HRP950445A2 - A fuel injector for an internal combustion engine - Google Patents

A fuel injector for an internal combustion engine Download PDF

Info

Publication number
HRP950445A2
HRP950445A2 HR0927/94A HRP950445A HRP950445A2 HR P950445 A2 HRP950445 A2 HR P950445A2 HR 0927/94 A HR0927/94 A HR 0927/94A HR P950445 A HRP950445 A HR P950445A HR P950445 A2 HRP950445 A2 HR P950445A2
Authority
HR
Croatia
Prior art keywords
pressure
piston
fuel
spring
pressure chamber
Prior art date
Application number
HR0927/94A
Other languages
Croatian (hr)
Inventor
Finn Quordrup Jensen
Original Assignee
Man B & W Diesel Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Man B & W Diesel Gmbh filed Critical Man B & W Diesel Gmbh
Publication of HRP950445A2 publication Critical patent/HRP950445A2/en
Publication of HRP950445B1 publication Critical patent/HRP950445B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/08Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves opening in direction of fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
    • F02M61/205Means specially adapted for varying the spring tension or assisting the spring force to close the injection-valve, e.g. with damping of valve lift

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Ovaj izum odnosi se na brizgalicu za gorivo za motor s unutarnjim izgaranjem, osobito za veliki dvotaktni diesel motor, koja ima vanjsko kućište za montiranje u pokrov cilindra i skroz slobodan prolaz za gorivo koji se otvara u mlaznicu, i ima klizač ventila koji se može premještati uzdužno u vodilici klizača i ide gore u smjeru prema svom dosjedu ventila djelovanjem predopterećene tlačne opruge i u suprotnom smjeru pomoću pritiska goriva u prolazu za gorivo, prvi klip, koji se može aksijalno premještati u kućištu, smješten je na jednom kraju tlačne opruge i ima prvu površinu koja okrenuta od opruge i, zajedno s nepomičnim dijelom, omeđuje prvu tlačnu komoru koja je spojena s prolazom za gorivo kroz kanal, rečena tlačna opruga namješta prvi klip u smjeru prema krajnjem položaju s minimalnim volumenom goriva u prvoj tlačnoj komori. This invention relates to a fuel injector for an internal combustion engine, particularly for a large two-stroke diesel engine, having an external housing for mounting in the cylinder head and a completely free fuel passage opening into the nozzle, and having a movable valve slide longitudinally in the slide guide and goes up in the direction towards its abutment of the valve by the action of the preloaded compression spring and in the opposite direction by the fuel pressure in the fuel passage, the first piston, axially movable in the housing, is located at one end of the compression spring and has a first surface which faces away from the spring and, together with the stationary part, defines the first pressure chamber which is connected to the fuel passage through the channel, said pressure spring adjusts the first piston in the direction towards the end position with the minimum volume of fuel in the first pressure chamber.

U takovoj brizgalici opisanoj u danskom patentu br. 152 619, koja odgovara japanskom patentu br. 1851989, oblik kanala za prolaz goriva do prve tlačne komore konstruiran je kao prigušni kanal tako da tlak u komori slijedi trenutni tlak u prolazu goriva s odgodom. Kad tlak goriva poraste tijekom perioda ubrizgavanja, pritisak također poraste u tlačnoj komori, tako da se prvi klip potiskuje prema zatvarajućoj opruzi i povisuje silu s kojom opruga djeluje na klizač ventila u smjeru prema njegovom dosjedu, koja povisuje pritisak zatvaranja brizgalice. In such an injector described in Danish patent no. 152 619, which corresponds to Japanese patent no. 1851989, the shape of the fuel passage channel to the first pressure chamber is designed as a throttle channel so that the chamber pressure follows the instantaneous fuel passage pressure with a delay. When the fuel pressure increases during the injection period, the pressure also increases in the pressure chamber, so that the first piston is pushed against the closing spring and increases the force with which the spring acts on the valve slide in the direction towards its abutment, which increases the closing pressure of the injector.

To pomaže rješenju teškoće da, je pritisak zatvaranja, tj, pritisak kod kojeg se klizač ventila pomiče prema svom dosjedu na kraju perioda isporuke, obično manji od pritiska otvaranja, tj. pritiska u prolazu za gorivo kod kojeg se klizač ventila podiže sa svog dosjeda ventila na početku perioda Isporuke. Niži pritisak zatvaranje je zbog činjenice da u zatvorenom položaju brizgalice, tlak goriva djeluje na efektivnu površinu klizača ventila koja je manja nego kad je klizač ventila u svom otvorenom položaju, kad pritisak također djeluje na površinu klizača ispod dosjedne površine. This helps to solve the problem that the closing pressure, i.e. the pressure at which the valve slide moves towards its seat at the end of the delivery period, is usually less than the opening pressure, i.e. the pressure in the fuel passage at which the valve slide is lifted from its valve seat at the beginning of the Delivery period. The lower closing pressure is due to the fact that in the closed position of the injector, the fuel pressure acts on the effective surface of the valve slide which is less than when the valve slide is in its open position, when the pressure also acts on the surface of the slide under the adjacent surface.

U brizgalici opisanoj u danskom patentu, prvi klip vrši stalne pokrete namještanja tijekom i neposredno nakon perioda isporuke brizgalice, što može imati za posljedicu nezanemarivo trošenje površine vodila klipa sa sustavnim istjecanjem iz tlačne komore. Po završetku svakog perioda isporuke, tlačna opruga potiskuje prvi klip natrag u njegov krajnji položaj s minimalnim volumenom goriva u tlačnu komoru, tako da na pritisak otvaranja brizgalice ne utječe hidrauličko opterećenje tlačne opruge. In the injector described in the Danish patent, the first piston performs constant adjustment movements during and immediately after the delivery period of the injector, which can result in non-negligible wear of the piston guide surface with systematic leakage from the pressure chamber. At the end of each delivery period, the pressure spring pushes the first piston back to its end position with the minimum volume of fuel in the pressure chamber, so that the injector opening pressure is not affected by the hydraulic load on the pressure spring.

Poznato je da pritisak zgušnjavanja u cilindru motora ovisi o opterećenju tako da je kod potpunih opterećenja pritisak bitno viši nego kod niskih opterećenja. Kod punog opterećenja, na primjer, pritisak zgušnjavanja može biti pri otprilike 120 bara, dok kod praznog opterećenja pritisak zgušnjavanja je pri otprilike 40 bara. It is known that the compression pressure in the engine cylinder depends on the load, so that at full loads the pressure is significantly higher than at low loads. At full load, for example, the compaction pressure may be at approximately 120 bar, while at idle the compaction pressure is at approximately 40 bar.

