HRP940206A2 - Blood flow velocity measurement device - Google Patents
Blood flow velocity measurement device Download PDFInfo
- Publication number
- HRP940206A2 HRP940206A2 HRP940206A HRP940206A2 HR P940206 A2 HRP940206 A2 HR P940206A2 HR P940206 A HRP940206 A HR P940206A HR P940206 A2 HRP940206 A2 HR P940206A2
- Authority
- HR
- Croatia
- Prior art keywords
- electrodes
- galvanic
- electrode
- voltage
- galvanic voltage
- Prior art date
Links
- 230000017531 blood circulation Effects 0.000 title claims description 17
- 238000005259 measurement Methods 0.000 title claims description 4
- 210000002216 heart Anatomy 0.000 claims description 22
- 230000002861 ventricular Effects 0.000 claims description 16
- 230000000638 stimulation Effects 0.000 claims description 12
- 210000005241 right ventricle Anatomy 0.000 claims description 11
- 210000000591 tricuspid valve Anatomy 0.000 claims description 11
- 230000001746 atrial effect Effects 0.000 claims description 9
- 230000000747 cardiac effect Effects 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 9
- 230000004936 stimulating effect Effects 0.000 claims description 9
- 210000002620 vena cava superior Anatomy 0.000 claims description 7
- 230000008602 contraction Effects 0.000 claims description 4
- 230000003205 diastolic effect Effects 0.000 claims description 4
- 238000001827 electrotherapy Methods 0.000 claims description 4
- 238000012544 monitoring process Methods 0.000 claims description 3
- 238000002513 implantation Methods 0.000 claims description 2
- 239000002269 analeptic agent Substances 0.000 claims 2
- 239000004020 conductor Substances 0.000 claims 2
- 239000000560 biocompatible material Substances 0.000 claims 1
- 210000003709 heart valve Anatomy 0.000 claims 1
- 210000005245 right atrium Anatomy 0.000 description 10
- 230000001360 synchronised effect Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- 210000000709 aorta Anatomy 0.000 description 3
- 206010003119 arrhythmia Diseases 0.000 description 3
- 230000006793 arrhythmia Effects 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 210000002837 heart atrium Anatomy 0.000 description 3
- 239000002608 ionic liquid Substances 0.000 description 3
- 210000005246 left atrium Anatomy 0.000 description 3
- 210000005240 left ventricle Anatomy 0.000 description 3
- 210000004165 myocardium Anatomy 0.000 description 3
- 206010003130 Arrhythmia supraventricular Diseases 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000004 hemodynamic effect Effects 0.000 description 2
- 208000010125 myocardial infarction Diseases 0.000 description 2
- 210000003492 pulmonary vein Anatomy 0.000 description 2
- 230000033764 rhythmic process Effects 0.000 description 2
- 206010002383 Angina Pectoris Diseases 0.000 description 1
- 206010003658 Atrial Fibrillation Diseases 0.000 description 1
- 208000007888 Sinus Tachycardia Diseases 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 208000003734 Supraventricular Tachycardia Diseases 0.000 description 1
- 206010042602 Supraventricular extrasystoles Diseases 0.000 description 1
- 208000001871 Tachycardia Diseases 0.000 description 1
- 210000001765 aortic valve Anatomy 0.000 description 1
- 230000035559 beat frequency Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 238000007675 cardiac surgery Methods 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 210000003748 coronary sinus Anatomy 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 210000001174 endocardium Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000010247 heart contraction Effects 0.000 description 1
- 238000002847 impedance measurement Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 210000004115 mitral valve Anatomy 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 230000009972 noncorrosive effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 210000003516 pericardium Anatomy 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 210000001147 pulmonary artery Anatomy 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000006794 tachycardia Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 210000001631 vena cava inferior Anatomy 0.000 description 1
Landscapes
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Description
Područje tehnike The field of technology
Ovaj se pronalazak odnosi na elektroterapiju srca, a posebno na mjerenje karakteristika protoka krvi unutar srca i velikim krvnim žilama u svrhu kontrole elektroterapije srca. This invention relates to electrotherapy of the heart, and in particular to the measurement of blood flow characteristics within the heart and large blood vessels for the purpose of controlling electrotherapy of the heart.
