HRP970033A2 - Improvement to devices for manufacturing mineral fibres by free centrifuging - Google Patents

Improvement to devices for manufacturing mineral fibres by free centrifuging

Info

Publication number
HRP970033A2
HRP970033A2 HRP970033A HRP970033A2 HR P970033 A2 HRP970033 A2 HR P970033A2 HR P970033 A HRP970033 A HR P970033A HR P970033 A2 HRP970033 A2 HR P970033A2
Authority
HR
Croatia
Prior art keywords
rotor
fibrillation
holes
rim
cavities
Prior art date
Application number
Other languages
Croatian (hr)
Inventor
Alain Yang
Original Assignee
Alain Yang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alain Yang filed Critical Alain Yang
Priority to HRP970033 priority Critical patent/HRP970033A2/en
Publication of HRP970033A2 publication Critical patent/HRP970033A2/en

Links

Description

Izum se odnosi na uređaj za proizvodnju mineralnih vlakana centrifugiranjem iz materijala koji se može izvlačiti. The invention relates to a device for the production of mineral fibers by centrifugation from extractable material.

Postupci nazvani slobodno centrifugiranje su poznati i po njima se materijal za fibrilaciju dovodi u rastaljenom stanju s vanjske strane na obod rotora za fibrilaciju i zahvaćen rotorima prisilno se odvaja od njih u obliku vlakana zbog djelovanja centrifugalne sile. Procedures called free centrifugation are known, and according to them, the material for fibrillation is brought in a molten state from the outside to the rim of the fibrillation rotors and, caught by the rotors, is forcibly separated from them in the form of fibers due to the action of centrifugal force.

U tom postupku upotrebljavaju se općenito 3 ili 4 centrifugalna rotora, smještena tijesno jedan do drugog. Rastaljen materijal izlijeva se na prvi rotor, ubrzava se i odvodi na slijedeći rotor. Materijal, koji se može izvlačiti u niti, ide s jednog na drugi rotor, pri čemu svaki rotor pretvara dio materijala u vlakna i šalje ih u slijedeći rotor. In this process, generally 3 or 4 centrifugal rotors are used, located close to each other. The molten material is poured onto the first rotor, accelerated and taken to the next rotor. The material, which can be drawn into threads, passes from one rotor to another, with each rotor turning some of the material into fibers and sending them to the next rotor.

Ti se postupci posebno koriste za industrijsku proizvodnju kamene vune od bazaltnih stakala, troske iz visokih peći i još općenitije iz bilo kojeg materijala visokog tališta. These procedures are especially used for the industrial production of stone wool from basalt glasses, slag from blast furnaces and more generally from any material with a high melting point.

Za te su postupke predložena mnoga poboljšanja, a ovdje treba posebno spomenuti poboljšanje opisano u europskom patentu EP-B2-0,059,152. Many improvements have been proposed for these processes, and special mention should be made of the improvement described in European patent EP-B2-0,059,152.

Centrifugalni rotori izloženi su visokim temperaturama zbog njihovog dodira s rastaljenim materijalom. Međutim, te visoke temperature ne moraju biti takove da dovode do deformacije i/ili trošenja koje bi bilo štetno za položaj tih rotora. Zbog toga konvencionalni uređaji, opisani u gore spomenutoj patentnoj prijavi, uključuju sredstva za hlađenje koja se sastoje naročito od protoka struje vode kroz osovinu rotora i kao i kroz unutarnju površinu obodnog dijela rotora. Centrifugal rotors are exposed to high temperatures due to their contact with molten material. However, these high temperatures do not have to be such that they lead to deformation and/or wear that would be detrimental to the position of these rotors. Therefore, the conventional devices described in the above-mentioned patent application include cooling means consisting in particular of the flow of a current of water through the rotor shaft and also through the inner surface of the peripheral part of the rotor.

Poznata su dva tipa hlađenja, i to s reciklirajućom tekućinom ili s tekućinom koja se gubi. To jest, u potonjem slučaju tekućina je općenito voda koja se nakon prolaska kroz rotor izbacuje iz njega kroz rupice. Postupak prema izumu spada u ovaj drugi način hlađenja. Two types of cooling are known, with recycling liquid or with liquid that is lost. That is, in the latter case, the liquid is generally water, which, after passing through the rotor, is ejected from it through the holes. The method according to the invention belongs to this second method of cooling.

U dokumentu EP-B-0,195,725 rashladna voda nakon dodira s naplatkom centrifugalnog prstena se evakuira (moguće u obliku pare) kroz rupice raspoređene na obje strane rotora. Činjenica da se rashladnu vodu izbacuje i da se to čini blizu najvrućeg mjesta centrifugalnog rotora, ima mnoge prednosti. Prvo, struja tekućine, koja ide u jednom smjeru, je zbog toga uvelike pojednostavljena i, drugo, izlazna voda može ispariti, što zbog vrlo visoke latentne topline isparavanja ima za posljedicu mnogo učinkovitije hlađenje. In document EP-B-0,195,725 the cooling water after contact with the rim of the centrifugal ring is evacuated (possibly in the form of steam) through holes arranged on both sides of the rotor. The fact that the cooling water is ejected, and that it is done close to the hottest point of the centrifugal rotor, has many advantages. Firstly, the fluid flow, which goes in one direction, is therefore greatly simplified and, secondly, the exiting water can evaporate, which, due to the very high latent heat of evaporation, results in much more efficient cooling.

Europski patent EP-B-0,195,725 prikazuje u pojedinostima sistem za dovod rashladne vode u centrifugalni rotor, koji također unutar rotora ima dobavu veziva kojim se osigurava uzajamna kohezija unutar hasure koju ona oblikuju. U slučaju dovoda vode postavljena je cijev, koncentrična s osi rotora, s kojom se odvodi vodu koja završava u ravnini simetrije rotora u proširenom gnijezdu iz kojeg voda izlazi kroz šupljine i dolazi u unutrašnji prostor u rotoru i zatim se pomoću centrifugalne sile usmjerava na rupice koje izlaze na svakoj strani bočnih površina. The European patent EP-B-0,195,725 shows in detail the system for supplying cooling water to the centrifugal rotor, which also has a supply of binder inside the rotor, which ensures mutual cohesion within the grid they form. In the case of water supply, a pipe is installed, concentric with the axis of the rotor, with which the water is drained, which ends in the plane of symmetry of the rotor in an expanded nest from which the water exits through the cavities and enters the inner space of the rotor and is then directed by means of centrifugal force to the holes that they come out on each side of the side surfaces.

