HRP931103A2 - Hepatitis a virus vaccine - Google Patents
Hepatitis a virus vaccine Download PDFInfo
- Publication number
- HRP931103A2 HRP931103A2 HRP931103AA HRP931103A HRP931103A2 HR P931103 A2 HRP931103 A2 HR P931103A2 HR P931103A A HRP931103A A HR P931103AA HR P931103 A HRP931103 A HR P931103A HR P931103 A2 HRP931103 A2 HR P931103A2
- Authority
- HR
- Croatia
- Prior art keywords
- hepatitis
- hav
- virus
- cells
- cell
- Prior art date
Links
- 229940124870 Hepatitis A virus vaccine Drugs 0.000 title claims description 5
- 241000709721 Hepatovirus A Species 0.000 claims abstract description 276
- 238000000034 method Methods 0.000 claims abstract description 142
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 77
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 77
- 238000004519 manufacturing process Methods 0.000 claims abstract description 73
- 230000008569 process Effects 0.000 claims abstract description 57
- 229960005486 vaccine Drugs 0.000 claims abstract description 38
- 208000015181 infectious disease Diseases 0.000 claims abstract description 37
- 239000000203 mixture Substances 0.000 claims abstract description 30
- 150000001720 carbohydrates Chemical class 0.000 claims abstract description 12
- 150000002632 lipids Chemical class 0.000 claims abstract description 12
- 208000005252 hepatitis A Diseases 0.000 claims description 96
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 94
- 238000004458 analytical method Methods 0.000 claims description 74
- 241000700605 Viruses Species 0.000 claims description 62
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 56
- 230000003068 static effect Effects 0.000 claims description 50
- 239000011780 sodium chloride Substances 0.000 claims description 48
- 229920001223 polyethylene glycol Polymers 0.000 claims description 43
- 101710163270 Nuclease Proteins 0.000 claims description 42
- 239000002202 Polyethylene glycol Substances 0.000 claims description 42
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 38
- 238000005349 anion exchange Methods 0.000 claims description 34
- 239000008346 aqueous phase Substances 0.000 claims description 30
- 238000011282 treatment Methods 0.000 claims description 30
- 238000002360 preparation method Methods 0.000 claims description 28
- 238000000605 extraction Methods 0.000 claims description 27
- 239000008103 glucose Substances 0.000 claims description 25
- 150000003839 salts Chemical class 0.000 claims description 25
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 24
- 230000002779 inactivation Effects 0.000 claims description 20
- 108020004707 nucleic acids Proteins 0.000 claims description 20
- 150000007523 nucleic acids Chemical class 0.000 claims description 20
- 102000039446 nucleic acids Human genes 0.000 claims description 20
- 239000003599 detergent Substances 0.000 claims description 19
- 229910001220 stainless steel Inorganic materials 0.000 claims description 19
- 239000010935 stainless steel Substances 0.000 claims description 19
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 claims description 18
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 16
- 238000005342 ion exchange Methods 0.000 claims description 16
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 14
- 230000003053 immunization Effects 0.000 claims description 13
- 238000002649 immunization Methods 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 13
- 239000010936 titanium Substances 0.000 claims description 13
- 238000004113 cell culture Methods 0.000 claims description 12
- 230000007062 hydrolysis Effects 0.000 claims description 12
- 238000006460 hydrolysis reaction Methods 0.000 claims description 12
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 claims description 12
- 229920004890 Triton X-100 Polymers 0.000 claims description 11
- 239000013504 Triton X-100 Substances 0.000 claims description 11
- 238000010521 absorption reaction Methods 0.000 claims description 10
- 238000011026 diafiltration Methods 0.000 claims description 10
- -1 glucose carbohydrate Chemical class 0.000 claims description 10
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 claims description 9
- 150000001413 amino acids Chemical class 0.000 claims description 9
- 238000004587 chromatography analysis Methods 0.000 claims description 9
- 238000010828 elution Methods 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims description 9
- 208000002109 Argyria Diseases 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 8
- 239000001963 growth medium Substances 0.000 claims description 8
- 238000003306 harvesting Methods 0.000 claims description 8
- 238000001556 precipitation Methods 0.000 claims description 8
- 230000008021 deposition Effects 0.000 claims description 7
- 238000012258 culturing Methods 0.000 claims description 6
- 238000000975 co-precipitation Methods 0.000 claims description 5
- 238000007865 diluting Methods 0.000 claims description 5
- 238000001262 western blot Methods 0.000 claims description 4
- 238000009826 distribution Methods 0.000 claims description 3
- 238000004817 gas chromatography Methods 0.000 claims description 3
- 229940031551 inactivated vaccine Drugs 0.000 claims description 3
- 239000012528 membrane Substances 0.000 claims description 3
- 238000011146 sterile filtration Methods 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 239000004215 Carbon black (E152) Substances 0.000 claims description 2
- 230000007717 exclusion Effects 0.000 claims description 2
- 238000005227 gel permeation chromatography Methods 0.000 claims description 2
- 229930195733 hydrocarbon Natural products 0.000 claims description 2
- 150000002430 hydrocarbons Chemical class 0.000 claims description 2
- 238000011081 inoculation Methods 0.000 claims description 2
- 230000008929 regeneration Effects 0.000 claims description 2
- 238000011069 regeneration method Methods 0.000 claims description 2
- HNSDLXPSAYFUHK-UHFFFAOYSA-N 1,4-bis(2-ethylhexyl) sulfosuccinate Chemical compound CCCCC(CC)COC(=O)CC(S(O)(=O)=O)C(=O)OCC(CC)CCCC HNSDLXPSAYFUHK-UHFFFAOYSA-N 0.000 claims 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims 1
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims 1
- 229910001200 Ferrotitanium Inorganic materials 0.000 claims 1
- 239000002253 acid Substances 0.000 claims 1
- 229910052740 iodine Inorganic materials 0.000 claims 1
- 239000011630 iodine Substances 0.000 claims 1
- 229920002113 octoxynol Polymers 0.000 claims 1
- 238000000746 purification Methods 0.000 abstract description 37
- 230000012010 growth Effects 0.000 abstract description 31
- 239000000427 antigen Substances 0.000 abstract description 24
- 102000036639 antigens Human genes 0.000 abstract description 24
- 108091007433 antigens Proteins 0.000 abstract description 24
- 235000014633 carbohydrates Nutrition 0.000 abstract description 18
- 238000012545 processing Methods 0.000 abstract description 7
- 238000009472 formulation Methods 0.000 abstract description 6
- 230000002163 immunogen Effects 0.000 abstract description 3
- 210000004027 cell Anatomy 0.000 description 210
- 239000000047 product Substances 0.000 description 106
- 239000006166 lysate Substances 0.000 description 78
- 239000000523 sample Substances 0.000 description 63
- 238000011993 High Performance Size Exclusion Chromatography Methods 0.000 description 60
- 238000001542 size-exclusion chromatography Methods 0.000 description 44
- 239000002904 solvent Substances 0.000 description 44
- 238000002156 mixing Methods 0.000 description 43
- 239000002609 medium Substances 0.000 description 41
- 239000000463 material Substances 0.000 description 36
- 239000012535 impurity Substances 0.000 description 34
- 239000010410 layer Substances 0.000 description 34
- 230000000694 effects Effects 0.000 description 33
- 238000002474 experimental method Methods 0.000 description 30
- 239000008188 pellet Substances 0.000 description 25
- 230000010261 cell growth Effects 0.000 description 24
- 239000000356 contaminant Substances 0.000 description 24
- 239000007787 solid Substances 0.000 description 24
- 239000002244 precipitate Substances 0.000 description 23
- 238000012360 testing method Methods 0.000 description 22
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 20
- 239000000243 solution Substances 0.000 description 19
- 229910000162 sodium phosphate Inorganic materials 0.000 description 18
- 239000001488 sodium phosphate Substances 0.000 description 18
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 18
- 108010034546 Serratia marcescens nuclease Proteins 0.000 description 17
- 102000004190 Enzymes Human genes 0.000 description 16
- 108090000790 Enzymes Proteins 0.000 description 16
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 16
- 239000002953 phosphate buffered saline Substances 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 229910000619 316 stainless steel Inorganic materials 0.000 description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 238000011088 calibration curve Methods 0.000 description 15
- 238000010790 dilution Methods 0.000 description 15
- 239000012895 dilution Substances 0.000 description 15
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 15
- 229960005542 ethidium bromide Drugs 0.000 description 15
- 108020004414 DNA Proteins 0.000 description 14
- 238000010899 nucleation Methods 0.000 description 14
- 239000012071 phase Substances 0.000 description 14
- 238000005119 centrifugation Methods 0.000 description 13
- 230000009089 cytolysis Effects 0.000 description 13
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- 238000005571 anion exchange chromatography Methods 0.000 description 12
- 239000000872 buffer Substances 0.000 description 12
- 239000011521 glass Substances 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 235000015097 nutrients Nutrition 0.000 description 12
- 229910052719 titanium Inorganic materials 0.000 description 12
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 11
- 238000003556 assay Methods 0.000 description 11
- 208000006454 hepatitis Diseases 0.000 description 11
- 231100000283 hepatitis Toxicity 0.000 description 11
- 239000012139 lysis buffer Substances 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- CHADEQDQBURGHL-UHFFFAOYSA-N (6'-acetyloxy-3-oxospiro[2-benzofuran-1,9'-xanthene]-3'-yl) acetate Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(OC(C)=O)C=C1OC1=CC(OC(=O)C)=CC=C21 CHADEQDQBURGHL-UHFFFAOYSA-N 0.000 description 10
- 230000002238 attenuated effect Effects 0.000 description 10
- 210000000234 capsid Anatomy 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 10
- 238000004128 high performance liquid chromatography Methods 0.000 description 9
- 230000000717 retained effect Effects 0.000 description 9
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 230000014759 maintenance of location Effects 0.000 description 8
- 238000004062 sedimentation Methods 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 229920003023 plastic Polymers 0.000 description 7
- 239000004033 plastic Substances 0.000 description 7
- 238000005096 rolling process Methods 0.000 description 7
- 239000012064 sodium phosphate buffer Substances 0.000 description 7
- 238000000638 solvent extraction Methods 0.000 description 7
- 230000003612 virological effect Effects 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 6
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 6
- 108010042407 Endonucleases Proteins 0.000 description 6
- 102000004533 Endonucleases Human genes 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 6
- 238000012790 confirmation Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 210000002966 serum Anatomy 0.000 description 6
- 239000010802 sludge Substances 0.000 description 6
- 239000004793 Polystyrene Substances 0.000 description 5
- 102000004142 Trypsin Human genes 0.000 description 5
- 108090000631 Trypsin Proteins 0.000 description 5
- 239000013592 cell lysate Substances 0.000 description 5
- 230000006037 cell lysis Effects 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 238000011049 filling Methods 0.000 description 5
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 5
- 238000001641 gel filtration chromatography Methods 0.000 description 5
- 238000002523 gelfiltration Methods 0.000 description 5
- 230000004190 glucose uptake Effects 0.000 description 5
- 238000004255 ion exchange chromatography Methods 0.000 description 5
- 229920002223 polystyrene Polymers 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000013341 scale-up Methods 0.000 description 5
- 238000010186 staining Methods 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 239000012588 trypsin Substances 0.000 description 5
- 238000003260 vortexing Methods 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000007983 Tris buffer Substances 0.000 description 4
- 230000003698 anagen phase Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000012141 concentrate Substances 0.000 description 4
- PGBHMTALBVVCIT-VCIWKGPPSA-N framycetin Chemical compound N[C@@H]1[C@@H](O)[C@H](O)[C@H](CN)O[C@@H]1O[C@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](N)C[C@@H](N)[C@@H]2O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CN)O2)N)O[C@@H]1CO PGBHMTALBVVCIT-VCIWKGPPSA-N 0.000 description 4
- 230000008014 freezing Effects 0.000 description 4
- 238000007710 freezing Methods 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 229940124724 hepatitis-A vaccine Drugs 0.000 description 4
- 230000005847 immunogenicity Effects 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 239000002054 inoculum Substances 0.000 description 4
- 238000002372 labelling Methods 0.000 description 4
- 238000011031 large-scale manufacturing process Methods 0.000 description 4
- 229910001629 magnesium chloride Inorganic materials 0.000 description 4
- 229940053050 neomycin sulfate Drugs 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 229920002684 Sepharose Polymers 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 244000309466 calf Species 0.000 description 3
- 238000005515 capillary zone electrophoresis Methods 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 239000012894 fetal calf serum Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000005194 fractionation Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 229910000856 hastalloy Inorganic materials 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 238000003018 immunoassay Methods 0.000 description 3
- 238000011551 log transformation method Methods 0.000 description 3
- 239000013642 negative control Substances 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 239000002504 physiological saline solution Substances 0.000 description 3
- 239000000902 placebo Substances 0.000 description 3
- 229940068196 placebo Drugs 0.000 description 3
- 239000013641 positive control Substances 0.000 description 3
- GRLPQNLYRHEGIJ-UHFFFAOYSA-J potassium aluminium sulfate Chemical compound [Al+3].[K+].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRLPQNLYRHEGIJ-UHFFFAOYSA-J 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000007790 scraping Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 2
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 2
- 229920002271 DEAE-Sepharose Polymers 0.000 description 2
- 108010053770 Deoxyribonucleases Proteins 0.000 description 2
- 102000016911 Deoxyribonucleases Human genes 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 229920002594 Polyethylene Glycol 8000 Polymers 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- WAIPAZQMEIHHTJ-UHFFFAOYSA-N [Cr].[Co] Chemical compound [Cr].[Co] WAIPAZQMEIHHTJ-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 2
- 239000006286 aqueous extract Substances 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 2
- 238000005251 capillar electrophoresis Methods 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000013553 cell monolayer Substances 0.000 description 2
- 230000003833 cell viability Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000011210 chromatographic step Methods 0.000 description 2
- 239000012228 culture supernatant Substances 0.000 description 2
- 210000004748 cultured cell Anatomy 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000011143 downstream manufacturing Methods 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 239000012737 fresh medium Substances 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 235000012907 honey Nutrition 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229940038490 inactivated hepatitis a vaccine Drugs 0.000 description 2
- 230000002458 infectious effect Effects 0.000 description 2
- 238000013383 initial experiment Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000011005 laboratory method Methods 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 208000019423 liver disease Diseases 0.000 description 2
- 239000013541 low molecular weight contaminant Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000002688 persistence Effects 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 238000002731 protein assay Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000004007 reversed phase HPLC Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 238000011172 small scale experimental method Methods 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- 238000010257 thawing Methods 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000000825 ultraviolet detection Methods 0.000 description 2
- 238000002255 vaccination Methods 0.000 description 2
- 230000003442 weekly effect Effects 0.000 description 2
- JVIPLYCGEZUBIO-UHFFFAOYSA-N 2-(4-fluorophenyl)-1,3-dioxoisoindole-5-carboxylic acid Chemical compound O=C1C2=CC(C(=O)O)=CC=C2C(=O)N1C1=CC=C(F)C=C1 JVIPLYCGEZUBIO-UHFFFAOYSA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 241000543381 Cliftonia monophylla Species 0.000 description 1
- GUBGYTABKSRVRQ-WFVLMXAXSA-N DEAE-cellulose Chemical compound OC1C(O)C(O)C(CO)O[C@H]1O[C@@H]1C(CO)OC(O)C(O)C1O GUBGYTABKSRVRQ-WFVLMXAXSA-N 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 206010011878 Deafness Diseases 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 229920001425 Diethylaminoethyl cellulose Polymers 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- 208000037319 Hepatitis infectious Diseases 0.000 description 1
- 206010019799 Hepatitis viral Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 108091093105 Nuclear DNA Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 241000607715 Serratia marcescens Species 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- 229930003779 Vitamin B12 Natural products 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000012436 analytical size exclusion chromatography Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- LFYJSSARVMHQJB-QIXNEVBVSA-N bakuchiol Chemical compound CC(C)=CCC[C@@](C)(C=C)\C=C\C1=CC=C(O)C=C1 LFYJSSARVMHQJB-QIXNEVBVSA-N 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 238000003965 capillary gas chromatography Methods 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 229920001429 chelating resin Polymers 0.000 description 1
- BJDCWCLMFKKGEE-CMDXXVQNSA-N chembl252518 Chemical compound C([C@@](OO1)(C)O2)C[C@H]3[C@H](C)CC[C@@H]4[C@@]31[C@@H]2O[C@H](O)[C@@H]4C BJDCWCLMFKKGEE-CMDXXVQNSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002026 chloroform extract Substances 0.000 description 1
- 239000012539 chromatography resin Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- AGVAZMGAQJOSFJ-WZHZPDAFSA-M cobalt(2+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2 Chemical compound [Co+2].N#[C-].[N-]([C@@H]1[C@H](CC(N)=O)[C@@]2(C)CCC(=O)NC[C@@H](C)OP(O)(=O)O[C@H]3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)\C2=C(C)/C([C@H](C\2(C)C)CCC(N)=O)=N/C/2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O AGVAZMGAQJOSFJ-WZHZPDAFSA-M 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013058 crude material Substances 0.000 description 1
- 239000012045 crude solution Substances 0.000 description 1
- 238000007821 culture assay Methods 0.000 description 1
- 239000012531 culture fluid Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 231100000895 deafness Toxicity 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 238000000326 densiometry Methods 0.000 description 1
- 238000000432 density-gradient centrifugation Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229940023064 escherichia coli Drugs 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 208000016354 hearing loss disease Diseases 0.000 description 1
- 238000011141 high resolution liquid chromatography Methods 0.000 description 1
- 235000003642 hunger Nutrition 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000001524 infective effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 238000012933 kinetic analysis Methods 0.000 description 1
- 238000003367 kinetic assay Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 210000005265 lung cell Anatomy 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 241001515942 marmosets Species 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 1
- 238000002663 nebulization Methods 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- 231100001079 no serious adverse effect Toxicity 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 238000012803 optimization experiment Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 102000013415 peroxidase activity proteins Human genes 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 238000009522 phase III clinical trial Methods 0.000 description 1
- QKFJKGMPGYROCL-UHFFFAOYSA-N phenyl isothiocyanate Chemical compound S=C=NC1=CC=CC=C1 QKFJKGMPGYROCL-UHFFFAOYSA-N 0.000 description 1
- 229920001993 poloxamer 188 Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 238000002331 protein detection Methods 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000012192 staining solution Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000037351 starvation Effects 0.000 description 1
- 238000000856 sucrose gradient centrifugation Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000012134 supernatant fraction Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 229940125575 vaccine candidate Drugs 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 201000001862 viral hepatitis Diseases 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
- 239000012905 visible particle Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 239000011715 vitamin B12 Substances 0.000 description 1
- 235000019163 vitamin B12 Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
- C12N7/02—Recovery or purification
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/29—Hepatitis virus
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Virology (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Immunology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Communicable Diseases (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Mycology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Kompletan, visoko reproduktivan postupak komercijalnih razmjera za proizvodnju stabilnog virusa hepatitisa A obuhvaća optimalne uvjete rasta, sakupljanja i prečišćavanja antigena, da bi se dobio > 95% čist HAV na bazi proteina. Dalji stupnjevi prerade daju inaktiviranu formulaciju HAV cjepiva koje je imunogeno, dobro se podnosi i efikasno je u zaštiti protiv infekcije virulentnim HAV. U proizvodu je određen sadržaj proteina, ugljikohidrata, lipida, DNK i RNK.A complete, highly reproducible, commercial scale process for the production of stable hepatitis A virus comprises optimal growth, collection and purification conditions of the antigen to obtain> 95% pure protein-based HAV. Further stages of processing provide an inactivated formulation of the HAV vaccine that is immunogenic, well tolerated and effective in protecting against infection by virulent HAV. The content of proteins, carbohydrates, lipids, DNA and RNA is determined in the product.
Description
Ovo je djelomičan nastavak neriješene prijave serijski broj 07/926,873, podnijete 08/10/92, čiji je prioritet zahtjevan pod 35 USC §120. This is a continuation-in-part of pending application serial number 07/926,873, filed 08/10/92, the priority of which is claimed under 35 USC §120.
Oblast ovog izuma je proizvodnja visoko prečišćenog cjepiva za virus hepatitisa A. 1973 Feinstone i surad., /Science 182, str. 1026/ identificirali su etiološki agens infektivnog hepatitisa, kasnije poznatog kao virus hepatitisa A, koristeći se imunom elektronskom mikroskopijom. The field of this invention is the production of a highly purified vaccine for hepatitis A virus. 1973 Feinstone et al., /Science 182, p. 1026/ identified the etiological agent of infectious hepatitis, later known as hepatitis A virus, using immune electron microscopy.
In vitro kulturu virusa hepatitisa A (HAV) prvi su saopćili Provost i surad.. /P.S.E.B.M. 160, str. 213, 1979/ prema postupku u kome se jetra inficiranih marmozeta koristi kao inokulum za eksplantnu kulturu jetre i kulturu ćelija fetalnog bubrega rezusa (FRhk6) /U.S. Patent 4,164,566/. In vitro culture of hepatitis A virus (HAV) was first reported by Provost et al.. /P.S.E.B.M. 160, p. 213, 1979/ according to a procedure in which the liver of infected marmosets is used as an inoculum for liver explant culture and rhesus fetal kidney cell culture (FRhk6) /U.S. Patent 4,164,566/.
U jednom kasnijem izumu, uspješno je korištena direktna inokulacija HAV koji nije prethodno prošao kroz subhumani primat radi iniciranja in vitro razmnožavanja HAV (Provost i surad.. P.S.E.B.M. 167, str. 201 (1981): U.S. Patent 5,021,348. In a later invention, direct inoculation of HAV that had not previously passed through a subhuman primate was successfully used to initiate in vitro propagation of HAV (Provost et al.. P.S.E.B.M. 167, p. 201 (1981): U.S. Patent 5,021,348
Iz ovog rada, prikazano je slabljenje HAV preko in vitro kulture. Pored ovoga, pokazano je da ponovljenim prolaskom in vitro kulture HAV postaju produktivnije i brzina replikacije se povećava kako je virus postajao adaptiraniji na kultivirane ćelije. Dalji razvoj je bila demonstracija zaštitne efikasnosti kod subhumanih primata oba, i živog oslabljenog virusa (Provost, i surad.. J. Med Viol. 20, str. 165 (1986)/ i formalinom inaktiviranog HAV /U.S. Patent 4,164,566; U.S. Patent 5,021,348; Provost i surad., u Viral Hepatitis and Liver Diseases, str. 83-86, 1988-Alan R. Liss. Inc/. Iz prethodnih radova, postalo je jasno da su ili inaktivirani ili oslabljeni, imunogeni HAV mogući kandidati za cjepivo. Međutim, za humanu upotrebu potreban je reproduktivan postupak komercijalnih razmjera za proizvodnju antigena visoke čistoće kao bezbjedne HAV vakcine koja treba da bude komercijalno dostupna. From this paper, the attenuation of HAV through in vitro culture is shown. In addition, it was shown that with repeated passages in vitro, HAV cultures became more productive and the rate of replication increased as the virus became more adapted to cultured cells. A further development was the demonstration in subhuman primates of the protective efficacy of both live attenuated virus (Provost, et al.. J. Med Viol. 20, p. 165 (1986)) and formalin-inactivated HAV /U.S. Patent 4,164,566; U.S. Patent 5,021,348; Provost et al., in Viral Hepatitis and Liver Diseases, pp. 83-86, 1988-Alan R. Liss. Inc/. From previous work, it has become clear that either inactivated or attenuated, immunogenic HAV are possible vaccine candidates. However , for human use a commercial-scale reproducible process is needed to produce high-purity antigen as a safe HAV vaccine that should be commercially available.
Opisani su različiti postupci za djelomično prečišćavanje HAV virusa (viriona) za ispitivanje i početnu karakterizaciju virusa. Vidjeti, na primjer, Hornbeck, C.L. i surad., Intervirology 6; 309-314 (1975); Locarnini, S.A. i surad., Intervirology 10; 300-308 (1978); Siegl, G. i surad., J Virol. 26, 40-47 (1978); Siegl, G. i surad., J. Gen. Virol. 57, 331-341 (1981); Siegl, G. i surad., Intervirology 22, 218 (1984); Hughes, J.V. i surad., J. Virol. 52, 465 (1984); i Wheeler, C.M. i surad., J. Virol, 58, 307 (1986). Various procedures have been described for partial purification of HAV virus (virions) for testing and initial characterization of the virus. See, for example, Hornbeck, C.L. et al., Intervirology 6; 309-314 (1975); Locarnini, S.A. et al., Intervirology 10; 300-308 (1978); Siegl, G. et al., J Virol. 26, 40-47 (1978); Siegl, G. et al., J. Gen. Virol. 57, 331-341 (1981); Siegl, G. et al., Intervirology 22, 218 (1984); Hughes, J.V. et al., J. Virol. 52, 465 (1984); and Wheeler, C.M. et al., J. Virol, 58, 307 (1986).
Svi ovi postupci koriste glomazne, nepraktične i pretjerano skupe stupnjeve, kao što su gradijentno centrifugiranje saharoze ili gradijentno centrifugiranje CsCl-gustine. Osim toga, ovi postupci su prilagođeni na relativno male proizvodne razmjere, i mada su neki radnici objavili da je njihov proizvod bio visoko prečišćen, pažljiva analiza rada, pokazala je da je nedovoljno parametara ispitano da bi se podržao zahtjev za bilo kakav apsolutni nivo čistoće. Tako Lewis i surad., (Evropska patentna prijava 0302692 objavljena 8. veljače 1989) opisuje postupak koji obuhvaća a) razaranje HAV inficiranih ćelija, ekstrakciju i koncentriranje; (b) propuštanje kroz anjonsku izmjenjivačku kolonu pri visokoj koncentraciji soli, da bi se uklonili kontaminanti nukleinske kiseline; i (c) gel filtracionu kromatografiju. U kasnijem radu, Lewis i surad., (Evropska patentna prijava 0468702, objavljena 18. srpnja 1989) su modificirali ovaj postupak uključivanjem jednog iono izmjenjivačkog absorpciono/desorpcionog stupnja da bi se uklonili kontaminirajući ugljikohidrati. U oba ova objavljena rada, razmjera pri kojoj se proizvodi HAV je relativno mala i problemi upućeni ovim izumom za proizvodnju velikih razmjera, komercijalno povećanih razmjera nisu uzeti u obzir. Pored toga, čistoća proizvoda je određena pomoću komasija ili bojenjem srebrom gel elektroforeziranog proizvoda. Ovaj postupak analize obezbjeđuje jednu mjeru za ćistoću proteina, ali nije kvantitativan, i ne obezbjeđuje nikakvu informaciju kao što je o prisustvu ili odsustvu drugih kontaminanata kao što su lipidi, ugljikohidrati, nukleinske kiseline, ili organske supstance niskih molekulskih težina. All these procedures use cumbersome, impractical and prohibitively expensive steps, such as sucrose gradient centrifugation or CsCl-density gradient centrifugation. In addition, these procedures were adapted to relatively small production scales, and although some workers reported that their product was highly purified, careful analysis of the work showed that insufficient parameters were examined to support a claim for any absolute level of purity. Thus, Lewis et al., (European Patent Application 0302692 published February 8, 1989) describes a process comprising a) destruction of HAV infected cells, extraction and concentration; (b) passing through an anion exchange column at a high salt concentration to remove nucleic acid contaminants; and (c) gel filtration chromatography. In later work, Lewis et al., (European Patent Application 0468702, published July 18, 1989) modified this process by including an ion exchange absorption/desorption stage to remove contaminating carbohydrates. In both of these published works, the scale at which HAV is produced is relatively small and the problems presented by this invention for large-scale, commercially scaled-up production are not considered. In addition, the purity of the product was determined using comassage or silver staining of the gel electrophoresed product. This analysis procedure provides a measure of protein purity, but is not quantitative, and does not provide any information such as the presence or absence of other contaminants such as lipids, carbohydrates, nucleic acids, or low molecular weight organic substances.
U obje EPO468702A2 i EP0302692A2 publikacije iznijeto je, da raniji postupci za sakupljanje i prečišćavanje HAV koriste jedan ili više stupnjeva koji vjerojatno sprečavaju odobrenje od strane Food and Drug Administration (Uprave za hranu i lijekove), zbog njihove upotrebe deterdženata i ekzogenih enzima. U ovom izumu se upotrebljavaju i deterdženti i ekzogeni enzimi, ali izum opisuje postupke za uklanjanje ovih korisnih reagenasa, i demonstrira da proizvod sadrži manje nego što se može detektirati ovih dodatnih supstanci, dok je isto toliko čist ili i čistiji od HAV proizvoda prikazanih u objavljenoj literaturi. In both EPO468702A2 and EP0302692A2, it was reported that earlier procedures for the collection and purification of HAV used one or more steps that likely prevent approval by the Food and Drug Administration, due to their use of detergents and exogenous enzymes. Both detergents and exogenous enzymes are used in this invention, but the invention describes procedures for removing these useful reagents, and demonstrates that the product contains less than detectable amounts of these additional substances, while being as pure or purer than the HAV products shown in the published literature. literature.
Isto tako, Moritsugu i surad., (Evropska patentna prijava 0339668, objavljena 2. studenog 1989), opisuju postupak koji obuhvaća: Likewise, Moritsugu et al., (European Patent Application 0339668, published November 2, 1989), describe a process comprising:
(a) rastvaranje, ekstrakciju, koncentriranje DNase/RNase, i tretiranje proteinazom; (a) solubilization, extraction, DNase/RNase concentration, and proteinase treatment;
(b) frakcioniranje po gustoći saharoze (koje odvaja RNK koja sadrži prazne kapside); i (b) sucrose density fractionation (which separates RNA containing empty capsids); and
(c) gel filtracionu kromatografiju. (c) gel filtration chromatography.
Još jednom, ovaj postupak je ograničen u razmjerima proizvodnje, naročito s obzirom na stupanj frakcioniranja po gustoći saharoze. Pored toga, čistoća proizvoda se teško određuje i nije navedena u bilo kojem apsolutnom smislu u toj publikaciji. Once again, this process is limited in scale of production, especially with regard to the degree of fractionation by sucrose density. In addition, product purity is difficult to determine and is not stated in any absolute sense in that publication.
Lino i surad., /Vaccine, vol # 10, str. 5-10 (1992)/ su objavili poboljšanja Moritsugu-evog postupka. Proizvod iz njihovog postupka je određen pomoću SDS-poliakrilamidnom gel elektroforezom i denzitometrijom da bi se pokazalo da ima manje od 1.9% zaostalih ekzogenih proteina u njihovom prečišćenom HAV. Oni su također zaključili da je bilo manje od 5 pg zaostalih nukleinskih kiselina ćelija domaćina u 0.5μg njihovog prečišćenog HAV. Međutim, zbog ograničenja njihovog proizvodnog postupka, proizvodnja u velikim razmjerima HAV je nepraktična, i nije navedena apsolutna čistoća na osnovu više parametara. Lino et al., /Vaccine, vol # 10, p. 5-10 (1992)/ have published improvements to Moritsugu's procedure. The product of their procedure was determined by SDS-polyacrylamide gel electrophoresis and densitometry to show that there was less than 1.9% residual exogenous protein in their purified HAV. They also concluded that there was less than 5 pg of residual host cell nucleic acids in 0.5 μg of their purified HAV. However, due to the limitations of their production process, large-scale production of HAV is impractical, and absolute purity based on multiple parameters is not specified.
U jednom drugom radu, Kusov i surad., /Vaccine, 9, 540 (1991)/ kultivirali su HAV u Vero-sličnim ćelijama, i prečistili su virus organskom ekstrakcijom, DNase tretiranjem i kromatografijom na slojevima poroznog silicij dioksida. Ponovo, ovdje nema nikakvih indikacija o apsolutnoj čistoći proizvoda, niti ima indikacija o razmjerima. In another work, Kusov et al., /Vaccine, 9, 540 (1991)/ cultivated HAV in Vero-like cells, and purified the virus by organic extraction, DNase treatment and chromatography on porous silica layers. Again, there is no indication here of the absolute purity of the product, nor is there any indication of scale.
I pored neodređenosti u objavljenoj literaturi u pogledu čistoće vakcine za HAV, moguće je da se uporede proizvodi cjepiva na bazi relativne antigenosti (vidjeti Tabelu 1, Primjer 11) koja pokazuje uporedne količine HAV u različitim proizvodima navedenim od strane njihovih proizvođača, u poređenju sa proizvodom iz ovog izuma. Despite the uncertainty in the published literature regarding HAV vaccine purity, it is possible to compare vaccine products on the basis of relative antigenicity (see Table 1, Example 11) which shows the comparative amounts of HAV in different products listed by their manufacturers, compared to the product from this invention.
Proizvod iz ovog izuma je imunogen sa karakteristikama apsolutne čistoće opisanim u ovom otkriću, predstavljajući nivo HAV čistoće i razmjere proizvodnje kojima se ranije samo težilo. Ovaj izum je daleko iznad nivoa polupogonskih postupaka malih razmjera, objavljenih za dobivanje cjepiva za HAV, i prvi put je realnost za komercijalnu proizvodnju reproduktivne visoko kvalitetne, visoko prečišćene, bezbjednog cjepiva za HAV. The product of the present invention is an immunogen with the absolute purity characteristics described in this disclosure, representing a level of HAV purity and production scale previously only aspired to. This invention is far beyond the level of semi-powered small-scale procedures published for the production of HAV vaccines, and for the first time is a reality for the commercial production of a reproducible high-quality, highly purified, safe HAV vaccine.
Postupak koji obuhvaća kultiviranje HAV u bioreaktoru sa stacionarnom površinom velikih razmjera, sakupljanje virusa deterdžentom, tretiranje nukleazom, koncentriranje, ekstrakciju organskim otapalom, iono-izmjenjivačku kromatografiju, i gel filtracionu kromatografiju, obezbjeđuje reproduktivne načine proizvodnje stabilnog cjepiva za HAV proizvode sa HAV proteinskom čistoćom od > 95%. Nivoi DNK, ugljenog hidrata, RNK i lipida određuju se za cjepivo. The procedure, which includes cultivation of HAV in a large-scale stationary surface area bioreactor, virus harvesting with detergent, nuclease treatment, concentration, organic solvent extraction, ion-exchange chromatography, and gel filtration chromatography, provides a reproducible means of producing a stable vaccine for HAV products with a HAV protein purity of > 95%. DNA, carbohydrate, RNA and lipid levels are determined for the vaccine.
Sl. 1 Složeni procesni dijagram glavnih postupaka upotrebljenih za proizvodnju cjepiva za hepatitis A za kliničke probe. Lijeva strana predstavlja postupak prema ranijoj tehnici upotrebljen za faze I/II kliničke probe koje koriste postupak sa kotrljajućom bocom. Novi postupak upotrebljen za Monroe-vu studiju efikasnosti (New England J. of Med., 327:453-457 1992) je sa desne strane, a proizvodni postupak prema ovom izumu je prikazan u sredini. Sl. 1 Complex process diagram of the main processes used to produce hepatitis A vaccine for clinical trials. The left side represents the prior art procedure used for phase I/II clinical trials using the rolling bottle procedure. The new process used for the Monroe efficacy study (New England J. of Med., 327:453-457 1992) is on the right, and the manufacturing process according to this invention is shown in the center.
Sl. 2 Analiza analitičkom granulacijom u toku postupka upotrebljavajući HPSEC TSK PW 4000 kolonu eluiranu sa fosfatom puferiranim slanom otopinom, PBS. Ova analiza je kalibrirana prema visoko molekulskim standardima i predstavlja linearni površinski odgovor sa razblaženjem virusa hepatitisa A. Analiza je naročito korisna u kasnijim stupnjevima prečišćavanja. Ovdje su prikazana četiri kromatograma iz posljednja četiri stupnja proizvodnog postupka. Sl. 2 Analytical granulation analysis during the procedure using a HPSEC TSK PW 4000 column eluted with phosphate buffered saline, PBS. This assay is calibrated to high molecular standards and represents a linear surface response with hepatitis A virus dilution. The assay is particularly useful in later purification steps. Shown here are four chromatograms from the last four stages of the production process.
Kromatografija se registrira pomoću dvostruke UV detekcije na 214 nm (gornji trag pomoću indikatora), i odnosno 260 nm (donji trag pomoću indikatora). Upotrebljavajući ovu analizu, pik koji odgovara virusu hepatitisa A je prvo vidljiv poslije ponovnog suspendiranja PEC peleta (panel A). Stupanj ekstrakcije kloroformom uklanja mnogo od materijala visoke molekulske težine, koji apsorbiraju UV (panel B). Anjonska izmjenjivačka kromatografija služi da se koncentrira virus (panel C) i preparativna ekskluziona kromatografija po veličini daje preparat visoko prečišćenog virusa (panel D). Prečišćeni virus hepatitisa ima lošu absorpciju u oblasti 260 ili 280 nm tako da je prisutan samo trag pomoću indikatora na 214 nm. Pod uvjetima ove analize HAV proizvod je dat kao jedinstven, simetričan pik i stoga analiza obezbjeđuje mjeru za čistoću HAV, nezavisno od analize pomoću SDS PAGE. Chromatography is registered using double UV detection at 214 nm (upper trace using indicator), and respectively 260 nm (lower trace using indicator). Using this assay, the peak corresponding to hepatitis A virus is first visible after resuspending the PEC pellet (panel A). A chloroform extraction step removes much of the high-molecular-weight, UV-absorbing material (panel B). Anion exchange chromatography serves to concentrate the virus (panel C) and preparative size exclusion chromatography provides a preparation of highly purified virus (panel D). Purified hepatitis virus has poor absorption in the 260 or 280 nm region so that only a trace is present using the indicator at 214 nm. Under the conditions of this assay, the HAV product is given as a single, symmetrical peak and therefore the assay provides a measure of HAV purity, independent of SDS PAGE analysis.
SI. 3 Rast MRC-5 ćelija na staklu, polistirolu i 316 nerđajućem čeliku. Koncentracija površina ćelija se nanosi kao funkcija vremena. Ćelija se inokuliraju na kuponima svakog od materijala pri gustini približno od 10.000/cm2 i kupon se žrtvuje svakodnevno radi brojanja ćelija. Ćelije na kuponima od staklenih pokrivnih pločica (mikroskopskih) i na kuponima od 316 nerđajućeg čelika se kultiviraju u petri zdjelama od 150 cm2 koje sadrže 90 ml mdija (0.6 ml/cm2); ćelije gajene u T-bocama od 25 cm2 se kultiviraju sa 7.5 ml medija (0.3 ml/cm2). SI. 3 Growth of MRC-5 cells on glass, polystyrene and 316 stainless steel. Cell surface concentration is plotted as a function of time. Cells are inoculated onto coupons of each material at a density of approximately 10,000/cm 2 and the coupon is sacrificed daily for cell counting. Cells on glass coverslip coupons (microscopic) and on 316 stainless steel coupons are cultured in 150 cm2 petri dishes containing 90 ml of medium (0.6 ml/cm2); cells grown in T-bottles of 25 cm2 are cultured with 7.5 ml medium (0.3 ml/cm2).
Sl. 4 Rast MRC-5 ćelija i koncentracija preostale glukoze za ćelije gajene na kuponima od 316 nerđajućeg čelika. Koncentracija površine ćelija (ćelije/cm2) i koncentracija glukoze (mg/cm2) nanose se kao funkcija od vremena (d) za ćelije gajene na kuponima od 25 cm2 nerđajućeg čelika. Sl. 4 MRC-5 cell growth and residual glucose concentration for cells grown on 316 stainless steel coupons. Cell surface concentration (cells/cm 2 ) and glucose concentration (mg/cm 2 ) are plotted as a function of time (d) for cells grown on 25 cm 2 stainless steel coupons.
Sl. 5 Svjetlosni mikrograf MRC-5 ćelija gajenih na mreži od nerđajućeg čelika. Ćelije su inokulirane pri 5,000-10,000 ćelija/cm2 i kultivirane u višku od 2 nedjelje. Sl. 5 Light micrograph of MRC-5 cells grown on stainless steel mesh. Cells were inoculated at 5,000-10,000 cells/cm2 and cultured in excess for 2 weeks.
Uveličanje 40X. Magnification 40X.