Stanje tehnike State of the art
Privremena i stalna fiziološka elektrostimulacija srca su vrlo važne. Privremena stimulacija se obično primjenjuje nakon srčane operacije ili infarkta miokarda zbog prolaznog poremećaja provođenja ili aritmije. Bolesnici u mirovanju imaju bitno bolji srčani udarni volumen kada je ventrikularna kontrakcija sinkrona s atrijskim punjenjem ventrikula. To je važno za brži oporavak nakon operacije ili infarkta miokarda. Osim toga, neke se aritmije poput supraventrikularne tahikardije i ekstrasistola mogu spriječiti fiziološkom elektrostimulacijom srca. Temporary and permanent physiological electrostimulation of the heart are very important. Temporary pacing is usually applied after cardiac surgery or myocardial infarction due to a transient conduction disturbance or arrhythmia. Patients at rest have significantly better cardiac stroke volume when ventricular contraction is synchronous with atrial filling of the ventricles. This is important for faster recovery after surgery or myocardial infarction. In addition, some arrhythmias such as supraventricular tachycardia and extrasystoles can be prevented by physiological electrostimulation of the heart.
Bolesnici s kroničnim poremećajem provođenja ili ritma moraju dobiti trajno ugrađeni sustav za elektrostimulaciju. Doprinos atrija u poboljšanju hemodinamike je i kod njih važan. Postoje dva osnovna načina fiziološke elektrostimulacije srca: sekvencijalni i sinkroni. Sekvencijalna atrio-ventrikularna stimulacija se upotrebljava da bi se vratio normalni atrio-ventrikularni odnos. U tom načinu jedan atrij i jedan ventrikul se stimuliraju pomoću dva stimulirajuća impulsa u razmaku za odgovarajući fiziološki interval. Međutim, frekvenciju otkucaja kontrolira program elektrostimulatora i ona se ne mijenja prema fiziološkim potrebama. Sinkrona elektrostimulacija najbolje se približava normalnom srčanom ritmu. Spontani atrijski elektrogram ( P val ) se detektira elektrodom koja je obično u kontaktu sa atrijskim endokardom i to se upotrebljava za okidanje ventrikula nakon odgovarajućeg, unaprijed postavljenog, kašnjenja. Budući da se atrijski ritam aktivira prirodnim stimulatorom, tj. sinusno atrijskim čvorom, frekvencija se mijenja fiziološki prema opterećenju tijela. Zbog toga je ventrikularna stimulacija sinkrona sa P-valom najfiziološkiji oblik frekvencijski adaptivne elektrostimulacije. Patients with chronic conduction or rhythm disorders must receive a permanently implanted electrostimulation system. The contribution of the atria in improving hemodynamics is also important for them. There are two basic ways of physiological electrostimulation of the heart: sequential and synchronous. Sequential atrio-ventricular stimulation is used to restore normal atrio-ventricular relationship. In this mode, one atrium and one ventricle are stimulated using two pacing pulses spaced by the appropriate physiological interval. However, the beat frequency is controlled by the electrostimulator program and does not change according to physiological needs. Synchronous electrostimulation best approximates a normal heart rhythm. The spontaneous atrial electrogram (P wave) is detected by an electrode usually in contact with the atrial endocardium and this is used to trigger the ventricles after an appropriate, preset delay. Since the atrial rhythm is activated by a natural stimulator, i.e. by the sinus atrial node, the frequency changes physiologically according to the load on the body. This is why ventricular stimulation synchronous with the P-wave is the most physiological form of frequency-adaptive electrostimulation.