Rashladni sistem općenito u dva prethodna dokumenta savršeno ispunjava svoju ulogu i omogućuje značajno dulji vijek trajanja centrifugalnih rotora. Međutim, iako je hlađenje općenito učinkovito, na naplatku, gdje se taloži tekući ostakljen materijal, postoje veliki temperaturni gradijenti. Zbog toga se materijal taloži i zadržava na traci, koja ima određenu debljinu prije nego ga odbaci u obliku vlakana ili u obliku kapljica bačenih na slijedeći rotor. Ako relativan položaj izbačenog mlaza od rastalnog dijela i od rotora ostaje isti, velika temperaturna razlika nastaje između podloge u središtu te trake, koja je vrlo vruća, i područja neposredno do njenih bridova; na mjestu gdje je debljina rastaljenog materijala manja, podloga ostaje hladnija, jer masa je veća, dok je površina za izmjenu topline s vanjskom stranom u biti ista. To pogoduje smanjenju tog gradijenta, jer to je izvor trošenja zbog naprezanja unjetog u rotor za fibrilaciju. The cooling system in general in the two previous documents fulfills its role perfectly and enables a significantly longer service life of the centrifugal rotors. However, although the cooling is generally effective, large temperature gradients exist at the rim, where the liquid vitrified material is deposited. Because of this, the material is deposited and retained on the belt, which has a certain thickness, before it is discarded in the form of fibers or in the form of droplets thrown onto the next rotor. If the relative position of the ejected jet from the melting part and from the rotor remains the same, a large temperature difference occurs between the substrate in the center of that strip, which is very hot, and the area immediately to its edges; in the place where the thickness of the molten material is smaller, the substrate remains cooler, because the mass is greater, while the surface for heat exchange with the outer side is essentially the same. This favors the reduction of that gradient, as it is a source of wear due to the stress introduced into the fibrillation rotor.

U patentnoj prijavi WO 95/07243 predlaže se centrifugalni rotor namijenjen proizvodnji mineralnih vlakana, vrlo različite konstrukcije od prethodnog. On ima više oblik bubnja nego prstena, njegova debljina uzduž osi je uglavnom veća od njegovog najvećeg promjera. Dodatno, promjer u području pokrivenim s materijalom za fibrilaciju može biti različit. Rastaljen materijal taloži se na jednom od kraja bubnja, na mjestu manjeg promjera, i progresivno, uzduž osi područja stvaranja vlakana, na drugom kraju većeg promjera. U posljednjem području napravljene su rupice na obodu bubnja koje omogućuju izlazak vode u obliku pare. Svrha uvodnog uređaja je dobivanje vlakana koja se vrlo malo međusobno razlikuju po promjeru. In patent application WO 95/07243, a centrifugal rotor intended for the production of mineral fibers is proposed, with a very different construction from the previous one. It has the shape of a drum rather than a ring, its thickness along the axis being generally greater than its greatest diameter. Additionally, the diameter in the area covered with the fibrillation material may be different. The molten material is deposited at one end of the drum, at a place of smaller diameter, and progressively, along the axis of the fiber formation area, at the other end of a larger diameter. In the last area, holes are made on the rim of the drum that allow water to escape in the form of steam. The purpose of the introduction device is to obtain fibers that differ very little from each other in diameter.

Što se tiče temperaturnog gradijenta, na vanjskom spoju bubnja prema WO 95/07243 on je malo povećan, a ne snižen u usporedbi sa stanjem tehnike, jer se rastaljen materijal hladi uglavnom tijekom svog napredovanja od jednog kraja spoja do drugog. Čini se da funkcija rupica, kroz koje izlazi para, nije ponajprije rashladna, jer na najvrućem području, na mjestu gdje se taloži rastaljen materijal, nema nijedne rupice, dok je postavljen zadatak bio izbjeći dodir s metalom nasuprot svake rupice i zbog toga, vrlo lokalno, stvaranje vrste bubuljica u rastaljenom materijalu, pri čemu svaka bubuljica potječe od vlakna. As for the temperature gradient, at the external joint of the drum according to WO 95/07243 it is slightly increased, not decreased compared to the prior art, because the molten material cools mainly during its progress from one end of the joint to the other. It seems that the function of the dimples, through which the steam escapes, is not primarily a cooling one, because in the hottest area, where the molten material is deposited, there are no dimples, while the task set was to avoid contact with the metal opposite each dimple and, therefore, very locally , the formation of a series of pimples in the molten material, each pimple originating from a fiber.

Iako to nije njihova primarna funkcija, rupice koje omogućuju izlaženje pare olakšavaju hlađenje materijala za fibrilaciju, koji pokriva rupice kao i sam sloj u tom području. Budući da je na tom mjestu materijal za fibrilaciju najhladniji, učinak izlaska pare kroz rupice povećava toplinski gradijent na spoju. Although this is not their primary function, the holes that allow steam to escape facilitate the cooling of the fibrillation material, which covers the holes as well as the layer itself in that area. Since the material for fibrillation is the coldest at that point, the effect of steam escaping through the holes increases the thermal gradient at the joint.

Cilj izuma je postići smanjenje toplinskog gradijenta u aksijalnom smjeru naplatka centrifugalnih rotora. The aim of the invention is to reduce the thermal gradient in the axial direction of the rim of centrifugal rotors.

Izumom je dat rotor za fibrilaciju koja je dio postrojenja za izradu mineralnih vlakana vanjskim centrifugiranjem, pri čemu rotor uključuje naplatak na čiju vanjsku stranu se dovodi rastaljen materijal za fibrilaciju i to s razdjelnog rotora, ili s drugog rotora za fibrilaciju. Rotor uključuje unutarnji optok tekućine s rupicama za odvod tekućine. Rupice se nalaze na naplatku na onom dijelu rotora za fibrilaciju na koji se dovodi materijal za fibrilaciju. The invention provides a rotor for fibrillation that is part of a plant for the production of mineral fibers by external centrifugation, where the rotor includes a rim on the outside of which the molten material for fibrillation is fed from the dividing rotor, or from another rotor for fibrillation. The rotor includes an internal liquid circulation with holes for draining the liquid. The holes are located on the rim on the part of the fibrillation rotor where the fibrillation material is fed.

Taj raspored rashladnih rupica omogućuje smanjenje temperature na najvrućem mjestu podloge. Posljedica toga je sniženje odgovarajućeg temperaturnog gradijenta. This arrangement of cooling holes allows the temperature to be reduced in the hottest part of the substrate. The result is a lowering of the corresponding temperature gradient.

Ponajprije, rupice su raspoređene na naplatke u najmanje dva niza u paralelnim ravninama i, korisno, rotor uključuje dva niza koji su simetrični u odnosu prema ravnini simetrije naplatka. Preferably, the holes are arranged on the rims in at least two rows in parallel planes and, advantageously, the rotor includes two rows that are symmetrical with respect to the plane of symmetry of the rim.

Raspored u paralelnim nizovima, naročito kad su centrirani simetrično prema rotoru izuma, omogućuje hlađenje sredine područja na koje se taloži rastaljeni materijal. The arrangement in parallel rows, especially when they are centered symmetrically to the rotor of the invention, enables cooling of the center of the area where the molten material is deposited.

Izum dakle osigurava sredstvo za razdiobu tekućine, koje omogućuje napajanje svakog niza rupica i, korisno, razdjelno sredstvo za napajanje rupica je niz razdjelnih šupljina koje se nalaze u ravnini paralelnoj s ravninom u kojoj se nalazi niz rupica. The invention therefore provides a means for distributing the liquid, which enables the feeding of each row of holes and, usefully, the dividing means for feeding the holes is a series of dividing cavities located in a plane parallel to the plane in which the row of holes is located.