Kad je klizač ventila u svom zatvorenom položaju, pritisak u cilindru motora se širi kroz rupice mlaznice i dalje uzduž područja klizača ispod površine dosjeda, tj. odsječka klizača smještenog na strani mlaznice dosjeda ventila. Zbog toga, stvarni pritisak zgušnjavanja djeluje na klizač ventila silom u smjeru otvaranja. Pritisak zgušnjavanja rastući s opterećenjem motora tako dovodi do pada pritiska otvaranja poznate brizgalice kod povećanih opterećenja motora. U tipičnoj brizgalici za gorivo za veliki dvotaktni diesel motor, pritisak otvaranja može na primjer, pasti od 400 bara kod praznog opterećenja na 325 bara kod punog opterećenja motora. Niži pritisak otvaranja kod punog opterećenja ne potiče atomizaciju goriva na početku perioda ubrizgavanja. When the valve slide is in its closed position, the pressure in the engine cylinder spreads through the nozzle holes and further along the area of the slide under the seating surface, i.e. the section of the slide located on the nozzle side of the valve seat. Because of this, the actual condensing pressure acts on the valve slide with a force in the opening direction. The condensation pressure increasing with the engine load thus leads to a drop in the opening pressure of the known injector at increased engine loads. In a typical fuel injector for a large two-stroke diesel engine, the opening pressure may, for example, drop from 400 bar at idle to 325 bar at full engine load. The lower opening pressure at full load does not promote fuel atomization at the beginning of the injection period.

Kod niskih opterećenja motora, pritisak goriva u brizgalici određen je njegovim pritiskom otvaranja, jer pumpe za gorivo dobavljaju tako malu količinu goriva da otpor tečenja u mlaznici ne utječe na pritisak goriva. Suprotno tome, količine goriva koje isporučuju pumpe kod viših opterećenja motora su veće od otpora protoku u mlaznici, postaju presudne za pritisak goriva u brizgalici, tj. pritisak goriva u tom slučaju je bitno viši nego pritisak otvaranja brizgalice. At low engine loads, the fuel pressure in the injector is determined by its opening pressure, because the fuel pumps deliver such a small amount of fuel that the flow resistance in the injector does not affect the fuel pressure. On the contrary, the quantities of fuel delivered by the pumps at higher engine loads are greater than the flow resistance in the nozzle, they become decisive for the fuel pressure in the injector, i.e. the fuel pressure in this case is significantly higher than the nozzle opening pressure.

Pritisak otvaranja u poznatim brizgalicama je određen preopterećenjem tlačne opruge. Izrada opruga podliježe određenim proizvodnim tolerancijama, čija posljedica je činjenica da brizgalice za gorivo u motoru s unutrašnjim izgaranjem nisu nužno sve izložene točno jednakom pritisku otvaranja. Promjene pritisaka otvaranja brizgalice često postaju više izražene nakon dugog perioda rada motora, jer se opruge tijekom rada dobave, tj. izgube nešto od svoje opružne sile. Stoga, postoje neke vremenski uvjetovane promjene u pritiscima otvaranja brizgalici, zbog kojih je potrebna kontrola i ponovo pritezanje tlačnih opruga u pravilnim razmacima da se održi zadovoljavajući rad motora. Ti poslovi predstavljaju gubitak vremena i nepoželjni su. The opening pressure in known injectors is determined by overloading the compression spring. The production of springs is subject to certain production tolerances, the consequence of which is the fact that fuel injectors in an internal combustion engine are not necessarily all exposed to exactly the same opening pressure. Changes in injector opening pressures often become more pronounced after a long period of engine operation, because the springs are supplied during operation, i.e. lose some of their spring force. Therefore, there are some time-dependent changes in injector opening pressures, necessitating inspection and re-tensioning of the compression springs at regular intervals to maintain satisfactory engine operation. These jobs are a waste of time and are undesirable.

Predmet izuma je osigurati brizgalicu za gorivo koja ima povećani pritisak otvaranja kod povećanih opterećenja motora, i koja zahtjeva manje održavanje. The object of the invention is to provide a fuel injector that has an increased opening pressure at increased engine loads, and that requires less maintenance.

Imajući u vidu taj cilj, brizgalica za gorivo prema izumu naznačena je time da je opruga s prijenosom sile povezana s drugim klipom koji ima drugu površinu koja je okrenuta od opruge i tvori krajnju stijenku u drugoj tlačnoj komori, da pri pomicanju u smjeru od rečenog krajnjeg položaja prvog klipa otvara spoj dotoka između prve i druge tlačne komore, tako da druga tlačna komora ima veću stvarnu površinu presjeka nego prva komora, i da ograničen prolaz protoka povezuje drugu tlačnu komoru s kanalom. With this aim in mind, the fuel injector according to the invention is characterized in that the force transmission spring is connected to a second piston having a second surface facing away from the spring and forming an end wall in the second pressure chamber, so that when moving in the direction away from said end the position of the first piston opens an inflow connection between the first and second pressure chambers, so that the second pressure chamber has a larger actual cross-sectional area than the first chamber, and that a restricted flow passage connects the second pressure chamber to the channel.

Kod povećanih opterećenja motora, kao što je gore spomenuto, pritisak raste u prolazu za gorivo kao posljedica otpora protoku u mlaznici. Stoga, također poraste pritisak u prvoj tlačnoj komori, što uzrokuje pomicanje prvog klipa tako da je otvoren spoj protoka između prve i druge tlačne komore, i količina goriva teče u drugu tlačnu komoru. Budući da ta tlačna komora ima veću stvarnu površinu presjeka nego prva komora, stvaranje pritiska u drugoj komori dovodi do povratka prvog klipa u njegov krajnji položaj s minimalnim volumenom goriva, i istovremeno količina goriva u drugoj tlačnoj komori je zatvorena, jer prvi klip prekida spoj protoka između komora. Budući da je drugi klip s prijenosom sile povezan s oprugom, posljednji će biti skraćenog koraka punjenja komora, čime poraste opružna sila. Neovisno o maloj količini goriva koja je istekla, gorivo se drži zatvoreno u tlačnoj komori, sve dok brizgalica za gorivo bude aktivirana za ponovno ubrizgavanje goriva, i tako se održava povećana sila opruge, što brizgalici goriva omogućuje oboje, viši pritisak otvaranja i viši pritisak zatvaranja. At increased engine loads, as mentioned above, pressure increases in the fuel passage as a result of resistance to flow in the injector. Therefore, the pressure in the first pressure chamber also increases, which causes the first piston to move so that the flow connection between the first and second pressure chambers is open, and a quantity of fuel flows into the second pressure chamber. Since this pressure chamber has a larger real cross-sectional area than the first chamber, the build-up of pressure in the second chamber causes the first piston to return to its end position with a minimum fuel volume, and at the same time the fuel volume in the second pressure chamber is closed, because the first piston breaks the flow connection between chambers. Since the second force-transmitting piston is connected to the spring, the last one will have a shortened chamber filling step, thus increasing the spring force. Regardless of the small amount of fuel that has leaked out, the fuel is held closed in the pressure chamber until the fuel injector is activated to re-inject the fuel, thus maintaining an increased spring force, which allows the fuel injector to have both a higher opening pressure and a higher closing pressure. .

Ako je najviši pritisak u prolazu za gorivo tijekom slijedećeg perioda ubrizgavanja viši zbog porasta opterećenja motora, pritisak goriva u prvoj tlačnoj komori djelovat će silom na prvi klip koja je veća od suprotne sile opruge, koja dovodi do premještanja prvog klipa tako da je otvoren spoj protoka između komora, sve dok stvaranje pritiska u drugoj tlačnoj komori stvori povećanu silu opruge malo veću od pritiska goriva na stvarnoj presječnoj površini prve tlačne komore. Povećanje opružne sile će opet tada vratiti prvi klip u njegov krajnji položaj koji prekida spoj protoka između komora. If the peak pressure in the fuel passage during the next injection period is higher due to an increase in engine load, the fuel pressure in the first pressure chamber will exert a force on the first piston that is greater than the opposing spring force, causing the first piston to move so that the flow connection is open between the chambers, until the build-up of pressure in the second pressure chamber creates an increased spring force slightly greater than the fuel pressure at the actual cross-sectional area of the first pressure chamber. The increase in spring force will then again return the first piston to its end position which breaks the flow connection between the chambers.