Sl. 6 Bojenje sposobnih za život i ne-sposobnih za život MRC-5 ćelija gajenih na mreži od 316 nerđajućeg čelika. Ćelije su bojene sa fluorescein diacetatom (FDA) i etidij bromidom (EB) prema protokolu opisanom u odjeljku Materijali i Postupci iz Primjera 14, i zatim su posmatrane upotrebljavajući skening laserski konfokalni mikroskop; materijal je skeniran (razlagan) u inkrementima od 57 μm. Slika 6A odgovara fluorescenciji od fluoresceina i pokazuje za život sposobne ćelije. Slika 6B je fluorescencija uslijed etidij bromida bojenja DNK, pokazujući skoro kompletnu sposobnost za život ćelija. Pozitivna kontrola za etidij bromid je prikazana na Slici 7. Sl. 6 Staining of viable and non-viable MRC-5 cells grown on 316 stainless steel mesh. Cells were stained with fluorescein diacetate (FDA) and ethidium bromide (EB) according to the protocol described in the Materials and Methods section of Example 14, and then observed using a scanning laser confocal microscope; the material was scanned (decomposed) in 57 μm increments. Figure 6A corresponds to fluorescence from fluorescein and shows viable cells. Figure 6B is the fluorescence due to ethidium bromide staining of DNA, showing almost complete cell viability. A positive control for ethidium bromide is shown in Figure 7.
Sl. 7 Bojenje etidij bromidom za život ne-sposobnih MRC-5 ćelija. Ćelije gajene na mreži od 316 nerđajućeg čelika su učinjene ne-sposobnim za život tretiranjem sa 100% metanolom. Poslije dobrog pranja sa PBS i ostavljanja da se osuše, ćelije su obojene sa FDA/EB da bi služile kao negativna kontrola za FDA i kao pozitivna kontrola za etidij bromid (naslikano). Nikakva fluorescencija nije uočena uslijed proizvodnje fluoresceina za negativnu kontrolu. Sl. 7 Ethidium bromide staining of non-viable MRC-5 cells. Cells grown on 316 stainless steel mesh were rendered non-viable by treatment with 100% methanol. After washing well with PBS and allowing to dry, cells were stained with FDA/EB to serve as a negative control for FDA and as a positive control for ethidium bromide (pictured). No fluorescence was observed due to the production of fluorescein for the negative control.
Sl. 8 Efikasnost sijanja je nanijeta za svaki element u mikser reaktoru sa statičkom mrežom (dauze static mixer reactor) za protokole koji koriste gravitacionu sedimentaciju ili recirkulaciju medija. Elementi su numerirani od 1 do 5 pri čemu je 1 element na vrhu a 4 ili 5, su elementi na dnu elementa su upotrebljena u eksperimentima gravitacione sedimentacije i 3 za recirkulacione eksperimente). Sl. 8 Seeding efficiency is plotted for each element in a dauze static mixer reactor for protocols using gravity sedimentation or media recirculation. The elements are numbered from 1 to 5, where 1 is the element at the top and 4 or 5 are the elements at the bottom of the element used in gravity sedimentation experiments and 3 for recirculation experiments).
Efikasnosti sijanja prikazane ovdje su postotak ukupnog zasijavanja; ukupne efikasnosti sijanja su reda veličine od 90%. Podaci za recirkulaciju su prosječna vrijednost iz 3 eksperimenta, dok je vrijednost za gravitacionu sedimentaciju iz jednog eksperimenta. Recirkulacione brzine su bile približno 6 cm/h. Seeding efficiencies shown here are percentages of total seeding; total seeding efficiency is of the order of 90%. The data for recirculation is the average value from 3 experiments, while the value for gravity sedimentation is from one experiment. Recirculation speeds were approximately 6 cm/h.
Sl. 9 Brzine preuzimanja glukoze (GUR) kao funkcija od vremena za reaktore koji sadrže elemente čvrstog titana i mreže od 316 nerđajućeg čelika. GUR na bazi cm2 (μg/cm2 -d) prema vremenu (d) je prikazano u Slici 9A, dok je GUR na bazi zapremine reaktora nanijeto na Slici 9B. Rezultati na Slici 9A su u zavisnosti od utvrđenih površinskih oblasti elemenata, dok Slika 9B ne predstavlja nikakvo utvrđivanje pošto su oba reaktora iste zapremine. Sl. 9 Glucose uptake rates (GUR) as a function of time for reactors containing solid titanium elements and 316 stainless steel mesh. GUR on a cm2 basis (μg/cm2 -d) versus time (d) is shown in Figure 9A, while GUR on a reactor volume basis is plotted in Figure 9B. The results in Figure 9A are dependent on the determined surface areas of the elements, while Figure 9B does not represent any determination since both reactors are of the same volume.
Sl. 10 Postotak ukupnog proteina promatran u narednim lizatima za postojan mikser sa statičnom mrežom. Protokoli za lizate 1-4 su opisani u tekstu. Mikroskopskim promatranjem, su bili bez ćelijskog debrisa, dok su elementi mreže sadržavali znatno ćelijskog debrisa poslije četiri lizisa. Sl. 10 Percentage of total protein observed in subsequent lysates for a constant mixer with a static network. Protocols for lysates 1-4 are described in the text. Microscopically, they were free of cellular debris, while the network elements contained considerable cellular debris after four lysis.
Sl. 11 Brzine preuzimanja glukoze kao funkcija od vremena za mikser reaktor sa statičkom mrežom od 316 nerđajućeg čelika. Reaktor je inficiran sa MOI od 1 na dan 7 i sakupljanje je izvršeno na dan 28. Sl. 11 Glucose uptake rates as a function of time for a 316 stainless steel static mesh mixer reactor. The reactor was infected with an MOI of 1 on day 7 and harvesting was performed on day 28.
Sl. 12 Postotak ukupnog proteina HAVAg u narednim lizatima za mikser sa statičkom mrežom prikazan na Slici 11. Protokoli za lizate 1-4 su opisaniu tekstu. Ukupan protein lizata 1 je bio umjetan visok zbog neefikasnog PBS pranja. Sl. 12 The percentage of total HAVAg protein in subsequent lysates for the static grid mixer shown in Figure 11. Protocols for lysates 1-4 are described in the text. The total protein of lysate 1 was artificially high due to inefficient PBS washing.
Sl. 13 Efekat MOI na rast ćelija i potrošnju glukoze. Ćelije su inficirane sa MOI od 0. 1, i 10 sa HAV CR326FP28. Nisu uočene razlike u gustoći ćelija (13A) i preostaloj glukozi (13B) sve do 8 dana poslije infekcije ovog sistema. Potpuno ponovno šaržiranje medija izvršeno je na dan 8. Sl. 13 Effect of MOI on cell growth and glucose consumption. Cells were infected at an MOI of 0.1, and 10 with HAV CR326FP28. No differences in cell density (13A) and residual glucose (13B) were observed until 8 days after infection of this system. A complete reloading of the media was carried out on day 8.
Sl. 14 Ćelijski protein izmjeren prema BSA standardu prema broju ćelija. Najpogodnija interpolaciona linija je opisana jednadžbom: Y(104) = -0.09 + 0.42X, r=0.99. Ova slika pokazuje da jedna kriva obezbjeđuje načine za mjerenje broja MRC-5 ćelija pomoću ukupnog proteina, bez obzira na "stanje" ćelija. Sl. 14 Cellular protein measured according to BSA standard according to the number of cells. The most suitable interpolation line is described by the equation: Y(104) = -0.09 + 0.42X, r=0.99. This figure shows that a single curve provides a means to measure the number of MRC-5 cells using total protein, regardless of the "state" of the cells.
Sl. 15 Slika 14 je ponovo nanijeta, pokazujući vrijeme za svaku točku rezultata. Sl. 15 Figure 14 is plotted again, showing the time for each score point.
Sl. 16 Konverzija ukupnog proteina prema broju ćelija blisko podsjeća na gustoću ćelija dobivenu upotrebljavajući Coulter brojač (Coulter Counter). Vjeruje se da su neslaganja uslijed malih zapremina lizis pufera upotrebljenog u sakupljanju T-25a (2X 0.08 ml/cm2 je upotrebljeno radi konzistencije). Sl. 16 The conversion of total protein to cell number closely resembles the cell density obtained using a Coulter Counter. Discrepancies are believed to be due to small volumes of lysis buffer used in T-25a collection (2X 0.08 ml/cm2 was used for consistency).
Sl. 17 Prečišćavanje preko stupnja ekstrakcije otapalom, HPSEC profila (proizvodne serije konzistencije). Sl. 17 Purification via solvent extraction step, HPSEC profile (production batch consistency).
Sl. 18 Prečišćavanje preko stupnja ekstrakcije otapalom, HPSEC profili (probne serije). Sl. 18 Purification via solvent extraction step, HPSEC profiles (test series).
Sl. 19 Efekat vremena mješanja na odnos Hep A/nečistoće. Sl. 19 Effect of mixing time on Hep A/impurity ratio.
SI. 20 Efekat vremena mješanja na površine Hep A i nečistoća (mućkalica, boce od 50 ml, 6 minuta). SI. 20 Effect of mixing time on the surfaces of Hep A and impurities (shaker, 50 ml bottles, 6 minutes).
Sl. 21 Efekat vremena mješanja na površine Hep A i nečistoća (Mućkalica, boce od 500 ml, 2 minute). Sl. 21 Effect of mixing time on Hep A surfaces and impurities (Shaker, 500 ml bottles, 2 minutes).
Sl. 22 Efekat vremena mješanja i zapremine epruvete na površine Hep A i nečistoća (Mućkalica). Sl. 22 The effect of mixing time and the volume of the test tube on the surfaces of Hep A and impurities (Shaker).
Sl. 23 Efekat odnosa otapala /vode na odnos Hep A/ nečistoće. Sl. 23 The effect of the solvent/water ratio on the Hep A/ impurity ratio.
Sl. 24 Efekat odnosa otapalo/voda na odnos površina Hep A i nećistoća (Mućkalica). Sl. 24 The effect of the solvent/water ratio on the ratio of Hep A surfaces and impurities (Mućkalica).
Sl. 25 Efekat vremena mješanja i tipa na odnos Hep A/nečistoće. Sl. 25 Effect of mixing time and type on the Hep A/impurity ratio.
Sl. 26 Stabilnost uzorka hepatitisa A određena pomoću HPSEC. Sl. 26 Hepatitis A sample stability determined by HPSEC.
Sl. 27 Efekat soli na otopljivost hepatitisa A (na 4 stupnjeva). Sl. 27 Effect of salt on the solubility of hepatitis A (at 4 degrees).
Sl. 28 Efekat soli na otopljivost hepatitisa A (na 4 stupnjeva). Sl. 28 Effect of salt on the solubility of hepatitis A (at 4 degrees).
Sl. 29 Kalibraciona kriva molekulskih težina, PW4000xl. Sl. 29 Calibration curve of molecular weights, PW4000xl.
Sl. 30 Log površine pika hepatitisa A prema log koncentraciji hepatitisa A. Sl. 30 Log peak area of hepatitis A according to log concentration of hepatitis A.
Sl. 31 Kalibracione krive hepatitisa A. Sl. 31 Hepatitis A calibration curves.
Sl. 32 Poređenje uzoraka filtriranog lizata i nukleazom tretiranog lizata, UV na 214 nm. Sl. 32 Comparison of samples of filtered lysate and nuclease-treated lysate, UV at 214 nm.
Sl. 33 Poređenje uzoraka filtriranog lizata i nukleazom tretiranog lizata. UV na 260 nm. Sl. 33 Comparison of samples of filtered lysate and nuclease-treated lysate. UV at 260 nm.
Sl. 34 Uzorak ponovo suspendiranih PEG peleta. UV na 214 nm. Sl. 34 Sample of resuspended PEG pellets. UV at 214 nm.
Sl. 35 Uzorak kloroformom ekstrahirane vodene faze iz Rx2011008. UV na 214 nm. Sl. 35 Sample of the chloroform-extracted aqueous phase from Rx2011008. UV at 214 nm.
Sl. 36 Uzorak proizvoda anjonske izmjene iz Rx2009854. UV na 214 nm. Sl. 36 Sample anion exchange product from Rx2009854. UV at 214 nm.
Sl. 37 Proizvod ekskluzione kromatografije po veličini. UV na 214 nm. Sl. 37 Product of size exclusion chromatography. UV at 214 nm.
Sl. 38 Uzorak proizvoda ekskluzione kromatografije po veličini (SEC) iz Rx2011008. UV na 214 nm. Sl. 38 Sample size exclusion chromatography (SEC) product from Rx2011008. UV at 214 nm.
Zadržani pik vidljiv na oko 49 minuta. Retained peak visible at about 49 minutes.
Sl. 39 Korelacija EIA i HPSEC rezultata iz uzoraka iz 11 serija. Sl. 39 Correlation of EIA and HPSEC results from samples from 11 batches.
Sl. 40 Vrijednosti postotaka površine iz 4 uzoraka iz 13 hepatitis A serija. Sl. 40 Area percentage values from 4 samples from 13 hepatitis A series.
Komercijalno prilagodljiv postupak prečišćavanja prema ovom izumu obuhvaća prečišćavanje bilo kojeg virusa hepatitisa A (HAV), bilo da je izveden iz oslabljenog ili virulentnog HAV, proizvedenog u bilo kojem soju ćelija, liniji ili kulturi sumnjivoj na infekciju sa HAV. Pored toga, svi HAV kapsidi, bilo prazni (bez virusnih nukleinskih kiselina) ili kompletni (koji sadrže virusne nukleinske kiseline) su obuhvaćeni unutar postupka prema ovom izumu. A commercially adaptable purification method of the present invention encompasses the purification of any hepatitis A virus (HAV), whether derived from attenuated or virulent HAV, produced in any cell strain, line or culture suspected of HAV infection. In addition, all HAV capsids, whether empty (without viral nucleic acids) or complete (containing viral nucleic acids) are encompassed within the methods of the present invention.
HAV na pasažu dvadeset i osam (P28CR326F'; radi klasificiranja varijanti koje nastaju iz CR326, kao što je soj CR326F i CR326F', i srodnosti ove nomenklature prema apsolutnom nivou pasaža, vidjeti Provost i surad., J. Med Virol., 20: 165-175, 1986) se upotrebljava za inficiranje MRC-5 ćelija u ovom izumu, samo radi ilustrativnih ciljeva, a proizvodni materijal se kultivira na P29. P28CR326F' je oslabljeni HAV soj. Drugi sojevi HAV su obuhvaćeni ovim izumom, uključujući HAV sojeve koji se mogu oslabiti uobičajenim tehnikama: Druge pogodne linije ćelija za HAV razmnožavanje uključuju Vero, FL, WI-38, BSCl, i FRhK6 ćelije. Ovi i drugi sistemi za HAV razmnožavanje i kulture ćelija su prodiskutirane u Gerety, R.J. "Active Immunization Against Hepatitis u Gerety, R.J. (izd) Hepatitis A Academic Press 1984, str. 263-276; i Ticehurst. J.R.. Seminars in Liver Disease 6, 46-55 (1986). U principu, bilo koja linija ćelija kao što je bilo koja humana diploidna fibroblastna linija ćelija, može da služi kao ćelija domaćina za HAV pod uvjetom da je osjetljiva na HAV infekciju. Prvenstvena linija ćelija za proizvodnju vakcine je MRC-5. HAV at passage twenty-eight (P28CR326F'; for the classification of variants arising from CR326, such as strain CR326F and CR326F', and the relationship of this nomenclature according to absolute passage level, see Provost et al., J. Med Virol., 20: 165-175, 1986) is used to infect MRC-5 cells in this invention, for illustrative purposes only, and the production material is cultured at P29. P28CR326F' is an attenuated HAV strain. Other HAV strains are encompassed by the present invention, including HAV strains that can be attenuated by conventional techniques: Other suitable cell lines for HAV propagation include Vero, FL, WI-38, BSCl, and FRhK6 cells. These and other HAV propagation and cell culture systems are discussed in Gerety, R.J. "Active Immunization Against Hepatitis in Gerety, R.J. (ed.) Hepatitis A Academic Press 1984, pp. 263-276; and Ticehurst. J.R.. Seminars in Liver Disease 6, 46-55 (1986). In principle, any cell line as which is any human diploid fibroblast cell line, can serve as a host cell for HAV provided it is susceptible to HAV infection.The primary cell line for vaccine production is MRC-5.
Postupak komereijalnih razmjera prema ovom izumu obuhvaća stupnjeve: The commercial-scale process according to this invention includes the following steps:
(a) Kultiviranje velike količine hepatitis A virusa (HAV) u pogodnom reaktoru za kulturu i medijumu (a) Cultivation of a large amount of hepatitis A virus (HAV) in a suitable culture reactor and medium
Prvenstveni načini za postizanje ovog obuhvaćaju, ali nisu ograničeni na, upotrebu HAV adaptiranog na rast u humanim diploidnim plućnim ćelijama pogodnim za proizvodnju cjepiva. Pogodne su WI3B ćelije ili MRC-5: Ove ćelije se gaje na mikro-nosačima ili slojevima ćelija u balonima ili okretnim bocama. Postupak prema ovom izumu koristi velike površinske oblasti, multilamelarnih bioreaktora kao što su "NUNC CELL FACTORY, COSTAR CUBE Static Surface Reactor (SSR) static mixer reaktor" NUNC ćelijska Tvornica, COSTAR kubični reaktor sa statičkom površinom (SSR), ili statički mikser reaktor kao što je opisano u U.S. Patentima 4,296,204, 4,415,670, ili kao što je ovdje dalje opisano u mikseru sa statičkom površinom sa mrežom od nerđajućeg čelika, u zavisnosti od željenih razmjera proizvodnje. Prema tome, u prvenstvenoj realizaciji ovog izuma, MRC-5 ćelije se gaje u slojevima ćelija u COSTAR kubičnom SSR od 85,000 cm2, ili SSR sa mrežom čak i veće površine, inficirane pri multiplicetu infekcije (MOI) HAV dovoljnoj da se postigne efikasna infekcija kulture ćelija. MOI od oko 0.01 - 10 je pogodona. Šarža sjemena se pogodno dobiva upotrebom HAV iz frakcije gornjeg sloja tečnosti (supernatanta) SSR inkubiranog oko 28 dana. Preferred ways of accomplishing this include, but are not limited to, the use of HAV adapted for growth in human diploid lung cells suitable for vaccine production. WI3B cells or MRC-5 are suitable: These cells are grown on micro-carriers or cell layers in flasks or spinners. The process according to this invention uses large surface area, multilamellar bioreactors such as "NUNC CELL FACTORY, COSTAR CUBE Static Surface Reactor (SSR) static mixer reactor" NUNC cell Factory, COSTAR cubic static surface reactor (SSR), or static mixer reactor as which is described in the U.S. Patents 4,296,204, 4,415,670, or as further described herein in a stainless steel mesh static surface mixer, depending on the desired scale of production. Accordingly, in a preferred embodiment of the present invention, MRC-5 cells are grown in cell layers in an 85,000 cm2 COSTAR cubic SSR, or SSR with an even larger surface area, infected at a multiplicity of infection (MOI) of HAV sufficient to achieve efficient infection of the culture cell. An MOI of about 0.01 - 10 is suitable. The seed batch is conveniently obtained using HAV from the supernatant fraction of SSR incubated for about 28 days.
U prvenstvenoj realizaciji, HAV se kultivira na MRC-5 ćelijama gjenim na mreži od nerđajućeg čelika. (Vidjeti Primjer 14). Prema ovoj realizaciji, upotrebljava se bioreaktor u kome su elementi smjese napravljeni od bilo kojeg pogodnog, netoksičnog materijala na kojem ćelije mogu da rastu. Takvi elementi mogu da budu napravljeni od nerđajućeg čelika, titana, plastičnih ili sličnih materijala koji mogu da budu pripremljeni u regularnoj trodimenzionalnoj površini. Prvenstveno se upotrebljavaju elementi smjesa od 316 nerđajućeg čelika kao što su oni dostupni od Sulzer Biotech Systems (naročito SMV, SMX, EPack EX, DX, BX, CY). Svaki element se sastoji od uniforme površinske oblasti slojeva smjesa na kojima mogu da se gaje ćelije. Svaki element regularne mreže smjese je orijentirana pod kutevima od 0-90° jedan prema drugome u sterilnom reaktorskom sistemu. Konfiguracija može da bude linearna kolona ili bilo koji drugi geometrijski oblik podešen da može da se smjeste elementi smjese i koji dobro koristi zapreminu. Ćelije se tada zasijavaju i ostave se da se pričvrste (vežu) na veliku površinu obezbjeđenu smjesom. Jednom kada su ćelije dobro uspostavljene u kulturi, one mogu da se napajaju pri brzini prskanja dovoljnoj da se održava izmjena hranljivih materija i da se uklanjaju otpadni proizvodi. Pri bilo kojoj pogodnoj gustoći ćelija, ćelije se inficiraju sa HAV kao što je opisano kasnije. In a preferred embodiment, HAV is cultured on MRC-5 cells on a stainless steel grid. (See Example 14). According to this embodiment, a bioreactor is used in which the elements of the mixture are made of any suitable, non-toxic material on which cells can grow. Such elements can be made of stainless steel, titanium, plastic or similar materials that can be prepared in a regular three-dimensional surface. 316 stainless steel compound elements such as those available from Sulzer Biotech Systems (especially SMV, SMX, EPack EX, DX, BX, CY) are primarily used. Each element consists of a uniform surface area of layers of mixtures on which cells can be grown. Each element of the regular network of the mixture is oriented at angles of 0-90° to each other in a sterile reactor system. The configuration can be a linear column or any other geometric shape adjusted to accommodate the elements of the mixture and which makes good use of the volume. The cells are then seeded and allowed to attach (bind) to the large surface provided with the mixture. Once cells are well established in culture, they can be fed at a spray rate sufficient to maintain nutrient turnover and remove waste products. At any suitable cell density, cells are infected with HAV as described later.
Prednost meš elemenata je ta, što vlaknasti sloj omogućava više površinske oblasti na jedinicu zapremine. Geometrijski precizna smjesa omogućava uniformni rast fibroblasta preko površine, do poznatih i konstantnih dubina, što omoaućava kontrolu uručivanja hranljivih materija. Uniformnost smjesa također omogućava predvidljive točke kontakta između vlakana, što omogućava brzu migraciju ćelija tako da pokriju mrežu od vlakana. Konfiguracija statičkog miksera kontrolira neposrednost površina rasta jedne prema drugoj tako da se sprečava prirodan biološki rast i "prljanje" reaktora. Ovo je ozbiljan problem koji se javlja u nasumce pakiranim reaktorima sa slojevima, gdje ne-uniformnost pakiranja omogućava lokalizirane regione rasta ćelija koji tada izazivaju opadanje toka hranljivih materija i kasnije gladovanje ćelija. The advantage of mesh elements is that the fibrous layer provides more surface area per volume unit. The geometrically precise mixture enables the uniform growth of fibroblasts over the surface, to known and constant depths, which makes it possible to control the delivery of nutrients. The uniformity of the mixtures also allows for predictable points of contact between the fibers, which allows rapid migration of cells to cover the fiber mesh. The static mixer configuration controls the proximity of the growth surfaces to each other so that natural biological growth and "fouling" of the reactor is prevented. This is a serious problem that occurs in randomly packed bed reactors, where the non-uniformity of the packing allows for localized regions of cell growth that then cause a decline in nutrient flux and subsequent cell starvation.
Razumljivo je da okvir ovog izuma obuhvaća, pored pasaža 18, P18, p28, p29, p72 soja CR326F Hav-a, i bilo koju HAV varijantu soja, bilo da je oslabljena ili virulentna. Oslabljene varijante sojeva mogu da se izoliraju serijskim pasažom u ćelijama, životinjama ili drugim postupcima. Vidjeti, na primjer Provost, P.J i surad., Proc. Soc. Exp. Biol. Med. 170,8 (1982); Provost, P.J. i surad., J. Med. Virol. 20, 165 (1986): U.S. Patent 4,164,566 i 5,021,348 za detalje oslabljivanja. Postupci prečišćavanja su brzo i lako prilagodljivi za oslabljene ili virulentne HAV sojeve. It is understood that the scope of the present invention includes, in addition to passage 18, P18, p28, p29, p72 of the CR326F Hav strain, and any HAV variant strain, whether attenuated or virulent. Attenuated variant strains can be isolated by serial passage in cells, animals or other procedures. See, for example, Provost, P.J. et al., Proc. Soc. Exp. Biol. Honey. 170.8 (1982); Provost, P.J. et al., J. Med. Virol. 20, 165 (1986): U.S. Patent 4,164,566 and 5,021,348 for attenuation details. Purification procedures are quickly and easily adaptable for attenuated or virulent HAV strains.
Ostavi se da se HAV replicira u SSR do pika proizvodnje virusa. Za oslabljenu kulturu ćelija adaptirani HAV kao što je CR326FP28, uzima se od 7-35 dana, u zavisnosti od početne MOI i gustoće ćelija, tokom kojeg vremena hranljivi medij konstantno cirkulira kroz otvor koji omogućava izmjenu, plina. Medij kulture ćelija može da bude bilo koji medij koji omogućava aktivan rast MRC-5 ćelija i replikaciju HAV. Prvenstveno, medij kulture se ponovno doprema i uklanja brzinom između oko 0.010 i 0.3 ml/cm2/dan. Ova brzina je fleksibilna pošto je brzina dobivanja mase ćelija potpuno izlaganje mediju. HAV is allowed to replicate in the SSR until peak virus production. For attenuated cell culture, adapted HAV such as CR326FP28 is taken from 7-35 days, depending on the initial MOI and cell density, during which time the nutrient medium is constantly circulated through an opening that enables gas exchange. The cell culture medium can be any medium that allows active growth of MRC-5 cells and HAV replication. Primarily, the culture medium is replenished and removed at a rate between about 0.010 and 0.3 ml/cm2/day. This rate is flexible since the rate of cell mass gain is complete exposure to the medium.
Prema tome, u prvenstvenoj realizaciji ovog izuma, MRC-5 ćelije se gaje na slojevima ćelija u SSR od 340.000 cm2 (na primjer, upotrebljavajući četiri elementa od 85,000 cm2) ili mrežu SSR čak i veće površine, inficiranim pri multiplicitetu infekcije (MOI) HAV od oko 0.1 - 1.0, i ostavi se da se HAV replicira do pika proizvodnje virusnog antigena. Za ovo je potrebno oko 28 dana, u toku kojeg vremena se ponovno dodaje hranljivi medij i cirkulira kroz reaktor za kulturu i otvor koji omogućava izmjenu plina. Medij kulture može da bude bilo koji medij koji potpomaže rast ili održavanje MRC-5 ćelija i replikaciju HAV. Mi smo utvrdili da je najpogodniji medij, onaj koji sadrži osnovni medij, kao što je William-sov Medij E, dopunjen sa pogodnim faktorima rasta. Kao izvor faktora rasta mi smo utvrdili da je najpogodniji teleći serum dopunjen gvoždem. Accordingly, in a preferred embodiment of the present invention, MRC-5 cells are grown on cell layers in a 340,000 cm 2 SSR (for example, using four 85,000 cm 2 elements) or an even larger area SSR grid, infected at a multiplicity of infection (MOI) of HAV of about 0.1 - 1.0, and HAV is allowed to replicate until viral antigen production peaks. This takes about 28 days, during which time the nutrient medium is re-added and circulated through the culture reactor and gas exchange port. The culture medium can be any medium that supports the growth or maintenance of MRC-5 cells and HAV replication. We have determined that the most suitable medium is one containing a basic medium, such as Williams' Medium E, supplemented with suitable growth factors. As a source of growth factors, we have determined that calf serum supplemented with iron is the most suitable.
(b) Sakupljanje kultiviranog HAV (b) Collection of cultured HAV
Postupak sakupljanja kultiviranog HAV će biti diktiran, do neke mjere, geometrijom reaktora kulture. Uglavnom, poslije kultiviranja za oko 28 dana sa zamjenom hranljivog medija, medij kulture se ispušta i sakuplja se HAV. Ranije, za razmnožavanje virusa u malim razmjerima, ovo se postiže struganjem, a zatim zamrzavanjem dovodi do semitečnog stanja i opciono tretiranjem sa ultrazvukom, da bi se optimizialo oslobađanje ćelijski vezanog virusa. U postupku prema ovom izumu, ćelijski vezani HAV se oslobađa u minimalnu zapreminu otopine od sakupljanja. Prvenstveno, otopina od sakupljanja sadrži komponentu efikasnu da učini ćelije propustljivim za HAV. Takve komponente su poznate u tehnici. Prvenstveno se dodaje deterdžent kao što je Triton X-100, NP-40, ili jedan ekvivalent pri najmanjoj mogućoj efikasnoj koncentraciji, da pomogne kasnije uklanjanje. Nađeno je da je snabdjevanje od oko 0.05-0.5%, i prvenstveno 0.1% Tritona X-100 odgovarajuće za postizanje efikasne ekstrakcije HAV iz ćelija kultiviranih u NUNC ćelijskim tvornicama, COSTAR kubičnim, ili bilo kojoj kulturi ćelija za slojeve. Prednost upotrebe ekstrakcije deterdžentom, naročito iz SSR kao što je COSTAR kubični je ta da je geometrija takvog reaktora kulture takva da ne omogućava sakupljanje mehaničkim načinima, osim do opsega da se HAV nalazi u gornjoj tečnosti kulture koja se može izdvojiti i HAV koncentrirati i regenerirati. Međutim razmjera HAV nađenog u gornjem sloju tečnosti kulture je obično samo jedan mali dio ukupnog HAV koji se može regenerirati iz ćelija. Sakupljanje HAV pomoću deterdženta iz kultiviranih ćelija je visoko efikasno. The procedure for collecting cultured HAV will be dictated, to some extent, by the geometry of the culture reactor. Generally, after culturing for about 28 days with replacement of the nutrient medium, the culture medium is drained and the HAV is collected. Previously, for small-scale propagation of virus, this was achieved by scraping, then freezing to a semifluid state and optionally sonicating, to optimize the release of cell-bound virus. In the process of the present invention, cell-bound HAV is released into the minimal volume of the collection solution. Primarily, the collection solution contains a component effective to render the cells permeable to HAV. Such components are known in the art. Primarily, a detergent such as Triton X-100, NP-40, or an equivalent is added at the lowest possible effective concentration to aid subsequent removal. A supply of about 0.05-0.5%, and preferably 0.1% Triton X-100 has been found to be adequate to achieve efficient extraction of HAV from cells cultured in NUNC cell factories, COSTAR cubic, or any layered cell culture. The advantage of using detergent extraction, especially from an SSR such as COSTAR cubic, is that the geometry of such a culture reactor is such that it does not allow collection by mechanical means, except to the extent that HAV is in the culture supernatant which can be separated and the HAV concentrated and regenerated. However, the amount of HAV found in the upper layer of the culture fluid is usually only a small fraction of the total HAV that can be regenerated from the cells. Collection of HAV using detergent from cultured cells is highly efficient.
(c) Tretiranje sakupljenog HAV (c) Treatment of collected HAV
Jednom kada je HAV sakupljen suštinski u obliku bez ćelija iz gornjeg sloja tečnosti kulture, iz ćelija, ili oba, poželjno je da se koncentrira HAV, da bi se omogućila prerada i prečišćavanje tokom na dolje. U postupku prema ranijoj tehnici prečišćavanja HAV, gdje je HAV sakupljen mehaničkim načinima i gdje su samo male količine materijala bile prečišćavane, HAV je ekstrahiran sa organskim reagensom kao što je metilen klorid ili metilen klorid: izoamil alkohol (24:1, zap/zap), a zatim koncentriranjem vodene faze dodatkom u vodi otopljenog sintetskog polimera, kao što je polietilenglikol. Sada je otkriveno da deterdženti i ekzogeni enzimi mogu da se upotrijebe u postupku komercijalnih razmjera za proizvodnju cjelokupnog cjepiva za HAV sa uklanjanjem dodatnih materijala do točke kada se tragovi ne mogu detektirati u prečišćenom proizvodu. Once HAV has been collected in essentially cell-free form from the culture supernatant, from the cells, or both, it is desirable to concentrate the HAV to allow downstream processing and purification. In a prior art HAV purification process, where HAV was collected by mechanical means and only small amounts of material were purified, HAV was extracted with an organic reagent such as methylene chloride or methylene chloride: isoamyl alcohol (24:1, v/v) , and then by concentrating the aqueous phase with the addition of a water-dissolved synthetic polymer, such as polyethylene glycol. It has now been discovered that detergents and exogenous enzymes can be used in a commercial scale process to produce whole HAV vaccine with the removal of additional materials to the point where traces are undetectable in the purified product.
U jednoj realizaciji ovog izuma, deterdžent, kao što je Triton X-100, koji je upotrijebljen za sakupljanje HAV, uklanja se koncentriranjem/diafiltracijom, a zatim se uklanja preostali deterdžent, na primjer sa AMBERLITNIM neionskim polimernim adsorbentom kao što je XAD. Koristan postupak koji pokazuje uklanjanje Tritona X-100 ispod oko 10 μg/ml, objavili su Hurni, W.M., i Miller W.J. /Journal of Chromatography, 559, 337-343 (1991)/. Deterdžent koji je upotrijebljen za sakupljanje HAV se ne može detektirati ovom analizom u proizvodu prema realizaciji ovog postupka. Pored toga, mnogi drugi kontaminanti se uklanjaju, dajući djelomično prečišćen HAV proizvod. In one embodiment of the present invention, the detergent, such as Triton X-100, that was used to collect the HAV is removed by concentration/diafiltration, and then the remaining detergent is removed, for example with an AMBERLITE nonionic polymer adsorbent such as XAD. A useful procedure showing removal of Triton X-100 below about 10 μg/ml is published by Hurni, W.M., and Miller, W.J. /Journal of Chromatography, 559, 337-343 (1991)/. The detergent used to collect HAV cannot be detected by this analysis in the product according to the implementation of this procedure. In addition, many other contaminants are removed, yielding a partially purified HAV product.
U jednoj drugoj realizaciji izuma, poslije sakupljanja deterdžentom, za koncentriranje se upotrebljava tretiranje sa nukleazom, a zatim stupanj anjonskog izmjenjivačkog vezivanja, prije nego koncentracija/diafiltracija, a zatim XAD tretiranje. In another embodiment of the invention, after detergent collection, nuclease treatment is used for concentration, followed by an anion exchange binding step, prior to concentration/diafiltration, followed by XAD treatment.
U ovoj realizaciji, prvenstveno se upotrebljava nespecifična nukleaza visoke specifične aktivnosti, i visoko homogena. Nespecifičnost osigurava cjepanje i DNK i RNK, a homogenost enzima osigurava da se dodaje samo jedan enzim, bez dodatka drugih proteinskih kontaminanata. Osim toga, pogodno je, da je u postupku prema ovom izumu, nukleaza rezistentna na deterdžent, tako da se može dodati direktno u deterdžentom sakupljeni HAV. Bilo koja od broja nukleaza može da odgovara ovom kriteriju. Nađeno je, da je BENZONASA, dobivena kao rekombinantni protein od strane firme Nycomed Pharma A/S (Denmark), naročito pogodna za ovu svrhu. Nađeno je da je dodatak od između 0.1 μg - 100 μg/l sakupljenog HAV, a prvenstveno 10 μg/l prihvatljiv za uklanjanje kontaminirajuće slobodne nukleinske kiseline. In this embodiment, a non-specific nuclease of high specific activity, and highly homogeneous, is primarily used. The non-specificity ensures cleavage of both DNA and RNA, and the homogeneity of the enzyme ensures that only one enzyme is added, without the addition of other protein contaminants. In addition, it is convenient that, in the process of this invention, the nuclease is detergent-resistant, so that it can be added directly to the detergent-collected HAV. Any number of nucleases can fit this criterion. It was found that BENZONASA, obtained as a recombinant protein by the company Nycomed Pharma A/S (Denmark), is particularly suitable for this purpose. A supplement of between 0.1 μg - 100 μg/l of collected HAV, preferably 10 μg/l, was found to be acceptable for the removal of contaminating free nucleic acid.
Dodatak minimalne količine enzima je važan da bi se olakšalo naknadno uklanjanje enzima u stupnjevima prerade na dolje, pri čemu se dobiva proizvod sa nivoima preostalog enzima, koji se ne mogu detektovati (manje nego 10 pg/ml). The addition of a minimal amount of enzyme is important to facilitate subsequent enzyme removal in downstream processing steps, yielding a product with undetectable residual enzyme levels (less than 10 pg/ml).
Pošto se tretiranje nukleazom dešava u relativno razblaženom otapalu, mi smo otkrili da je pogodno da se veže HAV anjonskom izmjenjivačkom kromatografijom u razblaženom (90 do 150 mM) otapalu soli, i da se zatim eluira HAV stupnjem dodavanja oko 1.5 zapremina kolone otapala veće ionske jačine (≥ oko 0.3 M). HAV se bitno koncentrira pomoću ovog stupnja vezivanja i, pored toga, najviše deterdženta, BENZONASE i mnogih drugih kontaminanata protiče kroz kolonu. Zbog toga je HAV koji se eluira iz vezujuće kolone djelomično prečišćen. Bilo koja od brojnih iono izmjenjivačkih smola poznatih u tehnici može da se upotrijebi za ovaj stupanj, uključujući i one navedene u EPO468702A2. Mi smo otkrili da je naročito pogodna smola za ovu svrhu upotreba DEAE TOYOPEARL-a 650M (Tosohaas). Since the nuclease treatment occurs in a relatively dilute solvent, we have found it convenient to bind HAV by anion exchange chromatography in a dilute (90 to 150 mM) salt solvent, and then elute the HAV by adding about 1.5 column volumes of the higher ionic strength solvent. (≥ about 0.3 M). HAV is substantially concentrated by this level of binding and, in addition, most detergent, BENZONASE and many other contaminants flow through the column. Therefore, the HAV eluted from the binding column is partially purified. Any of a number of ion exchange resins known in the art can be used for this step, including those listed in EPO468702A2. We have found that a particularly suitable resin for this purpose is the use of DEAE TOYOPEARL 650M (Tosohaas).
(d) Koncentriranje HAV (d) Concentration of HAV
Poslije sakupljanja HAV i koncentriranja /diafiltracije/ XAD ili tretiranja nukleazom/vezivanjem, HAV se koncentrira sa u vodi otopljenim sintetskim polimerom efikasnim da koncentrira proteine. Za ovu svrhu je efikasan polietilen glikol (PEG), koji ima molekulsku težinu od između približno 2,000 daltona i 12,000 daltona. Tipično, se dodaje NaCl u djelomično prečišćeni HAV do finalne koncentracije od između približno 150 mM i 500 mM. PEG se tada dodaje do finalne koncentracije od između približno 2% (tež/zap) i 10% (tež/zap), a prvenstveno oko 4%. Dobiveni 4% PEG staloženi djelomično prečišćeni HAV se koncentrira i centrifugira se, gornji sloj tečnosti se odvaja i pelete se ponovno suspendiraju radi dalje prerade. Mi smo otkrili da se glavni kontaminant uklanja u odvojenom gornjem sloju tečnosti iz ovog stupnja. Uklanjanje proteaze povećava prinos, stabilnost, i čistoću HAV proizvoda u toku daljeg prečišćavanja. Ponovno suspendirane PEG pelete se opciono podvrgavaju djelovanju ultrazvuka da bi se potpomoglo otapanje prije organske ekstrakcije, kao što je opisano niže. After harvesting the HAV and concentrating /diafiltration/ XAD or treating with nuclease/binding, the HAV is concentrated with a water-dissolved synthetic polymer effective to concentrate the proteins. Polyethylene glycol (PEG), which has a molecular weight of between approximately 2,000 daltons and 12,000 daltons, is effective for this purpose. Typically, NaCl is added to partially purified HAV to a final concentration of between approximately 150 mM and 500 mM. PEG is then added to a final concentration of between approximately 2% (w/v) and 10% (w/v), preferably about 4%. The resulting 4% PEG settled partially purified HAV is concentrated and centrifuged, the upper liquid layer is separated and the pellets are resuspended for further processing. We have found that the main contaminant is removed in a separate upper liquid layer from this stage. Removal of the protease increases the yield, stability, and purity of the HAV product during further purification. The resuspended PEG pellets are optionally sonicated to aid dissolution prior to organic extraction, as described below.
(e) Organska ekstrakcija (e) Organic extraction
Ponovno suspendirane PEG pelete iz gornjeg se ekstrahiraju dodatkom smjese halogeniranih nižih alkana koji sadrže 1-6 ugljika, kao što su metilen klorid, kloroform, tetrakloretan, ili slični i antipjenušca, kao što je izoamil, alkohol. Odnos zapremine prema zapremini halogeniranog nižeg alkana prema antipjenušcu je između približno 15:1 i 50:1 i prvenstveno je između oko 20:1 i 30:1. Prijavioci su otkrili da organska ekstrakcija bitno povećava čistoću finalnog HVA proizvoda. Kloroform je bolji od metilen klorida za organsku ekstrakciju na ovom stupnju. Resuspended PEG pellets from the above are extracted by adding a mixture of halogenated lower alkanes containing 1-6 carbons, such as methylene chloride, chloroform, tetrachloroethane, or the like, and antifoams, such as isoamyl, alcohol. The volume to volume ratio of halogenated lower alkane to antifoam is between about 15:1 and 50:1 and is preferably between about 20:1 and 30:1. Applicants have found that organic extraction significantly increases the purity of the final HVA product. Chloroform is better than methylene chloride for organic extraction at this stage.
