HRP950156A2 - Tumor necrosis factor - Google Patents

Tumor necrosis factor Download PDF

Info

Publication number
HRP950156A2
HRP950156A2 HRP-1132/85A HRP950156A HRP950156A2 HR P950156 A2 HRP950156 A2 HR P950156A2 HR P950156 A HRP950156 A HR P950156A HR P950156 A2 HRP950156 A2 HR P950156A2
Authority
HR
Croatia
Prior art keywords
tumor necrosis
necrosis factor
dna
amino acid
cells
Prior art date
Application number
HRP-1132/85A
Other languages
Croatian (hr)
Inventor
Bharat Bhushan Aggarwal
David Vannorman Goeddel
Sang He Lee
Glenn Evan Nedwin
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/677,257 external-priority patent/US4650674A/en
Priority claimed from YU113285A external-priority patent/YU47968B/en
Application filed by Genentech Inc filed Critical Genentech Inc
Publication of HRP950156A2 publication Critical patent/HRP950156A2/en
Publication of HRP950156B1 publication Critical patent/HRP950156B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/525Tumour necrosis factor [TNF]
    • C07K14/5255Lymphotoxin [LT]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/525Tumour necrosis factor [TNF]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6863Cytokines, i.e. immune system proteins modifying a biological response such as cell growth proliferation or differentiation, e.g. TNF, CNF, GM-CSF, lymphotoxin, MIF or their receptors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Toxicology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

Područje tehnike u koju spada izum The technical field to which the invention belongs

Izum je iz područja genetskog inženjeringa. The invention is from the field of genetic engineering.

Tehnički problem Technical problem

Ova prijava se odnosi na limfokine. Određeno, odnosi se na citotoksične faktore koje luče limfne stanice i na postupke za pravljenje istih u rekombinantinim stanicama. This application relates to lymphokines. Specifically, it refers to cytotoxic factors secreted by lymph cells and to procedures for making them in recombinant cells.

Stanje tehnike State of the art

Poznato je da imune stanice kao što su B stanice, T stanice, prirodne stanice ubojice i makrofazi stvaraju supstance koje pokazuju citotoksičnu aktivnost protiv stanica tumora ali koje nisu štetne za normalne stanice. Ove supstance su imenovane na razne načine, na primjer, limfotoksin, faktor nekroze tumora, NK stanični citotoksični faktor, faktor hemoragične nekroze, makrofagni citotoksin ili makrofagni citotoksični faktor. Trenutno identiteti proteina koji prate ova imena nisu jasni. Glavne teškoće su što biološki testovi koji se koriste za detekciju proteina ne prave razlike među njima, što izgleda da se proteini nalaze u prirodi kao agregati ili hidrolizički proizvodi, i što su dosada dobivane količine bile premale tako da je bio potreban visok stupanj pročišćavanja za potpunu karakterizaciju proteina što nije postignuto. It is known that immune cells such as B cells, T cells, natural killer cells and macrophages create substances that show cytotoxic activity against tumor cells but are not harmful to normal cells. These substances are variously named, for example, lymphotoxin, tumor necrosis factor, NK cell cytotoxic factor, hemorrhagic necrosis factor, macrophage cytotoxin, or macrophage cytotoxic factor. Currently, the identities of the proteins accompanying these names are unclear. The main difficulties are that the biological assays used for the detection of proteins do not distinguish between them, that proteins appear to occur in nature as aggregates or hydrolysis products, and that the quantities obtained so far have been too small so that a high degree of purification was required for complete protein characterization which has not been achieved.

Tipično se takve citotoksične supstance nalaze u serumima intaktnih životinja, ili u supernatantima kultura limfinih stanica ili staničnih linija pošto su životinje ili stanice tretirane sa supstancom za koju se zna da stimulira proliferaciju imunih stanica ("inducent"). Nakon toga se serum ili supernatant regenerira i testira na citotoksičnu aktivnost prema željenoj staničnoj liniji tumora. Ova stanična linija i druge koje se koriste u biotestovima ovog tipa su nespecifične po njihovoj litičkoj reakciji zato što su različiti očevidno diskretni proizvodi limfnih stanica sposobni da vrše prekidanje. Slične nespecifične reakcije zapažaju se in vitro u testovima za nekrozu tumora. Tako su citolitički testovi koji zapažaju prekidanje staničnih linija in vitro ili nekrozu tumora in vivo neadekvatni za razlikovanje među raznim citotoksičnim limfnim proizvodima. Typically, such cytotoxic substances are found in the sera of intact animals, or in the supernatants of lymphoid cell cultures or cell lines after the animals or cells have been treated with a substance known to stimulate the proliferation of immune cells ("inducer"). After that, the serum or supernatant is regenerated and tested for cytotoxic activity against the desired tumor cell line. This cell line and others used in bioassays of this type are nonspecific in their lytic reaction because different apparently discrete products of the lymph cells are capable of performing termination. Similar non-specific reactions are observed in vitro in tumor necrosis assays. Thus, cytolytic assays that detect disruption of cell lines in vitro or tumor necrosis in vivo are inadequate to distinguish between various cytotoxic lymph products.

Citotoksični faktori se tentativno klasificiraju na bazi litnfnih stanica iz kojih su inducirani. Na primjer, limfotoksin je ime koje se obično primjenjuje na citotoksične sekrecijske proizvode B ili T limfocita, ili stanične linije izvedene iz njih, dok se faktor nekroze tumora često koristi da opiše citotoksične proizvode makrofaga ili njihovoh izvedenih staničnih linija. Međutim, ovaj klasifikacijski sustav nije razrađen do točke gdje postoji bilo kakva sigurnost da se radi samo o jednom proteinu, ili o proteinima koji imaju različita imena ali su zapravo različiti. Cytotoxic factors are tentatively classified based on the type of cells from which they are induced. For example, lymphotoxin is a name commonly applied to cytotoxic secretory products of B or T lymphocytes, or cell lines derived from them, while tumor necrosis factor is often used to describe cytotoxic products of macrophages or their derived cell lines. However, this classification system has not been developed to the point where there is any certainty that it is only one protein, or proteins that have different names but are actually different.

Činjeni su pokušaji da se pročiste i karakteriziraju citotoksični faktori koje luči svaka vrsta stanice. U opsegu u kojem izvještaji variraju u pogledu osobine citotoksičnog faktora, ili su potpuno nekonzistentni sa danom osobinom, može se zaključiti ili da je karakterizacija bila pogrešna ili da su mnogi diskretni citotoksični faktori lučeni sa svakom staničnom vrstom. Na primjer, pokazano je da citotoksični proizvodi izvedeni iz makrofaga, monocita ili monocitnih staničnih linija, iako ponekad uopćeno zvani kao faktori nekroze tumora, imaju osobine koje su izgleda nakonzistentne sa teorijom jednog citotoksičnog proizvoda. Vidi, na primjer, slijedeću literaturu: R. MacFarlan et al., 1980, "AJEBAK" 58 (pt 5): 489-500 D. Mannel et al., 1980, "Infection and Immunology" 30 (2): 523-530 H. Ohnishi et al., UK patentna prijava 2,106,117A; and J. Hammerstrom, 1982, "Scand J. Immunol." 15: 311-318. Attempts have been made to purify and characterize the cytotoxic factors secreted by each cell type. To the extent that reports vary with respect to the property of a cytotoxic factor, or are completely inconsistent with a given property, it can be concluded either that the characterization was erroneous or that many discrete cytotoxic factors are secreted by each cell type. For example, cytotoxic products derived from macrophages, monocytes or monocytic cell lines, although sometimes referred to generically as tumor necrosis factors, have been shown to have properties that appear to be consistent with the single cytotoxic product theory. See, for example, the following literature: R. MacFarlan et al., 1980, "AJEBAK" 58 (pt 5): 489-500 D. Mannel et al., 1980, "Infection and Immunology" 30 (2): 523- 530 H. Ohnishi et al., UK Patent Application 2,106,117A; and J. Hammerstrom, 1982, "Scand J. Immunol." 15: 311-318.

S druge strane C. Zacharchuk et al., 1983, "Proc. Nat. Acad. Sci. USA", 80: 6341-6345 sugeriraju da su limfotoksin zamorca i citotoksični faktor iz makrofaga zamorca slični, ako ne istovjetni. Slični zaključci nalaze se u Ruff et al., 1981, Lymphokines Vol. 2 pp 235-272 na pp 241-242. On the other hand, C. Zacharchuk et al., 1983, "Proc. Nat. Acad. Sci. USA", 80: 6341-6345 suggest that guinea pig lymphotoxin and guinea pig macrophage cytotoxic factor are similar, if not identical. Similar conclusions are found in Ruff et al., 1981, Lymphokines Vol. 2 pp. 235-272 on pp. 241-242.

Pokušaji da se karakteriziraju imuni citotoksični faktori također su fokusirani na korištenje kao polaznog materijala seruma ili peritonealnog fluida životinja koje su bile izložene imunogenim antigenima. Ovi izvori sadrže cijelu kornukopiju stresnog imunog sustava, nasuprot proizvodu ili proizvodima jedne stanične vrste ili linije. Slijedeće trebaju biti shvaćene kao publikacije ove vrste: S. Green et al., 1982, "J. Nat. Cancer Inst." 68(6): 997-1003 ("faktor indukcije tumorne nekroze"); M. Ruff et al., 1980, "J. Immunology" 125(4): 1671-1677 ("faktor nekroze tumora"); H. Enomoto et al., Europska patentna prijava 86475 ("antitumorna supstanca"); H. Oettgen et. al., 1980, "Recent Results Cancer Res." 75: 207-212 ("faktor nekroze tumora"); F. Kull et al., 1981, "J. Immunol". 126(4): 1279-1283 ("Tumor Cell Cytotoxin":); D. Mannel et al., 1980, "Infection and Immunity" 28(1): 204-211 ("citotoksična faktor"); N. Matthews et al., 1980, "Br. J. Cancer": 42: 416-422 ("tumorni nekrozni faktor"); S. Green et al., 1976, "Proc. Nat. Acad. Sci. USA:, 73(2); 381-385 ("serumski faktor"); N. Satomi et al., 1981, "Jpn. J. Exp. Med." 51(6): 317-322; N. Matthews, 1979, "Br. J. Cancer" 40: 534-539 ("faktor nekroze tumora"); K. Haranaka et al., 1981, "Jpn. J. Exp. Med." 51(3): 191-194 ("faktor nekroze tumora"); i L. Old et al., Europska Patentna Prijava 90892; T. Umeda et al., 1983, "Cellular and Molecular Biology" 29(5): 349-352; i H. Enomoto et al., 1983, Europska Patentna Prijava 86,475. Attempts to characterize immune cytotoxic factors have also focused on using as starting material the serum or peritoneal fluid of animals that have been exposed to immunogenic antigens. These sources contain the entire cornucopia of the stressed immune system, as opposed to the product or products of a single cell type or line. The following should be understood as publications of this type: S. Green et al., 1982, "J. Nat. Cancer Inst." 68(6): 997-1003 ("tumor necrosis induction factor"); M. Ruff et al., 1980, "J. Immunology" 125(4): 1671-1677 ("tumor necrosis factor"); H. Enomoto et al., European Patent Application 86475 ("antitumor substance"); H. Oettgen et. al., 1980, "Recent Results Cancer Res." 75: 207-212 ("tumor necrosis factor"); F. Kull et al., 1981, "J. Immunol." 126(4): 1279-1283 ("Tumor Cell Cytotoxin":); D. Mannel et al., 1980, "Infection and Immunity" 28(1): 204-211 ("cytotoxic factor"); N. Matthews et al., 1980, "Br. J. Cancer": 42: 416-422 ("tumor necrosis factor"); S. Green et al., 1976, "Proc. Nat. Acad. Sci. USA:, 73(2); 381-385 ("serum factor"); N. Satomi et al., 1981, "Jpn. J. Exp. Med." 51(6): 317-322; N. Matthews, 1979, "No. J. Cancer" 40: 534-539 ("tumor necrosis factor"); K. Haranaka et al., 1981, "Jpn. J. Exp. Med." 51(3): 191-194 ("tumor necrosis factor"); and L. Old et al., European Patent Application 90892; T. Umeda et al., 1983, "Cellular and Molecular Biology" 29(5 ): 349-352; and H. Enomoto et al., 1983, European Patent Application 86,475.

Daljnja literatura koja se treba konzultirati je J. Nissen-Meyer et al., 1982, "Infection and Immunity" 38(1); 67-73; J. Klostergaard et al., 1981, "Mol. Immunol." 18(12): 1049-1054; N. Sloana, U.S. patent 4,359,415; i H. Hyayashi et al., U.S. Patent 4,447,355; K. Hanamaka et al., 1983, Europska Patentna Prijava 90,892; i G. Granger et al., 1978, "Cellular Immunology" 38: 388-402. Further literature to be consulted is J. Nissen-Meyer et al., 1982, "Infection and Immunity" 38(1); 67-73; J. Klostergaard et al., 1981, "Mol. Immunol." 18(12): 1049-1054; N. Sloan, U.S. patent 4,359,415; and H. Hayashi et al., U.S. Patent 4,447,355; K. Hanamaka et al., 1983, European Patent Application 90,892; and G. Granger et al., 1978, "Cellular Immunology" 38: 388-402.

European Patent Application Publn. No. 100641 opisuje citotoksični polipeptid koji je bitno pročišćen da bude slobodan od nečistoća iz ljudske limfoblastoidne stanične kulture. Ovaj polipeptid je označen limfotoksin, iako je njegov odnos sa drugim navedenim citotoksičnim polipeptidima pod imenom limfotoksin nejasan. Nije bilo poznato da li je ovo bio jedini citotoksični polipeptid koji stvaraju imune stanice, kao što je sugerirao Zacharchuk et bal. (Id.), ili je bio jedan iz potencijalne familije citotoksičnih faktora. European Patent Application Publn. But. 100641 describes a cytotoxic polypeptide substantially purified to be free of impurities from a human lymphoblastoid cell culture. This polypeptide has been designated a lymphotoxin, although its relationship to other cytotoxic polypeptides named lymphotoxin is unclear. It was not known whether this was the only cytotoxic polypeptide produced by immune cells, as suggested by Zacharchuk et al. (Id.), or was one of a potential family of cytotoxic factors.

Polipeptid iz 641 Prijave ima dva amino terminusa, pri čemu se veća varijanta završava sa Leu Pro Gly Val Gly Leu Thr Pro Ser Ala Ala Gln Thr Ala Arg Gln His Pro Lys Met His Leu Ala His Ser Thr... a manja varijanta se zatupljenim amino terminusom His Ser Thr Leu Lys Pro Ala Ala... The polypeptide from Application 641 has two amino termini, with the larger variant ending in Leu Pro Gly Val Gly Leu Thr Pro Ser Ala Ala Gln Thr Ala Arg Gln His Pro Lys Met His Leu Ala His Ser Thr... and the smaller variant being blunted with the amino terminus His Ser Thr Leu Lys Pro Ala Ala...

Prema ranijoj literaturi interferoni, koji pokazuju izvjesnu aktivnost za inhibiranje tumora, i siromašno okarakteriziran protein koji ima AlaAla amino terminus (U.K. Patent Application Publn. No. 2,117,385A), bili su kandidati za ne-limfotoksinske citotoksične faktore. Kao što će se vidjeti, faktor nekroze tumora iz ovog izuma nije interferon, niti je limfotoksin i nema AlaAla amino terminus. According to earlier literature, interferons, which show some tumor-inhibiting activity, and a poorly characterized protein having an AlaAla amino terminus (U.K. Patent Application Publn. No. 2,117,385A), were candidates for non-lymphotoxin cytotoxic factors. As will be seen, the tumor necrosis factor of the present invention is not an interferon, nor is it a lymphotoxin and does not have an AlaAla amino terminus.

Cilj ovog izuma je (a) da zaključujuće utvrdi da li ili ne postoji drugi faktor nekroze tumora pored limfotoksina i, ako je tako, da ga identificira na takav način da se jasno razlikuje od drugih takvih faktora; (b) da proizvede takav faktor postupcima koji se razlikuju od inducirane stanične kulture, koji je skup i daje proizvod koji je kontaminiran sa indukcijskim sredstvom, ili pomoću indukcije limfocita periferne krvi, koji je ekonomski nepraktičan, siromašno reproduktivan, i proizvodi proizvod koji je kontaminiran sa homologim proteinima stanica i plazme; (c) da se dobije DNA koja kodira za takav faktor nekroze tumora i da se izrazi DNA u rekombinantnoj kulturi; (d) da se sintetizira takav faktor u rekombinantnoj kulturi u zrelom obliku; (e) da se modificira sekvenca za kodiranje ili struktura takvog faktora; (f) da se takav faktor formulira u terapeutske dozne oblike i da se daje životinjama za liječenje tumora; i (g) da se proizvedu dijagnostički reagensi koji se odnose na takav faktor. The object of this invention is (a) to conclusively determine whether or not there is another tumor necrosis factor besides lymphotoxin and, if so, to identify it in such a way that it is clearly distinguishable from other such factors; (b) to produce such factor by methods other than induced cell culture, which is expensive and produces a product that is contaminated with the induction agent, or by induction of peripheral blood lymphocytes, which is economically impractical, poorly reproducible, and produces a product that is contaminated with homologous proteins of cells and plasma; (c) to obtain DNA encoding such tumor necrosis factor and to express the DNA in recombinant culture; (d) to synthesize such factor in a recombinant culture in a mature form; (e) to modify the coding sequence or structure of such factor; (f) formulating such factor into therapeutic dosage forms and administering to animals for the treatment of tumors; and (g) to produce diagnostic reagents related to such factor.

Opis rješenja tehničkog problema sa primjerima izvođenja Description of the solution to the technical problem with implementation examples

Citotoksični faktor pročišćen je do homogenosti, okarakteriziran je i izražen u rekombinantnoj kulturi. Ovaj faktor je označen kao faktor nekroze tumora (TNF) zbog pogodnosti i definiran je niže. Osiguran je u glavnini u homogenom obliku stanične kulture pri specifičnoj aktivnosti koja je veća od oko 10 milijuna jedinica/mg proteina, i obično oko 100 milijuna jedinica/mg. The cytotoxic factor was purified to homogeneity, characterized and expressed in recombinant culture. This factor is designated tumor necrosis factor (TNF) for convenience and is defined below. It is provided in the bulk in a homogeneous form of cell culture at a specific activity greater than about 10 million units/mg of protein, and usually about 100 million units/mg.

Faktor nekroze humanog tumora sitnetiziran u rekombinantnoj kulturi karakterizira se prisutnošću ne-humanih staničnih komponenata, uključujući proteine, u količinama i karaktera koji su fiziološki prihvatljivi za davanje pacijentima u skladu sa faktorom nekroze tumora. Ove komponente će obično biti podrijetla kvasca, prokariotskog ili ne-humanog višeg aukariotskog podrijetla i prisutne su u bezopasnim kontaminantnim količinama, reda manjeg od 1 mas. postotka. Human tumor necrosis factor synthesized in recombinant culture is characterized by the presence of non-human cellular components, including proteins, in amounts and characters that are physiologically acceptable for administration to patients in accordance with the tumor necrosis factor. These components will usually be of yeast, prokaryotic or non-human higher eukaryotic origin and are present in harmless contaminant amounts of the order of less than 1 wt. percentage.

Dalje, rekombinantna stanična kultura omogućava proizvodnju faktora nekroze tumora koji je apsolutno slobodan od homolognih proteina. Homologni proteini su oni koji normalno prate faktor nekroze tumora kao što se nalazi u prirodi, npr., u stanicama, staničnim eksudatima ili tjelesnim fluidima. Na primjer, homologni protein za faktor nekroze humanog tumora je humani albumin seruma. Heterologi proteini su suprotni, tj. oni su prirodno praćeni i ne nalaze se u kombinaciji sa faktorom nekroze tumora u pitanju. Furthermore, recombinant cell culture enables the production of tumor necrosis factor that is absolutely free of homologous proteins. Homologous proteins are those that normally accompany tumor necrosis factor as found in nature, eg, in cells, cell exudates or body fluids. For example, the homologous protein for human tumor necrosis factor is human serum albumin. Heterologous proteins are the opposite, i.e. they are naturally monitored and are not found in combination with the tumor necrosis factor in question.

Osigurava se DNA koja kodira za faktor nekroze tumora i koja, kada se izrazi u rekombinantnoj ili transformiranoj kulturi, daje obilne količine faktora nekroze tumora. Ova DNA je nova zato što cDNA koja je dobivena reverznom transkripcijom mRNA iz inducirane monocitne stanične linije ne sadrži introne i slobodna je od bilo kakvih prirubnih regija koje kodiraju za druge proteine organizma iz kojeg mRNA potječe. DNA that codes for tumor necrosis factor and which, when expressed in recombinant or transformed culture, yields copious amounts of tumor necrosis factor is provided. This DNA is novel because cDNA obtained by reverse transcription of mRNA from an induced monocytic cell line does not contain introns and is free of any flanking regions that code for other proteins of the organism from which the mRNA originates.

Kromozomna DNA koja kodira za THF dobivena je sondiranjem genomskih DNA biblioteka sa cDNA. Kromozomna DNA je slobodna od prirubnih regija koji kodiraju za druge proteine ali može sadržati introne. Chromosomal DNA coding for THF was obtained by probing genomic DNA libraries with cDNA. Chromosomal DNA is free of flanking regions that code for other proteins but may contain introns.

Izoliran faktor nekroze tumora DNA se lako modificira supstitucijom, izostavljanjem ili umetanjem nukleotida, što dovodi do novih DNA sekvenci koje kodiraju za faktor nekroze tumora ili njegove derivate. Ove modificirane sekvence koriste se za proizvodnju mutantnog faktora nekroze tumora i za direktno izražavanje zrelog faktora nekroze tumora. Modificirane sekvence su također korisne u pojačavanju efikasnosti izražavanja faktora nekroze tumora u izabranim sustavima domaćin-vektor, npr., modifikacijom zbog prilagođavanja preferencijalnom kodonu stanica domaćina. Isolated tumor necrosis factor DNA is readily modified by nucleotide substitution, deletion, or insertion, leading to new DNA sequences encoding tumor necrosis factor or its derivatives. These modified sequences are used to produce mutant tumor necrosis factor and to directly express mature tumor necrosis factor. Modified sequences are also useful in enhancing the efficiency of expression of tumor necrosis factor in selected host-vector systems, eg, by modification due to adaptation to the preferential codon of the host cells.

Ove nove DNA sekvence ili njihovi fragmenti su markirani i koriste se u hibridizacijskim testovima za genetski materijal koji kodira za faktor nekroze tumora. These new DNA sequences or fragments thereof are labeled and used in hybridization assays for genetic material coding for tumor necrosis factor.

U postupcima za sintezu faktora nekroze tumora, DNA koja kodira za faktor nekroze tumora veže se u replicirajući (reproducirajući) vektor, vektor se koristi za transformiranje stanica domaćina, stanice domaćina se kultiviraju i faktor nekroze tumora se regenerira iz kulture. Ovaj opći postupak se koristi na konstrukciju faktora nekroze tumora koji ima karakateristike monocitnog faktora nekroze tumora ili za konstrukciju vektora i stanica domaćina izabranih za transformiranje. Tipovi faktora nekroze tumora koje se ovdje mogu sintetizirati uključuju zreli (valil amino-terminalni) faktor nekroze tumora, predtumorni faktor nekroze ("pred TNF", kao što je ovdje definirano), i derivate TNF koji uključuju (a) fuzione proteine gdje je TNF ili bilo koji njegov fragment (uključujući zreli faktor nekroze tumora) vezan za druge . proteine ili polipeptide pomoću peptidne veze na amino i/ili karboksilnim terminalnim aminokiselinama TNF ili njegovih fragmenata, (b) TNF fragmente, uključujući zreli faktor nekroze tumora ili fragmente pred TNF u kojima je bilo kakve predproteinska aminokiselina aminoterminalna aminokiselina fragmenta, (c) mutante TNF ili njegovih fragmenata (uključujući zreli faktor nekroze tumora) gdje su jedan ili više aminokiselinskih ostataka supstituirani, umetnuti ili izostavljeni, i/ili (d) metionil ili modificirane metionil (kao što su formil metioni ili druge blokirane metionil vrste) amino-terminalni adicijski derivati prethodnih proteina, fragmenata ili mutanata. In procedures for the synthesis of tumor necrosis factor, DNA encoding tumor necrosis factor is ligated into a replicating (reproducing) vector, the vector is used to transform host cells, the host cells are cultured, and tumor necrosis factor is regenerated from the culture. This general procedure is used for the construction of tumor necrosis factor that has the characteristics of monocyte tumor necrosis factor or for the construction of vectors and host cells selected for transformation. Types of tumor necrosis factor that can be synthesized herein include mature (valyl amino-terminal) tumor necrosis factor, pre-tumor necrosis factor ("pre-TNF", as defined herein), and TNF derivatives including (a) fusion proteins wherein TNF or any fragment thereof (including mature tumor necrosis factor) linked to other . proteins or polypeptides by peptide linkage to the amino and/or carboxyl terminal amino acids of TNF or fragments thereof, (b) TNF fragments, including mature tumor necrosis factor or pre-TNF fragments in which any preprotein amino acid is an amino terminal amino acid of the fragment, (c) TNF mutants or fragments thereof (including mature tumor necrosis factor) where one or more amino acid residues are substituted, inserted or omitted, and/or (d) methionyl or modified methionyl (such as formyl methiones or other blocked methionyl species) amino-terminal addition derivatives previous proteins, fragments or mutants.

Obično, ako je stanica sisavca transformirana sa (a) vektorom koji sadrži cjelokupni strukturni gen za faktor nekroze tumora (uključujući 5' startni kodon), ili (b) sa genom za zreli faktor nekroze tumora ili sa derivatom za zreli faktor nekroze tumora koji je operativno vezan za eukariotsku sekrecijsku vodeću sekvencu (koja također može uključivati sekrecijsku vodeću presekvencu faktora nekroze tumora), i stanica se onda kultivira, tada se iz kulture regenerira zreli faktor nekroze tumora. Typically, if a mammalian cell is transformed with (a) a vector containing the entire structural tumor necrosis factor gene (including the 5' start codon), or (b) a mature tumor necrosis factor gene or a mature tumor necrosis factor derivative that is operably linked to a eukaryotic secretory leader sequence (which may also include a tumor necrosis factor secretory leader presequence), and the cell is then cultured, then mature tumor necrosis factor is regenerated from the culture.

Na sličan način, ako je DNA koja kodira za TNF operativno vezana u vektor za sekrecijsku vodeću sekvencu koje je pravilno prerađena pomoću stanice domaćina za transformiranje (obično organizma iz kojeg je vodeća sekvenca dobivena), pa se stanica transformira sa vektorom i kultivira, tada se sintetizira faktor nekroze tumora bez amino-terminalnog metionil ili blokiranog metionil. Određeno, E. coli transformirana sa vektorima u kojima je DNA koja kodira za zreli faktor nekroze tumora vezana 5' za DNA koja kodira za STII enterotoksinskih signalni polipeptid prerađivat će pravilno visok postotak hibridnog predproteina u zreli faktor nekroze tumora. Sekrecijske vodeće sekvence i stanice domaćina mogu se izabrati tako da nastaje pravilan trensport zrelog proteina u staničnu periplazmu. Similarly, if the DNA encoding TNF is operably linked into a vector for a secretory leader sequence that has been properly processed by a host cell for transformation (usually the organism from which the leader sequence was obtained), and the cell is transformed with the vector and cultured, then synthesizes tumor necrosis factor without amino-terminal methionyl or blocked methionyl. Specifically, E. coli transformed with vectors in which DNA encoding mature tumor necrosis factor is linked 5' to DNA encoding STII enterotoxin signal polypeptide will properly process a high percentage of the hybrid preprotein into mature tumor necrosis factor. Secretory leader sequences and host cells can be chosen so that proper transport of the mature protein into the cell periplasm occurs.

Također su unutar opsega ovog izuma derivati faktora nekroze tumora koji se razlikuju od varijacija aminokiselinske sekvence ili glikoliziranja. Takvi derivati se karakteriziraju kovalentnom ili agregativnom asocijacijom sa kemijskim tipovima. Derivati uglavnom spadaju u trim klase: soli, kovalentne modifikacije bočnog niza i terminalnog ostatka i adsorpsijski kompleksi. Also within the scope of this invention are derivatives of tumor necrosis factor that differ from amino acid sequence or glycolysis variations. Such derivatives are characterized by covalent or aggregative association with chemical species. Derivatives mainly fall into three classes: salts, covalent modifications of the side chain and terminal residue, and adsorption complexes.

Ako je DNA koja kodira za zreli faktor nekroze tumora operativno veže u vektor, pa je vektor korišten za transformiranje stanice domaćina i stanica se kultivira, u citoplazmi stanica nalazi se zreli faktor nekroze tumora. Prema tome nije potrebno razraditi sekrecijske sustave u cilju dobivanja zrelog faktora nekroze tumora. Ovo je neočekivano pošto, obično direktno izražavanje daje metionilirani protein. Dalje, protein je stabilan i topiv u rekombinantnoj staničnoj kulturi, tj. niti se proteolitički prekida intrastaničnim proteazama niti se deponira u obliku refraktilnih tijela. Prema tome, osigurane su nove fermentacije koje obuhvaćaju niže eukariotske ili prokariotske stanice koje imaju nemetionilirani zreli faktor nekroze tumora koji se nalazi u citoplazmi takvih stanica. If DNA coding for mature tumor necrosis factor is operatively ligated into a vector, and the vector is used to transform a host cell and the cell is cultured, mature tumor necrosis factor is found in the cytoplasm of the cells. Therefore, it is not necessary to develop secretion systems in order to obtain mature tumor necrosis factor. This is unexpected since direct expression normally yields a methionylated protein. Furthermore, the protein is stable and soluble in recombinant cell culture, i.e. it is neither proteolytically interrupted by intracellular proteases nor deposited in the form of refractile bodies. Accordingly, novel fermentations are provided which involve lower eukaryotic or prokaryotic cells having non-methionylated mature tumor necrosis factor present in the cytoplasm of such cells.

Iako se faktor nekroze tumora može napraviti kultiviranjem životinjskih staničnih linija, npr., monocitne stanične linije koja je inducirana rastom u pristunosti 4-beta-forbol-12-miristat-13-acetata (PMA) ili takvih besmrtnih staničnih linija kao što su hibridomi ili EBV transformirane stanice (U.S. Patent 4,464,465), poželjno je da se faktor nekroze tumora sintetizira u rekombinantnoj staničnoj kulturi kao što je dalje opisano niže. Although tumor necrosis factor can be made by culturing animal cell lines, e.g., a monocytic cell line that is induced to grow in the presence of 4-beta-phorbol-12-myristate-13-acetate (PMA) or such immortalized cell lines as hybridomas or EBV transformed cells (U.S. Patent 4,464,465), preferably the tumor necrosis factor is synthesized in recombinant cell culture as further described below.

Pošto se jednom napravi faktor nekroze tumora fermentacijom on se uglavnom pročišćava regeneriranjem prezasićenog fluida kulture ili kulture sa prekinutim stanicama, odvajanjem čvrstih supstanci, adsorpcijom faktora nekroze tumora iz smjese supernatanta (koja sadrži faktor nekroze tumora i druge proteine) na neku hidrofobnu supstancu, eluiranjem faktora nekroze tumora sa supstance, adsorpcijom faktora nekroze tumora na tercijarnu amino-anionsku izmjenjivačku smolu, eluiranjem faktora nekroze tumora sa smole, adsorpcijom faktora nekroze tumora na anjonškoj izmjenjivačkoj smoli (poželjno kvaternerna amino-supstituirana) koja ima bitno sukladnu veličinu djelića, i eluiranjem faktora nekoze tumora sa smolom. Opcijski se preparati faktora nekroze tumora koncentriraju i pročišćavaju kromatofokusiranjem u postupku za pročišćavanje, na primjer izoelektričnim fokusiranjem ili provedbom kroz molekulski gel kao što je Sephadex G-25. Once the tumor necrosis factor is made by fermentation, it is mainly purified by regenerating the supersaturated culture fluid or culture with interrupted cells, separating the solid substances, adsorbing the tumor necrosis factor from the supernatant mixture (which contains the tumor necrosis factor and other proteins) onto some hydrophobic substance, elution of the factor of tumor necrosis from the substance, by adsorption of tumor necrosis factor on a tertiary amino-anion exchange resin, elution of tumor necrosis factor from the resin, adsorption of tumor necrosis factor on an anion exchange resin (preferably quaternary amino-substituted) which has an essentially compatible particle size, and elution of the non-goose factor tumors with resin. Optionally, preparations of tumor necrosis factor are concentrated and purified by chromatofocusing in a purification procedure, for example by isoelectric focusing or passage through a molecular gel such as Sephadex G-25.