Ograničen ispusni prolaz osigurava kontinuirano ispuštanje male količine goriva iz druge tlačne komore. To osigurava da je opterećenje opruge također smanjeno kad opadne opterećenje motora a time i najviši pritisak u prolazu za gorivo. Ako opterećenje ne opadne, količina ispuštenog goriva sada će se premjestiti pomoću novog goriva pri slijedećem periodu ubrizgavanja jer ispuštanje goriva daje malo smanjenje pritiska u drugoj tlačnoj komori tako da prvi klip može opet otvoriti spoj dotoka. A limited discharge passage ensures continuous discharge of a small amount of fuel from the second pressure chamber. This ensures that the spring load is also reduced when the engine load drops and thus the peak pressure in the fuel passage. If the load does not drop, the amount of fuel discharged will now be displaced by the new fuel at the next injection period because the discharge of fuel provides a small pressure drop in the second pressure chamber so that the first piston can open the inlet port again.

Pritisak otvaranja brizgalice za gorivo kod specifičnog opterećenja u gornjem području opterećenja motora ovisi o stvarnoj površini presjeka komore. Kako takova površina može biti izrađena s vrlo uskim tolerancijama, sve brizgalice goriva u motoru će se same podešavati s istim pritiscima otvaranja i zatvaranja, jer različite proizvodno uvjetovane promjene opružnih značajki tlačnih opruga i njihov različit elastični progib tijekom perioda rada će se izjednačiti stlačivanjem opruga sve dok one dadu istu opružnu silu koja se izjednačava s najvišim pritiskom goriva u brizgalici. To izjednačavanje vrši se automatski tijekom rada motora, i to čini suvišnim bitni dio potrebe za periodičkim ručnim namještanjem brizgalici. The opening pressure of the fuel injector at a specific load in the upper load range of the engine depends on the actual cross-sectional area of the chamber. As such a surface can be made with very tight tolerances, all fuel injectors in the engine will adjust themselves with the same opening and closing pressures, because the different production-related changes in the spring characteristics of the compression springs and their different elastic deflection during the period of operation will be equalized by compressing the springs all while they give the same spring force which is equal to the highest fuel pressure in the injector. This equalization is done automatically while the engine is running, and it makes redundant a significant part of the need for periodic manual adjustment of the injector.

Moguće je konstruirati spoj dotoka s bočnim otvara-njem koji može biti pokriven ili nepokriven s prvim klipom u svom pomaku, ali ponajprije, prvi klip ima dosjedni dio koji zatvara spoj dotoka između prve i druge tlačne komore dodirom s odgovarajućim dosjednim dijelom na nepomičnom dijelu. Takovi dosjedni dijelovi pokazali su se vrlo pouzdanim u brizgalici za gorivo kroz mnogo godina, i oni daju dobro definirane tlačne razlike sposobne za zatvaranje i odolijevaju velikim tlačnim razlikama. It is possible to construct an inlet connection with a side opening which can be covered or uncovered with the first piston in its displacement, but preferably, the first piston has an abutment portion that closes the inflow connection between the first and second pressure chambers by contact with a corresponding abutment portion on the stationary part. Such mating parts have proven very reliable in fuel injectors over many years, and they provide well-defined pressure differentials capable of closing and withstand large pressure differentials.

Odvodni prolaz može prikladno biti tako ograničene veličine da je volumen odvoda kod potpunog opterećenja motora tijekom ciklusa motora u rasponu od polovice do jedne dvadesetine cjelokupnog volumena u drugoj tlačnoj komori. Ako količina ispusta postane veća od polovice, bit će teško, osobito kod velikih opterećenja motora, doseći željeno povećanje pritiska otvaranja, i dodatno, pomaci klipa postat će veći i češći, jer druga tlačna komora će se morati ponovo napuniti u svakom periodu ubrizgavanja, također i kad je opterećenje motora konstantno. Ako je ispušten volumen manji od jedne dvadesetine, pritisak otvaranja će pasti nepovoljno polako kod naglog smanjenja opterećenja motora. Rečeni omjeri ispusta odgovaraju punom opterećenju motora. The drain passage may conveniently be of such limited size that the drain volume at full engine load during the engine cycle is in the range of one-half to one-twentieth of the entire volume in the second pressure chamber. If the discharge amount becomes more than half, it will be difficult, especially at high engine loads, to achieve the desired increase in opening pressure, and in addition, the displacements of the piston will become larger and more frequent, because the second pressure chamber will have to be refilled in each injection period, also and when the engine load is constant. If the discharged volume is less than one-twentieth, the opening pressure will drop unfavorably slowly with a sudden reduction in engine load. Said discharge ratios correspond to full engine load.

U jednoj izvedbi efektivna površina presjeka prve tlačne komore može biti manja od površine otvaranja klizača ventila. Posljedica toga je da će se prvi klip zadržati u gornjem krajnjem položaju kod malih opterećenja motora kad je pritisak goriva određen pritiskom otvaranja brizgalice proizvedenim samo mehaničkim preopterećenjem opruge. Samo kod povećanog opterećenja motora kad pritisak goriva poraste, pritisak na efektivnoj površini presjeka prve komore imat će za posljedicu silu koja može prevladati silu opruge i udaljiti prvi klip iz njegovog krajnjeg položaja. In one embodiment, the effective cross-sectional area of the first pressure chamber may be smaller than the opening area of the valve slide. The consequence of this is that the first piston will remain in the upper end position at low engine loads when the fuel pressure is determined by the injector opening pressure produced only by the mechanical overload of the spring. Only at increased engine load when the fuel pressure increases, the pressure on the effective cross-sectional area of the first chamber will result in a force that can overcome the spring force and move the first piston from its end position.

Ponajprije, druga tlačna komora ima efektivnu površinu presjeka koja je nekoliko puta veća od one kod prve komore. Posljedica toga je da pritisak u drugoj tlačnoj komori odgovarajući broj puta manji od pritiska u prvoj komori, kad sila drugog klipa djeluje na oprugu i tako na prvom klipu izjednačava suprotno usmjerenu silu djelovanja goriva na prvi klip. Velika efektivna površina presjeka druge komore tako rezultira zatvaranjem druge komore kod povoljno niskog pritiska u komori, što rezultira s relativno malim padom pritiska preko ispusnog prolaza s posljedično malim ispuštanjem goriva iz druge tlačne komore. Velika površina druge komore također doprinosi prednosti da se komora puni s velikim volumenom goriva kod određenog premještanja drugog klipa i odgovarajućeg stlačivanja opruge. Te obje okolnosti doprinose činjenici da se snaga opruge promijeni samo polako dok je brizgalica u svom zatvorenom položaju između dva perioda ubrizgavanja. First of all, the second pressure chamber has an effective cross-sectional area that is several times larger than that of the first chamber. The consequence of this is that the pressure in the second pressure chamber is a corresponding number of times lower than the pressure in the first chamber, when the force of the second piston acts on the spring and thus on the first piston equalizes the oppositely directed force of the fuel on the first piston. The large effective cross-sectional area of the second chamber thus results in the closure of the second chamber at a favorable low pressure in the chamber, which results in a relatively small pressure drop across the discharge passage with a consequent small discharge of fuel from the second pressure chamber. The large area of the second chamber also contributes to the advantage that the chamber is filled with a large volume of fuel at a certain displacement of the second piston and corresponding spring compression. Both of these circumstances contribute to the fact that the spring force changes only slowly while the injector is in its closed position between the two injection periods.