Takva ekstrakcija uklanja, pored drugih kontaminanata, lipid i lipidu slične supstance. Prema tome, ponovno suspendirane PEG pelete se razblažuju sa bilo kojim različitim puferom, uključujući fosfatno puferovani slano otapalo. TRIS, karbonatne, bikarbonatne, ili acetatne pufere. Pošto su HAV kapsidi stabilni u blago kiselim uvjetima, prihvatljivi su puferi u slabo kiseloj pH oblasti. Jedan prvenstven pufer je TNE (10 mM TRIS-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA). Fosfat može da bude upotrijebljen umjesto TRIS-HCl. Such extraction removes, in addition to other contaminants, lipid and lipid-like substances. Therefore, the resuspended PEG pellets are diluted with any of the different buffers, including phosphate buffered saline. TRIS, carbonate, bicarbonate, or acetate buffers. Since HAV capsids are stable in slightly acidic conditions, buffers in the slightly acidic pH range are acceptable. One preferred buffer is TNE (10 mM TRIS-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA). Phosphate can be used instead of TRIS-HCl.
Prvenstveno se, ponovno suspendirane PEG pelete organski ekstrahiraju dodatkom kloroforma/izoamil alkohola (24:1, zap/zap) sa organskim prema vodenom odnosu između oko 0.5:1 i 3:1. uz snažno vrtloženje. Ovaj ekstrakt se tada izbistrava centrifugiranjem pri 4.000 g 10 minuta na 20°C. Vodena faza se ostavlja, a razdjelna površina i organska faza se ponovno ekstrahiraju zapreminom TNE ili ekvivalentom pufera jednakom između 0.3 i 0.6 od originalne zapremine uzorka, i obje vodene faze se sjedinjavaju, dajući ekstrahirane PEG pelete. Primarily, the resuspended PEG pellets are organically extracted by addition of chloroform/isoamyl alcohol (24:1, w/v) with an organic to water ratio between about 0.5:1 and 3:1. with strong swirling. This extract is then clarified by centrifugation at 4,000 g for 10 minutes at 20°C. The aqueous phase is left, and the interface and organic phase are re-extracted with a volume of TNE or buffer equivalent equal to between 0.3 and 0.6 of the original sample volume, and both aqueous phases are combined, yielding the extracted PEG pellets.
Stupanj ekstrakcije otapalom igra ključnu ulogu u postupku prečišćavanja Hepatitisa A taloženjem proteinskih nečistoća na razdjelnoj površini kao i ekstrahiranjem lipida u fazu otapala. Znatno prečišćavanje koje je postignuto ovom ekstrakcijom tokom proizvodnih postojanih serija može se vidjeti iz HPSEC kromatograma na slici 17, gdje je pik nečistoće na 23 min koristan marker za proučavanje uklanjanja nećistoće u toku ovog stupnja. Nasuprot ovome, u toku manjih polupogonskih serija, značajna proporcija ovog pika je zadržana u ekstrahiranom proizvodu (slika 18). Nekoliko promjenljivih je ispitano u cilju da se razumije i kontrolira ovaj stupanj pri povećavanju proizvodnje. Proučavani su: odnos zapremina otapala prema vodi, tip mućkanja, vrijeme mješanja i intenzitet mješanja u nekoliko epruveta i veličina boca (Vidjeti Primjer 15). The degree of solvent extraction plays a key role in the Hepatitis A purification process by depositing protein impurities on the separation surface as well as extracting lipids into the solvent phase. The considerable purification achieved by this extraction during production stable runs can be seen from the HPSEC chromatogram in Figure 17, where the impurity peak at 23 min is a useful marker for studying impurity removal during this stage. In contrast to this, in the course of smaller half-run series, a significant proportion of this peak was retained in the extracted product (Figure 18). Several variables have been examined in order to understand and control this degree of increase in production. The following were studied: ratio of volume of solvent to water, type of shaking, time of mixing and intensity of mixing in several test tubes and size of bottles (See Example 15).
(f) Iono izmjenjivačka kromatografija (f) Ion exchange chromatography
Ekstrakt iz gornjeg se podvrgava anjonskoj izmjenjivačkoj kromatografiji na smoli, gelu ili matrici. Tipične anjonske izmjenjivačke matrice obuhvaćaju, ali nisu ograničene na, The extract from above is subjected to anion exchange chromatography on resin, gel or matrix. Typical anion exchange matrices include, but are not limited to,
DEAE celulozu; DEAE cellulose;
DEAE agarozu; DEAE agarose;
DEAE Biogel; DEAE Biogel;
DEAE dekstran; DEAE dextran;
DEAE Sefadeks; DEAE Sefadex;
DEAE Sefarozu; DEAE Sepharose;
Aminoheksil Sefarozu; Aminohexyl Sepharose;
Ecteola celulozu; Ecteola cellulose;
TEAE celulozu; TEAE cellulose;
QAE celulozu; QAE cellulose;
mono-Q; ili mono-Q; or
Benzoiliranu dietilaminoetil celulozu; Benzoylated diethylaminoethyl cellulose;
Jedna prvenstvena anjonska izmjenjivačka matrica je DEE TOYOPEARL 650M (Tosohaas). Opća osnovna informacija o iono izmjenjivačkoj kromatografiji može se naći, na primjer, u E.A. Peterson, "Cellulosic Ion Exchangers" u Work, T.S. i surad. Laboratory Techniques in Biochemistry and Molecular Biology Vol. 2, dio II, strane 223 i slijedećim. North-Holland 1970. One primary anion exchange matrix is DEE TOYOPEARL 650M (Tosohaas). General background information on ion exchange chromatography can be found, for example, in E.A. Peterson, "Cellulosic Ion Exchangers" in Work, T.S. and cooperation. Laboratory Techniques in Biochemistry and Molecular Biology Vol. 2, part II, pages 223 et seq. North-Holland 1970.
Organski ekstrahirane ponovno suspendirane PEG pelete se razblažuju, ako je potrebno, sa 10 mM TRIS, 1 mM EDTA, pH 7.5, ili ekvivalentnim puferom, i dodaje se NaCl da bi se dobila koncentracija NaCl između približno 0.3 M i 0.35 M ako je potrebno da se ukloni kontaminirajuća slobodna nukleinska kiselina. Pod ovim uvjetima, HAV prolazi kroz kolonu na filtracioni način. Međutim, ako je HAV preparat ranije bio tretiran sa nukleazom, organski ekstrakt se podešava na između 0.1 M i 0.15 M NaCl, prvenstveno sa 0.12 M NaCl, prije slijedećeg stupnja. The organically extracted resuspended PEG pellets are diluted, if necessary, with 10 mM TRIS, 1 mM EDTA, pH 7.5, or equivalent buffer, and NaCl is added to obtain a NaCl concentration between approximately 0.3 M and 0.35 M if necessary. contaminating free nucleic acid is removed. Under these conditions, HAV passes through the column in a filtration manner. However, if the HAV preparation has previously been treated with nuclease, the organic extract is adjusted to between 0.1 M and 0.15 M NaCl, preferably with 0.12 M NaCl, before the next step.
Pri molaritetu NaCl opisanom gore, HAV kapsidi se vezuju na anjonsku izmjenjivačku matricu dok izvjesni preostali kontaminanti kao što su ugljeni hidrati prolaze kroz matricu. Kolona se pere sa nekoliko zapremina kolona 0.12 M NaCl da bi se dalje uklonili preostali kontaminanti. HAV kapsidi se tada eluiraju sa anjonske izmjenjivačke kolone koristeći jednu zapreminu kolone plus zapreminu originalnog uzorka 0.35 M NaCl. Alternativno i pogodnije, HAV se eluira pomoću gradijentne elucije sve do oko 1 M NaCl ili ekvivalentne soli, sa HAV elucijom pri oko 0.3 M NaCl. At the NaCl molarity described above, HAV capsids bind to the anion exchange matrix while certain residual contaminants such as carbohydrates pass through the matrix. The column is washed with several column volumes of 0.12 M NaCl to further remove remaining contaminants. The HAV capsids are then eluted from the anion exchange column using one column volume plus the original sample volume of 0.35 M NaCl. Alternatively and more conveniently, HAV is eluted by gradient elution up to about 1 M NaCl or equivalent salt, with HAV elution at about 0.3 M NaCl.
(g) Gel filtracija (g) Gel filtration
Finalni stupanj gel filtracione kromatografije dolazi poslije anjonske izmjenjivačke kromatografije. Tipično se upotrebljava Sefaroza CL-4B (Pharmacia, ali se može zamijeniti mnogobrojnim drugim tipovima gel filtracionih matrica. Vidjeti na primjer, Fischer, L., "Gel Filtration Chromatography" u Work, T.S. i surad., Laboratory Techniques in Biochemistry and Molecular Biology Elsevier (1980). Mi smo otkrili naročito pogodan postupak za primjenu ekskluzione kromatografije po veličini za prečišćavanje HAV na ovom stupnju. Ovo obuhvaća eluiranje što je moguće manje zapremine uzorka anjonskom izmjenom prečišćenog HAV na tandem kolonama od TOYOPEARL HW55S i HW65S. The final stage of gel filtration chromatography comes after anion exchange chromatography. Sepharose CL-4B (Pharmacia) is typically used, but many other types of gel filtration matrices can be substituted. See, for example, Fischer, L., "Gel Filtration Chromatography" in Work, T.S. et al., Laboratory Techniques in Biochemistry and Molecular Biology Elsevier (1980). We have discovered a particularly convenient procedure for applying size exclusion chromatography to the purification of HAV at this level. This involves elution of as little sample volume as possible by anion exchange purified HAV on TOYOPEARL HW55S and HW65S tandem columns.
Dok su određene sekvence kromatografskih stupnjeva anjonske izmjene koje prati gel filtracija tipični protokoli za prečišćavanje HAV kapsida u ovom izumu, razumljivo je da se sekvence mogu mjenjati. Na primjer, gel filtracija može da prethodi stupnju anjonske izmjene. Mi smo našli da je ranije spomenuta sekvenca pogodnija. While specific sequences of anion exchange chromatographic steps followed by gel filtration are typical protocols for the purification of HAV capsids in the present invention, it is understood that the sequences can be varied. For example, gel filtration may precede an anion exchange step. We found the previously mentioned sequence to be more convenient.
(h) Taloženje HAV (h) Deposition of HAV
Potpuno neočekivano otkriće u toku proizvodnje HAV u velikim razmjerima, koje se odnosi na otopljivost virusa, nastalo je kao rezultat velikih količina HAV proizvedenih prema ovom izumu. Mi smo otkrili da se pri koncentraciji soli od 0.25-0.30 M pri kojoj se eluira HAV iz iono izmjenjivačke kolone, javlja taloženje virusa ako je koncentracija HAV iznad oko 10-20 μg/ml. A completely unexpected discovery in the course of large-scale production of HAV, relating to the solubility of the virus, arose as a result of the large quantities of HAV produced according to the present invention. We found that at a salt concentration of 0.25-0.30 M at which HAV is eluted from the ion exchange column, virus deposition occurs if the HAV concentration is above about 10-20 μg/ml.
Ovo je otkriveno pomoću HPSEC analize reprezentativnih uzoraka, koja je pokazala da su proizvod kloroformom ekstrahirane vodene faze (AQX) (od Choroform Extracted Aqueous Phase) i ekskluzivni proizvod po veličini (SEC) (od Size-Exclusion Product) veoma stabilni na odlaganje na 4°C; ali proizvod anjonske izmjene (IEX) (od Anion Excange Product) je pokazivao izrazit gubitak hepatitisa A poslije odlaganja na 4°C. This was revealed by HPSEC analysis of representative samples, which showed that the AQX product (from Choroform Extracted Aqueous Phase) and the size-exclusion product (SEC) (from Size-Exclusion Product) were highly stable upon deposition at 4 °C; but the anion exchange product (IEX) (from Anion Exchange Product) showed a marked loss of hepatitis A after storage at 4°C.
Da bi se potvrdio ovaj nalaz, započeta je studija stabilnosti sa drugim setom uzoraka. AQX, IEX proizvod, i SEC proizvod su svaki analizirani (u triplikatu) pomoću HPSEC odmah poslije geneze. Koncentracija hepatitisa A je tada odredena usporedivanjem površina dobivenih pikova prema SEC hepatitis A kalibracionoj krivoj. Pored toga, alikvot IEX proizvoda je razblažen 1 u 5 sa fosfatom puferiranom slanom otopinom (0.12 M NaCl, 6 mM natrij fosfata, pH 7.2) i odmah izvršena kvantitativno određivanje. Stabilnost ova 4 uzorka na 4°C je registrirana pomoću HPSEC u toku nekoliko dana. To confirm this finding, a stability study was started with another set of samples. AQX, IEX product, and SEC product were each analyzed (in triplicate) by HPSEC immediately after genesis. The concentration of hepatitis A was then determined by comparing the areas of the obtained peaks according to the SEC hepatitis A calibration curve. In addition, an aliquot of the IEX product was diluted 1 in 5 with phosphate buffered saline (0.12 M NaCl, 6 mM sodium phosphate, pH 7.2) and quantitative determination was immediately performed. The stability of these 4 samples at 4°C was recorded by HPSEC over several days.
Niže su dati početna koncentracija hepatitisa A i vrijednost dobivena 4 do 5 dana kasnije za nekoliko od ovih uzoraka prečišćenih tokova hepatitisa A. The initial hepatitis A concentration and the value obtained 4 to 5 days later for several of these purified hepatitis A flow samples are given below.
[image] [image]
Potpuni rezultati, uključujući intermedijarne točke vremena, prikazani su na slici 26. The full results, including intermediate time points, are shown in Figure 26.
Kao što se vidi sa prvom serijom, IEX proizvod pokazuje izrazit gubitak hepatitisa A, sa gubitkom od oko 25% koji se događa prilikom odlaganja preko noći (koncentracija hepatitisa A opada sa 59 na 45 μg/ml). As seen with the first batch, the IEX product shows a marked loss of hepatitis A, with a loss of about 25% occurring on overnight storage (hepatitis A concentration drops from 59 to 45 μg/ml).
Razblaženi IEX proizvod i AQX proizvod pokazuju mnogo veću stabilnost, sa gubitcima hepatitisa A od samo oko 10% u toku prvih 100 sati odlaganja. SEC proizvod ne pokazuje gubitak hepatitisa A, suštinski isti rezultat je dobiven za prvu seriju. The diluted IEX product and the AQX product show much greater stability, with hepatitis A losses of only about 10% during the first 100 hours of storage. The SEC product shows no loss of hepatitis A, essentially the same result was obtained for the first batch.
Jedna razlika između ove dvije serije je obrazovanje vidljivog taloga koje nastaje kod druge serije. Prisustvo taloga zahtijeva centrifugiranje cjelokupnog IEX proizvoda prije SEC stupnja. Ovo centrifugiranje dovodi do velikih gubitaka staloženog hepatitisa a; koncentracija poslije centrifugiranja je bila 29 μg/ml. Tabela prinosa izračunatih iz HPSEC podataka prikazana je niže. One difference between these two series is the formation of a visible precipitate that occurs with the second series. The presence of sediment requires centrifugation of the entire IEX product prior to the SEC stage. This centrifugation leads to large losses of settled hepatitis a; the concentration after centrifugation was 29 μg/ml. A table of yields calculated from HPSEC data is shown below.
[image] [image]
Neočekivano nizak SEC prinos nagovještava da može da dođe do agregacije ili taloženja na SEC koloni. Ustvari nešto agregata je uočeno pomoću HPSEC. Uzorak od 7 ml IEX proizvoda koji se kromatografira na manjem setu tandem SEC kolona (odmah pošto je završeno dobivanje IEX) pokazuje regeneraciju hepatitisa A od 71%, što je mnogo tipičnije za ovaj stupanj. Pošto kod ovog uzorka nije došlo do gubitka hepatitisa A pri centrifugiranju (pošto se još nije bio staložio) prinos od 71% je oko 3 puta od onoga koji je dobiven u proizvodnim razmjerama idući od IEX do SEC proizvoda. Tandem SEC manjih razmjera je dao mnogo veći faktor razblaženja, što može da bude objašnjenje za veći prinos. An unexpectedly low SEC yield indicates that aggregation or precipitation on the SEC column may be occurring. In fact, some aggregates were observed using HPSEC. A 7 ml sample of the IEX product that is chromatographed on a smaller set of tandem SEC columns (immediately after the IEX recovery is complete) shows a 71% recovery of hepatitis A, which is much more typical for this stage. Since this sample did not lose hepatitis A during centrifugation (as it had not settled yet) the yield of 71% is about 3 times that obtained on a production scale going from IEX to SEC products. The smaller-scale tandem SEC gave a much higher dilution factor, which may explain the higher yield.
Talog uočen u toku prečišćavanja ovih serija što se podudara sa gubitkom virusa, određenim pomoću HPSEC, iznenađujuće je utvrđeno da je otopljen u vodenim otapalima niske ionske jačine (na pr., 6 mM natrij fosfat), tako da je taloženje reverzibilno. Talog se ponovo otapa dodavanjem 6 mM natrij fosfata, koji dovodi do brzog otapanja. Nasuprot ovome, ponovo suspendirani talog u 120 mM natrij klorida sa 6 mM natrij fosfata ili u otapalima veće ionske jačine dovodi do male promjene. Na bazi HPSEC retencionih vremena, talog koji je otopljen u 6 mM natrij fosfata bio je iste veličine kao monomerni hepatitis A, dok SDS-Page obojen sa srebrom pokazuje da otopljeni talog ima iste proteinske trake vidljive u finalnom SEC proizvodu. Na osnovu ovih podataka, prečišćavanje hepatitisa A je modificirano tako da uključi razblaživanje iono izmjenjivačkog proizvoda da bi se spriječili gubici taloga (Vidjeti Primjer 16), tako da 1:1 razblaženje daje koncentraciju soli od oko 0.15 M ili nižu. Također je poželjno da se postigne koncentracija HAV niža od 20 μg/ml. A precipitate observed during the purification of these batches coinciding with the loss of virus, as determined by HPSEC, was surprisingly found to be dissolved in aqueous solvents of low ionic strength (eg, 6 mM sodium phosphate), so that the precipitation was reversible. The precipitate is redissolved by adding 6 mM sodium phosphate, which leads to rapid dissolution. In contrast, resuspending the precipitate in 120 mM sodium chloride with 6 mM sodium phosphate or in solvents of higher ionic strength leads to little change. Based on HPSEC retention times, the precipitate solubilized in 6 mM sodium phosphate was the same size as monomeric hepatitis A, while silver-stained SDS-Page showed that the solubilized precipitate had the same protein bands seen in the final SEC product. Based on these data, the hepatitis A purification was modified to include dilution of the ion exchange product to prevent precipitate losses (See Example 16), such that a 1:1 dilution yields a salt concentration of about 0.15 M or lower. It is also desirable to achieve a HAV concentration lower than 20 μg/ml.
(i) HPSEC konzistenciona analiza (i) HPSEC consistency analysis
Analiza visoko performantnom ekskluzivnom kromatografijom po veličini (HPSEC) (High Performance Size Exclusion Chromatography) je razvijena radi kvantitativnog određivanja koncentracija hepatitisa A i nivoa nečistoća u uzorcima iz postupka prečišćavanja hepatitisa A. High Performance Size Exclusion Chromatography (HPSEC) analysis was developed for the quantitative determination of hepatitis A concentrations and impurity levels in samples from the hepatitis A purification process.
Analizirani su uzorci hepatitisa A iz postupka iz ukupno 14 serija dobivenih prema ovom izumu; dobivena baza podataka je bila upotrijebljena za karakteriziranje nivoa hepatitisa A i profila kontaminanata za svaki od stupnjeva prećišćavanja. Uvjeti HPSEC analize, sigurnost podataka koji pokazuju točnost i preciznost analize, uspoređenje HPSEC i EIA podataka, i rezultati iz HPSEC analiza 10 serija, prikazni su u Primjeru 17 i slikama Hepatitis A samples from the procedure from a total of 14 batches obtained according to this invention were analyzed; the resulting database was used to characterize hepatitis A levels and contaminant profiles for each of the purification steps. The conditions of HPSEC analysis, the security of the data showing the accuracy and precision of the analysis, the comparison of HPSEC and EIA data, and the results from the HPSEC analysis of 10 series, are shown in Example 17 and figures
29-46. 29-46.
(j) Inaktivacija i formulacija cjepiva (j) Inactivation and formulation of vaccines
Dodatni stupnjevi postupka konvencionalnog i dobro poznatog karaktera su ili mogu da budu potrebni za dobivanje prečišćenih HAV kapsida za upotrebu za cjepivo. Na primjer, tretiranje sa formalinom, sterilna filtracija i absorpcija na nosače ili ađuvante su tipični osnovni stupnjevi za dobivanje formalinom-inaktiviranog cjepiva. Additional procedural steps of a conventional and well-known nature are or may be necessary to obtain purified HAV capsids for vaccine use. For example, treatment with formalin, sterile filtration, and absorption onto carriers or adjuvants are typical basic steps for obtaining a formalin-inactivated vaccine.
Vidjeti, na primjer, Provost, P. J. i surad., Proc. Soc. Exp. Biol. Med. 160, 213 (1979); Provost, P. J., i surad., J. Med. Virol. 19, 23 (1986). HAV može da se inaktivira pomoću topline, promjenama pH, ozračivanjem, tretiranjem sa organskim otapalima kao što su formalin ili paraformaldehid: Tipično se, HAV inaktivacija vrši pri odnosu od 1/4000 formalina. Mi smo otkrili da inaktivacija formalinom protiče mnogo brže i efikasnije pri četiri puta od standardne koncentracije, i koncentracija formalina od 1/1000 smanjuje vrijeme inaktivacije za faktor 4 bez suprotnog utjecaja na imunogenost. Inaktivirani HAV se tada absorbuje ili ko-taloži sa aluminij hidroksidom da bi se obezbjedio efekat ađuvanta i nosača. See, for example, Provost, P.J. et al., Proc. Soc. Exp. Biol. Honey. 160, 213 (1979); Provost, P. J., et al., J. Med. Virol. 19, 23 (1986). HAV can be inactivated by heat, pH changes, irradiation, treatment with organic solvents such as formalin or paraformaldehyde: Typically, HAV inactivation is performed at a ratio of 1/4000 formalin. We found that formalin inactivation proceeds much faster and more efficiently at four times the standard concentration, and a formalin concentration of 1/1000 reduces the inactivation time by a factor of 4 without adversely affecting immunogenicity. Inactivated HAV is then absorbed or co-precipitated with aluminum hydroxide to provide an adjuvant and carrier effect.
Pošto je doza potrebna za imunološku efikasnost ovog proizvoda veoma niska, pogodno je da se kompleksira ili absorbuje inaktivirani HAV na nosač. Nađeno je da je aluminij hidroksid potpuno prihvatljiv za ovu svrhu pošto formira čvrst kompleks sa HAV i sprečava gubitak virusa na zidove kontejnera. Since the dose required for the immunological efficiency of this product is very low, it is convenient to complex or absorb the inactivated HAV on a carrier. Aluminum hydroxide was found to be completely acceptable for this purpose as it forms a solid complex with HAV and prevents virus loss to the walls of the container.
Prema tome ovaj izum obezbjeđuje postupak za dobivanje u komercijalnim razmjerima virusa hepatitisa A veće od 95% čistoće HAV proteina, koji obuhvaća stupnjeve: Accordingly, the present invention provides a process for obtaining on a commercial scale hepatitis A virus of greater than 95% purity of the HAV protein, comprising the steps of:
(a) kultiviranje virusa hepatitisa A u velikoj količini u slojevima ćelija u velikim površinskim oblastima reaktora sa statičkom površinom, (a) culturing hepatitis A virus in large quantities in cell layers in large surface areas of a static surface reactor,
(b) uklanjanje virusa hepatitisa A iz kulture ćelija, pomoću propuštanja deterdženta u slojeve ćelija tako da se virus hepatitisa A oslobađa iz slojeva ćelija bez stvarnog uklanjanja, lizisa ili razaranja kulture ćelija u slojevima, (b) removing the hepatitis A virus from the cell culture, by permeating the detergent into the cell layers so that the hepatitis A virus is released from the cell layers without actually removing, lysing or destroying the cell culture in the layers,
(c) opciono uklanjanje na ovom stupnju za nehepatitis A virus specifičnih nukleinskih kiselina od sakupljenog HAV, ili tretiranjem sa nukleazom ili iono izmjenjivačkom absorpcijom nukleinske kiseline, (c) optional removal at this stage of non-hepatitis A virus specific nucleic acids from the collected HAV, either by nuclease treatment or ion exchange nucleic acid absorption,
(d) koncentriranje virusa hepatitisa A uklonjenog iz kulture ćelija, upotrebljavajući membrane i diafiltraciju, ili vezivanjem pomoću iono izmjenjivača, (d) concentrating the hepatitis A virus removed from the cell culture, using membranes and diafiltration, or binding using an ion exchanger,
(e) uklanjanje preostalih za ne-hepatitis A virus specifičnih proteina iz koncentriranog virusa hepatitisa A iz stupnja (d) pomoću kombinacije organske ekstrakcije, PEG taloženja, ion izmjenjivački, uključujući uklanjanje kontaminirajuće nukleinske kiseline, ako nije prethodno završeno u stupnju (c), a zatim gel permecionom kromatografijom kao finalni stupanj, (e) removing residual non-hepatitis A virus specific proteins from the concentrated hepatitis A virus of step (d) using a combination of organic extraction, PEG precipitation, ion exchange, including removal of contaminating nucleic acid, if not previously completed in step (c), and then gel permeation chromatography as the final step,
(f) regeneriranje prečišćenog virusa hepatitisa A iz stupnja (e). (f) regenerating the purified hepatitis A virus of step (e).
U prvenstvenoj realizaciji ovog izuma, postupak za proizvodnju u komercijalnim razmjerima inaktivirane vakcine za hepatitis A obuhvaća stupnjeve: In a preferred embodiment of the present invention, the process for the production on a commercial scale of an inactivated hepatitis A vaccine comprises the steps of:
(a) Kultiviranje velike količine virusa hepatitisa A (HAV) u tvornicama NUNC ćelija, (NUNC, CELL FACTORIES) COSTAR kubičnim (COSTAR CUBES), ili u bioreaktorima sa statičkom površinom čak i većih površinskih oblasti u kojima je sloj ćelija MPC-5 ćelija postavljen na regularnoj čvrstoj rešetki smjesa od čvrstog nerđajućeg čelika, titana ili titan nerđajućeg čelika; (a) Cultivation of large quantities of hepatitis A virus (HAV) in NUNC cell factories, (NUNC, CELL FACTORIES) COSTAR CUBES, or in static surface bioreactors of even larger surface areas where the cell layer is MPC-5 cells mounted on a regular solid grid of a mixture of solid stainless steel, titanium or titanium stainless steel;
(b) Sakupljanje kultiviranog HAV uklanjanjem medija kulture i dodavanjem otopine za sakupljanje koji sadrži oko 0.05 do 0.5% Tritona X-100, prvenstveno 0.1%; (b) Collecting the cultured HAV by removing the culture medium and adding a collection solution containing about 0.05 to 0.5% Triton X-100, preferably 0.1%;
(c) Tretiranje sakupljenog HAV sa nukleazom da bi se fermentovale kontaminirajuće ćelijske nukleinske kiseline: (c) Treatment of harvested HAV with nuclease to ferment contaminating cellular nucleic acids:
(d) Koncentriranje nukleazom tretiranog HAV vezivanjem na ionsku izmjenjivačku kolonu i eluiranjem vezanom HAV sa oko 0.35 M NaCl, a zatim taloženjem sa polietilen glikolom; (d) Concentration of nuclease-treated HAV by binding to an ion exchange column and eluting the bound HAV with about 0.35 M NaCl, followed by precipitation with polyethylene glycol;
(e) Ekstraktiranje koncentriranog HAV sa kloroformom/izoamil alkoholom (24:1, zap/zap) sa snažnim mješanjem, i odvajanjem i zadržavanjem vodene faze; (e) Extraction of concentrated HAV with chloroform/isoamyl alcohol (24:1, v/v) with vigorous stirring, and separation and retention of the aqueous phase;
(f) Kromatografiranje vodene faze iz organske ekstrakcije na iono izmjenjivačkoj matrici pri oko 0.12 M NaCl, i euliranje HAV sa gradijentom do veće koncentracije NaCl (1 M je adekvatna) i odmah razblaživanje sakupljene otopine od eluiranja HAV do koncentracije soli od oko 0.15 M ili niže, a prvenstveno do koncentracije HAV od oko 20 μg/ml ili niže; (f) Chromatography of the aqueous phase from the organic extraction on an ion exchange matrix at about 0.12 M NaCl, and elution of HAV with a gradient to a higher concentration of NaCl (1 M is adequate) and immediately diluting the collected solution from the HAV elution to a salt concentration of about 0.15 M or lower, and primarily up to a HAV concentration of about 20 μg/ml or lower;
(g) Kromatografiranje HAV eluiranog iz ionske izmjene na kromatografskoj smoli ekskluzionom po veličini, prvenstveno na tandem uređaju od TOYOPEARL HW55S i HW65S u koji HAV ulazi u zapreminu matrice; (g) Chromatography of HAV eluted from ion exchange on a size-exclusion chromatography resin, primarily on a TOYOPEARL HW55S and HW65S tandem device in which the HAV enters the matrix volume;
(h) Inaktiviranje gel filtriranog HAV tretiranjem sa formalinom pri 1/1000, a zatim sterilnom filtracijom, ko-taloženjem sa aluminij hidroksidom i raspodjeljvanje u ekvivalente jediničnih doza do oko 25 ng - 100 ng inaktiviranog prečišćenog HAV po dozi. (h) Inactivation of gel filtered HAV by treatment with formalin at 1/1000 followed by sterile filtration, co-precipitation with aluminum hydroxide and fractionation into unit dose equivalents of up to about 25 ng - 100 ng of inactivated purified HAV per dose.
HAV dobiven u ovom izumu je visoko prečišćen i visoko antigen. Proizvod je prečišćeni preparat virusa hepatitisa A gdje je više od 95% proteina virus hepatitisa A specifično bazirano na SDS PAGE i analizi bojenjem srebrom i manje od 0.1% mase preparata je ne-HAV nukleinska kiselina i manje od 4% je lipid. Nivo ugljenog hidrata koji se detektira kao glukoza u hidroliziranom uzorku proizvoda je između oko 0% i 200% od mase prisutnog proteina, sa ne-glukoznim ugljenim hidratom koji je prisutan pri manje od l5% od mase proteina. U prvenstvenim realizacijama, glukoza i ne-glukozni ugljeni hidrati, kao što je riboza, su prisutni pri manje nego oko 20% od mase proteina. Preparat zadržava njegovu antigenost kada se inaktivira sa formalinom. The HAV obtained in this invention is highly purified and highly antigenic. The product is a purified hepatitis A virus preparation where more than 95% of hepatitis A virus protein is specific based on SDS PAGE and silver staining analysis and less than 0.1% of the mass of the preparation is non-HAV nucleic acid and less than 4% is lipid. The level of carbohydrate detected as glucose in the hydrolyzed product sample is between about 0% and 200% by weight of protein present, with non-glucose carbohydrate present at less than 15% by weight of protein. In preferred embodiments, glucose and non-glucose carbohydrates, such as ribose, are present at less than about 20% by weight of the protein. The preparation retains its antigenicity when inactivated with formalin.
Male količine inaktiviranog virusa su adekvatne za izazivanje zaštitnih imunih odgovora. Prvenstveno, doza od 25-100 ng se primjenjuje jednom, dva puta ili tri puta u toku perioda od nekoliko mjeseci, ako je potrebno da se izazovu visoki titri anti-HAV imunih odgovora. Small amounts of inactivated virus are adequate to induce protective immune responses. Primarily, a dose of 25-100 ng is administered once, twice or three times over a period of several months, if necessary to induce high titers of anti-HAV immune responses.
Prečišćeni preparat virusa hepatitisa A ima slijedeće karakteristike, pri čemu je svaka karakteristika iznijeta na bazi Eig proteina. Za određivanje ovih karakteristika je korišten postupak dat u zagradama: The purified hepatitis A virus preparation has the following characteristics, where each characteristic is presented on the basis of the Eig protein. The procedure given in parentheses was used to determine these characteristics:
a) sadržaj lipida (plinska kromatografija): < 0.1 μg a) lipid content (gas chromatography): < 0.1 μg
b) ugljeni hidrat detektiran kao < 0.1 μg b) carbohydrate detected as < 0.1 μg
glukoza 2.5 μg; glucose 2.5 μg;
(TFA hidroliza, Dioney) (TFA hydrolysis, Dioney)
c) ne-glukozni ugljenihidrat: < 0.2 μg; c) non-glucose carbohydrate: < 0.2 μg;
(TFA hidroliza, Dionet) (TFA hydrolysis, Dionet)
d) specifični protein cjepiva hepatitisa A < 0.95 μg; d) specific protein of hepatitis A vaccine < 0.95 μg;
(amino kiselinska analiza i "western blot"), (amino acid analysis and "western blot"),
e) specifična RNK virusa hepatitisa A 0.1-0.2 μg e) specific RNA of hepatitis A virus 0.1-0.2 μg
f) kontaminirajuća DNK < 0.0004 μg f) contaminating DNA < 0.0004 μg
Prisustvo u proizvodu ugljovodične komponente koja se sastoji primarno od glukoze, smatra se beznačajnim u pogledu tolerantnosti, imunogenosti i zaštitne efikasnosti inaktivirane ađuvantiranog cjepiva. Međutim, važno je da su u proizvodu nivoi ne-glukoznog ugljenog hidrata (vjerojatno riboze iz degradacije specifične RNK za HAV) veoma niski. Također je značajno da se naglasi da je postalo moguće da se definiraju karakteristike navedene ovdje tek od otkrića postupka sposobnog da proizvede dovoljno velike količine proizvoda, tako da omogući da se izvedu relevantne analize. The presence in the product of a hydrocarbon component consisting primarily of glucose is considered insignificant in terms of tolerance, immunogenicity and protective efficiency of the inactivated adjuvanted vaccine. However, it is important that the levels of non-glucose carbohydrate (probably ribose from the degradation of HAV-specific RNA) are very low in the product. It is also important to emphasize that it has only become possible to define the characteristics listed here since the discovery of a process capable of producing sufficiently large quantities of product, so as to allow the relevant analyzes to be performed.
U jednoj specifičnoj formulaciji ovog izuma cjepivo za virus hepatitisa A ima slijedeći nominalni sastav na 25-100 jedinica/0.1-1 ml dozu: In one specific formulation of the present invention, the hepatitis A virus vaccine has the following nominal composition per 25-100 units/0.1-1 ml dose:
[image] [image]
U jednoj drugoj specifičnoj formulaciji, cjepivo za virus hepatitisa A ima slijedeći nominalni sastav na 25 jedinica/0.5 ml dozu: In another specific formulation, the hepatitis A virus vaccine has the following nominal composition per 25 units/0.5 ml dose:
[image] [image]
Nađeno je da je prečišćeni inaktivirani virus hepatitisa A prema ovom izumu efikasan u prevenciji infekcije kada se primjeni uzorak od 25 ng (ekvivalent sa 25 jediničnih doza jedne od gornjih formulacija) na bazi EIA analize u odnosu na referentni standard koji se karakterizira amino kiselinskom analizom. Nikakva ozbiljna suprotna iskustva nisu uočena među zdravim odraslim, adolescentnim ljudima ili djecom, za koje se može smatrati da su vezana sa cjepivom. Doze koje se kreću od 6 do 50 jedinica su primjenjivane na odrasle, adolescente i djecu. Uočene su brže, veće serokonverzivne brzine kod odraslih kada se primjenjene doze povećavaju. Ovaj fenomen je manje izražen kod djece. Purified inactivated hepatitis A virus according to the present invention has been found to be effective in preventing infection when a 25 ng sample (equivalent to 25 unit doses of one of the above formulations) is administered based on EIA analysis against a reference standard characterized by amino acid analysis. No serious adverse experiences have been observed in healthy adults, adolescents or children that can be considered related to the vaccine. Doses ranging from 6 to 50 units have been administered to adults, adolescents and children. Faster, higher seroconversion rates were observed in adults as the doses administered increased. This phenomenon is less pronounced in children.
Jedan mjesec poslije jedne doze od 25 jedinica, 83% odraslih (≥ 18 godina) i 97% djece i adolescenata (2 do 17 godina) su serokonvertirani. Dvije doze od 25 jedinica date u razmnaku od dvije nedjelje povećavaju serokonverzivnu brzinu kod odraslih do 93%. Serokonverzija sedam mjeseci poslije druge ili treće doze od 25 jedinica dovodi do veće od 99% serokonverzira u obje starosne grupe. Postojanost u seropozitivnosti je oko 100% sve do 12 mjeseci i 36 mjeseci u obje starosne grupe. Prema tome, jasno je da je jedna doza od 25 jedinica dovoljna da se postigne serokonverzija kod najmanje 80% bilo koje primajuće populacije u toku jednog mjeseca od imunizacije. Imunizacija sa većim dozama pokazuje serokonverziju u većem postotku kod primalaca. One month after a single dose of 25 units, 83% of adults (≥ 18 years) and 97% of children and adolescents (2 to 17 years) were seroconverted. Two doses of 25 units given two weeks apart increase the seroconversion rate in adults to 93%. Seroconversion seven months after the second or third dose of 25 units leads to greater than 99% seroconversion in both age groups. Persistence in seropositivity is about 100% up to 12 months and 36 months in both age groups. Therefore, it is clear that a single dose of 25 units is sufficient to achieve seroconversion in at least 80% of any recipient population within one month of immunization. Immunization with higher doses shows seroconversion in a higher percentage of recipients.
Na bazi doze od 25 ng, jedna "COSTAR KOCKA" može da se sakupi prema postupku iz ovog izuma, pri čemu se dobiva između oko 5.000 i 10.000 doza ili više. Postupak je također pogodan za sakupljanje i preradu nekoliko "COSTAR" kocki istovremeno. Jedan SSR sa ili bez mreže, radi povećanja površine daje znatno veći broj doza koje se sakupljaju po proizvodnom toku. On a 25 ng dose basis, one "COSTAR CUBE" can be assembled according to the method of this invention, yielding between about 5,000 and 10,000 doses or more. The process is also suitable for collecting and processing several "COSTAR" cubes at the same time. One SSR with or without a net, in order to increase the area, gives a significantly larger number of doses that are collected per production flow.
Slijedeći primjeri su dati da bi se prikazale specifične realizacije ovog izuma ali primjeri ne treba da se smatraju kao jedini način izvođenja različitih stupnjeva ovog izuma. The following examples are provided to illustrate specific embodiments of the present invention, but the examples should not be construed as the only way to carry out various aspects of the present invention.
PRIMJER 1 EXAMPLE 1
PROIZVODNJA OSNOVNOG SJEMENA VIRUSA HEPATITISA A PRODUCTION OF HEPATITIS A VIRUS BASIC SEED
Postupak za proizvodnju u velikim razmjerima sjemena za virus obuhvaća infekciju monoslojeva MRC-5 ćelija u tvornicama za NUNC ćelije (NUNC CELL FACTORIES) (NFC) od 6000 cm2. MRC-5 ćelije se gaje u tvornicama do konfluentnih monoslojeva, i zatim se inficiraju sa virusom pri MOI od 0.1. Poslije infekcije ćelije se inkubiraju 28 dana sa nedjeljnom zamjenom medija koji sadrži 10% zap/zap fetalnog telećeg seruma. Nađeno je da visoke koncentracije seruma, 2-10% zap/zap omogućavaju veću proizvodnju virusa nego niski nivoi, od 0.5 do 2% zap/zap. Na kraju ovog ciklusa, gornji sloj tečnosti sadrži velike količine infektivnog virusa, u ovom primjeru 107.3 TCID50 na mililitar, koji se sakuplja direktno iz NFC, bez lizisa ćelija, i upotrebljava se kao izvor osnovnog sjemena virusa. Na ovaj način se dobivaju velike količine infektivnog virusa potrebne za proizvodnju postupkom u velikim razmjerima, koji je reproduktivniji i lakši nego pomoću kotrljajućih boca ili balona, - ili mehaničkim sakupljanjem ćelija. The procedure for large-scale production of virus seeds involves the infection of MRC-5 cell monolayers in NUNC CELL FACTORIES (NFC) of 6000 cm2. MRC-5 cells are grown in factories to confluent monolayers, and then infected with virus at an MOI of 0.1. After infection, the cells are incubated for 28 days with weekly replacement of medium containing 10% zap/zap fetal calf serum. It was found that high serum concentrations, 2-10% w/w, enable greater virus production than low levels, from 0.5 to 2% w/w. At the end of this cycle, the supernatant contains large amounts of infectious virus, in this example 107.3 TCID50 per milliliter, which is collected directly from the NFC, without cell lysis, and is used as a source of virus seed. In this way, the large quantities of infectious virus required for large-scale production are obtained, which is more reproducible and easier than using rolling bottles or balloons, - or mechanical collection of cells.
