HRP990365A2 - Method of producing thiazofurin and other c-nucleosides - Google Patents

Method of producing thiazofurin and other c-nucleosides Download PDF

Info

Publication number
HRP990365A2
HRP990365A2 HRP990365A HRP990365A2 HR P990365 A2 HRP990365 A2 HR P990365A2 HR P990365 A HRP990365 A HR P990365A HR P990365 A2 HRP990365 A2 HR P990365A2
Authority
HR
Croatia
Prior art keywords
compound
structural formula
image
reaction
group
Prior art date
Application number
Other languages
Croatian (hr)
Inventor
Kandasamy Ramasamy
Rajanikanth Bandaru
Devron Averett
Original Assignee
Icn Pharmaceuticals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Icn Pharmaceuticals filed Critical Icn Pharmaceuticals
Priority to HRP990365 priority Critical patent/HRP990365A2/en
Publication of HRP990365A2 publication Critical patent/HRP990365A2/en

Links

Landscapes

  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

Područje izuma Field of invention

Izum je iz područja sintetske organske kemije. The invention is from the field of synthetic organic chemistry.

Stanje tehnike State of the art

C-nukleozidi su zanimljivi spojevi koji su potencijalno aktivni kao farmaceutski agensi. Jedan od tih spojeva, tiazofurin, [6,2-(β-D-ribofuranozil)tiazol-4-karboksamid), posjeduje značajnu aktivnost u odnosu na čovječji limfoid. F. Earle i R.I. Glazer, Cancer Res., 1983, 43, 133), stanične linije tumora pluća (D.N. Carnex, G.S. Abluwalia, H.N. Jayaram, D.A. Cooney i D.G. Johns, J. Clin. Invest., 1985, 75, 175) miš-implantirani karcinom čovječjeg jajnika (J.P. Micha, P.R. Kucera, C.N. Preve, M.A. Rettenmaier, J.A. Stratton, P.J. DiSaia, Gynecol. Oncol. 1985, 21, 351). Tiazofurin je također pokazao učinkovitost u liječenju akutne mikloidne leukemije (G.T. Tricot, H.N. Jasyaram, C.R. Nichols, K. Pennington, E. Lapis, G. Weber i R. Hoffman, Cancer Res. 1997, 47 4988). Nadalje, noviji nalazi povećali su zanimanje prema tiazofurinu kao mogućem liječenju bolesnika s kroničnom mieloidnom leukemijom (CML) u blastičnoj krizi (G. Weber, US patent 5,405,837; 1995). U stanicama tiazofurin se prevodi u njegov aktivni metabolit, tiazol-4-karboksamid adenin dinukleotid (TAD) koji inhibira IMP dehidrogenazu, te kao rezultat crpi zalihe guanozinskog nukleotida. (E. Olah, Z. Natusmeda, T. Ikegami, Z. Kote, M. Horanyi, I. Szelenye, E. Paulik, T. Kremmer, S. R. Hollan, J. Sugar i G. Weber, Proc. Natl. Acad. Sci. USA, 1988, 85, 6533). C-nucleosides are interesting compounds that are potentially active as pharmaceutical agents. One of these compounds, tiazofurin, [6,2-(β-D-ribofuranosyl)thiazole-4-carboxamide), possesses significant activity against human lymphoid. F. Earle and R.I. Glazer, Cancer Res., 1983, 43, 133), lung tumor cell lines (D.N. Carnex, G.S. Abluwalia, H.N. Jayaram, D.A. Cooney and D.G. Johns, J. Clin. Invest., 1985, 75, 175) mouse-implanted carcinoma. of the human ovary (J.P. Micha, P.R. Kucera, C.N. Preve, M.A. Rettenmaier, J.A. Stratton, P.J. DiSaia, Gynecol. Oncol. 1985, 21, 351). Tiazofurin has also shown efficacy in the treatment of acute mycloid leukemia (G.T. Tricot, H.N. Jasyaram, C.R. Nichols, K. Pennington, E. Lapis, G. Weber, and R. Hoffman, Cancer Res. 1997, 47 4988). Furthermore, recent findings have increased interest in tiazofurin as a possible treatment for patients with chronic myeloid leukemia (CML) in blast crisis (G. Weber, US Patent 5,405,837; 1995). In cells, tiazofurin is translated into its active metabolite, thiazole-4-carboxamide adenine dinucleotide (TAD), which inhibits IMP dehydrogenase, and as a result depletes guanosine nucleotide reserves. (E. Olah, Z. Natusmeda, T. Ikegami, Z. Kote, M. Horanyi, I. Szelenye, E. Paulik, T. Kremmer, S. R. Hollan, J. Sugar and G. Weber, Proc. Natl. Acad. Sci. USA, 1988, 85, 6533).

Premda je tiazofurin poznat preko 15 godina, te je trenutačno u fazi II/III ispitivanja u ljudi, nema pogodne sinteze za proizvodnju na veliko. Tiazofurin su prvi sintetizirali neovisno M. Fuertes i suradnici (J. Org. Chem., 1976, 41, 4076) i Srivastava sa suradnicima (J. Med. Chem., 1977, 20, 256) s niskim prinosom. U oba postupka autori su dobili nusprodukte (tj. spoj 12) i koristili su kromatografiju na koloni u svakom stupnju za pročišćavanje produkta. Glavni nedostatak ovih postupaka je nastajanje furanskog derivata kao i uporaba vrlo otrovnog plina sumporovodika. Although tiazofurin has been known for over 15 years, and is currently in phase II/III trials in humans, there is no suitable synthesis for large-scale production. Thiazofurin was first synthesized independently by M. Fuertes et al. (J. Org. Chem., 1976, 41, 4076) and Srivastava et al. (J. Med. Chem., 1977, 20, 256) in low yield. In both procedures, the authors obtained by-products (ie, compound 12) and used column chromatography in each step to purify the product. The main disadvantage of these procedures is the formation of a furan derivative as well as the use of highly toxic hydrogen sulfide gas.

W.J. Hannon sa suradnicima (J. Org. Chem., 1985, 50, 1741) razvio je nešto drukčiji put za tiazofurin s prinosom 19%. Postupak Hannon-a također ima slab prinos, koristi plin H2S i kromatografsko pročišćavanje. Nakon toga, P. Vogel sa suradnicima (Helv. Chem. Acta., 1989, 72, 1825) sintetizirao je tiazofurin u devet stupnjeva s prinosom 25%. Kasnije, D.C. Humber sa suradnicima (J. Chem. Soc. Perkin Trans. 1, 1990, 293) izradio je sintezu tiazofurina polazeći od benzil (2,3,5-tri-O-benzoil-β-D-ribofuranozil) penicilinata. W. J. Hannon and co-workers (J. Org. Chem., 1985, 50, 1741) developed a slightly different route for tiazofurin with a yield of 19%. The Hannon process also has a low yield, using H2S gas and chromatographic purification. Subsequently, P. Vogel and co-workers (Helv. Chem. Acta., 1989, 72, 1825) synthesized tiazofurin in nine steps with a yield of 25%. Later, D.C. Humber and co-workers (J. Chem. Soc. Perkin Trans. 1, 1990, 293) synthesized tiazofurin starting from benzyl (2,3,5-tri-O-benzoyl-β-D-ribofuranosyl) penicillinate.

Jedini poznati postupak koji je uopće pogodan za dobivanje je onaj Parsonsa i suradnika (US 4,451,684). Nažalost, Parsonsov postupak koristi živin cijanid i sumporovodik, a s oba je poteškoća sigurnost i problemi s okolišem. Postupak Parsons-a također daje smjesu produkata. The only known process that is at all suitable for obtaining is that of Parsons et al. (US 4,451,684). Unfortunately, the Parsons process uses mercuric cyanide and hydrogen sulfide, both of which have safety and environmental issues. The Parsons process also gives a mixture of products.

Poteškoće koje su gore navedene i odnose se na proizvodnju na veliko tiazofurina, vezane su i na proizvodnju na veliko ostalih C-nukleozida. Pri proizvodnji tiokarboksamida, primjerice, većina poznatih postupaka koristi plinoviti sumporovodik kao reagens za prevođenje cijanidne skupine u odgovarajuću tiokarboksamidnu skupinu. Ti postupci povezani su s inherentnim problemima vezanim za okoliš. Općenito, pri dobivanju C-nukleozida, većina ili sve poznate sinteze daju smjesu produkata tijekom stupnja zatvaranja prstena. Prema tome, postoji stalna potreba za novim postupkom proizvodnje tiazofurina i ostalih C-nukleozioda na veliko. The difficulties mentioned above and related to the mass production of tiazofurin are also related to the mass production of other C-nucleosides. In the production of thiocarboxamides, for example, most known processes use hydrogen sulfide gas as a reagent to convert the cyanide group into the corresponding thiocarboxamide group. These procedures are associated with inherent environmental problems. In general, when preparing C-nucleosides, most or all known syntheses give a mixture of products during the ring-closing step. Therefore, there is a constant need for a new process for the bulk production of tiazofurin and other C-nucleosides.

