HRP940733A2 - Process for the preparation of aldehydes - Google Patents

Process for the preparation of aldehydes Download PDF

Info

Publication number
HRP940733A2
HRP940733A2 HRP-1843/83A HRP940733A HRP940733A2 HR P940733 A2 HRP940733 A2 HR P940733A2 HR P940733 A HRP940733 A HR P940733A HR P940733 A2 HRP940733 A2 HR P940733A2
Authority
HR
Croatia
Prior art keywords
reaction
phase
reactor
aqueous
gaseous
Prior art date
Application number
HRP-1843/83A
Other languages
Croatian (hr)
Inventor
Boy Cornils
Josef Hibbel
Werner Konkol
Bernhard Lieder
Joachim Muck
Volkmar Schmidt
Ernst Wiebus
Original Assignee
Hoechst Ag
Ruhrchemie Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19823234701 external-priority patent/DE3234701A1/en
Application filed by Hoechst Ag, Ruhrchemie Ag filed Critical Hoechst Ag
Publication of HRP940733A2 publication Critical patent/HRP940733A2/en

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

Područje tehnike u koju spada izum The technical field to which the invention belongs

Izum spada u područje organske kemijske sinteze i odnosi se na izradu aldehida katalitičkim putem. The invention belongs to the field of organic chemical synthesis and relates to the production of aldehydes by catalytic means.

Tehnički problem Technical problem

Tehnički problem je kako izraditi aldehide hidroformiliranjem olefina u prisustvu u vodi topivih rodijevih kompleksnih katalizatora. The technical problem is how to make aldehydes by hydroformylation of olefins in the presence of water-soluble rhodium complex catalysts.

Stanje tehnike State of the art

Poznato je da se reakcijom olefina sa sinteznim plinom, tj. smjesom ugljičnog monoksida i vodika izrađuju alkoholi i aldehidi. Reakcija se katalizira hidridometalnim karbonilima, naročito onim metala 8. grupe periodnog sustava. Pored kobalta, koji se kao katalizatorski metal često koristi u tehnici, sve veće značenje dobiva rodij. U usporedbi s kobaltom, rodij kao sastojak katalizatora omogućuje izvođenje reakcije kod niskog tlaka, te se osim toga stvaraju prvenstveno n-aldehidi i samo u podređenoj mjeri izo-aldehidi. Osim toga je također moguća sporedna reakcija hidriranja olefina u zasićene ugljikovodike, primjenom rodijevih katalizatora, znatno niža nego li kod primjene kobaltnih katalizatora. It is known that the reaction of olefins with synthesis gas, i.e. a mixture of carbon monoxide and hydrogen, produces alcohols and aldehydes. The reaction is catalyzed by hydridometal carbonyls, especially those of metals of the 8th group of the periodic table. In addition to cobalt, which is often used as a catalyst metal in technology, rhodium is becoming increasingly important. Compared to cobalt, rhodium as a catalyst component enables the reaction to be carried out at low pressure, and in addition, n-aldehydes are formed primarily and iso-aldehydes only to a lesser extent. In addition, the side reaction of hydrogenation of olefins to saturated hydrocarbons is also possible, using rhodium catalysts, which is significantly lower than when using cobalt catalysts.

Kod postupaka uvedenih u tehniku rodijevi katalizatori se upotrebljavaju u obliku hidridokarbonila koji sadrže dodatne ligande. Naročito su se dobro pokazali kao ligandi tercijarni fosfini ili fosfiti. Njihova primjena omogućuje da se reakcijski tlak snizi na vrijednost ispod 30000 kPa. In the procedures introduced in the technique, rhodium catalysts are used in the form of hydridocarbonyl containing additional ligands. Tertiary phosphines or phosphites have proven particularly good as ligands. Their application allows the reaction pressure to be lowered to a value below 30,000 kPa.

Kao nedostatak ovog postupka se pokazalo odvajanje reakcijskih proizvoda od katalizatora homogeno otopljenih u reakcijskom proizvodu. Uz to se proizvod reakcije destilira iz reakcijske smjese. Ali, u praksi se na taj način može ići samo kod hidroformiliranja nižih olefina do približno pentena. Osim toga pokazalo se da se ovim termičkim opterećenjem gubi znatna količina katalizatora zbog raspadanja kompleksnih spojeva rodija. Separation of the reaction products from the catalyst homogeneously dissolved in the reaction product proved to be a disadvantage of this procedure. In addition, the reaction product is distilled from the reaction mixture. But, in practice, this method can only be used for the hydroformylation of lower olefins up to approximately penten. In addition, it was shown that with this thermal load, a considerable amount of catalyst is lost due to the decomposition of rhodium complex compounds.