Pročišćeni faktor nekroze tumora iz rekombinantne ili inducirane stanične kulture kombinira se za terapeutsku primjenu sa fiziološki bezopasnim stabilizatorima i sastojicima i formulira se u dozni oblik, na primjer, liofiliziranjem u dozne fiole, ili se skladišti u stabiliziranim vodenim preparatima. Alternativno se faktor nekroze tumora ubaci u polimernu matricu za usađivanje u tumore ili krirurška mjesta iz kojih su tumori isječeni, tako da se vrši "tajmirano" oslobađanje faktora nekroze tumora u lokaliziranoj visokoj koncentraciji. Purified tumor necrosis factor from recombinant or induced cell culture is combined for therapeutic use with physiologically harmless stabilizers and compounds and formulated into a dosage form, for example, by lyophilization into dosage vials, or stored in stabilized aqueous preparations. Alternatively, tumor necrosis factor is incorporated into a polymer matrix for implantation into tumors or surgical sites from which tumors have been excised, so that a "timed" release of tumor necrosis factor at a localized high concentration is effected.

Preparati se dobivaju bez kontaminantnih citotoksičnih faktora kao što su limfotoksin, interferoni ili drugi citotoksični proteini poznati iz literature. Međutim, u terapeutskim primjenama faktor nekroze tumora se pogodno kombinira sa predodređenim količinama limfotoksina i/ili interferona. Preparati koji sadrže faktor nekroze tumora i interferon, kao što je gama-interferon, su posebno korisni pošto je nađeno da pokazuju sinregtetsku citotoksičnu aktivnost. The preparations are obtained without contaminating cytotoxic factors such as lymphotoxin, interferons or other cytotoxic proteins known from the literature. However, in therapeutic applications, tumor necrosis factor is conveniently combined with predetermined amounts of lymphotoxin and/or interferon. Preparations containing tumor necrosis factor and interferon, such as interferon gamma, are particularly useful as they have been found to exhibit synergistic cytotoxic activity.

Preparati faktora nekoze tumora daju se životinjama, posebno pacijentima koji imaju maligne tumore, u terapeutski efikasnim dozama. Pogodne doze biti će jasne stručnjaku za doziranje terapije kao što je dalje objašnjeno niže. Tumor suppressing factor preparations are administered to animals, especially to patients with malignant tumors, in therapeutically effective doses. Suitable dosages will be apparent to one skilled in the art of dosing therapy as further discussed below.

Kratak opis crteža Brief description of the drawing

Sl. 1 prikazuje profil eluiranja faktora nekroze tumora iz kontrolnog poroznog stakla. Sl. 1 shows the elution profile of tumor necrosis factor from the control porous glass.

Sl. 2 prikazuje profil eluiranja faktora nekroze tumora iz difenilaminoetil celuloze. Sl. 2 shows the elution profile of tumor necrosis factor from diphenylaminoethyl cellulose.

Sl. 3 prikazuje profile eluiranja faktora nekroze tumora iz brze tekućine kromatografije proteina. Sl. 3 shows tumor necrosis factor elution profiles from fast protein liquid chromatography.

Sl. 4 prikazuje profil eluiranja faktora nekroze tumora nakon kromatofokusiranja. Sl. 4 shows the elution profile of tumor necrosis factor after chromatofocusing.

Sl. 5 prikazuje molekulsku težinu faktora nekroze tumora pomoću SDS PAGE gel elektroforeze. Sl. 5 shows the molecular weight of tumor necrosis factor by SDS PAGE gel electrophoresis.

Sl. 6 prikazuje molekulsku težinu faktora nekroze tumora nakon HPLC eluiranja. Sl. 6 shows the molecular weight of tumor necrosis factor after HPLC elution.

Sl. 7 prikazuje profil eluiranja faktora nekroze tumora sa HPLC C4 kolone. Sl. 7 shows the elution profile of tumor necrosis factor from the HPLC C4 column.

Sl. 8 ilustrira odvajanje faktora nekroze tumora u obliku tripsinom digeriranih fragmenata na HPLC. Sl. 8 illustrates the separation of tumor necrosis factor in the form of trypsin-digested fragments on HPLC.

Sl. 9 ilustrira citotoksični efekt smjesa gama-interferona i faktora nekroze tumora. Sl. 9 illustrates the cytotoxic effect of mixtures of gamma-interferon and tumor necrosis factor.

Sl. 10 prikazuje nukleotidnu i aminokiselinsku sekvencu za predhumani faktor nekroze tumora, uključujući kompletnu sekrecijsku vodeću sekvencu faktora nekroze tumora. Sl. 10 shows the nucleotide and amino acid sequence for pre-human tumor necrosis factor, including the complete tumor necrosis factor secretory leader sequence.

Sl. 11 prikazuje konstrukciju ekspresijskog vektora faktora nakroze tumora. Sl. 11 shows the construction of a tumor necrosis factor expression vector.

Sl. 12 opisuje E. coli STII toplinski stabilan enterotoksinski gen. Sl. 12 describes the E. coli STII heat-stable enterotoxin gene.

Faktor nekroze tumora se definira za svrhe ovog izuma kao polipeptid koji se razlikuje od limfotoksina koji ima preferencijalnu citotoksičnu aktivnost i ima regiju koja prikazuje funkcionalnu aminokiselinsku homologiju sa aminokiselinskom sekvencom zrelog faktora nekroze tumora prikazanom na Sl. 10, njenim fragmentom, ili sa derivatom takvog polipeptida ili fragmenta. Tumor necrosis factor is defined for the purposes of this invention as a polypeptide distinct from a lymphotoxin that has preferential cytotoxic activity and has a region showing functional amino acid homology to the mature tumor necrosis factor amino acid sequence shown in FIG. 10, its fragment, or with a derivative of such a polypeptide or fragment.

Preferencijalna citotoksična aktivnost se definira kao preferencijalna destrukcija ili inhibiranje rasta tumornih stanica u usporedbi sa normalnim stanicama pod istim uvjetima. Preferencijalna citotoksična aktivnost detektira se efektom polipeptida na tumorne stanice in vivo ili in vitro u usporedbi sa normalnim stanicama ili tkivom. Prekidanje stanica je uglavnom dijagnostički indeks in vitro, dok se nekroza tumora određuje eksperimentima in vivo. Međutim, citotoksična aktivnost se može manifestirati kao citostaza ili kao antiproliferativna aktivnost. Pogodni sustavi za testiranje su dobro poznati. Na primjer, prihvatljiv je test za prekidanje stanica za određivanje specifične aktivnosti faktora nekoze tumora koji je opisan niže, kao i test, koji je opisan u B. Aggarval et al., u "Thimic Horriiones and Lymhokines" 1983, ed. A. Goldstein, Spring Symposium on Health Sciences, George Washington University Medical Center (A549 stanična linija o kojoj se govori u ovoj literaturi pristupačna je od ATCC kao CCLl8S). Preferential cytotoxic activity is defined as preferential destruction or growth inhibition of tumor cells compared to normal cells under the same conditions. Preferential cytotoxic activity is detected by the effect of the polypeptide on tumor cells in vivo or in vitro compared to normal cells or tissue. Cell disruption is mainly a diagnostic index in vitro, while tumor necrosis is determined by in vivo experiments. However, cytotoxic activity can be manifested as cytostasis or as antiproliferative activity. Suitable test systems are well known. For example, the cell disruption assay for determining the specific activity of tumor suppressor factor described below is acceptable, as is the assay described in B. Aggarval et al., in Thymic Hormones and Lymphokines, 1983, ed. A. Goldstein, Spring Symposium on Health Sciences, George Washington University Medical Center (A549 cell line discussed in this literature is available from ATCC as CCL18S).

Specifična aktivnost TNF određuje se kao prekidanje željenih stanica, radije nego kao citostaza. Jedna jedinica faktora nekroze tumora definira se kao količina koja je potrebna za 50 postotno prekidanje željenih stanica prevučenih u svakoj rupici prema Primjeru 1. Međutim, ovo ne isključuje druge testove za mjerenje specifične aktivnosti, npr., postupke na bazi brzine rasta željeni stanica. The specific activity of TNF is defined as disruption of the desired cells, rather than cytostasis. One unit of tumor necrosis factor is defined as the amount required for 50 percent disruption of the desired cells plated in each well according to Example 1. However, this does not preclude other assays to measure specific activity, e.g., methods based on the growth rate of the desired cells.

PredTNF je tip faktora nekroze tumora koja je uključena unutar predhodne deimicije faktora nekroze tumora. Karakterizira se prisutnošću molekula signalnog (ili vodećeg) polipeptida koji služi da post-translacijsko usmjerava protein na mjesto unutar ili van stanica. PredTNF is a type of tumor necrosis factor that is involved in the pre-demission of tumor necrosis factor. It is characterized by the presence of signal (or leader) polypeptide molecules that serve to post-translationally direct the protein to a location inside or outside cells.

Uglavnom, signalni polipeptid (koji neće imati svoju vlastitu aktivnost za nekrozu tumora) se proteolitički prekida od rezidualnog proteina koji ima aktivnost za nekrozu tumora kao dio sekrecijskog procesa u kojem se protein transportira u periplazmu stanice domaćina ili u podlogu za kulturu. Signalni peptid može biti mikrobni ili od sisavca (uključujući nativnu presekvencu od 76 ostataka) ali je poželjno signal koji je homolog sa stanicom domaćina. Basically, the signal polypeptide (which will have no tumor necrosis activity of its own) is proteolytically cleaved from a residual protein that has tumor necrosis activity as part of a secretory process in which the protein is transported into the host cell periplasm or culture medium. The signal peptide can be microbial or mammalian (including the native 76 residue presequence) but is preferably a signal that is homologous to the host cell.

Nativni faktor nekroze tumora iz normalnih bioloških izvora ima izračunatu molekulsku težinu od 17,000 prilikom natrij-dodecilsulfatne poliakrilamidne gel elektroforeze (SDS-PAGE) kao što je opisano niže, izoelektričnu točku oko 5.3, i sklonost za hidrolizu tripsinom na više mjesta. Nativni faktor nekoze tumora koji je pročišćen pomoću HPLC sa reversnom fazom hidrolizira se sa tripsinom u najmanje devet fragmenata pod uvjetima koji su opisani niže. Precizan broj fragmenata u koje se faktor nekroze tumora hidrolizira zavisit će od takvih faktora kao što su aktivnost tripsina, koncentracija faktora, nekroze tumora i parametri inkubacije, uključujući ionsku jačinu, pH temperaturu i vrijeme inkubacije. Native tumor necrosis factor from normal biological sources has a calculated molecular weight of 17,000 on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) as described below, an isoelectric point of about 5.3, and a propensity for hydrolysis by trypsin at multiple sites. Native tumor necrosis factor purified by reverse-phase HPLC is hydrolyzed with trypsin into at least nine fragments under the conditions described below. The precise number of fragments into which tumor necrosis factor is hydrolyzed will depend on such factors as trypsin activity, factor concentration, tumor necrosis factor, and incubation parameters, including ionic strength, pH temperature, and incubation time.

Ne izgleda da je faktor nekroze tumora glikoprotein, pošto se ne zadržava na lektinskoj afinitetnoj koloni a analiza deducirane aminokiselinske sekvence nema vjerojatna mjesta za glikoziranje. Također, materijal proizveden u rekombinantnoj E. coli kulturi (koji nema sposobnost glikoziranja) komigrira sa prirodnim TNF na SDS-PAGE. It does not appear that the tumor necrosis factor is a glycoprotein, since it is not retained on the lectin affinity column and the analysis of the deduced amino acid sequence has no likely sites for glycosylation. Also, material produced in recombinant E. coli culture (which lacks the ability to glycosylate) comigrates with natural TNF on SDS-PAGE.

Stupanj homologije aminokiselinske sekvence koji dovodi polipeptid unutar opsega definicije faktora nekroze tumora zavisti će od toga da li homologija između kandidatnog proteina i faktora nekroze tumora spada unutar ili van regije faktora nekroze tumora koji su odgovorni za citotoksičnu aktivnost; područja koja su kritična za citotoksičnu aktivnost treba pokazati visoki stupanj homologije u cilju padanja u opseg definicije, dok sekvence koje nisu uključene u održavanju konformacije faktora nekroze tumora ili u vršenju vezanja receptora mogu pokazivati relativno slabu homologiju. Dalje, kritična područja mogu pokazivati citolitičku aktivnost a ipak zadržavati homologiju, kao što je ovdje definirana ako su ostaci koji sadrže funkcionalnost funkcionalno slične aminokiselinske bočne nizove supstituirani. Funkcionalno slični odnosi se na dominantne karakteristike bočnih nizova kao što su bazni, neutralni ili kiseli, ili na prisutnost ili odsutnost sterne mase. Međutim, faktor nerkoze tumora kao što je ovdje definiran specifično isključuje limfotoksin. The degree of amino acid sequence homology that brings the polypeptide within the scope of the tumor necrosis factor definition will depend on whether the homology between the candidate protein and the tumor necrosis factor falls within or outside the region of the tumor necrosis factor responsible for cytotoxic activity; regions that are critical for cytotoxic activity should show a high degree of homology in order to fall within the scope of the definition, while sequences that are not involved in maintaining the conformation of tumor necrosis factor or in receptor binding may show relatively weak homology. Further, critical regions can exhibit cytolytic activity yet retain homology, as defined herein, if residues containing functionally similar amino acid flanking sequences are substituted. Functionally similar refers to the dominant characteristics of the side chains such as basic, neutral, or acidic, or to the presence or absence of a sternal mass. However, tumor necrosis factor as defined herein specifically excludes lymphotoxin.

Uglavnom će polipeptid koji je definiran kao faktor nekroze tumora sadržati regije koje su u glavnini homologi sa proteinom sa Sl. 10 ili njegovim fragmentima preko kontinualnog bloka od oko 20 do 100 aminokiselinskih ostataka, posebno blokova koji su obuhvaćeni ostacima 35-66 i 110-133. Basically, the polypeptide that is defined as a tumor necrosis factor will contain regions that are mostly homologous with the protein from FIG. 10 or its fragments over a continuous block of about 20 to 100 amino acid residues, especially the blocks that are covered by residues 35-66 and 110-133.

Najznačajniji faktor za uspostavljanje identiteta polipeptida kao faktora nekroze tumora je sposobnost antiseruma koji su sposobni da bitno neutraliziraju citolitičku aktivnost zrelog faktora nekroze tumora kao što je prikazan na Sl. 10 da također u glavnini neutralizira citolitičku aktivnost polipeptida u pitanju. Međutim, bit će shvaćeno da imunološki identitet i citološki identitet nisu obavezno koekstenzivni. Neutralizacijsko antitijelo za faktor nekroze tumora sa Sl. 10 može ne vezati kandidatni protein zato što neutralizacijsko antitijelo ne mora biti usmjereno na specifilno vezanje mjesta na faktoru nekroze tumora koje je kritično za njegovu citotokisčnu aktivnost. Umjesto toga, antitijelo može vezati bezopasna regija i pokazivati svoj neutralizacijski efekt sternim efektom. Zato, kandidatni protein mutiran u ovoj bezopasnoj regiji može se više ne vezati za neutralizacijsko antitijelo, ali će svejedno biti faktor nekroze tumora zbog bitne homologije i biološke, aktivnosti. The most significant factor for establishing the identity of the polypeptide as tumor necrosis factor is the ability of antisera capable of substantially neutralizing the cytolytic activity of mature tumor necrosis factor as shown in FIG. 10 to also largely neutralize the cytolytic activity of the polypeptide in question. However, it will be understood that immunological identity and cytological identity are not necessarily coextensive. Neutralizing antibody for tumor necrosis factor from FIG. 10 may not bind the candidate protein because the neutralizing antibody need not target a specific binding site on tumor necrosis factor that is critical for its cytotoxic activity. Instead, the antibody can bind a harmless region and exert its neutralizing effect through a steric effect. Therefore, the candidate protein mutated in this harmless region may no longer bind to the neutralizing antibody, but will still be a tumor necrosis factor due to essential homology and biological activity.

Važno je zapaziti da su takve karakteristike kao što su molekulska težina, izoelektrična točka i slične, za nativni ili humani faktor nekroze tumora divlje vrste na Sl. , 10 dobiven iz perifernih limfocita ili uspostavljenih kultura staničnih linija, samo deksriptivne za prirodne tipove faktora nekroze tumora. Faktor nekroze tumora kao što je obuhvaćen prethodnom definicijom uključivati će druge tipove koje neće pokazivati sve karakteristike nativnog faktora nekroze tumora. Dok faktor nekroze tumora kao što je ovdje definiran uključuje nativni faktor nekroze tumora, drugi srodni citotoksični polipeptidi spadat će unutar definicije. Na primjer, derivati TNF kao što su mutanti od umetanja, mutanti od izostavljanja ili fuzioni proteini opisani gore dovest će faktor nekroze tumora (fuzioni proteini sa zrelim faktorom nekroze tumora ili sa samim predTNF kao i mutanti od umetanja imat će veću molekulsku težinu od nativnog zrelog faktora nekroze tumora, dok će mutanti od izostavljanja zrelog faktora nekroze tumora imati manju molekulsku težinu). Na sličan način, faktor nekroze tumora može se konstruirati tako da se smanji ili eliminira sklonost na hidrolizu tripsinom ili drugim proteazama. Konačno, post-translacijska prerada humanog predTNF u staničnim linijama koje su izvedene iz neprimatnih sisavaca može se proizvesti mikroheterogenost u aminoterminalnoj regiji, tako da valin više neće biti amino-terminalna aminokiselina. It is important to note that such characteristics as molecular weight, isoelectric point, and the like, for native or wild-type human tumor necrosis factor in FIG. , 10 obtained from peripheral lymphocytes or established cultures of cell lines, only descriptive for natural types of tumor necrosis factor. Tumor necrosis factor as encompassed by the foregoing definition will include other types that will not exhibit all the characteristics of native tumor necrosis factor. While tumor necrosis factor as defined herein includes native tumor necrosis factor, other related cytotoxic polypeptides will fall within the definition. For example, TNF derivatives such as insertion mutants, deletion mutants, or fusion proteins described above will yield tumor necrosis factor (fusion proteins with mature tumor necrosis factor or with preTNF itself as well as insertion mutants will have a higher molecular weight than the native mature of tumor necrosis factor, while mutants from the omission of mature tumor necrosis factor will have a lower molecular weight). Similarly, tumor necrosis factor can be engineered to reduce or eliminate the propensity for hydrolysis by trypsin or other proteases. Finally, post-translational processing of human preTNF in cell lines derived from non-primate mammals can produce microheterogeneity in the amino-terminal region, such that valine is no longer an amino-terminal amino acid.

Aminokiselinska sekvenca za humani faktore nekroze tumora izvedena iz njegove cDNA opisana je na Sl. 10. Zreli ili nativni faktor nekroze tumora predstavljen je aminokiselinskim ostacima 1 do 157. Zapaziti da ova sekvenca uključuje signalnu sekvencu od 76 ostataka za koju se vjeruje da se odvaja za vrijeme normalne prerade translatiranog transkripta zbog proizvodnje zrelog proteina. Mjesta za hidrolizu tripsinom označena su strelicama. The amino acid sequence for human tumor necrosis factor derived from its cDNA is described in FIG. 10. Mature or native tumor necrosis factor is represented by amino acid residues 1 to 157. Note that this sequence includes a 76 residue signal sequence that is believed to be cleaved off during normal processing of the translated transcript to produce the mature protein. The sites for trypsin hydrolysis are indicated by arrows.

Zapaziti da jezik "sposoban" za citotoksičnu aktivnost ili za nekrozu tumora in vivo znači da termin faktor nekroze tumora uključuje polipeptide koji se mogu prevesti, kao enzimatskom hidrolizom iz neaktivnog stanja koje je analogno sa zimogenom u polipeptidni fragment koji pokazuje željenu biološku aktivnost. Tipično, inaktivni prekursori će biti fuzioni proteini u kojima je zreli faktor nekroze tumora vezan peptidnom vezom na njegovom karboksilnoj peptidnoj vezi ili u blizini bira se tako da je sklona na proteolitičku hidrolizu za oslobađanje faktora nekroze tumora, ili in vivo, ili kao dio proizvodnog protokola, in vitro. Note that the language "capable" of cytotoxic activity or of tumor necrosis in vivo means that the term tumor necrosis factor includes polypeptides that can be translated, as by enzymatic hydrolysis, from an inactive state analogous to a zymogen into a polypeptide fragment that exhibits the desired biological activity. Typically, inactive precursors will be fusion proteins in which the mature tumor necrosis factor is peptide-linked at or near its carboxyl peptide bond and is selected to be prone to proteolytic hydrolysis to release tumor necrosis factor, either in vivo or as part of a manufacturing protocol , in vitro.

Faktor nekroze tumora koji je tako generiran će tada pokazivati definicijskozahtjevanu citotoksičnu aktivnost. The tumor necrosis factor generated in this way will then show the cytotoxic activity required by definition.

Iako je faktor nekroze tumora obično namijenjen da označi humani faktor nekroze tumora, faktor nekroze tumora iz takvih izvora kao što su miševi, svinje, konji ili volovi uključen je unutar definicije faktor nekroze tumora sve dotle dok zadovoljava standarde koji su opisani gore za homologe regije i citotoksičnu aktivnost. TNF nije specifičan tip, npr., humani TNF aktivan je na mišjim tumorima. Zato se TNF iz jednog tipa može koristiti u terapiji druge. Although tumor necrosis factor is usually intended to denote human tumor necrosis factor, tumor necrosis factor from such sources as mice, pigs, horses, or oxen is included within the definition of tumor necrosis factor as long as it meets the standards described above for homologous regions and cytotoxic activity. TNF is not type specific, eg, human TNF is active on mouse tumors. That is why TNF from one type can be used in the therapy of another.

Faktor nekroze tumora također uključuje multimerne oblike. Faktor nekroze tumora spontano se agregatira u multimere, obično dimere ili više multimere. Multimeri su citotoksični i zato pogodni u in vivo terapiji. Iako je poželjno da se izrazi i regenerira faktor nekroze tumora kao u glavnini homogen multimer ilil monomer, faktor nekroze tumora može se koristiti terapeutski kao smjesa različitih multimera. Tumor necrosis factor also includes multimeric forms. Tumor necrosis factor spontaneously aggregates into multimers, usually dimers or multiple multimers. Multimers are cytotoxic and therefore suitable for in vivo therapy. Although it is desirable to express and regenerate tumor necrosis factor as a largely homogeneous multimer or monomer, tumor necrosis factor can be used therapeutically as a mixture of different multimers.

Derivati faktora nekroze tumora uključeni su u opseg termina faktor nekroze tumora. Derivati uključuju mutante aminokiselinske sekvence, varijante glikoziranja i kovalentne ili agregativne konjugate sa drugim kemijskim tipovima. Kovalentni derivati se vezanjem funkcionalnosti za grupe koje se nalaze u TNF aminokiselinskim bočnim nizovima ili na N- ili C-terminusima, poznatim sredstvima u nauci. Ovi derivati mogu, na primjer, uključivati: alifatične estere ili amide karboksilnog terminusa ili ostataka koji sadrže karboksilne bočne nizove, npr., asp10; O-acil derivate ostataka koji sadrže hidroksilne grupe kao što su ser52, ser3, ser4 ili ser5: N-acil derivate aminoterminalne aminokiseline ili ostataka koji sadrže amino-terminalne aminokiseline ili ostataka koje sadrže amino grupe, npr., lizina ili arginina; i derivate cys101 i cys69. Acil grupa se bira iz grupe koja sadrži alkil tipa (uključujući C3 do C10 normalan alkil) tako da se formiraju alkanoil vrste, i karbociklične ili heterociklične spojeve, tako da se formiraju aroil vrste. Reaktivne grupe su poželjno difunkcionalni spojevi koji su sami po sebi poznati za korištenje u umrežavanju proteina u netopive matrice putem reaktivnih bočnih grupa. Poželjna mjesta za derivatizaciju su na citsteinskim i histidinskim ostacima. Derivatives of tumor necrosis factor are included in the scope of the term tumor necrosis factor. Derivatives include amino acid sequence mutants, glycosylation variants, and covalent or aggregative conjugates with other chemical types. Covalent derivatives are attached to groups found in the TNF amino acid side chains or at the N- or C-terminus, by means known in the art. These derivatives may, for example, include: aliphatic esters or amides of the carboxyl terminus or residues containing carboxyl side chains, eg, asp10; O-acyl derivatives of residues containing hydroxyl groups such as ser52, ser3, ser4 or ser5: N-acyl derivatives of an amino-terminal amino acid or residues containing amino-terminal amino acids or residues containing amino groups, eg, lysine or arginine; and cys101 and cys69 derivatives. The acyl group is selected from the group consisting of alkyl type (including C3 to C10 normal alkyl) to form alkanoyl species, and carbocyclic or heterocyclic compounds to form aroyl species. Reactive groups are preferably difunctional compounds known per se for use in cross-linking proteins into insoluble matrices via reactive side groups. Preferred sites for derivatization are on cysteine and histidine residues.

Kovalentni ili agregativni derivati su korisni kao reagensi u imunotestu uku za afinitetne postupke pročišćavanja. Na primjer, faktor nekroze tumora se insolubilizira kovalentinim vezanjem za bromcijanom-aktiviranu sefarozu pomoću poznatih postupaka ili se adsorbira na poliolefinske površine (sa ili bez umrežavanja glutaraldehidom) za korištenje u testu ili pročišćavanju antiTNF antitijela ili receptora na površini stanica. Faktor nekroze tumora se također markira se detektirajućom grupom, npr., radiojodira se postupkom sa kloraminom T, kovalentno se veže za helate rijetkih zemalja ili se konjugira za drugu fluorescentnu grupu za korištenje u dijagnostičkim probama, posebno za dijagnozu razine TNF u biološkim uzorcima imunoproba kompetitivne vrste. Takvi derivati mogu spadati van gornje definicije TNF zato što nije potrebno da oni pokazuju citotoksičnu aktivnost, već samo umreženu aktivnost sa anti-TNF. Covalent or aggregative derivatives are useful as immunoassay reagents as well as for affinity purification procedures. For example, tumor necrosis factor is insolubilized by covalent binding to cyanogen bromide-activated sepharose using known methods or adsorbed to polyolefin surfaces (with or without glutaraldehyde cross-linking) for use in the assay or purification of antiTNF antibodies or cell surface receptors. Tumor necrosis factor is also labeled with a detectable group, e.g., radioiodinated by the chloramine T procedure, covalently bound to rare earth chelates, or conjugated to another fluorescent group for use in diagnostic assays, particularly for the diagnosis of TNF levels in biological samples by competitive immunoassays. species. Such derivatives may fall outside the above definition of TNF because they do not need to show cytotoxic activity, but only anti-TNF cross-linking activity.

Mutantni derivati faktora nekroze tumora uključuju predodređenje, tj., specifične po mjestu, mutacije TNF ili njegovih fragmenata. Cilj mutageneze se da se konstruira DNA koja kodira za faktor nekroze tumora kao što je definiran gore, tj., faktor nekroze tumora koji pokazuje citotoksičnu aktivnost prema stanicama tumora in vitro ili koji izaziva nekroz tumora in vivo, i koji zadržava rezidulanu homologiju sa sekvencom sa Sl. 10, ali koji također pokazuje poboljšanje osobine i aktivnost. Mutantni faktor nekroze tumora se definira kao polipeptid, koji inače spada unutar definicije homologije za faktor nekroze tumora kao što je ovdje prikazana ali koji ima različitu aminokiselinsku sekvencu od faktora nekroze tumora bilo zbog, izostavljanja, supstitucije ili umetanja. Na primjer, lizinski ili argininski ostaci faktora nekroze tumora (arginin 2, 6, 82, 44 i 131 i lizin 98, 90 i 65) mogu biti mutirani u histidin ili drugi aminokiselinski ostatak koji ne čini protein oroteolitički labilnim. Slično, cistein 101 može se zamijeniti sa drugim ostacima i keroijski umrežavati u cilju davanja oksidativne stabilnosti. Nije potrebno da mutanti zadovoljavaju zahtjeve u pogledu aktivnosti faktora nekroze tumora, pošto će čak i biološki inaktivni mutanti biti korisni nakon markiranja ili iroobilizacije kao reagensi u imunotestovima. Međutim, u ovom slučaju mutanti će zadržati najmanje jedno epitopno mjesto koje je umrežavajuće reaktivno sa antitijelom za faktor nekroze tumora. Mutant derivatives of tumor necrosis factor involve predetermined, ie, site-specific, mutations of TNF or its fragments. The goal of mutagenesis is to construct DNA that encodes a tumor necrosis factor as defined above, i.e., a tumor necrosis factor that exhibits cytotoxic activity against tumor cells in vitro or that induces tumor necrosis in vivo, and that retains residual sequence homology with Sl. 10, but which also shows improvement in traits and activity. Mutant tumor necrosis factor is defined as a polypeptide that otherwise falls within the definition of homology for tumor necrosis factor as set forth herein but which has a different amino acid sequence from tumor necrosis factor either by omission, substitution, or insertion. For example, tumor necrosis factor lysine or arginine residues (arginine 2, 6, 82, 44, and 131 and lysine 98, 90, and 65) can be mutated to a histidine or other amino acid residue that does not render the protein oroteolytically labile. Similarly, cysteine 101 can be replaced with other residues and cross-linked by kerosene to provide oxidative stability. It is not necessary that the mutants meet the requirements for tumor necrosis factor activity, since even biologically inactive mutants will be useful after labeling or immobilization as reagents in immunoassays. However, in this case the mutants will retain at least one epitope site that is cross-linking reactive with the tumor necrosis factor antibody.

Regije molekula faktora nekroze tumora unutar ostataka 35 do 66 i 110 do 133 zaključno pokazuju bitnu homologiju (50 postotaka) sa limfotoksinom. Hidrofobni karboksi-terminusi (ostaci 150 do 157 faktora nekroze tumora) dvije molekule također su značajno očuvane. Pošto oba proteina demostriraju citotoksičnu aktivnost in vivo nekroze tumora, vjeruje se da su ove regije važne u podijeljenoj aktivnosti limfotoksina i faktora nekroze tumora. The regions of the tumor necrosis factor molecule within residues 35 to 66 and 110 to 133 conclusively show substantial homology (50 percent) with lymphotoxin. The hydrophobic carboxy-termini (residues 150 to 157 of tumor necrosis factor) of the two molecules are also significantly conserved. Since both proteins demonstrate in vivo tumor necrosis factor cytotoxic activity, these regions are believed to be important in the shared activity of lymphotoxin and tumor necrosis factor.

Kao takvi, ostaci u ovim regijama su poželjni za mutagenezu koja ima za cilj direktno utjecanje na aktivnost faktora nekroze tumora na danoj stanici. Relativno neočuvana regija na ostacima 67-109 faktora za nekrozu tumora mogu funkcionirati za korektno postavljanje dvije okružujeće relativno homologne regije u konformaciju koje je u glavnini za citotoksičnu aktivnost. Takvo postavljanje, koje se može postići pomoću Cys69-Cys101 disulfidne veze u faktoru nekroze tumora, može objasniti razlike u specifičnosti i aktivnosti između dvije molekule. U vezi sa ovim, pošto je postulirano da ovi ostaci predstavljaju aktivnu jezgru faktora nekroze tumora, oni se mogu sintetizirati kemijski ili mutagenezom pomoću izostavljanja kao zatupljeni polipeptidi kratkog niza koji imaju aktivnost faktora nekroze tumora. As such, residues in these regions are desirable for mutagenesis aimed at directly affecting tumor necrosis factor activity in a given cell. A relatively non-conserved region at residues 67-109 of tumor necrosis factor may function to correctly position the two flanking relatively homologous regions into a conformation that is primarily for cytotoxic activity. Such an arrangement, which can be achieved by the Cys69-Cys101 disulfide bond in tumor necrosis factor, may explain the differences in specificity and activity between the two molecules. In this regard, since these residues have been postulated to represent the active core of tumor necrosis factor, they can be synthesized chemically or by deletion mutagenesis as short chain blunted polypeptides having tumor necrosis factor activity.

Dok je mjesto mutacije predodređeno, nije potrebno da sama mutacija bude predodređena. Na primjer. u cilju optimiranja performansi mutanata u položaju 131 može se vršiti proizvoljna mutageneza na kodonu za arginin 131 i izraženi faktor nekroze tumora testira se za optimalnu kombinaciju citotoksične aktivnosti i otpornosti na proteazu. Tehnike za pravljenje supstitucijskih mutacija i predodređenim mjestima u DNA koja ima poznatu sekvencu su dobro poznate, na primjer, M13 primjer mutageneza. While the site of the mutation is predetermined, the mutation itself need not be predetermined. For example. in order to optimize the performance of mutants in position 131, arbitrary mutagenesis can be performed on the codon for arginine 131 and the expressed tumor necrosis factor is tested for the optimal combination of cytotoxic activity and protease resistance. Techniques for making substitution mutations at predetermined sites in DNA of known sequence are well known, for example, M13 is an example of mutagenesis.