Izum u našem SAD patentu br. 5,243,976 kao i u našoj SAD patentnoj prijavi br. 08/020,684 omogućuje novu metodu fiziološke stimulacije srca. Svrha našeg izuma je da omogući elektrostimulator koji će, u normalnom atrijskom ritmu raditi u sinkronom načinu ( VDD ) te održavati atrio-ventrikulski sinkronizam, ali implantacijom samo jednog elektrodnog katetera. U izvedbi izuma prati se protok krvi u srcu pomoću uređaja za mjerenje brzine protoka krvi montiranog na stimulirajući elektrodni kateter. Posebno se upotrijebi valni oblik protoka kroz trikuspidni zalistak za sinkronizaciju i kontrolu ventrikularne stimulacije srca. Rani val brzog dijastoličkog punjenja ( E-val ) kao i kasni atrijski val dijastoličkog punjenja ( A-val ) se detektiraju i mjere se njihovi parametri. Ventrikularna stimulacija se sinkronizira sa A-valom. Sustav daje i senzore za frekvencijski adaptivnu ventrikularnu stimulaciju i pouzdano sredstvo za detekciju atrijske fibrilacije. Drugi je predmet neprestano praćenje dinamike punjenja desnog ventrikula da bi se procijenila funkcionalnost srčanog mišića i automatski reprogramirala maksimalna frekvencija praćenja tako da se spriječi angina pektroris te ishemija izazvana brzom frekvencijom. Naš sustav može detektirati pojedinu prijevremenu srčanu kontrakciju kao i razlikovati sinusnu tahikardiju od patološke tahikardije. Daje potvrdu ventrikularnog odgovora kao i detekciju ventrikularne dekompenzacije. The invention in our US patent no. 5,243,976 as well as in our US patent application no. 08/020,684 provides a new method of physiological stimulation of the heart. The purpose of our invention is to enable an electrostimulator that, in a normal atrial rhythm, will work in synchronous mode (VDD) and maintain atrio-ventricular synchrony, but with the implantation of only one electrode catheter. In an embodiment of the invention, blood flow in the heart is monitored using a device for measuring the speed of blood flow mounted on a stimulating electrode catheter. In particular, the flow waveform through the tricuspid valve is used to synchronize and control the ventricular stimulation of the heart. The early wave of fast diastolic filling (E-wave) as well as the late atrial wave of diastolic filling (A-wave) are detected and their parameters are measured. Ventricular stimulation is synchronized with the A-wave. The system also provides sensors for frequency-adaptive ventricular stimulation and a reliable means of detecting atrial fibrillation. Another subject is continuous monitoring of right ventricular filling dynamics to assess heart muscle functionality and automatically reprogram the maximum monitoring frequency to prevent angina pectoris and ischemia induced by a fast rate. Our system can detect individual premature cardiac contractions as well as distinguish sinus tachycardia from pathological tachycardia. It provides confirmation of ventricular response as well as detection of ventricular decompensation.
Drugi sustav prikazan u našoj SAD prijavi br. 07/880,552 prati ventrikularno punjenje te zapravo regulira obrazac valnog oblika ventrikularnog punjenja pomoću podešavanja A-V intervala u svrhu optimizacije hemodinamike. Another system disclosed in our US application no. 07/880,552 monitors ventricular filling and actually regulates the waveform pattern of ventricular filling by adjusting the A-V interval to optimize hemodynamics.
Za pravilno funkcioniranje ovih izuma bitno je da koriste točnu metodu mjerenja protoka krvi koja je pouzdana na dugi rok te koristi malo snage, a pogodna je za implementaciju u implantabilnim uređajima. For the proper functioning of these inventions, it is essential that they use an accurate blood flow measurement method that is reliable in the long term, uses little power, and is suitable for implementation in implantable devices.
Naš SAD patent br. 5,271,408 prikazuje alternativnu metodu za mjerenje protoka krvi u srcu. Pogodna je za upotrebu u sustavu za srčanu stimulaciju sinkroniziranu trikuspidnim protokom. Our US patent no. 5,271,408 discloses an alternative method for measuring blood flow in the heart. It is suitable for use in a tricuspid flow synchronized cardiac pacing system.