Opisani nedostaci izbjegavaju se primjenom katalizatorskih sustava koji su topivi u vodi. Takovi katalizatori su npr. opisani u DE-PS 26 27 354. Topivost kompleksnih spojeva rodija postiže se primjenom trisulfoniranih triarilfosfina kao sastojka kompleksa. Odvajanje katalizatora od reakcijskog proizvoda poslije hidroformiliranja vrši se u ovom slučaju jednostavno odvajanjem vodene i organske faze tj. bez potrebnog dodatnog termičkog opterećenja za destiliranje reakcijskih proizvoda reakcijske smjese. Svakako podaci se ograničavaju u navedenome DE-PS na diskontinuirani postupak u autoklavima, koji nije pogodan za ekonomično korištenje. Prema jednom drugom postupku postiže se topivost katalizatorskog sustava u vodi primjenom jednom ili višestruko karboksiliranih arilinskih liganada. The described disadvantages are avoided by using catalyst systems that are soluble in water. Such catalysts are, for example, described in DE-PS 26 27 354. Solubility of complex rhodium compounds is achieved by using trisulfonated triarylphosphines as a component of the complex. Separation of the catalyst from the reaction product after hydroformylation is done in this case simply by separating the aqueous and organic phases, i.e. without the necessary additional thermal load for distilling the reaction products of the reaction mixture. In any case, the data in the mentioned DE-PS is limited to the discontinuous process in autoclaves, which is not suitable for economic use. According to another method, the solubility of the catalyst system in water is achieved by using single or multiple carboxylated aryline ligands.

Dakle postojao je zadatak razvijanja postupka za izradu aldehida prethodno navedene vrste koji se može uspješno tehnički izvoditi. So, there was a task of developing a procedure for the production of aldehydes of the aforementioned type that can be successfully carried out technically.

Opis rješenja tehničkog problema s primjerima izvođenja Description of the solution to the technical problem with implementation examples

Ovaj izum se odnosi na kontinuirani postupak za izradu aldehida reakcijom olefina s ugljičnim monoksidom i vodikom u prisustvu vode i u vodi topivih rodij-fosfin-kompleksnih spojeva kod povišene temperature i tlakovima od 100 do 30000 kPa. Naznačen je time, da se reaktanti dobro izmiješaju i dovedu do reagiranja na temperaturama od 90 do 150°C, kod čega se udio plinovitih sastojaka u tekućoj fazi namjesti na 5 do 30% vol. računato na miješanu fazu, volumenski odnos vodene prema organskoj fazi iznosi 1:1 do 100:1 i prvo se odvajaju tekuća faza i plinovita faza, zatim tekuća faza u vodene i organske udjele uvijek bez prethodnog hlađenja i odvođenja reakcijske topline. This invention relates to a continuous process for the production of aldehydes by the reaction of olefins with carbon monoxide and hydrogen in the presence of water and water-soluble rhodium-phosphine complex compounds at elevated temperatures and pressures of 100 to 30,000 kPa. It is indicated that the reactants are mixed well and brought to react at temperatures from 90 to 150°C, in which the proportion of gaseous ingredients in the liquid phase is adjusted to 5 to 30% vol. calculated on the mixed phase, the volume ratio of water to organic phase is 1:1 to 100:1 and first the liquid phase and gaseous phase are separated, then the liquid phase into aqueous and organic parts, always without prior cooling and removal of reaction heat.

Novi način rada ne osigurava samo da se katalizatorski sustav odvaja pod uvjetima koji su blagi i upotrebljava ponovno u procesu, već dozvoljava također i izvođenje reakcije pod tehnički i ekonomično optimalnim uvjetima. Poseban značaj se pripisuje činjenici da postupak prema izumu omogućava na jednostavan način dobivanje reakcione topline, ne utječući nepovoljno na vijek trajanja katalizatora. The new mode of operation not only ensures that the catalyst system is separated under conditions that are mild and reused in the process, but also allows the reaction to be carried out under technically and economically optimal conditions. Special importance is attributed to the fact that the process according to the invention enables obtaining reaction heat in a simple way, without adversely affecting the service life of the catalyst.

Odvođenje reakcijske topline može se vršiti na poznati način pomoću vode ili vodene pare. Posebno se dobro pokazalo da se reakcijska toplina neposredno prenese bez posrednika pomoću medija na proizvode hidroformiliranja, da bi se isparili i uz primjenu reakcijske topline destilacijski pročistili. The heat of reaction can be removed in a known manner using water or steam. It has proven particularly well that the reaction heat is directly transferred without an intermediary by means of a medium to the hydroformylation products, so that they evaporate and with the application of the reaction heat are purified by distillation.

Način rada prema izumu je naročito povoljan za prevođenje olefina s 2 do 15 ugljikovih atoma u aldehide odnosno alkohole bogate ugljikovim atomima. The method of operation according to the invention is particularly favorable for converting olefins with 2 to 15 carbon atoms into aldehydes or alcohols rich in carbon atoms.