Mutageneza faktora nekroze tumora vrši se pravljenjem aminokiselinskih umetanja, obično na kraju od oko 1 do 10 aminokiselinskih ostataka, ili izostavljanja od oko 1 do 30 ostataka. Supstitucije, izostavljanja, umetanja ili bilo kakva subkombinacija mogu se kombinirati da se dođe do završne konstrukcije. Umetanja uključuju amino ili karboksilne-terminalne fuzije, npr., hidrofobnu ekstenziju dodanu na karboksilni terminus. Međutim, poželjno se vrši samo supstitucijska mutageneza. Očigledno, mutacije u DNA za kodiranje ne smiju staviti sekvencu van okvira za očitavanje i poželjno neće kreirati komplementarne regije koje bi mogle stvoriti strukturu sekundarne mRNA. Tumor necrosis factor mutagenesis is performed by making amino acid insertions, usually at the end of about 1 to 10 amino acid residues, or deletions of about 1 to 30 residues. Substitutions, omissions, insertions or any subcombination can be combined to arrive at the final construction. Insertions include amino or carboxyl-terminal fusions, eg, a hydrophobic extension added to the carboxyl terminus. However, preferably only substitutional mutagenesis is performed. Apparently, mutations in the coding DNA must not place the sequence out of the reading frame and preferably will not create complementary regions that could create a secondary mRNA structure.

Neće sve mutacije u DNA koja kodira za faktor nekroze tumora biti izražene u završnom lučenom proizvodu. Na primjer, glavna klasa supstitucijskih mutacija DNA su one u kojima je različita sekrecijska vodeća sekvenca ili signal zamijenjena za nativnu humanu sekrecijsku vodeću sekvencu, ili izostavljanjima unutar vodeće sekvence ili supstitucijama, gdje je najveći dio ili cijela nativna vodeća sekvenca izmijenjena za vodeću sekvencu koju će namjeravani domaćin vjerojatnije shvatiti. Na primjer, u konstrukciji prokariotskog ekspresijskog vektora humana sekrecijska vodeća sekvenca se izostavi u korist vodećih sekvenci bakterijske alkalne fosfataze ili toplinski stabilnog enterotoksina II, a za kvasac vodeća sekvenca se nadomjesti u korist vodećih sekvenci invertaze kvasca, alfa faktora ili kisele fosfataze. Međutim, humanu sekrecijsku vodeću sekvencu mogu shvatiti i drugi domaćini osim humanih staničnih linija, najvjerojatnije u staničnoj kulturi viših eukariotskih stanica. Kada sekrecijsku vodeću sekvencu domaćin "shvati", fuzioni protein koji se sastoji od faktora nekroze tumora i vodeće sekvence se obično prekida na peptidnoj vezi vodeća sekvenca-faktor nekroze tumora u slučajevima koji vode do lučenja faktora nekroze tumora. Tako, čak i iako se mutantna predTNF DNA koristi za transformiranje domaćina, i mutantni pred TNF se sintetiziraju kao intermedijer, dobiveni faktor nekroze tumora je obično nativan, zreli faktor nekroze tumora. Not all mutations in the DNA coding for tumor necrosis factor will be expressed in the final secreted product. For example, a major class of DNA substitution mutations are those in which a different secretory leader sequence or signal is substituted for the native human secretory leader sequence, or by deletions within the leader sequence or substitutions, where most or all of the native leader sequence is exchanged for a leader sequence that will the intended host is more likely to understand. For example, in the construction of a prokaryotic expression vector, the human secretory leader sequence is omitted in favor of bacterial alkaline phosphatase or heat-stable enterotoxin II leader sequences, and for yeast, the leader sequence is replaced in favor of yeast invertase, alpha factor, or acid phosphatase leader sequences. However, the human secretory leader sequence can be taken up by hosts other than human cell lines, most likely in cell culture of higher eukaryotic cells. When the secretory leader sequence is "understood" by the host, a fusion protein consisting of tumor necrosis factor and the leader sequence is usually cleaved at the leader sequence-tumor necrosis factor peptide bond in cases leading to secretion of tumor necrosis factor. Thus, even if mutant pre-TNF DNA is used to transform the host, and mutant pre-TNF is synthesized as an intermediate, the resulting tumor necrosis factor is usually the native, mature tumor necrosis factor.

Druga glavna klasa DNA mutanata koji se ne izražavaju kao derivati faktora nekroze tumora su nukleotidne supstitucije koje su napravljene za pojačavanje ekspresije, primarno da se izbjegnu amino-terminalna kola u transkribiranoj mRNA (vidi neodlučenu U.S.S.N. 303.687, koja je ovdje unijeta kao referenca) ili da se osiguraju kodoni koji se lakše transkribiraju pomoću izabranog domaćina, npr. dobro poznati E. coli preferentni kodoni za ekspresiju E. coli. Another major class of DNA mutants that are not expressed as tumor necrosis factor derivatives are nucleotide substitutions that are made to enhance expression, primarily to avoid amino-terminal loops in the transcribed mRNA (see pending U.S.S.N. 303,687, incorporated herein by reference) or to codons are provided that are more easily transcribed by the chosen host, eg the well-known E. coli preferred codons for E. coli expression.

U glavnini homogen faktor nekroze tumora znači faktor nekroze tumora koji je u glavnini slobodan od drugih nativnih proteina sa izvorom iz kojeg je faktor nekroze tumora izoliran. Ovo znači da je homogen faktor nekroze tumora bitno slobodan od proteina krvne plazme kao što su albumin, fibrinogen, serin proteaze, alfa-globulini, citotoksični polipeptidi faktora ne-tumorne nekroze kao što su limfotoksin ili interferoni, ili drugi proteini stanice ili organizma koji služi kao sintetski izvor za faktor nekroze tumora, uključujući cijele stanice i određeno stanične otpatke. Međutim, homogen faktor nekroze tumora može uključivati takve supstance kao što su stabilizatori i sastojci koji su opisani niže, predodređene količine proteina iz stanice ili organizma koji služe kao sintetski izvor, proteini iz drugih staničnih izvora ili organizama a ne za faktor nekroze tumora, i sintetski polipeptidi kao što je poli-L-lizin. Rekombinantni faktor nekroze tumora koji se izražava je alogenski, npr., bakterijski, pripada stanici domaćina i, naravno, izrazit će se kompletno bez genskog izvora proteina. Substantially homogeneous tumor necrosis factor means a tumor necrosis factor that is substantially free of other native proteins with the source from which the tumor necrosis factor was isolated. This means that the homogeneous tumor necrosis factor is substantially free of blood plasma proteins such as albumin, fibrinogen, serine proteases, alpha-globulins, cytotoxic non-tumor necrosis factor polypeptides such as lymphotoxin or interferons, or other proteins of the cell or organism it serves. as a synthetic source for tumor necrosis factor, including whole cells and certain cellular debris. However, homogeneous tumor necrosis factor may include such substances as stabilizers and ingredients described below, predetermined amounts of proteins from a cell or organism that serve as a synthetic source, proteins from other cell sources or organisms than for tumor necrosis factor, and synthetic polypeptides such as poly-L-lysine. The recombinant tumor necrosis factor that is expressed is allogeneic, eg, bacterial, belongs to the host cell and, of course, will be expressed completely without the genetic source of the protein.

Faktor nekroze tumora se poželjno sintetizira u kulturama rekombinantnih organizama. Nisu poželjni ni limfociti periferne krvi (PBLs) niti stanične linije. Teško je u praksi dobiti PBLs jedne klase koja je slobodna od kontaminacije stanicama drugih klasa, npr., da se dobiju mikrofazi slobodni od B ili T stanica. Takva kontaminacija će učiniti postupak odvajanja koji se primjenjuje na proizvode takvih stanica težim zbog drugih potencijalnih citotoksičnih faktora i proteina koje oslobađaju kontaminantne stanice. Tumor necrosis factor is preferably synthesized in cultures of recombinant organisms. Neither peripheral blood lymphocytes (PBLs) nor cell lines are preferred. It is difficult in practice to obtain PBLs of one class that are free from contamination by cells of other classes, for example, to obtain microphases free of B or T cells. Such contamination will make the separation procedure applied to the products of such cells more difficult because of other potential cytotoxic factors and proteins released by the contaminating cells.

Dalje, faktor nekroze tumora koji je dobiven iz nerekombinantne kulture je skup i sastojat će se jedino od nativnog faktora nekroze tumora, i takve kulture nemaju fleksibilnost rekombinantne kulture za poboljšavanje karakteristika faktora nekroze tumora. Further, tumor necrosis factor obtained from a non-recombinant culture is expensive and will consist only of native tumor necrosis factor, and such cultures do not have the flexibility of a recombinant culture to improve tumor necrosis factor characteristics.

DNA koja kodira za faktor nekroze tumora dobiva se kemijskom sintezom, testiranjem reverznih transkripata mRNA iz PBL ili staničnih linijskih kultura, ili testiranjem genomnih biblioteka iz bilo koje stanice. Pogodne kulture staničnih linija obuhvaćaju monocitne stanične linije kao što su promielocitne stanične linije označene "HL-60" u nauci (od kojih je jedna pristupačna ATCC kao CCL 240) ili stanična linija. U 937 histiocitnog limfoma (ATCC CRL 1593). Ove i druge stanične linije induciraju se i izraze lučenjem faktora nekroze tumora izlaganjem stanica kemijskim ili fizičkim sredstvima koja su poznata u nauci, uglavnom tumorigenskim ili mitogenskim sredstvima. Faktor nekroze tumora može se efikasno inducirati u izvjesnim monocitnim staničnim linijama samo sa PMA; inače takva konvencionalna sredstva kao što su lipopolisaharid, stafilokokni enterotoksin B, ili timozin alfa-1 nisu bila tako efikasna za indukciju faktora nekroze tumora u ovim staničnim linijama. DNA coding for tumor necrosis factor is obtained by chemical synthesis, by testing mRNA reverse transcripts from PBL or cell line cultures, or by testing genomic libraries from any cell. Suitable cell line cultures include monocytic cell lines such as the promyelocytic cell line designated "HL-60" in the art (one of which is available from ATCC as CCL 240) or a cell line. In 937 histiocytic lymphoma (ATCC CRL 1593). These and other cell lines are induced and expressed by the secretion of tumor necrosis factor by exposing the cells to chemical or physical agents known in the art, mainly tumorigenic or mitogenic agents. Tumor necrosis factor can be effectively induced in certain monocytic cell lines with PMA alone; otherwise, such conventional agents as lipopolysaccharide, staphylococcal enterotoxin B, or thymosin alpha-1 were not as effective for tumor necrosis factor induction in these cell lines.

Pošto je potrebna promjenjiva količina testiranja za lociranje stanične linije koja izražava faktor nekroze tumora (i zato koja sadrži željenu mRNA) može biti jednostavnije da se sintetizira gen. Sinteza je pogodna zbog toga što se mogu uvesti jedinstvena restrikcijska mjesta (tako da se olakšava korištenje gena u vektorima koji sadrže restrikcijska mjesta koja su inače prisutna u nativnoj sekvenci) i faze koje se mogu vršiti za pojačavanje translacijske efikasnosti, kao što je diskutirano niže. Since a variable amount of testing is required to locate a cell line that expresses tumor necrosis factor (and therefore contains the desired mRNA) it may be simpler to synthesize the gene. The synthesis is convenient because unique restriction sites can be introduced (thus facilitating the use of genes in vectors containing restriction sites otherwise present in the native sequence) and steps that can be performed to enhance translational efficiency, as discussed below.

Ova DNA se kovalentno markira sa nekom detektirajućom supstancom kao što je neka fluorescentna grupa, neki radioaktivan atom ili neka kemiluminiscentna grupa poznatim postupcima. Tada se koristi u konvencionalnim testovima hibridizacije. Takvi testovi se koriste u identifikaciji TNF vektora i transformanata kao što je opisano u donjim Primjerima, ili za in vitro dijagnozu, kao što je detekcija TNF mRNA u krvnim stanicama. This DNA is covalently labeled with a detecting substance such as a fluorescent group, a radioactive atom or a chemiluminescent group by known procedures. It is then used in conventional hybridization tests. Such assays are used in the identification of TNF vectors and transformants as described in the Examples below, or for in vitro diagnosis, such as the detection of TNF mRNA in blood cells.

mRNA za TNF je neočekivano relativno rijetka čak i u induciranim HL60 stanicama, možda zbog nestabilnosti u mesindžeru koja nastaje iz nepoznatih razloga. Dalje, važan je vremenski tijek pojave TNF mRNA nakon indukcije stanica. TNF mRNA se javlja u stanicama nakon samo kratkog perioda od oko 4 sata post-indukcije. U ovom pogledu njena pojava se razlikuje od pojave limfotoksina, koji se javlja pri oko 12 sati post-indukcije. Ovo čini da se cDNA može lako previdjeti kada netko ne zna što očekuje. Međutim, pošto se njena prisutnost shvati i potpuno komplementarna DNA se učini pristupačnom, kao što omogućuje sadašnji opis, rutina je testirati cDNA biblioteke induciranih HL60 ili PBLs za cDNA faktora nekroze tumora korištenjem sonde koje imaju sekvence takve DNA. HL60 fag biblioteke testirane u primjerima sadrže relativno konzistentan broj pozitivnih plaka, i zato je jasno da će rutinski testovi hibridizacije identificirati fag koji sadrži željenu cDNA. TNF mRNA is unexpectedly relatively rare even in induced HL60 cells, perhaps due to instability in the messenger that occurs for unknown reasons. Furthermore, the time course of the appearance of TNF mRNA after cell induction is important. TNF mRNA appears in cells after only a short period of about 4 hours post-induction. In this respect, its appearance differs from the appearance of lymphotoxin, which occurs at about 12 hours post-induction. This makes cDNA easy to overlook when one does not know what to expect. However, once its presence is realized and fully complementary DNA is made accessible, as the present description allows, it is routine to screen cDNA libraries of induced HL60 or PBLs for tumor necrosis factor cDNA using probes having sequences of such DNA. The HL60 phage libraries tested in the examples contain a relatively consistent number of positive plaques, and therefore it is clear that routine hybridization assays will identify the phage containing the desired cDNA.

Stanice koje sintetiziraju faktor nekroze tumora HL-60 stanične linije se na početku kultiviraju na konvencionalan način dok se ne dostigne gustoća od oko 8-12 x 105 stanica/ml. Stanice se odvoje iz kulture, isperu se, prenesu se u podlogu bez seruma i kultiviraju se u podlozi koja sadrži PMA. Kultiviranje se tada nastavlja dok se željena koncentracija faktora nekroze tumora ne akumulira u podlozi za kulturu, obično oko 400 jedinica/ml faktora nekroze tumora. Nakon toga se supernatant kulture poželjno izbistri centrifugiranjem ili drugim sredstvima za odvajanje staničnih otpadaka iz otopljenih komponenata. Centrifugiranje se treba vršiti niskom brzinom tako da se pokreću samo suspendirani djelići. Supernatant se tada pročisti kao što je opisano niže. Tumor necrosis factor-synthesizing cells of the HL-60 cell line are initially cultured in a conventional manner until a density of about 8-12 x 10 5 cells/ml is reached. Cells are detached from the culture, washed, transferred to serum-free medium, and cultured in PMA-containing medium. Cultivation is then continued until the desired concentration of tumor necrosis factor accumulates in the culture medium, typically about 400 tumor necrosis factor units/ml. After that, the culture supernatant is preferably clarified by centrifugation or other means for separating cellular debris from dissolved components. Centrifugation should be done at low speed so that only suspended particles are moved. The supernatant is then purified as described below.

Alternativno i poželjno faktor nekroze tumora se sintetizira u stanicama domaćina koje su transformirane sa vektorima koji sadrže DNA koja kodira za faktor nekroze tumora. Vektor je replicirajuća konstrukcija DNA. Vektori se ovdje koriste ili da amplificiraju DNA koja kodira za faktor nekroze tumora i/ili za izražavanje DNA koja kodira za faktor nekroze tumora. Vektor za izražavanje je replicirajuća konstrukcija DNA u kojoj je DNA sekvenca koja kodira za faktor nekroze tumora operativno vezana za pogodne kontrolne sekvence koje mogu vršiti ekspresiju faktora nekroze transkripcijski promotor, opcionu operatorsku sekvencu za kontrolu transkripcije, sekvencu za kodiranje pogodne mRNA za ribozomna mjesta vezanja, i sekvence koje kontroliraju terminaciju transkripcije i translacije. Alternatively and preferably, tumor necrosis factor is synthesized in host cells that have been transformed with vectors containing DNA encoding tumor necrosis factor. A vector is a replicating DNA construct. Vectors are used herein either to amplify DNA encoding tumor necrosis factor and/or to express DNA encoding tumor necrosis factor. An expression vector is a replicating DNA construct in which the DNA sequence coding for tumor necrosis factor is operably linked to suitable control sequences capable of expressing necrosis factor, a transcriptional promoter, an optional transcriptional control operator sequence, a sequence coding for a suitable mRNA for ribosomal binding sites, and sequences that control the termination of transcription and translation.

Vektori obuhvaćaju plazmide, viruse (uključujući fag) i integrirajuće DNA fragmente (tj., koji se mogu integrirati u genom domaćina rekombinacijom). Pošto jednom pogodnog domaćina, vektor se replicira i funkcionira nezavisno od genoma domaćina, ili se može, u nekim slučajevima, integrirati u sami genom. U sadašnjoj prijavi, "vektor" je generički sa "plazmidom" ali su plazmidi trenutno najobičnije korišteni oblik vektora. Međutim, ovdje su pogodni za korištenje svi drugi oblici vektora koji obavljaju ekvivalentnu funkciju i koji su, ili postaju, poznati u nauci. Pogodni vektor će sadržati replikon i kontrolne sekvence koji su izvedeni iz vrsta koje su kompatibilne sa namjeravanim domaćinom za ekspresiju. Transformirane stanice domaćina su stanice koje su transformirani ili transfektirane sa vektorima za faktor nekroze tumora konstruiranim korištenjem rekombinantnih DNA tehnika. Transformirane stanice domaćina obično izražavaju faktor nekroze tumora. Izraženi vektor nekroze tumora deponirat će se intrastanično ili će se lučiti ili u periplazmatičan prostor ili u supernatant kulture, zavisno od izabrane stanice domaćina. Vectors include plasmids, viruses (including phage), and integrating DNA fragments (ie, which can be integrated into the host genome by recombination). Once in a suitable host, the vector replicates and functions independently of the host's genome, or can, in some cases, integrate into the genome itself. In the present application, "vector" is generic with "plasmid" but plasmids are currently the most commonly used form of vector. However, all other forms of vectors that perform an equivalent function and are, or become, known in the art are suitable for use herein. A suitable vector will contain replicon and control sequences derived from species compatible with the intended host for expression. Transformed host cells are cells that have been transformed or transfected with tumor necrosis factor vectors constructed using recombinant DNA techniques. Transformed host cells usually express tumor necrosis factor. The expressed tumor necrosis vector will be deposited intracellularly or secreted either into the periplasmic space or into the culture supernatant, depending on the chosen host cell.

DNA regije su operativno vezane kada su funkcionalno srodne jedna sa drugom. Na primjer, DNA za presekvencu ili sekrecijsku vodeću sekvencu vezana je za DNA za polipeptid ako se izražava kao preprotein koji se taloži u sekreciji polipeptida; promotor je operativno vezan za sekvencu za kodiranje ako kontrolira transkripciju sekvence; ili mjesto za vezanje ribozoma vezano je operativno za sekvencu za kodiranje ako je postavljeno tako da omogućuje translaciju. Uglavnom, operativno vezan znači dodiran i, u slučaju sekrecijskih vodećih sekvenci, dodiran i u fazi očitavanja. DNA regions are operatively linked when they are functionally related to each other. For example, DNA for a presequence or secretory leader sequence is linked to DNA for a polypeptide if it is expressed as a preprotein that is deposited in the secretion of the polypeptide; a promoter is operably linked to a coding sequence if it controls transcription of the sequence; or the ribosome binding site is operably linked to the coding sequence if positioned to allow translation. Basically, operably linked means touched and, in the case of secretory leader sequences, also touched in the read-through phase.

Pogodne stanice domaćina su prokarioti, stanice kvasca ili viših eukariota. Prokarioti uključuju gram negativne ili gram pozitivne organizme, na primjer, E. coli W3110 (ATCC 27,325) opisan u Primjerima, makar su pogodni drugi prokarioti kao što su E. coli B, E. coli X1776 (ATCC 31,537), E. coli 294 (ATCC 31,446), psudomonas vrste ili Serratia Marcesans. Suitable host cells are prokaryotes, yeast cells or higher eukaryotes. Prokaryotes include Gram-negative or Gram-positive organisms, for example, E. coli W3110 (ATCC 27,325) described in the Examples, although other prokaryotes such as E. coli B, E. coli X1776 (ATCC 31,537), E. coli 294 are suitable. (ATCC 31,446), psudomonas species or Serratia Marcesans.

Sustavi prokariotski domaćin-vektor poželjni su za izražavanje faktora nekroze tumora. Iako molekula faktora nekroze tumora sadrži dva cisteinska ostatka, tako da se implicira najumjereniji potencijalni zahtjev za post-translacijsku preradu za formiranje potencijalne disulfidne veze, E. coli na primjer, izražava biološki aktivan faktor nekroze tumora. Pristupačne su pletore pogodnih mikrobnih vektora. Uglavnom, mikrobni vektor će sadržati porijeklo replikacije koje razlikuje namjeravani domaćin, promotor koji će funkcionirati u domaćinu i fenotipnom selekcijskom genom, na primjer, genu koji kodira za proteine koji daju rezistentnost na antibiotik ili zadovoljavaju neki auksotropni zahtjev. Slične konstrukcije proizvodit će se za druge domaćine. E. coli se tipično transformira korištenjem pBR322, plazmida koji je izveden iz E. coli vrsta (Bolivar, et al., 1977, "Gene" 2:95). pBR322 sadrži gene za otpornost na ampicilin i tetraciklin i tako osiguravaju lako sredstvo za identifikaciju transforimiranih stanica. Prokaryotic host-vector systems are preferred for tumor necrosis factor expression. Although the tumor necrosis factor molecule contains two cysteine residues, thus implying the most moderate potential requirement for post-translational processing to form a potential disulfide bond, E. coli, for example, expresses biologically active tumor necrosis factor. A plethora of suitable microbial vectors are available. Generally, a microbial vector will contain an origin of replication that distinguishes the intended host, a promoter that will function in the host, and a phenotypic selection gene, for example, a gene that codes for proteins that confer antibiotic resistance or satisfy some auxotropic requirement. Similar constructions will be produced for other hosts. E. coli is typically transformed using pBR322, a plasmid derived from E. coli species (Bolivar, et al., 1977, "Gene" 2:95). pBR322 contains genes for ampicillin and tetracycline resistance, thus providing an easy means of identifying transformed cells.

Vektori moraju sadržati promotor koji raspoznaje organizam domaćina. Ovo je uglavnom promotor koji je homolog sa namjeravanim domaćinom. Promotori koji se najobičnije koriste u konstrukciji rekombinantne DNA uključuju beta-laktamazu (penicilanazu) i promotorske sustave: laktozu (Chang et al., 1978, "Nature", 275: 615; i Goeddel et al., 1979, "Nature" 281:544), promotorski sustav za triptofan (trp) (Goeddel et al., 1980, "Nucleic Acids Res." 8: 4057 i EPO Appl, Publ.No. 36,776) i tac promotor /H. De Boer et al., 1980, "Proc. Nat’1. acad. Sci. U.S.A." 80: 21-25 (1983)/ Dok se ovi najobičniji koriste, pogodni su drugi poznati mikrobni promotori. Detalji koji se odnose na njihove nukleotidne sekvence su publicirani, što omogućuje stručnjaku da ih operativno veže za DNA koja kodira za faktor nekroze tumora u plazmidinim vektorima (Siebenlist et al., 1980, "Cell" 20: 269) i za DNA koja kodira za vektor nekroze tumora. Trenutno je poželjan vektor pBR322 derivat koji sadrži°"promotor E. coli alkalnu fosfatazu sa trp ShineDalgarno sekvencom. Promotor i Shine-Dalgarno sekvence su operativno vezani za DNA koja kodira za TNF, tj. oni su postavljeni tako da promoviraju transkiripciju TNF mRNA iz DNA. Vectors must contain a promoter that recognizes the host organism. This is generally a promoter that is homologous to the intended host. The promoters most commonly used in the construction of recombinant DNA include beta-lactamase (penicillanase) and promoter systems: lactose (Chang et al., 1978, "Nature", 275: 615; and Goeddel et al., 1979, "Nature" 281: 544), the tryptophan (trp) promoter system (Goeddel et al., 1980, "Nucleic Acids Res." 8: 4057 and EPO Appl, Publ.No. 36,776) and the tac promoter /H. De Boer et al., 1980, "Proc. Nat'1. acad. Sci. U.S.A." 80: 21-25 (1983)/ While these are the most commonly used, other known microbial promoters are suitable. Details relating to their nucleotide sequences have been published, enabling one skilled in the art to operably link them to DNA coding for tumor necrosis factor in plasmid vectors (Siebenlist et al., 1980, "Cell" 20: 269) and to DNA coding for tumor necrosis vector. Currently preferred is the pBR322 derivative vector containing the E. coli alkaline phosphatase promoter with the trp ShineDalgarno sequence. The promoter and Shine-Dalgarno sequences are operably linked to DNA encoding TNF, i.e. they are positioned to promote transcription of TNF mRNA from the DNA .

Uz prokariot, eukariotski mikrobi kao što su kulture kvasca transformirani su sa vektorima koji kodiraju za faktor nekroze tumora. Saccharomyces cerevisiae, ili običan perkarski kvasac se najobičnije koristi među nižim eukariotskim mikroorganizmima domaćina iako su i razni drugi tipovi obično pristupačni. Vektori za kvasac uglavnom će sadržati porijeklo replikacije iz plazmida kvasca od 2 mikrona ili iz autonomno replicirajuće sekvence (ARS), promotora, TNF, sekvenci za poliadeniliranje i transkripciju terminacije i selekcionog gena. Pogodan plazmid za izražavanje faktora nekroze tumora u kvascu je Yrp7, (Stinchcomb et al., 1979, "Nature" 282: 39; Kingsman et al., 1979, "Gene" 7 141; Tschemper et al., 1980, "Gene", 10: 157). Ovaj plazmid već sadrži trpl gen koji osigurava selekcijski marker za mutantni tip kvasca koji nema sposobnost rasta u triptofanu, na primjer, ATCC No. 44076 ili PEP4-1 (Jones, 1977, "Genetics", 85: 12). Pristunost rtpl oštećenja u genomu stanične linije kvasca tada osigurava efikasnu okolinu za detekciju transformiranja rastom u odsutnosti triptofana. In addition to prokaryotes, eukaryotic microbes such as yeast cultures have been transformed with vectors encoding tumor necrosis factor. Saccharomyces cerevisiae, or common yeast, is the most commonly used of the lower eukaryotic host microorganisms, although various other types are usually available. Yeast vectors will generally contain an origin of replication from a 2 micron yeast plasmid or an autonomously replicating sequence (ARS), promoter, TNF, polyadenylation and transcription termination sequences, and a selection gene. A suitable plasmid for expressing tumor necrosis factor in yeast is Yrp7, (Stinchcomb et al., 1979, "Nature" 282: 39; Kingsman et al., 1979, "Gene" 7 141; Tschemper et al., 1980, "Gene" , 10: 157). This plasmid already contains the trpl gene which provides a selection marker for a mutant type of yeast that does not have the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1 (Jones, 1977, "Genetics", 85: 12). The presence of rtpl damage in the genome of a yeast cell line then provides an efficient environment for detection of transformation by growth in the absence of tryptophan.

Pogodne sekvence za promociju u vektorima za kvasac uključuju promotore za metalotionein. 3-fosfoglicetat kinazu (Hitzeman et al., 1980, "J. Biol. Chem.", 255; 2073) ili druge glikolitičke enzime (Hess et al., 1968, "J. Adv. Enzyme Reg.", 7: 149; i Holland et al., 1978, "Biochemistry", 17: 4900), kao što su enolaza, gliceraldehid-3-fosfat dehidrogenaza, heksokinaza, piruvat dekarboksilaza, fosfofruktokinaza, glukoza-6-fosfat izomeraza, 3-fosfoglicerat mutaza, piruvat kinaza, triofosfat izomeraza, fosfoglukoza izomeraza i glukokinaza. Pogodni vektori i promotori za korištenje u ekspresiji kvasca opisani su dalje u R. Hitzeman et al., EPO Publn. No. 73,657. Suitable sequences for promotion in yeast vectors include metallothionein promoters. 3-phosphoglycetate kinase (Hitzeman et al., 1980, "J. Biol. Chem.", 255; 2073) or other glycolytic enzymes (Hess et al., 1968, "J. Adv. Enzyme Reg.", 7: 149 ; and Holland et al., 1978, "Biochemistry", 17: 4900), such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triphosphate isomerase, phosphoglucose isomerase and glucokinase. Suitable vectors and promoters for use in yeast expression are described further in R. Hitzeman et al., EPO Publn. But. 73,657.

Drugi promotori koji imaju dopunsku prednost transkripcije koja se kontrolira pod uvjetima rasta, su promotorske regije za alkohol dehidrogenazu 2, izocitokrom C, kiselu fosfatazu, degradativne enzime koji prate metabolizam dušika, i ranije spomenute metalotionein i gliceralfehid-3-fosfat dehidrogenazu, kao i enzimi koji su odgovorni za korištenje maltoze i galaktoze. Prilikom konstrukcije pogodnih ekspresionih plazmida, terminacijske sekvence koje prate ove gene također se vežu u ekspresijski vektor 3' sekvenci za kodiranje faktora nekroze tumora tako da se osigurava poliadeniliranje mRNA i terminacija. Other promoters that have the additional advantage of transcription being controlled under growth conditions are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes involved in nitrogen metabolism, and the previously mentioned metallothionein and glyceraldehyde-3-phosphate dehydrogenase, as well as enzymes which are responsible for the utilization of maltose and galactose. When constructing suitable expression plasmids, termination sequences flanking these genes are also ligated into the expression vector 3' of the tumor necrosis factor coding sequence to ensure mRNA polyadenylation and termination.

Uz mikroorganizme, mogu se također koristiti kulture stanica koje su izvedene iz multistaničnih organizama kao domaćini. In addition to microorganisms, cell cultures derived from multicellular organisms can also be used as hosts.

Međutim, ovo nije poželjno zato što su do sada dobiveni sjajni rezultati sa mikrobima za ekspresiju TNF. U načelu, može raditi bilo koja viša eukariotska stanična kultura, bilo da je iz kulture kičmenjaka ili beskičmenjaka. Međutim, interes je bio najveći za stanice kičmenjaka i propagacija stanica kičmenjaka u kulturi (kultura tkiva) postala je novijih godina rutinski postupak /Tissue Culture, Academic Press, Kruse and Patterson, editori (1973)/. Primjeri korisnih staničnih linija domaćina su VERO i HeLa stanice, stanične linije jajnika kineskog hrčka (CHO), i W138, BHK, COS-7 i MDCK stanične linije. Ekspresijski vektori za takve stanice obično uključuju (ako je potrebno) porijeklo replikacije, promotor koji je lociran uzvodno od gena koji se treba izraziti, zajedno sa mjestom za vezanje ribozoma, mjestom prekidanja RNA (ako se koristi genomna DNA koja sadrži intron), mjestom za poliadeniliranje i sekvencom za transkripciju terminacije. However, this is not desirable because great results have been obtained so far with TNF-expressing microbes. In principle, any higher eukaryotic cell culture can work, whether from a vertebrate or invertebrate culture. However, the interest was greatest in vertebrate cells and propagation of vertebrate cells in culture (tissue culture) became a routine procedure in recent years /Tissue Culture, Academic Press, Kruse and Patterson, editors (1973)/. Examples of useful host cell lines are VERO and HeLa cells, Chinese hamster ovary (CHO) cell lines, and W138, BHK, COS-7, and MDCK cell lines. Expression vectors for such cells typically include (if necessary) an origin of replication, a promoter located upstream of the gene to be expressed, together with a ribosome binding site, an RNA termination site (if intron-containing genomic DNA is used), a site for polyadenylation and a transcription termination sequence.