Sustav iz europskog patenta br. 311,019 opisuje sustav kontroliran mjerenjem impedancije šupljine desnog ventrikula. Iako opisani sustav radi jednim elektrodnim kateterom, bitno je različit u odnosu na naš izum. Mjerenje impedancije zapravo daje podatke o promjeni ventrikularnog volumena. Bitna prednost našeg sustava je da ukazuje na protok direktno mjereći prave karakteristike protoka. Poznato je u struci da atrijska kontrakcija pridonosi vrlo malo u promjeni ventrikularnog volumena. Naprotiv, atrijska kontrakcija proizvodi značajan postotak protoka kroz valvule. U našem izumu valni oblik sadrži lako raspoznatljive valove brzine protoka krvi koji se javljaju u ventrikularnoj dijastoli u fiziološki određenom redoslijedu. Zato je naša metoda osjetljivija i posebnija te omogućuje razna mjerenja u svrhu frekvencijski adaptivne stimulacije i detekcije aritmija. System from European patent no. 311,019 describes a system controlled by measuring the impedance of the right ventricular cavity. Although the described system works with one electrode catheter, it is fundamentally different from our invention. Impedance measurement actually provides data on the change in ventricular volume. The essential advantage of our system is that it indicates the flow directly by measuring the true characteristics of the flow. It is known in the art that atrial contraction contributes very little to the change in ventricular volume. On the contrary, atrial contraction produces a significant percentage of the flow through the valves. In our invention, the waveform contains easily recognizable blood flow velocity waves that occur in ventricular diastole in a physiologically determined sequence. That is why our method is more sensitive and special and enables various measurements for the purpose of frequency-adaptive stimulation and detection of arrhythmias.
Europski patent br. 347,708 opisuje sustav kontroliran mjerenjem tlaka u desnom srcu te procjenom volumena desnog srca. U skladu sa fiziologijom srca, tlak i volumen desnog atrija te tlak i volumen desnog ventrikula se međusobno odnose prema posebnim tlak - volumen funkcijama koje opisuju svojstva srčanog mišića. Valni oblik protoka kroz trikuspidalni zalistak se očito odnosi na funkciju desnog atrija i desnog ventrikula. Posebno svojstvo našeg izuma je da se funkcija desnog atrija i desnog ventrikula prati pomoću mjerenja samo jednog fiziološkog parametra - brzine protoka krvi kroz zalistak. Zato naš izum koristi samo jedan senzor, poželjno u poziciji blizu trikuspidalnog zaliska tj. u atriju. European patent no. 347,708 describes a system controlled by right heart pressure measurement and right heart volume estimation. In accordance with the physiology of the heart, the pressure and volume of the right atrium and the pressure and volume of the right ventricle relate to each other according to special pressure-volume functions that describe the properties of the heart muscle. The flow waveform through the tricuspid valve is clearly related to the function of the right atrium and right ventricle. A special feature of our invention is that the function of the right atrium and right ventricle is monitored by measuring only one physiological parameter - the velocity of blood flow through the valve. That is why our invention uses only one sensor, preferably in a position close to the tricuspid valve, i.e. in the atrium.
SAD patent br. 4,600,017 prikazuje metodu mjerenja tlaka pomoću piezoelektričnog senzora pričvršćenog na srčani kateter za stimuaciju. Naš senzorski sklop za mjerenje protoka krvi je vrlo poseban i nije identičan jednostavnom bimorfnom senzoru za tlak. Nema sumnje da u našem izumu valni oblik dijastoličkog protoka krvi, mjerenom kroz trikuspidalni zalistak, jasno prikazuje otvaranje i zatvaranje trikuspidalnog zaliska. Unatoč tome, u našem izumu vremenski slijed gibanja zaliska, bilo otvaranje ili zatvaranje, nije bitan za bilo kakvu kontrolu elektroterapije. US patent no. 4,600,017 discloses a method of measuring pressure using a piezoelectric sensor attached to a cardiac pacing catheter. Our blood flow sensor assembly is very special and not identical to a simple bimorph pressure sensor. There is no doubt that in our invention the waveform of diastolic blood flow, measured through the tricuspid valve, clearly shows the opening and closing of the tricuspid valve. However, in our invention, the timing of valve motion, whether opening or closing, is not essential for any electrotherapy control.
SAD patent br. 5,139,020 opisuje sustav koji prati sistoličku funkciju srca. U tom je izumu ultrazvučni snop usmjeren prema lijevom ventrikulu ili aortalnom korijenu jer prvobitna izvedba izuma mjeri protok krvi u aorti pomoću Dopplerskog sustava. Druga izvedba mjeri sistoličke intervale u svrhu procjene kontraktilnosti miokarda. US patent no. 5,139,020 describes a system that monitors the systolic function of the heart. In this invention, the ultrasound beam is directed towards the left ventricle or the aortic root because the original embodiment of the invention measures blood flow in the aorta using a Doppler system. Another embodiment measures systolic intervals for the purpose of assessing myocardial contractility.