Reaktanti tj. olefin i sintezni plin se u reaktor dovode zajedno ili odvojeno. Povoljno je da se reaktanti ugriju prvenstveno na temperaturu kod koje se odvija reakcija. Pokazalo se povoljno da se grijanje obavi s otpadnom toplinom iz procesa, npr. toplinom kondenziranja reakcijskih proizvoda u toku destilacijskog pročišćavanja. The reactants, i.e. olefin and synthesis gas, are fed into the reactor together or separately. It is advantageous to heat the reactants primarily to the temperature at which the reaction takes place. It turned out to be advantageous to do the heating with waste heat from the process, for example, the heat of condensation of reaction products during distillation purification.

Reakcija polaznih materija u reaktoru vrši se na temperaturama od 90 do 150°C. Otpadanjem destilacionog odstranjivanja reaktanat otpada i dodatno termičko opterećenje te se katalizator u trajnom radu jedva deaktivira. Neznatna oštećenja katalizatora se nalaze u ekonomski podnošljivim granicama. The reaction of the starting materials in the reactor is carried out at temperatures from 90 to 150°C. By eliminating the distillation removal, the reactant and the additional thermal load are eliminated, and the catalyst is barely deactivated in continuous operation. Minor damage to the catalyst is within economically tolerable limits.

Reakcija reakcijskih partnera u reaktoru obavlja se u sustavu koji se sastoji od tekuće i plinovite faze. Kod toga se tekuća faza vodene otopine katalizatora sastoji od dvije komponente koje nisu jedna u drugoj topive ili su vrlo malo topive, u slučaju tekućeg olefina i tekućeg organskog proizvoda, koji može još sadržavati organsko otapalo. Za odvijanje reakcije potrebno je da je vodena faza zasićena plinovitim reaktantima. Da bi se to postiglo potrebno je osigurati veliku kontaktnu površinu između tekuće faze, koja se sastoji od vodenih i organskih komponenata i plinovite faze, tako da se udio plinovitih sastojaka u tekućoj fazi podesi na 5 do 30% volumena računato na miješanu fazu. Ovaj uvjet postiže se na nekoliko načina. Prema obliku izvođenja izuma koji se pokazao povoljan, dovode se plinovite polazne materije, tj. olefin i sintezni plin sadržaju reaktora koji se intenzivno miješa. Prema drugoj varijanti postupka dovode se plinoviti reakcijski partneri tekućem sadržaju reaktora preko odgovarajućih uređaja za raspoređivanje, Povoljni su na primjer podovi i plaštevi u obliku sita. Također je moguće da se međusobno kombinira miješanje i raspodjela plinovitih reakcijskih partnera, na primjer primjenom mješača za propuhivanje plina. The reaction of the reaction partners in the reactor is carried out in a system consisting of a liquid and gaseous phase. In this case, the liquid phase of the aqueous catalyst solution consists of two components that are not soluble in each other or are very slightly soluble, in the case of a liquid olefin and a liquid organic product, which may also contain an organic solvent. For the reaction to take place, it is necessary that the aqueous phase is saturated with gaseous reactants. In order to achieve this, it is necessary to ensure a large contact surface between the liquid phase, which consists of aqueous and organic components, and the gaseous phase, so that the proportion of gaseous components in the liquid phase is adjusted to 5 to 30% of the volume calculated on the mixed phase. This condition is achieved in several ways. According to the form of implementation of the invention that has proven to be advantageous, gaseous starting materials, i.e. olefin and synthesis gas, are supplied to the content of the reactor, which is intensively mixed. According to the second variant of the procedure, gaseous reaction partners are supplied to the liquid contents of the reactor via appropriate distribution devices. For example, floors and mantles in the form of sieves are advantageous. It is also possible to combine the mixing and distribution of the gaseous reaction partners, for example by using a gas blowing mixer.

Vrlo bitan aspekt ovog izuma je u tome što se udio organske faze održava malim u reakcijskoj smjesi. Naime iznenađujuće je da organska faza ne doprinosi topivosti reaktanata u vodenoj fazi. Time se izbjegava da reakcijski proizvod ulazi u neželjene sporedne reakcije koje se ne mogu isključiti kod porasta vremena zadržavanja proizvoda u reaktoru. A very important aspect of this invention is that the proportion of the organic phase is kept small in the reaction mixture. Namely, it is surprising that the organic phase does not contribute to the solubility of the reactants in the aqueous phase. This avoids that the reaction product enters into unwanted side reactions that cannot be ruled out when the retention time of the product in the reactor increases.

Prema tome, prema izumu, odnos volumena vodene prema organskoj fazi iznosi 1:1 do 100:1, prvenstveno 10:1 do 100:1. Za podešavanje navedenog volumenskog odnosa postoje različiti putevi. Izvođenja novog načina rada koji je podoban je na taj način da jedan dio reakcijske smjese odvojimo iz reaktora i podvrgnemo odvajanju faza, te poslije vraćanja u reaktor postignemo željeni volumenski odnos. Therefore, according to the invention, the volume ratio of aqueous to organic phase is 1:1 to 100:1, preferably 10:1 to 100:1. There are different ways to adjust the specified volume ratio. The implementation of a new mode of operation that is suitable is to separate a part of the reaction mixture from the reactor and subject it to phase separation, and after returning to the reactor to achieve the desired volume ratio.