Moguće je smjestiti oba klipa pri kraju opruge najbliže mlaznici, jer dio koji je nepomičan u odnosu prema prvom klipu je tada stvoren klizačem ventila. Rezultat takove konstrukcije je da klipovi sudjeluju u podešavanju pomicanja klizača ventila. U tom slučaju klipovi će djelovati kao povećanje mase klizača što će brizgalici dati polaganije podešavanja pomicanja. Budući da se to normalno smatra nedostatkom, prvi klip može se alternativno oblikovti na suprotnom kraju opruge. To rezultira nepogodnošću da prvi spoj dotoka između dviju tlačnih komora postaje produžen i relativno težak za izradu. U izvedbi kojoj se daje prednost, koja izbjegava obje nepovoljnosti i jednostavna je za izradu, brizgalica za gorivo oblikovana je tako da je na sam po sebi poznat način tlačna opruga montirana između dvije vodilice opruga koje su uzdužno pomične na središnje utisnutim dijelu, koji je nepomičan u kućištu, da je drugi klip oblikovan u gornjoj vodilici opruge koja je smještena nasuprot mlaznici i ima nižu cjevastu stijenku koja tlačno brtveći okružuje umetnuti dio, a gornja cjevasta stijenka koja ima veći unutrašnji promjer nego donja stijenka i tlačno brtveći okružuje prvi klip, i intermedijarni dio koji međusobno povezuje stijenke, čija gornja površina tvori drugu površinu, da je prvi klip prstenast i ugrađen između umetnutog dijela i gornje stijenke drugog klipa i ima manji unutarnji prsten gornje površine koja tvori prvu površinu, koja se unutra stapa u dosjedni dio, i da je odgovarajući dosjedni dio umetnutog dijela okrenut prema dolje i smješten je između prolaznog kanala prema prolazu za gorivo i donje površine smanjenog promjera koja tvori spoj dotoka između dviju komora. It is possible to place both pistons at the end of the spring closest to the nozzle, because the part that is stationary in relation to the first piston is then created by the valve slide. The result of such a construction is that the pistons participate in adjusting the movement of the valve slide. In this case, the pistons will act as an increase in the mass of the slide, which will give the injector slower movement adjustments. As this is normally considered a disadvantage, the first piston can alternatively be formed at the opposite end of the spring. This results in the disadvantage that the first inlet joint between the two pressure chambers becomes elongated and relatively difficult to manufacture. In a preferred embodiment, which avoids both disadvantages and is simple to manufacture, the fuel injector is designed so that, in a manner known per se, a compression spring is mounted between two spring guides which are longitudinally movable on a centrally pressed part, which is stationary in the housing, that the second piston is formed in the upper spring guide which is located opposite the nozzle and has a lower tubular wall that pressure-sealingly surrounds the inserted part, and an upper tubular wall that has a larger inner diameter than the lower wall and pressure-sealingly surrounds the first piston, and an intermediate the part that interconnects the walls, the upper surface of which forms the second surface, that the first piston is annular and installed between the inserted part and the upper wall of the second piston and has a smaller inner ring of the upper surface that forms the first surface, which merges internally into the adjacent part, and that is the corresponding adjacent part of the inserted part facing downwards and is located between the passage channel towards the pro the fuel line and the lower surface of the reduced diameter that forms the inlet junction between the two chambers.

Ispusni prolaz može biti oblikovan kao neovisan dio, na primjer u obliku malog provrta kroz drugi klip u drugu komoru, ali ponajprije, ispusni prolaz sastoji se od tlačno brtvećih prstenastih raspora između dviju stijenki drugog klipa, odnosno između prvog klipa i umetnutog dijela, koje prstenaste raspore je teško izraditi da budu potpuno tlačno nepropusni, kako stvari stoje. Količina ispuštenog goriva će istovremeno podmazivati površine koje kližu jedna nasuprot druge. The discharge passage can be formed as an independent part, for example in the form of a small hole through the second piston into the second chamber, but primarily, the discharge passage consists of pressure-sealing annular gaps between the two walls of the second piston, i.e. between the first piston and the inserted part, which ring the gaps are difficult to make completely pressure-tight, as things stand. The amount of fuel released will simultaneously lubricate the surfaces that slide against each other.

Jedan primjer izvedbe izuma bit će sada objašnjen s daljnjim pojedinostima u svezi sa crtežima na kojima: One embodiment of the invention will now be explained in further detail with reference to the drawings in which:

-slika 1 prikazuje djelomičan, uzdužni dio kroz brizgalicu za gorivo prema izumu, - figure 1 shows a partial, longitudinal section through the fuel injector according to the invention,

-slika 2 u većem mjerilu, prikazuju dio sa slike 1 i tu je nacrtana tlačna opruga s pripadnim dijelovima, i - picture 2 on a larger scale, they show the part from picture 1 and there is drawn the compression spring with the related parts, and

-slika 3 prikazuje dijagram odnosa između opterećenja motora i pritisaka otvaranja brizgalice poznatog tipa i onih prema izumu. - Figure 3 shows a diagram of the relationship between the engine load and the nozzle opening pressures of the known type and those according to the invention.

Slika 1 prikazuje brizgalicu za gorivo 1, konstruiranu općenito, koja ima vanjsko kućište 2 za montažu u pokrov cilindra. Kućište je produženo i na svom gornjem kraju ima montažni dio 3 koji sa strane strši i pomoću vijaka učvršćen u pokrov pritiskuje dodirne površine 4 na donjem kraju kućišta nasuprot odgovarajućoj dodirnoj površini oblikovanoj u pokrovu, Pumpa za gorivo, koja nije prikazana, ili sličan izvor koji periodički dobavlja visoko komprimirano gorivo, povezana je kroz tlačnu cijev na umetak za gorivo 5 na vrhu brizgalice, odakle prolaz za gorivo 6 ide središnje kroz brizgalicu dolje prema mlaznici 7 sa središnjom šupljinom 8, iz kojih se rupica mlaznice, koje nisu prikazane, radijalno šire za ubrizgavanje goriva u cilindar motora. Figure 1 shows a fuel injector 1, generally constructed, having an outer housing 2 for mounting in a cylinder head. The housing is extended and at its upper end has a mounting part 3 which protrudes from the side and is fixed in the cover by means of screws and presses the contact surfaces 4 at the lower end of the housing against the corresponding contact surface formed in the cover, a fuel pump, not shown, or a similar source which periodically supplies highly compressed fuel, it is connected through a pressure pipe to the fuel insert 5 at the top of the injector, from where the fuel passage 6 goes centrally through the injector down to the nozzle 7 with a central cavity 8, from which the nozzle holes, not shown, expand radially for fuel injection into the engine cylinder.