Rezultat toga je da se konačno napajaju svi nizovi rupica. Jedan način da se postigne taj rezultat sastoji se u izradi nizova rupica, odvojenog jedan od drugog neprekinutom pregradom, svaki niz šupljina napaja tako niz rupica i ne utječe na susjedni niz rupica. The result of this is that all rows of holes are finally powered. One way to achieve this result is to make a series of holes, separated from each other by a continuous partition, each series of cavities thus feeding the series of holes and not affecting the adjacent series of holes.

U izvedbi rotora prema izumu, kojoj se daje prednost, u tu svrhu izrađena je dvodjelna komora za dobavu tekućina, jedan dio komore služi dobavi tekućina, a drugi dio je razdjelna komora, pri čemu su oni zatim povezani pomoću razdjelnih šupljina. Općenito, razdjelne šupljine imaju ukupni presjek manji od ukupnog presjeka rupica na naplatku. Općenito, što se tiče obaju komora, one su izrađene tako da se brzinu dotoka tekućine do rotora može podesiti tako da u komori za napajanje nastaje zaliha tekućine. In the embodiment of the rotor according to the invention, which is preferred, a two-part chamber for the supply of liquids is made for this purpose, one part of the chamber serves for the supply of liquids, and the other part is a distribution chamber, where they are then connected by means of distribution cavities. In general, the distribution cavities have a total cross-section smaller than the total cross-section of the rim holes. In general, as far as both chambers are concerned, they are designed so that the flow rate of liquid to the rotor can be adjusted so that a supply of liquid is created in the feed chamber.

Da bi se osiguralo optimalno hlađenje unutrašnjosti rotora, korisno je da su razdjelne šupljine raspoređene u dva niza u istim ravninama, na svakoj strani dviju ploha s nizovima rupica na naplatku. Slično je učinjeno i za unutrašnju stijenku rotora, koja se nalazi na strani gdje se izbacuju vlakna, a na suprotnoj strani, idući od unutrašnjosti rotora, približava se prema obodu, tako da tekućina ide iz razdjelnih šupljina i, kako napreduje prema rupicama na naplatku, prska kroz njih van. To ensure optimal cooling of the inside of the rotor, it is useful that the separation cavities are arranged in two rows in the same planes, on each side of the two surfaces with rows of holes on the rim. The same is done for the inner wall of the rotor, which is located on the side where the fibers are ejected, and on the opposite side, going from the inside of the rotor, it approaches the rim, so that the liquid goes from the separation cavities and, as it progresses towards the holes on the rim, it sprays out through them.

Tako, prije nego izađe, tekućina maksimalno izvuče toplinu s rotora. Thus, before it exits, the liquid extracts maximum heat from the rotor.

U slučaju hlađenja na strani izvlačenja vlakana, na mjestu gdje se puše zrak zagrijan prolaskom iznad rastaljenog materijala, koji prolazeći pored rotora ujedno da i grije, rotor prema izumu ima izravne izlazne rupice raspoređene prema krugu i centrirane prema osi rotora, i one se nalaze na strani rotora gdje se izbacuju vlakna, a izravne izlazne šupljine ponajprije napajaju kružni utor velikog radijusa. U tom slučaju, korisno je da ukupna površina presjeka izravnih izlaznih šupljina istog reda veličine kao i površina presjeka razdjelnih šupljina, s tim da ova potonja korisno može biti veća. Te izravne bočne šupljine nalaze se općenito na prirubnici koja oblikuje bočnu stijenku rotora. In the case of cooling on the fiber extraction side, at the place where air heated by passing over the molten material is blown, which passes by the rotor and also heats it up, the rotor according to the invention has direct exit holes arranged in a circle and centered on the axis of the rotor, and they are located on side of the rotor where the fibers are ejected, and the direct exit cavities primarily feed the circular groove of a large radius. In this case, it is useful that the total cross-sectional area of the direct exit cavities is of the same order of magnitude as the cross-sectional area of the dividing cavities, with the fact that the latter can be usefully larger. These direct side cavities are generally located on the flange that forms the side wall of the rotor.

Takav izbor jednake brzine protoka tekućine koja izlazi iz naplatka i tekućine koja izlazi sa strane rotora, pri čemu se međutim potonji manje zagrije s rastaljenim materijalom, pokazuje učinkovitost glavnog rashladnog sistema prema izuma na najvrućem mjestu. Such a choice of an equal flow rate of the liquid coming out of the rim and the liquid coming out of the side of the rotor, the latter being however less heated with the molten material, shows the effectiveness of the main cooling system according to the invention at the hottest point.

Opis i slijedeće slike omogućit će razumijevanje izuma i procjenu njegovih prednosti. The description and the following figures will enable the invention to be understood and its advantages to be assessed.

Pri tome slika 1 prikazuje stroj za fibrilaciju s dva rotora za fibrilaciju, slika 2 prikazuje presjek kroz rotor za fibrilaciju u skladu s izumom i slika 3 prikazuje krivulje razdiobe temperature na površini naplatka utvrđene na istom rotoru. Figure 1 shows a fibrillation machine with two fibrillation rotors, figure 2 shows a section through a fibrillation rotor according to the invention and figure 3 shows the temperature distribution curves on the surface of the rim determined on the same rotor.

Slika 1 prikazuje tip uređaja za fibrilaciju upotrijebljen u skladu s izumom, koji uključuje tri centrifugalna rotora 1, 2 i 3, pri čemu se dva uzastopna rotora okreću u međusobno suprotnom smjeru. Također se općenito upotrebljava i uređaj istog tipa sa 4 centrifugalna rotora. Materijal za fibrilaciju 4 je u rastaljenom stanju i lijeva se preko ispusta 5 ili iz rupice stabilizirajućeg spremnika na prvi centrifugalni rotor 1, koji se također zove i razdjelni rotor, budući da on stvarno ne proizvodi vlakna, već se njegova funkcija sastoji uglavnom u ubrzavanju i razdiobi materijala za fibrilaciju 4 na slijedećem rotoru 2. Materijal dakle dolazi na rotor 2 i na njemu se djelomično prilijepi. Zaljepljen rastaljeni materijal odvaja se od rotora 2 djelovanjem centrifugalne sile i zatim se oblikuju vlakna koja se odnose sa strujom plina nastalom pomoću rupica na prstenu ventilatora 6 i/ili na usnicama za izvlačenje, dok nezaljepljen materijal ide dalje na slijedeći centrifugalni rotor 3 za proizvodnju, na isti način, daljnjih vlakana. Figure 1 shows a type of fibrillation device used in accordance with the invention, which includes three centrifugal rotors 1, 2 and 3, where two successive rotors rotate in opposite directions. A device of the same type with 4 centrifugal rotors is also generally used. The material for fibrillation 4 is in a molten state and is poured through the outlet 5 or from the hole of the stabilizing tank onto the first centrifugal rotor 1, which is also called the dividing rotor, since it does not really produce fibers, but its function consists mainly in accelerating and distribution of the material for fibrillation 4 on the next rotor 2. The material therefore comes to the rotor 2 and partially adheres to it. The glued molten material is separated from the rotor 2 by the action of centrifugal force and then the fibers are formed which relate to the gas stream created by means of the holes on the fan ring 6 and/or on the extraction lips, while the unglued material goes on to the next centrifugal rotor 3 for production, in the same way, further fibers.