Odvajanje faza možemo prema drugom obliku izvođenja izuma obaviti i unutar reaktora u zoni smirivanja. According to another embodiment of the invention, phase separation can also be done inside the reactor in the settling zone.

Prethodno opisano odvajanje faza vrši se prema novom postupku u svakom slučaju bez prethodnog hlađenja reakcijske smjese. Time postižemo da se plinoviti olefini u tekućim sastojcima reakcijske smjese pod datim .uvjetima otapaju samo u malim količinama i vrlo malo iznose s reakcijskim proizvodom iz reaktora. The previously described phase separation is carried out according to the new procedure in each case without prior cooling of the reaction mixture. In this way, we achieve that the gaseous olefins in the liquid components of the reaction mixture dissolve only in small amounts under the given conditions and are very little with the reaction product from the reactor.

Sintezni plin koji se primjenjuje za hidroformiliranje sadrži ugljični monoksid i vodik najpovoljnije u volumenskom odnosu 1:1. Prema potrebi može se taj odnos mijenjati ako to daje određene efekte kao na primjer povećanje brzine reakcije. The synthesis gas used for hydroformylation contains carbon monoxide and hydrogen, preferably in a volume ratio of 1:1. If necessary, this relationship can be changed if it gives certain effects, such as an increase in the reaction rate.

Kao katalizatori upotrebljavaju se kompleksni spojevi rodija koji uz ugljični monoksid i vodik sadrže sulfonirane i karboksilirane fosfine. Takovi fosfini se dobivaju naročito od triarilfosfina kod čega se pod aril ostatkom smatra prvenstveno fenil ostatak i naftil ostatak. Nije potrebno da sva tri aril ostatka nose grupe sulfonske kiseline ili karboksilne grupe. Pokazalo se da već jedna sulfo grupa ili karboksilna grupa u molekuli fosfina kompleksnog spoja daje dovoljnu topivost u vodi. Prethodno izrađen katalizator se može dodati reakcijskoj smjesi. Moguće ga je također izraditi in situ. Obično se dodaje rodij u količini od 50 do 800 ppm računato na vodenu katalizatorsku otopinu. Sulfonirani ili karboksilirani triarilfosfin mora biti prisutan u suvišku računato na rodij kompleks. Posebno dobro se pokazalo da se doda po gram atomu rodija 10 do 100 g molekula sulfoniranog karboksiliranog fosfina. Complex rhodium compounds are used as catalysts, which, in addition to carbon monoxide and hydrogen, contain sulfonated and carboxylated phosphines. Such phosphines are obtained in particular from triarylphosphines, where the aryl residue is considered to be primarily a phenyl residue and a naphthyl residue. It is not necessary that all three aryl radicals bear sulfonic acid groups or carboxyl groups. It has been shown that even one sulfo group or carboxyl group in the phosphine molecule of the complex compound provides sufficient solubility in water. A previously prepared catalyst can be added to the reaction mixture. It can also be made in situ. Rhodium is usually added in an amount of 50 to 800 ppm based on the aqueous catalyst solution. The sulfonated or carboxylated triarylphosphine must be present in excess of the rhodium complex. It has proven particularly good to add 10 to 100 g of sulfonated carboxylated phosphine molecules per gram of rhodium atom.

Reakcijski pritisci se kreću u području od 100 do 30000 kPa ugljičnog monoksida i vodika. Reaction pressures range from 100 to 30,000 kPa of carbon monoxide and hydrogen.

Izvođenje reakcije prema postupku iz izuma shematski prikazuje slika 1. The execution of the reaction according to the process of the invention is shown schematically in Figure 1.

U reaktor 1 se stavi u vodi otopljen katalizatorski sustav. Olefin i sintezni plin se u reaktor 1 dovode vodovima 2 i reagiraju uz dobro miješanje. Preko nastavka 3 reaktora koji je uronjen u smjesi s vodenom katalizatorskom otopinom, nereagirani sintezni plin i olefin napuštaju reakcijski proizvod. U posudi 4 za odvajanje plinskih faza (u biti sintezni plin, olefin i zasićeni ugljikovodik dograđen iz olefina) odvaja se od tekućih proizvoda i preko cirkulacionog kompresora 5 ponovno vraća u reaktor. Dio količina cirkulacionog plina se oslobodi kondenzacijom u hladnjaku 6 od reakcijskih proizvoda i preda sistemu za otpadne plinove. Vrela tekućina koja se odvaja u posudi 4 za odvajanje bez prethodnog hlađenja dovodi se u odvajač faza 7. Tu se vrlo lako odvaja sirovi organski proizvod od vodene katalizatorske faze. A catalyst system dissolved in water is placed in reactor 1. Olefin and synthesis gas are fed into reactor 1 through lines 2 and reacted with good mixing. Unreacted synthesis gas and olefin leave the reaction product through the extension 3 of the reactor, which is immersed in a mixture with an aqueous catalyst solution. In vessel 4 for separation of gas phases (essentially synthesis gas, olefin and saturated hydrocarbon added from olefin) it is separated from the liquid products and returned to the reactor via circulation compressor 5. Part of the amount of circulating gas is freed from the reaction products by condensation in the cooler 6 and delivered to the waste gas system. The hot liquid that is separated in the separation vessel 4 without prior cooling is fed to the phase separator 7. There, the crude organic product is very easily separated from the aqueous catalyst phase.

