devices.
[0025] The filling station may be arranged to receive a cooled gas from the indirect heat exchanger for cooling with expanded drive gas and to fill said cooled gas on a gas cylinder. Alternatively, the filling station may be arranged to receive a condensate of a cooled gas from the indirect heat exchanger for cooling with expanded drive gas and to fill said condensate on a gas cylinder. The "gas cylinder" has its abovementioned meaning.
[0026] In other words, the one or more compression device(s) may be arranged upstream, in the direction of flow of the gas, of the filling station. Thus, the system may be devoid of such compression device(s), arranged to compress a gas, or a condensate thereof, flowing from the indirect heat exchanger for cooling with expanded drive gas to the filling station. The phrase "such compression device(s)" as used herein refers to the compression device(s) initially mentioned in the above description of the present system, i.e. to gas compression device(s) comprising a compression chamber arranged to receive a gas, a work chamber arranged to receive a pressurised drive gas, a piston arranged to be actuated by the pressurised drive gas in the work chamber and to compress the gas in the compression chamber. That the present method "is devoid of such compression device(s), arranged to compress a gas, ora condensate thereof, flowing from the indirect heat exchanger for cooling with expanded drive gas to the filling station" thus means that the gas to be compressed, after having been initially compressed by the one or more compression device(s) and cooled by the indirect heat exchanger for cooling with expanded drive gas, is not further compressed by a device similar to said initial compression device(s) before said gas, or a condensate thereof, has flowed to the filling station.
[0027] By the present system, a hitherto unidentified cooling capacity of expanded drive gas from a compression device driven by a compressed drive gas is utilized todecrease the temperature of compressed gas resulting from a compression device driven by a compressed drive gas. The heat increase of a gas resulting from compression thereof may accordingly be efficiently counteracted, thereby facilitating filling of a gas cylinder with the compressed gas to a nominal filling pressure defined at a predetermined temperature or matching other downstream cooling requirements of the compressed gas.
[0028] The indirect heat exchangerfor cooling with expanded drive gas may comprise a double-walled pipe forming an inner and an outer fluid passage through the pipe. The double-walled pipe may be arranged to transport one of the compressed gas and the expanded drive gas through the innerfluid passage and the other through the outer fluid passage. Preferably, the double-walled pipe is arranged to transport the compressed gas through the inner fluid passage and the expanded drive gas through the outer fluid passage.
[0029] The system may further comprise an indirect heat exchanger for further cooling arranged to allow heat transferfrom a cooled gas from the indirect heat exchanger for cooling with expanded drive gas to a cooling medium, and the filling station may be arranged to receive a cooled gas, or a condensate thereof from the indirect heat exchanger for further cooling and to fill said gas or condensate on a gas cylinder. When an indirect heat exchanger for further cooling is present to fulfil any downstream cooling requirement of the compressed gas, the cooling capacity requirements on such an indirect heat exchanger for further cooling are advantageously eased by the indirect heat exchangerfor cooling with expanded drive gas of the present system.
[0030] The indirect heat exchanger for further cooling may comprise a pipe arranged to transport the compressed gas, the pipe being arranged in a vessel arranged to contain the cooling medium.
[0031] The objects of the invention are also accomplished by use of an expanded drive gas, from a gas compression device utilizing a pressurised drive gas for providing a compressed gas, in a subsequent handling of the compressed gas, as a cooling medium for cooling of the compressed gas prior to filling the compressed gas, or a condensate thereof, on a gas cylinder, the subsequent handling of the compressed gas prior to filling the compressed gas, or the condensate thereof, on the gas cylinder being devoid of further compression of the compressed gas by a gas compression device utilizing a pressurised drive gas for providing a compressed gas.
[0032] The gas compression device may have any of the structural or functional features of a gas booster as disclosed in the background section above. The drive gas may be air. By the present use, a hitherto unidentified cooling capacity of expanded drive gas from a compression device utilizing a compressed drive gas for providing a compressed gas is utilized to decrease the temperature of the compressed gas. The heat increase of a gas resulting from compression thereof may accordingly be efficiently counteracted, thereby facilitating filling of a gas cylinder with the compressed gas to a nominal filling pressure defined at a predetermined tern perature or matching other downstream cooling requirements of the compressed gas.
[0033] The subsequent handling of the compressed gas may comprise further cooling of the compressed gas. The use of the expanded drive gas for cooling of the compressed gas contributes to lowering of the demands on such further cooling of the compressed gas.
[0034] The further cooling of the compressed gas may comprise condensation of the compressed gas. As mentioned above, it is desirable to store or distribute certain gases in liquid form. The use of the expanded drive gas for cooling of the compressed gas may thus advantageously be utilized for condensation of the compressed gas prior to filling the condensate on a gas cylinder.
Brief description of the drawing [0035] Fig. 1 is schematic illustration of an exemplifying gas compression system according to the present invention.