Sažetak izuma Summary of the invention

Ovaj izum odnosi se na novi postupak sinteze C-nukleozida, u kojem je C1 položaj ugljikohidrata derivatiziran u jednom stupnju da se dobije heterociklički spoj, te je zatim heterociklički spoj aromatiziran u sljedećem stupnju. This invention relates to a new process for the synthesis of C-nucleosides, in which the C1 position of the carbohydrate is derivatized in one step to give a heterocyclic compound, and then the heterocyclic compound is aromatized in the next step.

U jednoj skupini poželjnih realizacija cijanidni ugljikohidrat prevodi se u tiokarboksamid, te se zatim kondenzira da se dobije azolni prsten. U drugoj skupini poželjnih realizacija cijanidni ugljikohidrat kondenzira se s aminokisleinom da se dobije azolni prsten. U trećoj skupini poželjnih realizacija halogenidni ugljikohidrat kondenzira se s preoblikovanim heterocikličkim spojem da se dobije azolni prsten. In one group of preferred embodiments, the cyanide carbohydrate is converted to a thiocarboxamide, and then condensed to form an azole ring. In another group of preferred embodiments, the cyanide carbohydrate is condensed with an amino acid to form an azole ring. In a third group of preferred embodiments, the halide carbohydrate is condensed with the reformed heterocyclic compound to form an azole ring.

Brojne su prednosti ovog postupka. Jedna prednost je u tome što postupak uklanja potrebu za plinovitim sumporovodikom, koji je opasan za okoliš. Sljedeća prednost je u tome što je prinos značajno povećan u odnosu na prethodne postupke. Treća prednost je u tome što ovaj postupak uklanja potrebu za postupcima kromatografskog pročišćavanja, čime se smanjuje cijena proizvodnje. There are numerous advantages of this procedure. One advantage is that the process eliminates the need for hydrogen sulfide gas, which is hazardous to the environment. The next advantage is that the yield is significantly increased compared to previous procedures. A third advantage is that this process eliminates the need for chromatographic purification procedures, thereby reducing the cost of production.

Ovi i različiti drugi ciljevi, svojstva, aspekti i prednosti ovog izuma bit će uočljiviji nakon iscrpnog opisa poželjnih realizacija izuma, zajedno s priloženim slikama gdje identični brojevi označuju identične komponente. These and various other objects, features, aspects and advantages of the present invention will become more apparent after the detailed description of the preferred embodiments of the invention, taken together with the accompanying drawings where like numbers indicate like components.

Kratak opis crteža Brief description of the drawing

Slika 1 je niz reakcijskih shema koje prikazuju različite realizacije ovog izuma. Figure 1 is a series of reaction schemes illustrating various embodiments of the present invention.

Slika 2 je sljedeći niz reakcijskih shema koje prikazuju različite realizacije ovog izuma. Figure 2 is the following series of reaction schemes illustrating various embodiments of the present invention.

Slika 3 je sljedeći niz reakcijskih shema koje prikazuju različite realizacije ovog izuma. Figure 3 is the following series of reaction schemes illustrating various embodiments of the present invention.

Opis izuma s primjerima realizacije Description of the invention with examples of implementation

Postoje tri poželjne klase postupaka za provedbu ovog izuma, a svaka je ilustrirana glede dobivanja tiazofurina na slikama 1, 2 i 3. There are three preferred classes of processes for carrying out the present invention, each illustrated with respect to the preparation of tiazofurin in Figures 1, 2 and 3.

U jednoj poželjnoj klasi realizacija, cijanidni ugljikohidrat preveden je u tiokarboksamid, te je zatim kondenziran da se dobije azolni prsten. U određenom primjeru koji je prikazan na slici 1, blokirani cijanidni ugljikohidrat (2) preveden je u tiokarboksamid (3), te zatim kondenziran s etilbrompiruvatom da se dobije intermedijer tiazofurina (4). Prikazani postupak daje tiazofurin s kvantitativnim prinosom bez nusprodukata (12 ili α-izomer od 4). In one preferred class of embodiments, the cyanide carbohydrate is converted to a thiocarboxamide, and then condensed to form an azole ring. In the particular example shown in Figure 1, the blocked cyanide carbohydrate (2) is converted to the thiocarboxamide (3), and then condensed with ethyl bromopyruvate to give the thiazofurin intermediate (4). The presented procedure gives tiazofurin in quantitative yield without by-products (12 or the α-isomer of 4).

U drugoj klasi poželjnih ralizacija cijanidni ugljikohidrat je kondenziran s aminokiselinom da se dobije azolni prsten. U konkretnom primjeru koji je prikazan na slici 2, poznati cijano spoj (8) kondenziran je s cistein etil ester hidrokloridom da se dobije produkt zatvorenog prstena (9), koji je zatim aromatiziran s aktiviranim manganovim dioksidom da se dobije intermedijer tiazofurina (10). Ovaj ključni intermedijer (10) se na uobičajeni način pretvara u tiazofurin, s dobrim prinosom. In another class of preferred embodiments, the cyanide carbohydrate is condensed with an amino acid to form an azole ring. In the specific example shown in Figure 2, the known cyano compound (8) is condensed with cysteine ethyl ester hydrochloride to give the ring-closed product (9), which is then aromatized with activated manganese dioxide to give the thiazofurin intermediate (10). This key intermediate (10) is converted to tiazofurin in the usual manner, in good yield.

U trećoj klasi poželjnih realizacija halogenidni ugljikohidrat kondenziran je s prethodno nastalim heterocikličkim spojem da se dobije azolni prsten. U konkretnom primjeru koji je prikazan na slici 1, prethodno dobiveni heterociklički spoj (13) kondenziran je s poznatim halogenidnim ugljikohidratom (14) da se dobije ključni intermedijer (4) iz kojega se lako izvodi tiazofurin. In a third class of preferred embodiments, the halide carbohydrate is condensed with the previously formed heterocyclic compound to form an azole ring. In the specific example shown in Figure 1, the previously obtained heterocyclic compound (13) is condensed with a known halide carbohydrate (14) to obtain the key intermediate (4) from which tiazofurin is easily derived.

Naravno, postupci izuma koji su ovdje opisani nisu ograničeni na dobivanje tiazofurina, te se mogu jednostavno poopćiti, posebice glede poopćavanja druge i treće klase postupaka na praktički sve C-nukleozide. Općenito, C-nukleozid sukladno ovom izumu pripada općoj strukturnoj formuli A, gdje je A jednak O, S, CH2 ili NR gdje je R jednako H ili blokirajuća skupina; X je jednako O, S, Se ili NH; R1, R2, R3 i R4 su neovisno H ili niži alkil; dok su Z1, Z2 i Z3 neovisno H ili ne-H. Of course, the methods of the invention described here are not limited to obtaining tiazofurin, and can be easily generalized, especially regarding the generalization of the second and third class of methods to practically all C-nucleosides. In general, the C-nucleoside according to the present invention belongs to the general structural formula A, where A is equal to O, S, CH 2 or NR where R is equal to H or a blocking group; X is equal to O, S, Se or NH; R 1 , R 2 , R 3 and R 4 are independently H or lower alkyl; while Z1, Z2 and Z3 are independently H or non-H.

[image] [image]

Da se dobiju različiti spojevi koji su predstavljeni strukturnom formulom A, postoji značajna promjenjivost u ugljikohidratnom dijelu molekule. Između ostalog, sam ugljikohidrat ne mora biti jednostavni furan. Primjerice, kisik može biti zamijenjen sumporom da se dobije tio-ugljikohidrat, ili dušikom da se dobije amino-ugljikohidrat. Nadalje, ugljikohidrat može biti supstituiran u C2’, C3’ i C4’ položajima sa skupinom koja nije vodik Nadalje, ugljikohidrat može imati D- ili L-konfiguraciju, te može biti alfa- ili beta-anomer Nadalje, ugljikohidrat može imati blokirajuće skupine u različitim stupnjevima sinteze. Sve ove permutacije obuhvaćene su strukurnom formulom B, gdje je A jednako O, S, CH2 ili NR gdje je R jednako H ili blokirajuća skupina; B1, B2 i B3 su neovisno blokirajuće skupine ili niži alkil, a Z1, Z2 i Z3 su neovisno H ili ne-H. Skupina L je reaktivna funkcionalna skupina kao što je CN, halogen ili CHO. To obtain the various compounds represented by the structural formula A, there is considerable variability in the carbohydrate portion of the molecule. Among other things, the carbohydrate itself need not be a simple furan. For example, oxygen can be replaced by sulfur to give a thio-carbohydrate, or nitrogen to give an amino-carbohydrate. Furthermore, the carbohydrate can be substituted at the C2', C3' and C4' positions with a group other than hydrogen. Furthermore, the carbohydrate can have a D- or L-configuration, and can be an alpha- or beta-anomer. Furthermore, the carbohydrate can have blocking groups in different degrees of synthesis. All of these permutations are encompassed by structural formula B, where A is O, S, CH 2 or NR where R is H or a blocking group; B 1 , B 2 and B 3 are independently blocking groups or lower alkyl, and Z 1 , Z 2 and Z 3 are independently H or non-H. Group L is a reactive functional group such as CN, halogen or CHO.