Struja plina koja nosi vlakna usmjerena je poprečno na smjer izbacivanja vlakana iz rotora. Djelovanjem elementa 7 za izbacivanje veziva u plinsku struju centrifugalno se izbacuje vezivo u obliku kapljica. Plinska struja konačno raznosi kapljice veziva tako da se nastala vlakna jednoliko prevlače vezivom. The gas stream carrying the fibers is directed transversely to the direction of ejection of the fibers from the rotor. By the action of the element 7 for ejecting the binder into the gas stream, the binder is centrifugally ejected in the form of droplets. The gas stream finally blows up the binder droplets so that the resulting fibers are uniformly coated with the binder.

Ti centrifugalni rotori su hlađeni vodom, ponajprije s količinom protoka rashladne vode namještenim za svaki rotor ovisno o željenoj ravnotežnoj temperaturi. Normalno, idući od prvog rotora 1 prema krajnjem rotoru 3, temperatura rotora u dodiru s rastaljenim materijalom opada. These centrifugal rotors are water cooled, primarily with the amount of cooling water flow adjusted for each rotor depending on the desired equilibrium temperature. Normally, going from the first rotor 1 towards the end rotor 3, the temperature of the rotor in contact with the molten material decreases.

Izum se odnosi na centrifugalne rotore i na njihov rashladni sistem s optočnom tekućinom. The invention relates to centrifugal rotors and their cooling system with circulating liquid.

Konvencionalni centrifugalni rotori, slični onima opisanim u patentu EP-B-0,195,725, obično se sastoje od osovine kroz koju se dovode tekućine - rashladna voda i vezivo, od naplatka obodu na kojem se rastaljeni materijal fibrilira, koji se dijeli u rastaljenom stanju, i na dvije prirubnice na obje strane rotora, koje su s jedne strane povezane s osovinom, a s druge strane naplatkom, čime se oblikuje neka vrsta unutarnje komore (rotor je šupalj), kroz koju protječu rashladna sredstva prije nego se izbace kroz rupice koje se općenito nalaze na prirubnicama. Rotori za fibrilaciju također, dodatno, u svom središnjem dijelu, na strani izvalčenja vlakana, općenito uključuju element 7 za izbacivanje tekućeg veziva (vidi patent EP-B-0,059,152), o kojem se ovdje neće raspravljati. Conventional centrifugal rotors, similar to those described in patent EP-B-0,195,725, usually consist of a shaft through which fluids - cooling water and binder - are fed, from a rim to a rim on which the molten material fibrillates, which is divided in the molten state, and two flanges on either side of the rotor, which are connected on one side to the shaft and on the other side to the rim, thus forming a kind of inner chamber (the rotor is hollow), through which the coolants flow before being expelled through the holes that are generally located on the flanges. Fibrillation rotors also, in addition, in their central part, on the side of fiber extraction, generally include an element 7 for ejecting the liquid binder (see patent EP-B-0,059,152), which will not be discussed here.

Ovdje se radi o sistemu za hlađenje centrifugalnih rotora gornjeg tipa koji se s izumom može poboljšati. This is a cooling system for centrifugal rotors of the above type, which can be improved with the invention.

Za razliku od sistema ranije vrste, centrifugalni rotor prema izumu na obodu samog naplatka ima rupice za izlaženje rashladnog sredstva - vode u većini slučajeva. Te rupice su na slici 2 označene s 8, 9, i probušene su kroz naplatak u područjima 10, 11 koja su bila posebno stanjena. Takova konfiguracija omogućuje vrlo učinkovito hlađenje središnjeg dijela naplatka, na mjestu gdje se s materijalom za fibrilaciju dovodi najviše topline. Te rupice izranjaju na površinu naplatka koji ima uobičajenu strukturu. Na slici naplatak je označen s kružnim rebrima 12 koja se nalaze u ravnini okomitoj prema osi rotora, ali bilo koja drugačija struktura korisna za dobru fibrilaciju, kompatibilna je s izumom. Unlike the system of the earlier type, the centrifugal rotor according to the invention has holes on the rim of the rim itself for the exit of the coolant - water in most cases. These holes are marked 8, 9 in Figure 2, and they were drilled through the rim in areas 10, 11 that were specially thinned. Such a configuration enables very efficient cooling of the central part of the rim, at the point where the most heat is supplied with the fibrillation material. These holes emerge on the surface of the rim, which has a normal structure. In the figure the rim is marked with circular ribs 12 which are in a plane perpendicular to the axis of the rotor, but any other structure useful for good fibrillation is compatible with the invention.

Slika 2 prikazuje izvedbu izuma kojoj se daje prednost, tj. nizovi rupica odvojeni su s nekom vrstom pregrade 30, koja s jedne strane omogućuje odvojeno napajanje svakog niza rupica, a s druge strane šuplji dio unutar rotora dijeli u dvije komore, komoru za napajanje 13 i razdjelnu komoru 14. Dvije komore 13, 14 povezane su sa spojnim šupljinama 15, 16. Komora za napajanje 13 prihvaća rashladno sredstvo na uobičajen način preko osovine motora, koja nije prikazana. Djelovanjem centrifugalne sile tekućina se izbacuje na obod komore 13, na mjestu gdje se nalaze šupljine 15, 16. Dotok napajanja rashladne tekućine je ponajprije takav da omogućuje stvaranje zalihe tekućine u komori 13, koja jamči stalan protok od šupljina 15, 16 i 19, a također i preko ulaznog oboda komore 13. Na izlaznim šupljinama 15, 16 tekućina se izbacuje centrifugalnom silom uzduž osi tih šupljina i ponajprije udara stijenke razdjelne komore, odnosno 17, 18, koje idu skroz gore do oboda rotora i tako omogućuju napredovanje rashladnog sredstva - opet djelovanjem centrifugalne sile - prema rupicama 8, 9, “oplakujući” stijenke 17, 18, koje se tako hlade prije nego tekućina ode iz unutrašnjosti rotora na naplatak. “Pregrada” 30, između dva niza rupica jamči napajanje svakog od dva niza. Dvije komore prikazane su na slici kao zatvorene kutije. To nije nužno budući, da centrifugalna sila sistemski tjera vodu u radijalnom smjeru paralelno s ravninom simetrije rotora. Figure 2 shows a preferred embodiment of the invention, i.e. the rows of holes are separated by some kind of partition 30, which on the one hand enables separate feeding of each row of holes, and on the other hand divides the hollow part inside the rotor into two chambers, the feeding chamber 13 and the distribution chamber 14. The two chambers 13, 14 are connected to the connecting cavities 15, 16. The supply chamber 13 receives the coolant in the usual way via the motor shaft, which is not shown. Due to the action of centrifugal force, the liquid is ejected to the periphery of the chamber 13, at the place where the cavities 15, 16 are located. also over the inlet rim of the chamber 13. At the outlet cavities 15, 16, the liquid is ejected by centrifugal force along the axis of these cavities and first of all hits the walls of the separation chamber, i.e. 17, 18, which go all the way up to the rim of the rotor and thus enable the coolant to advance - again by the action of the centrifugal force - towards the holes 8, 9, "mourning" the walls 17, 18, which are thus cooled before the liquid goes from the inside of the rotor to the rim. The "partition" 30, between the two rows of holes, guarantees the power supply of each of the two rows. The two chambers are shown in the picture as closed boxes. This is not necessary since the centrifugal force systematically drives the water in a radial direction parallel to the plane of symmetry of the rotor.