Detailed description [0036] Fig. 1 shows a gas compression system 1. The gas compression system 1 is arranged to recover and compress a gas present in residual amounts in gas cylinders 2. The gas compression system 1 comprises, as its main components, an emptying rack 4, compression devices 6 and 8, an indirect heat exchanger 10 for cooling with expanded drive gas, an indirect heat exchanger 12 for further cooling, and a filling station 14.
[0037] At the emptying rack 4, supplying gas cylinders 2 com prising residual amounts of a gas to be compressed may be connected. A vacuum pump 16 removes contaminating gases from the gas compression system 1 before gas from the gas cylinders 2 enters the system via the emptying rack 4.
[0038] Each of the compression devices 6 and 8, which are pneumatically driven gas boosters, has a compression chamber 18 for the gas to be compressed, a work chamber 20 for a pressurised drive gas, typically pressurised air 22, and a gas piston 24 actuated by the pressurised drive air and compressing the gas in the compression chamber 18. In order to obtain a desirably high pressure increase of the gas to be compressed, pressurised air in the work chamber 20 exerts its pressure on a large area air piston 26 coupled by a connecting rod 28 to the small area gas piston 24 compressing the gas in the compression chamber 18. The compression and work chambers are provided with valves controlling the flows of drive air and gas to be compressed, respectively, and allowing reciprocating action of the coupled air and gas pistons. Cold expanded drive air leaves the work chamber 20 via a pipe 29.
[0039] Gas from the gas cylinders 2 flows via the emptying rack 4 to the compression chamber 18 of the compression device 6. Compressed gas leaves the compression chamber 18 via a pipe 30. The compressed gas in the pipe 30 and the cold expanded drive air in the pipe 29 are brought in indirect heat exchange contact in an indirect heat exchanger 32. Cooled compressed gas is passed to the compression chamber of the compression device 8 via a pipe 34.
[0040] The compressed gas in pipe 34 flows to the compression chamber of the compression device 8. Compressed gas leaves the compression chamber via a pipe 36. The compressed gas in the pipe 36 and cold expanded drive air in a pipe 38 are brought in indirect heat exchange contact in the indirect heat exchanger 10 for cooling with expanded drive gas. Cooled compressed gas is passed to the indirect heat exchanger 12 forfurther cooling via a pipe 40.
[0041] The indirect heat exchanger 10 for cooling with expanded drive gas comprises a double-walled pipe forming an inner and an outer fluid passage through the pipe. The double-walled pipe is arranged to transport the compressed gas from the pipe 36 through the inner fluid passage and the expanded drive gas from the pipe 38 through the outer fluid passage. The indirect heat ex- changer 32 is of a similar construction.
[0042] The indirect heat exchanger 12 for further cooling comprises a coiled pipe 42 arranged to transport the compressed gas from the pipe 40, the coiled pipe 42 being arranged in a vessel arranged to contain the cooling medium. The temperature of the cooling medium is controlled in a cooling circuit 44, schematically shown. During its passage through the indirect heat exchanger 12 for further cooling, the gas is condensed.
[0043] Condensed gas leaves the indirect heat exchanger 12 for further cooling and is passed to the filling station 14. At the filling station 14, receiving gas cylinders 46 may be connected. Avacuum pump 48 removes contaminating gases from the gas compression system 1 and from the gas cylinders 46 before condensed gas enters the gas cylinders via the filling station 14.
[0044] It is to be understood that the invention is not to be limited to the disclosed embodiment but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims.
Claims 1. A method of treating a gas, the method comprising one or more compression step(s) preceding, in the direction of flow of the gas, filling of the gas, or a condensate thereof, into a gas cylinder, in which compression step(s) the gas is passed to a compression chamber, a pressurised drive gas is passed to a work chamber, the pressurised drive gas in the work chamber actuates a piston which compresses the gas in the compression chamber, the compressed gas is discharged from the compression chamber, and the pressurised drive gas is discharged from the work chamber and expands, a cooling step for cooling with expanded drive gas, in which cooling step the discharged compressed gas from the last, in the direction of the flow of the gas, of the one or more compression step(s) is brought in indirect heat exchange contact with the expanded drive gas from at least one of said compression step(s), and heat is transferred from the compressed gas to the drive gas, thereby cooling the compressed gas, and a filling step in which the cooled compressed gas, or a condensate thereof, is filled into a receiving gas cylinder. 