[image] [image]

Ako se ponovo usredotočimo na drugu klasu poželjnih realizacija, uporaba cistein etil ester hidroklorida može se poopćiti uporabom spoja sukladno strukturnoj formuli C, gdje je X jednako O, S, Se ili NH; Y je H ili niži alkil; a R4 je H ili niži alkil. Focusing again on the second class of preferred embodiments, the use of cysteine ethyl ester hydrochloride can be generalized to the use of a compound according to the structural formula C, where X is equal to O, S, Se or NH; Y is H or lower alkyl; and R 4 is H or lower alkyl.

[image] [image]

Slično, u trećoj klasi poželjnih realizacija, uporaba prethodno nastalog heterocikličkog spoja može se poopćiti uporabom spoja sukladno strukturnoj formuli D, gdje je R4 jednako H ili niži alkil. Similarly, in a third class of preferred embodiments, the use of the previously formed heterocyclic compound can be generalized by the use of a compound according to the structural formula D, where R 4 is equal to H or lower alkyl.

[image] [image]

Postoje, naravno, brojne blokirajuće skupine koje su odgovarajuće. Između ostalog, može se koristiti benzoil, benzil, silil ili izopropiliden. Nadalje, specifično se pretpostavlja da blokirajuće skupine na C2’ i C3’ položajima na ugljikohidratu mogu biti pretvorene u izopropilidensku skupinu, kao stoje prikazano na strukturnoj formuli E. There are, of course, numerous blocking groups that are suitable. Among others, benzoyl, benzyl, silyl or isopropylidene can be used. Furthermore, it is specifically assumed that the blocking groups at the C2' and C3' positions on the carbohydrate can be converted into an isopropylidene group, as shown in structural formula E.

[image] [image]

Ova izopropilidenska skupina može se ukloniti mnogim postupcima, uključujući obradu reagensom koji je odabran iz skupine koju sačinjavaju trifluoroctena kiselina, mravlja kiselina, octena kiselina i H+ smola u organskom otapalu ili jod u metanolu. Primjena ovog postupka na strukturu E može zatim dati spoj sukladno strukturnoj formuli F, gdje je R5 jednako H, niži alkil, amin ili aril. This isopropylidene group can be removed by many methods, including treatment with a reagent selected from the group consisting of trifluoroacetic acid, formic acid, acetic acid, and H+ resin in an organic solvent or iodine in methanol. Application of this procedure to structure E can then give a compound according to structural formula F, where R5 is H, lower alkyl, amine or aryl.

[image] [image]

Ova realizacija također uključuje aromatiziranje strukture F aktiviranim manganovim dioksidom ili drugim reagensima te zatim slijedi deblokiranje zaštitnih skupina da se dobije tiazofurin ili srodni C-nukleozidi. This embodiment also involves aromatization of structure F with activated manganese dioxide or other reagents followed by deblocking of the protecting groups to give the tiazofurin or related C-nucleosides.

Osobito poželjna realizacija sukladno ovdje iznesenim činjenicama je reakcija A ili reakcija B, koje su niže prikazane. A particularly preferred embodiment according to the facts presented here is reaction A or reaction B, which are shown below.

[image] [image]

[image] [image]

Ova i ostala svojstva mogu se prikazati sljedećim radnim primjerima, koje valja smatrati ilustracijom različitih aspekata činjenica koje su navedene u patentnim zahtjevima, koje nisu ograničavajuće u smislu činjenica koje su navedene u patentnim zahtjevima. These and other properties can be demonstrated by the following working examples, which should be considered illustrative of various aspects of the facts stated in the patent claims, which are not limiting in terms of the facts stated in the patent claims.

Eksperimentalni dio Experimental part

Primjer 1 Example 1

2,3,5-tri-O-benzoil-β-D-ribofuranozil-1-karbonitril (2): Karbonitril je priređen postupkom kojega je postavio Robins sa suradnicima (PCT/US96/02512). 2,3,5-tri-O-benzoyl-β-D-ribofuranosyl-1-carbonitrile (2): The carbonitrile was prepared by the procedure established by Robins and co-workers (PCT/US96/02512).

Primjer 2 Example 2

2,5-anhidro-3,4,6-tri-O-benzoil-D-alontioamid (3): Postupak A: Sumporovodik je uz miješanje propušten kroz hladnu (5°C) suspenziju 2’,3’,5’-tri-O-benzoil-β-D- ribofuranozil cijanida (2, 50 g, 106,16 mmol) u suhom EtOH (900 ml) tijekom 5 min, te je zatim odjednom dodam N,N-dimetilaminopridin (1,2 g, 10 mmol). Sumporovodik je zatim sporo, uz miješanje, propuštan kroz reakcijsku smjesu tijekom 5 h (izlazna cijev iz reakcijske posude propuštala je mjpuriće kroz otopinu klornog vapna u 5% NaOH). Nakon 5 sati, tikvica je zatvorena i miješanjem je nastavljeno ispod 25°C tijekom 16 sati. Kroz reakcijsku smjesu propuštanje argon tijekom 1 h da se uklone posljednji tragovi H2S. Suspenzija je miješana na 0°C tijekom 2 sata i izdvojena krutina je filtrirana, isprana hladnim i suhim EtOH te osušena iznad P2O5 u vakuumu. 2,5-anhydro-3,4,6-tri-O-benzoyl-D-alonthioamide (3): Procedure A: Hydrogen sulfide was passed through a cold (5°C) suspension of 2',3',5'- tri-O-benzoyl-β-D-ribofuranosyl cyanide (2.50 g, 106.16 mmol) in dry EtOH (900 ml) for 5 min, and then N,N-dimethylaminopyridine (1.2 g, 10 mmol). Hydrogen sulfide was then passed through the reaction mixture slowly, with stirring, for 5 h (the outlet tube from the reaction vessel passed bubbles through a solution of chlorinated lime in 5% NaOH). After 5 hours, the flask was sealed and stirring was continued below 25°C for 16 hours. Pass argon through the reaction mixture for 1 h to remove the last traces of H2S. The suspension was stirred at 0°C for 2 hours and the separated solid was filtered, washed with cold and dry EtOH and dried over P2O5 in vacuo.

Iskorištenje: 52 g (97%); t.t. 133-135°C. Yield: 52 g (97%); d.p. 133-135°C.

1H NMR (CDCl3): δ 4.72 (m, 2H), 4.74 (m, 1H), 5.12 (d, 1H), 5.71 (t, 1H), 5.98 (t, 1H), 7.30-7.60 (m, 10H), 7.86 (d, 2H), 8.14 (m, 4H) i 8.46 (bs, 1H). 1H NMR (CDCl3): δ 4.72 (m, 2H), 4.74 (m, 1H), 5.12 (d, 1H), 5.71 (t, 1H), 5.98 (t, 1H), 7.30-7.60 (m, 10H) , 7.86 (d, 2H), 8.14 (m, 4H) and 8.46 (bs, 1H).