Prolaz za gorivo može imati ventil koji se otvara za cirkulaciju predgrijanog goriva u brizgalicu između perioda ubrizgavanja. Prolaz za gorivo ide kroz nepomičan dio u obliku umetnutog dijela 9 koji je prema gore u dodiru s dijelom 10 koji je nepomičan u kućištu, i prema dolje je u dodiru s intermedijarnim dijelom 11 je pritisnut čvrsto nasuprot vodilici klizača 12 u kućištu. Klizač ventila 13 primljen je tako da se može uzdužno pomicati u središnjem vodećem provrtu 12 u vodilicu klizača, i pomoću svog jednog kraja omeđuje prema dolje stršeći cilindrični dio 11'' na intermedijarni dio. Vodeći provrt centrira klizač tako da prstenasta konična dosjedna površina 14 smještena na donjem kraju klizača ventila i oblikovana kao igla, koaksijalna je s odgovarajućim dosjedom ventila na vodilicu klizača 12. Kad je klizač ventila u svom zatvorenom položaju s dosjednom površinom pritisnutom prema dosjedu ventila na vodilicu klizača, vrh igle strši u središnju šupljinu mlaznice i ovdje je izložen pritisku cilindra motora koji se širi kroz rupice mlaznice u šupljinu i djeluje na klizač ventila sa silom u smjeru otvaranja. The fuel passage may have a valve that opens to circulate preheated fuel to the injector between injection periods. The fuel passage goes through a stationary part in the form of an inserted part 9 which is in upward contact with a part 10 which is stationary in the housing, and is in downward contact with an intermediate part 11 which is pressed firmly against the slide guide 12 in the housing. The valve slide 13 is received so as to be longitudinally movable in the central guide bore 12 in the slide guide, and by its one end limits the downwardly projecting cylindrical part 11'' to the intermediate part. The guide bore centers the slide so that the annular conical abutment surface 14 located at the lower end of the valve slide and shaped like a needle, is coaxial with the corresponding valve abutment on the slide guide 12. When the valve slide is in its closed position with the abutment surface pressed against the valve abutment on the guide slide, the tip of the needle protrudes into the central cavity of the nozzle and here it is exposed to the pressure of the engine cylinder, which spreads through the holes of the nozzle into the cavity and acts on the valve slide with a force in the opening direction.

Donji kraj klizača ventila i vodilice, klizača 12 omeđuje tlačnu komoru 15 koja je povezana s prolazom za gorivo 6 preko kosih provrta 16. Prema dolje, prsten i površina klizača ventila, koja je prema unutra ograničena iglom, izložena je utjecaju pritiska goriva u komori 15, jer gorivo djeluje na klizač ventila silom u smjeru otvaranja. Površina otvaranja klizača ventila uglavnom je određena razlikom promjera između vanjskog promjera cilindričnog dijela 11' i unutrašnjeg promjera provrta vodila 12'. The lower end of the valve slide and guide, the slide 12 delimits the pressure chamber 15 which is connected to the fuel passage 6 through the inclined bores 16. Downward, the ring and the surface of the valve slide, which is inwardly limited by the needle, is exposed to the influence of the fuel pressure in the chamber 15 , because the fuel acts on the valve slide with a force in the direction of opening. The opening area of the valve slide is mainly determined by the difference in diameter between the outer diameter of the cylindrical part 11' and the inner diameter of the guide hole 12'.

Klizač ventila također se nalazi u smjeru zatvaranja, tj. u smjeru prema dolje prema dosjedu ventila, pomoću tlačne opruge 17, čiji gornji kraj je u dodiru s gornjom vodilicom opruge 18 montiranom pomično na umetnutom dijelu 9, i čiji donji kraj je poduprt preko donje vodilice opruge 19 također pomično vođen na umetnutom dijelu 9, pomoću užlijebljenog umetnutog obloga, čiji donji dio površine je u dodiru s gornjim prstenom na klizaču ventila 13. Opružna sila se tako prenosi preko vodilice opruge 19 i umetnutog užljebljenja 20 na klizač ventila 13. Prstenasti prvi klip 21 montiran je aksijalno pomično oko gornjeg odsječka umetnutog dijela 9. Unutrašnji promjer klizne površine 22 (slika 2) klipa je prilagođen nasuprotnoj površini vodilice 21 na umetnutom dijelu na takav način da je prstenasti raspor između površina dovoljno blizu klipa da brtveći okružuje umetnuti dio. The valve slide is also located in the closing direction, i.e. in the downward direction towards the valve seat, by means of the compression spring 17, the upper end of which is in contact with the upper spring guide 18 mounted movably on the inserted part 9, and the lower end of which is supported over the lower the spring guide 19 is also movably guided on the inserted part 9, by means of a grooved insert liner, the lower part of whose surface is in contact with the upper ring on the valve slide 13. The spring force is thus transmitted via the spring guide 19 and the inserted groove 20 to the valve slide 13. Annular the first piston 21 is mounted axially movable around the upper section of the insert part 9. The inner diameter of the sliding surface 22 (Fig. 2) of the piston is adapted to the opposite surface of the guide 21 on the insert part in such a way that the annular gap between the surfaces is close enough to the piston to sealingly surround the insert part .

Površina vodilice 23 završava dolje u cilindričnom udubljenju izrađenom u umetnutom dijelu i kroz kanal 24 u dodiru je sa središnjim prolazom za gorivo 6 u umetnutom dijelu. Udubljenje se stapa dolje u cilindrični dio 25 manjeg vanjskog promjera od površine vodila 23. Ispod dijela 25, umetnuti dio ima prstenasti konični donji dosjedni dio 26. The surface of the guide 23 ends at the bottom in a cylindrical recess made in the insert part and through the channel 24 is in contact with the central fuel passage 6 in the insert part. The recess merges down into a cylindrical part 25 of a smaller outer diameter than the guide surface 23. Below the part 25, the inserted part has an annular conical lower abutment part 26.

Prvi klip 21 ima donji unutrašnji prsten 27 koji ima konični dosjedni dio 26' koji može tlačno brtveći dodirivati dosjedni dio 26. U području usporedo s udubljenjem i cilindričnim dijelom 25, prvi klip i umetnuti dio ograničavaju prvu tlačnu. komoru 28 s efektivnom površinom presjeka određenom razlikom promjera između odsječka 25 i površine vodilice 23. Efektivna površina presjeka smještena je na gornjoj površini prstena 27, tj. na prvoj površini okrenutoj od opruge tako da pritisak goriva doveden kroz kanal 24 u prvu tlačnu komoru djeluje na prvi klip silom prema dolje. The first piston 21 has a lower inner ring 27 which has a conical abutment part 26' which can pressurize and contact the abutment part 26. In the area parallel to the recess and the cylindrical part 25, the first piston and the inserted part limit the first pressure. chamber 28 with an effective cross-sectional area determined by the diameter difference between the section 25 and the surface of the guide 23. The effective cross-sectional area is located on the upper surface of the ring 27, i.e. on the first surface facing away from the spring so that the fuel pressure supplied through the channel 24 to the first pressure chamber acts on the first piston is forced down.