2. The method according to claim 1, further comprising a cooling step for further cooling, in which the compressed gas from the cooling step for cooling with expanded drive gas is brought in indirect heat exchange contact with a cooling medium, thereby further cooling the compressed gas before treatment thereof in the filling step. 3. The method according to claim 2, wherein in the cooling step for further cooling the compressed gas is condensed and wherein in the filling step the condensate is filled on the receiving gas cylinder. 4. The method according to any one of the preceding claims, wherein in the cooling step for cooling with expanded drive gas step the discharged compressed gas from each of the compression steps is brought in indirect heat exchange contact with the expanded drive gas from each respective compression step. 5. A method of recovering a gas, preferably nitrous oxide, in which the gas is provided from a supplying gas cylinder and is treated with the method of any one of the preceding claims. 6. The method according to claim 5, wherein in the one or more compression step(s) the pressure of the nitrous oxide is raised from about 0.1-20 bar(g) to about 50-75 bar(g). 7. The method according to claim 6 or 7, wherein in the cooling step for cooling with expanded drive gas the temperature of the nitrous oxide is lowered from about 50-60 °C to about 20-30 °C. 8. The method according to any one of claims 5 to 7, wherein in the cooling step for further cooling the nitrous oxide is condensed and wherein in the filling step the condensed nitrous oxide is filled on the receiving gas cylinder. 9. A gas compression system (1) comprising one or more gas compression device(s) (6, 8) comprising a compression chamber (18) arranged to receive a gas, a work chamber (20) arranged to receive a pressurised drive gas, a piston (24) arranged to be actuated by the pressurised drive gas in the work chamber and to compress the gas in the compression chamber, an indirect heat exchanger (10) for cooling with expanded drive gas arranged to allow heat transfer from a compressed gas from the last, in the direction of flow of the gas, of the one or more compression device(s) to an expanded drive gas from at least one of the compression device(s), and a filling station (14) arranged to receive a cooled gas, or a condensate thereof, from the indirect heat exchanger (10) for cooling with expanded drive gas and to fill said gas or condensate into a gas cylinder (46). 10. The system according to claim 9, wherein the indirect heat exchanger (10) for cooling with expanded drive gas comprises a double-walled pipe forming an inner and an outerfluid passage through the pipe, the dou- ble-walled pipe being arranged to transport one of the compressed gas and the expanded drive gas through the innerfluid passage and theother through the outer fluid passage. 11. The system according to claim 9 or 10, further comprising an indirect heat exchanger (12) for further cooling arranged to allow heattransferfrom a cooled gas from the indirect heat exchanger for cooling with expanded drive gas to a cooling medium, and wherein the filling station is arranged to receive a cooled gas, or a condensate thereof from the indirect heat exchanger for further cooling and to fill said gas or condensate on a gas cylinder. 12. The system according to claim 11, wherein in the indirect heat exchanger(12) forfurther cooling comprises a pipe (42) arranged to transport the compressed gas, the pipe being arranged in a vessel arranged to contain the cooling medium.
Patentansprüche 1. Verfahren zur Behandlung eines Gases, wobei das Verfahren Folgendes umfasst einen oder mehrere Kompressionsschritt(e), wobei diese(r), in der Strömungsrichtung des Gases, dem Einfüllen des Gases, odereines Kondensats desselben, in eine Gasflasche vorangeht/vorangehen und wobei in dem/den Kompressionsschritt(en) das Gas in eine Kompressionskammergeleitetwird, ein unter Druck stehendes Treibgas in eine Arbeitskammer geleitet wird, das unter Druck stehende Treibgas in der Arbeitskammer einen Kolben betätigt, welcher das Gas in der Kompressionskammer komprimiert, das komprimierte Gas aus der Kompressionskammer abgeleitet wird und das unter Druck stehende Treibgas aus der Arbeitskammer abgeleitet wird und eine Entspannung erfährt, einen Kühlschritt zum Kühlen mittels des entspannten Treibgases, wobei in dem Kühlschritt das abgeleitete komprimierte Gasausdem, in Strömungsrichtung des Gases, letzten der Kompressionsschritte, von denen einer oder mehrere erfolgen, in indirekten