Postupak B: Otopina 2’,3’,5’-tri-O-β-D-ribofuranozil cijanida (2, 4,71 g, 10,00 mmol) i tioacetamida (1,50 g, 20,00 mmol) u suhom DMF (50 ml) zasićena je s bezvodnim klorovodikom i zagrijana na 70-60°C tijekom 2 sata. Reakcijska smjesa je ohlađena i uparena do suhog. Rezidue su otopljene u metilen kloridu (150 ml), isprane zasićenom otopinom NaHCO3 (100 ml), vodom (100 ml) i slanom otopinom (70 ml). Organski esktrakt je osušen iznad bezvodnog MgSO4, filtriran i ispran s CH2Cl2 (50 ml). Sjedinjeni filtrat je uparen do suhog. Rezidue su otopljene u minimalnoj količini suhog etanola što je nakon hlađenja dalo čisti produkt. Prinos: 4,20 g (83%). Talište i spektralna svojstva ovog produkta podudaraju se s produktom koji je priređen u prethodnom postupku A. Procedure B: A solution of 2',3',5'-tri-O-β-D-ribofuranosyl cyanide (2, 4.71 g, 10.00 mmol) and thioacetamide (1.50 g, 20.00 mmol) in of dry DMF (50 ml) was saturated with anhydrous hydrogen chloride and heated to 70-60°C for 2 hours. The reaction mixture was cooled and evaporated to dryness. The residues were dissolved in methylene chloride (150 ml), washed with saturated NaHCO3 solution (100 ml), water (100 ml) and brine (70 ml). The organic extract was dried over anhydrous MgSO4, filtered and washed with CH2Cl2 (50 mL). The combined filtrate was evaporated to dryness. The residues were dissolved in a minimal amount of dry ethanol, which gave a pure product after cooling. Yield: 4.20 g (83%). The melting point and spectral properties of this product match the product prepared in the previous procedure A.

Primjer 3 Example 3

Etil 2-(2’,3’,5’-tri-O-benzoil-β-D-ribofuranozil)tiazol-4-karboksilat (4): Uz miješanje, smjesi 2,5-anhidro-3’,4’,6’-tri-O-benzoil-D-alontioamida (3, 10,12 g, 20,00 mmol) i krutog NaHCO3 (16,8 g, 200 mmol) u suhom 1,2-dimetoksietanu (60 ml) na 0°C u atmosferi argona dodan je etil brompiruvat (7,8 g, 40,00 mmol) tijekom 10 minuta. Nakon dodatka, reakcijska smjesa je miješana na 0°C pod argonom tijekom 6 h. TLC pokazala je potpuno prevođenje polazne tvari u jedan produkt (heksan:EtOAc, 7:3). Reakcijska smjesa je ohlađena na -15°C u suhom ledu/CCl4 pod argonom. Otopina trifluoroctenog anhidrida (12,6 g, 60,00 mmol) i 2,6-lutidin (12,84 g, 120 mmol) otopljen u suhom 1,2-dimetoksietanu (20 ml) dodani su polako tijekom 15 min. Nakon dodatka, reakcijska smjesa je miješana na -15°C tijekom 2 sata u atmosferi argona. Reakcijska smjesa je filtrirana, isprana suhim metilen kloridom (100 ml). Sjedinjeni filtrat uparen je do suhog pod sniženim tlakom. Rezidue su otopljene u CH2Cl2 (200 ml) i pH je postavljen na 7 sa zasićenom otopinom NaHCO3. Organski ekstrakt ispran je s 1N HCl (100 ml), zasićenom otopinom NaHCO3 (200 ml) i slanom otopinom (100 ml). Organski sloj je osušen iznad bezvodnog Na2SO4, filtriran, ispran s CH2Cl2 (100 ml) i uparen do suhog. Sirova tvar kao takva korištena je za daljnje reakcije. Malena količina pročišćena je “flash” kromatografijom na silika-gelu koristeći heksan-etil acetat kao eluens. Ethyl 2-(2',3',5'-tri-O-benzoyl-β-D-ribofuranosyl)thiazole-4-carboxylate (4): With stirring, a mixture of 2,5-anhydro-3',4', of 6'-tri-O-benzoyl-D-alonthioamide (3, 10.12 g, 20.00 mmol) and solid NaHCO3 (16.8 g, 200 mmol) in dry 1,2-dimethoxyethane (60 ml) at 0 °C under argon atmosphere, ethyl bromopyruvate (7.8 g, 40.00 mmol) was added over 10 minutes. After the addition, the reaction mixture was stirred at 0°C under argon for 6 h. TLC showed complete conversion of the starting material to one product (hexane:EtOAc, 7:3). The reaction mixture was cooled to -15°C in dry ice/CCl4 under argon. A solution of trifluoroacetic anhydride (12.6 g, 60.00 mmol) and 2,6-lutidine (12.84 g, 120 mmol) dissolved in dry 1,2-dimethoxyethane (20 mL) were added slowly over 15 min. After the addition, the reaction mixture was stirred at -15°C for 2 hours under an argon atmosphere. The reaction mixture was filtered, washed with dry methylene chloride (100 ml). The combined filtrate was evaporated to dryness under reduced pressure. The residue was dissolved in CH2Cl2 (200 ml) and the pH was adjusted to 7 with saturated NaHCO3 solution. The organic extract was washed with 1N HCl (100 ml), saturated NaHCO3 solution (200 ml) and brine (100 ml). The organic layer was dried over anhydrous Na 2 SO 4 , filtered, washed with CH 2 Cl 2 (100 ml) and evaporated to dryness. The raw material as such was used for further reactions. A small amount was purified by "flash" chromatography on silica gel using hexane-ethyl acetate as eluent.

1H NMR (CDCl3):δ 1.36 (t, 3H), 4.40 (m, 2H), 4.62 (dd, 1H), 4.74 (m, 1H), 4.86 (dd, 1H), 5.74 (d, 1H), 5.84 (m, 2H), 7.30-7.60 (m, 9H), 7.91 (d, 2H), 7.98 (d, 2H), 8.08 (m, 2H) i 8.12 (d, 1H). 1H NMR (CDCl3): δ 1.36 (t, 3H), 4.40 (m, 2H), 4.62 (dd, 1H), 4.74 (m, 1H), 4.86 (dd, 1H), 5.74 (d, 1H), 5.84 (m, 2H), 7.30-7.60 (m, 9H), 7.91 (d, 2H), 7.98 (d, 2H), 8.08 (m, 2H) and 8.12 (d, 1H).

Primjer 4 Example 4

Etil 2-(β-D-ribofuranozil)tiazol-4-karboksilat (5): Sirovi etil 2-(2’,3’,5’-tri-O-benzoil-β-D-ribofuranozil)tiazol-4-karboksilat (4, 15,00 g) otopljen je u suhom etanolu (100 ml) i obrađen praškastim natrijevim etoksidom (1,36 g, 20 mmol) u atmosferi argona. Reakcijska smjesa je miješana na sobnoj temperaturi tijekom 12 sati pod argonom. Otopina je neutralizirana s Dowex 50W-X8 H+ smolom, filtrirana i isprana metanolom (100 ml). Filtrat je uparen do suhoga. Rezidue su razdijeljene između vode (100 ml) i kloroforma (150 ml). Vodeni sloj je ispran kloroformom (100 ml) i uparen do suhog. Rezidue su otopljene u metanolu (100 ml), dodan je silika-gel i upareno do suhog. Osušeni spoj kojega je adsorbirao silika-gel štavljen je na vrh kolone silika-gela (5x20 cm) koja je napunjena s CH2Cl2. Kolona je eluirana s CH2Cl2/acetonom (7:3, 500 ml) te zatim s CH2Cl2/metanolom (95:5, 1000 ml). Frakcije CH2Cl2/metanol sakupljene su zajedno i uparene do suhog da se dobije čisti spoj 5. Malena količina kristalizirana je iz 2-propanola/etera u obliku bezbojnog produkta. Prinos: 4,8 g (83%); t.t. 62-64°C. Ethyl 2-(β-D-ribofuranosyl)thiazole-4-carboxylate (5): Crude ethyl 2-(2',3',5'-tri-O-benzoyl-β-D-ribofuranosyl)thiazole-4-carboxylate (4, 15.00 g) was dissolved in dry ethanol (100 ml) and treated with powdered sodium ethoxide (1.36 g, 20 mmol) under an argon atmosphere. The reaction mixture was stirred at room temperature for 12 hours under argon. The solution was neutralized with Dowex 50W-X8 H+ resin, filtered and washed with methanol (100 ml). The filtrate was evaporated to dryness. The residue was partitioned between water (100 ml) and chloroform (150 ml). The aqueous layer was washed with chloroform (100 ml) and evaporated to dryness. The residues were dissolved in methanol (100 ml), silica gel was added and evaporated to dryness. The dried compound adsorbed by silica gel was placed on top of a silica gel column (5x20 cm) filled with CH2Cl2. The column was eluted with CH2Cl2/acetone (7:3, 500 ml) and then with CH2Cl2/methanol (95:5, 1000 ml). The CH2Cl2/methanol fractions were pooled and evaporated to dryness to give pure compound 5. A small amount was crystallized from 2-propanol/ether as a colorless product. Yield: 4.8 g (83%); d.p. 62-64°C.