PRIMJER 2 EXAMPLE 2
POVEĆANJE PROIZVODNJE CJEPIVA INCREASE IN VACCINE PRODUCTION
Da bi se potpomogla faza III kliničkih ispitivanja, povećanje laboratorijskog postupka je postao važan faktor razmatranja za proizvodnju cjepiva za hepatitis A. Da bi se potpomoglo povećanje razmjera proizvodnog postupka, potrebne su modifikacije ranije poznatih postupaka razmnožavanja i prečišćavanja HAV. Upotrijebljena su dva osnovna postupka za razmnožavanje ćelija, tvornice NUNC ćelija (NUNC CELL FACTORIES), i reaktori sa statičkom površinom, kao što su COSTAR kubični (COSTAR CUBE). Ovaj primjer opisuje postupak tvornice NUNC ćelija (NUNC CELL FACTORY). Primjer 3 opisuje COSTAR kubični SSR postupak. To support phase III clinical trials, laboratory scale-up has become an important consideration for hepatitis A vaccine production. To support scale-up of the manufacturing process, modifications to previously known HAV propagation and purification procedures are required. Two basic cell propagation procedures have been used, NUNC CELL FACTORIES, and static surface reactors, such as the COSTAR CUBE. This example describes the NUNC CELL FACTORY process. Example 3 describes the COSTAR cubic SSR procedure.
Fabrike NUNC ćelija upotrijebljene za Monroe-vu studiju efikasnosti NUNC cell factories used for the Monroe efficacy study
Razvijen je revidiran postupak koji omogućava poboljšano povećanje razmjera postupka za razmnožavanje većih količina oslabljenog cjepiva hepatitisa A nego što je ranije bilo moguće. Ovo je u početku bilo postignuto zamjenom standardnih kotrljajućih boca sa tvornicama NUNC ćelija (NCF). Osnovna jedinica tvornice NUNC ćelija (NCF) (NUNC CELL FACTORY) je posuda sa površinom kulture od 600 cm2. Posude koje formiraju NCF proizvode se od polistirola, tretiranog za optimalno vezivanje i rasprostiranje ćelija (Maroudas, 1976, J. Cell Physiol. Vol. 90, str. 511-520. 10 jedinica posuda opisanih ovdje imaju 10 identičnih jedinica kulture (posuda) sa ukupnom površinskom oblašću (površinom) od 6,000 cm2. U dva ugla su specijalno konstruirana otvora koja formiraju vertikalne cijevi koje spajaju posude u više slojeva. Ove vertikalne cijevi završavaju u dva adaptera koji primaju zračne filtre i specijalno konstruiran teflonski konektor. Sve jedinice su sterilizirane ozračivanjem i dobivene su od proizvođača već spremne za upotrebu. A revised process has been developed that allows for improved scale-up of the process to propagate larger quantities of attenuated hepatitis A vaccine than previously possible. This was initially achieved by replacing standard rolling bottles with NUNC cell factories (NCF). The basic unit of the NUNC CELL FACTORY (NCF) is a vessel with a culture area of 600 cm2. NCF forming dishes are manufactured from polystyrene, treated for optimal cell attachment and spreading (Maroudas, 1976, J. Cell Physiol. Vol. 90, pp. 511-520. The 10 unit dishes described here have 10 identical culture units (dishes) with with a total surface area (area) of 6,000 cm2. In two corners there are specially constructed openings that form vertical tubes that connect the containers in multiple layers. These vertical tubes terminate in two adapters that receive air filters and a specially designed Teflon connector. All units are sterilized by irradiation and are received from the manufacturer already ready for use.
Sredina u NCF za MRC-5 ćelije je veoma slična onoj dobivenoj u kotrljajućim bocama. Ćelije se gaje u statičkoj kulturi sa ćelijama vezanim za čvrst substrat pokriven sa tečnim medijem i snabdjevanje ćelija sa hranljivim materijama i kisikom je preko difuzije. Upotreba NCF-a tvornica povećava reproduktivnost operacija, dok podražava uvjete upotrijebljene u proizvodnji kotrljajućim bocama. Međutim, postupak sakupljanja i prerada tokom na dolje je različita, kao što je dalje opisano niže. The medium in the NCF for MRC-5 cells is very similar to that obtained in the rolling flasks. Cells are grown in static culture with the cells attached to a solid substrate covered with a liquid medium and the supply of nutrients and oxygen to the cells is via diffusion. The use of NCF plants increases the reproducibility of operations, while mimicking the conditions used in the production of rolling bottles. However, the downstream collection and processing process is different, as further described below.
PRIMJER 3 EXAMPLE 3
COSTAR kubični (COSTAR CUBE) reaktor sa statičkom površinom upotrijebljen za proizvodni postupak komercijalnih razmjera COSTAR CUBE static surface reactor used for commercial scale production process
Dalje povećanje je bilo izazov da se dobije što je moguće veća površina po reaktoru, dok je omogućena dobra kontrola sredine kroz bioreaktor. NUNC ćelijske tvornice (NUNC CELL FAKTORIES) omogućile su djelomično rješenje ovog izazova. Bolja rješenja su obezbjeđena pomoću COSTAR kubičnog (COSTAR CUBE) i STATIČKOG MIKSER reaktora sa statičkom površinom (SSR-a). Prethodni se sastoji od gusto pakiranih polistirolnih slojeva u plastičnoj kocki koja se može sterilizirati (COSTAR CS2000). Ukupno je dostupno 85,000 cm2 korisne površine za rast u jednoj kocki (u poređenju sa 6,000 cm2 za 10 posuda u NUNC ćelijskoj tvornici. U posljednjem reaktoru, opisanom u U.S. patentima 4,296,204 i 4,415,670, metalni, keramički, stakleni ili plastični statički elementi mješanja formiraju gusto pakiranu površinu rasta; ovi elementi mogu da se izrađuju i raspoređuju tako da obezbjede veće površine nego (COSTAR CUBE) COSTAR kocka u jednom reaktoru, za velike proizvodne postupke. HAV se uspješno kultivira u oba tipa reaktora. SSR ima cirkulacioni otvor koji omogućava recirkulaciju medija i ponovno napajanje hranljivim materijama kroz saturator, u cilju da se kontrolira pH i nivoi otopljenog plina u mediju, da bi se postigao zahtjev kulture za kisik, i da bi se postiglo rasprašivanje medija. Ova optimizacija nije moguća u kotrljajućim bocama ili u NCF. Pored toga, izmjena medija se vrši u cilju da se poboljša dostupnost velikih količina ključnog sirovog materijala. Željezom obogaćeni teleći serum (Cat. A-2151, Hyclone Laboratories, Inc., Logan, UT ili ekvivalent) sa uspješno upotrebljava da zamijeni fetalni goveđi serum. The further increase was a challenge to obtain as large an area as possible per reactor, while enabling good control of the environment through the bioreactor. NUNC CELL FACTORIES provided a partial solution to this challenge. Better solutions are provided by COSTAR cubic (COSTAR CUBE) and STATIC MIXER reactor with static surface (SSR). The former consists of densely packed polystyrene layers in a sterilizable plastic cube (COSTAR CS2000). A total of 85,000 cm2 of usable growth area is available in a single cube (compared to 6,000 cm2 for 10 vessels in a NUNC cell factory. In the latter reactor, described in U.S. Patents 4,296,204 and 4,415,670, metal, ceramic, glass, or plastic static mixing elements form a dense packed growth surface; these elements can be fabricated and arranged to provide larger surface areas than the (COSTAR CUBE) COSTAR cube in a single reactor, for large production processes. HAV is successfully cultivated in both types of reactor. SSR has a circulation hole that allows media recirculation and refeeding nutrients through the saturator, in order to control the pH and dissolved gas levels of the medium, to achieve the oxygen demand of the culture, and to achieve nebulization of the medium. This optimization is not possible in roller bottles or in NCF. In addition moreover, the medium is changed in order to improve the availability of large quantities of the key raw material. serum (Cat. A-2151, Hyclone Laboratories, Inc., Logan, UT or equivalent) has been used successfully to replace fetal bovine serum.
PRIMJER 4 EXAMPLE 4
Sakupljanje virusa hepatitisa A iz NUNC ćelijskih tvornica ili reaktora sa statičkom površinom pomoću lizisa Tritonom Harvesting hepatitis A virus from NUNC cell factories or static surface reactors by Triton lysis
Ni NUNC ćelijska tvornica niti reaktor sa statičkom površinom nisu pogodni za mehaničko struganje radi oslobađanja slojeva MRC-5 inficiranih ćelija. Ćelijski vezani virus hepatitisa A se efikasno regenerira upotrebljavajući lizis ćelija Tritonom, i prečišćava se koristeći novi postupak. Otopina dobivena postupkom lizisa Tritonom bio je razblaženiji nego preparat dobiven iz mehaničkog struganja kotrljajućih boca. Otopina dobivena sakupljanjem Tritonom, koncentrira se diafiltracijom, a zatim tretiranjem sa absorbentom, XAD, da bi se uklonio preostali Triton. Neither the NUNC cell factory nor the static surface reactor is suitable for mechanical scraping to release layers of MRC-5 infected cells. Cell-bound hepatitis A virus is efficiently regenerated using cell lysis with Triton, and purified using a new procedure. The solution obtained by the Triton lysis process was more diluted than the preparation obtained by mechanical scraping of rolling bottles. The solution obtained from the Triton collection is concentrated by diafiltration and then treated with an absorbent, XAD, to remove the remaining Triton.
Odstranjivanje Tritona do manje od 10 μg/ml prikazano je upotrebljavajući analizu kapilarnom zonskom elektroforezom u toku postupka. HAV se zatim taloži sa polietilen glikolom (PEG), ekstrahira se sa kloroformom : izoamil alkoholom. Kontaminirajuća DNK se uklanja upotrebljavajući filter kolonu za DNK, a zatim anjonsku izmjenjivačku kromatografiju i ekskluzivnu kromatografiju po veličini. Postupak koji obuhvaća i NCF rast i lizis Tritonom nije značajno utjecao na imunogenost prečišćene formalinom inaktiviranog cjepiva za hepatitis A. Triton removal down to less than 10 μg/ml was demonstrated using in-process capillary zone electrophoresis analysis. HAV is then precipitated with polyethylene glycol (PEG), extracted with chloroform: isoamyl alcohol. Contaminating DNA is removed using a DNA filter column followed by anion exchange chromatography and size exclusion chromatography. The procedure involving both NCF growth and Triton lysis did not significantly affect the immunogenicity of the purified formalin-inactivated hepatitis A vaccine.
PRIMJER 5 EXAMPLE 5
Tretiranje nukleazom i vezujuća kromatografija Nuclease treatment and binding chromatography
Mogućnost povećanja razmjera, produktivnosti i konzistencije postupka su povećani tretiranjem Tritonom sakupljenog materijala sa endonukleazom, a zatim vezivanjem anjonskom izmjenjivačkom kromatografijom da bi se koncentrirao virus (vidjeti sliku 1). Ova modifikacija eliminira potrebu za stupnjem koncentriranja/diafiltracije, XAD tretiranjem i filter kolonom za DNK. The scale-up, productivity, and consistency of the procedure were increased by Triton treatment of the harvested material with an endonuclease, followed by anion exchange chromatography binding to concentrate the virus (see Figure 1). This modification eliminates the need for a concentration/diafiltration step, XAD treatment, and a DNA filter column.
Odabrana je ne-specifična endonukleaza koja je aktivna protiv obje i RNK i DNK. Ova endonukleaza, BENZONASA je izolirana iz Serratia marcescens i klonirana u Escherichiacoli. Proizvodi se kao veoma dobro prečišćen, dobro okarakteriziran rekombinantni protein od strane Nycomed Pharma A/S (Denmark). Ova određena endonukleaza je odabrana, djelomično zbog toga pošto ima veoma visoku specifičnu aktivnost i može da se doda direktno u sirovi materijal sakupljen Tritonom u veoma malim količinama (10 mcg BENZONASE/1 sakupljenog materijala). Razvijeni su test postupci, koji koriste "WESTERN Blot" za specifični protein BENZONASE i kinetičku analizu za aktivnost enzima, radi mjerenja uklanjanja enzima postupkom prečišćavanja. Najviše (> 90%) dodate aktivnosti endonukleaze može se smatrati da ima u frakcijama od pranja i frakcijama koje protiču kroz stupanj vezivanja anjonske izmjenjivačke kromatografije (opisane niže). Nivo BENZONASE se smanjuje za faktor od više nego 100 u proizvodu vezujuće kolone. A non-specific endonuclease active against both RNA and DNA was selected. This endonuclease, BENZONASE, was isolated from Serratia marcescens and cloned into Escherichiacoli. It is produced as a highly purified, well-characterized recombinant protein by Nycomed Pharma A/S (Denmark). This particular endonuclease was chosen, partly because it has a very high specific activity and can be added directly to the crude material collected by Triton in very small amounts (10 mcg BENZONASE/1 collected material). Assay procedures have been developed, using a "WESTERN Blot" for specific BENZONASE protein and a kinetic assay for enzyme activity, to measure enzyme removal by the purification process. Most (> 90%) of the added endonuclease activity can be considered to be in the wash fractions and the fractions that flow through the binding step of anion exchange chromatography (described below). The level of BENZONASE is reduced by a factor of more than 100 in the product of the binding column.
PRIMJER 6 EXAMPLE 6
DODATNI STUPNJEVI POSTUPKA ADDITIONAL STEPS OF THE PROCEDURE
a) Stupanj vezivanja a) Degree of binding
Virus hepatitisa A se koncentrira iz nukleazom tretiranog Tritonom sakupljenog materijala na anjonskoj izmjenjivačkoj koloni nanošenjem pri niskoj ionskoj jačini i stupnjem eluiranja u 0.35-0.5 M natrij klorida u fosfatnom puferu. Virus hepatitisa A se koncentrira 30 puta ovim stupnjem vezivanja i Triton se smanjuje do nivoa koji se ne mogu detektirati, kao što je određeno analizom CZE u toku postupka. Hepatitis A virus is concentrated from nuclease-treated Triton-collected material on an anion-exchange column by application at low ionic strength and elution step in 0.35-0.5 M sodium chloride in phosphate buffer. Hepatitis A virus is concentrated 30-fold by this degree of binding and Triton is reduced to undetectable levels, as determined by in-process CZE analysis.
b) Taloženje sa PEG i ekstrakcija kloroformom b) Precipitation with PEG and extraction with chloroform
Virus hepatitisa A iz koncentriranja/diafiltracije/ XAD ili onaj eluiran iz vezujuće kolone, taloži se sa polietilen glikolom (PEG). Pod pogodnim uvjetima ovaj stupanj je visoko selektiran i glavni kontaminant, koji se drugačije koprečišćava sa virusom, ostaje otopljen i odbacuje se u frakciji gornjeg sloja tečnosti. PEG talog koji sadrži virus, ponovo se suspendira i ekstrahira sa kloroformom : izoamil alkoholom (24:1), da bi se uklonili otopljeni lipidi i proteini denatuirani sa kloroformom hoji ostaju na graničnoj površini između vodene i organske faze. Hepatitis A virus from concentration/diafiltration/XAD or that eluted from the binding column is precipitated with polyethylene glycol (PEG). Under favorable conditions, this step is highly selective and the main contaminant, which is otherwise co-purified with the virus, remains dissolved and is discarded in the fraction of the upper liquid layer. The PEG precipitate containing the virus is resuspended and extracted with chloroform: isoamyl alcohol (24:1) to remove dissolved lipids and proteins denatured with chloroform that remain at the interface between the aqueous and organic phases.
c) Anjonska izmjenjivačka kromatografija i ekskluziona kromatografija po veličini c) Anion exchange chromatography and size exclusion chromatography
Vodeni ekstrakt iz stupnja ekstrakcije kloroformom nanosi se na anjonsku izmjenjivačku kolonu pri niskom sadržaju soli i zatim se eluira sa NaCl gradijentom do 1.0 M soli. Finalni stupanj ekskluzione kromatografije po veličini daje visoko prečišćeni preparat virusa (vidjeti Sliku 2). The aqueous extract from the chloroform extraction step is applied to an anion exchange column at low salt content and then eluted with a NaCl gradient up to 1.0 M salt. The final stage of size exclusion chromatography yields a highly purified virus preparation (see Figure 2).
d) Inaktivacija d) Inactivation
Formalinom inaktiviranje virusa hepatitisa A ranije je vršeno upotrebljavajući 93 μg/ml formaldehida/ml (1:4000 formalina i na temperaturi od 37°C za koncentracije antigena blizu nivoa doza. Pod ovim uvjetima inaktiviranje virusa slijedi kinetike razlaganja prvog reda sa vremenom poluraspada od približno 2 sata, što odgovara gubitku od oko 3.5 log10 TCID50 (50% infektivne doze kulture tkiva) na dan. Smanjenje od 7 loga infektivnosti virusa postiže se za oko 2 dana, ali za vrijeme inaktiviranja produžava do dvadeset dana da bi se osigurao veliki koeficijent sigurnosti da je virus potpuno inaktivan. Formalin inactivation of hepatitis A virus was previously performed using 93 μg/ml formaldehyde/ml (1:4000 formalin and at a temperature of 37°C for antigen concentrations close to dose levels. Under these conditions, virus inactivation follows first-order decay kinetics with a half-life of approx. 2 hours, corresponding to a loss of about 3.5 log10 TCID50 (50% tissue culture infective dose) per day A reduction of 7 logs of virus infectivity is achieved in about 2 days, but during inactivation it extends up to twenty days to ensure a large safety factor that the virus is completely inactive.
Eksperimenti u malim razmjerima su potvrdili da se sa povećanjem koncentracije formaldehida povećava brzina inaktiviranja, kako je mjereno gubitkom TCID50. Brzina inaktiviranja varira proporcionalno sa koncentracijom formaldehida, kao što je očekivano za kinetiku inaktiviranja pseudo-prvog reda. Ispitivanje kulture tkiva na dvije stotine ekvivalenata doze potvrđuje potpuno inaktiviranje kada je virus inkubiran sa 370 μg/ml formaldehida (1:1000 formalina) virus na 37°C 5 dana. Prema tome, ovi modificirani uvjeti inaktiviranja obezbjeđuju koeficijent sigurnosti kao što je onaj kod ranije upotrebljenih uvjeta. Ovo je potvrđeno sa tri inaktivacije velikih polupogonskih razmjera izvedenih pod identičnim uvjetima, a zatim absorpcijom pomoću aluminij hidroksida, pri čemu se dobiva cjepivo za klinička ispitivanja. Brzina inaktiviranja je bila oko četiri puta veća od brzine ranije posmatrane pri nižim koncentracijama formaldehida, što je u odličnoj suglasnosti sa ispitivanjima u malim razmjerima. Uzorci ova dva cjepiva absorbirane aluminij hidroksidom ispitani su na imunogenost kod miševa, sa ED50 za svaku sličnim sa onim za ranija cjepiva (manje nego 2 ng). Small-scale experiments have confirmed that as the concentration of formaldehyde increases, the rate of inactivation increases, as measured by the loss of TCID50. The rate of inactivation varies proportionally with formaldehyde concentration, as expected for pseudo-first-order inactivation kinetics. A tissue culture assay of two hundred dose equivalents confirms complete inactivation when the virus is incubated with 370 μg/ml formaldehyde (1:1000 formalin) virus at 37°C for 5 days. Therefore, these modified inactivation conditions provide a safety factor similar to that of the previously used conditions. This was confirmed by three large-scale half-run inactivations performed under identical conditions, followed by absorption using aluminum hydroxide, yielding a vaccine for clinical trials. The rate of inactivation was about four times higher than the rate previously observed at lower concentrations of formaldehyde, which is in excellent agreement with small-scale tests. Samples of these two aluminum hydroxide-absorbed vaccines were tested for immunogenicity in mice, with an ED50 for each similar to that of earlier vaccines (less than 2 ng).
e) Absorpcija aluminij hidroksida e) Absorption of aluminum hydroxide
Absorpcija na aluminij hidroksid vrši se ko-taloženjem formalinom inaktiviranog virusa sa aluminij hidroksidom. Postupak upotrijebljen za sve kliničke preparate bio je suštinski isti, pri čemu je jedina promjenljiva bila koncentracija virusa u formalinom inaktiviranom sirovom otapalu. Direktno taloženje inaktiviranog virusa na aluminij hidroksid izvršeno je prvo dodavanjem kalij aluminij sulfata u formalinom inaktiviranu sirovu otopinu. Najzad, talog se formira dodatkom natrij hidroksida. Formaldehid i preostale soli se eliminiraju uklanjanjem gornjeg sloja tečnosti iz suspenzije i zamjenjujući ga sa fiziološkom slanom otopinom. Absorption on aluminum hydroxide is performed by co-precipitation of formalin-inactivated virus with aluminum hydroxide. The procedure used for all clinical preparations was essentially the same, with the only variable being the concentration of virus in the formalin-inactivated crude solvent. Direct deposition of the inactivated virus on aluminum hydroxide was performed first by adding potassium aluminum sulfate to the formalin-inactivated crude solution. Finally, a precipitate is formed by the addition of sodium hydroxide. Formaldehyde and residual salts are eliminated by removing the upper layer of liquid from the suspension and replacing it with physiological saline.
PRIMJER 7 EXAMPLE 7
ČISTOĆA HAV PROIZVODA PURITY OF HAV PRODUCTS
Analitička ekskluziona kromatografija po veličini (HPSEC), EIA i protein kao i SDS-PAGE su upotrijebljeni za registriranje postupka prečišćavanja da bi se obezbjedili konzistentni prinosi cjepiva visoke čistoće. HPSEC obezbjeđuje načine za registriranje gubitaka nukleinske kiseline u toku tretiranja nukleazom kao i za određivanje čistoće u kasnijim stupnjevima postupka. Kromatogrami na slici 2 pokazuju da je pik koji odgovara hepatitisu A jasan u PEG talogu. Virus hepatitisa A se obogaćuje u stupnju ekstrahiranja otapalom i zatim se koncentrira u stupnju ionske izmjenjivačke kromatografije. Finalna gel filtracija daje preparat hepatitisa A visoke čistoće (> 95% pomoću SDS-PAGE i bojenjem srebrom). Kao nezavisna mjera čistoće preparata HAV je jedinstveno obuhvaćen pik u HPSEC analizi (vidjeti slike 2, 37 i 38). Analytical size exclusion chromatography (HPSEC), EIA and protein as well as SDS-PAGE were used to document the purification process to ensure consistent yields of high purity vaccines. HPSEC provides a way to record nucleic acid losses during nuclease treatment as well as to determine purity in later stages of the process. The chromatograms in Figure 2 show that the peak corresponding to hepatitis A is clear in the PEG precipitate. Hepatitis A virus is enriched in a solvent extraction step and then concentrated in an ion exchange chromatography step. Final gel filtration yields a highly pure hepatitis A preparation (> 95% by SDS-PAGE and silver staining). As an independent measure of the purity of the preparation, HAV is a uniquely included peak in the HPSEC analysis (see Figures 2, 37 and 38).
II. Odstranjivanje nečistoća II. Removal of impurities
CZE analiza uzoraka u toku postupka ukazuje da se Triton uklanja stupnjem koncentriranja diafiltracije u Monroe-ovom postupku i vezujućom kolonom u proizvodnom postupku. Pored toga BENZONASA teče kroz vezujuću kolonu. Količina BENZONASE prisutna u stupnju anjonske izmjene proizvoda je ispod nivoa detekcije (< 18 femtograma aktivnosti i manje nego 13 pg BENZONASE mase/25 jedinične doze hepatitisa A; limit detekcije u ovoj analizi je 12.5 pg). CZE analysis of in-process samples indicates that Triton is removed by the diafiltration concentration stage in the Monroe process and the binding column in the production process. In addition, BENZONASA flows through the binding column. The amount of BENZONASE present in the anion exchange step of the product is below the detection level (< 18 femtograms of activity and less than 13 pg BENZONASE mass/25 unit doses of hepatitis A; the limit of detection in this analysis is 12.5 pg).
PRIMJER 8 EXAMPLE 8
Prečišćavanje virusa hepatitisa A sakupljenog iz NUNC ćelijskih tvornica ili bioreaktora sa statičkom površinom lizisom Tritonom: Monroe-va studija Purification of hepatitis A virus harvested from NUNC cell factories or static surface bioreactors by Triton lysis: the Monroe study
HAV se razmnožava suštinski kao što je opisano u Primjeru 2 koristeći NCF-e. MRC-5 ćelije se gaje u šaržama od šezdeset 6000 cm2 NCF-a na 37°C dana upotrebljavajući medij koji se sastoji od Williams-ovog Medija E dopunjenog sa 10% zap/zap fetalnog telećeg seruma i neomicinsulfatom. Na dan 7, ćelije se ponovo hrane (snabdjevaju) sa svježim medijem koji sadrži dovoljno virusa da inficira kulture pri oko 0.1 MOI, i prebacuju se u sredinu na 32°C. Kulture se dalje inkubiraju na 32°C 21 dan uz ponovno hranjenje jedanput nedjeljno. HAV se sakuplja tretiranjem slojeva ćelija sa lizis puferom koji sadrži 0.1% Tritona X-100, 10 mM TRIS, 1 mM MgCl2 pH 7.5. Dobiveni lizat iz NCF-a se sakuplja i zamrzava do dalje prerade. HAV was propagated essentially as described in Example 2 using NCFs. MRC-5 cells were grown in batches of sixty 6000 cm 2 NCFs at 37°C for days using medium consisting of Williams Medium E supplemented with 10% v/v fetal calf serum and neomycin sulfate. On day 7, cells are refed (supplied) with fresh medium containing enough virus to infect the cultures at about 0.1 MOI, and switched to medium at 32°C. Cultures are further incubated at 32°C for 21 days with re-feeding once a week. HAV is harvested by treating cell layers with lysis buffer containing 0.1% Triton X-100, 10 mM TRIS, 1 mM MgCl2 pH 7.5. The obtained lysate from NCF is collected and frozen until further processing.
Četiri litra zamrznutog virusa hepatitisa A sakupljenog iz kulture NUNC ćelijske tvornice tretiranjem sa TRITONOM X-100 se otkrave u vodenoj kupaoni na 20-30°C 4 sata i zatim se filtrira. Profiltrirani lizat se koncentrira desetostruko na Pellicon aparaturi upotrebljavajući odsječak membrane od 300.000 molekulske težine. Koncentrirani lizat, približno 400 ml, se zatim diafiltrira prema 10 mM Tris-HCl pufera, pH 7.5 koji sadrži 150 mM NaCl i 1 mM EDTA. Triton se uklanja šaržnim tretiranjem sa AMBERLITOM XAD-4- (Rohm and Haas Company) polimernom smolom pri 30 mg/ml lizata. Poslije filtracije da bi se uklonio XAD-4, lizat se podesi na 510 mM NaCl i zatim se taloži dodatkom polietilen glikola (PEG 8000, Sigma) do 5% (zap/zap) finalne koncentracije. Smjesa se snažno mješa, inkubira se na 4°C 1 sat i zatim se centrifugira pri 1000 x g na 4°C 10 minuta. Poslije centrifugiranja gornji sloj tečnosti se uklanja i odbacuje. Talog se tada otapa u 6.2 mM natrij fosfatnom puferu, pH 7.2 koji sadrži 120 mM NaCl i 1 mM EDTA. Ponovno suspendirane pelete se tada ekstrahiraju sa jednakom zapreminom smjese kloroforma: izoamil alkohola (24:1 zap/zap). Smjesa se snažno mućka i zatim centrifugira na 3000 x g 10 minuta na 20°C. Razdjelna površina koja sadrži nerastopljeni materijal se ponovno ekstrahira u istoj smjesi organskih otapala upotrebljavajući 30% početne zapremine. Poslije centrifugiranja, dvije vodene faze se spoje. Kloroformski ekstrakt se tada podešava na 350 mM NaCl i kromatografira se na DEAE-Sefarozi CL6B (Pharmacia) na filtracioni način da se absorbira DNK. Frakcija koja protiče kroz kolonu, koja sadrži HAV se sakuplja i razblažuje faktorom od tri sa 6.2 mM natrij fosfatnim puferom, pH 7.5 i kromatografira se na TOYOPEARL DEAE 650M (Toso Haas) sa gradijentom elucije do 1 M NaCl. Hepatitis A eluiran na 15-30% 1 M pufera, što odgovara 15-30 mS. Frakcije izdvojene iz ovog regiona bile su poslije toga kromatografirane na Sefarozi (Sepharose) CL4B (Pharmacia) u 6.2 mM natrij fosfatnom puferu sa 120 mM NaCl. Punjenje ove kolone je podešeno tako da je veće nego 1% ali manje nego 5% od zapremine kolone. Proizvod je eluiran između 46 i 64% od ukupne zapremine kolone. Four liters of frozen hepatitis A virus collected from a NUNC cell factory culture by treatment with TRITON X-100 are detected in a water bath at 20-30°C for 4 hours and then filtered. The filtered lysate is concentrated tenfold on a Pellicon apparatus using a membrane cut of 300,000 molecular weight. The concentrated lysate, approximately 400 ml, is then diafiltered against 10 mM Tris-HCl buffer, pH 7.5 containing 150 mM NaCl and 1 mM EDTA. Triton is removed by batch treatment with AMBERLIT XAD-4 (Rohm and Haas Company) polymer resin at 30 mg/ml lysate. After filtration to remove XAD-4, the lysate was adjusted to 510 mM NaCl and then precipitated by adding polyethylene glycol (PEG 8000, Sigma) to a 5% (v/v) final concentration. The mixture is mixed vigorously, incubated at 4°C for 1 hour and then centrifuged at 1000 x g at 4°C for 10 minutes. After centrifugation, the upper liquid layer is removed and discarded. The precipitate is then dissolved in 6.2 mM sodium phosphate buffer, pH 7.2 containing 120 mM NaCl and 1 mM EDTA. The resuspended pellets are then extracted with an equal volume of chloroform: isoamyl alcohol (24:1 v/v). The mixture is shaken vigorously and then centrifuged at 3000 x g for 10 minutes at 20°C. The separation surface containing the undissolved material is re-extracted in the same mixture of organic solvents using 30% of the initial volume. After centrifugation, the two aqueous phases are combined. The chloroform extract is then adjusted to 350 mM NaCl and chromatographed on DEAE-Sepharose CL6B (Pharmacia) by filtration to absorb DNA. The fraction flowing through the column containing HAV is collected and diluted by a factor of three with 6.2 mM sodium phosphate buffer, pH 7.5 and chromatographed on a TOYOPEARL DEAE 650M (Toso Haas) with gradient elution up to 1 M NaCl. Hepatitis A eluted at 15-30% of 1 M buffer, corresponding to 15-30 mS. Fractions separated from this region were then chromatographed on Sepharose CL4B (Pharmacia) in 6.2 mM sodium phosphate buffer with 120 mM NaCl. The loading of this column is adjusted to be greater than 1% but less than 5% of the column volume. The product was eluted between 46 and 64% of the total column volume.
Finalna prečišćena šarža je sterilno filtrirana na 0.22 mikrona i inaktivirana sa 1:4000 formalinskog reagensa (formalin je 37-40% težinski formaldehida) na 37°C 20 dana. Ovi uvjeti pokazuju kinetiku razlaganja prvog reda sa poluperiodom od 2 sata i gubitkom od približno 3.5 log10 TCID50/24 sata. Inaktivacioni period je produžen do 20 dana da bi se osigurao veliki stupanj sigurnosti. U inaktivirani hepatitis A se dodaje kalij aluminij sulfat i zatim se otopina taloži dodatkom natrij hidroksida do pH 6.6-6.8. Fromaldehid i preostale soli se uklanjaju centrifugiranjem pri čemu se gornji sloj tečnosti uklanja i zamjenjuje sa fiziološkom slanom otopinom. The final purified batch was sterile filtered to 0.22 micron and inactivated with 1:4000 formalin reagent (formalin is 37-40% formaldehyde by weight) at 37°C for 20 days. These conditions show first-order degradation kinetics with a half-life of 2 hours and a loss of approximately 3.5 log10 TCID50/24 hours. The inactivation period has been extended to 20 days to ensure a high degree of safety. Potassium aluminum sulfate is added to the inactivated hepatitis A and then the solution is precipitated with the addition of sodium hydroxide to pH 6.6-6.8. Fromaldehyde and residual salts are removed by centrifugation, whereby the upper liquid layer is removed and replaced with physiological saline.
PRIMJER 9 EXAMPLE 9
Prečišćavanje hepatitisa A sakupljenog iz COSTAR kocki sa Tritonom X-100, Purification of hepatitis A harvested from COSTAR cubes with Triton X-100,
upotrebljavajući tretiranje nukleazom i vezujuću kromatooratiju: Postupak proizvodnih razmjera using nuclease treatment and binding chromatography: A production-scale process
Materijal proizvodnih razmjera se dobiva koristeći SSR postupak za razmnožavanje virusa. U ovom postupku COSTAR kocka se upotrebljava kao površina rasta ćelija; kocka se vezuje u COSTAR CS2000 saturator upotrebljavajući vanjski otvor i pumpu koja tjera tok medija, kao što je opisano u Primjeru 3. MRC-5 ćelije se inokuliraju u COSTAR KOCKU SSR, i gaje se na 37°C 7 dana. Rasprašivanje je započeto dva dana poslije unošenja ćelija. Reaktor je kontinualno prskan sa Williams-ovim Medijem E dopunjenim sa 10% zap/zap gvoždem dopunjenog telećeg seruma i neomicin sulfatom. pH reaktor se kontrolira između 6.9 i 7.6, i otopljen kisik u reaktoru dostiže između 15 i 100% zasićenja zrakom u mediju. Dopušteno je da rast ćelija teče ukupno 7 dana, i virus se unosi u reaktor pri približno 0.1 MOI, upotrebljavajući šaržu virusa dobivenu prema postupku iz Primjera 1. SSR temperatura se smanjuje do 32°C, i napajanje se nastavlja 21 dan. SSR se tada ispušta i medij se ponovo puni sa 0.1% tež/zap TRITONAR, 10 mM TRISR, pH 7.5 pufera da bi se oslobodio HAV. Za četiri serije virusa proizvedenog ovim postupkom u COSTAR kocka sistemima kao što je prikazano u Primjeru 10, HAVAg proizvodnja prosječno je bila 2,8 puta veća od historijske prosječne vrijednosti u NCF reaktorima koristeći Monroe-ov postupak razmnožavanja na bazi površine. Povećana SSR produktivnost omogućila je lako povećanje razmjera postupka razmnožavanja do proizvodnih razmjera. Production-scale material is obtained using the SSR process for virus propagation. In this procedure, the COSTAR cube is used as a cell growth surface; the cube is bound into a COSTAR CS2000 saturator using an external port and a pump to drive the media flow, as described in Example 3. MRC-5 cells are inoculated into COSTAR CUBE SSR, and grown at 37°C for 7 days. Spraying was started two days after the introduction of cells. The reactor was continuously sprayed with Williams' Medium E supplemented with 10% zap/zap iron-supplemented calf serum and neomycin sulfate. The reactor pH is controlled between 6.9 and 7.6, and the dissolved oxygen in the reactor reaches between 15 and 100% air saturation in the medium. Cell growth was allowed to proceed for a total of 7 days, and virus was introduced into the reactor at approximately 0.1 MOI, using a batch of virus obtained according to the procedure of Example 1. The SSR temperature was reduced to 32°C, and feeding was continued for 21 days. The SSR is then drained and the medium is replenished with 0.1% w/v TRITONAR, 10 mM TRISR, pH 7.5 buffer to release HAV. For four batches of virus produced by this process in COSTAR cube systems as shown in Example 10, HAVAg production averaged 2.8 times the historical average value in NCF reactors using the Monroe surface-based propagation process. Increased SSR productivity allowed for easy scale-up of the breeding process to production scale.
Sirovi lizat se tretira sa BENZONASOM da bi se oslobodio virus iz adukata nukleinske kiseline i zatim se vezuje virus na anjonskoj izmjenjivačkoj kromatografiji. Tretiranje BENZONASOM eliminira potrebu za stupnjem koncentriranja/diafiltracije, tretiranja sa XAD-4 i DNK filter kolonom (Vidjeti Primjer 8). The crude lysate is treated with BENZONAS to release the virus from the nucleic acid adducts and the virus is then bound by anion exchange chromatography. Treatment with BENZONAS eliminates the need for a concentration/diafiltration step, treatment with XAD-4 and a DNA filter column (See Example 8).
Dvadeset i pet litara iz COSTAR kocke Tritonom X-100 sakupljenog materijala se tretira sa 5-25μg BENZONASE/1 lizata u prisustvu 1 mM MgCl2 i zatim se filtrira kroz filter od 0.22 mikrona. Smjesa se inkubira 18 sati na 25°C. Enzimom tretirani lizat se nanosi na TOYOPEARL DEAE 650 M anjonsku izmjenjivačku kolonu uravnoteženu sa 4.7 mM natrij fosfatnog pufera, pH 7.2 koji sadrži 90 mM NaCl. Twenty-five liters of COSTAR cube Triton X-100 collected material is treated with 5-25μg BENZONASE/1 lysate in the presence of 1 mM MgCl2 and then filtered through a 0.22 micron filter. The mixture is incubated for 18 hours at 25°C. The enzyme-treated lysate is applied to a TOYOPEARL DEAE 650 M anion exchange column equilibrated with 4.7 mM sodium phosphate buffer, pH 7.2 containing 90 mM NaCl.
Hepatitis A se eluira (prosječno 800 ml) sa 6.2 M natrij fosfatnog pufera koji sadrži 0.35 M NaCl i 1 mM EDTA. Test postupci koji koriste kinetičku analizu za aktivnost enzima, razvijeni su radi registriranja uklanjanja enzima u toku postupka. Rezultati pokazuju da se >90% aktivnosti endonukleaze može pripisati frakcijama od pranja i frakcijama koje protiču kroz vezujuću kolonu. Osim toga, ukupna aktivnost nukleaze, uključujući i onu od dodate BENZONASE, u proizvodu iz vezujuće kolone smanjuje se za faktor od > 100 u usporedbi sa količinom prisutnom u početku u lizatu. Hepatitis A is eluted (average 800 ml) with 6.2 M sodium phosphate buffer containing 0.35 M NaCl and 1 mM EDTA. Test procedures using kinetic analysis for enzyme activity have been developed to record enzyme removal during the procedure. The results show that >90% of the endonuclease activity can be attributed to the wash fractions and the fractions flowing through the binding column. In addition, the total nuclease activity, including that from added BENZONASE, in the product from the binding column is reduced by a factor of >100 compared to the amount initially present in the lysate.
Koncentracija NaCl hepatitis A proizvoda iz vezujuće kolone podešava se na 420 mM i virus se taloži sa polietilen glikolom (PEG 8000, Sigma) pri finalnoj koncentraciji od 4.5%. Smjesa se snažno mješa i zatim se inkubira 1 sat na 4°C. Poslije inkubacije, talog se sakuplja centrifugiranjem pri 1000 x g 10 minuta na 4°C. Gornji sloj tečnosti se uklanja i odbacuje. PEG talog se ponovno suspendira u 6.2 mM natrij fosfatnog pufera, pH 7.2 koji sadrži 120 mM NaCl i 1 mM EDTA. Organska ekstrakcija ponovno suspendiranog PEG taloga se vrši dodatkom 1.5 zapremina kloroforma : izoamil alkohola (24:1, zap/zap). Odvajanje faza se potpomaže centrifugiranjem na 3000 x g 10 minuta na 20°C i gornja, vodena faza se zadržava. Razdjelna površina se ponovno ekstrahira sa 30% od originalne zapremine organske smjese, centrifugira se i druga vodena faza se spaja sa prvom. The concentration of NaCl hepatitis A product from the binding column is adjusted to 420 mM and the virus is precipitated with polyethylene glycol (PEG 8000, Sigma) at a final concentration of 4.5%. The mixture is mixed vigorously and then incubated for 1 hour at 4°C. After incubation, the pellet is collected by centrifugation at 1000 x g for 10 minutes at 4°C. The upper liquid layer is removed and discarded. The PEG pellet is resuspended in 6.2 mM sodium phosphate buffer, pH 7.2 containing 120 mM NaCl and 1 mM EDTA. Organic extraction of the resuspended PEG precipitate is performed by adding 1.5 volumes of chloroform: isoamyl alcohol (24:1, zap/zap). Phase separation is assisted by centrifugation at 3000 x g for 10 minutes at 20°C and the upper, aqueous phase is retained. The separation surface is extracted again with 30% of the original volume of the organic mixture, centrifuged and the second aqueous phase is combined with the first.