Wärmeaustauschkontakt mit dem entspannten Treibgas aus mindestens einem der Kompressionsschritte, von denen einer oder mehrere erfolgen, gebrachtwird und Wärme von dem komprimierten Gas derart auf das Treibgas übertragen wird, dass das komprimierte Gas gekühlt wird, und einen Abfüllschritt, in welchem das gekühlte komprimierte Gas, oder ein Kondensat desselben, in eine aufnehmende Gasflasche gefüllt wird. 2. Verfahren nach Anspruch 1, das ferner einen Kühlschritt zum weiteren Abkühlen umfasst, in welchem das komprimierte Gas aus dem Kühlschritt zur Küh lung mittels des entspannten Treibgases in indirekten Wärmeaustauschkontakt mit einem Kühlmedium gebracht wird, wodurch das komprimierte Gas weiter gekühlt wird, bevor es im Abfüllschritt behandelt wird. 3. Verfahren nach Anspruch 2, wobei in dem Kühlschritt zum weiteren Abkühlen das komprimierte Gas kondensiert wird und wobei in dem Abfüllschritt die aufnehmende Gasflasche mit dem Kondensat befüllt wird. 4. Verfahren nach einem beliebigen der vorhergehenden Ansprüche, wobei in dem Kühlschritt zum Kühlen mittels des entspannten Treibgases das komprimierte Gas, welches aus jedem der Kompressionsschritte abgeleitet wird, in indirekten Wärmeaustauschkontakt mit dem entspannten Treibgas, welches aus dem jeweiligen Kompressionsschritt stammt, gebracht wird. 5. Verfahren zur Rückgewinnung eines Gases, vorzugsweise von Distickstoffmonoxid, wobei das Gas aus einer Versorgungsgasflasche bereitgestellt und mittels des Verfahrens nach einem beliebigen der vorhergehenden Ansprüche behandelt wird. 6. Verfahren nach Anspruch 5, wobei in den Kompressionsschritten, von denen einer oder mehrere erfolgen, der Druck des Distickstoffmonoxids von ungefähr 0,1 bis 20 bar(g) auf ungefähr 50 bis 75 bar(g) erhöht wird. 7. Verfahren nach Anspruch 6 oder 7, wobei in dem Kühlschritt zum Kühlen mittels des entspannten Treibgases die Temperatur des Distickstoffmonoxids von ungefähr 50 bis 60 °C auf ungefähr 20 bis 30 °C gesenkt wird. 8. Verfahren nach einem beliebigen der Ansprüche 5 bis 7, wobei in dem Kühlschritt zum weiteren Abkühlen das Distickstoffmonoxid kondensiert wird und wobei in dem Abfüllschritt die aufnehmende Gasflasche mit dem kondensierten Distickstoffmonoxid befüllt wird. 9. Gaskompressionssystem (1), das Folgendes umfasst ein oder mehrere Gaskompressionsvorrichtungen (6, 8), die eine Kompressionskammer (18) umfassen, welche derart anordnet ist, dass sie ein Gas aufnimmt, sowie eine Arbeitskammer (20), welche derart angeordnet ist, dass sie ein unter Druck stehendes Treibgas aufnimmt, einen Kolben (24), welcher derart angeordnet ist, dass er von dem unter Druck stehenden Gas in der Arbeitskammer betätigt wird und dass er das Gas in der Kompressionskammer komprimiert, einen indirekten Wärmetauscher (10) zum Kühlen mittels des entspannten Treibgases, welcher derart angeordnet ist, dass er eine Wärmeübertragung von einem komprimierten Gas, welches aus der, in Strömungsrichtung des Gases, letzten der Kompressionsvorrichtungen stammt, von denen eine oder mehrere vorliegen, auf ein Treibgas ermöglicht, welches aus mindestens einer der Kompressionsvorrichtungen stammt, von den eine oder mehrere vorliegen, und eine Abfüllstation (14), die derart angeordnet ist, dass sie ein gekühltes Gas, oder ein Kondensat desselben, welches aus dem indirekten Wärmetauscher (10) zum Kühlen mittels des entspannten Treibgases stammt, aufnimmt und das Gas oder Kondensat in eine Gasflasche (46) abfüllt. 10. System nach Anspruch 9, wobei der indirekte Wärmetauscher (10) zum Kühlen mittels des entspannten Treibgases einedoppelwandige Rohrleitung umfasst, die einen inneren und einen äußere Fluiddurchlass durch die Rohrleitung bildet, wobei die doppelwandige Rohrleitung derart angeordnet ist, dass sie eines von dem komprimierten Gas und dem entspannten Treibgas durch den inneren Fluiddurchlass und das andere durch den äußeren Fluiddurchlass befördert. 11. System nach Anspruch 9 oder 10, welches weiterhin einen indirekten Wärmetauscher (12) zum weiteren Abkühlen umfasst, welcher derart angeordnet ist, dass er eine Wärmeübertragung von einem gekühlten Gas, das aus dem indirekten Wärmetauscher zum Kühlen mittels des entspannten Treibgases stammt, auf ein Kühlmedium ermöglicht, wobei weiterhin die Abfüllstation derart angeordnet ist, dass sie ein gekühltes Gas, oder ein Kondensat desselben, welches aus dem indirekten Wärmetauscher zum weiteren Abkühlen stammt, aufnimmt und eine Gasflasche mit dem Gas oder Kondensat befüllt. 12. System nach Anspruch 11, wobei der indirekte Wärmetauscher (12) zum weiteren Abkühlen eine Rohrleitung (42) umfasst, die derart angeordnet ist, dass sie das komprimierte Gas befördert, wobei die Rohrleitung in einem Behälter angeordnet ist, welcher derart angeordnet ist, dass er das Kühlmedium enthält.