1H NMR (DMSO-d6): δ 1.36 (t, 3H), 3.52 (m, 2H), 3.84 (m, 2H), 4.06 (m, 1H), 4.28 (m, 2H), 4.94 (t, 1H), 4.98 (d, 1H), 5.08 (d, 1H), 5.46 (d, 1H) i 8.52 (s, 1H). 1H NMR (DMSO-d6): δ 1.36 (t, 3H), 3.52 (m, 2H), 3.84 (m, 2H), 4.06 (m, 1H), 4.28 (m, 2H), 4.94 (t, 1H) , 4.98 (d, 1H), 5.08 (d, 1H), 5.46 (d, 1H) and 8.52 (s, 1H).

Primjer 5 Example 5

2-β-D-ribofuranoziltiazol-4-karboksamid (tiazofurin) (6): Sirovi etil 2-(β-D-ribofuranozil)tiazol-4-karboksilat (5, 4,6 g, 15,92 mmol) stavljen je u čeličnu bombu i pomiješan sa svježe priređenim metanolnim amonijakom (zasićen na 0°C, 70 ml). Reakcijska smjesa je miješana na sobnoj temperaturi tijekom 12 sati. Čelična bomba je ohlađena, pažljivo otvorena i sadržaj je uparen do suhog. 2-β-D-ribofuranosylthiazole-4-carboxamide (thiazofurin) (6): Crude ethyl 2-(β-D-ribofuranosyl)thiazole-4-carboxylate (5, 4.6 g, 15.92 mmol) was placed in steel bomb and mixed with freshly prepared methanolic ammonia (saturated at 0°C, 70 ml). The reaction mixture was stirred at room temperature for 12 hours. The steel bomb is cooled, carefully opened and the contents evaporated to dryness.

Rezidue su razmuljene sa suhim etanolom (60 ml) i uparene do suhog. Rezidue su obrađene sa suhim etanolom (60 ml) što je nakon razmuljivanja dalo svijetložutu krutinu. Krutina je filtrirana, isprana etil acetatom i osušena. Krutina je kristalizirala iz smjese etanol/etil acetat da se dobije suhi produkt. Prinos: 3.6 g (87%); t.t. 142-144°C. The residues were slurried with dry ethanol (60 ml) and evaporated to dryness. The residue was treated with dry ethanol (60 ml) which after trituration gave a light yellow solid. The solid was filtered, washed with ethyl acetate and dried. The solid was crystallized from ethanol/ethyl acetate to give the dry product. Yield: 3.6 g (87%); d.p. 142-144°C.

1H NMR (DMSO-d6): δ 3.57 (m, 2H), 3.89 (bs, 2H), 4.06 (m, 1H), 4.84 (t, 1H), 4.93 (d, 1H), 5.06 (m, 1H), 5.37 (d, 1H), 7.57 (s, 1H), 7.69 (d, 1H), 8.21 (s, 1H). 1H NMR (DMSO-d6): δ 3.57 (m, 2H), 3.89 (bs, 2H), 4.06 (m, 1H), 4.84 (t, 1H), 4.93 (d, 1H), 5.06 (m, 1H) , 5.37 (d, 1H), 7.57 (s, 1H), 7.69 (d, 1H), 8.21 (s, 1H).

Primjer 6 Example 6

5-O-benzoil-β-D-ribofuranozil-1-karbonitril (7): Otopina 2’,3’,5’-tri-O-benzoil-β-D-ribofuranozil-1-karbonitril (2, 61 g, 129,40 mmol) u kloroformu (200 ml) dodan je uz miješanje u ledeno-hladan zasićeni suhi metanolni amonijak (500 ml) u atmosferi argona. Reakcijska smjesa je miješana na 0°C tijekom 4,5 sati. TLS pokazala je potpuno prevođenje polazne tvari. Reakcijska smjesa uparena je do suhog. Rezidue su otopljene u etil acetatu (500 ml), isprane zasićenom vodenom otopinom NaHCO3 (100 ml), vodom (300 ml) i slanom otopinom (150 ml). Organski ekstrakt osušen je iznad bezvodnog MgSO4, filtriran, ispran etil acetatom (100 ml) i filtrati su sjedinjeni, te upareni do suhog da se dobije tamnosmeđa tekućina. Tekućina je otopljena u benzenu (100 ml), razrijeđena heksanom (50 ml) i acetonom (15 ml), otopina je nakon stajanja na sobnoj temperaturi preko noći dala kristale. Krutina je filtrirana, isprana heksanom i osušena. Prinos: 29 g (85%); t.t. 116-117°C. 5-O-benzoyl-β-D-ribofuranosyl-1-carbonitrile (7): A solution of 2',3',5'-tri-O-benzoyl-β-D-ribofuranosyl-1-carbonitrile (2, 61 g, 129.40 mmol) in chloroform (200 ml) was added with stirring to ice-cold saturated dry methanolic ammonia (500 ml) under an argon atmosphere. The reaction mixture was stirred at 0°C for 4.5 hours. TLS showed complete translation of the starting material. The reaction mixture was evaporated to dryness. The residues were dissolved in ethyl acetate (500 ml), washed with saturated aqueous NaHCO3 solution (100 ml), water (300 ml) and brine (150 ml). The organic extract was dried over anhydrous MgSO4, filtered, washed with ethyl acetate (100 ml) and the filtrates were combined and evaporated to dryness to give a dark brown liquid. The liquid was dissolved in benzene (100 ml), diluted with hexane (50 ml) and acetone (15 ml), the solution gave crystals after standing at room temperature overnight. The solid was filtered, washed with hexane and dried. Yield: 29 g (85%); d.p. 116-117°C.

Primjer 7 Example 7

5-O-benzoil-2,3-izopropiliden-β-D-ribofuranozil-1-karbonitril (8): Kruti 5'-O-benzoil-β-D-ribofuranozil-1-karbonitril (7, 26,3 g, 100 mmol) dodan je uz miješanje otopini 72% perklorne kiseline (4 ml) u 2,2-dimetoksipropanu (30 ml) i suhom acetonu (150 ml) u atmosferi argona, u jednom obroku. Reakcijska smjesa miješana je na sobnoj temperaturi tijekom 3 sata. Otopina je neutralizirana amonijevim hidroksidom i uparena do suhog. Rezidue su otopljene u kloroformu (250 ml) i isprane vodom (2x200 ml) i slanom otopinom (100 ml). 5-O-benzoyl-2,3-isopropylidene-β-D-ribofuranosyl-1-carbonitrile (8): Solid 5'-O-benzoyl-β-D-ribofuranosyl-1-carbonitrile (7, 26.3 g, 100 mmol) was added with stirring to a solution of 72% perchloric acid (4 ml) in 2,2-dimethoxypropane (30 ml) and dry acetone (150 ml) under an argon atmosphere, in one portion. The reaction mixture was stirred at room temperature for 3 hours. The solution was neutralized with ammonium hydroxide and evaporated to dryness. The residues were dissolved in chloroform (250 ml) and washed with water (2x200 ml) and saline (100 ml).

Organska faza je osušena iznad bezvodnog MgSO4, filtrirana, isprana kloroformom (50 ml) i filtrat je uparen do suhog. Rezidue su nakon kristalizacije iz eter-heksana dali bezbojne kristale. Prinos: 28,5 g (95%); t.t. 62-62°C. The organic phase was dried over anhydrous MgSO4, filtered, washed with chloroform (50 ml) and the filtrate was evaporated to dryness. The residues gave colorless crystals after crystallization from ether-hexane. Yield: 28.5 g (95%); d.p. 62-62°C.

1H NMR (CDCl3): δ 1.35 (d, 2H), 1.52 (s, 3H), 4.51 (m, 2H), 4.59 (m, 2H), 4.77 (d, 1H), 4.87 (d, 1H), 5.10 (m, 1H), 7.46 (m, 2H), 7.57 (m, 1H), 8.07 (m, 2H). 1H NMR (CDCl3): δ 1.35 (d, 2H), 1.52 (s, 3H), 4.51 (m, 2H), 4.59 (m, 2H), 4.77 (d, 1H), 4.87 (d, 1H), 5.10 (m, 1H), 7.46 (m, 2H), 7.57 (m, 1H), 8.07 (m, 2H).