Nehlađenjem organske faze prije odvajanja nereagiranih reaktanata znatno se olakšava potrebno ponovno cirkuliranje plinovitih olefina kroz kolonu za ispiranje 9. U vrelom organskom reakcijskom proizvodu (sirovom aldehidu) njegova otopivost bitno manja nego u ohlađenom reakcijskom proizvodu. Dok se organski reakcijski proizvod dovodi pomoću pumpe 8 u kolonu za ispiranje 9, pumpa 10 prebacuje natrag vodenu katalizatorsku fazu u reaktor 1 kod čega se u izmjenjivaču topline 11 toplina egzotermne reakcije predaje uz stvaranje procesne pare. S ohlađenom katalizatorskom fazom dovodi se voda reaktoru preko voda 12, kako bi se nadoknadilo odgovarajuće iznošenje vode preko otpadnog plina i preko okso proizvoda. Vreli okso proizvod koji struji u kolonu za ispiranje 9 vodi se u suprotnom smjeru od dijela količine sinteznog plina koji dolazi u kolonu preko voda 13. Sintezni plin se kod toga opterećuje olefinom otopljenim u okso proizvodu. S povišenom temperaturom se sintezni plin dovodi u reaktor 1. Daljnji djelomični tok sinteznog plina se zagrijava pomoću procesne topline u izmjenjivaču topline 15. Također se i svježi olefin prije ulaska u reaktor zagrijava i isparava pomoću otpadne topline destilacije aldehida u izmjenjivaču topline 14, dok se okso proizvod iz kolone za ispiranje 9 neohlađen dovodi direktno u destilaciju. Puferni spremnik služi samo u slučaju smetnje kod međuskladištenja proizvoda. By not cooling the organic phase before separating the unreacted reactants, the necessary recirculation of gaseous olefins through the washing column 9 is greatly facilitated. In the hot organic reaction product (crude aldehyde), its solubility is significantly lower than in the cooled reaction product. While the organic reaction product is supplied by pump 8 to the washing column 9, pump 10 transfers the aqueous catalyst phase back to reactor 1, where the heat of the exothermic reaction is transferred in the heat exchanger 11 with the generation of process steam. With the cooled catalyst phase, water is supplied to the reactor via line 12, in order to compensate for the corresponding removal of water via the waste gas and via the oxo product. The hot oxo product that flows into the washing column 9 is led in the opposite direction from the part of the amount of synthesis gas that enters the column via lines 13. The synthesis gas is loaded with olefin dissolved in the oxo product. With an increased temperature, the synthesis gas is fed into the reactor 1. The further partial flow of the synthesis gas is heated using the process heat in the heat exchanger 15. Also, the fresh olefin before entering the reactor is heated and evaporated using the waste heat of the aldehyde distillation in the heat exchanger 14, while the oxo product from the washing column 9 leads directly to distillation uncooled. The buffer tank is only used in case of interference with the intermediate storage of the product.

Daljnji tehnički naročito povoljan oblik izvođenja postupka prema izumu je prikazan na crtežu 2. A further technically particularly advantageous form of carrying out the procedure according to the invention is shown in drawing 2.