Drugi klip 29 oblikovan je integralno s gornjom vodilicom opruge 18 i uključuje prstenasti intermedijarni dio 30 koji podupire donju cjevastu stijenku 31 i gornju cjevastu stijenku 32. Unutrašnja stijenka donje stijenke 31 je tlačno brtveći i uzdužno pomično u dodiru sa cilindričnom drugom površinom vodilice 33 umetnutog dijela 9, a unutrašnja strana gornje stijenke 32 je u tlačno brtvećem i aksijalno pomičnom dodiru s vanjskom stijenkom prvog klipa 21. Prvi i drugi klipovi zajedno s umetnutim dijelom 9 omeđuju drugu tlačnu komoru 34 efektivne površine presjeka određene razlikom promjera između cillndričnih unutrašnjih strana donje stijenke 31 i gornje stijenke 32. Cilindrično udubljenje oblikovano u vanjskoj strani umetnutog dijela i smješteno neposredno ispod dosjednog dijela 26 oblikuje spoj dotoka 35 između dviju tlačnih komora, kad se prvi klip pomakne od dosjednog dijela 26. The second piston 29 is formed integrally with the upper spring guide 18 and includes an annular intermediate part 30 that supports the lower tubular wall 31 and the upper tubular wall 32. The inner wall of the lower wall 31 is pressure-sealing and longitudinally movable in contact with the cylindrical second surface of the guide 33 of the inserted part 9, and the inner side of the upper wall 32 is in pressure-sealing and axially movable contact with the outer wall of the first piston 21. The first and second pistons together with the inserted part 9 delimit the second pressure chamber 34 with an effective cross-sectional area determined by the difference in diameter between the cylindrical inner sides of the lower wall 31 and the upper walls 32. A cylindrical recess formed in the outer side of the insert and located immediately below the adjacent part 26 forms the inlet connection 35 between the two pressure chambers, when the first piston moves away from the adjacent part 26.

Donja strana prstena 27 može imati jedno ili više ispupčenja ili prstenasto ispupčenje sa zarezima koji drže dio druge tlačne komore 34 smještene radijalno poravnato s ispupčenjem u povezanosti dotoka sa spojem dotoka 35, kad ispupčenje dodiruje gornju stranu intermedijarnog dijela 30. U alternativnoj izvedbi, koja nije prikazana, ispupčenje može biti prstenasto, a unutrašnja strana donje stijenke 31 može imati manji promjer od unutrašnje strane prstena 27 tako da dio druge tlačne komore smješten najbliže do spoja dotoka 35 ima prema gore efektivnu površinu presjeka koja je otvorena prema spoju dotoka 35 kad ispupčenje na prstenu 27 dodiruje gornju stranu intermedijarnog dijela 30 i blokira spoj prema preostalom dijelu tlačne komore 34. Kod prikladnog porasta pritiska u spoju dotoka 35, ta efektivna površina uzrokovat će da se drugi klip 29 odmakne od prvog klipa s istovremenim otkrivanjem potpune efektivne površine presjeka druge tlačne komore. The lower side of the ring 27 may have one or more protrusions or an annular protrusion with notches that hold a part of the second pressure chamber 34 located radially aligned with the protrusion in the inlet connection with the inlet connection 35, when the protrusion contacts the upper side of the intermediate part 30. In an alternative embodiment, which is not shown, the protrusion can be annular, and the inner side of the lower wall 31 can have a smaller diameter than the inner side of the ring 27 so that the part of the second pressure chamber located closest to the inlet connection 35 has an upward effective cross-sectional area that is open to the inlet connection 35 when the protrusion on the ring 27 touches the upper side of the intermediate part 30 and blocks the connection to the remaining part of the pressure chamber 34. With a suitable increase in pressure in the inlet connection 35, this effective surface will cause the second piston 29 to move away from the first piston, simultaneously revealing the complete effective cross-sectional area of the second pressure chambers.

Druga tlačna komora 34 je stalno u dodiru s ograničenim ispusnim prolazom koji se sastoji od tlačno brtvećeg prsenastog proreza između unutrašnje strane gornje stijenke 32 i cilindrične vanjske strane prvog klipa i tlačno brtvećeg prstenastog proreza između unutrašnje strane donje stijenke 31 i površine vodilice 33 na umetnutom dijelu. The second pressure chamber 34 is constantly in contact with a limited discharge passage consisting of a pressure-sealing annular slot between the inner side of the upper wall 32 and the cylindrical outer side of the first piston and a pressure-sealing annular slot between the inner side of the lower wall 31 and the guide surface 33 on the inserted part .

Sada slijedi opis kako dva klipa automatski stvaraju željenu opružnu silu u tlačnoj opruzi 17. Kad je motor zaustavljen i prolaz za gorivo 6 nije pod pritiskom, dva klipa se nalaze u položaju prikazanom na crtežu gdje tlačna opruga 17 sa svojim tvorničkom predopterećenjem tlači drugi klip 29 prema gore za dodir prema prvom klipu 21, koji prenosi opružnu silu na umetnuti dio 9 kroz dosjedne dijelove 26 i 26 Now follows a description of how the two pistons automatically create the desired spring force in the compression spring 17. When the engine is stopped and the fuel passage 6 is not under pressure, the two pistons are in the position shown in the drawing where the compression spring 17 with its factory preload presses the other piston 29 upwards to touch the first piston 21, which transmits the spring force to the inserted part 9 through the adjacent parts 26 and 26

Kad se motor pokrene i opterećenje poraste, pritisak u prolazu za gorivo 9 raste tijekom svakog perioda ubrizgavanja do najvišeg pritiska koji kod niskih opterećenja odgovara pritisku otvaranja brizgalice i kod viših opterećenja je određen s otporom dotoku u rupice mlaznice. Maksimalan pritisak u prolazu za gorivo na taj način raste s povećanjem opterećanja motora. When the engine is started and the load increases, the pressure in the fuel passage 9 increases during each injection period to a maximum pressure which at low loads corresponds to the injector opening pressure and at higher loads is determined by the flow resistance to the nozzle holes. The maximum pressure in the fuel passage thus increases with increasing engine load.

Pritisak u prolazu za gorivo 6 širi se kroz kanal 24 prema prvoj tlačnoj komori 28, i kad pritisak ovdje dosegne razinu pri kojoj sila prema dolje na prvom klipu nadmašuje postojeću opružnu silu, prvi klip se pokreće prema opruzi, koja je stlačena između vodilice opruge 18 i 19, i u isto vrijeme gorivo teče preko spoja protoka 35 u drugu tlačnu komoru gdje se stvara pritisak do razine koja vraća prvi klip 21 u dodir s dosjednim dijelom 26, dok drugi klip 29 ostaje u položaju u kojem je opruga dala posebno opterećenje. The pressure in the fuel passage 6 spreads through the channel 24 towards the first pressure chamber 28, and when the pressure here reaches a level at which the downward force on the first piston exceeds the existing spring force, the first piston is driven against the spring, which is compressed between the spring guide 18 and 19, and at the same time the fuel flows through the flow connection 35 into the second pressure chamber where pressure is created to a level that brings the first piston 21 back into contact with the adjacent part 26, while the second piston 29 remains in the position in which the spring has given a special load.

Ako pritisak u kanalu za gorivo 6 kod slijedećih perioda ubrizgavanja poraste do više razine, pomicanja klipa se ponavljaju tako da opruga 17 daje opterećenje koje linearno ovisi o maksimalnom pritisku u prolazu za gorivo 6. If the pressure in the fuel channel 6 rises to a higher level during the following injection periods, the movements of the piston are repeated so that the spring 17 gives a load that is linearly dependent on the maximum pressure in the fuel passage 6.