Primjer 8 Example 8

Etil 2-(5’-O-benzoil-2’,3’-O-izopropiliden-β-D-ribofuranozil)tiazolin-4-karboksilat (9): Uz miješanje, otopini 5’-O-benzoil-2’,3’-izopropiliden-β-D-ribofuranozil-1-karbonitrila (8, 4,71 g, 15,55 mmol) u suhom metilen kloridu (150 ml) na sobnoj temperaturi, u atmosferi argona, dodan je cistein etil ester hidroklorid (1.49 g, 8 mmol) i 0,81 g (8 mmol) na 0 h, nakon 2 sata, 4 sata i nakon 6 sati. Reakcijska smjesa je miješana na sobnoj temperaturi u atmosferi argona tijekom 24 sata. Reakcijska smjesa je razrijeđena metilen kloridom (100 ml), isprana vodom (200 ml) i slanom otopinom (150 ml). Ekstrakt CH2Cl2 osušen je iznad bezvodnog MgSO4, filtriran, ispran s CH2Cl2 (50 ml) i filtrat je uparen do suhog. Rezidue su korištene kao takve za sljedeću reakciju. Malena količina sirovog produkta pročišćena je “flash” kromatografijom na silika-gelu koristeći smjesu heksan/etil acetat kao eluens te je identificirana protonskom spektroskopijom. Ethyl 2-(5'-O-benzoyl-2',3'-O-isopropylidene-β-D-ribofuranosyl)thiazoline-4-carboxylate (9): With stirring, solutions of 5'-O-benzoyl-2', To 3'-isopropylidene-β-D-ribofuranosyl-1-carbonitrile (8, 4.71 g, 15.55 mmol) in dry methylene chloride (150 mL) at room temperature, under an argon atmosphere, was added cysteine ethyl ester hydrochloride ( 1.49 g, 8 mmol) and 0.81 g (8 mmol) at 0 h, after 2 h, 4 h and after 6 h. The reaction mixture was stirred at room temperature under an argon atmosphere for 24 hours. The reaction mixture was diluted with methylene chloride (100 ml), washed with water (200 ml) and brine (150 ml). The CH 2 Cl 2 extract was dried over anhydrous MgSO 4 , filtered, washed with CH 2 Cl 2 (50 ml) and the filtrate was evaporated to dryness. The residues were used as such for the next reaction. A small amount of the crude product was purified by "flash" chromatography on silica gel using a mixture of hexane/ethyl acetate as eluent and identified by proton spectroscopy.

1H NMR (CDCl3): δ 1.24 (t, 3H), 1.35 (s, 3H), 1.52 (s, 3H), 3.40 (m, 2H), 4.20 (m, 2H), 4.42 (m, 3H), 4.80 (m, 2H), 5.12 (m, 2H), 7.42 (m, 2H), 7.58 (m, 1H), 8.08 (m, 2H). 1H NMR (CDCl3): δ 1.24 (t, 3H), 1.35 (s, 3H), 1.52 (s, 3H), 3.40 (m, 2H), 4.20 (m, 2H), 4.42 (m, 3H), 4.80 (m, 2H), 5.12 (m, 2H), 7.42 (m, 2H), 7.58 (m, 1H), 8.08 (m, 2H).

Primjer 9 Example 9

Etil 2-(5’-O-benzoil-2’,3’-O-izopropiliden-β-D-ribofuranozil) tiazol-4-karboksilat (10): Ethyl 2-(5'-O-benzoyl-2',3'-O-isopropylidene-β-D-ribofuranosyl) thiazole-4-carboxylate (10):

Postupak A: Uz snažno miješanje, otopini sirovog etil 2-(5’-O-benzoil-2’,3’-O-izopropiliden-β-D-ribofuranozil)tiazolin-4-karboksilata (9, 7,0 g) u metilen kloridu (300 ml) dodan je aktivirani manganov dioksid (27,8 g), na sobnoj temperaturi. Reakcijska smjesa je miješana na sobnoj temperaturi tijekom 24 sata, filtrirana kroz celit i isprana acetonom (200 ml). Filtrati su sjedinjeni i upareni do suhog da se dobiju uljaste rezidue. Prinos: 5,9 g (88% iz cijanidnog ugljikohidrata 8). Malena količina sirovog produkta pročišćena je “flash” kromatografijom preko silika-gela koristeći CH2Cl2-etil acetat kao eluens i identificirana protonskom spektroskopijom. Procedure A: With vigorous stirring, a solution of crude ethyl 2-(5'-O-benzoyl-2',3'-O-isopropylidene-β-D-ribofuranosyl)thiazoline-4-carboxylate (9, 7.0 g) in activated manganese dioxide (27.8 g) was added to methylene chloride (300 ml) at room temperature. The reaction mixture was stirred at room temperature for 24 hours, filtered through celite and washed with acetone (200 ml). The filtrates were combined and evaporated to dryness to give an oily residue. Yield: 5.9 g (88% from cyanide carbohydrate 8). A small amount of the crude product was purified by flash chromatography over silica gel using CH2Cl2-ethyl acetate as eluent and identified by proton spectroscopy.

1H NMR (CDCl3): δ 1.39 (t, 6H), 1.63 (s, 2H), 4.39 (m, 3H), 4.60 (m, 2H), 4.84 (m, 1H), 5.26 (m, 1H), 5.40 (d, 1H), 7.40 (m, 2H), 7.52 (m, 1H), 7.89 (m, 2H), 8.02 (s, 1H). 1H NMR (CDCl3): δ 1.39 (t, 6H), 1.63 (s, 2H), 4.39 (m, 3H), 4.60 (m, 2H), 4.84 (m, 1H), 5.26 (m, 1H), 5.40 (d, 1H), 7.40 (m, 2H), 7.52 (m, 1H), 7.89 (m, 2H), 8.02 (s, 1H).

Postupak B: Smjesa sirovog etil 2-(5’-O-benzoil-2’,3’-O-izopropiliden-β-D-ribofuranozil)tiazolin-4-karboksilata (9, 7,0 g) i aktiviranog manganova dioksida (27,8 g) u suhom benzenu (150 ml) zagrijana je na 80°C tijekom 2 sata. Reakcijska smjesa je filtrirana kroz celit i isprana acetonom (200 ml). Filtrati su sjedinjeni i upareni do suhog da se dobiju uljaste rezidue. Prinos: 6,0 g (89% iz cijanidnog ugljikohidrata 8). Malena količina sirovog produkta pročišćena je “flash” kromatografijom preko silika-gela koristeći CH2Cl2-etil acetat kao eluens i identificirana protonskom spektroskopijom. Produkti dobiveni s oba postupka identični su u svakom pogledu. Procedure B: A mixture of crude ethyl 2-(5'-O-benzoyl-2',3'-O-isopropylidene-β-D-ribofuranosyl)thiazoline-4-carboxylate (9, 7.0 g) and activated manganese dioxide ( 27.8 g) in dry benzene (150 ml) was heated to 80°C for 2 hours. The reaction mixture was filtered through celite and washed with acetone (200 ml). The filtrates were combined and evaporated to dryness to give an oily residue. Yield: 6.0 g (89% from cyanide carbohydrate 8). A small amount of the crude product was purified by flash chromatography over silica gel using CH2Cl2-ethyl acetate as eluent and identified by proton spectroscopy. The products obtained from both procedures are identical in every respect.

Postupak C: Uz energično miješanje, otopini sirovog etil 2-(5’-O-benzoil-2’,3’-O-izopropiliden-β-D-ribofuranozil)tiazolin-4-karboksilata (9, 2,0 g) u metilen kloridu (100 ml) dodan je niklov peroksid (10,0 g) na sobnoj temperaturi. Reakcijska smjesa je miješana na sobnoj temperaturi tijekom 24 sata, filtrirana kroz celit i isprana acetonom (200 ml). Filtrati su sjedinjeni i upareni do suhog da se dobije uljasta rezidua. prinos: 5,9 g (88% iz cijanidnog ugljikohidrata 8). Produkt dobiven ovim postupkom bio je identičan produktima koji su dobiveni postupcima A i B, u svakom pogledu. Procedure C: With vigorous stirring, a solution of crude ethyl 2-(5'-O-benzoyl-2',3'-O-isopropylidene-β-D-ribofuranosyl)thiazoline-4-carboxylate (9, 2.0 g) in nickel peroxide (10.0 g) was added to methylene chloride (100 ml) at room temperature. The reaction mixture was stirred at room temperature for 24 hours, filtered through celite and washed with acetone (200 ml). The filtrates were combined and evaporated to dryness to give an oily residue. yield: 5.9 g (88% from cyanide carbohydrate 8). The product obtained by this procedure was identical to the products obtained by procedures A and B, in all respects.