Transkripcijske i translacijske kontrolne sekvence u vektorima za ekspresiju koji se trebaju koristiti u transformiranju stanica kičmenjaka često se osiguravaju iz virusnih izvora. Na primjer, obično korišteni promotori izvedeni su iz polioma, Adenovirusa 2 i najpoželjnije iz Simian Virusa 40 (SV40). Rani i kasni promotori su posebno korisni zato što se lako dobivaju iz virusa kao fragment koji tako sadrži SV40 virusno porijeklo replikacije (Fiers et al., 1978, "Nature", 273: 113). Također se mogu koristiti manji ili veći fragmenti SV40, pod uvjetom da je uključena sekvenca od približno 250 bp koja se proteže od Hind III mjesta prema Bgl I mjestu koje se nalazi u virusnom porijeklu replikacije. Dalje je također moguće i često je poželjno, koristiti humani genomni promotor, kontarolne i/ili signalne sekvence koje normalno prate faktor nekroze tumora, pod uvjetom da su takve kontrolne sekvence kompatibilne sa sustavima stanica domaćina. Transcriptional and translational control sequences in expression vectors to be used in transforming vertebrate cells are often provided from viral sources. For example, commonly used promoters are derived from polyoma, Adenovirus 2 and most preferably from Simian Virus 40 (SV40). The early and late promoters are particularly useful because they are readily obtained from the virus as a fragment thus containing the SV40 viral origin of replication (Fiers et al., 1978, "Nature", 273: 113). Smaller or larger fragments of SV40 can also be used, provided that a sequence of approximately 250 bp extending from the Hind III site to the Bgl I site located at the viral origin of replication is included. Furthermore, it is also possible, and often desirable, to use a human genomic promoter, control and/or signal sequences that normally accompany tumor necrosis factor, provided that such control sequences are compatible with host cell systems.

Porijeklo replikacije može biti osigurano ili konstrukcijom vektora da uključi neko egzogeno porijeklo, kao što se može izvesti iz SV40 ili drugog virusnog izvora (npr., polioma, Adenovirusa, VSV ili BPV). Ako se vektor integrira u kromosom stanica domaćina, posljednje je često zadovoljavajuće. The origin of replication can be provided either by engineering the vector to include some exogenous origin, such as derived from SV40 or another viral source (eg, polyoma, Adenovirus, VSV, or BPV). If the vector integrates into the host cell chromosome, the latter is often satisfactory.

Prilikom izbora pogodne stanice domaćina sisavaca za transfekciju sa vektorima koji obuhvaćaju DNA sekvence koje kodiraju i za faktor nekroze tumora i za dihidrofolat reduktazu (DHFR), odgovarajuće je izaberati domaćina prema vrsti korištenog DHFR proteina. Ako se koristi divlja vrsta DHFR proteina, poželjno je birati stanicu domaćina koja je deficitna sa DHFR tako da se omogućuje korištenje sekvence za kodiranje DHFR kao markera za uspješnu transfekciju u izabranoj podlozi koja nema hipoksantin, glicin i timidin. Odgovarajuća stanica domaćina u ovom slučaju je stanična linija jajnika kineskog hrčka (CHO) koja je deficitna u DHFR aktivnosti, napravljena i propagirana kao što je opisano u Urlaub and Chasin, 1980, "Proc. Natl. Acad. Sci." (USA) 77: 4216. When selecting a suitable mammalian host cell for transfection with vectors comprising DNA sequences encoding both tumor necrosis factor and dihydrofolate reductase (DHFR), it is appropriate to select the host according to the type of DHFR protein used. If wild-type DHFR protein is used, it is preferable to select a host cell that is deficient in DHFR so that the DHFR coding sequence can be used as a marker for successful transfection in a medium of choice lacking hypoxanthine, glycine and thymidine. A suitable host cell in this case is a Chinese hamster ovary (CHO) cell line deficient in DHFR activity, constructed and propagated as described in Urlaub and Chasin, 1980, "Proc. Natl. Acad. Sci." (USA) 77: 4216.

S druge strane, ako se koristi DNA koje kodira za DHFR protein sa niskim vezivnim afinitetom za metotreksat (MTX) kao kontrolna sekvenca, nije potrebno koristiti DHFR rezistentne stanice. Zato što je mutantni DHFR rezistentan na MTX, mogu se koristiti podloge koje sadrže MTX kao sredstvo za selekciju pod uvjetom da su samo stanice domaćina osjetljive na MTX. Mnoge eukariotske stanice koje su sposobne za apsorpciju MTX izgleda da su osjetljive na metotreksat. Jedna takva stanična linija je CHO linija, CHO-Kl (ATCC No. CCL 61). On the other hand, if DNA encoding a DHFR protein with low binding affinity for methotrexate (MTX) is used as a control sequence, it is not necessary to use DHFR-resistant cells. Because mutant DHFR is resistant to MTX, media containing MTX can be used as a selection agent provided only host cells are sensitive to MTX. Many eukaryotic cells capable of MTX uptake appear to be sensitive to methotrexate. One such cell line is the CHO line, CHO-K1 (ATCC No. CCL 61).

Faktor nekroze tumora se na početku regenerira iz kultura. Transformirane neizlučene stanice se prekidaju sonikacijom ili drugim prihvatljivim postupkom i otpaci se odvajaju centrifugiranjem, dok se supernatanti iz izlučenih stanica (kao što su inducirane stanične linije) jednostavno odvajaju iz stanica centrifugiranjem. Tada se može koristiti jedna ili više od slijedećih faza, ili se mogu potpuno zamijeniti drugim postupcima. Korišten je slijedeći postupak za pročišćavanje faktora nekroze tumora u zadovoljavajućem stupnju za sekvenciranje. Ovo nije neophodno koekstenzivno sa pročišćavanjem koje je potrebno za terapeutski proizvod. Tumor necrosis factor is initially regenerated from cultures. Transformed non-secreted cells are disrupted by sonication or other acceptable method and debris is separated by centrifugation, while supernatants from secreted cells (such as induced cell lines) are simply separated from the cells by centrifugation. Then one or more of the following stages can be used, or they can be completely replaced by other procedures. The following procedure was used to purify tumor necrosis factor to a level satisfactory for sequencing. This is not necessarily co-extensive with the purification required for the therapeutic product.

Kao početna faza pročišćavanja, faktor nekroze tumora se apsorbira na hidrofobnu supstancu iz prekinute kulture ili zasićene podloge za kulturu. Hidrofobna supstanca je poželjno takva neželatinozna površina kao što je silikat ili poliolefin, iako je također pogodna alkil Sefaroza. Poželjna realizacija je kontrolirano porozno staklo. Količina od oko 1 volumena kontroliranog poroznog stakla miješa se sa 50 volumena supernatanta i pusti se da se adsorpcija vrši na oko 4°C bez miješanja tijekom perioda od oko 30 minuta do 2 sata, poželjno oko 1 sata, pod neznatno alkalnim uvjetima. Adsorbent treba nakon toga sprati sa pogodnim puferom tako da se odvoje uklopljeni kontaminantni proteini. Adsorbirani faktor nekroze tumora se eluira sa hidrofobne supstance mijenjanjem solvatacijskih osobina okružujuće sredine. Eluiranje se može postići provodenjem puferirane otopine na približnom pH 7 do 8.5, poželjno oko 8, koji sadrži 1M soli i efikasnu količinu vodene otopine organskog fenola koji se miješa sa vodom, kao što je, na primjer, etilenglikol ili glicerin, obično etilenglikol u intervalu 10-30 postotaka v/v, poželjno oko 20 postotaka v/v. Naravno, optimalni uvjeti zavisit će od poliola koji se koristi. Frakcije od eluiranja koje sadrže faktor nekroze tumora detektiraju se in vitro testom kao što je opisan niže ili drugim pogodnim testom. Pročišćavanje i prinos u ovoj fazi iz monicitne stanične kulture, kao i iz kasnijih faza, prikazani su niže u Tabeli I. As an initial step in purification, tumor necrosis factor is adsorbed onto a hydrophobic substance from an interrupted culture or saturated culture medium. The hydrophobic substance is preferably such a non-gelatinous surface as silicate or polyolefin, although alkyl Sepharose is also suitable. The preferred embodiment is controlled porous glass. An amount of about 1 volume of controlled porous glass is mixed with 50 volumes of supernatant and allowed to adsorb at about 4°C without stirring for a period of about 30 minutes to 2 hours, preferably about 1 hour, under slightly alkaline conditions. The adsorbent should then be washed with a suitable buffer so that incorporated contaminant proteins are separated. The adsorbed tumor necrosis factor is eluted from the hydrophobic substance by changing the solvation properties of the surrounding medium. Elution can be achieved by running a buffered solution at about pH 7 to 8.5, preferably about 8, containing 1M salt and an effective amount of an aqueous solution of a water-miscible organic phenol, such as, for example, ethylene glycol or glycerin, usually ethylene glycol in the interval 10-30 percent v/v, preferably about 20 percent v/v. Of course, the optimal conditions will depend on the polyol used. Elution fractions containing tumor necrosis factor are detected by an in vitro assay as described below or another suitable assay. Purification and yield at this stage from monocyte cell culture, as well as from later stages, are shown below in Table I.

Daljnje pročišćavanje postiže se adsorpcijom faktora nekroze tumora na tercijarnoj ili kvaternernoj amino anjono-izmjenjivačkoj smoli. Further purification is achieved by adsorption of tumor necrosis factor on tertiary or quaternary amino anion-exchange resin.

Poželjne smole za ovu svrhu su smole sa hidrofilnom matricom kao što su umreženi polistirol, dekstran ili celuloza koji su supstituirani sa alkil tercijarnim ili kvaternernim amino grupama. Komercijalni proizvodi ove vrste pristupačni su kao DEAE celuloza, QAE Sefadeks ili pod trgovačkim imenom Mono Q (u svakom slučaju gdje je etil alkil supstituent u svakom od ovih proizvoda). Najbolji rezultati postižu se sa sustavom za brzu tekuću kromatografiju proteina koju je opisao J. Richey, Listopad 1982, "American Laboratory" korištenjem makroporoznih bitno jednoobraznih djelića iz Ugelstad et al., 1983, "Nature" 303: 95-96. Ovaj sustav omogućuje pročišćavanje faktora nekroze tumora do visoke razine. Preferred resins for this purpose are resins with a hydrophilic matrix such as cross-linked polystyrene, dextran or cellulose substituted with alkyl tertiary or quaternary amino groups. Commercial products of this type are available as DEAE cellulose, QAE Sefadex or under the trade name Mono Q (in each case where the ethyl alkyl substituent is in each of these products). Best results are obtained with the rapid protein liquid chromatography system described by J. Richey, October 1982, "American Laboratory" using macroporous substantially uniform particles from Ugelstad et al., 1983, "Nature" 303: 95-96. This system enables the purification of tumor necrosis factor to a high level.

Pročišćavanje do bitne homogenosti postiže se samo nakon daljnjeg odvajanja na SDS PAG elektroforezi ili u C4-reverznoj fazi u tekućoj kromatografiji pod visokim pritiskom (HPLC) kao što je opisano u donjim Primjerima. Međutim, ovaj proizvod nije poželjan za terapiju zato što gubi bitnu aktivnost nakon izlaganja SDA ili HPLC organskom otapalu. Koncentracija proteina određena je postupkom iz M. Bradford, 1976, "Anal. Biochem." 72: 248-254. Za vrijeme finalnih faza pročišćavanja, koncentracija proteina procijenjena je pomoću aminokiselinskog sastava i također aminokiselinskom sekvencom. Purification to substantial homogeneity is achieved only after further separation on SDS PAG electrophoresis or C4-reverse phase high pressure liquid chromatography (HPLC) as described in the Examples below. However, this product is not desirable for therapy because it loses essential activity upon exposure to SDA or an HPLC organic solvent. Protein concentration was determined by the method of M. Bradford, 1976, "Anal. Biochem." 72: 248-254. During the final stages of purification, protein concentration was estimated by amino acid composition and also by amino acid sequence.

Faktor nekroze tumora se formulira za davanje miješanjem faktora nekroze tumora koji ima željeni stupanj čistoće sa fiziološki prihvatljivim nosačima, tj. sa nosačima koji su netoksični za recipijente u dozama i koncentracijama koje se koriste. Obično se ovo postiže kombiniranjem faktora nekroze tumora sa puferima, antioksidansima kao što je askorbinska kiselina, polipeptidima niske molekulske težine (manjim od oko 10 ostataka), proteinima, aminokiselinama, ugljiko hidratima uključujući glukozu i dekstrine, sredstvima za helataciju kao što je EDTA, i drugim stabilizatorima i sastojcima. Nosač se treba formulirati tako da stabilizira faktor nekroze tumora kao dimer i/ili poželjno kao trimer. Ovo treba pratiti izbjegavanjem soli ili deterdženata u koneentracijama koje disosiraju faktor nekroze tumora u monomere. Alternativno trebaju se izbjegavati uvjeti koji agregatiraju faktor nekroze tumora u više multimere. Uglavnom se koristi neki nejonski surfaktant kao što je Tween 20 za iskazivanje pretjerane agregacije za vrijeme pročišćavanja kao i za aliol-ilizaciju ili skladištenje u vodi. Faktor nekroze tumora koji se treba koristiti za terapeutsko davanje mora biti sterilan. Ovo se tako postiže filtracijom kroz sterilne membrane za filtraciju. Faktor nekroze tumora će se obično skladištiti u liofiliziranom obliku. Tumor necrosis factor is formulated for administration by mixing tumor necrosis factor having the desired degree of purity with physiologically acceptable carriers, i.e. carriers that are non-toxic to recipients at the doses and concentrations used. Typically, this is accomplished by combining tumor necrosis factor with buffers, antioxidants such as ascorbic acid, low molecular weight polypeptides (less than about 10 residues), proteins, amino acids, carbohydrates including glucose and dextrins, chelating agents such as EDTA, and other stabilizers and ingredients. The carrier should be formulated to stabilize tumor necrosis factor as a dimer and/or preferably as a trimer. This should be followed by avoiding salts or detergents in concentrations that dissociate tumor necrosis factor into monomers. Alternatively, conditions that aggregate tumor necrosis factor into multiple multimers should be avoided. A nonionic surfactant such as Tween 20 is generally used to show excessive aggregation during purification as well as for allylation or storage in water. Tumor necrosis factor to be used for therapeutic administration must be sterile. This is thus achieved by filtration through sterile filtration membranes. Tumor necrosis factor will usually be stored in lyophilized form.

Faktor nekroze tumora se opcijski kombinira sa drugim antineoplastičnim sredstvima kao što su kemoterapeutski antibiotici (aktinomicin-D, adriamicin, aklacinomicin A), ili sa sredstvima za povećavanje ili stimuliranje imunološke reakcije, na primjer, imunoglobulinima kao što je gama-globulin, uključujući imunoglobuline koji imaju afinitet za stanične površinske antigene neoplazmi. Dalje, pošto interferoni djeluju sinergetski sa faktorom nekroze tumora u testovima prekidanja stanica, alfa, beta ili gama interferon se poželjno kombinira sa preparatima faktora nekroze tumora ili sa preparatima koji sadrže faktor nekroze tumora i limfotoksin. Tipična formulacija obuhvaća faktor nekroze tumora i gama interferon u odnosu jedinične aktivnosti od oko 0.1:1 do 200:1, obično 10:1, i može sadržati lirofotoksin umjesto dijela faktora nekroze tumora. Ovi odnosi su naravno predmet modifikacije kao što traži iskustvo u terapiji. Tumor necrosis factor is optionally combined with other antineoplastic agents such as chemotherapeutic antibiotics (actinomycin-D, adriamycin, aclacinomycin A), or with agents to enhance or stimulate the immune response, for example, immunoglobulins such as gamma-globulin, including immunoglobulins that have an affinity for cell surface antigens of neoplasms. Further, since interferons act synergistically with tumor necrosis factor in cell disruption assays, alpha, beta, or gamma interferon is preferably combined with preparations of tumor necrosis factor or preparations containing tumor necrosis factor and lymphotoxin. A typical formulation comprises tumor necrosis factor and gamma interferon in a unit activity ratio of about 0.1:1 to 200:1, usually 10:1, and may contain lyrophotoxin in place of the tumor necrosis factor portion. These relationships are of course subject to modification as experience in therapy requires.

Preparati faktora nekroze tumora daju se životinjama koje imaju tumore. Način davanja je prema poznatim postupcima, npr., intravenoznom, intraperitonealnom, intramuskularnom, intralezionalnom infuzijom ig i injektiranjem sterilnih otopina faktora nekroze tumora, ili tajmiranim sustavima za oslobađanje kao što je naznačeno niže. Faktor nekroze tumora se daje intralezionalno, npr., direktnom injekcijom u čvrste tumore. U slučaju raširenih tumora kao što je leukemija, davanje je poželjno intravenozno i limfni sustav. Tumori abdominalnih organa kao što je, karcinom jajnika, pogodno se tretiraju intraperitonealnom infuzijom korištenjem peritonealne dijalize i otopine koje su peritonealno kompatibilne. Međutim, obično se faktor nekroze tumora daje kontinualno infuzijom, iako je injekcija bolusa prihvatljiva. Tumor necrosis factor preparations are given to animals that have tumors. Administration is by known methods, eg, intravenous, intraperitoneal, intramuscular, intralesional infusion ig and injection of sterile tumor necrosis factor solutions, or timed release systems as indicated below. Tumor necrosis factor is administered intralesionally, eg, by direct injection into solid tumors. In the case of widespread tumors such as leukemia, administration is preferred intravenously and the lymphatic system. Tumors of the abdominal organs, such as ovarian cancer, are conveniently treated by intraperitoneal infusion using peritoneal dialysis and solutions that are peritoneally compatible. However, tumor necrosis factor is usually given by continuous infusion, although a bolus injection is acceptable.

Faktor nekroze tumora se poželjno daje iz usađenog artikla sa tajmiranim oslobađanjem. Primjeri pogodnog sustava za proteine koji imaju molekulsku težinu dimera ili trimera faktora nekroze tumora uključuju kopolimere L-glutaminske kiseline i gama etil-L-glutamata (U.Sidam et al., 1983, "Biopolymers" 22 (1): 547-556), poli (2-hidroksietil-metakrilat) (R. Langer et al., 1981, "J. Biomed. Mater. Res." 15: 167-277 and R. Langer, 1982, "Chem. Tech." 12: 98-105) ili etilenvinilacetat (R. Langer et al., Id.). Ovaj artikl se usađuje na kirurška mjesta iz kojih su izvađeni tumori. Alternativno se faktor nekroze tumora kapsulira u semipermeabilne mikrokapsule ili lipozome za injektiranje u tumor. Ovaj način davanja je naročito koristan za tumore koji se kirurški ne mogu odstraniti, npr., tumore mozga. The tumor necrosis factor is preferably administered from a time-release implanted article. Examples of suitable systems for proteins having the molecular weight of tumor necrosis factor dimers or trimers include copolymers of L-glutamic acid and gamma ethyl-L-glutamate (U.Sidam et al., 1983, "Biopolymers" 22 (1): 547-556) , poly (2-hydroxyethyl methacrylate) (R. Langer et al., 1981, "J. Biomed. Mater. Res." 15: 167-277 and R. Langer, 1982, "Chem. Tech." 12: 98 -105) or ethylene vinyl acetate (R. Langer et al., Id.). This item is implanted at surgical sites where tumors have been removed. Alternatively, tumor necrosis factor is encapsulated in semipermeable microcapsules or liposomes for injection into the tumor. This method of administration is particularly useful for tumors that cannot be surgically removed, for example, brain tumors.

TABELA I TABLE I

PROČIŠĆAVANJE HUMANOG FAKTORA NEKROZE TUMORA IZ PODLOGE ZA KULTURU HL-60 STANICA PURIFICATION OF HUMAN TUMOR NECROSIS FACTOR FROM HL-60 CELL CULTURE MEDIUM

[image] * korigirano za parcijalnu destrukciju aktivnosti faktora nekroze tumora izazvanu sa SDS ili sa TFA i propanolom. [image] * corrected for partial destruction of tumor necrosis factor activity induced with SDS or with TFA and propanol.

Količina faktora nekroze tumora koja se daje zavisit će, na primjer, od načina davanja, tumora u pitanju i stanja pacijenta. Intralezionalne injekcije će tražiti manje faktora nekroze tumora na bazi tjelesne težine nego intravenozna infuzija, iako neke vrste tumora, npr., čvrsti tumori izgleda da su otporniji na faktor nekroze tumora od drugih, npr., leukemičnih. Prema tome, bit će potrebno da terapeutist titrira dozu i modifikaciju načina davanja kao što je potrebno se postigne optimalna citotoksična aktivnost prema napadnutom tumoru,.kao što se može odrediti, na primjer, biopsijom tumora ili dijagonostičkim testovima za markere raka kao što je karcinoembriogeni antigen, obzirom na bilo kakvu rekombinantnu toksičnost koja se nalazi pri povišenoj dozi. Obično je pronađeno da će doze faktora nekroze tumora u miševima do 120 mikrograma/kg tjelesne težine/dan intravenoznim davanjem biti bitno netoksične i efikasne in vivo. The amount of tumor necrosis factor administered will depend, for example, on the method of administration, the tumor in question and the condition of the patient. Intralesional injections will require less tumor necrosis factor on a body weight basis than intravenous infusion, although some tumor types, eg, solid tumors appear to be more resistant to tumor necrosis factor than others, eg, leukemic ones. Therefore, it will be necessary for the therapist to titrate the dose and modify the route of administration as necessary to achieve optimal cytotoxic activity against the attacked tumor, as can be determined, for example, by tumor biopsy or diagnostic tests for cancer markers such as carcinoembryogenic antigen , considering any recombinant toxicity found at the elevated dose. Typically, doses of tumor necrosis factor in mice up to 120 micrograms/kg body weight/day by intravenous administration have been found to be substantially non-toxic and efficacious in vivo.

Ne vjeruje se da je faktor nekroze tumora specifičan za tipove po svojoj citotoksičnoj aktivnosti, tako da se faktor nekroze tumora druge vrste a ne humani faktor nekroze tumora, npr., koji potječe iz volova ili svinja, može koristiti u liječenju tumora ljudi. Međutim, poželjno je koristiti faktor nekroze tumora iz vrste koja se liječi da se izbjegne potencijalno generiranje autoantitijela. Tumor necrosis factor is not believed to be type-specific in its cytotoxic activity, so tumor necrosis factor other than human tumor necrosis factor, eg, derived from ox or pig, can be used in the treatment of human tumors. However, it is preferable to use tumor necrosis factor from the species being treated to avoid the potential generation of autoantibodies.

U cilju pojednostavljenosti tumora izvjesni postupci koji se često pojavljuju bit će referirani skraćenim izrazima. In order to simplify the tumor, certain procedures that often appear will be referred to by abbreviated terms.

Plazmidi se označavaju malim p koje prethodi i/ili je iza velikih slova i/ili brojeva. Polazni plazmidi iz izuma su komericijalno pristupačni, javno su pristupačni bez ikakavog ograničenja, ili se mogu konstruirati iz takvih pristupačnih plazmida prema publiciranim postupcima. Dalje, poznati su u nauci drugi ekvivalentni plazmidi kao što će biti jasno stručnjacima. Plasmids are denoted by a small p preceding and/or following capital letters and/or numbers. The starting plasmids of the invention are commercially available, are publicly available without any limitation, or can be constructed from such available plasmids according to published procedures. Further, other equivalent plasmids are known in the art as will be apparent to those skilled in the art.

"Digeriranje" DNA odnosi se na katalitičko prekidanje DNA sa enzimom koji djeluje samo na izvjesne lokacije u DNA. Takvi enzimi se zovu restrikcijski enzimi, a mjesta za koje je svaki specifičan zovu se restrikcijska mjesta. "Parcijalno" digeriranje odnosi se na nekompletno digeriranje pomoću restrikcijskog enzima, tj., izabrani su takvi uvjeti koji dovode do nešto prekidanja ali ne do potpunog na mjestima za danu restrikcijsku endonukleazu u DNA supstratu. Razni restrikcijski enzimi koji se ovdje koriste pristupačni su komercijalno a koriste se njihovi reakcijski uvjeti, kofaktori i drugi zahtjevi kao što navodi opskrbljivač enzima. Restrikcijski enzimi se obično označavaju skraćenicama koje se sastoje od velikog slova i onda drugih slova i tada, uglavnom, broja koji predstavlja mikroorganizam iz kojeg je svaki restrikcijski enzim originalno dobiven. Uglavnom, koristi se oko l µg plazmida ili DNA fragmenta sa oko 1 jedinicom enzima u oko 20 µ1 puferske otopine. Odgovarajuće pufere i količine supstrata za određene restrikcijske enzime navodi proizvođač. Obično se koriste vremena inkubacije od oko 1 sata na 37°C, ali mogu varirati prema instrukcijama opskrbljivača. Nakon inkubacije, protein se odvaja ekstrakcijom sa fenolom i kloroformom, a digerirana nukleinska kiselina regenerira se iz vodene frakcije taloženjem sa etanolom. Digeriranje sa restrikcijskim enzimom je rijetko praćeno hidrolizom sa bakterijskom alkalnom fosfatazom terminalnih 5' fosfata da se spriječi da dva restrikcijsko prekinuta kraja DNA fragmenta stupe u "cirkularizaciju" ili da formiraju zatvoreno kolo koje će usporiti umetanje drugog DNA fragmenta na restrikcijskom mjestu. Ako nije drugačije naznačeno, digeriranje plazmida nije praćeno sa 5' terminalnim defosforiranjem. Postupci i reagensi za defosforiranje su konvencionalni (T. Maniatis et al., 1982, Molecular Cloning pp. 133-134). "Digesting" DNA refers to the catalytic breaking of DNA with an enzyme that acts only on certain locations in the DNA. Such enzymes are called restriction enzymes, and the sites for which each is specific are called restriction sites. "Partial" digestion refers to incomplete digestion with a restriction enzyme, i.e., such conditions are chosen that lead to some but not complete termination at the sites for a given restriction endonuclease in the DNA substrate. The various restriction enzymes used herein are commercially available and their reaction conditions, cofactors and other requirements are used as specified by the enzyme supplier. Restriction enzymes are usually designated by abbreviations consisting of a capital letter followed by other letters and then, generally, a number representing the microorganism from which each restriction enzyme was originally obtained. Basically, about 1 µg of plasmid or DNA fragment with about 1 enzyme unit in about 20 µl of buffer solution is used. Appropriate buffers and amounts of substrate for certain restriction enzymes are specified by the manufacturer. Incubation times of about 1 hour at 37°C are usually used, but may vary according to the supplier's instructions. After incubation, the protein is separated by extraction with phenol and chloroform, and the digested nucleic acid is regenerated from the aqueous fraction by precipitation with ethanol. Restriction enzyme digestion is rarely followed by hydrolysis with bacterial alkaline phosphatase of the terminal 5' phosphates to prevent the two restriction-broken ends of the DNA fragment from "circularizing" or from forming a closed loop that will slow the insertion of another DNA fragment at the restriction site. Unless otherwise indicated, plasmid digestion was not followed by 5' terminal dephosphorylation. The procedures and reagents for dephosphorylation are conventional (T. Maniatis et al., 1982, Molecular Cloning pp. 133-134).

"Regeneriranje" ili "izoliranje" danog fragmenta DNA iz restrikcijskog digesta označava odvajanje digesta elektroforezom na poliakrilamidnom gelu, identifikaciju fragmenta od interesa uspoređivanjem njegove mobilnosti sa mobilnošću marikirnih fragmenata DNA poznate molekulske težine, i odvajanje gela od DNA. Ovaj postupak je uglavnom poznat. Na primjer, vidi R. Lawn et al., 1981, "Nucleic Acids Res." 9: 6103-6114, i D. Goeddel et al., 1980, "Nucleic Acids Res."8: 4057. "Regenerating" or "isolating" a given DNA fragment from a restriction digest means separating the digest by polyacrylamide gel electrophoresis, identifying the fragment of interest by comparing its mobility with that of marker DNA fragments of known molecular weight, and separating the gel from the DNA. This procedure is mostly known. For example, see R. Lawn et al., 1981, "Nucleic Acids Res." 9: 6103-6114, and D. Goeddel et al., 1980, "Nucleic Acids Res." 8: 4057.

"Southern analiza" je postupak kojim se prisutnost DNA sekvenci u digestu preparata koji sadrži DNA potvrđuje hibridizacijom u poznati, markirani oligonukleotid ili DNA fragment. Za ovdašnje svrhe, ako nije drugačije predviđeno, Southern analiza će označavati odvajanje digesta na 1-postotonoj agarozi, denaturiziranje i transfer na nitrocelulozu postupkom iz E. Southern, 1975, "J. Mol. Biol."98: 503-517, i hibridizaciju kao što je opisano u T. Maniatis et al., 1978, "Cell" 15: 687-701. "Southern analysis" is a procedure by which the presence of DNA sequences in the digest of a preparation containing DNA is confirmed by hybridization to a known, labeled oligonucleotide or DNA fragment. For purposes herein, unless otherwise specified, Southern analysis shall mean separation of the digest on 1 percent agarose, denaturation and transfer to nitrocellulose by the procedure of E. Southern, 1975, "J. Mol. Biol." 98: 503-517, and hybridization. as described in T. Maniatis et al., 1978, "Cell" 15: 687-701.

"Transformiranje" znači uvođenje DNA u organizam za koji se DNA može replicirati, ili kao ekstrakromozomni element ili kao kromozomni integrant. Ako nije drugačije naznačeno, postupak koji se ovdje koristi za transformiranje E. coli je CaCl2 postupak iz Mandel et al., 1970, "J. Mol. Biol." 53:154. "Transformation" means the introduction of DNA into an organism for which the DNA can be replicated, either as an extrachromosomal element or as a chromosomal integrant. Unless otherwise indicated, the procedure used herein to transform E. coli is the CaCl 2 procedure of Mandel et al., 1970, "J. Mol. Biol." 53:154.

"Ligacija" se odnosi na postupak za formiranje fosfodiestarskih veza između fragmenata nukleinske kiseline sa dvostrukom niti (T. Maniatis et al., Id., p. 146). Ako nije drugačije naznačeno, ligacija se može postići korištenjem poznatih pufera i uvjeta sa 10 jedinica T4 DNA ligaze "ligaza") na 0.5 ug približno ekvimolarnih količina DNA fragmenata koji se trebaju podvrgnuti ligaciji. "Ligation" refers to a process for forming phosphodiester bonds between double-stranded nucleic acid fragments (T. Maniatis et al., Id., p. 146). Unless otherwise indicated, ligation can be accomplished using known buffers and conditions with 10 units of T4 DNA ligase (ligase) per 0.5 µg of approximately equimolar amounts of DNA fragments to be ligated.

"Pravljenje" DNA iz transformanata znači izoliranje plazmidne DNA iz mikrobne kulture. Ako nije drugačije osigurano, može se koristiti alkalni/SDS postupak iz Maniatis et al., Id. p. 90. "Making" DNA from transformants means isolating plasmid DNA from a microbial culture. Unless otherwise provided, the alkaline/SDS procedure of Maniatis et al., Id., may be used. p. 90.

"Oligonukleotidi" su polideoksinukleotidi kratke dužine sa jednom ili dvije niti koji se kemijski sintetiziraju poznatim postupcima i tada se pročišćavaju na poliakrilamidnim gelovima. "Oligonucleotides" are polydeoxynucleotides of short length with one or two strands that are chemically synthesized by known methods and then purified on polyacrylamide gels.

Svi literaturni citati izraženi su referencom. All literature citations are expressed by reference.

Primjer 1 Example 1

Testovi Tests

Specifična aktivnost nekroza tumora određena je prethodno opisanim modificiranim testom za prekidanje stanica (B. Spofford, 1974, "J. Immun." 112:2111). Fibroblastne stanice Miševa L-929 (ATC CCL-929) kultiviraju se u pliticama sa ravnim dnom sa 96 rupica (3040, Falcon Plasics, Oxnard, CA) pri 30,000 stanica (vol. 0.1 ml) po rupici u prisutnosti 1 µg/ml aktinomicina D i serijski razrijeđenog testiranog uzorka ( 0.125 ml.). Stanice se inkubiraju u ovlaženoj atmosferi na 37° C sa 5 postotaka CO2. Testirani uzorak se odvoji poslije 18 sati, ploče se isperu i prekidanje stanica se detektira bojanjem ploča sa 0.5 postotnom otopinom kristal violeta u metanol: vodi (1:4) (v/v). Krajnja točka na mikrotitarnim pločama odredi se pomoću Microelisa autočitača (Dynatech) namještenog za apsorpciju na 450 nm i transmisiju na 570 nm. Stanice koje su izložene samo podlozi za kulturu namještene su na prekidanje od 0 postotka a one koje su izložene otopini 3M guanidinklorhidrata osigurale su krajnju točku za prekidanje od 100 postotaka. Jedna jedinica faktora nekroze tumora definira se kao količina faktora nekroze tumora (kada se testira u 0.125 ml volumena) koja je potrebna za 50 postotno prekidanje stanica. Specific tumor necrosis factor activity was determined by a previously described modified cell disruption assay (B. Spofford, 1974, "J. Immun." 112:2111). Murine fibroblast cells L-929 (ATC CCL-929) were cultured in flat-bottomed 96-well plates (3040, Falcon Plasics, Oxnard, CA) at 30,000 cells (vol. 0.1 ml) per well in the presence of 1 µg/ml actinomycin. D and serially diluted tested sample (0.125 ml.). Cells are incubated in a humidified atmosphere at 37°C with 5 percent CO2. The tested sample is separated after 18 hours, the plates are washed and cell disruption is detected by staining the plates with a 0.5 percent solution of crystal violet in methanol: water (1:4) (v/v). The end point on the microtiter plates is determined using a Microelis autoreader (Dynatech) set for absorbance at 450 nm and transmission at 570 nm. Cells exposed to culture medium alone were set to 0 percent disruption and those exposed to 3M guanidine hydrochloride solution provided a 100 percent disruption endpoint. One unit of tumor necrosis factor is defined as the amount of tumor necrosis factor (when tested in a 0.125 ml volume) required for 50 percent cell disruption.