Dakako, postoji potreba za metodom mjerenja brzine protoka krvi koja troši malo snage i koja je pogodna za ugradnju u implantabilni elektrostimulator srca a da ne skraćuje vijek trajanja elektrostimulatora. Certainly, there is a need for a method of measuring blood flow rate that consumes little power and is suitable for installation in an implantable heart pacemaker without shortening the life of the pacemaker.
Poznato je iz struke ( R.Plonsev i D.G.Fleming: "Bioelectric Phenomena", McGraw-Hill Series in Bioengineering, New York 1969, str.33-53. ) da metalna elektroda uronjena u ionsku tekućinu proizvodi polućelijski potencijal. Dvije različite elektrode formiraju galvansku ćeliju u kojoj se pozitivna elektroda naziva anodom a negativna katodom. Ove elektrokemijske pojave su temeljito istražene i prikazane u brojnim referencama struke. It is known from the profession (R.Plonsev and D.G.Fleming: "Bioelectric Phenomena", McGraw-Hill Series in Bioengineering, New York 1969, pp.33-53. ) that a metal electrode immersed in an ionic liquid produces a half-cell potential. Two different electrodes form a galvanic cell in which the positive electrode is called the anode and the negative electrode the cathode. These electrochemical phenomena have been thoroughly investigated and presented in numerous professional references.
Opis izuma Description of the invention
Ovi i drugi predmeti ovog izuma biti će jasniji kroz slijedeći opis i pripadajućih slika u kojem: These and other objects of this invention will be clearer through the following description and accompanying pictures in which:
Slika 1 prikazuje distalni završetak katetera koji sadrži elektrode koje formiraju galvansku ćeliju unutar ionske tekućine. Figure 1 shows the distal end of a catheter containing electrodes that form a galvanic cell within an ionic liquid.
Slika 2 prikazuje isti kateter implantiran u ljudsko srce. Figure 2 shows the same catheter implanted in a human heart.
Slika 3 prikazuje drugi tip katetera namijenjen za mjerenje protoka gornje šuplje vene. Figure 3 shows another type of catheter intended for measuring the flow of the superior vena cava.
U izvedbi sa slike 1 prikazan je distalni završetak plastičnog tijela katetera 10. Tijelo katetera sadrži dvije prstenaste elektrode 11 i 12 napravljene od različitih materijala. Kada se elektrode urone u ionsku tekućinu na pr. krv, one čine galvansku ćeliju proizvodeći galvanski potencijal. U ovom primjeru je elektroda 11 anoda, a elektroda 12 katoda. Na primjer, elektroda 11 može biti napravljena od zlata, a elektroda 12 od nekorodivnog čelika. Prema tome, u mirnom stanju ionskog medija se mjeri pozitivni napon na elektrodi 11 prema referentnoj elektrodi 12. Ako dođe do protoka ionskog medija, povećava se mjereni galvanski napon. Povećanje napona je proporcionalno povećanju brzine protoka. In the embodiment from Figure 1, the distal end of the plastic body of the catheter 10 is shown. The body of the catheter contains two ring electrodes 11 and 12 made of different materials. When the electrodes are immersed in an ionic liquid, e.g. blood, they form a galvanic cell producing a galvanic potential. In this example, electrode 11 is the anode, and electrode 12 is the cathode. For example, electrode 11 may be made of gold and electrode 12 of non-corrosive steel. Therefore, in a calm state of the ionic medium, the positive voltage is measured on the electrode 11 towards the reference electrode 12. If the flow of the ionic medium occurs, the measured galvanic voltage increases. The increase in voltage is proportional to the increase in flow rate.