Vodeni ekstrakt se kromatografira na TOYOPEARL DEAE 650 M (Toso Haas) anjonskoj izmjenjivačkoj matrici i eluira se sa gradijentom od 1 M NaCl. Virus hepatitisa A se eluira na 15-30%c od 1 M gradijenta što odgovara 15-30 mS. Izdvojene su frakcije iz ovog regiona i podvrgnute ekskluzionoj kromatografiji po veličini. Ekskluziona kromatografija po veličini koristila je dvije kolone, TOYOPEARL HW55S i HW65S. Pod ovim uvjetima virus hepatitisa A je bio u inkludiranoj zapremini za obje matrice i uređaj tandem kolona je upotrebljen da bi se razdvojile nečistoće i viših i nižih molekulskih težina iz virusa hepatitisa A. Kolone su uravnotežene sa 6.2 mM natrij fosfatnim puferom, pH 7.2, koji sadrži 120 mM NaCl. Sakupljeni su eluirani hepatitis A u simetričnom piku i frakcije proizvoda. The aqueous extract is chromatographed on a TOYOPEARL DEAE 650 M (Toso Haas) anion exchange matrix and eluted with a gradient of 1 M NaCl. Hepatitis A virus is eluted at 15-30%c of a 1 M gradient which corresponds to 15-30 mS. Fractions from this region were separated and subjected to size exclusion chromatography. Size exclusion chromatography used two columns, TOYOPEARL HW55S and HW65S. Under these conditions, hepatitis A virus was in the included volume for both matrices and a tandem column device was used to separate both higher and lower molecular weight impurities from hepatitis A virus. The columns were equilibrated with 6.2 mM sodium phosphate buffer, pH 7.2, which contains 120 mM NaCl. The eluted hepatitis A in the symmetric peak and product fractions were collected.
Sterilni profiltrirani proizvod na 0.22 mikrona iz ekskluzione kromatografije po veličini je inaktiviran pri približno 500 jedinica/ml (jedna jedinica odgovara oko 1 ng virusnog proteina) sa 370 μg/ml (1:1000 razblaženje formalina što je 37-40% težinski formaldehida) 5 dana na 37°C. Inaktivirani virus hepatitisa A je sterilno filtriran na 0.22 mikrona. Ko-taloženje sa aluminij hidroksid vrši se dodavanjem na početku kalij aluminij sulfata i zatim titracijom do pH 6.6-6.8 sa natrij hidroksidom. The sterile 0.22 micron filtered product from size exclusion chromatography was inactivated at approximately 500 units/ml (one unit corresponds to about 1 ng of viral protein) with 370 μg/ml (1:1000 dilution of formalin which is 37-40% formaldehyde by weight) 5 days at 37°C. Inactivated hepatitis A virus was sterile filtered to 0.22 micron. Co-precipitation with aluminum hydroxide is done by initially adding potassium aluminum sulfate and then titrating to pH 6.6-6.8 with sodium hydroxide.
Preostale soli i formaldehid se uklanjaju postupkom taloženja/dekantiranja u kojem se gornji sloj tečnosti uklanja i zamjenjuje sa fiziološkom slanom otopinom. Residual salts and formaldehyde are removed by a sedimentation/decantation process in which the top liquid layer is removed and replaced with physiological saline.
PRIMJER 10 EXAMPLE 10
Proizvod dobiven postupkom, kao što je opisano gore, analizira se na: protein pomoću amino kiselinske analize (hidrolizom plinske faze i zatim PITC obilježavanjem i reverzno-faznom visoko-rezolucionom tečnom kromatografijom); HAV antigen pomoću HAV antigen imunoanalizom enzima na čvrstoj fazi (antigen vezan koristeći preparat humanog poliklonalnog antitijela, a zatim detekciju sa mišjim monoklonalnim antitijelom i kozjim-anti-mišjim antitjelo/peroksidaza konjugatom) ugljenhidrat (uključujući detekciju glukoze i neglukoznog ugljenog hidrata; ne-glukozni ugljenihidrat je bio prisutan u proizvodu na nivou od manje nego 0.1 na μg proteina proizvoda) pomoću anjonske izmjenjivačke kromatografije pri visokom pH i pulzirajuće amperometrijske detekcije (HPAEC-PAD, kisela hidroliza upotrebljavajući 2 N TFA, a zatim HPLC analizu). DNK ćelije domaćina pomoću hibridizacije ("dot blot" postupak upotrebljavajući Alu DNK fragment kao hibridizacionu probu); masnu kiselinu pomoću plinske kromatografije (metil esterifikacijom masnih kiselina, a zatim kapilarnom plinskom kromatografijom); RNK hidrolizom i reverzno-faznom HPLC analizom ribonukleotida. The product obtained by the process, as described above, is analyzed for: protein by amino acid analysis (by gas-phase hydrolysis followed by PITC labeling and reverse-phase high-resolution liquid chromatography); HAV antigen by HAV antigen solid-phase enzyme immunoassay (antigen bound using human polyclonal antibody preparation followed by detection with mouse monoclonal antibody and goat-anti-mouse antibody/peroxidase conjugate) carbohydrate (including detection of glucose and non-glucose carbohydrate; non-glucose carbohydrate was present in the product at a level of less than 0.1 per μg of product protein) by high pH anion exchange chromatography and pulsed amperometric detection (HPAEC-PAD, acid hydrolysis using 2 N TFA followed by HPLC analysis). DNA of the host cell by hybridization ("dot blot" procedure using an Alu DNA fragment as a hybridization probe); fatty acid by gas chromatography (methyl esterification of fatty acids, followed by capillary gas chromatography); RNA hydrolysis and reverse-phase HPLC analysis of ribonucleotides.
Pored toga, rezultati prikazani niže, dobiveni prema prethodnim postupcima, SDS-PAGE analize i detekcije proteina pomoću bojenja srebrom ili pomoću "western blot" sa anti-HAV antitijela otkrili su samo prisustvo HAV specifičnih proteina nanošenjem 50-300 ng proteina. Pored toga, prisustvo punih kapsida je demonstrirano pomoću analize HAV specifične RNK hibridizacijom sa HAV specifičnim DNK probama, gradijenata gustoće saharoze i reverznofazne HPLC. Nađeno je da je HAV specifična RNK prisutna u proizvodu pri oko 0.1-0.2 μg na μg proteina. Ovaj nivo HAV specifične RNK je u suglasnosti sa odnosom od oko 1/3 punih kapsida do oko 2/3 praznih HAV kapsida. Najzad, nezavisna mjera HAV čistoće je obezbjeđena pomoću analize prikazane u Slici 2, upotrebljavajući HPLC analizu, koja pokazuje jedan pik HAV proizvoda. In addition, the results shown below, obtained according to the previous procedures, SDS-PAGE analysis and protein detection using silver staining or using "western blot" with anti-HAV antibodies revealed only the presence of HAV specific proteins by applying 50-300 ng of protein. In addition, the presence of full capsids was demonstrated by analysis of HAV-specific RNA by hybridization with HAV-specific DNA probes, sucrose density gradients, and reverse-phase HPLC. HAV specific RNA was found to be present in the product at about 0.1-0.2 μg per μg of protein. This level of HAV-specific RNA is consistent with a ratio of about 1/3 full capsids to about 2/3 empty HAV capsids. Finally, an independent measure of HAV purity is provided by the analysis shown in Figure 2, using HPLC analysis, which shows a single peak of the HAV product.
Apsolutne koncentracije proteina, ugljenog hidrata, lipida i DNK predstavljene su niže u odjeljku A. Podaci iz odjeljka A su transformirani niže u odjeljku B normalizacijom u mikrograme proteina, a u odjeljku C, kao težinski postotak proteina (što označava odnos mase prisutnog ugljenog hidrata, na primjer, i mase prisutnog proteina, pomnoženo sa 100). Absolute concentrations of protein, carbohydrate, lipid, and DNA are presented below in section A. Data from section A were transformed below in section B by normalization to micrograms of protein, and in section C, as a weight percent of protein (which indicates the ratio of mass of carbohydrate present, to example, and the mass of the protein present, multiplied by 100).
Rezultati ovih analiza su prikazani niže za osam preparata HAV dobivenih prema postupku komercijalnih razmjera prema ovom izumu. The results of these analyzes are presented below for eight preparations of HAV obtained by the commercial-scale process of the present invention.
A. Analiza sastava A. Composition analysis
[image] [image]
* Limit detekcije (LOD) za prvi uzorak je bio 0.0045 μg/ml. * The limit of detection (LOD) for the first sample was 0.0045 μg/ml.
Za naredne uzorke je povećana osjetljivost tako da je LOD iznosio 0.003 μg/ml. For subsequent samples, the sensitivity was increased so that the LOD was 0.003 μg/ml.
Težinski % proteina Protein % by weight
[image] [image]
Prethodni podaci karakteriziraju proizvod prema ovom izumu, prije inaktivacije i ko-taloženja sa aluminij hidroksidom, kao HAV preparat koji ima slijedeće karakteristike, na mikrogram na bazi proteina (sa proteinom koji je više od 95% čist HAV protein pomoću SDS PAGE i bojenjem srebrom): Preliminary data characterize the product of this invention, prior to inactivation and co-precipitation with aluminum hydroxide, as an HAV preparation having the following characteristics, on a microgram protein basis (with protein that is greater than 95% pure HAV protein by SDS PAGE and silver staining) :
Ugljeni hidrat koji se sastoji od gluhoze 0.1 - 2.5 μg Carbohydrate consisting of deafness 0.1 - 2.5 μg
Ne-glukozni ugljeni hidrat 0.2 μg Non-glucose carbohydrate 0.2 μg
DNK 0.004 μg DNA 0.004 μg
Lipid 0.1 μg Lipid 0.1 μg
HAV RNK 0.1- 0.2 μg HAV RNA 0.1-0.2 μg
Prvenstveno, se ova analiza izvodi na prečišćenom HAV proizvodu prema ovom izumu, kada je HAV proizvod najkoncentriraniji, prije inaktiviranja i formulacije. Međutim, snabdjevena sa dovoljnim količinama inaktivirane ili finalno formuliranog cjepiva, ova analiza će sigurno dati suštinski slične rezultate. U jednoj posebno pogodnoj realizaciji, cjepivo prema ovom izumu ima slijedeći nominalni sastav na 25 jedinica/0.5 ml doze: Primarily, this analysis is performed on the purified HAV product of this invention, when the HAV product is most concentrated, prior to inactivation and formulation. However, provided with sufficient amounts of inactivated or final formulated vaccine, this assay is sure to yield substantially similar results. In one particularly suitable embodiment, the vaccine according to the present invention has the following nominal composition per 25 units/0.5 ml dose:
[image] [image]
* Ekstrapolisano iz analiza prečišćene šarže virusa * Extrapolated from analyzes of a purified batch of virus
# Iz analiza demonstracionih uzoraka serije. # From the analysis of demonstration samples of the series.
& Bazirano na analizi aktivnosti. & Based on activity analysis.
PRIMJER 11 EXAMPLE 11
Usporedenje različitih HAV preparata Comparison of different HAV preparations
Prečišćen HAV proizvod prema ovom izumu uspoređen je sa opisom drugih HAV proizvoda kao što su opisani od strane njihovih proizvodača. Rezultati ovog uspoređenja prikazani su u Tabeli 1: The purified HAV product of this invention was compared with the description of other HAV products as described by their manufacturers. The results of this comparison are shown in Table 1:
TABELA 1 TABLE 1
USPOREĐENJE INAKTIVIRANIH CJEPIVA COMPARISON OF INACTIVATED VACCINES
ZA HEPATITIS A FOR HEPATITIS A
[image] [image]
a) Udružen napor Chemo-Sero-Therapeutic Research Institute Chiba Serum Institute, i Denka Bio-Research Institute. a) Joint effort of Chemo-Sero-Therapeutic Research Institute Chiba Serum Institute, and Denka Bio-Research Institute.
b) Bazirano na podacima amino kiselinske analize (AAA) (amino acid analysis). b) Based on the data of amino acid analysis (AAA) (amino acid analysis).
c) Definirano pomoću imunoanalize enzima HAV antigena; kalibracioni standard je bio prečišćeni virus, čistoće 90% pomoću SDS-PAGE/bojenjem srebrom, protein definiran pomoću AAA. c) Defined by enzyme immunoassay of HAV antigen; the calibration standard was purified virus, 90% pure by SDS-PAGE/silver staining, protein defined by AAA.
d) Definirano pomoću imunoanalize enzima HAV antigena; kalibracioni standard nedefiniran. d) Defined by enzyme immunoassay of HAV antigen; calibration standard undefined.
e) Definirano pomoću SDS-PAGE analize. e) Defined by SDS-PAGE analysis.
f) Definirano pomoću HAV antigena prema odnosu ukupnog proteina. f) Defined by HAV antigen to total protein ratio.
Iz ovih podataka i informacije date gore u Primjeru 10, očevidno je da je proizvod iz ovog izuma mnogo čistiji (bazirano na HAV antigenu prema odnosu ukupnog proteina i amino kiselinskoj analizi), kompletnije krakteriziran, i sadrži najnižu količinu proteina virusa efikasnu da se postigne serokonverzija i zaštita nego bilo koji proizvod koji je ranije opisan za koji su dostupni analitički podaci. From these data and the information provided above in Example 10, it is apparent that the product of this invention is much purer (based on HAV antigen to total protein ratio and amino acid analysis), more completely characterized, and contains the lowest amount of virus protein effective to achieve seroconversion and protection than any product previously described for which analytical data is available.
PRIMJER 12 EXAMPLE 12
Efikasnost cjepiva - Monroe-ova studija Vaccine efficacy - Monroe's study
Cjepivo je dobiveno infekcijom slojeva MRC-5 ćelija kultiviranih u NUNC ćelijskim fabrikama sa CR326F HAV. Kultura je održavana nekoliko nedjelja pomoću regularnog napajanja. U pogodno vrijeme inficirani monoslojevi MRC-5 ćelija su sakupljeni tretiranjem deterdžentom i HAV je prečišćen prema postupku iz ovog izuma, što je prikazano na slici 1 za NCF-e. Vodeni virus se absorbira na aluminij hidroksid i odlaže se na 2-8 C. Doze 0.6 ml svaka sadrže 25 jedinica antigena virusa hepatitisa A, bazirano na radioimunoanalizi prema prečišćenoj standardnoj referenci virusa, i 300 μg aluminij hidroksida. Placebo je sadržao 300 μg aluminij hidroksida i timerosal pri 1:20,000 razblaženju. Zdravi, seronegativni primaoci cjepiva pri visokom riziku od dobivanja HAV infekcije, dobili su ili jednu dozu od 0.6 ml placeba cjepiva. Na dan cjepljenja i jedan mjesec kasnije uzeti su uzorci krvi. Skoro 100% primalaca cjepiva bilo je bez HAV infekcije pošto je vrijeme čekanja od 50 dana uzet u obzir za pretraživanje pojedinaca koji su dobili HAV infekciju prije cjepljenja. S druge strane, značajan broj placebo primalaca je dobio HAV infekciju poslije perioda od 50 dana pretraživanja. The vaccine was obtained by infecting layers of MRC-5 cells cultured in NUNC cell factories with CR326F HAV. The culture was maintained for several weeks using regular feeding. At appropriate times, infected MRC-5 cell monolayers were harvested by detergent treatment and HAV was purified according to the method of the present invention, as shown in Figure 1 for NCFs. Aqueous virus is absorbed on aluminum hydroxide and stored at 2-8 C. Doses of 0.6 ml each contain 25 units of hepatitis A virus antigen, based on radioimmunoassay against a purified standard reference virus, and 300 μg of aluminum hydroxide. The placebo contained 300 μg of aluminum hydroxide and thimerosal at a 1:20,000 dilution. Healthy, seronegative vaccine recipients at high risk of HAV infection received either a single dose of 0.6 ml of placebo vaccine. Blood samples were taken on the day of vaccination and one month later. Almost 100% of vaccine recipients were free of HAV infection since a waiting time of 50 days was taken into account to search for individuals who had acquired HAV infection before vaccination. On the other hand, a significant number of placebo recipients acquired HAV infection after the 50-day search period.
Proučavana populacija je bila dovoljno velika tako da je zaštita primalaca cjepiva statistički značajna. The population studied was large enough so that the protection of vaccine recipients is statistically significant.
PRIMJER 13 EXAMPLE 13
Proizvodnja virusa u statičkom mikser reaktoru Virus production in a static mixer reactor
Virus hepatitisa A je razmnožavan u SSR koji se sastoji od statičke mikser kolone vezane za saturator pomoću vanjskog otvora i sistema pumpe (Charles River Biological Systems CRBS 5300). Statički mikser reaktor se proizvodi od elemenata metalnog titana koji imaju ukupnu površinsku oblast od oko 260,000 cm2, u koloni od 8" prečnika 40" dugačkoj. MRC-5 ćelije se unose u reaktor i gaje se 7 dana na 37°C u Williams-ovom Mediju E dopunjenom sa 10% zap/zap fetalnog telećeg seruma i Neomicin sulfatom. Ostavi se da rast ćelija teče 7 dana, i dio medija se mjenja tri puta nedjeljno, pri čemu se dobiva brzina napajanja jednaka sa NCF Monroe-ovim postupkom. Virus se unosi u reaktor pri približno 0.1 MOI. SSR temperatura se smanjuje na 32°C i napajanje se nastavlja kao gore 22 dana. Iz SSR se tada ispušta medij i ponovno se puni sa 0.1% tež/zap TritonR pufera da bi se oslobodio HAV. Ovaj reaktor proizvodi približno 50% više HAVAg na bazi površine nego kontrolna T-boca inokulirana upotrebljavajući iste reagense, napajanje (hranu), razmnožavanja i sakupljanja na sličan način. HAV proizvodnja reaktora je također usporedena pogodno sa NUNC ćelijskim fabrikama iz Primjera 2. Hepatitis A virus was propagated in an SSR consisting of a static mixer column connected to a saturator using an external port and pump system (Charles River Biological Systems CRBS 5300). The static mixer reactor is manufactured from titanium metal elements having a total surface area of about 260,000 cm2, in an 8" diameter 40" long column. MRC-5 cells are introduced into the reactor and grown for 7 days at 37°C in Williams Medium E supplemented with 10% v/v fetal calf serum and Neomycin sulfate. Cell growth is allowed to proceed for 7 days, and part of the medium is changed three times weekly, obtaining a feed rate equal to the NCF Monroe method. The virus is introduced into the reactor at approximately 0.1 MOI. The SSR temperature is reduced to 32°C and feeding continues as above for 22 days. The medium is then drained from the SSR and refilled with 0.1% w/v TritonR buffer to release HAV. This reactor produces approximately 50% more HAVAg on a surface area basis than a control T-flask inoculated using the same reagents, feed (feed), propagation and harvesting in a similar manner. The HAV reactor production is also compared favorably with the NUNC cell factories of Example 2.
PRIMJER 14 EXAMPLE 14
HAV PROIZVODNJA NA STATIČKIM MIKSER ELEMENTIMA MREŽE OD NERĐAJUĆEG ČELIKA HAV PRODUCTION ON STAINLESS STEEL MESH STATIC MIXER ELEMENTS
14.1 MATERIJALI I POSTUPCI 14.1 MATERIALS AND PROCEDURES
Kultura ćelija Cell culture
U svim studijama su upotrijebljene MRC-5 ćelije pri PDL ≤ 40. Ćelije su kultivirane u Williams-ovom E mediju koji sadrži 10% željezom obogaćenog telećeg seruma, 2 mM glutamina, i 50 ml/1 neomicin sulfata na 37°C. U studijama u kojima se koristi tank reaktor koji se prska i mješa, u medij se dodaje Pluronic F-68. Gustoća ćelija od 10,000 ćelija/cm2 je upotrijebljena da se inokuliraju nove površine kulture. Prebrojavanje ćelija je izvršeno upotrebljavajući Coulter brojač i/ili hemacitometar sa bojenjem Tripan ("Trypan") plavim radi određivanja sposobnosti za život. All studies used MRC-5 cells at PDL ≤ 40. Cells were cultured in Williams E medium containing 10% iron-fortified calf serum, 2 mM glutamine, and 50 ml/l neomycin sulfate at 37°C. In studies using a spray and stirred tank reactor, Pluronic F-68 is added to the medium. A cell density of 10,000 cells/cm 2 was used to inoculate new culture surfaces. Cell counts were performed using a Coulter counter and/or hemacytometer with Trypan blue staining to determine viability.
Kultura ćelija na metalnim kuponima Cell culture on metal coupons
Kupon od čvrstog metala ili metalne mreže oko 5 cm x 5 cm, stavi se u staklenu petri zdjelu od 150 cm2 i sterilizaju se. Poslije dopuštanja da se ohladi, u zdjelu se stavlja 90 ml medija i zatim se dodaje inokulum ćelija. Količina medija je dovoljna da potpuno prekrije metalne površine. Poslije 1 dana na 37°C metalni dio se uklanja koristeći sterilni forceps, i stavlja u novu sterilnu petri zdjelu (da bi se spriječio rast ćelija na staklenoj površini) koja sadrži 90 ml medija. Čvrsti slojevi se tretiraju tripsinom, pranjem dva puta sa fosfatno puferiranim slanim otopom (PBS) i dodavanjem 2 ml tripsina na metal. Poslije uočavanja oslobađanja ćelija, tripsin se pažljivo pipetira nekoliko puta iznad površine da bi se osiguralo potpuno uklanjanje. A solid metal or metal mesh coupon about 5 cm x 5 cm is placed in a 150 cm2 glass petri dish and sterilized. After allowing to cool, 90 ml of medium is placed in the dish and then the inoculum of cells is added. The amount of media is sufficient to completely cover the metal surfaces. After 1 day at 37°C, the metal part is removed using sterile forceps, and placed in a new sterile petri dish (to prevent cell growth on the glass surface) containing 90 ml of medium. Solid layers are treated with trypsin, washing twice with phosphate-buffered saline (PBS) and adding 2 ml of trypsin to the metal. After observing cell release, trypsin is carefully pipetted several times above the surface to ensure complete removal.
Sirovina za virus i infekcija Raw material for virus and infection
U svim studijama je upotrijebljena sirovina za virus hepatitisa A, CR326F P28, sa titrom od 108 TCID50/ml. MOI vrijednosti prikazane ovdje, izračunate su kao TCID50/ćelije, a ne kao PFU/ćelije. Kulture su inficirane dodavanjem sirovine za virus u svjež medij i dodavanjem ovoga u kulturu. Poslije inficiranja kulture su inkubirane na 32°C. All studies used the raw material for the hepatitis A virus, CR326F P28, with a titer of 108 TCID50/ml. MOI values shown here are calculated as TCID50/cell, not PFU/cell. Cultures were infected by adding virus stock to fresh medium and adding this to the culture. After infection, the cultures were incubated at 32°C.
Bojenje sposobnosti za život na kuponima mreže Liveability coloring on network coupons
Sposobnost za život ćelija je registrirana upotrebom za bojenje fluorescein diacetata (FDA) i etidij bromida (EB). U ćelijama sposobnim za život FDA se cjepa esterazom u citoplazmi pri čemu se dobiva slobodan fluorescein koji fluorescira zeleno. EB se brzo interkalira u DNK jezgra ćelija ne-sposobnih za život i fluorescira crveno. Ćelije su obilježavane sa obje boje jednovremeno. Otopina za bojenje sastojao se od 100 μl FDA sirovine (5 mg/ml u acetonu) i 200 ul EB sirovine (10 mg/ml u PBS) u 50 ml PBS. Materijal mreže je tada inkubiran u 5 ml ove otopine 5-6 minuta. Poslije obilježavanja, nosač je opran dva puta u PBS (20 ml po pranju) i postavljen između donje pločice i gornje pokrivne pločice mikroskopskih stakala. Uzorci su zatim posmatrani koristeći BioRad MRC-600 konfokalni mikroskop. Cell viability was registered using fluorescein diacetate (FDA) and ethidium bromide (EB) staining. In viable cells, FDA is cleaved by an esterase in the cytoplasm, yielding free fluorescein that fluoresces green. EB rapidly intercalates into the nuclear DNA of non-viable cells and fluoresces red. Cells are labeled with both colors simultaneously. The staining solution consisted of 100 μl of FDA stock (5 mg/ml in acetone) and 200 ul of EB stock (10 mg/ml in PBS) in 50 ml of PBS. The mesh material was then incubated in 5 ml of this solution for 5-6 minutes. After labeling, the mount was washed twice in PBS (20 ml per wash) and placed between the lower plate and the upper cover plate of the microscope slides. The samples were then observed using a BioRad MRC-600 confocal microscope.
Statički mikser reaktor Static mixer reactor
Mreža (poznata kao "E-pak") i čvrsta ploča od 316 nerđajućeg čelika elementi statičkog miksera (SMV konfiguracije) dobiveni su od firme Koch Engineering (Wichita, KS). Svi elementi su bili približno 2" x 2", konstruirani od tipa 316 nerđajućeg čelika ili titana. Površina čvrstih elemenata je tako određena da bude 1300 cm2, a elementi mreže su tako određeni da budu 2300 cm2. Površina tečnog zapreminskog odnosa ovih posljednjih elemenata je bila približno 26 cm2/ml (oko 24 cm2/ml na bazi ukupne zapremine reaktora). Pet elemenata se nominalno postavlja u obliku niti staklenu kolonu od 5 cm s 26.5 cm sa PTFE djelovima za spajanje na kraju. Elementi su postavljeni u konfiguraciji sa smjerovima mješanja perpendikularno u uzastopne elemente. Kolona sa elementima sačinjava reaktor za rast ćelija. Tank satelitne posude koje se mješaju, vezane za elektronske kontrolore, upotrijebljene su za kontroliranje pH medija na 7.2-7.3 i do na 80-90%. Medij se recirkulira iz tanka koji se mješa u reaktor upotrebom peristaltične pumpe. Mesh (known as "E-pak") and solid plate 316 stainless steel static mixer elements (SMV configuration) were obtained from Koch Engineering (Wichita, KS). All elements were approximately 2" x 2", constructed of type 316 stainless steel or titanium. The area of solid elements is thus determined to be 1300 cm2, and the mesh elements are thus determined to be 2300 cm2. The surface to liquid volume ratio of these last elements was approximately 26 cm2/ml (about 24 cm2/ml based on the total volume of the reactor). The five elements are nominally placed in a thread-like glass column of 5 cm by 26.5 cm with PTFE parts for connection at the end. The elements are placed in a configuration with mixing directions perpendicular to successive elements. A column with elements constitutes a reactor for cell growth. Stirring tank satellite vessels, connected to electronic controllers, were used to control the pH of the medium at 7.2-7.3 and up to 80-90%. The medium is recirculated from the mixing tank into the reactor using a peristaltic pump.
Zasijavanje reaktora je izvršeno obezbjeđivanjem niske brzine cirkuliranja da bi se omogućilo ćelijama da se vežu. Inokulum je stavljen u sistem i tipično recirkuliran pri 100 ml/min 5 minuta da bi se izmješale ćelije i medij. Veoma malo vezivanja ćelija se dogodilo u toku ovog brzog recirkulacionog perioda. Brzina protoka je zatim smanjena na oko 2 ml/min, što je obezbjedilo linearnu brzinu kroz reaktor približnu brzini sedimentacije ćelija. Nađeno je da su brzine oko brzine sedimentacije ćelija optimalne za brzine vezivanja i podjednaku distribuciju ćelija kroz reaktor. Seeding of the reactor was performed by providing a low circulation rate to allow the cells to attach. The inoculum was placed in the system and typically recirculated at 100 ml/min for 5 minutes to mix the cells and medium. Very little cell attachment occurred during this rapid recirculation period. The flow rate was then reduced to about 2 ml/min, which provided a linear rate through the reactor close to the cell sedimentation rate. Velocities around the cell sedimentation rate were found to be optimal for attachment rates and even distribution of cells throughout the reactor.
Postupak lizisa ćelija Cell lysis procedure
Ćelije su lizirane u Tritonskom puferu za lizis, koji je sadržavao 0.1% Tritona X-100, 10 mM Tris, i 1 mM MgCl2. T-boce su oprane dva puta sa 0.3 ml/cm2 PBS, i lizirane dva puta sa 0.1 m1/cm2 pufera za lizis 1 sat. Protokoli za reaktore za liziranje opisani su u tekstu. Cells were lysed in Triton lysis buffer containing 0.1% Triton X-100, 10 mM Tris, and 1 mM MgCl2. T-bottles were washed twice with 0.3 ml/cm2 PBS, and lysed twice with 0.1 m1/cm2 lysis buffer for 1 hour. Protocols for the lysis reactors are described in the text.
Analitički postupci Analytical procedures
Ćelijski metabolizam je mjeran upotrebljavajući Kodak Ektachem DT60 analizator. Virusni antigen hepatitisa A (HAVAg) je analiziran upotrebljavajući imunoanalizu na bazi enzima monoklonalnog antitijela. Ukupni protein lizata ćelija je određen kvantitativno upotrebljavajući Coomassie plav Bio-Rad analizu proteina (Cat #500-0001) prema standardu albumina goveđeg seruma. Cell metabolism was measured using a Kodak Ektachem DT60 analyzer. Hepatitis A viral antigen (HAVAg) was analyzed using a monoclonal antibody enzyme-linked immunoassay. Total protein of cell lysates was quantified using the Coomassie blue Bio-Rad protein assay (Cat #500-0001) against the bovine serum albumin standard.
REZULTATI I DISKUSIJA RESULTS AND DISCUSSION
Rast MRC-5 ćelija na kuponima od čvrstog metala Growth of MRC-5 cells on solid metal coupons
Prije ove studije rad na statičkom mikseru je vršen na elementima od titana. Bilo je poželjno da se ispita rast ćelija na površinama od različitih legura, koje, pored toga što su jeftinije nego titan, obezbjeđuju veću plastičnost (rastezljivost) za lakoću proizvodnje statičkog miksera. Ispitivano je dvije vrste svakog od nerđajućeg čelika i Hastelloy vrste B i C. Kuponi od metala su inokulirani sa približno 10,000 ćelija/cm2. Poslije 4 dana, ćelije su tripsinizirane (tretirane tripsinom) i registrirana je finalna gustoća ćelija: Prior to this study, work on the static mixer was performed on titanium elements. It was desirable to test cell growth on surfaces made of different alloys, which, in addition to being cheaper than titanium, provide greater plasticity (extensibility) for ease of static mixer production. Two grades each of stainless steel and Hastelloy grades B and C were tested. Metal coupons were inoculated with approximately 10,000 cells/cm2. After 4 days, the cells were trypsinized (treated with trypsin) and the final cell density was recorded:
Materijal Ćelija/cm2 Material Cell/cm2
Titan 1.4x105 Titan 1.4x105
316 nerđajući čelik 1.6x105 316 stainless steel 1.6x105
316L nerđajući čelik 1.2x105 316L stainless steel 1.2x105
Hastelloy B 2.2x103 Hastelloy B 2.2x103
Hastelloy C 1.3x104 Hastelloy C 1.3x104
Rast na obje vrste nerđajućeg čelika je bio sličan sa onim na titanu; ćelije nisu rasle na Hastelloy B, a rasle su loše na Hastelloy C. Razlike u gustoćama ćelija za nerđajući čelik i titan ne treba da se smatraju da je jedan bolji prvenstveniji; razlike su vjerovatno zbog različitosti analize. Growth on both types of stainless steel was similar to that on titanium; cells did not grow on Hastelloy B and grew poorly on Hastelloy C. Differences in cell densities for stainless steel and titanium should not be considered as superior; the differences are probably due to different analysis.
Najviše podataka za postupke za virus hepatitisa A dobiveno je za rast ćelija na plastičnim držačima, npr., bocama za kulturu od polistirolnog materijala. Radi upoređenja, krive rasta MRC-5 ćelija na polistirolu, staklu i 316 nerđajućem čeliku prikazane su na Slici 3. Ćelije su rasle slično na svim površinama. Maksimalne specifične brzine rasta su slične (0.034 h-1 za plastiku, 0.032 h-1 za staklo, i 0.039 h-1 za 316 nerđajući čelik). Niža finalna gustoća ćelija dobivena za plastiku je vjerojatno zbog ograničenja hranljivih materija. Rast na plastici je izvođen u T-bocama, dok je rast na staklu i nerđajućem čeliku izvođen u petri zdjelama. Uslijed razlike u zapremini medija po cm2 u svakom sistemu dolazi do neravnoteže u rezultatima dostupnih hranljivih materija. Rast ćelija i potrošnja glukoze za kupone od nerđajućeg čelika prikazani su na Slici 4. Most data for hepatitis A virus procedures have been obtained for cell growth on plastic holders, eg, culture bottles made of polystyrene material. For comparison, growth curves of MRC-5 cells on polystyrene, glass, and 316 stainless steel are shown in Figure 3. Cells grew similarly on all surfaces. The maximum specific growth rates are similar (0.034 h-1 for plastic, 0.032 h-1 for glass, and 0.039 h-1 for 316 stainless steel). The lower final cell density obtained for plastic is likely due to nutrient limitation. Growth on plastic was performed in T-bottles, while growth on glass and stainless steel was performed in petri dishes. Due to the difference in the volume of media per cm2 in each system, there is an imbalance in the results of available nutrients. Cell growth and glucose consumption for stainless steel coupons are shown in Figure 4 .
Rast MRC-5 ćelija na kuponima od metalne mreže Growth of MRC-5 cells on metal mesh coupons
U pokušaju da se maksimizira površina na jedinicu zapremine, metalni materijal mreže je ispitivan u petri zdjelama za rast MRC-5 ćelija. Za izvjesne kombinacije promjera žice i razmaka, komad sa istom projektiranom površinom kao čvrst kupon može da predstavlja veću ukupnu površinu za rast ćelija. Slojevi mreža mogu tada da budu formirani ili raspoređeni u reaktoru na takav način da se maksimizira raspoloživa površina na jedinicu zapremine reaktora. Da bi se ispitao rast ćelija, jedna površina mreže, MRC-5 kultura je vodena pomoću tehnika opisanih u odjeljku Materijali i Postupci. In an attempt to maximize surface area per unit volume, the metallic mesh material was tested in petri dishes for the growth of MRC-5 cells. For certain combinations of wire diameter and spacing, a piece with the same design surface area as a solid coupon may present a larger total area for cell growth. Layers of meshes can then be formed or arranged in the reactor in such a way as to maximize the available surface area per unit volume of the reactor. To examine cell growth, a single grid surface, MRC-5 culture was grown using the techniques described in the Materials and Methods section.
Rast MRC-5 ćelija je ilustriran na mreži konstruiranoj bilo od 316 nerđajućeg čelika ili titana. Kuponi od mreže sa prečnicima žice koji se kreću od 100 μm do 400 μm, tkanjima od 14 x 100, 120 x 110, 40 x 200, i 107 x 59 žica na inč su ispitivani. Ćelije su rasle na svim uzorcima, do većih ili manjih opsega. U ranim stupnjevima, ćelije su rasle na površini žice. Ubrzo poslije toga, ćelije počinju da premošćavaju međušupljinske razmake, naročito u kutevima. Vremenom ćelije potpuno ispunjavaju međušupljinske razmake i formiraju višeslojne konstrukcije. Vizualnim ispitivanjem, mreža nosi veoma velike gustoće ćelija, koje su više nego povećane u razmjerima pomoću površine. Direktne koncentracije površine ćelija nisu dostupne pošto višeslojni rast na mreži nije podložan tripsinizaciji. Preliminarni rezultati pokazuju da je međušupljinska veličina važan faktor, pošto ćelije nisu sposobne da premoste velike međušupljine, a mreža sa malim međušupljinama smanjuje površinu do limita iste površine kao što je površina glatke ploče. Konstrukcioni materijal nije utjecao na rast ćelija, i zaključeno je da je bilo koji biokompatibilni materijal koji se može tkati u slojeve mreže, pogodan za upotrebu. Metalne mreže, koje se mogu tkati imaju to preimućstvo da se mogu lako čistiti i ponovno upotrijebiti za mnoge cikluse rasta ćelija, kao što je opisano niže. Growth of MRC-5 cells was illustrated on mesh constructed from either 316 stainless steel or titanium. Mesh coupons with wire diameters ranging from 100 μm to 400 μm, weaves of 14 x 100, 120 x 110, 40 x 200, and 107 x 59 wires per inch were tested. Cells grew on all samples, to larger or smaller extents. In the early stages, cells grew on the surface of the wire. Soon after, the cells begin to bridge the intercavity spaces, especially in the corners. Over time, the cells completely fill the intercavity spaces and form multi-layered structures. By visual inspection, the mesh bears very high cell densities, which are more than scaled up by surface area. Direct cell surface concentrations are not available since multilayer growth on a grid is not amenable to trypsinization. Preliminary results show that intercavity size is an important factor, as cells are not able to bridge large intercavities, and a network with small intercavities reduces the area to the limit of the same area as the surface of a smooth plate. The construct material did not affect cell growth, and it was concluded that any biocompatible material that could be woven into the mesh layers was suitable for use. Woven metal meshes have the advantage of being easily cleaned and reused for many cycles of cell growth, as described below.
Odavde na dalje, bit će citirana samo mreža od nerđajućeg čelika sa tkanjem od 107 žica x 59 žica na inč, i prečnikom žice od 160 μm (što daje razmak žice od 77 μm x 270 μm). Elementi statičkog miksera sa mrežom koji su diskutirani niže, konstruirani su od ovog materijala. Pored toga što je obezbjeđena povećana površina, mreža omogućava ćelijama da rastu u više slojeva. Mikrograf višeslojnog rasta ćelija na ovoj mreži prikazan je na Slici 5. Bilo je interesantno da se odredi da li su ćelije kroz slojeve sve sposobne za život, ili da li su ćelije u centru više slojeva nekrotične. Za ovu svrhu su upotrebljeni fluoroscein diacetat i etidij bromid, kao što je detaljno opisano u odjeljku Materijali i Postupci. Ispitivanjem efikasnih presjeka mreže, upotrebljavajući laserski konfokalni mikroskop, očevidno je da je daleko najveći dio ćelija bio sposoban za život na bazi činjenica da etidij bromid nije interkalirao DNK jezgra i da se fluorescein diacetat cjepao, pri čemu je dao slobodan fluoroscein. Slika 6A prikazuje signal fluoresceina za seriju efikasnih presjeka kroz slojeve ćelija. Slika 6B prikazuje signal etidij bromida za iste presjeke. Odvojeni kuponi ćelija koji su učinjeni ne-sposobnim za život tretiranjem sa metanolom služili su kao pozitivna kontrola za etidij bromid i kao negativna kontrola za fluorescein diacetat u ovim eksperimentima. Ova kontrola je prikazana na Slici 7. From here on, only stainless steel mesh with a weave of 107 wires x 59 wires per inch, and a wire diameter of 160 μm (giving a wire spacing of 77 μm x 270 μm) will be quoted. The grid static mixer elements discussed below are constructed of this material. In addition to providing an increased surface area, the mesh allows cells to grow in multiple layers. A micrograph of the multi-layer growth of cells on this network is shown in Figure 5. It was interesting to determine whether the cells throughout the layers are all viable, or whether the cells in the center of the multiple layers are necrotic. For this purpose, fluoroscein diacetate and ethidium bromide were used, as detailed in the Materials and Methods section. Examining effective cross-sections of the network using a laser confocal microscope, it is evident that the vast majority of cells were viable based on the fact that ethidium bromide did not intercalate the DNA core and that fluorescein diacetate was cleaved, yielding free fluorescein. Figure 6A shows the fluorescein signal for a series of efficient sections through the cell layers. Figure 6B shows the ethidium bromide signal for the same sections. Separate coupons of cells rendered non-viable by treatment with methanol served as a positive control for ethidium bromide and as a negative control for fluorescein diacetate in these experiments. This control is shown in Figure 7.