Faktor nekroze tumora također je testiran u in vivo testu nekroze tumora. Ukratko, ovaj test se vrši kultiviranjem Meth A Sarcoma stanica (5 x 105 stanica) u CB6F1 ženkama miševa (BALB/c x C57BL/6)Fl tijekom 7-10 dana i tada intratumornim injektiranjem sa uzorkom faktora nekroze tumora. Nakon 24 sata, miševi se žrtvuju cervikalnom dislokacijom, tumori se odvoje i nekroza se procjeni histološki kao što je ranije opisano u E. Carswell et al., 1975, "Proc. Nat. Acad. Sci." 72: 3666-3670. Tumor necrosis factor was also tested in an in vivo tumor necrosis assay. Briefly, this test is performed by culturing Meth A Sarcoma cells (5 x 105 cells) in CB6F1 female mice (BALB/c x C57BL/6)Fl for 7-10 days and then intratumor injection with a sample of tumor necrosis factor. After 24 hours, mice are sacrificed by cervical dislocation, tumors are dissociated and necrosis is assessed histologically as previously described in E. Carswell et al., 1975, "Proc. Nat. Acad. Sci." 72: 3666-3670.

Primjer 2 Example 2

Korištenje PBLs ili, monocitne stanične linije za sintezu faktora nekroze tumora Use of PBLs or monocytic cell lines for the synthesis of tumor necrosis factor

Cijepljena kultura HL-60 humane promielocitne stanične linije koja ima staničnu gustoću 1 x 105 stanica/ml kultivira se u valjkastim bocama od 2 litre (890 cm2) korištenjem 500 ml RPMI 1640 podloge (Irvine Scientific, Santa Ana, CA) koja sadrži 10 mM HEPES, 0.05 mM beta-merkaptoetanola, 100 jedinica/ml penicilina, 100 µg/ml streptomicina i 10 postotaka seruma fetusa teleta. Nakon tri dana na 37°C kada je kultura dostigla staničnu gustoću 8-12 x 105 stanica/ml, stanice se oberu centrifugiranjem na 1000 g tijekom 10 min., isperu se dva puta sa RPMI 1640 podlogom bez seruma i prenesu se u istu podlogu kao što je opisana gore bez seruma pri staničnoj gustoći 15-20 x 105 stanica/ml. Stanice se kultiviraju u valjkastim bocama od 2 litre u pristunosti 10 ng/ml PMA. Nakon 16-24 sata, stanice se odvoje filtracijom kroz 3 µm Sealleen filter (Pall Trinity Micro Corp. Cortland, NY). Bistri filtrat se testira na aktivnost faktora nekroze tumora i koristi se za kasnije pročišćavanje i karakterizaciju. Ovaj postupak proizvodi oko 400 jedinica faktora nekroze tumora jedinice/ml zasićene podloge za kulturu. An inoculated culture of the HL-60 human promyelocytic cell line having a cell density of 1 x 10 5 cells/ml is cultured in 2 liter (890 cm 2 ) roller bottles using 500 ml of RPMI 1640 medium (Irvine Scientific, Santa Ana, CA) containing 10 mM HEPES, 0.05 mM beta-mercaptoethanol, 100 units/ml penicillin, 100 µg/ml streptomycin and 10 percent fetal calf serum. After three days at 37°C when the culture has reached a cell density of 8-12 x 105 cells/ml, the cells are harvested by centrifugation at 1000 g for 10 min., washed twice with serum-free RPMI 1640 medium and transferred to the same medium as described above without serum at a cell density of 15-20 x 105 cells/ml. Cells are cultured in 2-liter roller bottles in the presence of 10 ng/ml PMA. After 16-24 hours, the cells are separated by filtration through a 3 µm Sealleen filter (Pall Trinity Micro Corp. Cortland, NY). The clear filtrate is tested for tumor necrosis factor activity and used for subsequent purification and characterization. This procedure produces about 400 units of tumor necrosis factor units/ml of saturated culture medium.

Monociti humane periferne krvi također su korišteni za proizvodnju faktora nekroze tumora. Ostaci plejtfereze dobiveni su od American Red Cross, Boston, MA i korišteni su unutar 24 sata od skupljanja. Početno odvajanje monicita od eritrocita postiže se centrifugiranjem na Ficoll-Hypaque gradientima pri 1000 g tijekom 30 minuta. Stanice koje su skupljene na međupovršini isprane su tri puta sa fosfatnom puferiranom otopinom soli. Monociti izvedeni iz svakog donora kultivirani su posebno u valjkastim bocama od 2 litre u RPMI 1640 podlozi bez seruma pri staničnoj gustoći 2.5 x 106 stanica/ml. Po 1 µg/ml i stafilokoknog enterotoksina B (SEB) i rekombinantnog timozina alfa-1 dodani su u kulturu i stanice su inkubirane u ovlaženoj atmosferi na 37°C sa 10 postotaka CO2. Nakon 24-72 sata, zavisno od donora, supernatanti stanica se oberu i prerade na sličan način sa onim za HL-60 staničnu liniju. Prinosi faktora nekroze tumora iz PBL kultura široko variraju, zavisno od korištenih indukcijskih sredstava. Dodavanje PMA u indukcijski sustav koji je opisan gore povećava citolitičku aktivnost staničnih supernatanata. Međutim, stanični supernatanti sadržali su i faktor nekroze tumora i limfotoksin (određivanje limfotoksina ili faktora nekroze tumora u smjesama faktora nekroze tumora i limfotoksina vršeno je provođenjem testa za prekidanje stanica sa uzorcima za testiranje koji su preinkubirani sa antitijelom kunića za neutralizaciju za faktor nekroze tumora ili limfotoksin i određivanjem rezidualne aktivnosti u testu na prekidanje L-929 stanica). Human peripheral blood monocytes have also been used to produce tumor necrosis factor. Platepheresis debris was obtained from the American Red Cross, Boston, MA and was used within 24 hours of collection. Initial separation of monocytes from erythrocytes is achieved by centrifugation on Ficoll-Hypaque gradients at 1000 g for 30 minutes. Cells collected at the interface were washed three times with phosphate buffered saline. Monocytes derived from each donor were cultured separately in 2-liter roller bottles in serum-free RPMI 1640 medium at a cell density of 2.5 x 106 cells/ml. 1 µg/ml each of staphylococcal enterotoxin B (SEB) and recombinant thymosin alpha-1 were added to the culture and cells were incubated in a humidified atmosphere at 37°C with 10% CO2. After 24-72 hours, depending on the donor, the cell supernatants are harvested and processed in a similar manner to that for the HL-60 cell line. Tumor necrosis factor yields from PBL cultures vary widely, depending on the induction agents used. Addition of PMA to the induction system described above increases the cytolytic activity of cell supernatants. However, the cell supernatants contained both tumor necrosis factor and lymphotoxin (determination of lymphotoxin or tumor necrosis factor in mixtures of tumor necrosis factor and lymphotoxin was performed by performing a cell disruption assay with test samples preincubated with a rabbit neutralizing antibody for tumor necrosis factor or lymphotoxin and determining the residual activity in the L-929 cell disruption test).

Primjer 3 Example 3

Kontrolirana kromatografija na poroznim staklenim perlama Controlled chromatography on porous glass beads

Aktivnost faktora nekroze tumora iz stanične kulture je nekontinualno apsorbirana na kontroliranim poroznim staklenim perlama (Catalogue No. CPG 00350, Electro-Nucleonics, Fairfield, NO) uravnoteženim sa 10 mM natirij-fosfatnim puferom, pH 8.0, uz konstantno miješanje na 4°C. Korišteno je 100 ml staklenih perli na 5 litara podloge. Nakon miješanja od 1 sata, perle se puste da se slegnu i supernatant se odekantira. Perle se tada naliju u kolonu dimenzija 5 x 50 cm na sobnoj temperaturi i isperu se sa 10 mM natrij-fosfatnim puferom, pH 8.0, koji sadrži 1M NaCl. Aktivnost faktora nekroze tumora eluira se sa staklenih perli sa 20 postotnim etilenglikolom u 10 mM natrij-fosfatnom puferu, pH 8.0, koji sadrži 1M NaCl. Profil eluiranja HL-60 supernatanta sa kolone prikazan je na Sl. 1. Tumor necrosis factor activity from cell culture was discontinuously absorbed on controlled porous glass beads (Catalog No. CPG 00350, Electro-Nucleonics, Fairfield, NO) equilibrated with 10 mM sodium phosphate buffer, pH 8.0, with constant stirring at 4°C. 100 ml of glass beads were used per 5 liters of substrate. After stirring for 1 hour, the beads are allowed to settle and the supernatant is decanted. The beads are then loaded into a 5 x 50 cm column at room temperature and washed with 10 mM sodium phosphate buffer, pH 8.0, containing 1M NaCl. Tumor necrosis factor activity is eluted from glass beads with 20 percent ethylene glycol in 10 mM sodium phosphate buffer, pH 8.0, containing 1 M NaCl. The elution profile of HL-60 supernatant from the column is shown in Fig. 1.

Primjer 4 Example 4

Kromatografija na DEAE celulozi Chromatography on DEAE cellulose

Eluat iz Primjera 3 se direktno primjeni na kolonu sa DEAE celulozom 53 (Whatman) koja je ekvilibrirana sa l0mM natrij-fosfatnim puferom pri pH 8.0 i 0.01 postotaka Tween 20, brzinom protoka od približno 500 ml/sat. Pošto se brzina protoka kolone namjesti na 100 ml/sat, kolona se šaržira sa 4.2 x 106 jedinica faktora nekroze tumora u 1,080 ml uzorka, kolona se ispere sa ravnotežnim puferom i eluira se sa postupnim gradientima od 75 mM, 150 mM i 500 mM natrij-klorida u 10 mM fosfatnom puferu (pH 8.0). Eluat se prati na apsorbanciju na 280 nm i aktivnost faktora nekroze tumora kao funkcije eluatnih frakcija. Rezultati su prikazani na Slici 2. The eluate from Example 3 was applied directly to a column with DEAE cellulose 53 (Whatman) equilibrated with 10 mM sodium phosphate buffer at pH 8.0 and 0.01 percent Tween 20, at a flow rate of approximately 500 ml/hour. After the column flow rate is set to 100 ml/hour, the column is loaded with 4.2 x 10 6 units of tumor necrosis factor in 1,080 ml of sample, the column is washed with equilibration buffer and eluted with stepwise gradients of 75 mM, 150 mM and 500 mM sodium. -chloride in 10 mM phosphate buffer (pH 8.0). The eluate is monitored for absorbance at 280 nm and tumor necrosis factor activity as a function of eluate fractions. The results are shown in Figure 2.

Primjer 5 Example 5

Brza tekuća kromatografija proteina Fast liquid chromatography of proteins

Aktivna frakcija faktora nekroze proteina iz Primjera 4 koncentrira se i dijalizira nasuprot, 20 mM Tris HCl, pH 8.0, koji sadrži 0.01 postotaka Tween 20 i 1 mM natrij-azida (pufer A) u Amicon stanici za miješanje korištenjem YM-membrane ili druge membrane za dijalizu za frakciju molekulske težine ispod one koju ima TNF. Membrana se ispere dva puta sa puferom A. Kolona sa perlama Sefaroze sa supstituiranom amonij grupom (9.8 µm perle u koloni dimenzija 5 x 0.5 cm, prodaje se kao Mono Q smola, Pharmacia) u jedinici za brzu tekuću kromatogafiju proteina (FPLC) (Pharmacia) koja je opremljena sa programerom za gradiente (GP250) i dvije pumpe (P-500), preekvilibrira se sa puferima za dijalizu preko superkola sa brzinom protoka od 1 ml/min kao što je dalje opisano u J. Richey "American Laboratory" October 1982, strana 1. Skupljene tekućine od ispiranja i koncentrat od dijalize šaržiraju se na kolonu, kolona se ispere sa puferom A i tada se eluira sa linearnim gradientom od 40-75 mM pufera A. Linearni gradienti se programiraju kako slijedi: 0-5 min ravnotežnog pufera, 5.1-15 min, 25 mM NaCl, 15.1-25 min, 40 mM NaCl, 25-60 min, 40-75 mM NaCl lineranog gradienta, 60-65 min, 75 mM NaCl, 65.1-70 min, 100 mM NaCl, 70-80 min, 100-1000 mM NaCl linearnih gradienata, 80-90 min, 100 mM NaCl, 90.1-110 min, ravnotežni pufer. Istijek se skuplja u frakcije od 2 ml i registrira se na apsorbanciju na 280 nm, vodljivost i aktivnost faktora nekroze. Rezultati su prikazani na Slici 3. The active protein necrosis factor fraction from Example 4 is concentrated and dialyzed against 20 mM Tris HCl, pH 8.0, containing 0.01 percent Tween 20 and 1 mM sodium azide (buffer A) in an Amicon mixing cell using a YM-membrane or other membrane for dialysis for a molecular weight fraction below that of TNF. The membrane is washed twice with buffer A. A column of Sepharose beads with a substituted ammonium group (9.8 µm beads in a 5 x 0.5 cm column, sold as Mono Q resin, Pharmacia) in a fast protein liquid chromatography (FPLC) unit (Pharmacia ) which is equipped with a gradient programmer (GP250) and two pumps (P-500), is pre-equilibrated with dialysis buffers via a supercircuit at a flow rate of 1 ml/min as further described in J. Richey "American Laboratory" October 1982, page 1. The collected washing fluids and dialysis concentrate are loaded onto the column, the column is washed with buffer A and then eluted with a linear gradient of 40-75 mM buffer A. The linear gradients are programmed as follows: 0-5 min equilibration buffer, 5.1-15 min, 25 mM NaCl, 15.1-25 min, 40 mM NaCl, 25-60 min, 40-75 mM NaCl lined gradient, 60-65 min, 75 mM NaCl, 65.1-70 min, 100 mM NaCl, 70-80 min, 100-1000 mM NaCl linear gradients, 80-90 min, 100 mM NaCl, 90.1-110 min, equilibrium pu fair. The effluent is collected in 2 ml fractions and recorded for absorbance at 280 nm, conductivity and necrosis factor activity. The results are shown in Figure 3.

Primjer 6 Example 6

Kromatofokusiranje Chromatofocusing

Kromatofokusiranje se vrši korištenjem Pharmacia Mono P kolone (20 x 0.5 cm) u FPLC sustavu kao u Primjeru 5. Biološki aktivna frakcija (faktor nekroze tumora) eluirana u frakcijama brojevi 37 do 45 iz Primjera 5 koncentrira se i dijalizira na Amicon miješanoj stanici sa YM-10 membranom nasuprot pufera za uravnotežavanje kolone, tj., 0.025 M bis. Tris HCl, pH 6.7. Uzorak se šaržira na Mono P kolonu na sobnoj temperaturi preko superkola pri brzini protoka 1 ml/min. Kolona se ispere sa ravnotežnim puferom dok se apsorbancija na 280 ne dovede na osnovnu liniju i tada se eluira sa lineranim pH gradientom uspostavljenim pomoću ispiranja kolone sa pH 7.5 postotnim polipuferom na pH 4.7 (Pharmacia). Chromatofocusing is performed using a Pharmacia Mono P column (20 x 0.5 cm) in an FPLC system as in Example 5. The biologically active fraction (tumor necrosis factor) eluted in fractions numbers 37 to 45 from Example 5 is concentrated and dialyzed on an Amicon mixed cell with YM -10 membrane opposite the column equilibration buffer, i.e., 0.025 M bis. Tris HCl, pH 6.7. The sample is loaded onto a Mono P column at room temperature via a supercoil at a flow rate of 1 ml/min. The column is washed with equilibration buffer until the absorbance at 280 is brought to baseline and then eluted with a linear pH gradient established by washing the column with pH 7.5 percent polybuffer at pH 4.7 (Pharmacia).

Frakcije je od ml se skupe i apsorbancija na 280 nm i pH istijeka se zabilježi. Rezultati su prikazani na Slici 4. Kao što se može vidjeti sa Slike 4, izoelektrična točka faktora nekroze tumora je oko 5.3. Fractions of 1 ml are pooled and the absorbance at 280 nm and pH of the effluent are recorded. The results are shown in Figure 4. As can be seen from Figure 4, the isoelectric point of tumor necrosis factor is about 5.3.

Primjer 7 Example 7

Preparativna elektroforeza na SDS-poliakrilamidnom gelu Preparative electrophoresis on SDS-polyacrylamide gel

Petnaest postotoni poliakrilamidni gelovi (11 x 16 cm) debljine 1.5-3.0 mm naprave se prema modifikaciji postupka iz U. Laemmli, 1970, "Nature" 227: 680-685. I gelovi za razgrađivanje i za akumulaciju sadržali su 0.1 postotak SDS i 0.5 postotka Tween-a 20. Drugi puferi i koncentracija reagensa za umrežavanje bili su isti kao za analitičke SDS-PAGE gelove. Aktivne frakcije faktora nekroze tumora iz faze Primjera 5 ili 6 se skupe, koncentriraju i dijaliziraju nasuprot 6.25 mM Tris Hcl, pH 7.0, koji sadrži 0.005 postotka SDS na Amicon stanici za miješanje korištenjem YM-10 membrane. Nakon odvajanja dijaliziranog koncentrata, membrana se ispere tri puta sa malim volumenom pufera za uzorkiranje (0.2 postotka SDS, 0.02 postotka Tween-a 20, 30 postotaka glicerola, 0.03 M Tris Hcl, pH 6.8, 0.005 postotaka sredstva za bojanje). Dijaliziran koncentrat i tekućine od ispiranja se skupe (ukupni volumen 1-4 ml), opcijski se doda merkaptoetanol da se uspostave SDS PAGE redukcijski uvjeti, i uzorak se šaržira u veliku rupicu izlijevenu u gelu za akumulaciju. Male rupice susjedne sa rupicom za uzorak korištene su za pred-bojanje fosforilazne markere molekulske težine (94K), albumin volovskog seruma (67K), ovalbumin (43K), ugljenu anhidrazu: (30K), sojin inhibitor tripsina (20K) i Lizozom (14.4K). Gelovi su puštani u Biorad vertikalan sustav za elektroforezu ohlađen na 12°C, sa konstantnom strujom 20 mA na mm debljine gela, dok sredstvo za bojanje ne dostigne dno gela. Fifteen percent polyacrylamide gels (11 x 16 cm) 1.5-3.0 mm thick are made according to a modification of the procedure of U. Laemmli, 1970, "Nature" 227: 680-685. Both digestion and accumulation gels contained 0.1 percent SDS and 0.5 percent Tween 20. Other buffers and concentration of cross-linking reagents were the same as for analytical SDS-PAGE gels. Active tumor necrosis factor fractions from steps of Example 5 or 6 are pooled, concentrated, and dialyzed against 6.25 mM Tris Hcl, pH 7.0, containing 0.005 percent SDS on an Amicon mixing cell using a YM-10 membrane. After separation of the dialyzed concentrate, the membrane is washed three times with a small volume of sample buffer (0.2 percent SDS, 0.02 percent Tween 20, 30 percent glycerol, 0.03 M Tris Hcl, pH 6.8, 0.005 percent staining agent). The dialyzed concentrate and wash fluids are pooled (total volume 1-4 ml), mercaptoethanol is optionally added to establish SDS PAGE reducing conditions, and the sample is loaded into a large well cast in the accumulation gel. Small wells adjacent to the sample well were used to pre-stain the molecular weight marker phosphorylase (94K), bovine serum albumin (67K), ovalbumin (43K), carbonic anhydrase: (30K), soy trypsin inhibitor (20K) and lysosome (14.4 K). The gels were run in a Biorad vertical electrophoresis system cooled to 12°C, with a constant current of 20 mA per mm of gel thickness, until the staining agent reached the bottom of the gel.

Nakon elektroforeze, jedna od staklenih ploča se odvoji od gela i zapaze se položaji markera molekulske težine. Traka koja sadrži primijenjeni uzorak faktora nekroze tumora se tada odsječe u odjeljke od 0.25 cm prema molekulskim težinama proteina markera. Ovi komadi gelova se tada stave u polipropilenske cijevi koje sadrže 1-2 ml 10 mM amonij-bikarbonata i 0.01 postotak Tween-a 20, pH 8, i puste se da se eluiraju tijekom 16 sati na 4°C. Eluati se tada testiraju na aktivnost faktora nekroze tumora i rezultati su prikazani na Slici 5. Molekulska težina faktora nerkoze tumora na SDS gelu bila je oko 17,000, bilo pod redukcijskim ili neredukcijskim uvjetima, što označava jedan molekulski niz. After electrophoresis, one of the glass plates is separated from the gel and the positions of molecular weight markers are noted. The strip containing the applied tumor necrosis factor sample is then cut into 0.25 cm sections according to the molecular weights of the marker proteins. These gel pieces are then placed in polypropylene tubes containing 1-2 ml of 10 mM ammonium bicarbonate and 0.01 percent Tween 20, pH 8, and allowed to elute for 16 hours at 4°C. The eluates are then tested for tumor necrosis factor activity and the results are shown in Figure 5. The molecular weight of tumor necrosis factor on the SDS gel was about 17,000, either under reducing or non-reducing conditions, indicating one molecular array.

Protein je regeneriran iz eluata komada gelova slobodnih od soli i supstanci male molekulske težine slijedećim tretiranjem: Naprave se male kolone koje sadrže 0.2 ml Sep-pak C18 smola, koja je predhodno bila isprana sa acetonitrilom, 1-propanolom, 1 postotnom trifluorooctenom kiselinom (TFA) i destiliranom vodom i tada se ekvilibriraju sa 10 mM amonij-bikarbonatom koji sadrži 0.01 postotak Tween-a 20, pH 8.0. Eluat gela se šaržira na kolonu i istijek se skupi. Smola se tada ispere sa po približno 5 ml destilirane vode i 0.1 postotne TFA, tako da se odvoje slobodne aminokiseline i puferske soli. Faktor nekroze tumora se eluira sa smole sa 1 ml 50 postotonog 1-propanola u 0.1 postotnoj TFA; Također se izvrše daljnja eluiranja sa po 1 ml 50 postotonog 1-propanola u 0.1 postotonoj TFA i 99 postotnim 1-propanolom u 1 postotonoj TFA, ali se protein obično eluira sa prvim puferom. U ovoj fazi se inaktivira približno 80 postotaka bioaktivnosti faktora nekroze tumora. Iako se tako dobiveni faktor nekroze tumora može koristiti za analizu sekvence poželjno je da se za ovu svrhu koristi HPLC istijek opisan niže u Primjeru 8. The protein was regenerated from eluates of gel pieces free of salts and substances of low molecular weight by the following treatment: Small columns were made containing 0.2 ml of Sep-pak C18 resin, which was previously washed with acetonitrile, 1-propanol, 1 percent trifluoroacetic acid (TFA ) and distilled water and then equilibrated with 10 mM ammonium bicarbonate containing 0.01 percent Tween 20, pH 8.0. The gel eluate is loaded onto the column and the effluent is collected. The resin is then washed with approximately 5 ml each of distilled water and 0.1% TFA, so that free amino acids and buffer salts are separated. Tumor necrosis factor is eluted from the resin with 1 ml of 50 percent 1-propanol in 0.1 percent TFA; Further elutions are also performed with 1 ml each of 50% 1-propanol in 0.1% TFA and 99% 1-propanol in 1% TFA, but the protein is usually eluted with the first buffer. In this phase, approximately 80 percent of tumor necrosis factor bioactivity is inactivated. Although the tumor necrosis factor thus obtained can be used for sequence analysis, it is preferable to use the HPLC run-off described in Example 8 below for this purpose.

Primjer 8 Example 8

Tekuća kromatografija pod visokim tlakom Liquid chromatography under high pressure

Molekulska težina nativnog intaktnog faktora nekroze tumora određena je pomoću gel permeacijske kromatografije pod visokim tlakom. Zadnja je vršena na sobnoj temperaturi korištenjem TSK G2000 SW gel HPLC kolone (Alltech Associates, Deerfield, IL) (7.5 x 60 mm). Uzorak od 1 ml pročišćenog faktora nekroze tumora iz Primjera 5 koji sadrži približno 1 µg proteina i 15,600 jedinica aktivnosti se izokratno eluira sa gela kolone brzinom protoka od 0.5 ml/min, sa 0.2 M natrij-fosfatnim puferom, pH 7.0. The molecular weight of native intact tumor necrosis factor was determined using gel permeation chromatography under high pressure. The latter was performed at room temperature using a TSK G2000 SW gel HPLC column (Alltech Associates, Deerfield, IL) (7.5 x 60 mm). A 1 ml sample of purified tumor necrosis factor from Example 5 containing approximately 1 µg of protein and 15,600 units of activity is isocratically eluted from the gel column at a flow rate of 0.5 ml/min, with 0.2 M sodium phosphate buffer, pH 7.0.

Kolona se kalibrira sa albuminom volovskog seruma (MT 66,000), ovalbuminom (MT 45,000), volovskom ugijičnom anhidrazom B (MT 29,000) i lizozomom (MT 14,300). Dobivaju se frakcije od jednog ml i testiraju se na aktivnost faktora nekroze tumora. Eluirane su frakcije koje pokazuju aktivnost faktora nekroze tumora konzistentnu sa molekulskom težinom 45,000 ± 6,000 (Slika 6). The column is calibrated with bovine serum albumin (MT 66,000), ovalbumin (MT 45,000), bovine uric acid B (MT 29,000) and lysosome (MT 14,300). Fractions of one ml are obtained and tested for tumor necrosis factor activity. Fractions showing tumor necrosis factor activity consistent with a molecular weight of 45,000 ± 6,000 were eluted (Figure 6).

Primjer 9 Example 9

HPLC sa reverznom fazom HPLC with reverse phase

Faktor nekroze tumora također je pročišćen pomoću HPLC sa reverznom fazom korištenjem Synchropak kolona na Warer’s Associates. Inc. kromatografskom sustavu kao što je opisano ranije (W. Kohr et al., 1982, Anal. Biochem, 122: 348-3~9). Proteinski pikovi detektirani su na 280 nm nakon eluiranja sa linerarnim gradientom 1 do 23 postotaka v/v 1-propanola u 0.1 postotnoj TFA za prvih 15 minuta i 23-30 postotaka v/v 1-propanola u 0.1 postotnoj TFA tijekom slijedećih 15 minuta pri brzini protoka od 1 ml na minutu. Pikovi se testiraju na citolitičku aktivnost. Organska otapala koja su korištena za eluiranje faktora nekroze tumora sa C4 kolone smanjili su aktivnost faktora nekroze tumora za oko 80 postotaka. Faktor nekroze tumora koji je pročišćen ovim postupkom sušen je u vakuumu, i tada je prerađen za analizu aminokiselina i sekvenciranje. Tumor necrosis factor was also purified by reverse-phase HPLC using Synchropak columns on Warer's Associates. Inch. chromatographic system as described previously (W. Kohr et al., 1982, Anal. Biochem, 122: 348-3~9). Protein peaks were detected at 280 nm after elution with a linear gradient of 1 to 23 percent v/v 1-propanol in 0.1 percent TFA for the first 15 minutes and 23-30 percent v/v 1-propanol in 0.1 percent TFA for the next 15 minutes at flow rate of 1 ml per minute. Peaks are tested for cytolytic activity. The organic solvents used to elute tumor necrosis factor from the C4 column reduced tumor necrosis factor activity by about 80 percent. Tumor necrosis factor purified by this procedure was vacuum dried, and then processed for amino acid analysis and sequencing.

Rezultati su zabilježeni na Sl. 7. Sl. 7 prikazuje da je faktor nekroze tumora dobiven u istijeku iz Primjera 5 sadržao biološke inaktivne proteinske kontaminante eluiranjem sa retencijskim vremenima od oko 16 i 19 minuta. Bioaktivan istijek sa C4-RPHPLC je bio u glavnini homogen, na temelju kriterija za amino-terminalnu sekvencu. The results are recorded in Fig. 7. Fig. 7 shows that the tumor necrosis factor obtained in the effluent from Example 5 contained biologically inactive protein contaminants by elution with retention times of about 16 and 19 minutes. The bioactive yield from C4-RPHPLC was largely homogeneous, based on criteria for the amino-terminal sequence.

Primjer 10 Example 10

Određivanje parcijalne aminokiselinske sekvence za faktor nekroze tumora Determination of partial amino acid sequence for tumor necrosis factor

Faktor nekroze tumora digeriran je sa tripsinom kako slijedi: Homogeni faktor nekroze tumora iz Primjera 9 se otapa, osuši i ponovno se otopi u 100 mM amonij-bikarbonarnog pufera koji sadrži 5 postotaka w/w TPCK tripsina (Worthington Biochemicals) 1 mM CaCl2 i 0.01 postotka Tween-a 20 pri odnosu enzima prema supstratu 1:20, inkubira se 6 sati na 37°C. Reakcijska smjesa se primjeni na C4 HPLC kao što je opisano gore u cilju odvajanja peptidinih fragmenata. Rezultati su prikazani na Sl. 8. Zapaža se ukupno 9 fragmenata (fraglmenti 2 i 2' eluiraju se zajedno na piku koji je označen T2 na Sl. 8). Vjeruje se da dodatni deseti fragment kolona ne zadržava. Aminokiselinske sekvence za intaktni faktor nekroze tumora iz Primjera 8 i 9 i fragmente hidrolize sa tripsinom dobivene u ovom Primjeru određene su automatskom sekvencijalnom Edman degradacijom korištenjem modificiranog Beckman-ovog sekvencijatora model 890B koji je opskrbljen sa hladnim sklopkama. Kao nosač u šalici koristi se polibren (1.25 mg). Na bazi aminokiselinskog sastava intaktne molekule, molekulska težina intaktnog faktora nekroze tumora je 17,000. Ova brojka je konzistentna sa SDS-PAGE podacima i čini potvrdu odsutnosti glikoziliranja. Tumor necrosis factor was digested with trypsin as follows: Homogeneous tumor necrosis factor from Example 9 was dissolved, dried and redissolved in 100 mM ammonium bicarbonate buffer containing 5 percent w/w TPCK trypsin (Worthington Biochemicals) 1 mM CaCl2 and 0.01 percentage of Tween 20 at a ratio of enzyme to substrate of 1:20, incubated for 6 hours at 37°C. The reaction mixture was applied to C4 HPLC as described above in order to separate the peptide fragments. The results are shown in Fig. 8. A total of 9 fragments are observed (fragments 2 and 2' elute together at the peak labeled T2 in Fig. 8). It is believed that the additional tenth column fragment does not retain. The amino acid sequences for the intact tumor necrosis factor of Examples 8 and 9 and the trypsin hydrolysis fragments obtained in this Example were determined by automated sequential Edman degradation using a modified Beckman model 890B sequencer equipped with cold switches. Polybrene (1.25 mg) is used as a carrier in the cup. Based on the amino acid composition of the intact molecule, the molecular weight of intact tumor necrosis factor is 17,000. This figure is consistent with the SDS-PAGE data and confirms the absence of glycosylation.