U izvedbi sa slike 2 prikazana je praktična primjena stimulirajućeg elektrodnog katetera koji sadrži galvansku ćeliju u blizini trikuspidalnog zaliska. Srce je prikazano u presjeku četiri komore a presjek miokarda je vidljiv na stjenci lijevog ventrikula 20, desnog ventrikula 21, interventrikularnog septuma 22, lijevog atrija 23 i desnog atrija 24. Dvije komore lijevog srca, lijevi ventrikul 25 i lijevi atrij 26, su odvojeni mitralnom valvulom 27. Lijevi ventrikularni izlazni trakt sastoji se od aortalne valvule 28 i aorte 29. Stimulirajući srčani elektrodni kateter 30 je ugrađen kroz gornju šuplju venu 31 kroz desni atrij 32 u desni ventrikul 33 sa svojom elektrodom za elektrostimulaciju 34 smještenom u apeks desnog ventrikula. U nižem području desnog atrija blizu trikuspidalne valvule 35 kateter za elektrostimulaciju 30 sadrži katodu 36 i anodu 37. Elektrode 36 i 37 formiraju galvansku ćeliju unutar toka krvi. Dotok krvi iz desnog atrija 32 u desni ventrikul 33 kroz trikuspidalni zalistak 35 uzrokuje promjenu koncentracije iona u okolini elektroda 36 i 37. Zato se galvanski napon, mjeren između elektroda 37 i 36 mijenja. Promjena spomenutog napona predstavlja promjenu protoka krvi. The embodiment from Figure 2 shows the practical application of a stimulating electrode catheter containing a galvanic cell near the tricuspid valve. The heart is shown in a section of four chambers, and the section of the myocardium is visible on the wall of the left ventricle 20, the right ventricle 21, the interventricular septum 22, the left atrium 23 and the right atrium 24. The two chambers of the left heart, the left ventricle 25 and the left atrium 26, are separated by the mitral valve 27. The left ventricular outflow tract consists of the aortic valve 28 and the aorta 29. The cardiac stimulating electrode catheter 30 is inserted through the superior vena cava 31 through the right atrium 32 into the right ventricle 33 with its electrostimulation electrode 34 located in the apex of the right ventricle. In the lower region of the right atrium near the tricuspid valve 35, the electrostimulation catheter 30 contains a cathode 36 and an anode 37. Electrodes 36 and 37 form a galvanic cell within the blood stream. The flow of blood from the right atrium 32 to the right ventricle 33 through the tricuspid valve 35 causes a change in the concentration of ions in the vicinity of electrodes 36 and 37. That is why the galvanic voltage measured between electrodes 37 and 36 changes. A change in the mentioned voltage represents a change in blood flow.
Slika 3 prikazuje srce otvoreno kod aurikule desnog atrija 41. Unutar desnog atrija su trikuspidalni zalistak 42, fossa ovalis 43, valvula koronarnog sinusa 44 i crista terminalis 45. Prikazane su gornja šuplja vena 46, donja šuplja vena 47 kao i pulmonalna arterija 48 i aorta 49 sa truncus pulmonalis 50. Vidi se lijevi atrij 51 sa desnom gornjom pulmonalnom venom 52 kao i sa desnom donjom pulmonalnom venom 53. Prikazan je apeks desnog ventrikula 54 kao i ostatak perikarda 55. Elektrodni kateter za stimulaciju 56 je ugrađen kroz gornju šuplju venu 46 i šupljinu desnog atrija kroz trikuspidalni zalistak 42 u desni ventrikul sa vrhom ( nije prikazan ) u području apeksa 54. Kateter 56 sadrži katodu 57 i anodu 58 koje formiraju galvansku ćeliju unutar toka krvi gornje šuplje vene 46. Promjena galvanskog napona mjerena između anode 58 i katode 57 predstavlja promjenu protoka krvi u gornjoj šupljoj veni. Figure 3 shows the heart open at the auricle of the right atrium 41. Inside the right atrium are the tricuspid valve 42, the fossa ovalis 43, the valve of the coronary sinus 44 and the crista terminalis 45. The superior vena cava 46, inferior vena cava 47 as well as the pulmonary artery 48 and the aorta are shown. 49 with truncus pulmonalis 50. You can see the left atrium 51 with the right superior pulmonary vein 52 as well as the right inferior pulmonary vein 53. The apex of the right ventricle 54 is shown as well as the rest of the pericardium 55. The stimulation electrode catheter 56 is implanted through the superior vena cava 46 and the cavity of the right atrium through the tricuspid valve 42 into the right ventricle with a tip (not shown) in the region of the apex 54. The catheter 56 contains a cathode 57 and an anode 58 which form a galvanic cell within the blood flow of the superior vena cava 46. The change in galvanic voltage measured between the anode 58 and cathode 57 represents a change in blood flow in the superior vena cava.