U reaktor 17 se stavi vodena katalizatorska otopina. Kroz dupli tuš 18 koji služi kao predrazdjeljivač vrši se ubacivanje sinteznog plina i olefina. Mješač 19 za barbotiranje osigurava finu raspodjelu reaktanata. Toplina egzotermne reakcije se odvodi preko lire za hlađenje 20. U cijevi 21 za vođenje reaktora dižu se tekuće i plinovite komponente i odvajaju se na gornjem kraju cijevi za vođenje. Plinovite komponente se preko voda 23 i kompresora 24 cirkulacionog plina vraćaju natrag u reaktor ili preko voda 25 odvode kao otpadni plin. Vodena katalizatorska otopina se odvaja u prstenastom odvajaču 26 od dograđenog organskog sirovog proizvoda. Preko voda 27 se sirovi proizvod dovodi koloni za ispiranje 28 i tamo oslobađa od otopljenog olefina sinteznim plinom koji se vodi u protivnom smjeru. Sirovi proizvod bez olefina se razdvaja u koloni 29 u n- i izo-komponente. Toplina potrebna za destilaciju dobije se neposredno iznad lire za hlađenje 20 u koju se tekući aldehid s dna kolone 29 dovodi pomoću voda 30, odvajača faza 31 i voda 32 u liru za hlađenje i tamo otparava i dovodi preko voda 33, odvajača faze 31 i voda 34 kao aldehid u obliku pare ponovno u kolonu 29. An aqueous catalyst solution is placed in the reactor 17. Synthesis gas and olefin are injected through the double shower 18, which serves as a pre-distributor. The bubbling mixer 19 ensures a fine distribution of the reactants. The heat of the exothermic reaction is removed via the cooling pipe 20. In the reactor guide pipe 21, the liquid and gaseous components rise and separate at the upper end of the guide pipe. The gaseous components are returned to the reactor via lines 23 and compressor 24 of the circulating gas or are removed as waste gas via lines 25. The aqueous catalyst solution is separated in the ring separator 26 from the added organic raw product. Through lines 27, the raw product is fed to the washing column 28, where it is freed from the dissolved olefin by synthesis gas, which is led in the opposite direction. The olefin-free crude product is separated in column 29 into n- and iso-components. The heat required for distillation is obtained directly above the cooling lyre 20 in which the liquid aldehyde from the bottom of the column 29 is fed by means of water 30, phase separator 31 and water 32 into the cooling lyre and is vaporized there and fed via water 33, phase separator 31 and water 34 as aldehyde in vapor form again in column 29.

Slijedeći primjeri objašnjavaju izum. The following examples illustrate the invention.

Primjer 1 (Usporedba) Example 1 (Comparison)

U reaktoru 50 I se pod reakcijskim uvjetima održava intenzivnim miješanjem homogenizirana miješana faza koja se sastoji od vodene katalizatorske otopine, okso proizvoda, sinteznog plina i propilena. Tok proizvoda koji se kontinuirano odvodi, koji sadrži katalizatorsku otopinu, okso proizvod, višak propilena i sintezni plin hladi se prije odvajanja proizvoda. U ohlađenom okso proizvodu je pod odabranim uvjetima otopljeno približno 4.5 kg propilena po kg okso proizvoda. Otopljeni udio propilena u vodenoj fazi je zanemarljivo mali. Gustoća organske faze iznosi 0.6 g/cm3. Razlika gustoće između vodene faze (gustoća je 1.15 g/cm3) i organske faze je 0.55 g/cm3. Prema tome dvije faze se brzo i potpuno odvajaju jadna od druge. In reactor 50 I, under reaction conditions, a homogenized mixed phase consisting of aqueous catalyst solution, oxo product, synthesis gas and propylene is maintained by intensive mixing. The continuously drained product stream, containing catalyst solution, oxo product, excess propylene and synthesis gas is cooled before product separation. Under the selected conditions, approximately 4.5 kg of propylene per kg of oxo product was dissolved in the cooled oxo product. The dissolved proportion of propylene in the aqueous phase is negligibly small. The density of the organic phase is 0.6 g/cm3. The density difference between the water phase (density is 1.15 g/cm3) and the organic phase is 0.55 g/cm3. Accordingly, the two phases are quickly and completely separated from each other.

Primjer 2 Example 2

Reakcija se provodi pod uvjetima iz primjera 1. Odstupajući od primjera 1 tok proizvoda koji se odvodi i koji se sastoji od katalizatorske otopine, okso proizvoda, viška propilena i sinteznog plina se ne hladi prije odvajanja proizvoda već se održava na reakcijskoj temperaturi. U okso proizvodu je tada otopljeno još samo 0.4 kg propilena po kg okso proizvoda. Time se uspostavlja viša prosječna gustoća organske faze od 0.75 g/cm3, tako da se smanjuje razlika gustoće prema vodenoj fazi na 0.4 g/cm3. The reaction is carried out under the conditions of example 1. Deviating from example 1, the product stream that is removed and consists of the catalyst solution, oxo product, excess propylene and synthesis gas is not cooled before product separation, but is maintained at the reaction temperature. Only 0.4 kg of propylene per kg of oxo product was then dissolved in the oxo product. This establishes a higher average density of the organic phase of 0.75 g/cm3, so that the difference in density compared to the aqueous phase is reduced to 0.4 g/cm3.