Sijanje ćelija na elemente mreže statičkog miksera Cell seeding on static mixer grid elements
Uniformno sijanje je važno za optimalnu proizvodnost i za održavanje niskog, uniformnog udvostručavanja nivoa za proizvodnju bioloških preparata. Dobiveni su elementi mreže statičkog reaktora koji se sastoje od istog materijala ispitivanog gore. Cilindrični reaktor je orijentiran sa vertikalnom osi. Premda su ranije studije provođene sa reaktorom sa horizontalnom osi da bi se povećala sedimentacija ćelija na površinu za rast, nađeno je da je vezivanje na vertikalnu površinu isto toliko efikasno i predstavlja prvenstveni način rada. U toku ovog rada ćelije su zasijavane pri približno 10,000 cm2. Ćelije su zasijavane u reaktorima sa višestrukim elementima, gdje su osi miješanja individualnih elemanta bilo gdje između paralelnih ili devedeset stupnjeva jednog prema drugome. Radi svrhe mješanja tečnosti i optimalnog rada reaktora, prvenstvena je vertikalna konfiguracija. Uniform seeding is important for optimal productivity and for maintaining a low, uniform doubling rate for the production of biologicals. Static reactor network elements were obtained, consisting of the same material examined above. The cylindrical reactor is oriented with a vertical axis. Although earlier studies were conducted with a reactor with a horizontal axis to increase sedimentation of cells onto the growth surface, attachment to a vertical surface was found to be just as effective and is the preferred mode of operation. In the course of this work, cells were seeded at approximately 10,000 cm2. Cells are seeded in multi-element reactors, where the mixing axes of the individual elements are anywhere between parallel or ninety degrees to each other. For the purposes of liquid mixing and optimal reactor operation, a vertical configuration is preferred.
Ćelije se nisu zasijavale u ranijim ispitivanjima gdje su korištene necirkulacione brzine koje su dale površinsku brzinu od 5 cm/min. Efikasnost zasijavanja je povećana punjenjem reaktora i dopuštanjem ćelijama da se zasijavaju gravitacionom sedeimentacijom 2 sata. Ovo je rutinski obezbjedilo efikasnost zasijavanja veće od 90% (efikasnost zasijavanja - broj zasijanih ćelija/ukupan broj ćelija u inokulumu x 100%), međutim zasijavanje je bilo neuniformno. Cells were not seeded in earlier trials where non-circulating velocities were used which gave a surface velocity of 5 cm/min. Seeding efficiency was increased by filling the reactor and allowing cells to seed by gravity sedimentation for 2 hours. This routinely provided a seeding efficiency greater than 90% (seeding efficiency - number of cells seeded/total number of cells in inoculum x 100%), however seeding was non-uniform.
Kao što je prikazano na Slici 8, element na dnu sadrži najviše ćelija, dok element na vrhu sadrži najmanje. Iz ovih podataka, izračunato je da prosječna brzina taloženja preparata MRC-5 ćelija iznosi 6 cm/h. U daljnjem eksperimentu koji koristi četiri elementa, medij se recirkulira radi zasijavanja pri brzini približno jednakoj sa brzinom taloženja. Dobiva se uniformno zasijavanje sa efikasnošću zasijavanja većom nego 90% za ove uvjete (Slika 8). Gornji rezultati demonstriraju da površinska brzina medija kroz reaktor utiče i na brzinu vezivanja ćelija i na krajnju distribuciju ćelija u reaktoru. As shown in Figure 8, the element at the bottom contains the most cells, while the element at the top contains the fewest. From these data, it was calculated that the average settling speed of the MRC-5 cell preparation is 6 cm/h. In a further experiment using four elements, the medium is recirculated for seeding at a rate approximately equal to the deposition rate. Uniform seeding is obtained with seeding efficiency greater than 90% for these conditions (Figure 8). The above results demonstrate that the surface velocity of the medium through the reactor affects both the rate of cell attachment and the final distribution of cells in the reactor.
Uspoređenje rasta ćelija na čvrstom sloju i na elementima mreže statičkog mikser reaktora Comparison of cell growth on a solid bed and on network elements of a static mixer reactor
Dva reaktora su postavljena i radila su istovremeno da bi se opisale razlike izmedu čvrstog sloja i elemenata mreže. Čvrsti elementi su konstruirani od titana, a elementi mreže su konstruirani od nerđajućeg čelika. Određeno je da je površina 1300 cm2 za čvrste elemente i 2300 cm2 za mrežu, što pokazuje da je odnos mreže prema čvrstoj površini 1.8. Elementi čvrstog sloja rade združeno sa elementima mreže obezbjeđuju kontrolu za sve eksperimente. Reaktori su zasijani sa približno 10,000 - 20,000 ćelija/cm2. Reaktori su radili na šaržni način sve dok koncentracija glukoze nije pala ispod 120 mg/dl, kada je započeto raspršivanje medija. Oba reaktora su inokulirana sa istim sakupljenim MRC-5 ćelijama, i napajanja su iz zajedničkog rezervoara za medij da bi se eliminirale bilo koje razlike ovih promjenljivih. Brzina preuzimanja glukoze (GUR) (glucose uptake rate) za svaki reaktor prikazana je na Slici 9. Slika 9A uspoređuje reaktore prema cm2 upotrebljavajući površine navedene gore; ove površine se smatraju približnim. Slika 9B uspoređuje sisteme na bazi zapremine medija reaktora pošto je svaki reaktor bio iste veličine, tj., pet 2" elemenata sa 1 l satelitne posude za medij. Slika 9B ne uključuje aproksimacije s obzirom na površinu. Brzina preuzimanja glukoze se koristi kao mjera rasta ćelija i upotrebljava se za određivanje početak stacionarne faze. Posljednja točka na slici 9 pokazuje vrijeme kada su reaktori sakupljeni lizisom tritonom. Ćelije su bile vizualno konfluentne sa čvrstom matricom i međušupljine na mreži su bile skoro popunjene na elementima mreže, što ukazuje da je moguće još rasta. Tada se raspršava medij pri brzini od 0.19 l/h za čvrst reaktor, i koncentracija glukoze u mediju u ovoj točci je bila 1.16 g/l. Brzina raspršavanja je bila 0.26 l/h za reaktor sa mrežom, i koncentracija glukoze u mediju je bila 0.69 g/l. Ovi rezultati demonstriraju bolju metaboličku aktivnost koja je dobivena za reaktor sa mrežom prema čvrstom reaktoru za fazu rasta (gajenja) ćelija. Two reactors were installed and operated simultaneously to describe the differences between the solid layer and the mesh elements. The solid elements are constructed of titanium, and the mesh elements are constructed of stainless steel. It was determined that the area is 1300 cm2 for the solid elements and 2300 cm2 for the mesh, which shows that the ratio of the mesh to the solid surface is 1.8. Solid layer elements work in conjunction with grid elements to provide control for all experiments. The reactors were seeded with approximately 10,000 - 20,000 cells/cm2. The reactors were operated in a batch mode until the glucose concentration fell below 120 mg/dl, when the medium sparging was initiated. Both reactors were inoculated with the same harvested MRC-5 cells, and fed from a common medium reservoir to eliminate any differences in these variables. The glucose uptake rate (GUR) for each reactor is shown in Figure 9. Figure 9A compares the reactors by cm2 using the surface areas listed above; these surfaces are considered approximate. Figure 9B compares the systems based on reactor media volume since each reactor was the same size, i.e., five 2" elements with a 1 L satellite media vessel. Figure 9B does not include surface area approximations. Glucose uptake rate is used as a measure of growth cells and is used to determine the onset of the stationary phase. The last point in Figure 9 shows the time when the reactors were collected by triton lysis. The cells were visually confluent with the solid matrix and the interstitial spaces on the mesh were nearly filled on the mesh elements, indicating that more growth. Then the medium was sprayed at a rate of 0.19 l/h for the solid reactor, and the glucose concentration in the medium at this point was 1.16 g/l. The spraying rate was 0.26 l/h for the mesh reactor, and the glucose concentration in the medium was 0.69 g/l These results demonstrate the better metabolic activity obtained for the mesh reactor compared to the solid reactor for the cell growth phase.
Ovi reaktori su ispušteni i ćelije su lizirane upotrebljavajući deterdžent pufer za ekstrahiranje ćelijskog proteina, mjera za masu ćelija u reaktoru. Za ove eksperimente, postupak lizisa za sakupljanje proteina vezanog za ćeliju iz svakog reaktora bio je identičan: 2 1 PBS na sobnoj temperaturi se cirkulira kroz reaktore pri 100 ml/min 5 minuta i zatim se ispušta. Ovaj postupak pranja radi uklanjanja proteina ponavlja se dva puta. Zatim se recirkulira 1 1 pufera lizisa, iz odjeljka Materijali i Postupci, kroz reaktor pri 400-500 ml/min, 37°C, 1 sat. Ovo se ponavlja još jednom (lizat 1 i 2) i naredni lizati cirkuliraju duže 2 h za lizat 3, i 4 sata za lizat 4. Postotak proteina uklonjenog u svakom lizatu predstavljen je na Slici 10. Kada se izračunavanja proteina konvertiraju na gustoću ćelija pomoću korelacija predstavljenih u Dodatku 1, elementi čvrstog statičkog miksera sadržali su 3x105 ćelija/cm2, dok su elementi mreže sadržali 6x105 ćelija/cm2. Vjeruje se da je prethodni broj reprezentativan za reaktor sa čvrstim slojem, pošto su sve ćelije uklonjene tokom lizisa kako je demonstrirano brisanjem elemenata i posmatranjem obrisanog materijala pod mikroskopom. Međutim, nije uklonjen cjeli debris ćelija sa elemenata mreže kao što je promatrano pomoću mikroskopa, tako da je posljednji broj nizak prema predviđanjima. Na bazi reaktora, elementi gaze nose veću nego 3 koncentraciju od čvrstih elemenata. Pod uvjetom da su izračunavanja površine točna, ova razlika u ukupnom proteinu je veća od odnosa površina i dokaz je za višeslojni rast ćelija. These reactors were drained and cells were lysed using detergent buffer to extract cellular protein, a measure of cell mass in the reactor. For these experiments, the lysis procedure for harvesting cell-bound protein from each reactor was identical: 2 L PBS at room temperature was circulated through the reactors at 100 ml/min for 5 min and then drained. This washing process to remove protein is repeated twice. Then 1 L of lysis buffer, from the Materials and Methods section, is recirculated through the reactor at 400-500 ml/min, 37°C, for 1 hour. This is repeated once more (lysates 1 and 2) and subsequent lysates are cycled for a further 2 h for lysate 3, and 4 h for lysate 4. The percentage of protein removed in each lysate is presented in Figure 10. When protein calculations are converted to cell density using correlations presented in Appendix 1, solid static mixer elements contained 3x105 cells/cm2, while mesh elements contained 6x105 cells/cm2. The former number is believed to be representative of a solid-bed reactor, as all cells were removed during lysis as demonstrated by wiping elements and observing the wiped material under a microscope. However, not all cellular debris was removed from the mesh elements as observed using a microscope, so the final count is low as predicted. At the base of the reactor, gauze elements carry a concentration greater than 3 times that of solid elements. Provided the area calculations are correct, this difference in total protein is greater than the area ratio and is evidence for multilayered cell growth.
Proizvodnja HAVAg na elementima mreže statičkog miksera Production of HAVAg on static mixer grid elements
HAVAg proizvodnja je demonstrirana za reaktor koji koristi elemente mreže statičkog miksera. Predmet ovog eksperimenta je bio da se odredi virusno razmnožavanje koje se događa na elementima mreže od nerđajućeg čelika koji nose višeslojni rast: ovo nije optimizirani sistem za proizvodnju HAVAg. Za ovaj eksperiment, upotrebljene su potpune zamjene medija, prije nego raspršivanje medija. GUR profil za ovaj eksperiment prikazan je na Sl. 11; GUR-i izračunati iz ove slike baziraju se na vrijednostima glukoze dobivenim na dan poslije ponovnog napajanja medija. Ćelije su inficirane sa MOI od oko 1 na dan 7. Gustoća ćelija za MOI izračunavanja određena je na bazi brzine potrošnje glukoze u vrijeme infekcije. Kao što je promatrano sa postupcima kao što je u Primjeru 9, brzina preuzimanja glukoze je zaravnjena kratko poslije infekcije i poslije toga dolazi do opadanja, što je u suglasnosti sa infekcijom ćelija. HAVAg production is demonstrated for a reactor using static mixer grid elements. The object of this experiment was to determine the viral propagation occurring on stainless steel mesh elements bearing multilayer growth: this is not an optimized system for HAVAg production. For this experiment, complete media replacements were used, rather than media scattering. The GUR profile for this experiment is shown in Fig. 11; The GURs calculated from this figure are based on glucose values obtained on the day after media refeeding. Cells were infected at an MOI of about 1 on day 7. Cell density for MOI calculations was determined based on the rate of glucose consumption at the time of infection. As observed with procedures such as Example 9, the rate of glucose uptake levels off shortly after infection and then declines, consistent with infection of the cells.
Promatrano opadanje na Slici 10 je okomitije nego ono promatrano sa postupkom iz Primjera 9, i vjerojatno je uslijed uniformnijeg stupnja infekcije (Primjer 9 upotrebljeno MOI od 0.1). Virusni antigen se sakuplja 21 dana poslije infekcije pomoću lizisa Triton deterdžentom. Protokol za liziranje ćelija je iznijet niže. The observed decline in Figure 10 is more vertical than that observed with the procedure of Example 9, and is likely due to a more uniform degree of infection (Example 9 used an MOI of 0.1). Viral antigen is collected 21 days after infection by lysis with Triton detergent. The cell lysis protocol is outlined below.
Lizat 1: recirkuliranje pufera lizisa kroz statički mikser 1 sat na 37°C Lysate 1: recirculation of lysis buffer through a static mixer for 1 hour at 37°C
Lizat 2: recirkuliranje pufera lizisa kroz statički mikser 1 sat na 37°C Lysate 2: recirculation of lysis buffer through a static mixer for 1 hour at 37°C
Lizat 3: tretiranje ultrazvukom 1 sat u Branson kupaoni za tretiranje ultrazvukom 0.7 l pufera lizisa Lysate 3: sonication for 1 hour in the Branson bath for sonication 0.7 l of lysis buffer
Lizat 4: zamrzavanje elemenata u 1 l pufera lizisa 12 sati, rastapanje i tretiranje ultrazvukom 1 sat. Lysate 4: freezing of elements in 1 l of lysis buffer for 12 hours, thawing and treatment with ultrasound for 1 hour.
Postotak ukupnog proteina i HAVAg oslobođenih u ovim pranjima je prikazan na Slici 12. Prva dva lizata koji koriste recirkulaciju su bila veoma efikasna u uklanjanju HAVAg iz ćelija. Ovaj eksperiment je upotrebljavao samo 2 PBS pranja prije lizisa, i nije bio potpuno efikasan, zbog toga je postotak ukupnog proteina lizata 1 umjetno visok, a onaj kod 2, 3 i 4 su niski. Jedan sakupljeni uzorak je analiziran za HAVAg pomoći EIA prije zamrzavanja. Na osnovu postotaka svakog lizata određenih kasnije, ovo je odgovaralo prinosu antigena na površinu dvostruko onom iz Primjera 9. Cilj ovog eksperimenta je realiziran time što je došlo do virusnog rasta kao što je pokazano pomoću HAVAg. Ovaj eksperiment demonstrira korisnost statičkog mikser reaktora sa mrežom za proizvodnju HAV. The percentage of total protein and HAVAg released in these washes is shown in Figure 12. The first two lysates using recirculation were very efficient in removing HAVAg from the cells. This experiment used only 2 PBS washes before lysis, and was not completely efficient, therefore the percentage of total protein of lysate 1 is artificially high, and that of 2, 3 and 4 are low. One collected sample was analyzed for HAVAg by EIA before freezing. Based on the percentages of each lysate determined later, this corresponded to a yield of antigen on the surface twice that of Example 9. The goal of this experiment was realized by viral growth as demonstrated by HAVAg. This experiment demonstrates the usefulness of a grid static mixer reactor for HAV production.
Mada je reaktor vjerojatno sakupljen kasno na osnovu GUR profila, prinosi antigena su bili relativno visoki, ukazujući na osjetljivost više slojeva na infekciju. Podaci također pokazuju značaj MOI u proizvodnji HAV; infekcijom pri MOI 1, izgleda da proces trajanja treba da bude smanjen za više od jedne nedjelje i sakupljen na dan 20. Na osnovu različitih podataka, vrijeme infekcije i MOI su važne promjenljive za postupak proizvodnje; ovi parametri su važni u smanjenju dužine kulture. Eksperimenti rasta ćelija, pokazuju da inficirane ćelije nastavljaju da rastu pri istoj brzini sličnoj ne-inficiranim ćelijama, čak za kulture inficirane pri visokim MOI sa CR326F P28 (Slika 13). Ovo je usprkos infekcije i temperature do 32°C, temperatura koja je dopuštena za rast za ovaj soj virusa. Maksimalna specifična brzina rasta izračunata iz ovih krivih je 0.015 h-1 približno polovica brzine rasta neinficiranih ćelija na 37°C. Although the reactor was probably harvested late based on the GUR profile, the antigen yields were relatively high, indicating susceptibility of multiple layers to infection. The data also show the importance of MOI in HAV production; by infection at MOI 1, it appears that the process duration should be reduced by more than one week and collected on day 20. Based on various data, infection time and MOI are important variables for the production process; these parameters are important in reducing the culture length. Cell growth experiments show that infected cells continue to grow at the same rate similar to uninfected cells, even for cultures infected at high MOI with CR326F P28 (Figure 13). This is despite infection and temperatures up to 32°C, the temperature that is allowed to grow for this strain of the virus. The maximum specific growth rate calculated from these curves is 0.015 h-1, approximately half the growth rate of uninfected cells at 37°C.
Činjenica da se ćelije ponašaju slično tokom prve nedjelje HAV infekcija je važna u radu reaktora, pošto se želi da se postigne najveća moguća koncentracija ćelija bez obzira na vrijeme infekcije i MOI. Ovaj eskperiment demonstrira da su optimizacija trajanja rasta ćelija, trajanje infekcije, i MOI isprepleteni. The fact that the cells behave similarly during the first week of HAV infection is important in the operation of the reactor, since it is desired to achieve the highest possible concentration of cells regardless of the infection time and MOI. This experiment demonstrates that optimization of cell growth duration, infection duration, and MOI are intertwined.
Čišćenje elemenata statičkog miksera Cleaning of static mixer elements
Poželjno je da se posjeduje površina rasta koja se može ponovno upotrijebiti za biološku proizvodnju, da bi se eliminiralo odstranjivanje otpada, omogućila automatizacija reaktorskog postupka, i povećala reproduktivnost kulture. Obično se, elementi mreže peru sa destiliranim vodom da bi se uklonile soli medija (500 ml/min 1 sat), stavljaju se u 1 l 5% (tež/zap NaOH otopine i autoklaviraju 45 minuta. Poslije hlađenja, elementi se peru sa destiliranom vodom sve dok se ne oslobode od NaOH (kako je određeno pomoću pH otopine od pranja). Ovaj postupak je izuzetno efikasan u otklanjanju debrisa ćelija pomoću mikroskopskog provjeravanja. Smatra se da će biti potrebno mnogo manje neprijatnih tretiranja za dobivanje ekvivalentnog čišćenja, i da je mnogo pogodnije za samočišćenje proizvodnog reaktora. Elementi mreže tretirani ovim postupkom ponovo su upotrebljeni za posljednjih deset ciklusa bez promjene u osobinama rasta ćelija. Elementi u gornjoj studiji rasta virusa dobiveni su na ovaj način, demonstrirajući korisnost upotrebljenih, očišćenih elemenata za razmnožavanje HAV. It is desirable to have a growth surface that can be reused for biological production, to eliminate waste disposal, enable automation of the reactor process, and increase culture reproducibility. Typically, the mesh elements are washed with distilled water to remove media salts (500 ml/min for 1 hour), placed in 1 L of 5% (w/v) NaOH solution and autoclaved for 45 minutes. After cooling, the elements are washed with distilled with water until they are free of NaOH (as determined by the pH of the wash solution). This procedure is extremely effective in removing cell debris by microscopic examination. It is believed that far fewer unpleasant treatments will be required to achieve equivalent cleaning, and that much more suitable for self-cleaning of the production reactor. The mesh elements treated with this procedure were reused for the last ten cycles with no change in cell growth characteristics. The elements in the virus growth study above were obtained in this way, demonstrating the utility of the used, cleaned elements for HAV propagation.
ZAKLJUČCI FINDINGS
Ove studije su pokazale da su elementi statičkog miksera konstruirani od nerđajuće čelične mreže sposobne da nosi višeslojni rast MRC-5 ćelija. Pokazano je da su višeslojni elementi-sposobni za život, bez indikacije nekroze. Ispitivanja infekcije pokazuju da su ovi višeslojni elementi osjetljivi na infekciju hepatitisom A i u ne-optimiziranom sistemu proizvode antigen u višku od onoga što se uobičajeno realizira upotrebljavajući čvrste podloge kao što su u Primjeru 9. Sa mikronosačem kulture, može da dođe do zgrudnjavanja ćelija u loše definiranim višeslojevima; statički mikser sa mrežom obezbjeđuje dobro definirane višeslojen elemente uslijed majstorske geometrije i zbog toga ograničenja u hranjljivim materijama i akumulacija otpada predstavljaju manji problem. Rast ćelija unutar međušupljina smjesa zatvara međušupljine i stvara zapušeni uzorak sličan onome kod elemenata čvrstog sloja. Zbog toga sistem koristi pogodnosti mješanja statičke mikser tehnologije i dovodi do predvidljive i uniformne ishranjenosti ćelija. Ovo je u suprotnosti sa drugim tipovima punjenih reaktora sa slojevima kao što su nasumice pakirani slojevi od vlakana, pakirani slojevi od staklenih kuglica, reaktori sa šupljim valnima, ili keramički monolitni reaktori. U ovim tipovima reaktora rast ćelija izaziva pogoršanje modela toka medija i stvara loše ishranjene džepove ćelija. Ukupno, ponovno upotrebljivi reaktor koji sadrži elemente statičkog miksera sa mrežom združuje veći potencijal za kultiviranje MRC-5 ćelija i proizvodnju antigena hepatitisa A. These studies demonstrated that the static mixer elements constructed of stainless steel mesh were capable of supporting multilayer growth of MRC-5 cells. Multilayered elements were shown to be viable, with no indication of necrosis. Infection tests show that these multilayers are susceptible to hepatitis A infection and in a non-optimized system produce antigen in excess of what is normally achieved using solid media such as those in Example 9. With the culture microcarrier, clumping of cells can occur in poor defined multilayers; static mixer with grid provides well-defined multi-layer elements due to masterful geometry and because of this, limitations in nutrients and accumulation of waste are less of a problem. Cell growth within the interstices of the mixture closes the interstices and creates a plugged pattern similar to that of solid bed elements. This is why the system uses the benefits of static mixer technology and leads to predictable and uniform cell nutrition. This is in contrast to other types of packed bed reactors such as randomly packed fiber beds, packed glass bead beds, hollow wave reactors, or ceramic monolithic reactors. In these types of reactors, cell growth causes deterioration of the media flow pattern and creates poorly nourished pockets of cells. Overall, the reusable reactor containing static mixer elements with mesh combines greater potential for culturing MRC-5 cells and hepatitis A antigen production.
PRIMJER 14 - DODATAK 1 EXAMPLE 14 - APPENDIX 1
IZVOD EXCERPT
Ukupan protein iz lizata MRC-5 ćelija je određen kvantitativno i uspoređen sa direktnim brojanjem ćelija (pomoću hemacitometra i upotrebom Coulter Brojača). Zdrave ćelije u ranim eksponencijalnim, kasnom eksponencijalnim, i stacionarnim fazama rasta, kao i ćelije na 1, 2 i 3 nedjelje poslije infekcije pokazuju da se mjerenja ukupnog proteina iz svake kulture lizata mogu direktno usporediti sa gustoćom ćelija upotrebom jednog nacrta. Ova jednostavna korelacija obezbjeđuje načine za određivanje gustoće ćelija u reaktorima koji nisu primjenljivi za tehnike direktnog brojanja. Total protein from MRC-5 cell lysates was determined quantitatively and compared with direct cell counting (using a hemacytometer and using a Coulter Counter). Healthy cells in early exponential, late exponential, and stationary growth phases, as well as cells at 1, 2, and 3 weeks post-infection show that measurements of total protein from each culture lysate can be directly compared to cell density using a single plot. This simple correlation provides ways to determine cell density in reactors that are not applicable to direct counting techniques.
DISKUSIJA DISCUSSION
Analiza proteina i dobivanje uzorka Protein analysis and sample collection
Bio-Rad analiza proteina (Cat.# 500-0001) je brza, osjetljiva analiza za kvantitativno određivanje ukupnog proteina. Rani eksperimenti su prikazali da se sadašnji pufer lizisa (0.1% Tritona X-100, 10 mM Tris-HCl, 0.1 mM MgCl2) ne sukobljava sa analizom na bazi Coomassie plavog. Radi postojanosti, sva razblaženja, uključujući i ona standardnog proteina (albumin goveđeg seruma) načinjeni su u tritonskom lizis puferu. Činjenica da su lizati ćelija tritonom često flokulentni u prirodi pokazuje da uzorci mogu da zahtjevaju dalje tretiranje prije nego što se analiziraju. Veliki flokulirani talog dovodi do visokih titara proteina. Međutim, poslije dva ciklusa brzog zamrzavanja (u etanolu na 70°C) i rastapanja, veličina flokuliranog taloga se smanjuje do stupnja kada se dobiva homogena suspenzija. Osim toga, analizirajući nekoliko razblaženja jednog uzorka, mogu da se javne nebitne točke koje potiču od loše pripremljenog uzorka koje se lako detektiraju. Uzorci su također centrifugirani i upotrebljen je izbistren gornji sloj tečnosti; ovo tretiranje je obezbjedilo slične rezultate ali je smatrano nepotrebnim. Rezultati koji su ovdje prikazani su za lizate ćelija zamrznute minimum dva puta i dobro mješanje prije nego što su analizirani. The Bio-Rad Protein Assay (Cat.# 500-0001) is a rapid, sensitive assay for the quantitative determination of total protein. Early experiments showed that the current lysis buffer (0.1% Triton X-100, 10 mM Tris-HCl, 0.1 mM MgCl2) did not interfere with the Coomassie blue-based assay. For consistency, all dilutions, including those of the standard protein (bovine serum albumin) were made in Triton lysis buffer. The fact that triton cell lysates are often flocculent in nature indicates that samples may require further treatment before being analyzed. A large flocculated precipitate leads to high protein titers. However, after two cycles of rapid freezing (in ethanol at 70°C) and thawing, the size of the flocculated precipitate is reduced to the point where a homogeneous suspension is obtained. In addition, by analyzing several dilutions of a single sample, easily detectable non-significant points originating from a poorly prepared sample can be revealed. The samples were also centrifuged and the clarified upper liquid layer was used; this treatment provided similar results but was considered unnecessary. The results presented here are for cell lysates frozen a minimum of twice and mixed well before they were analyzed.
Koncentracija proteina kao funkcija gustoće ćelija Protein concentration as a function of cell density
Za jednu standardnu krivu koja dopušta konverziju ukupnog proteina u specifičan broj ćelija, ćelije kroz postupak mora da se sastoje od približno jednake količine proteina. Da bi se ovo odredilo, T-boce su inokulirane sa jednakim brojem ćelija. U određenim intervalima u postupku, dvije boce su žrtvovane. Jedna boca je tretirana tripsinom (tripsinizirana) i ćelije su izbrojane pomoću hemacitometra i Coulter brojača, dok je druga boca podvrgnuta lizisu deterdžentom, tj., oprana je dva puta sa 0.3 ml/cm2 PBS, lizirana dva puta sa 0.08 ml/cm2 bufera za lizis. Ovo je urađeno za kulture u ranoj eksponencijalnoj fazi rasta, kasnoj eksponencijalnoj fazi rasta, stacionarnoj fazi rasta kao i za kulture na 1, 2 i 3 nedjelje poslije infekcije. Kumulativni rezultati za ove eksperimente prikazani su na Slici 14. Najbolja interpolaciona linija je opisana jednadžbom: Y(104) = For a standard curve that allows the conversion of total protein to a specific number of cells, the cells throughout the process must consist of approximately equal amounts of protein. To determine this, T-bottles were inoculated with equal numbers of cells. At certain intervals in the procedure, two bottles are sacrificed. One bottle was treated with trypsin (trypsinized) and cells were counted using a hemacytometer and Coulter counter, while the other bottle was subjected to detergent lysis, i.e., it was washed twice with 0.3 ml/cm2 PBS, lysed twice with 0.08 ml/cm2 buffer for lysis. This was done for cultures in early exponential growth phase, late exponential growth phase, stationary growth phase as well as for cultures at 1, 2 and 3 weeks post-infection. The cumulative results for these experiments are shown in Figure 14. The best interpolation line is described by the equation: Y(104) =
-0.09 + 0.42X. Ovaj obračun pokazuje da jedna kriva obezbjeđuje načine za određivanje broja ćelija pomoću mjerenja ukupnog proteina, bez obzira na "stanje" ćelija. -0.09 + 0.42X. This calculation shows that a single curve provides a means to determine the number of cells by measuring total protein, regardless of the "state" of the cells.
Ćelije u ovom eksperimentu su inficirane sa HAV CR326F P28 pri MOI od 1. Na 3 nedjelje poslije infekcije tripsinizacija je potvrdila ne-efikasnost u sakupljanju ćelija. Međutim, pošto su gustoće ćelija na 1 i 2 nedjelje poslije infekcije bile približno jednake, i vidljivi lizis ćelija na 3 izgleda da ne postoji, gustoće ćelija upotrijebljene za 3 nedjelje, bazirane su na podacima dobivenim na 2 nedjelje. Slika 14 je ponovo nanijeta, pokazujući vrijeme za svaku točku specifičnog podatka. Određivanjem podataka na 3 nedjelje poslije infekcije, na nagib i prekid krive nije bilo velikog utjecaja (vidjeti Sliku 15). Cells in this experiment were infected with HAV CR326F P28 at an MOI of 1. At 3 weeks post-infection, trypsinization confirmed inefficiency in cell harvesting. However, since cell densities at 1 and 2 weeks post-infection were approximately equal, and apparent cell lysis at 3 appeared to be absent, the cell densities used for 3 weeks were based on data obtained at 2 weeks. Figure 14 is plotted again, showing the time for each specific data point. By determining the data at 3 weeks after infection, there was no great influence on the slope and break of the curve (see Figure 15).
Upotrebljavajući gornju korelaciju, podaci o ukupnom proteinu za nekoliko lizata kulture kao u Primjeru 9, dalo je prosječno 490 μg/ml proteina. Ovo se prevodi u približno 3,3 x 105 ćelija/cm2, i uglavnom je u suglasnosti sa gustoćama ćelija određenim upotrebljavajući hemacitometar u kontrolnim T bocama. Zbrojeno, vjeruje se da ukupan protein iz lizata ćelija Tritonom obezbjeđuje korisnu apsoksimaciju gustoće ćelija u vrijeme sakupljanja virusa. Using the above correlation, total protein data for several culture lysates as in Example 9 gave an average of 490 μg/ml protein. This translates to approximately 3.3 x 10 5 cells/cm 2 , and is generally in agreement with cell densities determined using a hemacytometer in control T flasks. Taken together, total protein from Triton cell lysates is believed to provide a useful approximation of cell density at the time of virus collection.
PRIMJER 15 EXAMPLE 15
Ispitivanje mješanja ekstrakcionog stupnja otapalom Examination of the mixing of the extraction stage with a solvent
Izvod Excerpt
Tokom prečišćavanja hepatitisa A, stupanj ekstrakcije otapalom je bio kritičan u uklanjanju još prisutnih nečistoća na PEG pelete stupnju. U cilju da se potpuno razumije i kontrolira ovaj stupanj, izvršena je serija eksperimenata da bi se odredili važni parametri za ekstrakciju otapalom. Identicifirane su dvije ključne promjenljive: trajanje mješanja i intenzitet mućkanja, što je određeno veličinom upotrebljenih boca. Odnos zapremina otapala prema vodi nije bio bitan faktor u toku ispitivanja, niti je bila upotreba mehaničke mućkalice kao što je suprotno ručnom mućkanju ili vrtloženju. During hepatitis A purification, the solvent extraction step was critical in removing impurities still present at the PEG pellet stage. In order to fully understand and control this step, a series of experiments were performed to determine the important parameters for solvent extraction. Two key variables were identified: duration of mixing and intensity of shaking, which was determined by the size of the bottles used. The solvent to water volume ratio was not a significant factor in the course of the test, nor was the use of a mechanical shaker as opposed to manual shaking or vortexing.
Materijali i Postupci Materials and Procedures
Uzorci ponovno suspendiranog PEG taloga su mješani sa otapalom kloroforma i izo-amil alkohola (24:1 CHCl3 : IAA) u različitim proporcijama od 0.5:1 do 3:1 (odnosi faza otapala prema vodi). Mješanje je vršeno ručno snažnim mućkanjem, vrtloženjem (za epruvete od 15 ml) ili na 3D mehaničkoj mućkalici (Glas-Col, Terre Haute Ind) pri brzini motora od 100 (sa epruvetama postavljenim horizontalno za epruvete od 15 ml i 50 ml). Vremena mješanja su se kretala od 20 sekundi do 1 sata. Samples of the resuspended PEG precipitate were mixed with a solvent of chloroform and iso-amyl alcohol (24:1 CHCl3 : IAA) in different proportions from 0.5:1 to 3:1 (phase ratios of solvent to water). Mixing was done by hand by vigorous shaking, vortexing (for 15 ml tubes) or on a 3D mechanical shaker (Glas-Col, Terre Haute Ind) at a motor speed of 100 (with tubes placed horizontally for 15 ml and 50 ml tubes). Mixing times ranged from 20 seconds to 1 hour.
Poslije mješanja, uzorci su centrifugirani da bi se odvojile faze. Za epruvete od 50 ml i boce od 500 ml upotrijebljen je Beckman J6-MI centrifugiran sa JS 4,2 oscilirajućim rotorom pri 3800 opm 10 minuta. Za male epruvete, u početku je upotrijebljena Dynac II centrifuga pri 1000 opm 5 minuta, zatim za naredne eksperimente, uzorci su prebačeni u epruvete od 50 ml za centrifugiranje kao gore. After mixing, the samples were centrifuged to separate the phases. A Beckman J6-MI centrifuged with a JS 4.2 oscillating rotor at 3800 rpm for 10 minutes was used for 50 ml test tubes and 500 ml bottles. For small tubes, initially a Dynac II centrifuge was used at 1000 rpm for 5 minutes, then for subsequent experiments, samples were transferred to 50 ml tubes for centrifugation as above.
Vodene faze su uklonjene sa staklenom pipetom i analizirane pomoću HFLC po veličini pod slijedećim uvjetima: dvije TSK P4000x1 kolone (TosoHaas) u serijama, mobilna faza je bila RCM 8 (također navedena i kao CM563, koja je 150 mM NaCl u 6,2 mM fosfatnog pufera, pH 7.2) na 0.32 ml/min, registrirano na 214 i 260 nm (80 minuta vrijeme proticanja). Rezultati su izraženi kao oblasti pika ili odnosi oblasti pika na bazi 214 nm UV absorpcije. Za početne eksperimente u epruvetama od 15 ml, upotrebljena je jedna TSK kolona (vrijeme proticanja 40 minuta). Zatim su upotrebljene dvije kolone postavljene da bi se dobila bolja rezolucija između pikova za HAP A i nečistoća. Aqueous phases were removed with a glass pipette and analyzed by HFLC for size under the following conditions: two TSK P4000x1 columns (TosoHaas) in series, the mobile phase was RCM 8 (also listed as CM563, which is 150 mM NaCl in 6.2 mM of phosphate buffer, pH 7.2) at 0.32 ml/min, registered at 214 and 260 nm (80 minute flow time). Results are expressed as peak areas or peak area ratios based on 214 nm UV absorption. For initial experiments in 15 ml test tubes, one TSK column (flow time 40 minutes) was used. Two columns were then used to obtain better resolution between the peaks for HAP A and impurities.
Eksperimenti su u početku izvedeni u epruvetama od 15 ml na skali od 2-6 ml i uzorci su mješani ručno mućkanjem ili vrtloženjem. Kada su dobiveni rasijani rezultati iz prvih nekoliko serija mješanje je izvođeno sa većim zapreminama (u epruvetama od 50 ml, napunjenim do maksimuma od 24 ml) na mehaničkoj mućkalici. Uzorci su također uzeti iz boca od 500 ml u toku prerade i proizvodnje serija. Boce su mućkane kratko vrijeme (na primjer 20 sekundi). Faze su ostavljene da se odvoje stajanjem oko 1 minute i uzorci od 600 μl su uklonjeni iz gornje faze. Boca je vraćena na mućkalicu još jedno kratko vrijeme, a zatim je ponovo uzorkovano. Ovi uzorci su kasnije rotirani u mikro centrifugi 2 minute pri maksimalnoj brzini. Experiments were initially performed in 15 ml test tubes on a 2-6 ml scale and the samples were mixed by hand by shaking or vortexing. When scattered results were obtained from the first few batches, mixing was performed with larger volumes (in 50 ml test tubes, filled to a maximum of 24 ml) on a mechanical shaker. Samples were also taken from 500 ml bottles during processing and batch production. The bottles were shaken for a short time (for example 20 seconds). The phases were allowed to separate by standing for about 1 minute and 600 μl samples were removed from the upper phase. The bottle was returned to the shaker for another short time and then sampled again. These samples were later rotated in a microcentrifuge for 2 minutes at maximum speed.
REZULTATI THE RESULTS
1. Vrijeme mješanja 1. Mixing time
Iz preliminarnih eksperimenata malih razmjera u epruvetama od 15 ml, izgledalo je da je vrijeme mješanja važna promjenljiva, pri čemu je pri produženom vremenu mješanja došlo do boljeg uklanjanja nečistoća. Iz slike 6, jasno je da je odnos HepA prema nečistoćama povećan dužim vremenima mješanja. Pored toga, na Slici 20, može se vidjeti da se površina pika nečistoća znatno smanjuje sa vremenom mješanja. From preliminary small-scale experiments in 15 ml tubes, mixing time appeared to be an important variable, with increased mixing time resulting in better impurity removal. From Figure 6, it is clear that the ratio of HepA to impurities increased with longer mixing times. In addition, in Figure 20, it can be seen that the area of the impurity peak decreases significantly with the mixing time.
Sa epruvetama od 50 ml, pokazano je da je vrijeme mješanja bilo krajnje važno, sa 3 minuta zahtjevanih u ovom primjeru za najveće uklanjanje nečistoća (Slika 20). U ovom slučaju, analiza se izvodi sa tandem kolonama radi bolje rezolucije i promatran je samo mali pad površine Hep A. With 50 ml tubes, it was shown that mixing time was extremely important, with 3 minutes required in this example for maximum impurity removal (Figure 20). In this case, the analysis is performed with tandem columns for better resolution and only a small decrease in Hep A surface area was observed.
Efekat vremena mješanja je također proučavan kod boca od 540 ml upotrebljenih u proizvodnji. Uzorci su uzimani svakih 20 sekundi u toku od 2 minuta ukupnog vremena mješanja. Ovaj eksperiment je izveden sa dva različita odnosa otapala: 2:1 i 3:1, što također odgovara dvjema različitim zapreminama vodene faze u bocama (oko 60 ml i 90 ml, zapremina otapala je ostajala konstantnom na 180 ml). The effect of mixing time was also studied in the 540 ml bottles used in production. Samples were taken every 20 seconds during the 2 minutes of total mixing time. This experiment was performed with two different solvent ratios: 2:1 and 3:1, which also corresponds to two different volumes of the aqueous phase in the bottles (about 60 ml and 90 ml, the solvent volume remained constant at 180 ml).
Slika 21 pokazuje da se nivo nečistoća smanjuje sa vremenom mješanja, a da su potpuno uklonjene poslije 1 minuta i 40 sekundi. Vrijeme upotrebljeno u proizvodnji je bilo 2 minuta, što osigurava znatno uklanjanje nečistoća. Radi još potpunijeg uklanjanja produžava se na 3 minuta. Razlike u zapreminama i odnosima otapala izgleda da imaju malo efekta u upotrebljenoj oblasti. Figure 21 shows that the level of impurities decreases with mixing time, and that they are completely removed after 1 minute and 40 seconds. The time used in the production was 2 minutes, which ensures a significant removal of impurities. For even more complete removal, it is extended to 3 minutes. Differences in solvent volumes and ratios appear to have little effect in the field used.