Opisana je specifična izvedba ovog pronalaska, ali je razumljivo da je ova izvedba opisana samo kao ilustracija. Prethodni opis ne ograničava ni na koji način predmet ovog pronalaska. Namjera je da se predmet ovog pronalaska ograniči kako je definirano u slijedećim patentnim zahtjevima. A specific embodiment of the present invention is described, but it is to be understood that this embodiment is described by way of illustration only. The foregoing description does not limit the subject matter of the present invention in any way. The subject matter of this invention is intended to be limited as defined in the following claims.
Claims (9)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
HRP940206 HRP940206A2 (en) | 1994-03-30 | 1994-03-30 | Blood flow velocity measurement device |
ES95913168T ES2119416T3 (en) | 1994-03-30 | 1995-03-29 | BLOOD FLOW MEASURING DEVICE. |
EP95913168A EP0752826B1 (en) | 1994-03-30 | 1995-03-29 | Blood flow velocity measurement device |
PCT/EP1995/001171 WO1995026677A1 (en) | 1994-03-30 | 1995-03-29 | Blood flow velocity measurement device |
DE69503615T DE69503615T2 (en) | 1994-03-30 | 1995-03-29 | DEVICE FOR MEASURING THE BLOOD FLOW SPEED |
JP7525403A JPH09510899A (en) | 1994-03-30 | 1995-03-29 | Blood flow velocity measuring device |
US08/718,406 US5799350A (en) | 1994-03-30 | 1995-03-29 | Blood flow velocity measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
HRP940206 HRP940206A2 (en) | 1994-03-30 | 1994-03-30 | Blood flow velocity measurement device |
Publications (1)
Publication Number | Publication Date |
---|---|
HRP940206A2 true HRP940206A2 (en) | 1998-04-30 |
Family
ID=10946096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
HRP940206 HRP940206A2 (en) | 1994-03-30 | 1994-03-30 | Blood flow velocity measurement device |
Country Status (1)
Country | Link |
---|---|
HR (1) | HRP940206A2 (en) |
-
1994
- 1994-03-30 HR HRP940206 patent/HRP940206A2/en not_active Application Discontinuation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0752826B1 (en) | Blood flow velocity measurement device | |
US5267560A (en) | Methods for control of the ventricular activation sequence | |
US4762136A (en) | Low polarization pacing electrodes for capture verification | |
EP1980292A2 (en) | Pulmonary pressure monitoring | |
US4679572A (en) | Low threshold cardiac pacing electrodes | |
EP0474958B1 (en) | Cardiac electrotherapy system | |
EP2144670B9 (en) | Implantable medical device for monitoring valve movements of a heart | |
US20080228234A1 (en) | Methods and apparatus for improved ipg rate response using subcutaneous electrodes directly coupled to an implantable medical device (imd) | |
EA005662B1 (en) | Atrial sensing and multiple site stimulation as intervention for atrial fibrillation | |
US8211032B2 (en) | Cardiomechanical assessment for cardiac resynchronization therapy | |
Bongiorni et al. | Is local myocardial contractility related to endocardial acceleration signals detected by a transvenous pacing lead? | |
US20090088651A1 (en) | Method and apparatus to perform transvascular hemodynamic sensing | |
WO1995019806A1 (en) | Cardiac electrotherapy system synchronized with venous flow | |
US11730441B2 (en) | Methods and devices for detecting heart sounds to monitor cardiac function | |
US9042983B2 (en) | Implantable system for flow measurement including charge amplifier | |
Arthur et al. | Clinical use of intracardiac impedance: current applications and future perspectives | |
US5800468A (en) | Activity-responsive pacer with bipolar sensor electrode | |
HRP940206A2 (en) | Blood flow velocity measurement device | |
EP0237316B1 (en) | Cardiac pacing device | |
Fröhlich et al. | The fractal coated lead as implantable sensor for monophasic action potentials | |
HRP960392A2 (en) | A device for the measurement of blood flow | |
US20130131527A1 (en) | Method for guiding and monitoring intrapericardial lead position for an intrapericardial lead system | |
FEREK-PETRIC et al. | Tricuspid Flow Controlled Cardiac Pacing System | |
Khassanov et al. | Myocardium excitation velocity as a measure of the ANS cardiovascular control | |
Lazarus | Complexity of Follow‐up in Multisite Pacing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A1OB | Publication of a patent application | ||
OBST | Application withdrawn |