Primjer 10 Example 10

Etil 2-(5’-O-benzoil-β-D-ribofuranozil)tiazol-4-karboksilat (11): Otopina sirovog etil 2-(5’-O-benzoil-2’,3’-O-izopropiliden-β-D-ribofuranozil)tiazol-4-karboksilata (10, 4,5 g, 10,39 mmol) u smjesi trifluoroctena kiselina:tetrahidrofuran:voda (30:20:6 ml) ostavljena je da se miješa na sobnoj temperaturi tijekom 1 sat. Reakcijska smjesa uparena je do suhog. Rezidue su suspendirane u metilen kloridu (100 ml), ohlađene i neutralizirane zasićenom otopinom NaHCO3. Vodena otopina ekstrahirana je s CH2Cl2 (2x100 ml), isprana zasićenom otopinom NaHCO3 (100 ml), vodom (100 ml) i slanom otopinom (100 ml). Organski ekstrakt osušen je iznad MgSO4, filtriran, ispran s CH2Cl2 (100 ml) i filtrat je uparen do suhog. Rezidue su kristalizirane iz smjese etanol:voda (1:1) da se dobiju bezbojni kristali. Krutina je filtrirana i osušena iznad P2O5 u vakuumu. Prinos: 4,0 g (98%); t.t. 82-85°C. Ethyl 2-(5'-O-benzoyl-β-D-ribofuranosyl)thiazole-4-carboxylate (11): A solution of crude ethyl 2-(5'-O-benzoyl-2',3'-O-isopropylidene-β -D-ribofuranosyl)thiazole-4-carboxylate (10, 4.5 g, 10.39 mmol) in a mixture of trifluoroacetic acid:tetrahydrofuran:water (30:20:6 ml) was allowed to stir at room temperature for 1 hour . The reaction mixture was evaporated to dryness. The residues were suspended in methylene chloride (100 ml), cooled and neutralized with saturated NaHCO3 solution. The aqueous solution was extracted with CH2Cl2 (2x100 ml), washed with saturated NaHCO3 solution (100 ml), water (100 ml) and brine (100 ml). The organic extract was dried over MgSO 4 , filtered, washed with CH 2 Cl 2 (100 ml) and the filtrate was evaporated to dryness. The residue was crystallized from ethanol:water (1:1) to give colorless crystals. The solid was filtered and dried over P2O5 in vacuo. Yield: 4.0 g (98%); d.p. 82-85°C.

1H NMR (CDCl3): δ 1.33 (t, 3H), 4.31 (m, 4H), 4.45 (m, 3H), 4.55 (m, 1H), 4.74 (m, 1H), 5.32 (d, 1H), 7.37 (m, 2H), 7.51 (m, 1H), 7.99 (m, 3H). 1H NMR (CDCl3): δ 1.33 (t, 3H), 4.31 (m, 4H), 4.45 (m, 3H), 4.55 (m, 1H), 4.74 (m, 1H), 5.32 (d, 1H), 7.37 (m, 2H), 7.51 (m, 1H), 7.99 (m, 3H).

Primjer 11 Example 11

2-β-D-ribofuranoziltiazol-4-karboksamid (tiazofurin) (6): Etil 2-(5’-O-benzoil-β-D-ribofuranozil)tiazol-4-karboksilat (11, 3,7 g, 942 mmol) stavljen je u čeličnu bombu i pomiješan sa svježe priređenim hladnim metanolnim amonijakom (70 ml, zasićen na 0°C) Smjesa je zaštićena od vlage i miješana na sobnoj temperaturi tijekom 12 sati. Čelična bomba ohlađena je na 0°C, pažljivo otvorena i uparena do suhog da se dobije ljepljiva pjena. Rezidue su razmuljene sa suhim toluenom (3x50 ml) i toluenski sloj je odbačen. Tako dobivene rezidue su obrađene s bezvodnim etanolom (60 ml) i razmuljene da se dobije svijetložuta krutina. Krutina je filtrirana, isprana etil acetatom i osušena. Krutina je kristalizirana iz smjese etanol-etil acetat da se dobije 2,25 g (90%) čistog produkta: t.t. 145-147°C. 2-β-D-ribofuranosylthiazole-4-carboxamide (thiazofurin) (6): Ethyl 2-(5'-O-benzoyl-β-D-ribofuranosyl)thiazole-4-carboxylate (11, 3.7 g, 942 mmol ) was placed in a steel bomb and mixed with freshly prepared cold methanolic ammonia (70 ml, saturated at 0°C). The mixture was protected from moisture and stirred at room temperature for 12 hours. The steel bomb was cooled to 0°C, carefully opened and evaporated to dryness to produce a sticky foam. The residues were triturated with dry toluene (3x50 ml) and the toluene layer was discarded. The resulting residue was treated with anhydrous ethanol (60 ml) and triturated to give a light yellow solid. The solid was filtered, washed with ethyl acetate and dried. The solid was crystallized from ethanol-ethyl acetate to give 2.25 g (90%) of pure product: m.p. 145-147°C.

1H NMR (DMSO-d6): δ 3.57 (m, 2H), 3.89 (s, 2H), 4.07 (m, 1H), 4.83 (t, 1H), 4.92 (d, 1H), 5.05 (d, 1H), 5.36 (d, 1H), 7.56 (s, 1H), 8.20 (s, 1H). 1H NMR (DMSO-d6): δ 3.57 (m, 2H), 3.89 (s, 2H), 4.07 (m, 1H), 4.83 (t, 1H), 4.92 (d, 1H), 5.05 (d, 1H) , 5.36 (d, 1H), 7.56 (s, 1H), 8.20 (s, 1H).

Prema tome, opisane su specifične realizacije i primjene postupaka dobivanja tiazofurina i ostalih C-nukleozida. Razumljivo je, međutim, onima koji poznaju ovo područje da su uz ove opisane moguće mnoge druge modifikacije bez udaljavanja od pojmova izuma koji su ovdje navedeni, sadržaj izuma, prema tome, nije ograničen osim u duhu navedenih patentnih zahtjeva. Therefore, specific realizations and applications of the procedures for obtaining tiazofurin and other C-nucleosides are described. It is understood, however, by those skilled in the art that many other modifications are possible in addition to those described without departing from the terms of the invention set forth herein, the scope of the invention, therefore, not being limited except in the spirit of the patent claims.

Claims (24)