Kroz tlačno brtveće prstenaste proreze, mala količina goriva se stalno odvodi iz druge tlačne komore, gorivo ide u ispusni otvor, koji nije prikazan, preko unutrašnje šupljine u kućište 2. Through the pressure-sealing annular slits, a small amount of fuel is constantly drained from the second pressure chamber, the fuel goes to the discharge hole, which is not shown, through the inner cavity into the housing 2.

Na taj način brizgalica za gorivo prema izumu ostvaruje opružnu silu i stoga pritisak otvaranja koji raste s povećanjem opterećenja motora, kako se vidi na slici 3. To omogućuje niži pritisak otvaranja pri niskim opterećenjima motora, jer brizgalica automatski stvara visok; pritisak otvaranja potreban kod potpunog opterećenja. Stoga tlačna opruga može biti prethodno izrađena s predopterećenjem koje doprinosi pritisku otvaranja kod malih opterećenja od pribl. 200 bara, što doprinosi postojanom radu motora kod djelomičnih opterećenja, a istovremeno, pritisak otvaranja kod punih opterećenja je viši nego kod poznatih brizgalica, što doprinosi dobroj atomizaciji goriva na početku perioda ubrizgavanja. In this way, the fuel injector according to the invention achieves a spring force and therefore an opening pressure that increases with increasing engine load, as seen in Figure 3. This enables a lower opening pressure at low engine loads, because the injector automatically creates a high; opening pressure required at full load. Therefore, the compression spring can be pre-made with a preload that contributes to the opening pressure at low loads of approx. 200 bar, which contributes to steady operation of the engine at partial loads, and at the same time, the opening pressure at full loads is higher than with known injectors, which contributes to good fuel atomization at the beginning of the injection period.

Umjesto gornjeg središnjeg smjera, prolaz za gorivo 6 može na dobro poznat način uključiti brojne kanale koji se protežu u nepomični intermedijarni dio uzduž vanjske strane opruge i koji se otvaraju u tlačnu komoru 15 preko kosih kanala u vodilci kliznika. S tom konstrukcijom, područje otvaranja kliznika ventila određeno je s donjom prstenastom krajnjom površinom koja okružuje iglu. Instead of an upper central direction, the fuel passage 6 may in a well-known manner include a number of channels which extend into the stationary intermediate part along the outside of the spring and which open into the pressure chamber 15 via oblique channels in the slide guides. With this design, the opening area of the valve slide is defined by the lower annular end surface surrounding the needle.

Claims (7)

1. Brizgalica za gorivo (1) za motor s unutarnjim izgaranjem, osobito za veliki dvotaktni diesel motor, koja ima produljeno vanjsko kućište (2) za montiranje u pokrov cilindra i prolaz za gorivo (6) koji se otvara u mlaznicu (7), i ima klizač ventila (13) koji se može pomicati uzdužno u vodilici klizača (12), koji klizač djeluje gore u smjeru prema svom dosjedu ventila pomoću predopterećene tlačne opruge (17) i u suprotnom smjeru pomoću pritiska goriva u prolazu za gorivo, prvi klip (21), koji se može pomicati aksijalno u kućištu, smješten na kraju tlačne opruge i ima prvu površinu koja je okrenuta od opruge i, zajedno s nepomičnim dijelom (9), omeđuje prvu tlačnu komoru (28) koja je povezana s prolazom za gorivo pomoću kanala (24), rečena tlačna opruga djeluje na prvi klip u smjeru prema krajnjem položaju s minimalnim volumenom goriva u prvoj tlačnoj komori, naznačena time, da je opruga spojem koji prenosi silu povezana s drugim klipom (29) koji ima drugu površinu okrenutu od opruge i tvori kraj stijenke u drugoj tlačnoj komori (34), da pri kretanju u smjeru od rečenog krajnjeg položaja prvi klip (21) otvara spoj dotoka (35) između prve i druge tlačne komore, da druga tlačna komora (34) ima veće efektivnu površinu presjeka nego prva komora (28), i da ograničen ispusni prolaz povezuje drugu tlačnu komoru s ispustom.1. A fuel injector (1) for an internal combustion engine, particularly for a large two-stroke diesel engine, having an extended outer housing (2) for mounting in the cylinder head and a fuel passage (6) opening into the nozzle (7), and has a valve slide (13) which can be moved longitudinally in the slide guide (12), which slide acts up in the direction towards its abutment of the valve by means of a preloaded compression spring (17) and in the opposite direction by means of fuel pressure in the fuel passage, the first piston ( 21), which can be moved axially in the housing, located at the end of the pressure spring and has a first surface facing away from the spring and, together with the fixed part (9), defines the first pressure chamber (28) which is connected to the fuel passage by of the channel (24), said pressure spring acts on the first piston in the direction towards the end position with the minimum volume of fuel in the first pressure chamber, characterized by the fact that the spring is connected by a force-transmitting connection to the second piston (29) which has a second surface facing away from the spring and forms the end of the wall in the second pressure chamber (34), so that when moving in the direction from the said final position, the first piston (21) opens the inflow connection (35) between the first and second pressure chambers, so that the second pressure chamber (34) has a larger effective cross-sectional area but the first chamber (28), and that a limited discharge passage connects the second pressure chamber with the discharge. 2. Brizgalica za gorivo prema zahtjevu 1, naznačena time, da prvi klip (21) ima dosjedni dio (26') koji blokira spoj dotoka (35) između prve i druge tlačne komore dodirom s odgovarajućim dosjednim dijelom (26) na nepomičnom dijelu.2. A fuel injector according to claim 1, characterized in that the first piston (21) has an abutting part (26') that blocks the inflow connection (35) between the first and second pressure chambers by contacting the corresponding abutting part (26) on the stationary part. 3. Brizgalica za gorivo prema zahtjevu 1 ili 2, naznačena time, da je ispusni prolaz tako ograničene veličine da ispušten volumen kod punog opterećenja motora tijekom ciklusa motora obuhvaća od jedne polovine do jedne dvadesetine volumena goriva u drugoj tlačnoj komori (34).3. Fuel injector according to claim 1 or 2, characterized in that the discharge passage is of such a limited size that the discharged volume at full engine load during the engine cycle comprises from one half to one twentieth of the fuel volume in the second pressure chamber (34). 4. Brizgalica za gorivo prema bilo kojem od zahtjeva 1-3, naznačena time, da je efektivna površina presjeka prve tlačne komore (28) manja od područja otvaranja klizača ventila.4. A fuel injector according to any one of claims 1-3, characterized in that the effective cross-sectional area of the first pressure chamber (28) is smaller than the opening area of the valve slide. 5. Brizgalica za gorivo prema bilo kojem od zahtjeva 1-4, naznačena time, da druga tlačna komora (34) ima efektivnu površinu presjeka nekoliko puta veće od one kod prve komore (28).5. A fuel injector according to any one of claims 1-4, characterized in that the second pressure chamber (34) has an effective cross-sectional area several times larger than that of the first chamber (28). 6. Brizgalica za gorivo prema bilo kojem od zahtjeva 1-5, naznačena time, da je na sam po sebi poznat način tlačna opruga (17) montirana između dvije vodilice opruge (18, 19) koje se mogu premještati uzdužno na središnje umetnutom dijelu (9) koji je nepomičan u kućištu, da je drugi klip (29) oblikovan u gornjoj vodilici opruge (18) koja je smještena nasuprot mlaznici (7) i ima nižu cjevastu stijenku (31) koja tlačno brtveći okružuje umetnuti dio, i gornja cjevasta stijenka (32) koja ima veći unutrašnji promjer nego donja stijenka i tlačno brtveći okružuje prvi klip (21), i intermedijarni dio (30) koji povezuje stijenke, čija gornja površina tvori drugu površinu, da je prvi klip (21) cjevast i ograđen je između umetnutog dijela i gornje stijenke drugog klipa i ima donji prsten (27) čija gornja površina tvori prvu površinu, koja se prema unutra stapa u dosjedni dio (26'), i da je odgovarajući dosjedni dio (26) umetnutog dijela okrenut prema dolje i smješten između kanala koji prolazi skroz (24) u prolaz za gorivo (6) i donje površine smanjenog promjera tvoreći spoj dotoka (35) između dviju komora.6. Fuel injector according to any one of claims 1-5, characterized in that, in a known manner, the compression spring (17) is mounted between two spring guides (18, 19) which can be moved longitudinally on the centrally inserted part ( 9) which is stationary in the housing, that the second piston (29) is formed in the upper guide of the spring (18) which is located opposite the nozzle (7) and has a lower tubular wall (31) which surrounds the inserted part by pressure sealing, and the upper tubular wall (32) which has a larger inner diameter than the lower wall and pressure sealingly surrounds the first piston (21), and the intermediate part (30) which connects the walls, whose upper surface forms the second surface, that the first piston (21) is tubular and is enclosed between of the inserted part and the upper wall of the second piston and has a lower ring (27) whose upper surface forms a first surface, which merges inwardly into the adjacent part (26'), and that the corresponding adjacent part (26) of the inserted part faces downwards and is located between the canal that passes skr oz (24) into the fuel passage (6) and the lower surface of the reduced diameter forming the inlet junction (35) between the two chambers. 7. Brizgalica za gorivo prema zahtjevu 6, naznačena time, da se ispusni prolaz sastoji od tlačno brtvećih prstenastih proreza između dviju stijenki (31, 32) drugog klipa odnosno između prvog klipa (21) i umetnutog dijela (9) .7. Fuel injector according to claim 6, characterized in that the discharge passage consists of pressure-sealing annular slits between the two walls (31, 32) of the second piston, i.e. between the first piston (21) and the inserted part (9).
HR950445A 1994-08-09 1995-08-09 A fuel injector for an internal combustion engine HRP950445B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DK092794A DK171216B1 (en) 1994-08-09 1994-08-09 Fuel injector for an internal combustion engine