U prototipu rotora promjera 350 mm, rupice 8, 9 oblikuju dva kružna niza sa 120 šupljina, od kojih je svaka imala promjer 1,2 mm. Prvi niz 8 leži na jednoj strani ravnine simetrije rotora, a drugi niz 9 leži simetrično na strani izvlačenja vlakana. Stijenka, koja razdvaja dvije komore 13, 14 sama je izbušena s dva kružna niza šupljina 10, od kojih svaka ima promjer 0,9 mm. Tako je dobiven niz rupica na naplatku s ukupnom površinom presjeka od 271 mm2, dok se napajaju djelovanjem spojnih šupljina 15, 16 mnogo manjeg ukupnog presjeka, naime 12,7 mm2. Izbor ovih presjeka sprečava zadržavanje rashladnog sredstva u razdjelnoj komori gdje postoji opasnost od zagrijavanja, a moguće stvaranje pare može te probleme još povećati. Stvaranje zalihe tekućine u komori za napajanje podešavanjem brzine protoka tekućine omogućuje sigurno trajno napajanje. In the prototype rotor with a diameter of 350 mm, holes 8, 9 form two circular arrays with 120 cavities, each of which had a diameter of 1.2 mm. The first row 8 lies on one side of the plane of symmetry of the rotor, and the second row 9 lies symmetrically on the side of the fiber extraction. The wall, which separates the two chambers 13, 14, is itself drilled with two circular series of cavities 10, each of which has a diameter of 0.9 mm. Thus, a series of holes on the rim with a total cross-sectional area of 271 mm2 was obtained, while they are fed by the action of connecting cavities 15, 16 of a much smaller total cross-section, namely 12.7 mm2. The choice of these sections prevents the retention of the coolant in the distribution chamber where there is a risk of heating, and the possible formation of steam can increase these problems. Creating a supply of liquid in the feed chamber by adjusting the flow rate of the liquid allows for a safe continuous supply.

Dvije komore, naime komora za napajanje 13 i razdjelna komora 14, tvore jednu izvedbu izuma. Nizovi rupica 8, 9 također se mogu napajati izravno iz područja 10, 11 koja su odvojena s pregradom 30, postavljanjem šupljina za napajanje koje djeluju na isti način kao šupljine 15, 16, ali koje se nalaze na cijevi koncentričnoj s osi rotora, usporedi dokument EP-B-0,195,725. Two chambers, namely the feeding chamber 13 and the dividing chamber 14, form one embodiment of the invention. The arrays of holes 8, 9 can also be fed directly from the area 10, 11 which is separated by the partition 30, by placing feeding cavities which act in the same way as the cavities 15, 16, but which are located on a tube concentric with the axis of the rotor, compare the document EP-B-0,195,725.

Ostala ispitivanja provedena su s nizovima rupica na naplatku, koje su bile raspoređene nesimetrično u odnosu na ravninu simetrije rotora. Rezultati su bili jednako zadovoljavajući. Other tests were performed with rows of holes on the rim, which were distributed asymmetrically with respect to the plane of symmetry of the rotor. The results were equally satisfactory.

Slika 2 prikazuje šupljinu 19 koja tvori dio kružnog niza izravnih izlaznih šupljina i osigurava dodatno hlađenje vanjske strane stijenke rotora za fibrilaciju, na strani izvlačenja vlakana. Rupice 19 u prototipu imaju promjer 0,9 mm i označenu su brojem 10. Površina njihovog ukupnog presjeka iznosi tako 6,4 mm2, što je manje od ukupne površine presjeka spojnih šupljina 15, 16 (12,7 mm2), ali razlika nije velika. Kao što se može vidjeti na slici, iznad šupljina 19 izrađen je kružni kanal 32 u kojem se skuplja tekućina koja izlazi iz šupljine 19 i raspoređuje se po širem području. Slično tome, šupljina 19 izranja otraga iza kanala 32 i iznad svega u odnosu na brid naplatka, omogućujući tekućini da prije izlaska iz rotora izvuče toplinu iz velikog područja bočne strane rotora. Figure 2 shows a cavity 19 which forms part of a circular array of direct outlet cavities and provides additional cooling of the outer wall of the fibrillation rotor, on the fiber withdrawal side. The holes 19 in the prototype have a diameter of 0.9 mm and are marked with the number 10. Their total cross-sectional area is thus 6.4 mm2, which is less than the total cross-sectional area of the connecting cavities 15, 16 (12.7 mm2), but the difference is not large . As can be seen in the picture, a circular channel 32 is made above the cavities 19 in which the liquid coming out of the cavity 19 is collected and distributed over a wider area. Similarly, the cavity 19 projects rearwardly behind the channel 32 and above all in relation to the edge of the rim, allowing the fluid to extract heat from a large area of the side of the rotor before exiting the rotor.

U usporedbi s konvencionalnim sistemom hlađenja (gdje se koriste šupljine koje leže u prirubnici na svakoj strani centrifugalnih rotora), sistem prema izumu, kako je upravo opisan, mnogo je učinkovitiji i omogućuje upotrebu samo 250 litara vode na sat, umjesto uobičajenih 350 - 400 litara. Compared to a conventional cooling system (where cavities lying in the flange on each side of the centrifugal rotors are used), the system according to the invention, as just described, is much more efficient and allows the use of only 250 liters of water per hour, instead of the usual 350 - 400 liters .

Slika 3 prikazuje mogući profil temperatura na površini naplatka. Vrlo je teško mjeriti stvaran profil temperature metala na površini naplatka koji se nalazi neposredno do rastaljenog materijala. Ovo ovdje je procjena, najvjerojatnija, i potpuno je kompatibilna s rezultatima pokusa na centrifugalnim rotorima prema izumu proizvedenim u proizvodnji, a čiji će se rezultati raspravljati u nastavku. Figure 3 shows a possible temperature profile on the rim surface. It is very difficult to measure the actual temperature profile of the metal on the surface of the rim, which is located directly next to the molten material. This here is an estimate, the most likely, and is fully compatible with the results of experiments on centrifugal rotors according to the invention produced in production, the results of which will be discussed below.

Prikazane su dvije krivulje: Two curves are shown:

22: krivulja razdiobe temperature u radnim uvjetima u slučaju konvencionalnih centrifugalnih rotora; 22: temperature distribution curve under operating conditions in the case of conventional centrifugal rotors;

23: krivulja razdiobe temperature na naplatku rotora u skladu s izumom. 23: curve of temperature distribution on the rotor rim according to the invention.