Primjer 11 Example 11

Sinergetsko djelovanje faktora nekroze tumora i gama-interferona Synergistic effect of tumor necrosis factor and gamma-interferon

Stanice mišjeg melanoma B16, (Mason Research, Worcester, MA.) stanična linija C57B1/6 porijekla, zasada se u mikrotitarskoj pločici pri 5,000 stanica/rupica i inkubiraju se 4 sata na 37°C u 5 postotnom CO2-ovlaženom inkubatoru prije dodavanja limfocita. Faktor nekroze tumora dobiven iz Primjera 1 je pročišćen do bitne homogenosti pomoću HPLC i kvantitiziran je njegovom aktivnošću u gore opisanom testu za citolizu L-929 stanica. Na sličan način, pročišćeni rekombinantni mišji gama interferon (P. Gray et al., 1983, "Proc. Natl. Acad, Sci. U.S.A." 80: 5842-5846) testiran je pomoću njegove antivirusne aktivnosti protiv EMC-inficiranih L stanica (D Goeddel ed al., 1980, "Nature" (London) 287: 411-416). Mišji gama interferon i humani faktor nekroze tumora se posebno razrijede do prikazanih razrjeđenja na Sl. 10. Najprije se doda gama-interferon u naznačene rupice, i odmah nakon toga se doda razrijeđen faktor nekroze tumora, do završnog volumena od 0.2 ml/rupica. Na kraju inkubacije od 72 sata, stanice se oboje sa 0.5 postotnim kristal violetom u 20 postotoka metanola. Rezultati su prikazani na Sl. 10. B16 je relativno rezistentan ili prema faktoru nekroze tumora ili prema samo IFN-gama, pri 1,000 jedinica/ml faktora nekroze tumora nije zapažena citoliza koja se je mogla vidljivo detektirati. Međutim, dodavanje vrlo malih količina gama interferona (tako malo kao što je 5 jedinica/mi) dovelo je do citolize. Murine melanoma cells B16, (Mason Research, Worcester, MA.) cell line C57B1/6 origin, are seeded in a microtitre plate at 5,000 cells/well and incubated for 4 hours at 37°C in a 5% CO2-humidified incubator before the addition of lymphocytes . The tumor necrosis factor obtained from Example 1 was purified to substantial homogeneity by HPLC and quantified by its activity in the L-929 cell cytolysis assay described above. Similarly, purified recombinant mouse gamma interferon (P. Gray et al., 1983, "Proc. Natl. Acad, Sci. U.S.A." 80: 5842-5846) was tested for its antiviral activity against EMC-infected L cells (D Goeddel et al., 1980, "Nature" (London) 287: 411-416). Murine gamma interferon and human tumor necrosis factor are separately diluted to the dilutions shown in FIG. 10. First, gamma-interferon is added to the indicated wells, and immediately after that, diluted tumor necrosis factor is added, to a final volume of 0.2 ml/well. At the end of the 72-hour incubation, the cells are stained with 0.5 percent crystal violet in 20 percent methanol. The results are shown in Fig. 10. B16 is relatively resistant to either tumor necrosis factor or IFN-gamma alone, no detectable cytolysis was observed at 1,000 units/ml of tumor necrosis factor. However, the addition of very small amounts of gamma interferon (as little as 5 units/ml) led to cytolysis.

Primjer 12 Example 12

Izoliranje mesindžer RNA Isolation of messenger RNA

Totalna RNA iz HL-60 staničnih kultura (4 sata nakon PMA indukcije) ili monocita periferne krivi kultivirana je kao što je opisano u Primjeru 2 i ekstrahirana je u giavnini kao što je navedeno u Ward et al.,1972, "J. Virol." 9: 61. Stanične su granulirane centrifugiranjem i tada su resuspendirane u 10 mM NaCl, 10 mM Tris-HCl pH 7.5, 1.5 mM MgCl2. Stanice se prekidaju dodavanjem NP-40 (1 postotna završna koncentracija), i jezgra se granulira centrifugiranjem. Supernatant je sadržao ukupnu RNA koja je dalje pročišćavana višestrukim ekstrakcijama sa fenolom i kloroformom. Vodena faza se napravi da bude 0.2 M u NaCl i tada se ukupna RNA staloži dodavanjem dva volumena etanola. Tipični prinos iz 1 grama kultiviranih stanica bio je oko 6 miligrama ukupne RNA. Poliadenilirana mRNA (oko 100 p.g) dobivena je na oligo(dT)celulozi postupkom iz H. Aviv et al., 1972, "Proc. Natl. Acad. Sci. U.S.A." 69: 1408-1412. Total RNA from HL-60 cell cultures (4 hours after PMA induction) or peripheral blood monocytes was cultured as described in Example 2 and extracted in gavnin as described in Ward et al., 1972, "J. Virol. " 9: 61. Cells were pelleted by centrifugation and then resuspended in 10 mM NaCl, 10 mM Tris-HCl pH 7.5, 1.5 mM MgCl2. Cells are disrupted by addition of NP-40 (1% final concentration), and the nucleus is pelleted by centrifugation. The supernatant contained total RNA, which was further purified by multiple extractions with phenol and chloroform. The aqueous phase is made to be 0.2 M in NaCl and then the total RNA is precipitated by adding two volumes of ethanol. A typical yield from 1 gram of cultured cells was about 6 milligrams of total RNA. Polyadenylated mRNA (about 100 pg) was obtained on oligo(dT)cellulose by the procedure of H. Aviv et al., 1972, "Proc. Natl. Acad. Sci. U.S.A." 69: 1408-1412.

Primjer 13 Example 13

Biblioteka cDNA cDNA library

7.5 µg poli(A)+ mRNA iz Primjera 12 prevede se u cDNA sa dvostrukom niti sukcesivnim djelovanjem reverzne transkriptaze, Klenow fragmenta DNA polimeraze i S1 nukleaze (P. Gray et al., 1982, "Nature" 295: 503-508, M. Wickers et al., 1978, "J. Biol. Chem." 253: 2483-2495). Oko 80 ng cDNA koja ima više od 600 bp (bp=parovi baza) po dužini izolirano je sa poliakrilamidnog gela. 7.5 µg of poly(A)+ mRNA from Example 12 is translated into double-stranded cDNA by successive action of reverse transcriptase, Klenow fragment DNA polymerase and S1 nuclease (P. Gray et al., 1982, "Nature" 295: 503-508, M (Wickers et al., 1978, J. Biol. Chem. 253: 2483-2495). About 80 ng of cDNA that is more than 600 bp (bp=base pairs) in length was isolated from polyacrylamide gel.

Sintetska DNA adaptorska sekvenca 5'AATTCATGCGTTCTTACAG 3' Synthetic DNA adapter sequence 5'AATTCATGCGTTCTTACAG 3'

3'GTACGCAAGAATGTC 5' 3'GTACGCAAGAATGTC 5'

podvrgnuta je ligaciji za cDNA da se kreiraju EcoRI. terminusi. Kao što je konvencionalno u nauci, adaptor se sintetizira kemijski u obliku dvije odvojene niti, pri čemu se 5' kraj jedne od niti fosforilizira sa polinukleotid kinazom i dvije niti se kale. cDNA (20 ng) se tada reizolira sa poliakrilamidnog gela, umetne su pomoću ligacije u ECORI-digeriran lambdagt-10, pakira se u djeliće faga i propagira se u E. coli tip C600 hfl (Huynh et al., 1984, Practical Approaches in Biochemistry, IRL Press Ltd., Oxford England) ili drugi poznati tip koji je pogodan za propagaciju lambda faga. Dobiva se cDNA biblioteka od oko 200,000 nezavisnih klona. was subjected to cDNA ligation to create EcoRI. terminus. As is conventional in the art, the adapter is chemically synthesized as two separate strands, the 5' end of one strand being phosphorylated with a polynucleotide kinase and the two strands annealed. The cDNA (20 ng) is then reisolated from a polyacrylamide gel, inserted by ligation into ECORI-digested lambdagt-10, packaged into phage fragments and propagated in E. coli type C600 hfl (Huynh et al., 1984, Practical Approaches in Biochemistry, IRL Press Ltd., Oxford England) or other known type suitable for lambda phage propagation. A cDNA library of about 200,000 independent clones is obtained.

Primjer 14 Example 14

Pravljenje deoksioligonukleotidne sonde za cDNA faktora nekroze tumora Creation of a deoxyoligonucleotide probe for tumor necrosis factor cDNA

DNA hibridizacijska sonda od 42 nukleotida, na bazi preliminarne aminokiselinske sekvence triptičnog peptida faktora nekroze tumora TD-6 (E-T-P-E-G-A-E-A-K-P-W-Y-E-K-) konstruirana je na bazi pibliziranih frekvencija za korištnje kodona (R. Grantham et al., 1981 "Nucleic Acids Res." 9: 43-74), i kodon biasa humanog IFN-gama (P. Gray et al., 1982, "Nature" 295: 503-508), i humanog limfotoksina. Preliminarna sekvenca bila je pogrešna (završni K treba biti P). Svejedno, ova sekvenca vodila je do uspješne sonde. Sintetska sonda imala je sekvencu 5' dGAAA CCCC TGAAGGGGGCTGAAGCCAAGCCAAGCCCTGGTATGAAA-AG 3' i sintetizirana je postupkom iz R. Crea et al., 1980, "Nucleic Acids Res." 8: 2331-2348- Sonda je fosforilizirana sa (gama-32P) ATP i T4 polinukleotid kinazom kao što je opisano ranije (Goeddel et a1.,1979, "Nature" 281: 544). A DNA hybridization probe of 42 nucleotides, based on the preliminary amino acid sequence of the tryptic peptide of tumor necrosis factor TD-6 (E-T-P-E-G-A-E-A-K-P-W-Y-E-K-) was constructed based on published codon usage frequencies (R. Grantham et al., 1981 "Nucleic Acids Res." 9: 43-74), and codon bias of human IFN-gamma (P. Gray et al., 1982, "Nature" 295: 503-508), and human lymphotoxin. The preliminary sequence was wrong (final K should be P). Regardless, this sequence led to a successful probe. The synthetic probe had the sequence 5' dGAAA CCCC TGAAGGGGGCTGAAGCCAAGCCAAGCCCTGGTATGAAA-AG 3' and was synthesized by the procedure of R. Crea et al., 1980, "Nucleic Acids Res." 8: 2331-2348- The probe was phosphorylated with (gamma-32P) ATP and T4 polynucleotide kinase as described previously (Goeddel et al., 1979, "Nature" 281: 544).

Primjer 15 Example 15

Identifikacija cDNA klona koji sadrži sekvence za kodiranje faktora nekroze tumora Identification of a cDNA clone containing tumor necrosis factor coding sequences

Oko 200,000 rekombinantnih faga iz lambdagt 10 cDNA biblioteke testira se pomoću DNA hibridizacije korištenjem 32P-markiranog 42-mera iz Primjera 14 pod uvjetima jake krutosti prema A. Ullrich et al., 1984, "EMBO J." 3: 361-364 (ili alternativno P. Gray et al., 1983, "Proc. Nat. Acad. Sci. U.S.A." 80: 5842-5846, S. Anderson et al., 1983, "Proc Natl. Acad. Sci. U.S.A." 80: 6836-6842 i M. Jaye et al., 1983, "nucleic Acids Res." 11: 2325-2335). Devet distinktnih klona hibridizira se sa sondom i pročisti se plaka. Tada se 32P-markirana cDNA napravi korištenjem mRNA iz neinduciranih HL-60 stanica. DNA iz sedam od ovih devet klona faga nije hibridizirala sa ovon "neiduciranom" sondom i zato je procijenjeno da su kandidati za cDNA sekvence faktora nekroze tumora. cDNA klon koji sadrži najveći insert označen je lambda42-4. Ovaj insert se sekvencira pomoću postupka za terminaciju dideoksi niza (A. Smith, 1980, "Methods in Enzymology" 65: 560580 i F. Sanger etbal., 1977, "Proc. Natl. Acad. Sci. U.S.A." 74:5463-5467) nakon subkloniranja u vektor Ml3mp8 (J. Messing et al., 1981, "Nusleic Acids Res." 9: 309-321). About 200,000 recombinant phages from the lambdagt 10 cDNA library are screened by DNA hybridization using the 32 P-labeled 42-mer of Example 14 under high stringency conditions according to A. Ullrich et al., 1984, "EMBO J." 3: 361-364 (or alternatively P. Gray et al., 1983, "Proc. Nat. Acad. Sci. U.S.A." 80: 5842-5846, S. Anderson et al., 1983, "Proc Natl. Acad. Sci . U.S.A." 80: 6836-6842 and M. Jaye et al., 1983, "nucleic Acids Res." 11: 2325-2335). Nine distinct clones hybridize with the probe and the plaque is purified. 32P-labeled cDNA is then made using mRNA from uninduced HL-60 cells. DNA from seven of these nine phage clones did not hybridize with this "uninduced" probe and were therefore judged to be candidate tumor necrosis factor cDNA sequences. The cDNA clone containing the largest insert was designated lambda42-4. This insert is sequenced using the dideoxy strand termination procedure (A. Smith, 1980, "Methods in Enzymology" 65: 560580 and F. Sanger et al., 1977, "Proc. Natl. Acad. Sci. U.S.A." 74:5463-5467 ) after subcloning into the Ml3mp8 vector (J. Messing et al., 1981, "Nusleic Acids Res." 9: 309-321).

cDNA sekvenca dobivena za lambda42-4 sadržala je cijelu regiju za kodiranje zrelog faktora nekroze tumora plus dio njegovog signalnog peptida. Korektna orijentacija i okvir za očitavanje DNA izvedeni su uspoređivanjem sa aminokiselinskom sekvencom triptičnog peptida T4 faktora nekroze tumora. Amino terminalan valinski ostatak faktora nekroze tumora određen je sekvenciranjem proteina kao što je naznačeno za aminokiselinu 1, i praćen je sa 156 dopunskih aminokiselina prije nailaženja zaustavnog kodona u fazi očitavanja. Izračunata molekulska težina je 17,356 daltona. The cDNA sequence obtained for lambda42-4 contained the entire coding region for mature tumor necrosis factor plus part of its signal peptide. The correct orientation and reading frame of the DNA was deduced by comparison with the amino acid sequence of the T4 tryptic peptide of tumor necrosis factor. The amino terminal valine residue of tumor necrosis factor was determined by protein sequencing as indicated for amino acid 1, and was followed by 156 additional amino acids before encountering a stop codon in the read-through. The calculated molecular weight is 17,356 daltons.

Primjer 16 Example 16

Identifikacija cDNA klona koji sadrži kompletne sekvence za kodiranje PreTNF Identification of a cDNA clone containing the complete coding sequences for PreTNF

cDNA klon lambda42-4 sadrži cijelu regiju za kodiranje zrelog TNF ali nema kompletnu sekvencu za kodiranje signalnog peptida kao što je demonstrirano njegovim nedostatkom inicirajućeg kodona. Da se dobije nedostajuća informacija u sekvenci, sintetizira se heksadekanukleotidni primjer dTGGATGTTCGTCCTCC (komplementaran sa nukleotidima 855 do 870, Sl. 10) na kemijski način. Ovaj primjer se kali za mRNA iz Primjera 12 i tada se sintetizira cDNA korištenjem postupka iz Primjera 12 i tada se sintetizira cDNA korištenjem cDNA klona u lambdagt10 prema postupku koji je opisan u Primjeru 13. Ova biblioteka se testira hibridizacijskom analizom kao sondom lambda42-4 cDNA inserta koji je 32P-markiran. Dobiva se 16 pozitivnih klona, od kojih najduži (lambda16-4) sadrži cDNA insert koji se proteže 337 bp dalje 5' od lambda42-4 inserta. Kompleksna sekvenca TNF cDNA inserata lambdai6-4 (nukleotidi 1-870) i lambde42-4 (nikleotidi 337-1648) prikazana je na Slici 10. cDNA clone lambda42-4 contains the entire region coding for mature TNF but lacks the complete sequence coding for the signal peptide as demonstrated by its lack of an initiation codon. To obtain the missing information in the sequence, the hexadecanucleotide example dTGGATGTTCGTCCTCC (complementary to nucleotides 855 to 870, Fig. 10) was synthesized chemically. This example is tested for the mRNA of Example 12 and then cDNA is synthesized using the procedure of Example 12 and then cDNA is synthesized using the cDNA clone in lambdagt10 according to the procedure described in Example 13. This library is tested by hybridization analysis as a lambda42-4 cDNA probe. insert that is 32P-marked. 16 positive clones were obtained, the longest of which (lambda16-4) contains a cDNA insert that extends 337 bp further 5' from the lambda42-4 insert. The complex sequence of TNF cDNA inserts lambdai6-4 (nucleotides 1-870) and lambda42-4 (nucleotides 337-1648) is shown in Figure 10.

Primjer 17 Example 17

Konstrukcija ekspresijskog vektora za direktno izražavanje faktora nekroze tumora Construction of an expression vector for direct expression of tumor necrosis factor

Postupak koji se koristi za izražavanje sDBA sekvence za faktor nekroze tumora dobivene u Primjeru 15 prikazan je na Sl. 11. Fag lambda42-4 iz Primjera 15, koji sadrži cijelu sekvencu za kodiranje zrelog faktora nekroze, tumora i dio putativne sekretorne vodeće sekvence za faktor nekroze tumora digerira se sa EcoRI i regenerira se fragment od približno 800bp koji sadrži regiju za kodiranje faktora nekroze tumora. Ovaj fragment se digerira sa Ava I i Hind III i regenerira se fragment od 578 bp (označen "C" na Sl. 11). Ovaj fragment kodira za aminokiseline 8-157 faktora nekroze tumora. The procedure used to express the tumor necrosis factor sDBA sequence obtained in Example 15 is shown in FIG. 11. Phage lambda42-4 from Example 15, which contains the entire coding sequence for mature tumor necrosis factor and part of the putative tumor necrosis factor secretory leader sequence is digested with EcoRI and a fragment of approximately 800 bp containing the tumor necrosis factor coding region is regenerated . This fragment is digested with Ava I and Hind III and a 578 bp fragment is regenerated (marked "C" in Fig. 11). This fragment codes for amino acids 8-157 of tumor necrosis factor.

Naprave se dva sintetska deoksioligonukleotida (označeni kao fragment "B" na Sl. 11) (vidi konstrukciju adaptorske sekvence u Primjeru 13) koji su inkorporirali Xba I kohezivan terminus na 5' kraju, Ava I kohezivan terminus na 3' kraju, met inicirajući kodon i kodone za prvih sedam aminoterminalnih aminokiselina za faktor nekroze tumora. Kodoni za ove aminokiseline izabrani su na bazi preference za E. coli. AATT sekvenca uzvodne od startnog kodona bira se za pravilnu udaljenost polaznog kodona od sekvence za vezivanje trp ribozoma i, u kombinaciji sa aminokiselinskim kodonima, za eliroiniranje potencijalnog kola mesindžer RNA. Two synthetic deoxyoligonucleotides (labeled fragment "B" in Fig. 11) were made (see adapter sequence construction in Example 13) incorporating an Xba I cohesive terminus at the 5' end, an Ava I cohesive terminus at the 3' end, a met initiation codon and codons for the first seven amino-terminal amino acids for tumor necrosis factor. The codons for these amino acids were chosen based on preference for E. coli. The AATT sequence upstream of the start codon is selected for the proper distance of the start codon from the trp ribosome binding sequence and, in combination with the amino acid codons, to elyroinate the potential messenger RNA circuit.

Segroenti B i C se tada spoje u trostrukoj ligaciji sa pBR322 derivatom koji sadrži trp promotorksu sekvencu sa Shine-Dalgarno sekvencom trp vodećeg peptida (European Patent Application Publn. No. 36776). Dobiven je ili konstruiran derivat tako da sadrži jedinstvena Xba I i Hind III mjesta između trp promotora i TetR gena. Ili pLTtrpl (Gray et al., 1984, "Nature" 312: 721-724) ili prepETA (gray et al., 1984, "Proc. Natl. Acad. Sci. U.S.A." 81: 2645-2649) su pogodni polazni vektori ove vrste, iako se mogu konstruirati drugi iz pBR322, trp promotora i bilo kojih potrebnih sintetskih vezivnih sekvenci. I pBR322 i plazmidi koji sadrže trp promotor su javno pristupačni. pBR322 dio izabranog vektora može imati AvaI-PvuII segment od bp 1424 do 2065 koji je° "izostavljen (označeno "XAP" u imenu plazmida). Bilo koji od predhodnih plazmida se istovremeno digerira sa Xba I i Hind III i regenerira se veliki fragment vektora. Ovaj fragment, i fragmenti B i C se podvrgnu ligaciji sa T4 DNA ligazom i ligacijska smjesa se koristi za transformiranje E. coli 294 (ATCC 31446). Izaberu se kolonije koje su otporne na ampicilin, palzmidna DNA se regenerira i okarakterizira se mapiranjem restrikcijske endonukleaze i sekvenciranjem DNA. Dobiva se pTrpXAPTNF koji je sadržao inserte B i C. Segroents B and C are then joined in triple ligation with the pBR322 derivative containing the trp promoter sequence with the Shine-Dalgarno sequence of the trp leader peptide (European Patent Application Publn. No. 36776). A derivative was obtained or engineered to contain unique Xba I and Hind III sites between the trp promoter and the TetR gene. Either pLTtrpl (Gray et al., 1984, "Nature" 312: 721-724) or prepETA (Gray et al., 1984, "Proc. Natl. Acad. Sci. U.S.A." 81: 2645-2649) are suitable starting vectors. of this species, although others can be constructed from pBR322, the trp promoter and any required synthetic linker sequences. Both pBR322 and plasmids containing the trp promoter are publicly available. The pBR322 portion of the selected vector may have the AvaI-PvuII segment from bp 1424 to 2065 omitted (indicated by "XAP" in the plasmid name). Either of the preceding plasmids is simultaneously digested with Xba I and Hind III and a large fragment of the vector is regenerated . This fragment, and fragments B and C are ligated with T4 DNA ligase and the ligation mixture is used to transform E. coli 294 (ATCC 31446). Colonies that are resistant to ampicillin are selected, plasmid DNA is regenerated and characterized by restriction mapping endonuclease and DNA sequencing, resulting in pTrpXAPTNF containing inserts B and C.

Primjer 18 Example 18

Izražavanje faktora nekroze tumora u E. coli Expression of tumor necrosis factor in E. coli

E. coli ATCC 31446 koja je transformirana sa pTNFtrp se kultivira u M9 podlozi koja sadrži 20 µg/ml ampicilina i kultura se kultivira do A550=0.3. Doda se indoloctena kiselina da se dobije završna koncentracija od 20 µg/ml i kultura raste do A550=1.10 ml stanica se koncentrira i resuspendira u fosfatnoj puferiranoj otopini soli. Stanice se podvrgnu sonikaciji i razrijede se za određivanje faktora nekroze tumora kao u testu iz Primjera 1. Dobiva se aktivnost od približno 105 jedinica na ml kulture. Ova aktivnost se neutralizira preinkubacijom sa antiserumima kunića iz kunića koji su imunizirani protiv humanog faktora nekroze tumora. E. coli ATCC 31446 transformed with pTNFtrp is cultured in M9 medium containing 20 µg/ml ampicillin and the culture is cultured to A550=0.3. Indoleacetic acid is added to obtain a final concentration of 20 µg/ml and the culture grows to A550=1.10 ml cells are concentrated and resuspended in phosphate buffered saline. Cells are sonicated and diluted for determination of tumor necrosis factor as in the assay of Example 1. An activity of approximately 105 units per ml of culture is obtained. This activity is neutralized by preincubation with rabbit antisera from rabbits immunized against human tumor necrosis factor.

Primjer 19 Example 19

Izražavanje faktora nekroze tumora u E. coli Expression of tumor necrosis factor in E. coli

Ovaj postupak je poželjniji od onog iz Primjera 18. This procedure is preferable to that of Example 18.

Poželjno je domaćin za korištenje sa gornjim vektorima nereverzibilan tonA E. coli tip. takvi tipovi su rezistentni na bakteriofage i zato su daleko više pogodniji za kulitiviranje velikih razmjera nego tipovi divlje vrste. Slijedi opis pogodnog postupka za generiranje takvog tipa. E. coli W3110 se transducira sa lambda:: Tn10, lambda bakteriofagom koji sadrži transponirajući element Tn10, tako da se generira Tn10 hop kolo E. coli W3110. (N. Klecker et al., 1977 "J. Mol. Biol." 116: 125). The preferred host for use with the above vectors is the irreversible tonA E. coli type. such types are resistant to bacteriophages and are therefore far more suitable for large-scale cultivation than wild-type types. The following is a description of a convenient procedure for generating such a type. E. coli W3110 is transduced with lambda:: Tn10, a lambda bacteriophage containing a Tn10 transposable element, to generate the Tn10 hop circuit of E. coli W3110. (N. Klecker et al., 1977 "J. Mol. Biol." 116: 125).

E. coli W3110:: Tn10 hop kultura se kultivira u L juhi na 37°C do stanične gustoće oko 1 x 109/ml. 0.5 ml kulture se centrifugira i granula se resuspendira u 0.2 ml lambdaphi80 (ili T1) lizata koji sadrži 7.0 x 109 pfu. Pusti se da se fag apsorbira 30 minuta na 37°C. Suspenzija se tada prska na EMB ploče koje su dopunjene sa tetraciklinom (15 µg/ml). Nakon prekonoćne inkubacije na 37°C, kolonije slabe pink boje se skupe u 3 ml l juhe, kultiviraju se preko noći na 37°C, isperu se dva puta i resuspendiraju se u L juhi. Ova kultura se inficira sa baketriofagom. P1 kc. i lizat faga se regenerira (J. Miller, 1972, Experiments in Molecular Biology, Cold Spring Harbor Laboratory, p 304). E. coli W3110:: Tn10 hop culture is cultivated in L broth at 37°C to a cell density of about 1 x 109/ml. 0.5 ml of the culture is centrifuged and the pellet is resuspended in 0.2 ml of lambdaphi80 (or T1) lysate containing 7.0 x 109 pfu. Allow the phage to absorb for 30 minutes at 37°C. The suspension is then sprayed onto EMB plates supplemented with tetracycline (15 µg/ml). After overnight incubation at 37°C, faint pink colonies are collected in 3 ml L broth, cultured overnight at 37°C, washed twice and resuspended in L broth. This culture is infected with bacteriophage. P1 kc. and the phage lysate is regenerated (J. Miller, 1972, Experiments in Molecular Biology, Cold Spring Harbor Laboratory, p 304).

E. coli AT982 (no. 4546, E. coli Genetic Stock Center, New Haven, Conn.) se transdicira na otpornost na tetraciklin pomoću ovog P1 kc. lizata. Transduktanti se izaberu na pločama L juhe dopunjenim sa tetraciklinom (15 µg/ml) i (40 µg/ml) dap (diaminopimelinska kiselina). Dobiveni transduktanti se testiraju na otpornost na tetraciklin i regeneriranje dap gen gena (dap+, tet R). dap+, tetR transduktanti se tretiraju na otpornost na tetraciklin i regeneriranje dap gen gena (dap+,tetR). dap+, tetR transduktanti se tada testiraju na lambdahi80 (ili Tl) otpornost. E. coli AT982 (no. 4546, E. coli Genetic Stock Center, New Haven, Conn.) is transduced for tetracycline resistance using this P1 kc. lysate. Transductants are selected on plates of L broth supplemented with tetracycline (15 µg/ml) and (40 µg/ml) dap (diaminopimelic acid). The resulting transductants are tested for resistance to tetracycline and regeneration of the dap gene gene (dap+, tet R). dap+, tetR transductants are treated for tetracycline resistance and regeneration of the dap gene gene (dap+, tetR). dap+, tetR transductants are then tested for lambdahi80 (or Tl) resistance.

PK kc lizati se tada naprave na nekoliko dap+, tetR, lambdaphi80 (ili T1) rezistentnih tipova. Lizati se koriste za transdukciju E. coli W3110 na rezistentnost na tetraciklin. Transduktanti se testiraju i biraju na rezistentnost za lambdaphi80 (ili T1). PK kc licks are then made on several dap+, tetR, lambdaphi80 (or T1) resistant types. Lysates are used to transduce E. coli W3110 to tetracycline resistance. Transductants are screened and selected for resistance to lambdaphi80 (or T1).

Izolati osjetljivi na tetraciklin se izaberu iz W3110 fhuA:Tn10-lambdaphi80R transduktanata (S. Naloy et al. 1981 "J.Bact." 145: 1110) Ovi izolati se provjere za rezistentnost na fag lambdaphi80 i osjetljivost na tetraciklin nakon jednog pročišćavanja kolonije. Tetracycline-susceptible isolates are selected from W3110 fhuA:Tn10-lambdaphi80R transductants (S. Naloy et al. 1981 "J.Bact." 145: 1110) These isolates are screened for phage lambdaphi80 resistance and tetracycline sensitivity after one colony purification.

DNA se izolira iz nekoliko mutanata osjetljivih na tetraciklin i rezistentnih na lambdaphi80 fag i digeriraju se sa SstII. SstII digerirana DNA se karakterizira Southern postupkom korištenjem radioaktivno markirane i SstII digerirane lambda: Tn10 DNA kao sonde za određivanje da li je Tn10 isječen (R. Davis et al., 1980, Advanced Bacterial: Genetics, Cold Spring Harbor Laboratora). Pokazano je da je jedan od izolata osjetljivih na tetraciklin izgubio dvije od Tn10 hibridizacijskih vrpci u usporedbi sa hibridizacijom između DNA iz lambda: Tn10 i parenteralnog W3110 fhuA: Tn10lambdaphi80R. Treća traka hibridizacije imala je promijenjenu mobilnost što ukazuje na izostavljanjem izazvano nepreciznim isjecanjem Tn10. DNA is isolated from several tetracycline-sensitive and -resistant lambdaphi80 phage mutants and digested with SstII. SstII-digested DNA is characterized by the Southern procedure using radiolabeled and SstII-digested lambda:Tn10 DNA as a probe to determine whether Tn10 is cleaved (R. Davis et al., 1980, Advanced Bacterial: Genetics, Cold Spring Harbor Laboratories). One of the tetracycline-susceptible isolates was shown to have lost two of the Tn10 hybridization bands when compared to hybridization between DNA from lambda:Tn10 and parenteral W3110 fhuA:Tn10lambdaphi80R. The third hybridization band had altered mobility indicating omission caused by imprecise cleavage of Tn10.

SDS-gel elektroforeza vanjskih preparata membrane iz tipa sa nepreciznim isjecanjem Tn10 otkriva da traka za koju je pretpostavljeno da je fhuA protein ima promijenjenu elektroforetsku mobilnost u usporedbi sa proteinom fhuA divlje vrste. Dobiveni protein je nefunkcionalan kao protein lambdaphi80 receptorskog faga. Drugi nezavisan tip koji je također podvrgnut nepreciznom isjecanju Tn10 ne pokazuje fhuA protein na SDA gelu. SDS-gel electrophoresis of outer membrane preparations from the missense type Tn10 reveals that the band predicted to be the fhuA protein has altered electrophoretic mobility compared to the wild-type fhuA protein. The resulting protein is non-functional as the lambdaphi80 receptor phage protein. Another independent strain also subjected to imprecise Tn10 excision shows no fhuA protein on the SDA gel.

Nijedan od ovih tipova nije demonstrirao reverznost na rezistentnost na tetraciklin ili na prijemčivost na lambdaphi80 što ukazuje da postoji neprecizno isijecanje cijelog ili dijela transposona Tn10 zajedno sa ili djelomičnim ili potpunim izostavljanjem fhuA gena. Poželjno se jedan od takvih W3110 tipova (NL106) koristi kao domaćin za nosače za kodiranje TNF što je ovdje još negdje opisano. None of these types demonstrated reversion to tetracycline resistance or lambdaphi80 susceptibility indicating that there is imprecise excision of all or part of the Tn10 transposon together with either partial or complete deletion of the fhuA gene. Preferably, one of such W3110 strains (NL106) is used as a host for TNF-encoding carriers as described elsewhere herein.

NL106 se transformira sa ptrpXAPTNF i inokulira se u 10 litara ph 7.4 podloge koja ima slijedeću formulu: NL106 is transformed with ptrpXAPTNF and inoculated into 10 liters of ph 7.4 medium that has the following formula:

Komponenta g/l Component g/l

(NH4)2SO4 5.0 (NH4)2SO4 5.0

K2HPO4 6.0 K2HPO4 6.0

NaH2PO4 3.0 NaH2PO4 3.0

Na Citrat 1.0 On Citrate 1.0

L-Triptofan 0.2 L-Tryptophan 0.2

NZ Amin AS 4.0 NZ Amin AS 4.0

Ekstrakt kvasca 4.0 Yeast extract 4.0

MgSO4 1.2 MgSO4 1.2

Glukoza 25.0 Glucose 25.0

Otopina elementa u tragovima Trace element solution

(Fe, Zn, Co, Mo, Cu, C i Mn ioni) 0.5 ml (Fe, Zn, Co, Mo, Cu, C and Mn ions) 0.5 ml

Tetraciklin 1.0 ml Tetracycline 1.0 ml

Glukoza se šaržira na kulturu brzinom od 1 g/minuta kada A550 kulture dostigne oko 20. Fermentacija se vrši na 37°C dok se ne dostigne A550 136 (oko 20 sati). Kultura se centrifugira tako da se formira stanična pasta i pasta se tada ekstrahira tijekom 30 min. na pH 8.0 i na sobnoj temperaturi sa puferom koji sadrži 50 mM tris, 10 mM EDTA, 1000 mM NaCl, 2000 mM karbimida i 0.1 postotak beta-merkaptoetanola. Ekstrakt se razrijedi i testira se kao što je opisano u Primjeru 1. Dokazano je 1x108 jedinica aktivnosti faktora nekroze tumora u ovom testu kao ekvivalent sa 1 mg faktora nekroze tumora. Dobiva se do oko 2 grama faktora nekroze tumora na litru kulture. Amino-terminalno sekvenciranje demonstriralo je da je oko 75 do 86 masenih postotaka bio valil amino-terminalni (zreli) faktor nekroze tumora, dok je ostatak met-TNF. Dalje, uz to nije bio prisutan protein visoke razine izražavanja u refraktilnim tijelima, niti je inače izgledao toksičan za stanice kao što je demonstrirano ekstremno visokim staničnim gustoćama koje su dobivene. Glucose is added to the culture at a rate of 1 g/minute when the A550 of the culture reaches about 20. Fermentation is carried out at 37°C until the A550 reaches 136 (about 20 hours). The culture is centrifuged to form a cell paste and the paste is then extracted for 30 min. at pH 8.0 and at room temperature with a buffer containing 50 mM Tris, 10 mM EDTA, 1000 mM NaCl, 2000 mM carbimide and 0.1 percent beta-mercaptoethanol. The extract was diluted and tested as described in Example 1. 1x108 units of tumor necrosis factor activity were demonstrated in this assay as equivalent to 1 mg of tumor necrosis factor. Up to about 2 grams of tumor necrosis factor is obtained per liter of culture. Amino-terminal sequencing demonstrated that about 75 to 86% by weight was valyl amino-terminal (mature) tumor necrosis factor, while the remainder was met-TNF. Further, in addition, the protein was not present at a high level of expression in the refractile bodies, nor did it otherwise appear to be toxic to the cells as demonstrated by the extremely high cell densities obtained.