Publications (2)

Publication Number Publication Date
HRP950445A2 true HRP950445A2 (en) 1997-04-30
HRP950445B1 HRP950445B1 (en) 2000-08-31

Family

ID=8099107

Family Applications (1)

Application Number Title Priority Date Filing Date
HR950445A HRP950445B1 (en) 1994-08-09 1995-08-09 A fuel injector for an internal combustion engine

Country Status (14)

Country Link
EP (1) EP0733163B1 (en)
JP (1) JP3090473B2 (en)
KR (1) KR970703488A (en)
CN (1) CN1060250C (en)
AU (1) AU3161295A (en)
DE (1) DE69500259T2 (en)
DK (1) DK171216B1 (en)
ES (1) ES2101609T3 (en)
FI (1) FI107470B (en)
HR (1) HRP950445B1 (en)
NO (1) NO306793B1 (en)
PL (1) PL176852B1 (en)
RU (1) RU2126095C1 (en)
WO (1) WO1996005425A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10134868A1 (en) * 2001-07-18 2003-02-13 Bosch Gmbh Robert Fuel injector with closing pressure compensation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB762684A (en) * 1954-01-20 1956-12-05 David William Edgar Kyle Improvements in and relating to liquid fuel injection equipment for internal combustion engines
DE1122769B (en) * 1954-05-11 1962-01-25 Nylands Verksted Device for automatic regulation of the fuel injection point in internal combustion engines
DK152619C (en) * 1984-04-16 1988-08-22 Man B & W Diesel As FUEL INJECTOR FOR DIESEL ENGINES

Also Published As

Publication number Publication date
DK171216B1 (en) 1996-07-29
DE69500259T2 (en) 1997-11-06
JPH10503820A (en) 1998-04-07
EP0733163B1 (en) 1997-04-23
DK92794A (en) 1996-02-10
NO970494D0 (en) 1997-02-04
FI962931A (en) 1996-07-22
JP3090473B2 (en) 2000-09-18
FI962931A0 (en) 1996-07-22
DE69500259D1 (en) 1997-05-28
ES2101609T3 (en) 1997-07-01
RU2126095C1 (en) 1999-02-10
WO1996005425A1 (en) 1996-02-22
KR970703488A (en) 1997-07-03
AU3161295A (en) 1996-03-07
NO306793B1 (en) 1999-12-20
NO970494L (en) 1997-02-04
CN1155324A (en) 1997-07-23
PL176852B1 (en) 1999-08-31
FI107470B (en) 2001-08-15
HRP950445B1 (en) 2000-08-31
PL315571A1 (en) 1996-11-12
EP0733163A1 (en) 1996-09-25
CN1060250C (en) 2001-01-03

Similar Documents

Publication Publication Date Title
KR100763591B1 (en) Dosing System
RU2170846C2 (en) Internal combustion engine fuel injection device
RU2027062C1 (en) Multi-jet nozzle with controlled cross-section
US5033442A (en) Fuel injector with multiple variable timing
JP2000511614A (en) Fuel injection valve with piezoelectric or magnetostrictive actuator
KR101118346B1 (en) High-pressure pump, in particular for a fuel injection device of an internal combustion engine
ITMI991025A1 (en) DEVICE AND PROCEDURE FOR VALVE CONTROL
KR20000069205A (en) Liquid control valve
JP2003510504A (en) Valve to control liquid
KR100427569B1 (en) Fuel Injector for Internal Combustion Engine
JPH03505B2 (en)
KR19990078000A (en) Fuel injector
KR100773437B1 (en) A high pressure piston in cylinder unit
CN102812232A (en) High-pressure fuel injection valve for an internal combustion engine
US20040144868A1 (en) Sliding structure for shaft member with improved abrasion resistance and injector
KR970701830A (en) A FUEL VALVE AND A HIGH PRESSURE GAS ENGINE PROVIDED WITH SUCH A VALVE
CA1086588A (en) Timing mechanism for a fuel supply system
KR20020027371A (en) Common rail injector
JP2008511787A (en) High pressure pump for fuel injection device of internal combustion engine
KR20000069118A (en) Liquid control valve
HRP950445A2 (en) A fuel injector for an internal combustion engine
US7011256B2 (en) Device for supplying high pressure fuel to an internal combustion engine
KR20040012819A (en) Fuel injector
JPS6146459A (en) Fuel jet pump of internal combustion engine
JPH02215967A (en) Fuel injection pump of internal combustion engine

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
ODRP Renewal fee for the maintenance of a patent

Payment date: 20000809

Year of fee payment: 6

B1PR Patent granted
PBON Lapse due to non-payment of renewal fee

Effective date: 20010810