Na iznenađenje, odvajanje faza se usprkos male razlike gustoće odvija isto tako brzo i potpuno kao prema načinu rada u primjeru 1. Mogućnost da se organska i vodena faza zadovoljavajući i tehnički jednostavno odvajaju bez prethodnog hlađenja olakšava znatno kružno vođenje propilena. Količina propilena koji se treba odvojiti preko kolone za ispiranje 9 i vratiti se natrag u reaktor 1 se snižava od 4.5 na 0.4 kg/kg okso proizvoda i rezultira znatnom uštedom energije. Surprisingly, despite the small difference in density, the phase separation takes place just as quickly and completely as according to the method of operation in example 1. The possibility that the organic and aqueous phases can be satisfactorily and technically simply separated without prior cooling greatly facilitates the circulation of propylene. The amount of propylene that needs to be separated via the washing column 9 and returned back to the reactor 1 is reduced from 4.5 to 0.4 kg/kg oxo product and results in significant energy savings.

Primjer 3 Example 3

U reaktoru 50 l se pod reakcijskim uvjetima održava intenzivnim miješanjem homogenizirana miješana faza koja se sastoji od katalizatorske otopine, okso proizvoda, sinteznog plina i propilena. Za podešavanje raspodjele faza između vodene i organske faze kao i za odvođenje reakcijske topline pomoću pumpe 10 kružnog toka dovodi se svakog sata 100 l vodene katalizatorske otopine u kružni tok. Pod odabranim reakcionim uvjetima stvara se iz propilena 10 l sirovog aldehida na sat, tako da odnos između vodene prema organskoj fazi iznosi 10:1. In the 50 l reactor, under reaction conditions, a homogenized mixed phase consisting of catalyst solution, oxo product, synthesis gas and propylene is maintained by intensive mixing. To adjust the phase distribution between the aqueous and organic phases, as well as to remove the reaction heat, 100 l of aqueous catalyst solution is fed into the circular flow every hour using the circular flow pump 10. Under the selected reaction conditions, 10 l of crude aldehyde is created from propylene per hour, so that the ratio between the aqueous phase and the organic phase is 10:1.

Srednje vrijeme zadržavanja sirovog aldehida u otopini je 27 minuta. U okso proizvodu se sadrži 0.5% težinski neželjenih visokoključajućih sporednih proizvoda. The average retention time of crude aldehyde in solution is 27 minutes. The oxo product contains 0.5% by weight of unwanted high-boiling side products.

Primjer 4 Example 4

Radi se pod reakcijskim uvjetima primjera 1 , ali se u kružni tok uvodi po satu samo 35 l katalizatorske otopine. Time se povećava srednje vrijeme zadržavanja sirovog aldehida u reaktoru na 69 minuta. Pod ovim uvjetima dobije se okso proizvod koji ima oko 1.5% težinski neželjenih, visokoključajućih sporednih proizvoda. It is carried out under the reaction conditions of example 1, but only 35 l of catalyst solution are introduced into the circular flow per hour. This increases the mean residence time of raw aldehyde in the reactor to 69 minutes. Under these conditions, an oxo product is obtained that has about 1.5% by weight of unwanted, high-boiling side products.

Kod reaktora s lirom za hlađenje koja se nalazi unutra bez kružnog toka katalizatora, broj okretaja mješača izabere se u ovisnosti od organa za miješanje, tako da miješana faza u zoni reaktora sadrži <10% sirovog aldehida honogeno raspoređenog i aldehidna faza koja pliva iznad u zoni dodira na vodenoj katalizatorskoj otopini je mala uslijed odgovarajućeg održavanja nivoa, tako da su vremena zadržavanja sirovog aldehida u sinteznom dijelu <30 minuta. In reactors with an internal cooling coil without a catalyst loop, the mixer speed is chosen depending on the mixing device, so that the mixed phase in the reactor zone contains <10% homogeneously distributed crude aldehyde and the aldehyde phase floating above in the zone of contact on the aqueous catalyst solution is small due to the appropriate maintenance of the level, so that the retention time of the crude aldehyde in the synthesis part is <30 minutes.

Iznenađujuće je da smanjenje broja okretaja, koje omogućuje odvajanje organske i vodene faze u gornjem dijelu reaktora nema utjecaj na kapacitet reaktora. Očigledno se u intenzivno miješanoj zoni reaktora postiže dovoljno zasićenje reaktanata u vodenoj katalizatorskoj fazi. It is surprising that the reduction in the number of revolutions, which enables the separation of the organic and aqueous phases in the upper part of the reactor, has no effect on the reactor capacity. Apparently, sufficient saturation of the reactants in the aqueous catalyst phase is achieved in the intensively mixed zone of the reactor.