Revendications 1. Procédé de traitement d’un gaz, le procédé comprenant une ou plusieurs étapes de compression précédant, dans le sens du flux du gaz, le chargement du gaz, ou d’un condensât de celui-ci, dans un cylindre de gaz, dans lesquelles étapes de compression, le gaz passe dans une chambre de compression, un gaz d’entraînement pressurisé passe dans une chambre de travail, le gaz d’entraînement pressurisé dans la chambre de travail déclenche un piston qui comprime le gaz dans la chambre de compression, le gaz comprimé est évacué de la chambre de compression, et le gaz d’entraînement pressurisé est évacué de la chambre de travail et se dilate, une étape de refroidissement pour refroidir avec le gaz d’entraînement dilaté, dans laquelle étape de refroidissement le gaz comprimé évacué de la dernière, dans le sens du flux du gaz, d’une ou de plusieurs étapes de compression est mis en contact par échange de chaleur indirect avec le gaz d’entraînement dilaté provenant d’au moins une desdites étapes de compression, et la chaleur est transférée du gaz comprimé vers le gaz d’entraînement, refroidissant ainsi le gaz comprimé, et une étape de chargement dans laquelle le gaz comprimé refroidi, ou un condensât de celui-ci, est chargé dans un cylindre de réception de gaz. 2. Procédé selon la revendication 1, comprenant en outre une étape de refroidissement pour un refroidissement supplémentaire, dans lequel le gaz comprimé provenant de l’étape de refroidissement pour le refroidissement avec le gaz d’entraînement dilaté est mis en contact par échange de chaleur indirect avec un milieu de refroidissement, refroidissant ainsi davantage le gaz comprimé avant son traitement dans l’étape de chargement. 3. Procédé selon la revendication 2, dans lequel dans l’étape de refroidissement pour un refroidissement supplémentaire, le gaz comprimé est condensé et dans lequel dans l’étape de chargement, le condensât est chargé dans le cylindre de réception de gaz. 4. Procédé selon l’une quelconque des revendications précédentes, dans lequel dans l’étape de refroidissement pour le refroidissement avec un gaz d’entraînement dilaté, le gaz comprimé évacué provenant de chacune des étapes de compression est mis en contact par échange de chaleur indirect avec le gaz d’entraînement dilaté provenant de chaque étape de compression respective. 5. Procédé de récupération d’un gaz, de préférence de l’oxyde nitreux, dans lequel le gaz provient d’un cylindre d’alimentation de gaz et est traité avec le procédé selon l’une quelconque des revendications précédentes. 6. Procédé selon la revendication 5, dans lequel dans une ou plusieurs des étapes de compression, la pression de l’oxyde nitreux augmente d’environ 0,1 à 20 bar(g) à environ 50 à 75 bar(g). 7. Procédé selon la revendication 6 ou 7, dans lequel dans l’étape de refroidissement pour le refroidissement avec un gaz d’entraînement dilaté, la température de l’oxyde nitreux est inférieure d’environ 50 à 60 °C à environ 20 à 30 °C. 8. Procédé selon l’une quelconque des revendications 5 à 7, dans lequel dans l’étape de refroidissement pour le refroidissement supplémentaire, l’oxyde nitreux est condensé et dans lequel dans l’étape de chargement, l’oxyde nitreux condensé est chargé dans le cylindre de réception de gaz. 9. Système de compression de gaz (1) comprenant un ou plusieurs dispositifs de compression de gaz (6,8) comprenant une chambre de compression (18) agencée pour recevoir un gaz, une chambre de travail (20) agencée pour recevoir un gaz d’entraînement pressurisé, un piston (24) agencé pour être déclenché par le gaz d’entraînement pressurisé dans la chambre de travail et pour comprimer le gaz dans la chambre de compression, un échangeur de chaleur indirect (10) pour refroidir avec un gaz d’entraînement dilaté agencé pour permettre un transfert de chaleur d’un gaz comprimé vers le dernier, dans le sens du flux de gaz, du ou des dispositifs de compression vers un gaz d’entraînement dilaté provenant d’au moins un des dispositifs de compression, et une station de chargement (14) agencée pour recevoir un gaz refroidi, ou un condensé de celui-ci, provenant de l’échangeur de chaleur indirect (10) pour un refroidissement avec un gaz d’entraînement dilaté et pour charger ledit gaz ou condensât dans un cylindre de gaz (46). 10. Système selon la revendication 9, dans lequel l’échangeur de chaleur indirect (10) pour le refroidissement avec un gaz d’entraînement dilaté comprend une conduite à double-paroi formant un passage de fluide interne et externe à travers la conduite, la conduite à double paroi étant agencée pour transporter un des gaz comprimés et gaz d’entraînement dilaté par le biais du passage de fluide interne et l’autre par le biais du passage de fluide externe. 