Sa starim sistemom hlađenje je manje učinkovito na središtu naplatka, između granica 20, 21, između kojih se taloži rastaljeni materijal. S druge strane, ono je mnogo učinkovitije na strani prstena gdje se vrši obodno puhanje (na strani postrojenja) i djeluje identično na strani izvlačenja vlakana. With the old system, the cooling is less effective in the center of the rim, between the borders 20, 21, between which the molten material is deposited. On the other hand, it is much more efficient on the side of the ring where the circumferential blowing takes place (on the plant side) and works identically on the side of fiber extraction.

Temperaturni gradijent u području 20, 21 označen je sa 24 i 25 za raniji način, odnosno za izum, pri čemu je potonji temperaturni gradijent značajno manji od ranijeg. The temperature gradient in the area 20, 21 is marked with 24 and 25 for the earlier method, i.e. for the invention, where the latter temperature gradient is significantly smaller than the earlier one.

Usporedna ispitivanja bila su provedena s uobičajenim sastavima koji se normalno rabe za fibrilaciju kamene vune, a također i s naročitim sastavima koji su mnogo fluidniji, imaju strmiju krivulju viskoznosti i/ili uže “radno područje”. Comparative tests were carried out with common compositions that are normally used for rock wool fibrillation, and also with special compositions that are much more fluid, have a steeper viscosity curve and/or a narrower "working area".

Konvencionalne mase koje se mogu fibrilirati za proizvodnju kamene vune imale su slijedeći maseni sastav: Conventional masses that can be fibrillated for the production of stone wool had the following mass composition:

SiO2 50% SiO2 50%

Al2O312% Al2O312%

CaO 28% CaO 28%

MgO 6% MgO 6%

Fe2O3 2,5% Fe2O3 2.5%

razni oksidi 1,5% various oxides 1.5%

Sastavi gornjeg tipa, koji se mogu fibrilirati, pokazuju vrlo polaganu promjenu viskoznosti kao funkciju temperature. Tako viskoznost ide od log10η = 1 na mjestu gdje je temperatura 1493°C na log10η = 3 kod temperaturne razlike od približno 380°C. Smatra se da je radno područje temperaturno područje koje dijeli temperaturu pri kojoj viskoznost odgovara log10η = 1 od temperature likvidusa, u trenutku početka vitrifikacije. Ta druga temperatura je u tom slučaju 1230°C, tako da se može reći da radno područje ima raspon od 260°C. Takav sastav, koji se može fibrilirati na centrifugalnim rotorima prema izumu, omogućuje dobivanje uglavnom duljih vlakana, nego s konvencionalnim rotorima. Potanje, tijekom ispitivanja izdržljivosti tijekom 40 sati, s rotorima u skladu s izumom tjeranim brzinom od 6000 okretaja u minuti, bilo je opaženo produljenje vlakna takovo da je bilo moguće smanjenje površinske gustoće primarne hasure od 300 g/m2 na 220 g/m2 s jednakom količinom veziva za dati indeks finoće (“fazoniranje”). Produljenje vlakana također omogućuje smanjenje količine veziva. Compositions of the above type, which can be fibrillated, show a very slow change in viscosity as a function of temperature. Thus, the viscosity goes from log10η = 1 at the point where the temperature is 1493°C to log10η = 3 at a temperature difference of approximately 380°C. The operating range is considered to be the temperature range that divides the temperature at which the viscosity corresponds to log10η = 1 from the temperature of the liquidus, at the moment of the start of vitrification. That second temperature in this case is 1230°C, so it can be said that the working range has a range of 260°C. Such a composition, which can be fibrillated on centrifugal rotors according to the invention, makes it possible to obtain mainly longer fibers than with conventional rotors. Further, during endurance tests for 40 hours, with rotors according to the invention driven at a speed of 6000 revolutions per minute, fiber elongation was observed such that it was possible to reduce the surface density of the primary warp from 300 g/m2 to 220 g/m2 with equal by the amount of binder for a given index of fineness ("shaping"). Extending the fibers also allows for a reduction in the amount of binder.

“Fazoniranje” je mjera koju koriste svi proizvođači kamene vune, i koja omogućuje ocjenu opće finoće i duljine vlakana. Ona se mjeri pomoću takozvanog uređaja za “fazoniranje”, na primjer uređaja tvrtke AVIATEST NIEBERDING, Njemačka. Ispitni uzorak je pramen mineralne vune, bez veziva ili ulja, određene mase, koji može sadržavati nevlaknaste sastojke (trosku, pijesak, itd.) uvjetovane određenim procesima fibrilacije. To se spreša u cilindričnoj komori prethodno utvrđenog volumena. Struja plina - suhog zraka ili dušika - prolazi kroz ispitni uzorak. Brzinu protoka plina drži se konstantnom, a mjeri se pad tlaka preko ispitnog uzorka upotrebom kolone vode graduirane u konvencionalnim jedinicama. "Fazoning" is a measure used by all stone wool producers, and which allows for the evaluation of the overall fineness and length of the fibers. It is measured using a so-called "shaping" device, for example a device from the company AVIATEST NIEBERDING, Germany. The test sample is a strand of mineral wool, without binder or oil, of a certain mass, which may contain non-fibrous ingredients (slag, sand, etc.) conditioned by certain fibrillation processes. This is prevented in a cylindrical chamber of previously determined volume. A stream of gas - dry air or nitrogen - passes through the test sample. The gas flow rate is kept constant, and the pressure drop across the test sample is measured using a water column graduated in conventional units.

Primarna hasura je faza u proizvodnji kad se hasure proizvode u dvije faze: najprije se oblikuje primarno tkanje od vlakana i tekućeg veziva (to je tkanje što je moguće tanje) i zatim se u cik-caku slaže nekoliko debljina primarnog tkanja, okomito na os krajnje hasure. Značajke krajnje hasure su bolje što je veći broj primarnih tkanja, tj. kad su sve stvari jednake, a niža je samo pojedinačna površinska gustoća. Normalna proizvodnja je ograničena s obzirom na nisku krajnju površinsku gustoću primarnog tkanja (ispod te minimalne vrijednosti tkanje se trga i vide se šupljine), ali s ovim izumom moguće se je pod istim proizvodnim uvjetima lako spustiti do nižih vrijednosti, čime se bitno poboljšava kakvoća krajnje hasure. Također se može reći da se za datu kakvoću, tj. za dati broj pregiba primarnog tkanja u krajnjoj hasuri, može smanjiti količinu veziva, jer je vezivo, koje osigurava koheziju primarnog tkanja, tekuće. Primary weave is a stage in production when weaves are produced in two stages: first, the primary weave is formed from fibers and a liquid binder (this weave is as thin as possible) and then several thicknesses of the primary weave are arranged in a zigzag, perpendicular to the end axis mess. The characteristics of the final weave are better the greater the number of primary weaves, i.e. when all things are equal, and only the individual surface density is lower. Normal production is limited due to the low ultimate surface density of the primary weave (below this minimum value the weave tears and voids are visible), but with this invention it is possible under the same production conditions to easily go down to lower values, which significantly improves the ultimate quality mess. It can also be said that for a given quality, i.e. for a given number of folds of the primary weave in the final hesura, the amount of binder can be reduced, because the binder, which ensures the cohesion of the primary weave, is liquid.