Ovaj eksperiment je produžen na duže vrijeme mješanja i u epruvetama od 50 ml i u epruvetama od 15 ml. Slika 22 pokazuje da se eventualno isti stepen čistoće postiže u svim upotrebljenim epruvetama, ali da je potrebno 6-8 minuta u manjim epruvetama i manje od 2 minuta u bocama za centrifugu od 500 ml. Ove razlike će biti prodiskutirane dalje u odjeljku 3. U cilju da se odredi da li na virus utiče produženo mućkanje, epruveta od 50 ml se mješa 1 sat na mehaničkoj mućkalici. HPSEC rezultati nisu pokazivali nika-kvo dalje opadanje površine pika Hep A i EIA rezultati (tabela 1) pokazuju da je antigenost ista za 1 sat kao i za 2 minuta mješanja. Tok iz postupka iz iste serije pokazuje sličnu EIA vrijednost. Zbog toga, da bi se osiguralo potpuno uklanjanje nečistoća u proizvodu, minimum vremena mješanja, kao što se vidi iz dijagrama, može da se produži bez smanjenja prinosa virusa. This experiment was extended to a longer mixing time in both 50 ml and 15 ml tubes. Figure 22 shows that possibly the same degree of purity is achieved in all test tubes used, but that it takes 6-8 minutes in smaller test tubes and less than 2 minutes in 500 ml centrifuge bottles. These differences will be discussed further in section 3. In order to determine whether the virus is affected by prolonged shaking, a 50 ml tube is mixed for 1 hour on a mechanical shaker. The HPSEC results did not show any further decrease in the Hep A peak area and the EIA results (Table 1) showed that the antigenicity was the same at 1 hour as at 2 minutes of mixing. A process flow from the same batch shows a similar EIA value. Therefore, to ensure complete removal of impurities in the product, the minimum mixing time, as seen in the diagram, can be extended without reducing the virus yield.
TABELA 1 TABLE 1
Efekat produženog mućkanja na Hep A pomoću HPSEC i EIA (epruvete od 50 ml) Effect of prolonged shaking on Hep A by HPSEC and EIA (50 ml tubes)
[image] [image]
2. Odnos zapremine 2. Volume ratio
Odnos zapremina otapala prema vodenoj fazi za jednu ekstrakciju bio je 1.5 za polupogonske serije (mješano u jednoj boci sa magnetnom mješalicom), i između 2 i 3 za demonstracione serije (mućkanje u bocama od 500 ml). Stoga je ispitan efekat odnosa zapremina između 0.5 i 3 na čistoću. Početni eksperimenti u malim razmjerima (u epruvetama od 15 ml, mješanje 1 minut) izvršeni su sa čeitir različite proizvodne šarže od početnog PEG taloga, slika 23 pokazuje da nikakva jasna korelacija nije uočena između odnosa otapala i vodene faze i uklanjanja nečistoća. Rasipanje rezultata je vjerojatno zbog promjenljivih u polaznom materijalu i nekonzistentnost mućkanja. The volume ratio of the solvent to the aqueous phase for one extraction was 1.5 for the semi-powered batches (mixed in one flask with a magnetic stirrer), and between 2 and 3 for the demonstration batches (shaking in 500 ml flasks). Therefore, the effect of the volume ratio between 0.5 and 3 on purity was examined. Initial experiments on a small scale (in 15 ml tubes, mixing for 1 minute) were performed with four different production batches of the initial PEG precipitate, Figure 23 shows that no clear correlation was observed between the solvent to aqueous phase ratio and impurity removal. The scatter in the results is likely due to variables in the starting material and inconsistency of shaking.
Veličina uzorka je povećana u razmjerima do epruveta od 50 ml i mehanička mućkalica je upotrebljena 2 minute sa epruvetama postavljenim horizontalno. Rezultati su prikazani na Slici 24. Ponovo, iako postoji rasipanje podataka, nema jasnog trenda na bazi odnosa otapala prema vodi. Ovo je potvrđeno eksperimentima vremena mješanja u bocama od 500 ml sa 2:1 i 3:1 odnosom otapala (slika 21) pokazujući veoma malu razliku u uklanjanju nečistoća. Stoga izgleda da odnos otapala nije važna promjenljiva, i da povećanje u odnosu otapala nije doprinjelo povećanoj čistoći koja se vidi kod postojanih serija. The sample size was scaled up to 50 ml tubes and a mechanical shaker was used for 2 minutes with the tubes placed horizontally. The results are shown in Figure 24. Again, although there is some scatter in the data, there is no clear trend based on the solvent to water ratio. This was confirmed by mixing time experiments in 500 ml bottles with 2:1 and 3:1 solvent ratios (Figure 21) showing very little difference in impurity removal. Therefore, it appears that the solvent ratio is not an important variable, and that an increase in the solvent ratio did not contribute to the increased purity seen in the stable series.
3. Tip mješanja i veličina posude 3. Mixing type and container size
Nikakav trend nije mogao biti uočen za efekat ručnog mućkanja prema vrtloženju u malim (15 ml) epruvetama, pošto su rezultati rasuti za eksperimente iz različitih proizvodnih serija (slika 23). Jedna točka podatka na slici 19 također pokazuje dobro slaganje između ručnog mućkanja i vrtloženja. U većim epruvetama, uspoređeni su ručno mućkanje i mehaničko mućkanje. Na slici 25, se može vidjeti da ručno mućkanje daje samo malo različite rezultate od mućkalice za istu veličinu i punjenje epruveta. Tabela 2 prikazuje rezultate iz eksperimenata u bocama od 500 ml. Iz serije od šest boca, jedna se mješa ručno dok su ostale mućkane mehanički. Za svaki tip mješanja uzet je uzorak i HPLC analiza je pokazala da su veoma slični, oba daju visoku čistoću, potvrđujući da tip mućkanja nije kritičan, ali da je veličina upotrebljene boce veoma važna, i da su boce od 500 ml bolje od epruveta od 50 ml za isto vrijeme mješanja na mućkalici, ovo je također ilustrirano podacima na slici 22. No trend could be observed for the effect of manual shaking towards vortexing in small (15 ml) test tubes, as the results were scattered for experiments from different production batches (Figure 23). One data point in Figure 19 also shows good agreement between manual shaking and vortexing. In larger test tubes, manual shaking and mechanical shaking were compared. In Figure 25, it can be seen that manual shaking gives only slightly different results than a shaker for the same size and filling of tubes. Table 2 shows the results from experiments in 500 ml bottles. Out of a batch of six bottles, one is mixed by hand while the others are shaken mechanically. A sample was taken for each type of mixing and HPLC analysis showed that they were very similar, both giving high purity, confirming that the type of shaking is not critical, but that the size of the bottle used is very important, and that 500 ml bottles are better than 50 ml tubes. ml for the same shaker mixing time, this is also illustrated by the data in Figure 22.
TABELA 2 TABLE 2
Efekat različitih tipova mješanja na odnos Hep A/nečistoće (2 minuta) Effect of different types of mixing on the Hep A/impurity ratio (2 minutes)
[image] [image]
Također je uzet u razmatranje nivo punjenja epruveta. Epruvete od 50 ml napunjene do nivoa od 10.5 ml (otapalo + voda) daju veoma slične rezultate sa tipičnim punjenjem od 21 ml. slično, boce od 500 ml napunjene sa 240 ili 275 ml pokazuju ekvivalentne količine uklanjanja nečistoća. (Slika 21). U toku svih eksperimenata mješanja, epruvete od 15 ml se pune ili sa 0.13 ili 0.4 od njihovog punog kapaciteta. Za epruvete od 50 ml, većina je napunjena do 0.53 kapaciteta (sa jednim eksperimentom pri 0.26), i boce od 500 ml su napunjenje između 0.48 i 0.57 od punog kapaciteta. Pošto su upotrebljeni slični nivoi za tri tipa epruveta i rezultati koji su dobiveni nisu mogli biti dovedeni u vezu sa nivoom punjenja, vjerojatno nema jak efekat u ovoj oblasti. Vjerojatno je, međutim, da ako su epruvete potpuno napunjene, neće biti gornjeg prostora i bit će teško da se mješaju. Kao rezultat ovo će smanjiti efikasnost uklanjanja nečistoća. The filling level of the test tubes was also taken into consideration. 50 ml tubes filled to the level of 10.5 ml (solvent + water) give very similar results to a typical filling of 21 ml. similarly, 500 ml bottles filled with 240 or 275 ml show equivalent amounts of impurity removal. (Figure 21). During all mixing experiments, 15 ml tubes are filled to either 0.13 or 0.4 of their full capacity. For 50 ml tubes, most were filled to 0.53 capacity (with one experiment at 0.26), and 500 ml bottles were filled between 0.48 and 0.57 of full capacity. Since similar levels were used for the three types of test tubes and the results obtained could not be related to the filling level, it probably does not have a strong effect in this area. It is likely, however, that if the tubes are completely filled, there will be no headspace and it will be difficult to mix them. As a result, this will reduce the efficiency of removing impurities.
Još jedan faktor koji se mjenja, a koji može da bude važan je odnos širine prema visini epruveta: 0.13 za epruvete od 15 ml, 0.26 za epruvete od 50 ml i 0.58 za boce od 500 ml. Vjerojatno je veći odnos širine prema visini koristan za mješanje pošto dobiveni model za mućkanje dovodi do pojave veće međupovršinske oblasti. Another variable factor that can be important is the width to height ratio of the test tubes: 0.13 for 15 ml test tubes, 0.26 for 50 ml test tubes and 0.58 for 500 ml bottles. It is likely that a larger width-to-height ratio is beneficial for mixing since the resulting shaking model results in a larger interfacial area.
Podaci iz ranijih polupogonskih serija sa istom prisutnom nečistoćom u PEG peletama su također ispitani. Četiri serije je ekstrahirano sa otapalom 1 minut u jednoj boci snabdjevenoj sa magnetnom mješalicom ili obrtnom mješalicom. Otopina je tada raspoređena u boce za centrifugu radi odvajanja faza centrifugiranjem. Odnos otapala prema vodi je bio 1.5. Dobiveni odnosi Hep A prema nečistoćama dostizali su od 0.48 do 2.7. Dodatna polupogonska šarža ja mućkana u koničnim bocama za centrifugu od 250 ml 1 minut sa odnosom otapala prema vodi od 1. Dobiveni odnos čistoće (Hep A/nečistoće) je bio 0.87. Svi ovi rezultati se mogu usporediti sa onima dobivenim u epruvetama od 15 ili 50 ml pod sličnim uvjetima, ali su mnogo niži nego tipične oblasti od 4 do 21 (za 8 šarži) dobiveni u demonstracionim serijama punih razmjera. Ovo je u suglasnosti sa dužim vremenom mješanja i većim bocama upotrebljenim u proizvodnim razmjerima. Data from earlier semi-propellant series with the same impurity present in the PEG pellets were also examined. Four batches were extracted with the solvent for 1 minute in one bottle equipped with a magnetic stirrer or a rotary stirrer. The solution was then distributed into centrifuge bottles for phase separation by centrifugation. The ratio of solvent to water was 1.5. The obtained ratios of Hep A to impurities ranged from 0.48 to 2.7. An additional half-run batch was shaken in 250 ml conical centrifuge bottles for 1 minute with a solvent to water ratio of 1. The purity ratio (Hep A/impurities) obtained was 0.87. All of these results are comparable to those obtained in 15 or 50 ml tubes under similar conditions, but are much lower than the typical areas of 4 to 21 (for 8 lots) obtained in full-scale demonstration runs. This is consistent with the longer mixing times and larger bottles used on a production scale.
Zaključak Conclusion
Možemo zaključiti iz ovih podataka da je razlika u čistoči između demonstracionih serija punih razmjera i ranijih polupogonskih serija u tome što se mućkanje vrši u većim (500 ml) bocama i duže vrijeme (2 minuta prema 1 minuti). Efekat zapremine je vjerojatno uslijed veće međupovršinske oblasti koja nastaje od mućkanja u ovim bocama. Boce od 500 ml se tipično pune do nivoa manjeg od 300 ml, što dovodi do velike gornje oblasti koja se napuni u toku mješanja, što dovodi do značajne međupovršinske oblasti otapala/vode/zraka. Vjerojatno je da smanjena međupovršinska oblast može da bude odgovorna za nižu čistoću otapalom ekstrahiranog proizvoda dobivenog u malim epruvetama. Međutim, pošto je vrijeme mješanja važna promjenljiva, čistoća u epruvetama od 50 ml eventualno dostiže isti nivo kao i u bocama od 500 ml. We can conclude from this data that the difference in purity between the full-scale demonstration batches and the earlier semi-powered batches is that the shaking is done in larger (500 ml) bottles and for a longer time (2 minutes vs. 1 minute). The volume effect is probably due to the larger interfacial area created by shaking in these bottles. 500 ml bottles are typically filled to a level of less than 300 ml, resulting in a large head area that is filled during mixing, resulting in a significant solvent/water/air interfacial area. It is likely that the reduced interfacial area may be responsible for the lower purity of the solvent-extracted product obtained in small tubes. However, since the mixing time is an important variable, the purity in the 50 ml tubes eventually reaches the same level as in the 500 ml bottles.
Za ostale promjenljive koje su ispitivanje, odnos otapala prema vodi i tip mućkanja, nije nađeno da su važne u ispitivanoj oblasti. Other variables such as test, solvent to water ratio and type of shaking were not found to be important in the study area.
PRIMJER 16 EXAMPLE 16
Rastvorljivost virusa hepatitisa A Solubility of hepatitis A virus
Kao što je ranije opisano, znatan gubitak hepatitisa a je uočen na bazi HPSEC analize procesnih tokova iz produktivnih serija. Tokom prečišćavanja je određeno upotrebljavajući HPSEC kvantitativno određivanje da se više od 50% virusa gubi u toku noći između stupnjeva prečišćavanja iono-izmjenjivačkom kromatografijom i ekskluzivnom kromatografijom po veličini. Jednovremeno sa ovim gubitkom bila je pojava taloga koji se uklanja centrifugiranjem. As described earlier, significant loss of hepatitis A was observed based on HPSEC analysis of process streams from productive batches. During purification, it was determined using HPSEC quantification that more than 50% of the virus was lost during the night between the purification steps by ion-exchange chromatography and size-exclusion chromatography. Simultaneously with this loss was the appearance of a sediment that is removed by centrifugation.
Postavljena je hipoteza da je talog bio hepatitis A i da je taloženje izazvano visokom ionskom jačinom pufera upotrebljenog za eluiranje virusa iz iono-izmjenjivačke kolone. Učinjeni su pokušaji da se talog otopi sa vodenom otopinom natrij klorida i natrij fosfata. Na bazi gubitka virusa upotrebljavajući HPSEC kvantitativno određivanje koncentracije taloga (stvarno mulj taloga) određeno je na nekoliko mg/ml, žalikvoti mulja taloga su pomješani bolo sa 6 mM natrij fosfata, 0.15 N natrij klorida u 6 mM natrij fosfata, 0.3 N natrij klorida u 6 mM natrij fosfata, 0.5 N natrij klorida u 6 mM natrij fosfata, ili 1 N natrij klorida u 6 mM natrij fosfata. It was hypothesized that the precipitate was hepatitis A and that the precipitation was caused by the high ionic strength of the buffer used to elute the virus from the ion-exchange column. Attempts were made to dissolve the precipitate with an aqueous solution of sodium chloride and sodium phosphate. Based on the loss of virus using HPSEC, the quantitative determination of the concentration of the precipitate (actually sludge sludge) was determined to be several mg/ml, aliquots of the sludge sludge were mixed bolo with 6 mM sodium phosphate, 0.15 N sodium chloride in 6 mM sodium phosphate, 0.3 N sodium chloride in 6 mM sodium phosphate, 0.5 N sodium chloride in 6 mM sodium phosphate, or 1 N sodium chloride in 6 mM sodium phosphate.
Kada se pomješa čak i sa manjom količinom 6 mM natrij fosfata talog se otapa u toku nekoliko sekundi. Međutim, kada se pomješa sa otopinom koja sadrži natrij klorid nije uočena nikakva velika razlika u izgledu (osim očevidnog razblaženja). Otopina sirovine za dobivanje otopine sirovine za hepatitis A dobiva se otapanjem 0.35 ml suspenzije sa 5,65 ml 6 mM natrij fosfata. Uočeno je da je do potpunog otapanja vidljivih čestica došlo poslije dodatka od samo oko 0.5 ml, natrij fosfatnog otapala. Uzorci otapala sirovine su pomješani sa različitim količinama 1 N natrij klorida u 6 mM natrij fosfata da bi se dostigla ciljana koncentracija od 0.15 N, 0.3 N, ili 0.5 N natrij klorida (Tabela I). When mixed with even a small amount of 6 mM sodium phosphate, the precipitate dissolves within seconds. However, when mixed with a solution containing sodium chloride no major difference in appearance (apart from obvious dilution) was observed. The raw material solution for obtaining the raw material solution for hepatitis A is obtained by dissolving 0.35 ml of the suspension with 5.65 ml of 6 mM sodium phosphate. It was observed that the complete dissolution of the visible particles occurred after the addition of only about 0.5 ml of sodium phosphate solvent. Raw solvent samples were mixed with varying amounts of 1 N sodium chloride in 6 mM sodium phosphate to achieve target concentrations of 0.15 N, 0.3 N, or 0.5 N sodium chloride (Table I).
TABELA 16-I TABLE 16-I
[image] [image]
Koncentracije ovih otapala su zatim određene kvantitativno upotrebljavajući HPSEC, a zatim određene kvantitativno dvije nedjelje kasnije pomoću HPSEC. Ovi podaci su prikazani u Tabeli II i nanijeti na Slikama 27 i 28. The concentrations of these solvents were then quantified using HPSEC and then quantified two weeks later using HPSEC. These data are presented in Table II and plotted in Figures 27 and 28.
Slika 27 prikazuje početne koncentracije hepatitisa A izmjerene u otapalu približno jedan dan poslije dodatka soli. Pomoću HPSEC je određeno da otapalo sirovine ima koncentraciju od oko 100 mog/ml, što odgovara sa oko 2 mg/ml u staloženom mulju. (Količina hepatitisa A u ovom mulju tada grubo odgovara onom gubitku uočenom u toku proizvodnje. Pošto je uočeno da se talog otapa sa samo malom količinom dodatog fosfatnog otapala, otopljivost u otapalima sa malo slane otopine je određena kao veća od ili jednaka sa oko 1 mg/ml). Koncentracija antigena u otapalima koji sadrže natrij klorid je bila mnogo niža nego što odgovara za razblaženje otopine sirovine sa slanom otopinom. Pored toga, HPSEC analiza otapala koji sadrže slano otapalo pokazuje da je agregirani materijal prisutan u velikim proporcijama u onim otapalima koji sadrže sol (Tabela II). Figure 27 shows the initial hepatitis A concentrations measured in the solvent approximately one day after salt addition. Using HPSEC, it was determined that the raw material solvent has a concentration of about 100 mg/ml, which corresponds to about 2 mg/ml in the settled sludge. (The amount of hepatitis A in this sludge then roughly corresponds to that loss observed during production. Since the precipitate was observed to dissolve with only a small amount of phosphate solvent added, the solubility in low-salt solvents was determined to be greater than or equal to about 1 mg /ml). The concentration of antigen in the solvents containing sodium chloride was much lower than that suitable for diluting the stock solution with saline. In addition, HPSEC analysis of the solvents containing the salt solvent shows that the aggregated material is present in large proportions in those solvents containing the salt (Table II).
TABELA 16-II TABLE 16-II
HPSEC REZULTATI ZA HEPATITIS A U SLANIM OTAPALIMA HPSEC RESULTS FOR HEPATITIS A IN SALINE SOLVENTS
(DAN 1) (DAY 1)
[image] [image]
Ovo pokazuje da se hepatitis A agregira i zatim taloži iz otopine čak pri koncentracijama ispod 50 mog/ml kada je u slanom otapalu. Slika 27 također prikazuje približni sastav proizvoda eluiranog iz iono-izmjenjivačke kolone (predstavljeno kao točka IEP). Ona je znatno iznad nivoa antigena koja se može održavati u otapalu čak jedan dan, i to bez znatnih izmjena u postupku prečišćavanja, potrebno je da se proizvod razblaži odmah pošto je eluiran iz iono-izmjenjivačke kolone. Da bi se smanjilo razblaženje na minimum, i da se smanji na minimum zapremina koja će se zatim nanijeti na preparativnu ekskluzionu kolonu po veličini, razblaženje treba da se dobije sa 6 mM natrij fosfatom da bi se održala nominalna pH kontrola, dok se smanjuje ionska jačina i koncentracija antigena. Određeno je da jedan prema jedan razblaženje smanjuje koncentraciju antigena do točke koja je bila ispod krive na Slici 27 predstavljena pomoću IEP* na oko 25 mog/ml i 150 mM natrij klorida u fosfatu. Na bazi ovih podataka razblaživanje je uključeno u postupak prečišćavanja. This shows that hepatitis A aggregates and then precipitates out of solution even at concentrations below 50 mog/ml when in saline. Figure 27 also shows the approximate composition of the product eluted from the ion-exchange column (represented as the IEP point). It is significantly above the level of antigen that can be maintained in the solvent for even one day, and without significant changes in the purification process, it is necessary to dilute the product immediately after it is eluted from the ion-exchange column. To minimize dilution, and to minimize the volume that will then be applied to the preparative size exclusion column, dilution should be made with 6 mM sodium phosphate to maintain nominal pH control while reducing ionic strength. and antigen concentration. A one to one dilution was determined to reduce the antigen concentration to a point that was below the curve in Figure 27 represented by IEP* at about 25 mg/ml and 150 mM sodium chloride in phosphate. Based on this data, dilution is included in the purification process.
Slika 28 prikazuje koncentracije izmjerene u otapalima opisanim na dan 1 i dan 14. Očigledno je da su koncentracije antigena spale u toku vremena između dana 1 i dana 14, i da jedna prema jedan razblaženja ne razblažuje antigen ispod krive otopljivosti, već samo stabilizira otopinu virusa i služi da uspori, napad agregacije i taloženja. Moguće je da će dalja optimizacija razblaženja dovesti do daljeg poboljšanja prinosa proizvoda. Figure 28 shows the concentrations measured in the solvents described on day 1 and day 14. It is apparent that the antigen concentrations fell over time between day 1 and day 14, and that the one-to-one dilutions do not dilute the antigen below the solubility curve, but merely stabilize the virus solution. and serves to slow down the attack of aggregation and deposition. It is possible that further optimization of the dilution will lead to further improvement in product yield.
Najzad, kao provjera da otopina sirovine sadrži hepatitis A, a ne neki drugi materijal koji će ko-eluirati na HPSEC sa otapalom sirovine je predmet za SDS-PAGE i bojenje srebrom. Kada se usporedi sa SEC proizvodom, jasne su iste trake za protein. Finally, as a check that the stock solution contains hepatitis A and not some other material that will co-elute on HPSEC with the solvent, the stock is subjected to SDS-PAGE and silver staining. When compared to the SEC product, the same protein bands are clear.
PRIMJER 17 EXAMPLE 17
VISOKO REZOLUCIONA EKSKLUZIONA KROMATOGRAFIJA PO VELIČINI ZA REGISTRACIJU UZORAKA PREČIŠĆAVANJA HEPATITISA A HIGH RESOLUTION SIZE EXCLUSION CHROMATOGRAPHY FOR REGISTRATION OF HEPATITIS A PURIFICATION SAMPLE
Uvod Introduction
Razvijen je postupak za karakteriziranje i registriranje proizvodne performanse u toku prečišćavanja hepatitisa A. Analitička visoko rezoluciona ekskluziona kromatografija po veličini (HPSEC). (High Performance Size Exclusion Chromatography) sa UV detekcijom na 214 nm i 260 nm obezbjeđuje analizu relativnih količina virusa hepatitisa A i ključnih nečistoća (agregata, adukta nukleinske kiseline, hepatitisa A i 660 kDa nečistoće) u proizvodnim uzorcima. Pored toga, HPSEC je upotrijebljena da bi se odredila kvantitativno koncentracija hepatitisa A u uzorcima iz posljednja 3 stupnja prečišćavanja (ekstrakcija, ionska izmjena i preparativna SEC). Ova analiza je upotrebljena da se registrira performansa hidrolize BENZONASE i da se obezbjedi otisak profila nečistoća Hep A na svakom proizvodnom stupnju za reference poslije toka postupka. A procedure was developed to characterize and record production performance during hepatitis A purification. Analytical High Resolution Size Exclusion Chromatography (HPSEC). (High Performance Size Exclusion Chromatography) with UV detection at 214 nm and 260 nm provides analysis of relative amounts of hepatitis A virus and key impurities (aggregates, nucleic acid adducts, hepatitis A and 660 kDa impurities) in production samples. In addition, HPSEC was used to quantitatively determine the hepatitis A concentration in samples from the last 3 purification steps (extraction, ion exchange and preparative SEC). This analysis was used to record the hydrolysis performance of BENZONASE and to provide a footprint of the Hep A impurity profile at each production step for post-process references.
Procesni uzorci hepatitisa A iz 10 proizvodnih serija analizirano je pomoću HPSEC da bi se obezbjedili podaci procesne performanse za sve stupnjeve prečišćavanja. Podaci iz ovih analiza zajedno sa dodatnom stabilnošću i studijama obezbjeđuju i potvrdu HPSEC analize i jasnu indikaciju o konzistentnosti postupka za hepatitis A. Hepatitis A process samples from 10 production runs were analyzed using HPSEC to provide process performance data for all purification steps. Data from these assays together with additional stability studies provide both confirmation of the HPSEC assay and a clear indication of the consistency of the hepatitis A procedure.
Ovaj Primjer zbraja i podatke potvrde HPSEC analize, i rezultate analize 10 proizvodnih serija. Izvještaj je organiziran u slijedeće odjeljke: This Example aggregates both the confirmation data of the HPSEC analysis and the results of the analysis of 10 production batches. The report is organized into the following sections:
ODJELJAK I Instrumentacija i kromatografski uvjeti SECTION I Instrumentation and chromatographic conditions
Opis HPSEC kolone i HPLC instrumentacija i Description of the HPSEC column and HPLC instrumentation i
radni uvjeti work conditions
ODJELJAK II Analiza i kalibracioni postupci SECTION II Analysis and calibration procedures
Opis dobivanja kalibracionih standarda i postupci analize Description of obtaining calibration standards and analysis procedures
ODJELJAK III Linearnost, točnost i reproduktivnost SECTION III Linearity, accuracy and reproducibility
statističko određivanje statistical determination
ODJELJAK IV Analiza rezultata SECTION IV Analysis of results
Prikazan je set kromatograma iz jedne serije, zajedno sa A set of chromatograms from one batch is shown, along with
opisom tipa podataka sakupljenih za svaki proizvodni uzorak by describing the type of data collected for each production sample
i preporučen oprezan limit and recommended caution limit
ODJELJAK V Uvjeti skladištenja uzorka SECTION V Sample storage conditions
Proučavanja skladištenja za svaki tip proizvodnog uzorka su Storage studies for each type of production sample are
izvršena da bi se odredila stabilnost na 4-6 C performed to determine stability at 4-6 C
ODJELJAK VI Uspoređenje EIA i HPSEC rezultata SECTION VI Comparison of EIA and HPSEC results
ODJELJAK VII Procesna performantna konzistencija SECTION VII Process performance consistency
DODATAK A Rezultati HPSEC analize procesnih uzoraka iz 10 serija APPENDIX A Results of HPSEC analysis of process samples from 10 batches
ODJELJAK I Instrumentacija i kromatografski uvjeti SECTION I Instrumentation and chromatographic conditions
Materijali i reagensi Materials and reagents
CM 80 (MMD) fosfatno puferirano slano otapalo koje sadrži 6 mM natrij fosfata 120 mM natrij klorida; pH 7.2 CM 80 (MMD) phosphate buffered saline containing 6 mM sodium phosphate 120 mM sodium chloride; pH 7.2
Instrumentacija Instrumentation
(Može se izvršiti ekvivalentna zamjena osim sa kolonom) (An equivalent replacement can be made except with a column)
HPLC Sistem; RAININ Rabbit pumpa opremljena sa 10 ml glavom za pranje soli HPLC System; RAININ Rabbit pump equipped with a 10 ml salt washing head
Autouređaj za uzimanje uzoraka: Auto sampling device:
RAININ AI-1 snabdjeven je recirkulacionim hladnjakom za održavanje uzorka na 2-6 C RAININ AI-1 is equipped with a recirculation cooler to maintain the sample at 2-6 C
Detektor: RAININ UV-M dvo-kanalni UV detektor Detector: RAININ UV-M two-channel UV detector
Ak-vizicioni sistem podataka: Dynamax HPLC Method Manager, Data acquisition system: Dynamax HPLC Method Manager,
Verzija 1.1 radi na Apple Macintosh SE Version 1.1 runs on the Apple Macintosh SE
Kolona: TosoHaas TSK PW4000x1, 7.8 x 300 mm L Column: TosoHaas TSK PW4000x1, 7.8 x 300 mm L
HPLC mikroampule - staklo ili poliipropilen. HPLC microampules - glass or polypropylene.
Kromatografski uvjeti Chromatographic conditions
Kolona: TosoHaas TSK PW4000x1, 7.8 x 300 mm L Column: TosoHaas TSK PW4000x1, 7.8 x 300 mm L
Mobilna faza: CM 80 (6 mM natrij fosfata 120 mM natrij klorida, pH 7.2) Mobile phase: CM 80 (6 mM sodium phosphate 120 mM sodium chloride, pH 7.2)
Brzina protoka: 0.32 ml/min Flow rate: 0.32 ml/min
Detekcija: UV 214 nm i 260 nm S IV izlaz detektora Detection: UV 214 nm and 260 nm S IV detector output
Injekciona zapremina: 50 ul Injection volume: 50 ul
Vrijeme koje protekne između injekcija: 55 minuta Time between injections: 55 minutes
TSK PW4000x1 kolona TSK PW4000x1 column
Upotrijebljena kolona je TSK PW4000x1, koja sadrži podlogu na bazi metakrilata od 5 um. Kalibraciona kriva dobivena iz polietilen oksidnih (PEO) standarda prikazana je niže. Točkaste linije pokazuju retenciona vremena 3 otopljena materijala od interesa; hepatitisa A agregata, Hepatitisa A, i 660 kDa kontaminanta. Također su točkastim linijama prikazana retenciona vremena 2 niskih molekulskih težina hidrofobnih spojeva, vitamina B12 i acetona. Oba jedinjenja su na desnoj strani kalibracione krive; retencija ovih spojeva pokazuje hidrofobnu prirodu polimerne podloge. Zadržani pikovi se vide u nekoliko procesnih uzoraka (vidjeti Sliku 29). Oni se uglavnom eluiraju u blizini pika soli i predpostavlja se da su spojevi niskih molekulskih težina. The column used is TSK PW4000x1, which contains a substrate based on 5 um methacrylate. A calibration curve obtained from polyethylene oxide (PEO) standards is shown below. Dotted lines show the retention times of the 3 dissolved materials of interest; hepatitis A aggregates, Hepatitis A, and 660 kDa contaminant. The dotted lines also show the retention times of 2 low molecular weight hydrophobic compounds, vitamin B12 and acetone. Both compounds are on the right side of the calibration curve; the retention of these compounds shows the hydrophobic nature of the polymer substrate. Retained peaks are seen in several process samples (see Figure 29). They mostly elute near the salt peak and are assumed to be low molecular weight compounds.
ODJELJAK II Analiza i kalibracioni postupci SECTION II Analysis and calibration procedures
Dobivanje kalibracionih standarda Obtaining calibration standards
Kalibraciona krivulja od šest nivoa upotrebljena je za kvantitativno određivanje hepatitisa A. Kalibracioni standardi se dobivaju razblaživanjem prečišćenog hepatitis A proizvoda. SEC proizvod sa koncentracijom od 12 ug/ml je upotrebljen kao standard. Šest kalibracionih standarda koji pokrivaju oblast koncentracija od 0.75 do 12 ug/ml dobivaju se razblaživanjem SEC proizvoda sa CM80 kao što je prikazano niže. A six-level calibration curve was used for the quantitative determination of hepatitis A. Calibration standards are obtained by diluting the purified hepatitis A product. The SEC product with a concentration of 12 µg/ml was used as a standard. Six calibration standards covering the concentration range of 0.75 to 12 ug/ml are obtained by diluting the SEC product with CM80 as shown below.
[image] [image]
Standardi se dobivaju dodatakom otopine hepatitisa A i CMBO direktno u HPLC mikroampule. Kalibraciona krivulja za hepatitis A dobiva se nanošenjem log hepatitis A oblasti pika prema log koncentraciji. Tipična kalibraciona krivulja je prikazana na Slici 30. Standards are obtained by adding hepatitis A solution and CMBO directly to HPLC microampules. The calibration curve for hepatitis A is obtained by plotting log hepatitis A peak area against log concentration. A typical calibration curve is shown in Figure 30.
Log-log transformacija podataka kalibracione krivulje je izvršena da bi se smanjila zavisnost kalibracione krivulje od visokih koncentracija kalibracionostandarda. Za kromatografiju bioloških makromolekula, promjenljiva podataka ima tendenciju da se povećava kako se koncentrcije povećavaju. Za HPLC kalibracione krivulje, nagib regresione linije se zato primarno određuje pomoću najvećeg standarda koncentracije, koji je također najvarijabilniji. Log-log transformation of the calibration curve data was performed to reduce the dependence of the calibration curve on high concentrations of the calibration standard. For chromatography of biological macromolecules, data variability tends to increase as concentrations increase. For HPLC calibration curves, the slope of the regression line is therefore primarily determined using the highest concentration standard, which is also the most variable.
Dijagrami 13 kalibracionih krivulja za hepatitis A (dobiveni kao što je opisano gore u toku 2 mjeseca perioda) prikazani su na slici 31. Na lijevoj strani je linearni dijagram 13 krivulja, a na desnoj strani je log-log transformacija istih 13 krivulja. Linearni dijagram pokazuje izraženo "razbuktavanje" krivulja od uobičajenog porijekla, jasno demonstrirajući povećanje varijanti oblasti pika hepatitisa A kako raste koncentracija. Rezultat je varijanta interkrivulje u vrijednostima nagiba. Plots of 13 hepatitis A calibration curves (obtained as described above over a 2-month period) are shown in Figure 31. On the left is a linear plot of the 13 curves, and on the right is a log-log transformation of the same 13 curves. The linear plot shows a marked "flaring" of the curves from the common origin, clearly demonstrating the increase in variant hepatitis A peak areas as the concentration increases. The result is a variant of the intercurve in slope values.
log-log transformacija ovih kalibracionih krivulja čini varijabilnost (RSD) konstantnom kroz cjelokupnu oblast koncentracija. Rezultat je smanjena interkrivulja varijacija nagiba, kao što je prikazano na slici 31B. log-log transformation of these calibration curves makes the variability (RSD) constant over the entire concentration range. The result is a reduced intercurve of slope variation, as shown in Figure 31B.
Postupci za dobivanje uzorka Procedures for obtaining a sample
A. Proizvodni uzorci hepatitisa A: A. Production samples of hepatitis A:
Analizirani su proizvodni uzorci iz slijedećih stupnjeva: Production samples from the following stages were analyzed:
1. Filtrirani lizat 1. Filtered lysate
2. Nukleazom tretirani filtrirani lizat 2. Nuclease-treated filtered lysate
3. PEG talog ponovno suspendiran 3. PEG precipitate resuspended
4. Kloroformon ekstrahirana vodena faza 4. Chloroform extracted aqueous phase
5. Proizvod anjonske izmjene 5. Anion exchange product
6. Ekskluzioni proizvod po veličini 6. Exclusive product by size
Uzorci filtriranog lizata, nukleazom tretiranog lizata i ekskluzionog proizvoda po veličini ne treba da se razblažuju prije injekcije. Uzorak PEG taloga ponovo suspendiranog treba da se centrifugira (10,000 x g 5 minuta) da bi se uklonile preostale čestice, prije injekcije. Uzorak PEG taloga ponovo suspendiranog razblažuje se 1:4 (zap/zap) sa CM80 prije injekcije. Klorofrmom ekstrahirana vodena faza i proizvod anjonske izmjene analiziraju se ne-razblaženi i analiziraju se razblaženi 1:1 (zap/zap) sa CM80 prije injekcije da bi se dobila koncentracija u okviru kalibracione krivulje. Za sve uzorke, analiza se vrši u triplikatu i rezultati iz tri analize uzimaju se kao prosječni. Uzorci se skladište u auto uređaju za uzimanje uzoraka na 2-6°C dok se čeka injekcija. Filtered lysate, nuclease-treated lysate, and size-exclusion product samples do not need to be diluted prior to injection. A sample of the resuspended PEG pellet should be centrifuged (10,000 x g for 5 minutes) to remove any remaining particles, prior to injection. A sample of the resuspended PEG pellet is diluted 1:4 (v/v) with CM80 prior to injection. The chloroform-extracted aqueous phase and the anion exchange product are analyzed undiluted and analyzed diluted 1:1 (zap/zap) with CM80 before injection to obtain a concentration within the calibration curve. For all samples, the analysis is performed in triplicate and the results from the three analyzes are taken as an average. Samples are stored in an auto sampler at 2-6°C while awaiting injection.
Triton se slabo zadržava na TSK PW4000 x 1 koloni, i dodatni eluat je potreban da ga ukloni. Zbog toga, uzorci koji sadrže Triton (filtrirani lizat i nukleazom tretiran profiltriran lizat) treba da se podvrgnu injekciji CM80 slijepe probe kako bi se osiguralo uklanjanje prije injekcije drugih uzoraka. Uzorci mogu da se obrađuju obrnutim redoslijedom polazeći sa SEC proizvodom da bi se spriječilo kasno eluiranje interferentnih pikova. Triton is poorly retained on the TSK PW4000 x 1 column, and additional eluate is required to remove it. Therefore, samples containing Triton (filtered lysate and nuclease-treated filtered lysate) should be injected with a CM80 blank to ensure removal prior to injection of other samples. Samples can be run in reverse order starting with the SEC product to prevent late elution of interfering peaks.
Postupak analize Analysis procedure
1. Injektirati po 50 ul svakog od šest kalibracionih standarda. Retenciono vrijeme hepatitisa A treba da bude 19.0 +/- 1 minut. 1. Inject 50 ul of each of the six calibration standards. The retention time of hepatitis A should be 19.0 +/- 1 minute.
2. Pripremiti uzorke kao što je gore opisano. Injektira se 50 μl. Svaki uzorak se analizira u triplikatu. 2. Prepare the samples as described above. 50 μl is injected. Each sample is analyzed in triplicate.
ODJELJAK III Linearnost točnost i reproduktivnost SECTION III Linearity, accuracy and reproducibility
Trinaest kalibracionih krivih koje pokrivaju oblast od 0.75 do 12.0 μg/ml dobivene su na 13 različitih dana u toku vremenskog perioda od 5 nedjelja. Regresiona jednadžba dobivena za svaku krivu upotrebljena je za izračunavanje koncentracije svakog od kalibracionih standarda koji obuhvaćaju tu krivulju. Rezultati izračunati iz 13 krivulja su uspoređeni sa nominalnim koncentracijama za ovih 6 kalibracionih standarda kao što je prikazano niže u Tabeli 1. Thirteen calibration curves covering the range from 0.75 to 12.0 μg/ml were obtained on 13 different days over a period of 5 weeks. The regression equation obtained for each curve was used to calculate the concentration of each of the calibration standards comprising that curve. The results calculated from the 13 curves were compared with the nominal concentrations for these 6 calibration standards as shown below in Table 1.
TABELA 17-1 TABLE 17-1
Uspoređenje izmjerenih prema nominalnim koncentracijama čistog Comparison of measured according to nominal concentrations of pure
hepatitisa A.Izračunavanje bazirano na regresionoj liniji of hepatitis A. Calculation based on the regression line
NOMINALNE KONCENTRACIJE HEPATITISA A NOMINAL CONCENTRATIONS OF HEPATITIS A
KALIBRACIONI STANDARDI CALIBRATION STANDARDS
kalibraciona calibration
krivulja curve
[image] [image]
Između dana reproduktivnost je veoma dobra za svih šest kalibracionih nivoa, sa RSD vrijednostima manjim nego 3% preko cjelokupnog opsega koncentracija. Točnost je također veoma dobra; za 12, 9, 6, 3, 1.5 ug/ml i 0.75 ug/ml standarda sve izmjerene koncentracije su bile unutar 5% od nominalne koncentracije. Between-day reproducibility is very good for all six calibration levels, with RSD values less than 3% over the entire concentration range. Accuracy is also very good; for 12, 9, 6, 3, 1.5 ug/ml and 0.75 ug/ml standards, all measured concentrations were within 5% of the nominal concentration.
Studija označavanja pika A peak labeling study
Za daljnje određivanje specifičnosti i točnosti HPSEC analize izvršen je eksperiment označavanja pika. To further determine the specificity and accuracy of the HPSEC analysis, a peak labeling experiment was performed.
Anjonski izmjenjivački proizvod i kloroformom ekstrahirana vodena faza se obilježavaju sa jednakom zapreminom SEC proizvoda iz iste serije. Rezultati su prikazani u Tabeli 2 niže. Svi uzorci su analizirani u triplikatu. The anion exchange product and the chloroform-extracted aqueous phase are labeled with an equal volume of SEC product from the same batch. The results are shown in Table 2 below. All samples were analyzed in triplicate.