11. Système selon la revendication 9 ou 10, comprenant en outre un échangeur de chaleur indirect (12) pour un refroidissement supplémentaire agencé pour permettre un transfert de chaleur d’un gaz refroidi provenant de l’échangeur de chaleur indirect pour le refroidissement avec un gaz d’entraînement dilaté vers un milieu de refroidissement, et dans lequel la station de remplissage est agencée pour recevoir un gaz refroidi, ou un condensât de celui-ci, provenant de l’échangeur de chaleur indirect pour un refroidissement supplémentaire et pour charger ledit gaz ou condensât dans un cylindre de gaz. 12. Système selon la revendication 11, dans lequel l’échangeur de chaleur indirect (12) pour un refroidissement supplémentaire comprend une conduite (42) agencée pour transporter le gaz comprimé, la conduite étant agencée dans un récipient agencé pour contenir le milieu de refroidissement.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description • DE 102006039616 B3[0004]

Claims (6)

GÁZ KO.MPSttíALÁSA tS SiÍTÓE igéf^pmtÿkGAS COPPER SIGNAL SENSOR 1. Eljárás gáz kezdésére, amely eljárás tartalmaz a gáz vagy annak koodenzátmna gázpalackba lökését a gaz ámmlásjránya szerint megelőző legalább egy komprimáiási lépest amely komprimáiási lépésiekében a gázt kornprimáiőka;nráha juttatjuk. túlnyomásos hajtőgázt mÄakai5^ba:Ji»«dti:S-Ä^i!8^lso8 haitőgfezsl a nmükakamrábárt dugattyút miködtte tünk, amivel &amp; komprimálókarníábm gázt komprimáljuk, a komprimált gá&amp;t. akóínpm^lókámfÉbdl taüriij ük. továbbá a; túlnyomásos .íss^tégfe s mm&amp;akamráböl lótóljbk és expandál jek, egy az expandált hajtögáml hötőMiési lépést, amely hűtési lépésben a legalább egy kontprimálásl lépés kézül: á g|a aPipbásííi|ííyS; szörbáii utolsóból leürítek kosnprimák gázt a konipritnálásr lépesfskj legalább egyikéből szárinaz» ékpsifdált k&amp;zveteft hőcserélő érinikszésbehöztók és a komprimált gáz* bél skájlbglbfeáíkteprlá Iröáiaciásí hajtunk végre, sikáltál ailomprimáit gázt ítéljük,: továbbá-íbltési lépést, áiuelybsn a hűtött; komprimált gázt vagy aábák tósdéíriátömáf felvevő gázpalackba töltv jükA method for starting a gas, the method comprising: providing the gas or its encoder core into a gas cylinder at least one compression step preceding the gas stroke of the gas, the compression step of which is the gas of the gas; pressurized propellant gas to: »»: ti ti ti ti 8 8 8 8 ő ő ő ő ő ő ő ő ő ő ő ő nm nm nm nm nm ük ük ük ük ük ük ük ük ük ük ük ük ük ük ük Compressing gauze gas is compressed, compressed gas &amp; akóínpm ^ lókámfÉbdl taüriij ük. and a; pressurized brick-and-millimeter and expandable, an expanded dumbbell retraction step, which, in the cooling step, at least one of the contamination steps is obtained: α g α aPipbicyl; from the last of the sorghum, the cosprim gas is drained from the at least one of the cotyledon stepped heat exchangers, and the compressed gas * intestinal skeletal grafting is carried out; filled with compressed gas or recharged gas bottles 2. Az 1. igényfööt szedőd ubárás. amely további hűtésre szolgáló hitest lépési is tárialmas., melyben az éxpán· dák hajtógázsat bélé feiíá&amp;l lépésből származó komprimált gáz: hűtőközeggel közvetett höesetéli étifíkezésbe hozunk., miáltal ä komprimált gázt annak « tölíM Résben történd kezelését megelőzőért tovább tlüfjüfc 3. A 2, igénypont szedne! eljárás, ahol további iniiésre szolgáló hűtési lépésben a komprimál! gáz; kondenzáljuk, továbbá ahol a 0M®. iépesbeb: a konáénzátumot a felvevő gáxpátekba Äjik.2. Strain 1 is picking up. which also provides a refrigeration step for refrigeration, wherein the compressed gas from the nozzle shroud liner &amp; step 1: coolant with indirect coolant heating, so as to prevent compressed gas prior to treating it with fissure in the sputter. tlüfjüfc 3. A 2, take a claim! a method of compressing in a cooling step for further insertion. gas; condensing, and wherein 0M is. ipesbebeb: the cacao cake into the recording gateways Äjik. 4. Az előző igénypontok bármelyike szerinti eljárás, ahol az expaocbih hajfögázzsl hűtő hűtési lépésben az ösx-sans komprimáiási lépésből származó leürített kompárpák gássf a neki megfelelő komprimáiási lépésből származó expapdák br^O^zísílíbzyeteit hőcserélő érlnfkezésbe bozzrfk.The method according to any one of the preceding claims, wherein in the expaocbih chromosome cooling cooling step, the drained snipes from the ωx-sans compression step are exposed to the expulsions from the corresponding compression step to the heat exchanger. 