Provedena su i druga ispitivanja sa sastavom koji je mnogo fluidniji u tekućem stanju. To je proizvod koji uključuje velik udio troske iz visoke peći s niskim sadržajem željeza, što omogućuje dobivanje čistih vlakana koja su poželjna za neke primjene, naročito za prskanje. Tipični maseni sastav je na primjer: Other tests were carried out with a composition that is much more fluid in the liquid state. It is a product that includes a high proportion of blast furnace slag with a low iron content, which makes it possible to obtain clean fibers that are desirable for some applications, especially for spraying. A typical mass composition is for example:

SiO2 44% SiO2 44%

Al2O311% Al2O311%

CaO 38% CaO 38%

MgO 5% MgO 5%

Fe2O3 <1% Fe2O3 <1%

razni oksidi >1% various oxides >1%

Temperaturna razlika, koja odgovara viskoznosti η tako da je log10η = 1 i likvidusu, u tom slučaju je 90°C, što odgovara uskom “radnom području”. Da bi se radilo pravilno, nužno je držati rastaljen materijal tijekom fibrilacije unutar vrlo uskog temperaturnog područja. S centrifugalnim rotorima prema izumu, nađeno je da se postrojenje može mnogo lakše održavati pod pravilnim proizvodnim uvjetima. The temperature difference, which corresponds to the viscosity η so that log10η = 1 and the liquidus, in that case is 90°C, which corresponds to a narrow "working area". To work properly, it is necessary to keep the molten material during fibrillation within a very narrow temperature range. With centrifugal rotors according to the invention, it has been found that the plant can be maintained much more easily under proper production conditions.

Neki sastavi kamene vune se posebno teško fibriliraju. To je naročito slučaj kod onih koji se mnogo brže otapaju u biološkim tekućinama. Some compositions of rock wool are particularly difficult to fibrillate. This is especially the case with those that dissolve much faster in biological fluids.

Tako tipični maseni sastav: Such a typical mass composition:

SiO2 52% SiO2 52%

Fe2O30,5% Fe2O30.5%

Al2O3 2% Al2O3 2%

CaO 31,5% CaO 31.5%

MgO 9,5% MgO 9.5%

Na2O 4% Na2O 4%

razno 0,5% miscellaneous 0.5%

ima posebno usko radno područje, koje vrlo otežava kontroliranje uvjeta fibrilacije s konvencionalnim rotorima. Zbog toga je temperatura za log10η = 1 jednaka 1360°C, a likvidus je pri 1340°C, što daje radno područje od 20°C. U postrojenjima opremljenim s rotorima kojima rashladno sredstvo izlazi iz bočnih prirubnica, zaista je nemoguće stabilizirati postrojenje, koje stalno oscilira između materijala koji se fibrilira i koji je prevruć za fibrilaciju ili je prehladan, pa dolazi do devitrifikacije. Rotori prema izumu omogućili su stabiliziranje postrojenja i fibrilaciju satima bez prekida. Oni tako pružaju rješenje za glavni problem koji utječe na zdravlje i na okoliš. has a particularly narrow working area, which makes it very difficult to control fibrillation conditions with conventional rotors. Therefore, the temperature for log10η = 1 is equal to 1360°C, and the liquidus is at 1340°C, which gives a working range of 20°C. In plants equipped with rotors where the coolant exits from the side flanges, it is really impossible to stabilize the plant, which constantly oscillates between material that fibrillates and is too hot to fibrillate or too cold, so devitrification occurs. The rotors according to the invention made it possible to stabilize the plant and fibrillate for hours without interruption. They thus provide a solution to a major problem affecting health and the environment.

Čak štoviše, tri gornja slučaja, bez obzira je li u pitanju konvencionalni sastav ili sastav koji se teže fibrilira, opaženo je manje trošenje centrifugalnih rotora koji se moraju zamijeniti na radnog vremena koje je otprilike 20% dulje. Even more, the above three cases, regardless of whether it is a conventional composition or a composition that is more difficult to fibrillate, a lower wear of the centrifugal rotors that have to be replaced at a working time that is approximately 20% longer is observed.

Tako se može vidjeti da uređaj prema izumu, djelujući sniženjem temperaturnog gradijenta na naplatku centrifugalnog rotora pod rastaljenim materijalom za fibrilaciju, omogućuje značajno poboljšane proizvodne uvjete, u obadva smisla, kakvoćom proizvodnje (duljina vlakana i sprečavanje smanjenja kakvoće zbog istrošenja rotora) i sa stajališta postojanosti uvjeta (posebno kod sastava s vrlo uskim radnim područjem), ili sa stajališta istrošenja opreme. Thus, it can be seen that the device according to the invention, acting by lowering the temperature gradient on the rim of the centrifugal rotor under the molten material for fibrillation, enables significantly improved production conditions, in both senses, in terms of production quality (fiber length and prevention of quality reduction due to rotor wear) and from the point of view of stability conditions (especially with a composition with a very narrow working area), or from the point of view of equipment wear.

Claims (14)