Primjer 20 Example 20

Konstrukcija i izražavanje mutantnog gena za faktor nekroze bubrega Construction and expression of a mutant gene for renal necrosis factor

U ovom predviđenom primjeru, Primjeri 17-18 su ponovljeni osim što je oligonukleotidni fragment B sintetiziran sa histidinskim kodonom CAT umjesto argininskog 6 kodona CGT. Izražen je mutantni faktor nekroze tumora. In this provided example, Examples 17-18 were repeated except that oligonucleotide fragment B was synthesized with the histidine codon CAT instead of the arginine 6 codon CGT. Mutant tumor necrosis factor was expressed.

Primjer 21 Example 21

Konstrukcija i izražavanje drugog mutantnog gena faktora nekroze tumora Construction and expression of another tumor necrosis factor mutant gene

U ovom primjeru ponovljen je postupak iz Primjera 17-18 sa oligonukleotidnim fragmentom B koji kodira za leucin (CTT) umjesto ostataka 2 argininskog kodona. Dobiveno je oko 1200 mg zrele TNF aktivnosti na litru kulture u početnim testovima. Neprerađeni TNF nije se mogao detektirati u kulturi. In this example, the procedure from Examples 17-18 was repeated with oligonucleotide fragment B coding for leucine (CTT) instead of residues 2 of the arginine codon. About 1200 mg of mature TNF activity per liter of culture was obtained in initial tests. Unprocessed TNF was undetectable in culture.

Primjer 22 Example 22

Konstrukcija vektora koji kodira za fuziju faktora nekroze tumora sa sekretornom signalnom sekvencom Construction of a vector encoding tumor necrosis factor fusion with a secretory signal sequence

Sekvenca E. coli toplinski stabilnog enterotoksinskog gena STII opisana je na Sl. 12. U ovom Primjeru fragment koji sadrži STII sekretorni signal i Shine-Dalgarno sekvencu podvrgne se ligaciji nizvodno od E. coli promotora alkalne fosfataze. STII signal je praćen u 3' smjeru sa sintetskim oligonukleotidom koji daje kodone za početnih sedam amino-terminalnih aminokiselina faktora nekroze tumora i ostatkom sekvence za kodiranje faktora nekroze tumora. Svi od prethodnih sakupljeni su u pBR322 vektoru. The sequence of the E. coli heat-stable enterotoxin STII gene is described in FIG. 12. In this Example, a fragment containing the STII secretory signal and the Shine-Dalgarno sequence is ligated downstream of the E. coli alkaline phosphatase promoter. The STII signal was followed in the 3' direction with a synthetic oligonucleotide providing codons for the initial seven amino-terminal amino acids of tumor necrosis factor and the rest of the tumor necrosis factor coding sequence. All of the above were collected in the pBR322 vector.

pWM501 (Picken et al.,1983,"Infection and Immunity" 42 (1): 269-275) sadrži STII gen opisan na Sl. 12. pW501 se digerira sa Xba1 i NsiI i izolira se fragment od približno 90 bp. Ovaj fragment se je također mogao sintetizirati organskim postupcima koji su sami po sebi poznati (fragment A). pWM501 (Picken et al., 1983, "Infection and Immunity" 42 (1): 269-275) contains the STII gene described in FIG. 12. pW501 is digested with Xba1 and NsiI and a fragment of approximately 90 bp is isolated. This fragment could also be synthesized by organic methods known per se (fragment A).

pBR322-Trp plazmid kao što je opisan u primjeru 17 (p20kLT se digerira sa XbaI i HindIII, i regenerira se veliki fragment vektora (fragment B). Ovaj fragment sadrži E. coli porijeklo replikacije i gen koji daje fenotip rezistentnosti na ampicilin. The pBR322-Trp plasmid as described in Example 17 (p20kLT is digested with XbaI and HindIII, and a large vector fragment (fragment B) is regenerated. This fragment contains the E. coli origin of replication and the gene conferring the ampicillin resistance phenotype.

Sintetski oligonukleotid se sintetizira kao dvije niti i kali se tako da se dobiva slijedeća struktura (također su naznačeni ljepljivi krajevi estrikcijskog mjesta i aminokiseline koje su kodirane sa oligonukleotidom. The synthetic oligonucleotide is synthesized as two strands and annealed to give the following structure (the sticky ends of the restriction site and the amino acids encoded by the oligonucleotide are also indicated.

VAL ARG SER SER SER ARG THR VAL ARG SER SER SER ARG THR

5' GTA CGT TCT TCT TCT CGA AGT 3' 5' GTA CGT TCT TCT TCT CGA AGT 3'

ACGT CAT ACG AGA AGA AGA GCA TGA GGCT ACGT CAT ACG AGA AGA AGA GCA TGA GGCT

NsiI AvaI NsiI AvaI

Ovo je označeni fragment C. This is labeled fragment C.

pTNFtrp iz primjera 18 se digerira sa AvaI i HindIII. Regenerira se 578 bp AvaI-HindIII fragment pTNFtrp from Example 18 was digested with AvaI and HindIII. A 578 bp AvaI-HindIII fragment is regenerated

(fragment D). On sadrži cijelu sekvencu za kodiranje TNF osim prvih sedam aminokiselina. (fragment D). It contains the entire TNF coding sequence except for the first seven amino acids.

DNA sekvenca koja obuhvaća E. coli promotor alkalne fosfataze (AP) vezan za heterologu Shine-Dalga~iio (S.D.) sekvencu (trp) i koja ima EcoRI i XbaI terminuse konstruirana je kako slijedi. DNA fragment koji sadrži dio AP promotora izolira se iz plazmida pHI-1. (H. Inouye et al., 1981, "J.Bacteriol." 146: 668-675), iako se mogu koristiti bilo koji odgovarajući izvori koji sadrže AP promotora izolira se iz plazmida pHI-1. (H.Inouye et al., 1981, "J.Bacteriol." 146 :668-675), iako se mogu koristiti bilo koji odgovarajući izvori koji sadrže AP promotor DNA. pHI-1 se digerira sa HpaI da se plazmid otvori. A DNA sequence comprising the E. coli alkaline phosphatase (AP) promoter linked to a heterologous Shine-Dalga~io (S.D.) sequence (trp) and having EcoRI and XbaI termini was constructed as follows. A DNA fragment containing part of the AP promoter was isolated from the pHI-1 plasmid. (H. Inouye et al., 1981, "J.Bacteriol." 146: 668-675), although any suitable sources containing the AP promoter isolated from plasmid pHI-1 may be used. (H. Inouye et al., 1981, "J. Bacteriol." 146 :668-675), although any suitable sources containing AP promoter DNA can be used. pHI-1 is digested with HpaI to open the plasmid.

GAATTCGAATTC GAATTCGAATTC

Sintetska vezivna sekvenca CTTAAGCTTAAG se podvrgne ligaciji za plazmid i povezani plazmid se digerira sa viškom EcoRI tako da se prekinu sva EcoRI mjesta i sa nedostatkom RsaI aktivnosti u cilju da se samo parcijalno prekinu sva RsaI mjesta (EcoRI i RsaI faze također se mogu vršiti sekvencijalno a ne istovremeno). Fragment od 420 bp koji sadrži AP promotor regenerira se iz parcijalnog EcoRI-RsaI digesta. The synthetic linker sequence CTTAAGCTTAAG is ligated to the plasmid and the ligated plasmid is digested with excess EcoRI to disrupt all EcoRI sites and deficient RsaI activity in order to only partially disrupt all RsaI sites (EcoRI and RsaI steps can also be performed sequentially and not simultaneously). A 420 bp fragment containing the AP promoter was regenerated from a partial EcoRI-RsaI digest.

Trp S.D. sekvenca dobiva se kako slijedi. Plazmid ili organizam koji sadrži trp promotor (pIFN-beta 2, D. Leung et a1.,1984,"Biotechnology" 2:458-464) se digerira sa XbaI i RsaI i regenerira se fragment od 30 bp koji sadrži trp S.D. sekvencu. Ovaj fragment se podvrgne ligaciji za 420 bp AP promotorni fragment tako da se dobiva 450 bp EcoRI-XbaI fragment E. Fragment E ima nukleotidnu sekvencu: Trp S.D. the sequence is obtained as follows. A plasmid or organism containing the trp promoter (pIFN-beta 2, D. Leung et al., 1984,"Biotechnology" 2:458-464) is digested with XbaI and RsaI and a 30 bp fragment containing trp is regenerated S.D. sequence. This fragment is ligated to the 420 bp AP promoter fragment to give the 450 bp EcoRI-XbaI fragment E. Fragment E has the nucleotide sequence:

EcoRI EcoRI

GAATTCAACTTCFCCATAGTTTGGATAAGGAAATACAGACATGAAAAATCTCATTGCTGAGTTGIIATTT AAGCTTGCCCAAAAAGAAGAAGAGTCGAAAGAACFGTGTGCGCAGGTAGAAGCTTTGGATTATCGICA CTGCAATGGTTCGCAATATGGCGCAAAATGACCAACAGCGGTTGATTGATCAGGTAGAGGGGCGTGTA CGAGGTAAAGCCCGATGCCAGCATTCTGACGACGATAGTGTGCGGCGATTACGTAAAGCCGAACCITA TTGAAGCATCCTCGTAGTAAAAAGTAATTTTTCAACAGCTGTCATAAAGTTGICCGGTCGCCCGAGACTT GAATTCAACTTCFCCATAGTTTGGATAAGGAAATACAGACATGAAAAATCCATTGCTGAGTTGIIATTT AAGCTTGCCCAAAAAAGAAGAGTCGAAAGAACFGTGTGCGCAGGTAGAAAGCTTTGGATTATCGICA CTGCAATGGTTCGCAATATGGCGCAAAATGACCAACAGCGGTTGATTGATCAGGTAGAGGGGGCGTGTA CGAGGTAAAGCCCGATGCCAGCATTCTGACGACGATAGTGTGCGGGCGATTACGTAAGCCGAACCITA TTGAAGCATCCTCGTAGTAAAAGTAATTTTTCAACAGCTGTCATAAAGTTGICCGGTCGCCCGAGACTT

trpS.D.XbaI trpS.D.XbaI

ATAGTCGCCTTTGTTTTTATTITTAATGTATTTGTACGAAGTTCACGTAAAAAGGGTATCTAGA ATAGTCGCCTTTGTTTTTATTITTAATGTATTGTACGAAGTTCACGTAAAAAGGGTATCTAGA

Fragmenti A, B, C i D se podvrgnu ligaciji u četverodijelnoj ligaciji i ligaciona smjesa se koristi za transformiranje E. coli 294. Transformanti se identificiraju rastom na LB pločama koje sadrže amicilin. Plazmid trpSTIITNF se izolira iz kolonije transformanata. Ovaj plazmid se digerira sa XbaI i EcoRI tako da se odvoji trp promotor, tada se veže ligacijom za 450 bp dug EcoRI-XbaI fragment E koji sadrži promotor E. coli alkalne fosfataze. Dobiveni plazmid nazvan pAPSTITTNF. Fragments A, B, C and D are ligated in a four-part ligation and the ligation mixture is used to transform E. coli 294. Transformants are identified by growth on LB plates containing amicillin. Plasmid trpSTIITNF is isolated from a colony of transformants. This plasmid is digested with XbaI and EcoRI to cleave the trp promoter, then ligated to the 450 bp EcoRI-XbaI fragment E containing the E. coli alkaline phosphatase promoter. The resulting plasmid was called pAPSTITTNF.

Primjer 23 Example 23

Ekspresija i prerada fuzije faktora nekroze tumora sa sekretornom signalnom sekvencom Expression and processing of a tumor necrosis factor fusion with a secretory signal sequence

E. coli NL106 se transfekcira sa pAPSTIITNF i inokulira se u 10 litara pH 7.0 podloge koja ima slijedeću formulu : E. coli NL106 is transfected with pAPSTIITNF and inoculated into 10 liters of pH 7.0 medium which has the following formula:

Komponenta g/l Component g/l

(NH4)2SO4 5.0 (NH4)2SO4 5.0

K2HPO4 2.6 K2HPO4 2.6

NaH2PO4 1.3 NaH2PO4 1.3

Na Citrat 1.0 On Citrate 1.0

KCl 1.5 KCl 1.5

NZ Amin AS 5.0 NZ Amin AS 5.0

Ekstrakt kvasca 2.0 Yeast extract 2.0

Mg SO4 1.2 MgSO4 1.2

Glukoza 25.0 Glucose 25.0

Otopina elementa u tragovima Trace element solution

(Fe, Zn, Co, Mo, Cu, B i Mn ioni) 0.5 ml (Fe, Zn, Co, Mo, Cu, B and Mn ions) 0.5 ml

Tetraciklin 20.0 Tetracycline 20.0

Kultiviranje se vrši na isti način kao što je opisano gore u Primjeru 19, osim što se dostigne A550140. Kultura je u ovom momentu sadržavala oko 400 mg faktora nekroze tumora/litra, oko 70-80 masenih postotaka od ovoga je pravilno prerađeno u zreli protein kao što je procijenjeno iz gelova za elektroforezu. Približno ista aktivnost faktora nekroze tumora regenerira se poslije ekstrakcije svih stanica pomoću postupka koji je korišten u Primjeru 19 i regenerirana je osmotskim šokom stanica. Cultivation is carried out in the same manner as described above in Example 19, except that A550140 is reached. The culture at this point contained about 400 mg of tumor necrosis factor/liter, about 70-80% by weight of this was properly processed into mature protein as estimated from electrophoresis gels. Approximately the same activity of tumor necrosis factor is regenerated after extraction of all cells using the procedure used in Example 19 and is regenerated by osmotic shock of the cells.

Primjer 24 Example 24

Konstrukcija i ekspresija dopunskih derivata faktora nekroze tumora Construction and expression of complementary derivatives of tumor necrosis factor

Napravljeni su mutantni derivati TNF aminokiselinske sekvence sa Sl. 10 da se zadovolji jedan ili više od najmanje slijedećih ciljeva : Mutant derivatives of the TNF amino acid sequence from FIG. 10 to satisfy one or more of at least the following objectives:

Da se poveća poluživot in vivo, da se poveća citolitička aktivnost, da se poveća neto diferencijalna citolitička aktivnost na stanicama tumora nasuprot normalnih stanica, da se naprave TNF imunogeni za pravljenje anti-TNF antitijela za dijagnostičke primjere, da se konstruiraju jedinstvena mjesta za kovalentnu modifikaciju (na primjer, kada su enzimski markeri kovalentno vezani u pravljenju EMIT ili ELISA dijagnostičkih reagensa), i za mijenjanje fizičkih osobina TNF, npr., njegove topljivosti, pI i slično. Procjena željene aktivnosti u izabranim derivatima određivana je rutinskim testiranjem u pogodnim testovima na poznati način. To increase half-life in vivo, to increase cytolytic activity, to increase net differential cytolytic activity on tumor cells versus normal cells, to make TNF immunogens to make anti-TNF antibodies for diagnostic examples, to construct unique sites for covalent modification (for example, when enzyme markers are covalently attached in making EMIT or ELISA diagnostic reagents), and to alter the physical properties of TNF, eg, its solubility, pI and the like. The assessment of the desired activity in the selected derivatives was determined by routine testing in suitable tests in a known manner.

Poželjno, TNF i njegovi derivati neće uključivati TNF koji ima sekvencu koja odgovara neprimatima, također, poželjno neće imati amino terminuse neprimata, npr., desValArg amino terminus koji je karakteristika supstance koja se zove faktor nekroze tumora kunića, niti amino terminus TNF gena koji je identificiran da ima sekvecu Preferably, TNF and its derivatives will not include TNF having a sequence corresponding to non-primates, also preferably will not have non-primate amino termini, e.g., the desValArg amino terminus which is characteristic of a substance called rabbit tumor necrosis factor, nor the amino terminus of the TNF gene which is identified as having redwood

Val-Arg-Ser-Arg-Thr-Pro-Ser-Asp-Lys-ProVal-Ala-Val-Ser-Val-Ala-Asn-Pro-Aln-Ala-Gly-Gly-(Wang et al., “Science” 228: 14-154, 1985). Val-Arg-Ser-Arg-Thr-Pro-Ser-Asp-Lys-ProVal-Ala-Val-Ser-Val-Ala-Asn-Pro-Aln-Ala-Gly-Gly-(Wang et al., “Science ” 228: 14-154, 1985).

Slijedeći postupak, na bazi J. Adelman et al., "DNA" 2(3): 163-193, je uglavnom primjenjljiv na konstrukciju i izražavanje bilo kojeg mutant TNF DNA sekvenci koji sadrži tihe mutacije ili mutant koji kodira za TNF. U cilju izbjegavanja preopsežnosti, ilustrirani su reprezentativni derivati u kojima je Arg 32 preveden u histidil (supstitucija) His 73 je izostavljen (mutacija izostavljanjem) i leucil je kondenziran za Leu 157 (umetanje). Međutim, treba biti jasno da se sve druge mutantne vrste generiraju na isti način. The following procedure, based on J. Adelman et al., "DNA" 2(3): 163-193, is generally applicable to the construction and expression of any mutant TNF DNA sequence containing silent mutations or a mutant coding for TNF. In order to avoid redundancy, representative derivatives are illustrated in which Arg 32 is converted to histidyl (substitution), His 73 is omitted (deletion mutation) and leucyl is fused to Leu 157 (insertion). However, it should be clear that all other mutant species are generated in the same way.

Drugi postupci za kreiranje tihih ili izraženih mutacija u DNA koja kodira za faktor nekroze tumora poznati su stručnjacima. Na primjer, mutantna DNA se konstruira jednostavnom kemijskom sintezom cijele sekvence ili sintezom dijela sekvence i veže se ligacijom fragment u ostatak potrebne DNA. Kemijska sinteza DNA je pogodna kada stručnjak želi napraviti mutant direktno bez prethodnog dobivanja iz prirodnih izvora DNA koja kodira za faktor nekroze tumora. Međutim, obično će DNA kodirati za prirodnu sekvencu aminokiselina, uključujući njene alelinske varijante, i biti će poželjno da se napravi iz izvjesnih mutantnih derivata. Other methods for creating silent or pronounced mutations in the DNA coding for tumor necrosis factor are known to those skilled in the art. For example, mutant DNA is constructed by simple chemical synthesis of the entire sequence or by synthesis of part of the sequence and the fragment is ligated into the rest of the required DNA. Chemical synthesis of DNA is suitable when the expert wants to make a mutant directly without first obtaining from natural sources the DNA that codes for the tumor necrosis factor. However, usually the DNA will encode the natural sequence of amino acids, including allelic variants thereof, and it will be desirable to make certain mutant derivatives.

Poželjno je u pravljenju DNA koja kodira za mutantne TNF derivate da se ne vrše promjene kodona koji stvaraju priliku da mRNA koja je iz njih transkribirana formira strukture jaka peteljka-i-kolo. Izbjegavanje takvih struktura će uglavnom dovesti do viših prinosa. Dalje, iz istog razloga treba se koristiti transformant kodona koji je poželjan za domaćina. It is desirable in making the DNA that codes for the mutant TNF derivatives that no codon changes are made that create an opportunity for the mRNA transcribed from them to form strong stem-and-loop structures. Avoiding such structures will generally lead to higher returns. Furthermore, for the same reason, a codon transformant that is desirable for the host should be used.

Pogodna polazna DNA je EcoRI-HindIII fragment pTrpXAPTNF (Primjer 17) dobivena sekvencijalnim digeriranjem sa EcoRI i HindIII, i onda izoliranjem fragmenta koji kodira za TNF gen. Ovaj fragment uključuje trp promotor i strukturni gen za metionil faktor nekroze tumora. A suitable starting DNA is the EcoRI-HindIII fragment of pTrpXAPTNF (Example 17) obtained by sequential digestion with EcoRI and HindIII, and then isolation of the fragment that codes for the TNF gene. This fragment includes the trp promoter and the structural gene for tumor necrosis factor methionyl.

Za dobivanje kopije sa jednom niti ovog gena koja je pogodna za mutagenezu, EcoRI-HindIII fragment se klonira u polivezivno mjesto faga M13 mp8 RF-DNA (J. Messing et al., 1982, "Gene" 19: 269-276, "RF" znači replikativni oblik faga: ovaj fag je komercijalno pristupačan). Alikvot EcoRI-HindIII smjese od digeriranja doda se u reakciju ligacije koja sadrži 10 ng M13 mp8 RF-DNA koja je predhodno digerirana sa EcoRI i HindIII. Nakon inkubacije na sobnoj temperaturi tijekom 2 sata, ligacijska smjesa se koristi za transformiranje E. coliJM103 (komercijalno pristupačan tip, može se također koristiti JM101). Transformirane stanice se prevuku sa top agarom koji sadrži X-GAL (dibromo-dikloro-indolil-galaktozid) i IPTG (izopropiltiogalaktozid). Bakterijske kulture (1 ml) . inficirane sa fagom skupljenim iz bezbojnih plaka koriste se za izoliranje M13 mp8/TNF RFDNA pomoću postupka mikrotestiranja (Birnoboil and Doly, 1980, "Nuc. Acids Res." 7: 1513-1523). Dobiveni rekombinantni fag M13 mp8/T'NF nosi kodirajuću nit za TNF gen. To obtain a single-stranded copy of this gene suitable for mutagenesis, an EcoRI-HindIII fragment was cloned into the polybinding site of phage M13 mp8 RF-DNA (J. Messing et al., 1982, "Gene" 19: 269-276, "RF " means the replicative form of the phage: this phage is commercially available). An aliquot of the EcoRI-HindIII digestion mixture was added to a ligation reaction containing 10 ng of M13 mp8 RF-DNA previously digested with EcoRI and HindIII. After incubation at room temperature for 2 hours, the ligation mixture is used to transform E. coliJM103 (commercially available type, JM101 can also be used). Transformed cells are coated with top agar containing X-GAL (dibromo-dichloro-indolyl-galactoside) and IPTG (isopropylthiogalactoside). Bacterial cultures (1 ml) . infected with phage harvested from colorless plaques are used to isolate M13 mp8/TNF RFDNA using a microassay procedure (Birnoboil and Doly, 1980, "Nuc. Acids Res." 7: 1513-1523). The obtained recombinant phage M13 mp8/T'NF carries the coding strand for the TNF gene.

Za mutagenezu usmjerenu na mjesto, sintetirziraju se oligodeoksiribonukleotidi (oligomeri mutageneze) sa ksmplementarnom sekvencom sa smjerovima od 15 baza na bilo kojoj strani od mjesta mutacije kao što je prikazano u slijedećim dijagramima, gdje N označava komplementarne baze a M označava nukleinsku kiselinu koja se treba umetnuti, izostaviti ili supstituirati. Umetanje ili izostavljanje se obično vrše u grupama od po 3 u cilju zadržavanja nizvodnog smjera gena u fazi. For site-directed mutagenesis, oligodeoxyribonucleotides (mutagenesis oligomers) are synthesized with a complementary sequence with directions of 15 bases on either side of the mutation site as shown in the following diagrams, where N denotes the complementary bases and M denotes the nucleic acid to be inserted , omit or substitute. Insertions or deletions are usually made in groups of 3 in order to keep the downstream gene in phase.

[image] [image]

Ml označava bazu ili oligomer koji nije komplementaran sa bazom ili oligomerom M2. Ovdje, Ml je željena sekvenca mutanta. Obično se oligomeri također prave tako da djeluju za pravljenje više od jedne vrste mutacije u isto vrijeme. M1 denotes a base or oligomer that is not complementary to the base or oligomer M2. Here, M1 is the desired mutant sequence. Typically, oligomers are also made to act to make more than one type of mutation at a time.

Oligomer suprotnog smisla za Arg-his 32 mutant je The antisense oligomer for Arg-his 32 is a mutant

p CAG GAG ATT GGC ATG GCG GTT CAG CCA HTG-OH. p CAG GAG ATT GGC ATG GCG GTT CAG CCA HTG-OH.

Oligomer suprotnog smisla za His 73 izostavljanje je The antisense oligomer for His 73 is omitted

p GTG GGT GAG CAC GGT GGA GGG GCA GCC-OH. p GTG GGT GAG CAC GGT GGA GGG GCA GCC-OH.

Oligomer suprotnog smisla za Leu 158 umetanje je The antisense oligomer for Leu 158 is an insertion

p TGT TCG TCC TCC TCA AAG CAG GGC AAT GAT CCC-OH. p TGT TCG TCC TCC TCA AAG CAG GGC AAT GAT CCC-OH.

Ovi primjeri se sintetiziraju konvencionalnim postupcima. Za korištenje u postupku mutageneze, 10 pmolova oligomera ili lac primjera 5'-GT'ITTCCCAGTCACGAC-3' se svaki fosforiliziraju 30 min na 37°C u 10 µl 50 mM Tris-HCl (pH 7.5), 0.1 mM EDTA, 10 mM MgCl2. 10 mM ditiotreitola, 0.1 mM ATP, koji sadrži 2 U T4 polinukleotid kinaze. Za korištenje kao sonde (vidi dolje) 2 p mola sintetskih polioligonukleotida se fosforiliziraju kao gore osim što je 0.1 mM ATP zamijenjeno sa 1 µM gama-32P ATP (Amersham). Specifične aktivnosti su rutinski više od 5 x 106 cpm/pmola oligonukleotidnog niza. These examples are synthesized by conventional procedures. For use in the mutagenesis procedure, 10 pmol of oligomer or lac example 5'-GT'ITTCCCAGTCACGAC-3' are each phosphorylated for 30 min at 37°C in 10 µl of 50 mM Tris-HCl (pH 7.5), 0.1 mM EDTA, 10 mM MgCl2 . 10 mM dithiothreitol, 0.1 mM ATP, containing 2 U of T4 polynucleotide kinase. For use as probes (see below) 2 p moles of synthetic polyoligonucleotides are phosphorylated as above except that 0.1 mM ATP is replaced by 1 µM gamma-32P ATP (Amersham). Specific activities are routinely greater than 5 x 106 cpm/pmole of oligonucleotide array.

Hibridizacija svakog oligomera i lac primjera za DNA sa jednom niti iz faga M13 mp8/TNF, i zatim ekstenzija primjera, dovodi do formiranja parcijalnih heterodupleksnih DNA, od kojih jedna nit sadrži mutantnu DNA. Hybridization of each oligomer and lac example to single-stranded DNA from phage M13 mp8/TNF, and then extension of the example, leads to the formation of partial heteroduplex DNAs, one strand of which contains the mutant DNA.

Za formiranje parcijalnog heterodupleksa, M13 mp8/TNF DNA sa jednom niti (300 ng) se zagrijava na 80°C (2 min), 50°C (5 min) i na sobnoj temperaturi (5 min) u 20 µl 10 mM Tris-HCl (pH 7.5), 0.1 mM EDTA, 50 mM NaCl, koji sadrži po 1 pmol i fosforiliziranog oligomera i primjera (dodani kao alikvoti iz reakcije sa kinazom). Ekstenzija primjera počinje dodavanjem 30 µl 50 mM Tris-HCl (pH 8.0), 0.1 mM EDTA, 12 mM MgCl2, 10 mM ditiotreitola, 0.7 mM ATP, 0.07 mM dATP, 0.2 mM svakog od dGTP, dTTP, dCTP i koji sadrži 2 U E. coli DNA polimeraze I, veliki fragment i 20 U T4 DNA ligaze. Nakon 30 minuta na sobnoj temperaturi, reakcijske smjese se inkubiraju na 4°C. Alikvoti se ekstrahiraju sa fenolom i DNA se staloži sa etanolom i otopi se u 15 µl vode. DNA u ovim alikvotima se koristi za transformiranje E. coli JM103. To form a partial heteroduplex, single-stranded M13 mp8/TNF DNA (300 ng) was heated at 80°C (2 min), 50°C (5 min) and at room temperature (5 min) in 20 µl 10 mM Tris- HCl (pH 7.5), 0.1 mM EDTA, 50 mM NaCl, containing 1 pmol each of phosphorylated oligomer and example (added as aliquots from the kinase reaction). Example extension begins by adding 30 µl of 50 mM Tris-HCl (pH 8.0), 0.1 mM EDTA, 12 mM MgCl2, 10 mM dithiothreitol, 0.7 mM ATP, 0.07 mM dATP, 0.2 mM each of dGTP, dTTP, and dCTP containing 2 U E. coli DNA polymerase I, large fragment and 20 U T4 DNA ligase. After 30 minutes at room temperature, the reaction mixtures are incubated at 4°C. Aliquots are extracted with phenol and the DNA is precipitated with ethanol and dissolved in 15 µl of water. The DNA in these aliquots is used to transform E. coli JM103.

lac primjer hibridizira u fag na lokaciji 5' oligomera. Izduživanje primjera stabilizira strukturu heterodupleksa. Oligomer i primjer se enzimatski fosforilizira tako da se omogući T4 DNA ligazi da spoji DNA nizove. lac example hybridizes to phage at the 5' oligomer location. Example elongation stabilizes the heteroduplex structure. The oligomer and example is enzymatically phosphorylated to allow T4 DNA ligase to join the DNA strands.

Fenolom ekstrahirana heterodupleksna DNA iz alikvota C (10 µ1) se doda na 10 µl 0.06 M Na-acetata pH 4.5, 0.6 M NaCl. 0.6 mM ZnCl2 i koji sadrži 200 U Sl nukleaze. Nakon inkubacije na 37°C tijekom 5 min. doda se kvaščeva tRNA (5 µg) i nukleinske kiseline se regeneriraju fenolom ekstrakcijom i taloženjem sa etanolom. Korištenjem istih Sl uvjeta, 30 ng M13 mp8 DNA sa jednom niti (oko 10,000 jedinica za formiranje plaka) daje manje od 100 plaka u testu na transformiranje DNA, dok ista količina RF-DNA zadržava više od 80 postotaka njenih osobina za transformiranje. Sl-tretirana DNA se koristi za transformiranje E. coli JM103 i dobiveni fag se analizira pomoću testiranja plaka in situ. Phenol-extracted heteroduplex DNA from aliquot C (10 µl) is added to 10 µl of 0.06 M Na-acetate pH 4.5, 0.6 M NaCl. 0.6 mM ZnCl2 and containing 200 U Sl nuclease. After incubation at 37°C for 5 min. yeast tRNA (5 µg) is added and nucleic acids are regenerated by phenol extraction and precipitation with ethanol. Using the same Sl conditions, 30 ng of single-stranded M13 mp8 DNA (about 10,000 plaque-forming units) produced less than 100 plaques in the DNA-transforming assay, while the same amount of RF-DNA retained more than 80 percent of its transforming properties. Sl-treated DNA is used to transform E. coli JM103 and the resulting phage is analyzed by in situ plaque assay.

Bakterijske ploče (promjer 15 cm) koje sadrže nekoliko stotina plaka rekombinantnog M13 faga siju se pomoću hibridizacije plaka in situ (Benton et al., 1977, "Science" 196: 180-182) i za parentalni i za mutirani genotip korištenjem odgovarajuće markiranih oligomera na posebnim setovima filtera (oko 106 cpm po filteru). Hibridizacija je prekonoćna na 50°C, sa 40 postotnim formamidom, 5 X SSC. Filteri se isperu na 45°C, 2 x SSC, 0.02 postotaka natrij-dodecilsulfata, suše se na zraku, i izlože se filmu za X-zrake na -70°C korištenjem sita za intenzifikaciju. Bacterial plates (15 cm diameter) containing several hundred plaques of recombinant M13 phage were seeded by plaque in situ hybridization (Benton et al., 1977, "Science" 196: 180-182) for both parental and mutant genotypes using appropriately labeled oligomers on special filter sets (about 106 cpm per filter). Hybridization is overnight at 50°C, with 40% formamide, 5X SSC. Filters were washed at 45°C, 2 x SSC, 0.02% sodium dodecyl sulfate, air dried, and exposed to X-ray film at -70°C using an intensifying screen.