5. Eljárás gáz. előnyösen dinikogén-o.xiá visszanyerésére, amelybe·} a gézi lápiák'· gázpalackból biztosítjuk és az előző igénypontok bármelyike szedni! eljárással kezeljük. ö. Az 5. igénypon! szerinti eljárás, ahol a legalább egy Ismíprimálási lépésben a dinhrogén-oxid nyomását mint-egy 0,1-20 bárig) értékről mintegy 50··?:! bar(g) énekre növeljük. ?. A 6. vagy a 7. igénypont szerinti eljárás., ahol az expandált hajtógázzal ihöíö hűtési lépésben a diniirogén-ox>d bömérsékiefét mintegy 50-őö'C-röl mintegy 20-30*€-m csökkentjók.5. Procedure for gas. preferably for recovering dinogeno-o.xi, in which the gas gels are supplied from a gas bottle and any of the preceding claims! by a method. He. The 5th demand! wherein the pressure in the at least one Recognition step is from about 0.1 to about 20 bar) of about 50 ·? bar (g) is added to the song. . The method according to claim 6 or 7, wherein in the cooling step that is desired by the expanded propellant, the dinyrogen oxide temperature reduction is reduced from about 50 ° C to about 20-30 *. 8, Az >z. igénypontok bármelyike szerimi eljárás, ahol a további bitesre szolgáló hűtési lépésben a dimtrogén-öxidet kopdenzáljök, továbbá ahol a töltési l^ésbtm a kondenzált őÍKirrogén-oxidtH a telvevö gázpalackba; töltjük. 9, öázkoníprimstö összeállítás fi), atnely tarinimsx: S), itwlyaek gáss fogadon «ireridezSti kôK^rîB#Skànïî'àlSi PS), túlnyomásos kpógázi: fogadód diretlleaeu rounfcakamràja (20), egy a tpäsyosaasos feiOS^gai! síitái a nium* kakamrabeíl működtetésre es a kompdomibkamtshek g;« koxnpnmáiására alkalmasan eltexidezeit dugattyúja (24.) vas, közvetett hőcséPlöl pöl expandált hajióigázzal törtéin hűtéshez,. amely s legalább egy kunaprtoiaió esx-kök: közül i gáz áfomlásííásys saeíitiP atöisöbdl származó kompániák gázból à keaïadâkâlbeszkiœlok) legalább egyikéből szárrnaző ekprÂtfeiÿtég&amp;ba irányuló hőátadást lehetővé tevőn vamslrsndszve, valamid 'ÂMIomM. p% tnbeiy iáz expandált bapögákMí bíiSS MéseréföbŐl (10) hűtött gázt: vagy annak km-denzánmxát fogadón, továbbá. a gázt: vagy kbnttenzáhtixiöt gázpalackba *46) tökön: varr elrendezve, 10. A 9. igénvpötsi xxerimi összeállítás, abni az expandált hajiógázzaí Mtö közvetett hőcserélőnek (Ml) diiplafo-Iá csöve » rneéf^m &amp;9&amp;Ö és egy kató lüuíifcmpratöt képes a esőben, a dupláidét eső a komprimált gáz és az expandál: hajtésgáz egyikét a belső fluidumjáratbao, síig a tná.stkaí a külső (Mduntjácmban szállítón van kiképezve,8, Az> z. The method according to any one of claims 1 to 3, wherein the further bitwise cooling step comprises dimming the dimtrogen oxide, and wherein the charge is the condensed oxyrogen oxideH in the filling gas bottle; filled. 9, athletic compilation fi), atnely tarinimsx: S), itwlyaek gáss' kık r B r # Sk à à à S óg S PS)))),,,,,,,, et et et et et et et et et et et et et et et et et et et et 20 20 20 20 skis for operation of nium * kakamrabeil and compostibkamtshek g; «coxnpnmylation of eltexidezeit piston (24.) for cooling with iron, indirect heat exchanger with expanded gas gas. which at least one of the at least one of the refractory esx rays i is a gas desulphurisation company from at least one of the gas generating boilers, which allows heat transfer to or from the gas, or something. p% tnbeiyase expanded clodsMi bísiSS Mate (10) refrigerated gas: either at its denshanmxa receiver, and. gas: or kbnttenzáhtixiö into a gas cylinder * 46) on the pump: stitched, 10. the xxerimi assembly of verb 9, abs the expanded crankcase Mt indirect heat exchanger (Ml) diiplafo-Ia pipe »rneéfm m &amp; 9 &amp; is able to rain in the rain, the doubling of rain is one of the compressed gas and the expanding: the gaseous gas into the inner fluid path, the ski is the tná. 11. AJ, vagy a. Í#»:|f|5^fsat:-,s2!örisi tSsszeáHitás, amelynek további hűmhez egy az expandált hajtögazzal hűtő k&amp;zvt hâfâ^êïSkSÎ-stâmamà· hűtők gázból hűtőközegbe irányuló hőátadást lehetővé tetőn elrendezett közvetett feteer^li§ge'(í2)· vä»&amp; ltö®ábfeé ahol a ióltoálloxikss a további hűtésre szolgáló közvetett hőcserélőből hűtött gázt' Vágy tóinak koiHleKzátKmát fixgadótí és a gázt vagy kondextz&amp;wnpt gázpalackba tökös van elrendezve. |2. A .0,; Igénypont szerinti összeállítás, ahol a további hűtésre szolgáló közvetett hőcserélő ( 12) egy a komprimált: gázt szállítón ehétiéíszstt csövei (421 tartalmaz, amely eső egy a hűtőközegei: tartalmazón elrendezed: edényben van elrendezve.11. AJ or a. # #:: | F | 5 ^ fsat: -, s2! Isi isi isi isi isi itás itás amelynek amelynek amelynek amelynek amelynek amelynek amelynek amelynek amelynek amelynek amelynek isi isi isi isi isi isi amelynek isi isi isi isi isi isi amelynek amelynek isi isi isi isi további isi isi amelynek amelynek amelynek amelynek további (í2) · yyyy &amp; wherein the gas is condensed from the indirect heat exchanger for further cooling by means of a fixed die and gas or condensate in the gas cylinder. | 2nd A0 ,; The assembly according to claim 1, wherein the indirect heat exchanger (12) for further cooling comprises a tube (421 of rain) of a compressed gas carrier arranged in a container containing rain.