1. Postupak sinteze nukleozida sukladno strukturnoj formuli A, naznačen time što uključuje: [image] dobivanje spoja prema strukturnoj formuli B gdje je L reaktivna skupina; [image] pri čemu u jednom stupnju reagiraju L strukture B da se dobije struktura D koja ima heterociklički prsten; i [image] u jednom stupnju se aromatizira heterociklički prsten; gdje je A jednako O, S, CH2 ili NR gdje je R jednako H ili bolkirajuća skupina; X je jednako O, S, Se ili NH; R1, R2, R3 i R4 su neovisno H ili niži alkil; B1, B2 i B3 su neovisno blokirajuće skupine ili niži alkil, dok su Z1, Z2 i Z3 neovisno H ili ne-H.1. The procedure for the synthesis of nucleosides according to the structural formula A, characterized by the fact that it includes: [image] obtaining a compound according to the structural formula B where L is a reactive group; [image] wherein in one step the L structures of B are reacted to give structure D having a heterocyclic ring; and [image] in one step, the heterocyclic ring is aromatized; wherein A is O, S, CH 2 or NR wherein R is H or a divalent group; X is equal to O, S, Se or NH; R 1 , R 2 , R 3 and R 4 are independently H or lower alkyl; B1, B2 and B3 are independently blocking groups or lower alkyl, while Z1, Z2 and Z3 are independently H or non-H. 2. Postupak prema zahtjevu 1, naznačen time što je L jednako -CN ili -CHO.2. Process according to claim 1, characterized in that L is equal to -CN or -CHO. 3. Postupak prema zahtjevu 2, naznačen time što stupanj reakcije L strukture B da nastane struktura D uključuje reakciju strukture B sa strukturom C. [image] 3. The method according to claim 2, characterized in that the reaction step L of structure B to form structure D includes the reaction of structure B with structure C. [image] 4. Postupak prema zahtjevu 1, naznačen time što je spoj strukturne formule B spoj strukturne formule E. [image] 4. The method according to claim 1, characterized in that the compound of structural formula B is a compound of structural formula E. [image] 5. Postupak prema zahtjevu 4, naznačen time što stupanj reakcije L da nastane struktura D uključuje reakciju strukture E sa strukturom C. [image] 5. The method according to claim 4, characterized in that the stage of reaction L to form structure D includes the reaction of structure E with structure C. [image] 6. Postupak prema zahtjevu 1, naznačen time što stupanj zamjene L uključuje reakciju A: [image] 6. The process according to claim 1, characterized in that the substitution step L includes the reaction A: [image] 7. Postupak prema zahtjevu 2, naznačen time što je L zamijenjen strukturom D.7. The method according to claim 2, characterized in that L is replaced by structure D. 8. Postupak prema zahtjevu 7, naznačen time što dodatno uključuje reakciju spoja s reagensom koji je odabran iz skupa kojega sačinjavaju aminokiselina i supstituirana amino-kiselina da se dobije intermedijer sukladno strukturi F, gdje je R5 jednako H, niži alkil, amin ili aril.8. The method according to claim 7, characterized in that it additionally includes the reaction of the compound with a reagent selected from the group consisting of an amino acid and a substituted amino acid to obtain an intermediate according to structure F, where R5 is equal to H, lower alkyl, amine or aryl. 9. Postupak prema zahtjevu 8, naznačen time što aminokiselina sadrži cistein alkil ester hidroklorid.9. The method according to claim 8, characterized in that the amino acid contains cysteine alkyl ester hydrochloride. 10. Postupak prema zahtjevu 8, naznačen time što dodatno uključuje aromatiziranje spoja strukture F. [image] 10. The method according to claim 8, characterized in that it additionally includes aromatization of the compound of structure F. [image] 11. Postupak prema zahtjevu 8, naznačen time što stupanj aromatiziranja spoja uključuje obradu spoja strukturne formule F aktiviranim manganovim dioksidom. [image] 11. The method according to claim 8, characterized in that the step of aromatizing the compound includes treating the compound of structural formula F with activated manganese dioxide. [image] 12. Postupak prema zahtjevu 1, naznačen time što stupanj reakcije L uključuje reakciju B. [image] 12. The method according to claim 1, characterized in that the stage of reaction L includes reaction B. [image] 13. Postupak prema zahtjevu 11, naznačen time što spoj sadrži izopropilidensku skupinu, te se izopropilidenska skupina uklanja obradom s reagensom koji je odabran iz skupine koju sačinjavaju trifluoroctena kiselina, mravlja kiselina, octena kiselina i H+ smola u organskom otapalu ili jod u metanolu. 13. The method according to claim 11, characterized in that the compound contains an isopropylidene group, and the isopropylidene group is removed by treatment with a reagent selected from the group consisting of trifluoroacetic acid, formic acid, acetic acid and H+ resin in an organic solvent or iodine in methanol. 14. Postupak prema bilo kojem zahtjevu 1-13, naznačen time što je nukleozid tiazofurin.14. The method according to any one of claims 1-13, characterized in that the nucleoside is tiazofurin. 15. Postupak prema bilo kojem zahtjevu 1-13, naznačen time što spoj strukturne formule B sadrži L-ribozu.15. The method according to any one of claims 1-13, characterized in that the compound of structural formula B contains L-ribose. 16. Postupak prema zahtjevu 15, naznačen time što bar jedan od Z1, Z2 i Z3 nije H.16. The method according to claim 15, characterized in that at least one of Z1, Z2 and Z3 is not H. 17. Postupak prema bilo kojem zahtjevu 1-13, naznačen time što je spoj strukturne formule B alfa izomer.17. The method according to any one of claims 1-13, characterized in that the compound of structural formula B is an alpha isomer. 18. Postupak prema bilo kojem zahtjevu 1-13, naznačen time što je spoj strukturne formule B beta izomer.18. The method according to any one of claims 1-13, characterized in that the compound of structural formula B is a beta isomer. 19. Postupak prema bilo kojem zahtjevu 1-13, naznačen time što je A jednako NR, R je COCH3, a X nije S.19. The process of any one of claims 1-13, wherein A is NR, R is COCH 3 , and X is not S. 20. Spoj, naznačen time što je dobiven postupcima bilo kojeg zahtjeva 1-13, što ima strukturu sukladno strukturnoj formuli A, koji nije tiazofurin. 20. A compound obtained by the methods of any of claims 1-13, which has a structure according to the structural formula A, which is not tiazofurin. 21. Spoj, naznačen time što je dobiven postupcima bilo kojeg zahtjeva 1-13, što ima strukturu sukladno strukturnoj formuli A, gdje je ugljikohidratni dio alfa izomer, koji nije tiazofurin.21. A compound obtained by the methods of any one of claims 1-13, having a structure according to the structural formula A, where the carbohydrate part is an alpha isomer other than tiazofurin. 22. Spoj, naznačen time što je dobiven postupcima bilo kojeg zahtjeva 1-13, što ima strukturu sukladno strukturnoj formuli A, gdje je ugljikohidratni dio L konfiguracije. 22. A compound obtained by the processes of any one of claims 1-13, having a structure according to the structural formula A, where the carbohydrate part is of the L configuration. 23. Spoj, naznačen time što je dobiven postupcima bilo kojeg zahtjeva 1-13, što ima strukturu sukladno strukturnoj formuli A, gdje je ugljikohidratni dio alfa izomer. 23. A compound obtained by the methods of any one of claims 1-13, having a structure according to the structural formula A, where the carbohydrate part is the alpha isomer. 24. Spoj, naznačen time što je dobiven postupcima bilo kojeg zahtjeva 1-13, što ima strukturu sukladno strukturnoj formuli A, gdje bar jedan od Z1, Z2 i Z3 nije H.24. A compound, characterized in that it is obtained by the methods of any of claims 1-13, which has a structure according to the structural formula A, where at least one of Z1, Z2 and Z3 is not H.
HRP990365 1999-11-25 1999-11-25 Method of producing thiazofurin and other c-nucleosides HRP990365A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HRP990365 HRP990365A2 (en) 1999-11-25 1999-11-25 Method of producing thiazofurin and other c-nucleosides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HRP990365 HRP990365A2 (en) 1999-11-25 1999-11-25 Method of producing thiazofurin and other c-nucleosides

Publications (1)

Publication Number Publication Date
HRP990365A2 true HRP990365A2 (en) 2001-08-31

Family

ID=10946996

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP990365 HRP990365A2 (en) 1999-11-25 1999-11-25 Method of producing thiazofurin and other c-nucleosides

Country Status (1)

Country Link
HR (1) HRP990365A2 (en)

Similar Documents

Publication Publication Date Title
AU2005324476A1 (en) Nucleoside derivatives for treating hepatitis C virus infection
CA2931458A1 (en) Nucleotides for the treatment of liver cancer
CA2584367A1 (en) Fluorinated pyrrolo[2,3-d]pyrimidine nucleosides for the treatment of rna-dependent rna viral infection
CA2102782C (en) 2-fluoro-2-substituted adeninyl arabinosides as anti-cancer agents
JPH0662663B2 (en) Desazapurine-nucleoside-derivative
WO2004007512A2 (en) Nucleoside derivatives as inhibitors of rna-dependent rna viral polymerase
MX2012003126A (en) Processes and intermediates for the preparation of 1'-substituted carba-nucleoside analogs.
JP2012517401A (en) Antiviral drugs
FR2709754A1 (en) Compounds 2 'or 3'-deoxy- and 2', 3'-dideoxy-beta-L-pentofuranonucleosides, preparation method and therapeutic application, especially anti-viral.
Wang et al. Conformationally locked nucleosides. Synthesis and stereochemical assignments of 2′-C, 4′-C-bridged bicyclonucleosides
DK147858B (en) METHOD OF ANALOGUE FOR THE PREPARATION OF 5'-DEOXY-5-FLUORCYTIDINE OR 5'-DEOXY-5-FLUORURIDINE OR PHYSIOLOGICALLY TOLERABLE ACID ADDITION SALTS.
Maeba et al. C-Nucleosides. 1. Synthesis of 3-(. beta.-D-ribofuranosyl) pyridazines
Moyroud et al. L-Ribonucleosides from L-xylose
AU735601B2 (en) Method of producing tiazofurin and other C-nucleosides
Maruyama et al. Pyrrolopyrimidine nucleosides. 18, Synthesis and chemotherapeutic activity of 4-amino-7-(3-deoxy-. beta.-D-ribofuranosyl) pyrrolo [2, 3-d] pyrimidine-5-carboxamide (3'-deoxysangivamycin) and 4-amino-7-(2-deoxy-. beta.-D-ribofuranosyl) pyrrolo [2, 3-d] pyrimidine-5-carboxamide (2'-deoxysangivamycin)
EP0348170A2 (en) Antiviral pyrimidine derivatives
JPH0853490A (en) 2'-deoxy-2',2'-dihalogeno-4'-thionucleoside
HRP990365A2 (en) Method of producing thiazofurin and other c-nucleosides
Ramasamy et al. A modified synthesis of tiazofurin
CZ463199A3 (en) Nucleoside synthesis process
Oelgen et al. Synthesis And Antiviral Activity Of 2'-Deoxy-2'-Fluoro-L-Arabinofuranosyl 1, 2, 3-Triazole Derivatives
MXPA99011409A (en) Method of producing tiazofurin and other c-nucleosides
Reddy et al. Stereoselective synthesis of tetrahydrofuranyl 1, 2, 3-triazolyl C-nucleoside analogues by ‘click’chemistry and investigation of their biological activity
Rassu et al. Model Syntheses of Thiazolidine Nucleoside Analogues
STANISLAW et al. Nucleic acid related compounds. 67. Synthesis of 5'-amino and 5'-methylthio chain-extended nucleosides from uridinel

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
ODBI Application refused