Bit će potrebno varirati krutost postupka za hibridizaciju (mijenjanjem koncentracije SSC) u cilju razgrađivanja hibridizacije oligomera u mutantnu DNA nit (perfektan komplement) nasuprot hibridizaciji u polaznu DNA, svaki mutant će varirati po svojoj sposobnosti da hibiridizira zavisno od prirode i broja supstituiranih baza, izostavljenih ili umetnutih baza. Na primjer, detekcija mutacije u jednoj bazi zahtijevati će rigoroznije uvjete za diskriminaciju između mutantne i nemutirane roditeljske DNA kada je mutacija minorna, npr., izostavljanje kodona ili supstitucija 1-3 baze, i tada sonda za hibridizaciju treba biti manja od oligomera koji mutira. Zadatak testiranja izostavljanja u mutantu se olakšava korištenjem sonde koja sadrže ili koja čini izostavljenu sekvencu da se testira gubljenje sekvence. Ova sonda neće hibirdizirati u DNA iz izabrane plake i može se zaključiti da je nastalo željeno gubljenje ciljne sekvence. It will be necessary to vary the stiffness of the hybridization procedure (by changing the concentration of SSC) in order to degrade the oligomer hybridization to the mutant DNA strand (perfect complement) versus the hybridization to the starting DNA, each mutant will vary in its ability to hybridize depending on the nature and number of substituted bases, omitted or inserted bases. For example, single base mutation detection will require more rigorous conditions to discriminate between mutant and nonmutated parental DNA when the mutation is minor, eg, codon omission or 1-3 base substitution, and then the hybridization probe should be smaller than the mutating oligomer. The task of testing for omission in a mutant is facilitated by using probes containing or constituting the omitted sequence to test for sequence loss. This probe will not hybridize to DNA from the selected plaque and it can be concluded that the desired loss of the target sequence has occurred.

Plaka koja hibiridizira sa markiranim oligomerom se skupi i inokulira se u E. coli JM103. DNA sa jednom niti (ss) se pravi iz supernatnta a (ds) DNA sa dvostrukom niti se pravi iz stanične granule. ssDNA se koristi kao otisak za dideoksi sekvenciranje klona korištenjem M13 univerzalnog primjera ili komplementarnih sekvenci sintetskog oligomera lociranih 3' od mutirane regije DNA faktora nekroze tumora. Dideoksi sekvenciranje potvrđuje da regenerirana plaka sadrži mutantnu DNA. Takav, fag je označen M13 mp8/TNF mutant. The plaque that hybridizes with the labeled oligomer is collected and inoculated into E. coli JM103. Single-stranded DNA (ss) is made from the supernatant and double-stranded (ds) DNA is made from the cell pellet. The ssDNA is used as a footprint for dideoxy sequencing of clones using the M13 universal primer or complementary synthetic oligomer sequences located 3' of the mutated region of tumor necrosis factor DNA. Dideoxy sequencing confirms that the regenerated plaque contains mutant DNA. As such, the phage is labeled M13 mp8/TNF mutant.

M13 mp8/TNFmutant se digerira sa EcoRI i HindIII i fragment koji kodira za TNF se regenerira. pTrpXAPTTNF se digerira sa EcoRi i HindIII i regenerira se fragment vektora. Mutantni fragment se tada podvrgne ligaciji za fragment vektora i ligacijska smjesa se koristi sa transformiranje E. coli W3110, NL106 ili 294 (ATCC 31446). Mutantni TNF se regenerira postupkom iz Primjera 18 ili 19. Dopunske informacije koje se odnose na M13 mutagenezu osigurane su u U.K. patentnoj prijavi 2,130,219A. M13 mp8/TNFmutant is digested with EcoRI and HindIII and the TNF-coding fragment is regenerated. pTrpXAPTTNF is digested with EcoRi and HindIII and the vector fragment is regenerated. The mutant fragment is then ligated to the vector fragment and the ligation mixture is used to transform E. coli W3110, NL106 or 294 (ATCC 31446). Mutant TNF is regenerated by the procedure of Examples 18 or 19. Supplementary information relating to M13 mutagenesis is provided in U.K. patent application 2,130,219A.

Mutanti napravljeni prema ovom postupku podijeljeni su u tri klase: supstitiucije, izostavljanja i umetanja, i dalje se pod-dijele kao što je prikazano u slijedećoj Tabeli. Ako nije drugačije naznačeno mutanti su iz zrelog faktora nekroze tumora sa Sl. 10. Mutants made according to this procedure are divided into three classes: substitutions, deletions and insertions, further subdivided as shown in the following Table. Unless otherwise indicated, the mutants are from the mature tumor necrosis factor of FIG. 10.

[image] [image] [image] [image]

Od značaja su mutacije u kojima se mjesta za hidrolizu tripsinom na arg 2, arg 6 (vidi Primjere 20 i 21), arg 32 i arg 131 izostavljaju ili modificiraju tako da više nisu osjetljiva za tripsin. Ovo može produžiti polu-život faktora nekroze tumora in vivo dok smanjuje mogućnost fermentativnog prekidanja. arg 2 i arg 6 mjesta nisu kritična zato što je biološka aktivnost zadržana čak i pošto se regije u pitanju odvoje. Međutim, prekidanje na arg 32 i 131 mjestima vodi do gubljenja aktivnosti. Of importance are mutations in which the trypsin hydrolysis sites at arg 2, arg 6 (see Examples 20 and 21), arg 32 and arg 131 are omitted or modified so that they are no longer sensitive to trypsin. This may prolong the half-life of tumor necrosis factor in vivo while reducing the possibility of fermentative termination. the arg 2 and arg 6 sites are not critical because biological activity is retained even after the regions in question are separated. However, truncation at arg 32 and 131 sites leads to loss of activity.

Prema tome, arg 32 i/ili arg 131 se poželjno zamijene sa histidinil, ili, manje poželjno sa gln. Ovo odvaja ili smanjuje prionjljivost mjesta za enzim ali zadržava baznost bočnog niza. Također, arg 31 se zamjenjuje sa histidinil ili, manje poželjno, sa glutaminom iz istih razloga. Therefore, arg 32 and/or arg 131 are preferably replaced with histidinyl, or, less preferably with gln. This separates or reduces the accessibility of the site for the enzyme but retains the basicity of the side chain. Also, arg 31 is replaced with histidinyl or, less preferably, with glutamine for the same reasons.

Mjesta za hidrolizu enzimom se također umeću između fuzionih polipeptida i TNF sekvenci u cilju kreiranja mjesta za predodređeno oslobađanje zrelog ili mutantnog TNF, ili takva mjesta zamjenjuju ostatke unutar vodeće sekvence preTNF. Enzyme hydrolysis sites are also inserted between fusion polypeptides and TNF sequences to create sites for the intended release of mature or mutant TNF, or such sites replace residues within the preTNF leader sequence.

Supstitucija asn na asp 45 i izražavanje u stanici domaćina (npr. stanica kvasca ili sisavca) koja je sposobna za glikoziliranje očekuje proizvesti glikozilirani faktor nekroze tumora. Substitution of asn at asp 45 and expression in a host cell (eg, yeast or mammalian cell) capable of glycosylation is expected to produce glycosylated tumor necrosis factor.

Primjer 25 Example 25

Izražavanje faktora nekroze tumora u kvascu pod kontrolom ADHP promotora Expression of tumor necrosis factor in yeast under the control of the ADHP promoter

Plazmidi TrpXAPTNF se konstruira kao što je opisano u Primjeru 17 osim što se p20KLT ili ptrpETA (ili pBR322) prekine sa EcoRI i HindIII radije nego sa Xbal i HindIII i sintetski fragment B se napravi sa EcoRI kohezivnim terminusom radije nego sa EcoRI kohezivnim terminusom. Ligacijska smjesa se tada koristi za transformiranje E. coli ATCC 31446 i plazmid pTNFRI se identificira restrikcijskom analizom sa DNA koja sadrži sekvencu za kodiranje faktora nekroze tumora vezanu za EcoRI mjesta. Plazmid pTNFRI se izolira, digerira se sa EcoRI i regenerira se fragment T1 koji sadrži DNA faktora nekroze tumora. Plasmids TrpXAPTNF is constructed as described in Example 17 except that p20KLT or ptrpETA (or pBR322) is cut with EcoRI and HindIII rather than XbaI and HindIII and synthetic fragment B is made with an EcoRI cohesive terminus rather than an EcoRI cohesive terminus. The ligation mixture is then used to transform E. coli ATCC 31446 and plasmid pTNFRI is identified by restriction analysis with DNA containing the tumor necrosis factor coding sequence linked to EcoRI sites. Plasmid pTNFRI is isolated, digested with EcoRI and the T1 fragment containing tumor necrosis factor DNA is regenerated.

Plazmid pFRPn (EP 60,057A) se digerira sa EcoRI, tretira se sa alkalnom fosfatazom da se spriječi recirkulizacija, ligira se za fragment faktora nekroze tumora korištenjem T4 DNA ligaze i ligacijska smjesa se tada koristi za transformiranje E. coli ATCC 31446. Kolonije koje su rezistentne na ampicilin daju dvije serije plazmida koji imaju T-1 insert u suprotnim orijentacijama kao što je određeno restrikcijskom analizom na agaroznim gelovima za elektroforezu. Plazmidi se pročiste iz E. coli transformanata i koriste se za transformiranje kvasca koji ima trpl mutaciju (na primjer, tip kvasca RH218, neograničeni ATCC depozit No. 44076) za trp+ fenotip. Plazmidi su orijentirani tako da je polazni kodon segmenta T-1 lociran blizu fragmenta promotora alkohol dehidrogeneze za transformiranje kvasca radi ekspresije faktora nekroze tumora. Stabilnost plazmida u fermentacijama velikih razmjera poboljšava se korištenjem ekspresijskog plazmida koji sadrži porijeklo replikacije od 2 mikrona umjesto pFRPn kromozomnog porijekla replikacije (ars 1) i kompatibilni tip domaćina (J. Beggs, 1978, "Nature" 275: 104-109). Plasmid pFRPn (EP 60,057A) is digested with EcoRI, treated with alkaline phosphatase to prevent recirculation, ligated to a fragment of tumor necrosis factor using T4 DNA ligase and the ligation mixture is then used to transform E. coli ATCC 31446. Colonies which resistant to ampicillin yield two sets of plasmids having the T-1 insert in opposite orientations as determined by restriction analysis on agarose electrophoresis gels. Plasmids are purified from E. coli transformants and used to transform yeast harboring a trp1 mutation (for example, yeast strain RH218, unrestricted ATCC Deposit No. 44076) for a trp+ phenotype. The plasmids are oriented so that the start codon of the T-1 segment is located near the alcohol dehydrogenase promoter fragment for transforming yeast to express tumor necrosis factor. Plasmid stability in large-scale fermentations is improved by using an expression plasmid containing a 2 micron origin of replication instead of the pFRPn chromosomal origin of replication (ars 1) and a compatible host type (J. Beggs, 1978, "Nature" 275: 104-109).

Primjer 26 Example 26

Ekspresija faktora nekroze tumora u stanicama sisavaca Expression of tumor necrosis factor in mammalian cells

Plazmid pEHER (EP 117,060A) se digerira sa EcoRI, tretira se sa crijevnom alkalnom fosfatazom, izvrši se ligacija za fragment T-1 iz Primjera 25 i ligacijska smjesa se koristi za transformiranje E. coli ATCC 31446. Dva plazmida se izoliraju (označeni pEHERTNF I i pEHERTNF II) koji sadrže TNF DNA u suprotnim orijentacijama kao što je određeno restrikcijskom analizom na polikakrilamidnim gelovima. Ovi plazmidi se koriste za transfekciju i izbor CHO DHFR-DUX-B11, CHO i Ltk+ stanica. Plasmid pEHER (EP 117,060A) is digested with EcoRI, treated with intestinal alkaline phosphatase, ligated to fragment T-1 from Example 25 and the ligation mixture used to transform E. coli ATCC 31446. Two plasmids are isolated (designated pEHERTNF I and pEHERTNF II) containing TNF DNA in opposite orientations as determined by restriction analysis on polyacrylamide gels. These plasmids are used for transfection and selection of CHO DHFR-DUX-B11, CHO and Ltk+ cells.

Stanične kulture tkiva se transfekciraju mješanjem 1 µg pEHERTNF I ili pEHERTNF II kao što su napravljeni gore sa 10 µg nosive DNA štakora u volumenu od 250 µl, 0.25 M CaCl2, i zatim dodavanjem ukapavanjem 250 µl HEPES puferirane otopine soli (289 nM NaCl, 1.5 mM Na2PO4, 50 mM HEPES, pH 7.1). Nakon 30 minuta na sobnoj temperaturi, otopina se doda na stanice kulture tkiva koje rastu u plastičnim zdjelama od 60 mm za kulturu tkiva. Koriste se CHO 1, CHO DHFR-DUX-B11 i Ltk+ stanice. Zdjele sadrže 3 ml podloge za kulturu koje odgovaraju stanicama domaćina. Tissue cell cultures are transfected by mixing 1 µg of pEHERTNF I or pEHERTNF II as made above with 10 µg of carrier rat DNA in a volume of 250 µl, 0.25 M CaCl2, and then adding dropwise 250 µl of HEPES-buffered saline (289 nM NaCl, 1.5 mM Na2PO4, 50 mM HEPES, pH 7.1). After 30 min at room temperature, the solution is added to tissue culture cells growing in 60 mm plastic tissue culture dishes. CHO 1, CHO DHFR-DUX-B11 and Ltk+ cells are used. The dishes contain 3 ml of culture medium corresponding to the host cells.

Za CHO 1 i CHO DHFR-DUX-B11 stanice, podloga je Ham F-12 podloga (Gibco) dopunjena sa 10 postotaka seruma teleta, 100 µ/ml penicilina, 100 µg/ml streptomicina i 2 µmM L-glutamina. Za Ltk+ staničnu liniju podloga je Dulbecco modificirana Eagle podloga (DMEM) dopunjena kao gore. For CHO 1 and CHO DHFR-DUX-B11 cells, the medium was Ham F-12 medium (Gibco) supplemented with 10 percent calf serum, 100 µg/ml penicillin, 100 µg/ml streptomycin, and 2 µM L-glutamine. For the Ltk+ cell line, the medium was Dulbecco's modified Eagle's medium (DMEM) supplemented as above.

Nakon 3-16 sati, podloga se odvoji i stanice se isperu sa 20 postotaka glicerola u fosfatnoj puferiranoj otopini soli. Doda se svježa podloga na svaku ploču i stanice se inkubiraju kao prije još dva dana. After 3-16 hours, the medium is separated and the cells are washed with 20% glycerol in phosphate buffered saline. Fresh medium is added to each plate and the cells are incubated as before for another two days.

Izbor transfektiranih stanica domaćina se vrši tripsinizacijom stanica nakon 2 dana rasta (što obuhvaća tretiranje stanica sa eterilnim tripsinom 0.5 mg/ml koji sadrži 0.2 mg/ml EDTA) i dodavanjem oko 3x105 stanica na ploče za kulturu tkiva od 10 mm sa selektivnim podlogama. Selection of transfected host cells is performed by trypsinizing the cells after 2 days of growth (which includes treating the cells with ethereal trypsin 0.5 mg/ml containing 0.2 mg/ml EDTA) and adding about 3x105 cells to 10 mm tissue culture plates with selective media.

Za DHFR- podloga je formulacija (F-12 GIBCO) podloge koja nema glicin, hipoksantin i timidin (GHT- podloga). Za DHFR+ stanice domaćina, doda se metotrekasat (100-1000 nM) na normalnu podlogu za rast. Kontrole se vrše korištenjem uvjeta za transfekciju bez plazmida i sa plazmidom pFD-11 (EP 117,060A) koji sadrži normalan DHFR. Kolonije koje nastaju iz stanica koje sakupljaju i izražavaju DHFR plazmid se jasne za 1-2 tjedna. Transformanti se identificiraju i to oni koji izražavaju faktor nekroze tumora. For the DHFR- medium, there is a formulation (F-12 GIBCO) of the medium that does not contain glycine, hypoxanthine and thymidine (GHT- medium). For DHFR+ host cells, methotrexate (100-1000 nM) is added to normal growth medium. Controls are performed using transfection conditions without plasmid and with plasmid pFD-11 (EP 117,060A) containing normal DHFR. Colonies arising from cells that collect and express the DHFR plasmid are clear in 1-2 weeks. Transformants are identified and those that express tumor necrosis factor.

Claims (33)

1. Postupak pripreme faktora nekroze tumora iz smjese s drugim proteinima, naznačen time, da obuhvaća adsorpciju faktora nekroze tumora iz takve smjese na supstancu izabranu izmedu: (i) silikata, (ii) kontroliranog poroznog stakla, (iii) alkil sefaroze, (iv) čestica anionske izmjenjivačke smole jednolične veličine čestica, te zatim eluaciju faktora nekroze tumora.1. The procedure for preparing tumor necrosis factor from a mixture with other proteins, indicated by the fact that it includes the adsorption of tumor necrosis factor from such a mixture onto a substance selected from: (i) silicate, (ii) controlled porous glass, (iii) alkyl sepharose, (iv) particles of anion exchange resin of uniform particle size, and then elution of tumor necrosis factor. 2. Postupak prema zahtjevu 1, naznačen time, da je faktor nekroze tumora eluiran s kontroliranog poroznog stakla s etilen glikolom.2. The method according to claim 1, characterized in that the tumor necrosis factor is eluted from the controlled porous glass with ethylene glycol. 3. Postupak prema zahtjevu 1, naznačen time, da se koristi kvaterni amino supstituirani umreženi polistiren kao anionska izmjenjivačka smola.3. The method according to claim 1, characterized in that quaternary amino substituted cross-linked polystyrene is used as anion exchange resin. 4. Humani faktor nekroze tumora, naznačen time, da je (a) neglikoziran; (b) ima molekularnu težinu oko 17.000 određenu pomoću SDS-PAGE; (c) sposoban preferirano uništiti ili inhibirati rast stanica tumora u usporedbi s normalnim stanicama pod istim uvjetima; (d) potpuno homogen što je odredeno pomoću SDS-PAGE; ima specifičnu aktivnost veću od oko 10 miliona jedinica/mg proteina; te je pročišćen do stupnja dovoljnog za sekvenciranje intaktnog faktora nekroze tumora, ili za tripsin hidrolizu njegovih fragmenata pomoću sekvencijske Edman razgradnje na opremi za spinalno sekvenciranje pomoću hladnih odjeljivača te uporabom Polybrene® kao podloge u ' sekvencijskom dijelu; te (e) da obuhvaća: (i) redoslijed aminokiselina 1 do 157 prikazan na slici 10; ili (ii) redoslijed aminokiselina Glu Thr Pro Glu Gly Ala Glu Ala Lys Pro Trp Tyr Glu Pro; ili (iii) redoslijed aminokiselina ostataka 35 do 66 prikazan na slici 10; ili (iv) redoslijed aminokiselina ostataka 110 do 133 prikazan na slici 10; ili (v) redoslijed aminokiselina ostataka 1 do 6, 7 do 44, 45 do 82, 83 do 90 ili 99 do 157 prikazan na slici 10.4. Human tumor necrosis factor, characterized in that (a) non-glycosylated; (b) has a molecular weight of about 17,000 as determined by SDS-PAGE; (c) capable of preferentially killing or inhibiting the growth of tumor cells compared to normal cells under the same conditions; (d) completely homogeneous as determined by SDS-PAGE; has a specific activity greater than about 10 million units/mg of protein; and has been purified to a degree sufficient for sequencing of intact tumor necrosis factor, or for trypsin hydrolysis of its fragments using sequential Edman digestion on spinal sequencing equipment using cold separators and using Polybrene® as a substrate in the sequencing part; you (e) to include: (i) the sequence of amino acids 1 to 157 shown in Figure 10; or (ii) amino acid sequence Glu Thr Pro Glu Gly Ala Glu Ala Lys Pro Trp Tyr Glu Pro; or (iii) the amino acid sequence of residues 35 to 66 shown in Figure 10; or (iv) the amino acid sequence of residues 110 to 133 shown in Figure 10; or (v) the amino acid sequence of residues 1 to 6, 7 to 44, 45 to 82, 83 to 90 or 99 to 157 shown in Figure 10. 5. Faktor nekroze tumora prema zahtjevu 4, naznačen time, da je slobodan od ostalih citotoksičnih proteina.5. Tumor necrosis factor according to claim 4, characterized in that it is free from other cytotoxic proteins. 6. Faktor nekroze tumora prema zahtjevu 5, naznačen time, da je slobodan od proteina izabranih između limfotokisna, a-globulina, serin proteaza i interferona.6. Tumor necrosis factor according to claim 5, characterized by the fact that it is free of proteins selected from lymphotoxicity, α-globulin, serine proteases and interferon. 7. Faktor nekroze tumora sposoban preferirano uništiti ili inhibirati rast stanica tumora u usporedbi s normalnim stanicama pod istim uvjetima, naznačen time, da se sastoji uglavnom od redoslijeda aminokiselina 1 do 157 prikazanog na slici 10; eventualno s N-terminalnim metionil ostatkom; ili od varijanti (osim zečji TNF) spomenutog redoslijeda u kojem su zadržani ostatak Val1 i/ili Agr2.7. A tumor necrosis factor capable of preferentially destroying or inhibiting the growth of tumor cells compared to normal cells under the same conditions, characterized in that it consists mainly of the sequence of amino acids 1 to 157 shown in Figure 10; possibly with an N-terminal methionyl residue; or from variants (except rabbit TNF) of the mentioned order in which the residue of Val1 and/or Agr2 is retained. 8. Faktor nekroze tumora prema zahtjevu 7, naznačen time, da je aminokiselinski ostatak supstituiran, izbrisan ili umetnut u redoslijed aminokiseline 1 do 157 prikazan na slici 10.8. Tumor necrosis factor according to claim 7, characterized in that the amino acid residue is substituted, deleted or inserted in the sequence of amino acids 1 to 157 shown in Figure 10. 9. Faktor nekroze tumora sposoban preferirano uništiti ili inhibirati rast stanica tumora u usporedbi s normalnim stanicama pod istim uvjetima, naznačen time, da obuhvaća varijantu redoslijeda aminokiseline 1 do 157 prikazanog na slici 10 (osim zečji TNF) u kojem je redoslijed aminokiselina supstituiran, izbrisan ili umetnut na strani na kojoj su aminokiselinski ostaci 35 do 66, 110 do 133 ili 150 do 157 prikazani na slici 10.9. Tumor necrosis factor capable of preferentially destroying or inhibiting the growth of tumor cells compared to normal cells under the same conditions, characterized in that it comprises a variant of the amino acid sequence 1 to 157 shown in Figure 10 (except rabbit TNF) in which the amino acid sequence is substituted, deleted or inserted on the side where amino acid residues 35 to 66, 110 to 133 or 150 to 157 are shown in Figure 10. 10. Faktor nekroze tumora sposoban preferirano uništiti ili inhibirati rast stanica tumora u usporedbi s normalnim stanicama pod istim uvjetima, naznačen time, da obuhvaća varijantu redoslijeda aminokiseline 1 do 157 prikazanog na slici 10 (osim zečji TNF) u kojem je redoslijed aminokiselina supstituiran, izbrisan ili umetnut na strani na kojoj su aminokiselinski ostaci 67 do 109 prikazani na slici 10.10. Tumor necrosis factor capable of preferentially destroying or inhibiting the growth of tumor cells compared to normal cells under the same conditions, characterized in that it comprises a variant of the sequence of amino acids 1 to 157 shown in Figure 10 (except rabbit TNF) in which the sequence of amino acids is substituted, deleted or inserted on the side where amino acid residues 67 to 109 are shown in Figure 10. 11. Faktor nekroze tumora prema bilo kojem zahtjevu 8, 9 i 10, naznačen time, da je supstitucija ostatka iz klase neutralnih, kiselih ili bazičnih aminokiselinskih ostataka za ostatak aminokiselinskog redoslijeda faktora nekroze tumora koji nije član klase kojoj pripada supstituirana aminokiselina.11. Tumor necrosis factor according to any claim 8, 9 and 10, characterized in that the substitution of a residue from the class of neutral, acidic or basic amino acid residues is for a residue of the amino acid sequence of the tumor necrosis factor that is not a member of the class to which the substituted amino acid belongs. 12. Faktor nekroze tumora prema bilo kojem zahtjevu 8, 9 i 10 , naznačen time, da se supstitucijom ostatka koji ima sterični masivni bočni lanac zamjenjuje ostatak koji nema takav lanac.12. Tumor necrosis factor according to any one of claims 8, 9 and 10, characterized in that by substituting a residue that has a steric massive side chain, a residue that does not have such a chain is replaced. 13. Faktor nekroze tumora prema 12, naznačen time, da je ostatak koji nema sterični masivni bočni lanac glicin ili serin.13. The tumor necrosis factor according to 12, characterized in that the residue that does not have a sterically bulky side chain is glycine or serine. 14. Faktor nekroze tumora prema 12 ili 13, naznačen time, da je ostatak koji ima takav bočni lanac fenilalanin ili triptofan.14. Tumor necrosis factor according to 12 or 13, characterized in that the residue having such a side chain is phenylalanine or tryptophan. 15. Faktor nekroze tumora prema bilo kojem zahtjevu 8, 9 i 10, naznačen time, da je lizin ili arginin ostatak izostavljen ili supstituiran s aminokiselinskim ostatkom koji nije lizin ili arginin.15. Tumor necrosis factor according to any of claims 8, 9 and 10, characterized in that the lysine or arginine residue is omitted or substituted with an amino acid residue other than lysine or arginine. 16. Faktor nekroze tumora prema bilo kojem zahtjevu od 4 do 15, naznačen time, da je u smjesi s fiziološki prihvatljivim puferom, aminokiselinskom ili non-ionskom površinski aktivnom tvari ili njihovoj smjesi.16. Tumor necrosis factor according to any claim from 4 to 15, characterized in that it is in a mixture with a physiologically acceptable buffer, amino acid or non-ionic surfactant or their mixture. 17. Faktor nekroze tumora prema zahtjevu 16, naznačen time, da je liofiliziran.17. Tumor necrosis factor according to claim 16, characterized in that it is lyophilized. 18. DNA, naznačena time, da kodira faktor nekroze tumora prema bilo kojem zahtjevu od 7 do 15.18. The DNA encoding a tumor necrosis factor according to any one of claims 7 to 15. 19. DNA prema zahtjevu 18, naznačena time, da je DNA sintetizirana.19. DNA according to claim 18, characterized in that the DNA is synthesized. 20. DNA prema zahtjevu 18 ili 19, naznačena time, da je replicirajući vektor.20. DNA according to claim 18 or 19, characterized in that it is a replicating vector. 21. DNA prema zahtjevu 20, naznačena time , da je vektor plazmid ili virus.21. DNA according to claim 20, characterized in that the vector is a plasmid or a virus. 22. Stanica, naznačena time, da je transformirana pomoću DNA prema zahtjevu 20 ili 21.22. A cell, characterized in that it has been transformed by DNA according to claim 20 or 21. 23. Postupak, naznačen time, da obuhvaća kultiviranje stanice transformirane pomoću DNA prema zahtjevu 18, tako da se postigne izlučivanje spomenute DNA omogučavajući akumulaciju faktora nekroze tumora u kulturi i njegovo dobivanje iz kulture.23. The method, indicated by the fact that it comprises the cultivation of a cell transformed by DNA according to claim 18, so that the secretion of said DNA is achieved, enabling the accumulation of tumor necrosis factor in the culture and its recovery from the culture. 24. Pripravak, naznačen time, da obuhvaća faktor nekroze tumora prema bilo kojem zahtjevu od 4 do 15 i komponentu iz ne-humanih stanica koja je fiziološki prihvatljiva za primjenu pacijentima.24. A preparation characterized in that it comprises a tumor necrosis factor according to any of claims 4 to 15 and a component from non-human cells that is physiologically acceptable for administration to patients. 25. Pripravak prema zahtjevu 24, naznačen time, da je spomenuta komponenta prokariotički protein.25. The preparation according to claim 24, characterized in that said component is a prokaryotic protein. 26. Pripravak, naznačen time, da obuhvaća stanice koje sadrže heterolog faktora nekroze tumora prema bilo kojem zahtjevu od 7 do 15.26. A preparation comprising cells containing a heterologous tumor necrosis factor according to any of claims 7 to 15. 27. Pripravak prema zahtjevu 26, naznačen time, da su stanice prokariotične ili niže eukariotične.27. The preparation according to claim 26, characterized in that the cells are prokaryotic or lower eukaryotic. 28. Pripravak prikladan za liječenje tumora, naznačen time, da obuhvaća faktor nekroze tumora prema bilo kojem zahtjevu od 4 do 17 ili onaj dobiven postupkom prema bilo kojem zahtjevu od 1 do 3, te interferon.28. A preparation suitable for the treatment of tumors, characterized in that it comprises tumor necrosis factor according to any claim from 4 to 17 or that obtained by the process according to any claim from 1 to 3, and interferon. 29. Pripravak prema zahtjevu 28 , naznačen time, da je oslobođen ostalih citotoksičnih peptida.29. The preparation according to claim 28, characterized in that it is free of other cytotoxic peptides. 30. Pripravak prema zahtjevu 28 ili 29, naznačen time, da je oslobođen ostalih proteina plazme.30. The preparation according to claim 28 or 29, characterized in that it is free from other plasma proteins. 31. Pripravak oslobođen stanica i prikladan za liječenje tumora, naznačen time, da obuhvaća faktor nekroze tumora prema bilo kojem zahtjevu od 4 do 17 ili onaj dobiven postupkom prema bilo kojem zahtjevu od 1 do 3, te interferon, a pripravak je oslobođen limfotoksina.31. A cell-free preparation suitable for tumor treatment, characterized in that it comprises a tumor necrosis factor according to any claim from 4 to 17 or one obtained by a process according to any claim from 1 to 3, and interferon, and the preparation is free of lymphotoxin. 32. Pripravak prema bilo kojem zahtjevu od 28 do 31, naznačen time, da je interferon gama-interferon.32. The preparation according to any one of claims 28 to 31, characterized in that the interferon is gamma-interferon. 33. Pripravak prema bilo kojem zahtjevu od 28 do 32, naznačen time, da je liofiliziran.33. The preparation according to any of claims 28 to 32, characterized in that it is lyophilized.
HRP-1132/85A 1984-07-05 1995-03-28 Tumor necrosis factor HRP950156B1 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US62806084A 1984-07-05 1984-07-05
US62805984A 1984-07-05 1984-07-05
US62795984A 1984-07-05 1984-07-05
US67715684A 1984-12-03 1984-12-03
US67745484A 1984-12-03 1984-12-03
US06/677,257 US4650674A (en) 1984-07-05 1984-12-03 Synergistic cytotoxic composition
YU113285A YU47968B (en) 1984-07-05 1985-07-08 PROCEDURE FOR OBTAINING TUMOR NECESSITY FACTORS

Publications (2)

Publication Number Publication Date
HRP950156A2 true HRP950156A2 (en) 1997-08-31
HRP950156B1 HRP950156B1 (en) 1999-06-30

Family

ID=27571364

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP-1132/85A HRP950156B1 (en) 1984-07-05 1995-03-28 Tumor necrosis factor

Country Status (4)

Country Link
KR (1) KR930010767B1 (en)
HR (1) HRP950156B1 (en)
IL (1) IL105271A0 (en)
SI (1) SI8511132B (en)

Also Published As

Publication number Publication date
SI8511132A (en) 1996-10-31
SI8511132B (en) 1998-10-31
IL105271A0 (en) 1993-08-18
KR930010767B1 (en) 1993-11-10
KR860001187A (en) 1986-02-24
HRP950156B1 (en) 1999-06-30

Similar Documents

Publication Publication Date Title
US4650674A (en) Synergistic cytotoxic composition
EP0168214B1 (en) Tumor necrosis factor, methods for its preparation, compositions containing it, DNA encoding it and assay method using such DNA
FI93025B (en) Recombinant Lymphotoxin
FI120042B (en) METHOD FOR PREPARING FUSION NUCLEAR RECEPTOR FUSION PROTEINS AND POLYNUCleotides AND VECTORS Encoding THEM
EP2017341A2 (en) Apo-2 ligand
FI103987B (en) Interleukin-7
AU709054B2 (en) Compositions for the inhibition of TNF formation and uses thereof
US6686455B1 (en) Tumor necrosis factor
HRP950156A2 (en) Tumor necrosis factor
KR100272867B1 (en) Protein having tpo activity
PT80758B (en) METHOD FOR THE PREPARATION OF TUMOR NECROSIS FACTOR
JPH03277284A (en) Gene and production thereof
NZ226980A (en) Lymphotoxin-neutralising antibody and its use in separating out lymphotoxin from a composition
IL104297A (en) Lymphotoxin nucleic acid encoding it vectors incorporating the nucleic acid and cells transformed therewith and methods of obtaining lymphotoxin

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
B1PR Patent granted
ODRP Renewal fee for the maintenance of a patent

Payment date: 20040609

Year of fee payment: 20

PB20 Patent expired after termination of 20 years

Effective date: 20050709