Claims (9)

1. Postupak za izradu aldehida reakcijom olefina s ugljičnim monoksidom i vodikom u prisustvu vode i rodij-fosfin kompleksnih spojeva pri povišenoj temperaturi i tlakovima od 100 do 30000 kPa, naznačen time, što se reaktanti dobro izmiješaju i reagiraju kod temperatura od 90 do 150°C, kod čega se udio plinovitih sastojaka u tekućoj fazi podesi na 5 do 30% volumenski računato na miješanu fazu, volumenski odnos vodene prema organskoj fazi iznosi 1:1 do 100:1 i najprije se odvajaju tekuća faza i plinovita faza, zatim tekuća faza u vodene i organske udjele uvijek bez prethodnog hlađenja i odvođenja reakcijske topline.1. Process for the production of aldehydes by the reaction of olefins with carbon monoxide and hydrogen in the presence of water and rhodium-phosphine complex compounds at elevated temperatures and pressures of 100 to 30,000 kPa, characterized by the fact that the reactants are well mixed and react at temperatures of 90 to 150° C, in which the proportion of gaseous ingredients in the liquid phase is adjusted to 5 to 30% by volume calculated on the mixed phase, the volume ratio of the aqueous phase to the organic phase is 1:1 to 100:1 and the liquid phase and gaseous phase are separated first, then the liquid phase into aqueous and organic fractions, always without prior cooling and removal of reaction heat. 2. Postupak prema zahtjevu 1, naznačen time što se reaktanti prije reakcije ugriju na temperaturu reagiranja.2. The method according to claim 1, characterized in that the reactants are heated to the reaction temperature before the reaction. 3. Postupak prema zahtjevu 2, naznačen time što se ugrijavanje vrši pomoću procesne otpadne topline.3. The method according to claim 2, characterized in that the heating is performed using process waste heat. 4. Postupak prema zahtjevu od 1 do 3, naznačen time, što se plinovite polazne materije dovode intenzivno miješanom sadržaju reaktora.4. Process according to claim 1 to 3, characterized in that the gaseous starting materials are supplied to the intensively mixed content of the reactor. 5. Postupak prema zahtjevu od 1 do 3, naznačen time, što se plinovite polazne materije dovode reaktoru preko uređaja za raspodjelu.5. Process according to claim 1 to 3, characterized in that the gaseous starting materials are supplied to the reactor via a distribution device. 6. Postupak prema zahtjevu od 1 do 5, naznačen time, što je volumenski odnos vode prema organskoj fazi 10:1 do 100:1.6. Process according to claim 1 to 5, characterized in that the volume ratio of water to organic phase is 10:1 to 100:1. 7. Postupak prema zahtjevu od 1 do 6, naznačen time, što se odvođenje topline obavlja posredstvom pomoćnog medija kao što je voda ili vodena para.7. The method according to claim 1 to 6, characterized in that heat removal is performed by means of an auxiliary medium such as water or steam. 8. Postupak prema zahtjevu od 1 do 6, naznačen time, što se odvođenje reakcijske topline obavlja bez posredstva pomoćnog medija isparavanjem barem dijela reakcijskih proizvoda.8. The method according to claim 1 to 6, characterized in that the reaction heat is removed without the aid of an auxiliary medium by evaporating at least part of the reaction products. 9. Postupak prema zahtjevu od 1 do 8, naznačen time, što se odvajanje tekuće faze u vodene i organske udjele obavlja u zoni smirivanja u reaktoru.9. The process according to claim 1 to 8, characterized in that the separation of the liquid phase into aqueous and organic fractions is performed in the settling zone in the reactor.
HRP-1843/83A 1982-09-18 1994-10-24 Process for the preparation of aldehydes HRP940733A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823234701 DE3234701A1 (en) 1982-09-18 1982-09-18 METHOD FOR PRODUCING ALDEHYDES
YU1843/83A YU43194B (en) 1982-09-18 1983-09-12 Process for the manufacture of aldehydes

Publications (1)

Publication Number Publication Date
HRP940733A2 true HRP940733A2 (en) 1997-06-30

Family

ID=25804570

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP-1843/83A HRP940733A2 (en) 1982-09-18 1994-10-24 Process for the preparation of aldehydes

Country Status (1)

Country Link
HR (1) HRP940733A2 (en)

Similar Documents

Publication Publication Date Title
US4523036A (en) Process for the preparation of aldehydes
JP6294374B2 (en) Relaxation of fouling in hydroformylation by addition of water.
TWI654174B (en) Hydroformylation method
JP6571652B2 (en) Hydroformylation process
JP2002161063A (en) Stabilization of rhodium catalyst for hydroformylation of olefin
JP6329136B2 (en) Hydroformylation process
JPS60112733A (en) Manufacture of aldehyde
JP2015523909A5 (en)
PL116526B1 (en) Method of olefine compounds hydroformylation
JP7269238B2 (en) Process for recovering rhodium from hydroformylation processes
JP6908602B2 (en) Aldehyde production process
HRP940733A2 (en) Process for the preparation of aldehydes
FI84258B (en) FOERFARANDE FOER TILLVARATAGANDE AV FOSFORLIGAND UR FOERAONGAD ALDEHYD.
KR101310552B1 (en) A process for production of aldehyde by hidroformyl of olefin
EP1467960B1 (en) Method for the hydroformylation of olefins with 2 to 6 carbon atoms
KR20040065236A (en) Method for the production of aldehydes

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
ODBC Application rejected