1. Rotor za fibrilaciju, koji je dio postrojenja za proizvodnju mineralnih vlakana vanjskim centrifugiranjem, ima naplatak na vanjskoj strani na koju se u rastaljenom stanju dovodi materijal koji se želi fibrilirati i to ili s razdjelnog rotora, ili s drugog rotora za fibrilaciju, rotor također uključuje unutarnji optok tekućine s rupicama za izlazak tekućine koje se nalaze na naplatku rotora, naznačen time, da rupice (8, 9) leže u onom dijelu naplatka na koji se dovodi materijal koji će se fibrilirati.1. The fibrillation rotor, which is part of the plant for the production of mineral fibers by external centrifugation, has a rim on the outer side to which the material to be fibrillated is fed in a molten state either from the separation rotor or from another fibrillation rotor, the rotor also includes an internal liquid circulation with holes for the exit of the liquid located on the rim of the rotor, characterized by the fact that the holes (8, 9) lie in that part of the rim where the material to be fibrillated is fed. 2. Rotor za fibrilaciju prema zahtjevu 1, naznačen time, da su rupice (8, 9) raspoređene na naplatku u najmanje dva niza koji leže u paralelnim ravninama.2. Fibrillation rotor according to claim 1, characterized in that the holes (8, 9) are arranged on the rim in at least two rows lying in parallel planes. 3. Rotor za fibrilaciju prema zahtjevu 2, naznačen time, da uključuje dva niza koji leže simetrično u odnosu prema ravnini simetrije naplatka.3. The rotor for fibrillation according to claim 2, characterized in that it includes two rows that lie symmetrically in relation to the plane of symmetry of the rim. 4. Rotor za fibrilaciju prema zahtjevu 2 ili zahtjevu 3, naznačen time, da sredstvo za razdiobu tekućine omogućuje napajanje svakog niza rupica.4. A rotor for fibrillation according to claim 2 or claim 3, characterized in that the means for distributing the liquid enables the feeding of each series of holes. 5. Rotor za fibrilaciju prema zahtjevu 4, naznačen time, da sredstvo za razdiobu koje napaja niz rupica je niz razdjelnih šupljina raspoređenih u ravnini paralelnoj s nizom rupica.5. A rotor for fibrillation according to claim 4, characterized in that the means for distribution feeding the series of holes is a series of distribution cavities arranged in a plane parallel to the series of holes. 6. Rotor za fibrilaciju prema zahtjevu 5, naznačen time, da su nizovi rupica (8, 9) odvojeni jedan od drugog s neprekinutom pregradom (30).6. Fibrillation rotor according to claim 5, characterized in that the rows of holes (8, 9) are separated from each other by a continuous partition (30). 7. Rotor za fibrilaciju prema zahtjevu 5 ili zahtjevu 6, naznačen time, da uključuje dvodjelnu komoru za napajanje tekućine, komoru za napajanje (13) i razdjelnu komoru (14) i da su one povezane s razdjelnim šupljinama (15, 16).7. Fibrillation rotor according to claim 5 or claim 6, characterized in that it includes a two-part liquid supply chamber, a supply chamber (13) and a distribution chamber (14) and that they are connected to distribution cavities (15, 16). 8. Rotor za fibrilaciju prema jednom od zahtjeva 5 do 7, naznačen time, da razdjelne šupljine imaju ukupnu površinu presjeka manju od ukupne površine presjeka rupica na naplatku.8. Fibrillation rotor according to one of claims 5 to 7, characterized in that the dividing cavities have a total cross-sectional area smaller than the total cross-sectional area of the holes on the rim. 9. Rotor za fibrilaciju prema zahtjevu 7, naznačen time, da je brzina dotoka tekućine k rotoru podešena tako da se u komori (31) za dobavu stvori zaliha tekućine.9. Rotor for fibrillation according to claim 7, characterized in that the speed of liquid inflow to the rotor is adjusted so that a supply of liquid is created in the supply chamber (31). 10. Rotor za fibrilaciju prema jednom od zahtjeva 2 do 9, naznačen time, da su razdjelne šupljine raspoređene u dva niza u ravninama na svakoj strani dviju ravnina nizova rupica na naplatku.10. Fibrillation rotor according to one of claims 2 to 9, characterized in that the dividing cavities are arranged in two rows in the planes on each side of the two planes of the rows of holes on the rim. 11. Rotor za fibrilaciju prema zahtjevu 10, naznačen time, da se unutarnje stijenke (17, 18) rotora, koje se nalaze na strani gdje se izbacuju vlakna, a također i na suprotnoj strani, međusobno približavaju idući od unutrašnjosti rotora prema njegovom obodu, a tekućina, koja izlazi iz razdjelnih šupljina, prska se preko njih napredujući prema rupicama na naplatku.11. Fibrillation rotor according to claim 10, characterized in that the inner walls (17, 18) of the rotor, which are located on the side where the fibers are ejected, and also on the opposite side, approach each other going from the inside of the rotor towards its circumference, and the liquid, which comes out of the distribution cavities, is sprayed over them, advancing towards the holes on the rim. 12. Rotor za fibrilaciju prema jednom od zahtjeva 1 do 11, naznačen time, da na bočnoj strani ima izravne izlazne šupljine (19) raspoređene kružno centrirane prema osi rotora, i nalaze se na onoj strani rotora gdje se izbacuju vlakna.12. Fibrillation rotor according to one of claims 1 to 11, characterized in that on the side it has direct outlet cavities (19) arranged circularly centered on the axis of the rotor, and located on the side of the rotor where the fibers are ejected. 13. Rotor za fibrilaciju prema zahtjevu 12, naznačen time, da se iz izravnih izlaznih šupljina (19) napaja kružni utor (32) većeg radiusa.13. Rotor for fibrillation according to claim 12, characterized in that the circular groove (32) with a larger radius is fed from the direct outlet cavities (19). 14. Rotor za fibrilaciju prema zahtjevu 12 ili zahtjevu 13, naznačen time, da se ukupne površine presjeka izravnih izlaznih šupljina (19) i razdjelnih šupljina istog reda veličine, ali su potonje ponajprije veće.14. Rotor for fibrillation according to claim 12 or claim 13, characterized in that the total cross-sectional areas of the direct outlet cavities (19) and the dividing cavities are of the same order of size, but the latter are preferably larger.
HRP970033 1997-01-16 1997-01-16 Improvement to devices for manufacturing mineral fibres by free centrifuging HRP970033A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HRP970033 HRP970033A2 (en) 1997-01-16 1997-01-16 Improvement to devices for manufacturing mineral fibres by free centrifuging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HRP970033 HRP970033A2 (en) 1997-01-16 1997-01-16 Improvement to devices for manufacturing mineral fibres by free centrifuging

Publications (1)

Publication Number Publication Date
HRP970033A2 true HRP970033A2 (en) 1998-10-31

Family

ID=10946521

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP970033 HRP970033A2 (en) 1997-01-16 1997-01-16 Improvement to devices for manufacturing mineral fibres by free centrifuging

Country Status (1)

Country Link
HR (1) HRP970033A2 (en)

Similar Documents

Publication Publication Date Title
EP1621741B1 (en) Gas turbine system
US2587710A (en) Apparatus and process for making mineral wool
ES2658741T3 (en) Artificial vitreous fibers
FI104321B (en) Process for the production of mineral wool and mineral wool produced therewith
JPH0432132B2 (en)
JPS62171941A (en) Apparatus for production of inorganic short fiber
HRP960489A2 (en) Method and apparatus for the production of mineral wool
CA2265044A1 (en) Fiber manufacturing spinner
HRP970033A2 (en) Improvement to devices for manufacturing mineral fibres by free centrifuging
JPWO2005050114A1 (en) Combustion gas extraction probe and combustion gas processing method
DK165002B (en) Fibre-producing device for producing mineral wool
US5954852A (en) Method of making fibers from mineral melts which have a viscosity of not more than 18 poise at 1400° C.
US4525190A (en) Apparatus for producing glass fibers with centrifugal force
US2855626A (en) Apparatus for manufacturing mineral wool
US2774103A (en) Apparatus for fiberizing molten material
AU718773B2 (en) Improvement to devices for manufacturing mineral fibres by free centrifuging
US3542533A (en) Rotor construction for centrifugal rotor fiberization
PL71183B1 (en)
US4369091A (en) Method and apparatus for drying a liquid product
US2148802A (en) Apparatus for the manufacture of centrifugally cast pipes
US3705712A (en) Axial pouring-nozzle structure for rotary melting furnace
JPS585404A (en) Gas turbine blade cooled by liquid
US3008701A (en) Improved cooling means on a rotating cylinder
SU997966A1 (en) Centrifugal casting machine
SU949004A1 (en) Blasting tuyere of blast furnace

Legal Events

Date Code Title Description
A1OB Publication of a patent application
ODBC Application rejected