HUE12198468A 2012-12-20 2012-12-20 Compression and cooling of a gas HUE025791T2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12198468.6A EP2746641B1 (en) 2012-12-20 2012-12-20 Compression and cooling of a gas

Publications (1)

Publication Number Publication Date
HUE025791T2 true HUE025791T2 (en) 2016-05-30

Family

ID=47561172

Family Applications (1)

Application Number Title Priority Date Filing Date
HUE12198468A HUE025791T2 (en) 2012-12-20 2012-12-20 Compression and cooling of a gas

Country Status (4)

Country Link
EP (1) EP2746641B1 (en)
ES (1) ES2550332T3 (en)
HU (1) HUE025791T2 (en)
PL (1) PL2746641T3 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2707349C1 (en) * 2019-01-18 2019-11-26 Общество с ограниченной ответственностью "АПА-КАНДТ СИБИРЬ" (ООО "АПА-КАНДТ СИБИРЬ") Recuperative method of filling high-pressure cylinders with methane and device for its implementation
EP3760764B1 (en) * 2019-07-01 2024-05-15 Prüf- und Forschungsinstitut Pirmasens e.V. Method and device for hydropneumatic compression of gases for power to gas applications
CN110848565B (en) * 2019-10-23 2021-07-20 西安航天动力研究所 Xenon filling system and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006039616B3 (en) * 2006-08-24 2008-04-03 Eberhard Otten Method and device for storing fuel gas, in particular natural gas
FR2928716B1 (en) * 2008-03-11 2012-12-28 Air Liquide DEVICE AND METHOD FOR FILLING A PRESSURIZED GAS IN A RESERVOIR
DE102011104546B4 (en) * 2011-06-18 2013-05-29 Magna Steyr Fahrzeugtechnik Ag & Co. Kg Pump for conveying a cryogenic fluid

Also Published As

Publication number Publication date
EP2746641A1 (en) 2014-06-25
ES2550332T3 (en) 2015-11-06
EP2746641B1 (en) 2015-08-05
PL2746641T3 (en) 2015-12-31

Similar Documents

Publication Publication Date Title
AU674813B2 (en) Process and apparatus for producing liquefied natural gas
KR100910278B1 (en) Process and apparatus for the liquefaction of carbon dioxide
AU2009276042B2 (en) Method and system for extracting carbon dioxide by anti-sublimation at raised pressure
US5613373A (en) Process and apparatus for cooling a fluid especially for liquifying natural gas
JP3919816B2 (en) Natural gas processing method
US20030158458A1 (en) System and method for recovery of C2+ hydrocarbons contained in liquefied natural gas
RU99103335A (en) INCREASING EFFICIENCY OF CASCADE OPEN CYCLE COOLING METHOD
EP3575716B1 (en) Modularized lng separation device and flash gas heat exchanger
JP2010537151A5 (en)
CN207922696U (en) Device for cooling down hydrocarbon raw material stream
CN107917577A (en) The refrigerant cooling means and system of more pressure mixing
KR20140005228A (en) Compression of a carbon dioxide containing fluid
HUE025791T2 (en) Compression and cooling of a gas
USRE23799E (en) Method of pumping liquid oxygen
NO141131B (en) PROCEDURE FOR LIQUIDING CHLORINE
WO2012131277A2 (en) Method for producing a gas from pressurised air by means of cryogenic distillation
US10209004B2 (en) Method for obtaining an air product in an air separation plant and air separation plant
JP7369163B2 (en) liquefaction system
EP0646756B1 (en) A method for preparing pure, gaseous carbon dioxide and an apparatus to be used therewith
CN103109145B (en) For compressing the method and apparatus with cooling-air
US8034160B2 (en) Non-cryogenic nitrogen generators and methods of use
US8920538B2 (en) Compression of media
US3057167A (en) Process and apparatus for separating helium from helium-air mixtures
JP6800204B2 (en) The process for expanding and storing the flow of liquefied natural gas from a natural gas liquefaction plant, and related plants
DE1445229A1 (en) Process for removing solvents from the polyethylene and the low-pressure cycle gas formed in the high-pressure polymerization of ethylene in the counterpart of solvents