TABELA 17-2 TABLE 17-2
Regeneriranje hepatitisa A obilježenog u proizvodnim uzorcima Regeneration of hepatitis A labeled in production samples
[image] [image]
Za obadva uzorka, potpuno regeneriranje je dobiveno, pokazujući specifičnost i točnost pomoću HPSEC određivanja koncentracije. For both samples, complete recovery was obtained, demonstrating specificity and accuracy by HPSEC concentration determination.
ODJELJAK IV Analiza rezultata SECTION IV Analysis of results
Izvod Excerpt
Kao serija, HPSEC kromatografmi obezbjeđuju sliku postupka prečišćavanja hepatitisa A. Uspoređivanje filtriranog lizata prema nukleazom tretiranog lizata obezbjeđuje potvrdu aktivnosti BENZONASE. Za ove uzorke, dobiveni su kromatogrami i na 214 nm i na 260 nm i integrirani. As a series, HPSEC chromatograms provide a snapshot of the hepatitis A purification process. Comparison of filtered lysate to nuclease-treated lysate provides confirmation of BENZONASE activity. For these samples, chromatograms were obtained at both 214 nm and 260 nm and integrated.
Uspoređivanje posljednja 4 proizvodna uzorka, PEG pelete ponovno suspendirane, kloroformom ekstrahirana vodena faza, anjonski izmjenjivački proizvod i SEC proizvod pokazuju oslobađanje od 2 glavna proizvodna kontaminanta; agregiranog materijala 660 kDa kontaminanta proteina 660kDa. Izračunavanje postotka površine hepatitisa A za ove uzorke obezbjeđuje potvrdu da svaki stupanj postupka funkcionira kao što je planirano za uklanjanje ovih kontaminanata. Najzad, HPSEC analiza se upotrebljava za izračunavanje koncentrcije hepatitisa A u finalna 3 stupnja postupka. Comparing the last 4 production samples, PEG pellets resuspended, chloroform extracted aqueous phase, anion exchange product and SEC product show release of 2 major production contaminants; aggregated material 660 kDa protein contaminant 660kDa. Calculating the percent surface area of hepatitis A for these samples provides confirmation that each stage of the procedure is working as intended to remove these contaminants. Finally, HPSEC analysis is used to calculate the concentration of hepatitis A in the final 3 stages of the procedure.
Analizirani su pomoću HPSEC uzorci filtriranog lizata, nukleazom tretiranog lizata, PEG peleta ponovno suspendiranih, kloroformom ekstrahirane vodene faze, anjonskog izmjenjivačkog proizvoda i SEC proizvoda iz 10 serija hepatitisa A proizvedenog u MMD. Kromatografski profil za svaki uzorak postupka je bio veoma reproduktivan kroz ovih 10 serija. Samples of filtered lysate, nuclease-treated lysate, resuspended PEG pellets, chloroform-extracted aqueous phase, anion exchange product and SEC product from 10 batches of hepatitis A produced at MMD were analyzed using HPSEC. The chromatographic profile for each procedure sample was highly reproducible throughout these 10 runs.
U ovom odjeljku prikazan je kromatogram za svaki od 6 proizvodnih uzoraka, zajedno sa opisom informacija dobivenih za svaki uzorak, i tipični rezultati analize u triplikatu. In this section, a chromatogram for each of the 6 production samples is presented, along with a description of the information obtained for each sample, and typical triplicate analysis results.
Filtrirani lizat i nukleazom tretirani lizat Filtered lysate and nuclease-treated lysate
Kromatogrami uzoraka filtriranog lizata i nukleazom tretiranog lizata dobiveni su na valnim dužinama od 214 nm i 260 nm. Za svaki od ovih uzoraka, kromatografski profil dobiven na 214 nm potpuno je različit od profila dobivenog na 260 nm. Komparativna analiza ovih kromatograma odražava svrhu HPSEC analize ovih uzoraka: da se nađe razlika koja se može kvantificirati između filtriranog lizata i nukleazom tretiranog lizata koja će pokazivati potpunost hidrolize BENZONASE. Zbog toga su u ovom odjeljku uspoređeni profili filtriranog lizata i nukleazom tretiranog lizata; prvo na 214 nm, a zatim je izvršeno isto uspoređivanje na 260 nm. Predstavljeni su karakteristični podaci dobiveni za svaki uzorak kao i preporuku za kvantivno određivanje potpunosti aktivnosti BENZONASE. Chromatograms of samples of filtered lysate and nuclease-treated lysate were obtained at wavelengths of 214 nm and 260 nm. For each of these samples, the chromatographic profile obtained at 214 nm is completely different from the profile obtained at 260 nm. Comparative analysis of these chromatograms reflects the purpose of the HPSEC analysis of these samples: to find a quantifiable difference between the filtered lysate and the nuclease-treated lysate that will indicate the completeness of BENZONASE hydrolysis. Therefore, in this section, the profiles of filtered lysate and nuclease-treated lysate are compared; first at 214 nm, and then the same comparison was made at 260 nm. Characteristic data obtained for each sample are presented, as well as a recommendation for the quantitative determination of the completeness of BENZONASE activity.
Filtrirani lizat i nukleazom tretirani lizat na 214 nm Filtered lysate and nuclease-treated lysate at 214 nm
Kromatogrami filtriranog lizata i nukleazom tretiranog lizata na 214 nm prikazni su na slici 32. Na 214 nm, oba uzorka pokazuju seriju djelomično razdvojenih pikova. Zbog niske rezolucije dobivene za ove uzorke, integracija individualnih pikova u oblasti hepatitisa A je nemoguća; jedina informacija dobivena iz ovih uzoraka na 214 nm je ukupna UV površina za sve pikove. Rezultati triplikatne analize uzoraka također su prikazani na Slici 32. Ova ukupna UV214 nm površina ne obuhvaća zadržani pik na 36 minuta. Ukupna UV214 nm površina nukleazom tretiranog uzorka lizata je 15% niža ne o uzorka filtriranog lizata kao rezultat hidrolize BENZONASOM; kao vizualno uspoređenje 2 kromatograma (Slika 32) pokazuje gubitak absorpcije u regiji hepatitisa A. Međutim, definirana mjera ove hidrolize nije moguća pošto je uključena niska rezolucija pikova. Ukupna UV214 nm površina dobivena je za 9 serija, ove vrijednosti su date u Dodatku A. Ove ukupne UV214nm površine ne obezbjeđuju nikakvu direktnu ili jedinstvenu procesnu performansnu informaciju, njihova upotreba je bila samo u registriranju stabilnosti uzorka, zato izračunavanje ukupne UV214 površine nije potrebno za rutinsko objavljivanje. Chromatograms of the filtered lysate and the nuclease-treated lysate at 214 nm are shown in Figure 32. At 214 nm, both samples show a series of partially resolved peaks. Due to the low resolution obtained for these samples, integration of individual peaks in the hepatitis A region is impossible; the only information obtained from these samples at 214 nm is the total UV area for all peaks. The results of the triplicate analysis of the samples are also shown in Figure 32. This total UV214 nm area does not include the retained peak at 36 minutes. The total UV214 nm area of the nuclease-treated lysate sample is 15% lower than that of the filtered lysate sample as a result of BENZONAS hydrolysis; as a visual comparison of the 2 chromatograms (Figure 32) shows a loss of absorption in the hepatitis A region. However, a defined measure of this hydrolysis is not possible since the low resolution of the peaks involved. The total UV214 nm area was obtained for 9 batches, these values are given in Appendix A. These total UV214 nm areas do not provide any direct or unique process performance information, their use was only to register the stability of the sample, therefore the calculation of the total UV214 area is not necessary for routine publication.
(A) FILTRIRANI LIZAT (A) FILTERED LYSATE
Filtrirani lizat Ukupna UV površina 214 nm (uV) Filtered lysate Total UV surface 214 nm (uV)
1 27,248,238 1 27,248,238
2 26,404,744 2 26,404,744
3 26,782,947 3 26,782,947
Prosječno 26,811,976 Average 26,811,976
Stan. Dev. 344,966 Apartment. Dev. 344,966
(B) NUKLEAZOM TRETIRANI LIZAT (B) NUCLEASE TREATED LYSATE
Nukleazom tretirani lizat Ukupna UV površina 214 nm (uV) Nuclease-treated lysate Total UV surface 214 nm (uV)
1 22,728,263 1 22,728,263
2 22,841,564 2 22,841,564
3 22,784,419 3 22,784,419
Prosječno 22,784,749 Average 22,784,749
Stan. Dev. 46,256 Apartment. Dev. 46,256
Filtrirani lizat i nukleazom tretirani lizat na 260 nm Filtered lysate and nuclease-treated lysate at 260 nm
Kromatogrami filtriranog lizata i nukleazom tretiranog lizata na 260 nm prikazani su na Slici 33. Na 260 nm filtrirani lizat pokazuje određeniji profil, sa do 6 razdvojenih pikova. Prva dva pika, sa retencionim vremenima od 17.2 i 19.1 minuta, obuhvaćaju adukt hepatitis A-nukleinska kiselina i hepatitis A. Pošto obadva pika imaju neki stupanj nukleinskih kiselina vezanih sa njima, oni dominiraju 260 nm HPSEC profil. Chromatograms of the filtered lysate and the nuclease-treated lysate at 260 nm are shown in Figure 33. At 260 nm, the filtered lysate shows a more specific profile, with up to 6 separated peaks. The first two peaks, with retention times of 17.2 and 19.1 minutes, comprise the hepatitis A-nucleic acid adduct and hepatitis A. Since both peaks have some degree of nucleic acid associated with them, they dominate the 260 nm HPSEC profile.
Uspoređivanje uzorka filtriranog lizata sa nukleazom tretiranim lizatom na 260 nm (Slike 33A i 33B) obezbjeđena je jasna i nedvosmislena potvrda aktivnosti BENZONASE. Istaknuti pikovi očigledni u uzorku filtriranog lizata su potpuno uklonjeni hidrolizom sa BENZONASON, Slika 33B ne prikazuje nikakve raspoznatljive pikove na 17 i 19 minuta. Comparing the filtered lysate sample with the nuclease-treated lysate at 260 nm (Figures 33A and 33B) provided a clear and unequivocal confirmation of BENZONASE activity. The prominent peaks evident in the filtered lysate sample were completely removed by hydrolysis with BENZONASON, Figure 33B shows no discernible peaks at 17 and 19 minutes.
Potvrda hidrolize BENZONASOM Confirmation of hydrolysis with BENZONAS
Analiza uzoraka filtriranog lizata i nukleazom tretiranog lizata iz 9 serija prikazano je niže u Tabeli 17-3. UV260 nm površina za 17 i 19 minuta pikove za ovih uzoraka pokazuje da adicija BENZONASE dovodi od potpunog uklanjanja ovih pikova za sve ispitivane serije. Zbog toga, za ovaj uzorak preporučeni kriterij za određivanje aktivnosti BENZONASE bit će smanjenje 17+19 minuta pika UV260 nm u nukleazom tretiranom lizatu na manje od 10% od onog u filtriranom lizatu. Analysis of filtered lysate and nuclease-treated lysate samples from 9 batches is shown below in Table 17-3. The UV260 nm area for the 17 and 19 minute peaks for these samples shows that the addition of BENZONASE leads to the complete removal of these peaks for all tested batches. Therefore, for this sample the recommended criterion for determining BENZONASE activity will be a reduction of the 17+19 minute UV260 nm peak in the nuclease-treated lysate to less than 10% of that in the filtered lysate.
TABELA 17-3 TABLE 17-3
Smanjenje UV260nm površine pomoću BENZONASE za 9 serija. Reduction of UV260nm surface using BENZONASE for 9 series.
FILTRIRANI NUKLEAZOM TRETIRANI FILTERED NUCLEASE TREATED
LIZAT (A) LIZAT (B) PREOSTALI LYSATE (A) LYSATE (B) REMAINS
POVRŠ. 17+19 min Pikovi POVRŠINA 17-19 min Pikovi A260 SURFACE. 17+19 min Pikovi SURFACE 17-19 min Pikovi A260
Serija # (260 nm) (260 nm) (B/A X 100) Series # (260 nm) (260 nm) (B/A X 100)
984 1,240,987 0 0 984 1,240,987 0 0
985 947,988 0 0 985 947,988 0 0
1047 1,085,719 0 0 1047 1,085,719 0 0
102 708,663 0 0 102 708,663 0 0
101 831,179 0 0 101 831,179 0 0
108 1,060,441 0 0 108 1,060,441 0 0
100 895,005 0 0 100 895.005 0 0
139 1,377,974 0 0 139 1,377,974 0 0
236 1,281,608 0 0 236 1,281,608 0 0
Prosječno = 1,018,495 0 0 Average = 1,018,495 0 0
Stan Dev = 205,034 Stan Dev = 205,034
SLIKA 33 (A) FILTRIRAM LIZAT FIGURE 33 (A) FILTER LYZATE
Filtrirani Površina 17+ 19 min pikovi (UV) Ukupno UV Površina i(UV) 260 nm lizat Filtered Area 17+ 19 min peaks (UV) Total UV Area i(UV) 260 nm lysate
1 1,192,597 3,193,055 1 1,192,597 3,193,055
2 1,259,216 3,034,891 2 1,259,216 3,034,891
3 1,271,147 3,094,820 3 1,271,147 3,094,820
Prosječno 1,240,987 Prosječno 3,107,589 Average 1,240,987 Average 3,107,589
StanDev 34,562 StanDev 65,198 StanDev 34,562 StanDev 65,198
SLIKA 33 (B) NUKLEAZOM TRETIRANI LIZAT FIGURE 33 (B) LYZATE TREATED WITH NUCLEASE
Nukleazom tretirani lizat Površina 17+ 19 min pikova (UV) Nuclease-treated lysate Surface 17+ 19 min peaks (UV)
1 0 1 0
2 0 2 0
3 0 3 0
______________ ______________
Prosječno i StanDev =0 Average and StanDev =0
Ponovno suspendirani uzorak PEG peleta Resuspended PEG pellet sample
Niže u Slici 34 je prikazan kromatogram ponovno suspendiranog uzorka PEG peleta na 214 nm. Karakteristični profil ovog uzorka sastoji se od nekoliko djelomično razdvojenih pikova: agregiranog materijala; hepatitis A pik, 660 kDa kontaminant, drugi kontaminanti niske molekularne težine i pik soli. Below in Figure 34 is shown the chromatogram of the resuspended PEG pellet sample at 214 nm. The characteristic profile of this sample consists of several partially separated peaks: aggregated material; hepatitis A peak, 660 kDa contaminant, other low molecular weight contaminants, and salt peak.
Postotak površine hepatitisa A izračunava se za ovaj uzorak (površina Hep A pika) ukupna površina pika s 100) ukupna površina ne obuhvaća pik soli. Rezultati za trostruku analizu ponovno suspendiranog uzorka PEG peleta prikazani su niže. The percent area of hepatitis A is calculated for this sample (Hep A peak area) total peak area with 100) total area does not include the salt peak. The results for the triplicate analysis of the resuspended PEG pellet sample are shown below.
Ponovmo suspend. PEG pelete: Postotak površine Hep A Suspend again. PEG pellets: Hep A surface area percentage
1 25.9 1 25.9
2 27.0 2 27.0
3 27.4 3 27.4
_________ _________
Prosječno 26.8 Average 26.8
Stan.Dev. 0.7 Flat. Dev. 0.7
Tipični profil za ovaj uzorak ima 660 kDa kontaminant kao glavnu komponentu, sa količinom agregata koji je najvarijabilnija od komponenata. A typical profile for this sample has the 660 kDa contaminant as the major component, with the amount of aggregates being the most variable of the components.
Količina agregata u tipičnoj seriji je niži od one koja se vidi. Rezultati HPSEC analize ponovno suspendiranih uzoraka PEG peleta iz 10 serija prikazani su u Tabeli A2 Dodatka A. Vrijednosti postotka površine hepatitisa A kreću se od 18.5% do 32.0%; pri čemu su sve bile uspješno prečišćene slijedećim proizvodnim stupnjevima. The amount of aggregate in a typical batch is lower than what is seen. The results of HPSEC analysis of resuspended PEG pellet samples from 10 batches are presented in Table A2 of Appendix A. The values of the hepatitis A surface percentage range from 18.5% to 32.0%; all of which were successfully purified by the following production steps.
Zbog toga nije potreban strog oprezan limit za ovaj uzorak; izvjesne vrijednosti postotka površine veće od 18% su prihvatljive, međutim efekat postojanja nižih vrijednosti postotka površine neće biti poznat¡ sve dok se oni ne susretnu u postupku za hepatitis A. Therefore, a strict precautionary limit is not required for this sample; certain area percentage values greater than 18% are acceptable, however the effect of having lower area percentage values will not be known until they are encountered in the hepatitis A procedure.
Uzorak kloroformom ekstrahirane vodene faze A sample of the aqueous phase extracted with chloroform
Kromatogram za uzorak kloroformom ekstrahirane vodene faze prikazan je niže u Primjeru 35. Pik hepatitisa A je glavni pik u ovom uzorku (isključujući pik soli) i dobro je odvojen od 660 kDa kontaminanta u malim količinama agregata. The chromatogram for a sample of the chloroform-extracted aqueous phase is shown below in Example 35. The hepatitis A peak is the major peak in this sample (excluding the salt peak) and is well separated from the 660 kDa contaminant in small aggregates.
Za ovaj uzorak određena je koncentracija hepatitisa A i izračunat je postotak površine hepatitisa A. Izračunavanje postotka površine ne obuhvaća pik soli. Rezultati trostruke analize uzorka kloroformom ekstrahirane vodene faze prikazani su niže. For this sample, the concentration of hepatitis A was determined and the area percentage of hepatitis A was calculated. The calculation of the area percentage does not include the salt peak. The results of a triplicate analysis of a sample of the chloroform-extracted aqueous phase are shown below.
Kloroformom ekstr. Koncentracija hepatitisa A Postotak povr. hepa- Chloroform extr. Concentration of hepatitis A Percentage of surv. hepa-
vodena faza ug/ml titisa A water phase ug/ml titis A
1 28.64 61.0 1 28.64 61.0
2 29.76 62.8 2 29.76 62.8
3 30.65 61.2 3 30.65 61.2
_______________ __________________ _______________ __________________
Prosječno 29.68 Prosječno 61.7 Average 29.68 Average 61.7
Stan.Dev. 0.82 Stan.Dev. 0.8 Flat. Dev. 0.82 Stan.Dev. 0.8
Rezultati HPSEC analize uzoraka kloroformom ekstrahirane vodene faze iz 10 serija prikazani su u Tabeli A2 Dodatka A. Vrijednosti postotka površine hepatitisa A za pune serije kretale su se od 60.0 do 72.8%; dvije poluserije su bile znatno više, sa vrijednostima postotka površine od 79.4 i odnosno 85.2. Koncentracije hepatitisa su bile varijabilnije, i kretale su se od 14.4 do 29.7 ug/ml. Varijabilnost koncentracija hepatitisa A može da bude srodna varijaciji u zapreminama uzoraka koji teku na gore kroz postojane serije. The results of the HPSEC analysis of samples of the chloroform-extracted aqueous phase from 10 batches are shown in Table A2 of Appendix A. The values of the hepatitis A surface percentage for the full batches ranged from 60.0 to 72.8%; the two half-series were significantly higher, with surface percentage values of 79.4 and 85.2, respectively. Hepatitis concentrations were more variable, ranging from 14.4 to 29.7 ug/ml. Variability in hepatitis A concentrations may be related to variation in the volumes of samples that flow up through consistent batches.
Uspoređivanje HPSEC profila PEG peleta (Slika 34) prema kloroformom ekstrahirane vodene faze (Slika 35) obezbjeđuje jasnu indikaciju značaja ovog stupnja na postupak za hepatitis A; ovaj, stupanj selektivno uklanja velike količine 660 kDa kontaminanta bez značajnog gubitka prinosa hepatitisa a. Mada se 660 kDa kontaminant može ukloniti u dva naredna stupnja kromatografije, u oba slučaja ako je 660 kDa glavna komponenta hranljivih otapala, potrebna je strategija smanjenja pika što će dovesti do smanjenja prinosa hepatitisa a. Pored toga obimni eksperimenti za optimizaciju pokazali su da je efikasnost ekstrakcije dosta osjetljiva na promjene u vremenima mješanja (vidjeti Primjer 15). Vrijednost postotka površine hepatitisa A za kloroformom ekstrahiranu fazu obezbjeđuje kvantitativnu verifikaciju u toku postupka o uspješnoj ekstrakciji i uklanjanju nečistoća. Comparing the HPSEC profile of the PEG pellet (Figure 34) to the chloroform-extracted aqueous phase (Figure 35) provides a clear indication of the importance of this step to the hepatitis A process; this step selectively removes large amounts of the 660 kDa contaminant without significant loss of hepatitis a yield. Although the 660 kDa contaminant can be removed in two subsequent chromatography steps, in both cases if the 660 kDa is a major component of the nutrient solvents, a peak reduction strategy is required which will lead to to a decrease in the yield of hepatitis a. In addition, extensive optimization experiments have shown that the extraction efficiency is quite sensitive to changes in mixing times (see Example 15). The value of the hepatitis A surface percentage for the chloroform-extracted phase provides quantitative verification during the procedure of successful extraction and removal of impurities.
Zbog toga se preporučje oprezan limit vrijednosti postotka površine hepatitisa A od >60% za uzorak kloroformom ekstrahirane vodene faze. Vrijednosti postotka površine ispod 60% treba da se smatraju kao potencijalno indikativnim o procesnim problemima (kao što su oni sa aparaturama za mješanje postupka), naročito ako se ovo javlja regularno. Therefore, a cautious limit of >60% hepatitis A surface area percentage value for the chloroform-extracted aqueous phase sample is recommended. Area percentage values below 60% should be considered potentially indicative of process problems (such as those with process mixing apparatus), especially if this occurs regularly.
Proizvod anjonske izmjene Anion exchange product
Na slici 36 je prikazan uzorak proizvoda anjonske izmjene. Pik hepatitisa A je glavna komponenta ovog uzorka sa također prisutnim malim količinama agregata, 660 kDa kontaminanta, i contaminanata niske molekulske težine. Figure 36 shows a sample of the anion exchange product. The hepatitis A peak is the major component of this sample with small amounts of aggregates, the 660 kDa contaminant, and low molecular weight contaminants also present.
Za ovaj uzorak, određena je koncentracija hepatitisa A, kao i postotak površine hepatitisa A, isključujući pik soli i zadržani pik. Rezultati trostruke analize za uzorak proizvoda anjonske izmjene iz Rx2009854 prikazani su niže. For this sample, the hepatitis A concentration was determined, as well as the surface area percentage of hepatitis A, excluding the salt peak and the retained peak. The results of the triplicate analysis for the anion exchange product sample from Rx2009854 are shown below.
Proizvod anjonske Koncentracija Postotak površine Anionic product Concentration Percentage of area
izmjene hepatitisa A hepatitisa changes in hepatitis A hepatitis
(ug/ml) (ug/ml)
___________________ ______________ __________________ ___________________ ______________ __________________
1 31.98 82.8 1 31.98 82.8
2 32.63 81.4 2 32.63 81.4
3 32.37 81.6 3 32.37 81.6
____________ _____________ ____________ _____________
Prosječno 32.32 Prosječno 81.9 Average 32.32 Average 81.9
Stan.Dev 0.27 Stan.Dev 0.6 Stan.Dev 0.27 Stan.Dev 0.6
Rezultati HPSEC analize uzorka proizvoda anjonske izmjene iz 10 serija prikazni su u Tabeli A2 Dodatka A. Vrijednosti postotka površine koji su dobiveni kreću se za pune serije od 78.6 do 87.4%, sa vrijednostima za poluserije većim od 90%. Povećane vrijednosti postotka površine nađene za polu-serije nisu iznenađujuće s obzirom na povećanu čistoću sredstva za napajanje. The results of the HPSEC analysis of a sample of anion exchange products from 10 batches are shown in Table A2 of Appendix A. The values of percentage area obtained range from 78.6 to 87.4% for full batches, with values for half batches greater than 90%. The increased area percentage values found for the half-batch are not surprising given the increased purity of the feedstock.
Vrijednosti koncentracija su se znatno povećale (preko 2 puta) za ove serije; ova varijacija, kao i ona posmatrana kod ekstrakcionog stupnja je vjerojatno uslijed varijacije u uzorkovanju za ove serije. Concentration values increased significantly (over 2 times) for these series; this variation, as well as the one observed in the extraction degree, is probably due to the variation in sampling for these batches.
U postupku za hepatitis A, anjonska izmjenjivačka kromatografija funkcionira kao završni dotjerujući stupanj; ona uklanja nešto 660 kDa kontaminanta i drugi spojevi niskih molekulskih težina, ali čistoća proizvoda anjonske izmjene zavisi od čistoće napajanja za ovaj stupanj, ovaj stupanj ne može da ukloni velike količine 660 kDa bez gubitka prinosa uslijed smanjivanja pika. Zato ovaj stupanj ne može da kompenzira greške u prethodnoj preradi. Tipično postotak površine hepatitisa A se povećava za 10-20% kroz stupanj anjonske izmjenjivačke kromatografije, što je veća čistoća sredstva za napajanje to je veća i čistoća dobivenog proizvoda. Za ovaj uzorak preporučuje se da oprezan limit budu vrijednosti postotka površine od >75% sa povećanjem u postotku površine od > 10% kroz ovaj stupanj. Kada su oba kriterija zadovoljena, postupak i stupanj anjonske izmjene oba funkcioniraju kao što je otkriveno. Nemogućnost da se postigne vrijednost postotak površine 75% sama po sebi je moguća za stupanj anjonske izmjene ako prethodni stupnjevi zataje, nemogućnost da se postigne povećanje postotka površine od > 12% vjerojatno će ukazivati na problem u postupku veoma specifičan za stupanj anjonske izmjene, kao što je stvaranje bregova, disfunkcija ili stvaranje kanala u koloni. In the hepatitis A procedure, anion exchange chromatography functions as the final finishing step; it removes some 660 kDa contaminants and other low molecular weight compounds, but the purity of the anion exchange product depends on the purity of the feed to this stage, this stage cannot remove large amounts of 660 kDa without loss of yield due to peak reduction. That is why this stage cannot compensate for errors in the previous processing. Typically the surface area percentage of hepatitis A is increased by 10-20% through the anion exchange chromatography step, the higher the purity of the feed, the higher the purity of the resulting product. For this sample, it is recommended that the cautious limit be area percentage values of >75% with an increase in area percentage of > 10% through this stage. When both criteria are met, the anion exchange process and stage both function as disclosed. Failure to achieve a 75% surface area value is in itself possible for an anion exchange stage if previous stages fail, failure to achieve an area percentage increase of > 12% is likely to indicate a problem in the process very specific to the anion exchange stage, such as is the formation of ridges, dysfunction or formation of channels in the column.
Proizvod ekskluzione kromatografije po veličini (SEC) Product of size exclusion chromatography (SEC)
Profil SEC proizvoda pokazuje visoko prečišćeni hepatitis A kao što je prikazano na Slici 37 za SEC proizvod. The profile of the SEC product shows highly purified hepatitis A as shown in Figure 37 for the SEC product.
Za ovaj uzorak određuje se koncentracija hepatitisa A. Rezultati dvostruke analize SEC proizvoda prikazani su niže. For this sample, the concentration of hepatitis A is determined. The results of the double analysis of the SEC product are shown below.
Analiza uzorka Koncentracija hepatitisa A Sample analysis Hepatitis A concentration
(ug/ml) (ug/ml)
________________ ______________________________ ________________ ______________________________
1 17.34 1 17.34
2 16.34 2 16.34
______ ______
Prosječno 16.84 Average 16.84
Stan.Dev. 0.50 Flat. Dev. 0.50
Rezultati HPSEC analize SEC proizvoda iz 10 serija prikazani su u Tabeli A2 Dodatka A. Za ovaj uzorak, nisu izračunate vrijednosti postotka površine. Profil prikazan na Slici 37 jasno pokazuje proizvod visoke čistoće, bez količina agregata koje se mogu detektirati i 660 kDa kontaminanta. The results of the HPSEC analysis of SEC products from 10 batches are shown in Table A2 of Appendix A. For this sample, no area percentage values were calculated. The profile shown in Figure 37 clearly shows a product of high purity, with no detectable amounts of aggregates and 660 kDa contaminants.
Međutim, analiza SEC proizvoda u toku perioda od 60 minuta je pokazala prisustvo malog zadržanog pika na oko 49 minuta kao što je prikazano na Slici 38. Veličina ovog pika se mjenja od serije do serije, sa serijom koja je prikazana (Slika 38) koja ima najveću količinu posmatranih podataka. Identifikacija ovog zadržanog pika treba da se izvrši prije izračunavanja vrijednosti postotka površine za ovaj uzorak, što je indikativno za njegovu čistoću. Dok se vrši ova identifikacija, vrijednosti postotka površine za ovaj uzorak uključivat će samo pikove između isključenih i obuhvaćenih zapremina (retenciona vremena od 16-32 minuta). Sa ovim restrikcijama, vrijednosti postotaka površine za sve ispitivane serije bile su 100%. However, SEC analysis of the product over a 60 minute period showed the presence of a small retained peak at about 49 minutes as shown in Figure 38. The size of this peak varies from batch to batch, with the batch shown (Figure 38) having the largest amount of observed data. Identification of this retained peak should be performed before calculating the percent area value for this sample, which is indicative of its purity. While this identification is being made, the percent area values for this sample will only include peaks between the excluded and included volumes (retention times of 16-32 minutes). With these restrictions, the area percentage values for all tested series were 100%.
ODJELJAK V Stabilnost uzorka SECTION V Sample stability
Uzorci iz postupka su se pokazali stabilnim sve do nekoliko mjeseci kao što je izmjereno pomoću HPSEC i EIA. Mali gubitci mogu da se uoče na stupnju ionske izmjene, uglavnom manje od 10% u toku perioda od dvije nedjelje. Međutim, poslije ovog početnog opadanja, čak su i ovi uzorci ostali stabilni. Pored toga, finalni SEC proizvod je stabilan za periode od jedne godine. Process samples were shown to be stable for up to several months as measured by HPSEC and EIA. Small losses can be observed in the degree of ion exchange, generally less than 10% over a period of two weeks. However, after this initial decline, even these samples remained stable. In addition, the final SEC product is stable for periods of one year.
ODJELJAK VI Uspoređivanje EIA i HPSEC rezultata SECTION VI Comparison of EIA and HPSEC results
EIA i HPSEC rezultati dobiveni za 3 uzorka (kloroformom ekstrahiranu vodenu fazu, proizvod anjonske izmjene i SEC proizvod) iz 11 serija (serije 2 do 12) su uspoređeni. EIA and HPSEC results obtained for 3 samples (chloroform-extracted aqueous phase, anion exchange product and SEC product) from 11 batches (batch 2 to 12) were compared.
Dijagram log HPSEC koncentracije nanijet prema log EIA koncentracije prikazan je za ova 33 uzorka prikazan je niže na Slici 45. Interpolaciona regresivna linija za ove podatke ima nagib od 0.88 i koeficijent korelacije (r) od 0.94. Vrijednost nagiba približava se 1, a r vrijednost od 0.94 ukazuje da veoma dobra korelacija postoji između ove dvije analize, naročito razmatrajući inherentnu varijabilnost svakog mjerenja. A plot of log HPSEC concentration plotted against log EIA concentration is shown for these 33 samples below in Figure 45. The interpolated regression line for these data has a slope of 0.88 and a correlation coefficient (r) of 0.94. The value of the slope approaches 1, and the r value of 0.94 indicates that a very good correlation exists between these two analyses, especially considering the inherent variability of each measurement.
ODJELJAK VII Održavanje konzistentnosti postupka SECTION VII Maintenance of Procedure Consistency
HPSEC analiza serija 2 do 14 otkriva veoma stabilan i reproduktivan postupak. Na bazi obimnih HPSEC analiza uzoraka u toku postupka uzetih iz šarži proizvedenih pri proizvodnji, postupak prečišćavanja obezbjeđuje odličnu reproduktivnost za odstranjivanje glavnih kontaminanata. Slika 46 obezbjeđuje jednu mjeru ovoga, gdje je % površine monomernog virusa nanijeta za šarže. Ova mjera sastava toka za posljednja stupnja prečišćavanja pokazuje veliku konzistentnost kroz ove šarže. Serije 10 i 11 koje pokazuju veću čistoću na stupnjevima ekstrakcije i anjonske izmjene, su obje serije polu-veličina. HPSEC analysis of batches 2 to 14 reveals a very stable and reproducible process. Based on extensive HPSEC analyzes of in-process samples taken from production batches, the purification process provides excellent reproducibility for the removal of major contaminants. Figure 46 provides one measure of this, where the area % of monomeric virus is applied for batches. This measure of stream composition for the final stages of purification shows great consistency across these batches. Series 10 and 11, which show higher purity at the extraction and anion exchange stages, are both half-size series.
PRIMJER 17; DODATAK A EXAMPLE 17; APPENDIX A
TABELA 17-A1 TABLE 17-A1
Pregled podataka za uzorke lizata i nukleazom tretiranog lizata. Svi uzorci su analizirani u triplikatu, i rezultati tri analize su prosječni. Data overview for lysate and nuclease-treated lysate samples. All samples were analyzed in triplicate, and the results of the three analyzes were averaged.
[image] [image]
[image] [image]
DODATAK A (NASTAVAK) APPENDIX A (CONTINUED)
TABELA 17-A2 TABLE 17-A2
Pregled podataka za uzorke ponovno suspendiranih PEG peleta kloroformom ekstrahirane vodene faze, proizvoda anjonske izmjene i SEC proizvoda. Svi uzorci su analizirani u triplikatu, a rezultati tri analize su prosječni. Data overview for samples of resuspended PEG pellets of chloroform-extracted aqueous phase, anion exchange product, and SEC product. All samples were analyzed in triplicate, and the results of the three analyzes were averaged.
[image] [image]
PRIMJER 18 EXAMPLE 18
REZULTATI KLIMČKOG ISPITIVANJA RESULTS OF THE KLIMC EXAMINATION
Prečišćeno cjepivo prema ovom izumu primjenjeno je na zdrave Ijude. Nikakvi ozbiljni štetni efekti koji se mogu pripisati cjepivu nisu identificirani. The purified vaccine according to this invention was applied to healthy people. No serious adverse effects attributable to the vaccine have been identified.
Efikasnost jedne doze od 25 jedinica cjepiva prikazana je kod djece u Monroe-ovoj studiji, rezultati ovoga su publicirani u Kolovoskom izdanju od 13. kolovoza, 1992 izd. New England Journal of Medicine, /Werzberger i surad., NEJM 327 (no. 7); 453-457, (13. kolovoz 1992)/. Razlike između materijala Monroe-ve studije i proizvodnog materijala, od kojih oba formiraju dio ovog izuma, su rasvjetljene na Slici I, i oba su u kontrastu sa studijama faza I/II, materijalom proizvedenim u kotrljajućim bocama i sakupljenim pomoću mehaničkih načina, sa prisutnim ograničenjima u razmjerima proizvodnje sadržanim u ovom postupku. Jedna doza od 25 jedinica (25 ng HAV proteina) prečišćenog preparata virusa hepatitisa A prema ovom izumu je dovoljna da se postigne preko 95% serokonverzije kod djece i adolescenata 2-16 godina u toku 4 nedjelje imunizacije. Ova ista doza obezbjeđuje 100% zaštite kod djece i adolescenata počevši od 21 dan poslije primjene jedne doze cjepiva. The efficacy of a single dose of 25 units of vaccine was demonstrated in children in the Monroe study, the results of which were published in the August 13, 1992 issue of the New England Journal of Medicine, /Werzberger et al., NEJM 327 (no. 7 ); 453-457, (August 13, 1992)/. The differences between the Monroe study material and the production material, both of which form part of this invention, are highlighted in Figure I, and both are contrasted with the Phase I/II studies, material produced in rolling bottles and collected by mechanical means, with the present limitations in the scale of production contained in this procedure. One dose of 25 units (25 ng of HAV protein) of the purified hepatitis A virus preparation according to the present invention is sufficient to achieve over 95% seroconversion in children and adolescents 2-16 years of age within 4 weeks of immunization. This same dose provides 100% protection in children and adolescents starting 21 days after administration of one dose of the vaccine.
Težina i starost su sada identificirani kao odgovorni za varijabilnosti kod odraslih. Za jedan mjesec poslije jedne doze od 25 jedinica, 83% odraslih (≥ 18 godina) i 97% djece i adolescenata (2 do 17 godina) su serokonvertirali. Dvije doze od 25 jedinica date u razmaku od dva tjedna povećale su brzinu serokonverzije kod odraslih do 93%. Serokonverzija sedam mjeseci poslije druge ili treće doze od 25 jedinica je veća od 99% serokonverzije kod obje starosne grupe. Postojanost u seropozitivnosti je oko 100% do 12 mjeseci i 36 mjeseci u obje starosne grupe. Prema tome, jasno je da je jedna doza od 25 jedinica dovoljna da se postigne serokonverzija kod najmanje 80% bilo koje primajuće populacije u toku jednog mjeseca imunizacije. Ovi podaci su dati u Tabeli 18-1 (način liječenja pokazuje dozu od 25 jedinica datu na 0 i 24 tjedna ili 0, 2, i 24 tjedna: GMT = geometrijskom srednjem anti-HAV antitijelo titru). Imunizacija sa većim dozama izaziva serokonverziju u većem postotku primalaca. Weight and age have now been identified as responsible for variability in adults. One month after a single dose of 25 units, 83% of adults (≥ 18 years) and 97% of children and adolescents (2 to 17 years) seroconverted. Two doses of 25 units given two weeks apart increased the seroconversion rate in adults to 93%. Seroconversion seven months after the second or third dose of 25 units is greater than 99% seroconversion in both age groups. Persistence in seropositivity is about 100% up to 12 months and 36 months in both age groups. Therefore, it is clear that a single dose of 25 units is sufficient to achieve seroconversion in at least 80% of any recipient population within one month of immunization. These data are given in Table 18-1 (treatment regimen indicates a dose of 25 units given at 0 and 24 weeks or 0, 2, and 24 weeks: GMT = geometric mean anti-HAV antibody titer). Immunization with higher doses induces seroconversion in a higher percentage of recipients.
Tabela 18-1 Table 18-1
Serokonverzija na prikazanom tjednu poslije Seroconversion at the indicated week after
početne imunizacije initial immunizations
[image] [image]
Pored gornjih podataka, nađeno je da je jedna desetina pacijenata (cohorta) seronegativna na 4 nedjelje (ukupno 23 slučaja) ponovno su testirani na 24 tjedna i izmamljen je anamnestički odgovor (> 10-to struko u titru antitijela) na 28 tjedana. Dva pojedinca su pokazivala približno šesto-struko povećanje u titru poslije šest mjeseci od doze. Preostali 21 po jedinici, 91% pokazivali su serokonverziju i anamnestički odgovor. Prema tome, ovi pojedinci su trajno serokonverteri i vjerojatno su zaštićeni imunizacijom cjepiva prema ovom izumu, čak i kada su jasno seronegativni za produženi period poslije imunizacije. In addition to the above data, one-tenth of the patients (cohort) found to be seronegative at 4 weeks (23 cases in total) were retested at 24 weeks and elicited an anamnestic response (> 10-fold in antibody titer) at 28 weeks. Two individuals showed an approximately six-fold increase in titer after six months of dosing. The remaining 21 per unit, 91% showed seroconversion and anamnestic response. Therefore, these individuals are permanent seroconverters and are likely to be protected by immunization with the vaccine of this invention, even when they are clearly seronegative for an extended period after immunization.
Claims (23)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US92687392A | 1992-08-07 | 1992-08-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
HRP931103A2 true HRP931103A2 (en) | 1995-02-28 |
Family
ID=25453825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
HRP931103AA HRP931103A2 (en) | 1992-08-07 | 1993-08-06 | Hepatitis a virus vaccine |
Country Status (6)
Country | Link |
---|---|
KR (1) | KR950703054A (en) |
HR (1) | HRP931103A2 (en) |
IL (1) | IL106609A0 (en) |
MY (1) | MY137408A (en) |
TW (1) | TW259708B (en) |
YU (1) | YU53193A (en) |
-
1993
- 1993-08-05 YU YU53193A patent/YU53193A/en unknown
- 1993-08-06 MY MYPI93001552A patent/MY137408A/en unknown
- 1993-08-06 HR HRP931103AA patent/HRP931103A2/en not_active Application Discontinuation
- 1993-08-06 IL IL93106609A patent/IL106609A0/en unknown
- 1993-08-06 KR KR1019950700576A patent/KR950703054A/en not_active Application Discontinuation
- 1993-08-06 TW TW082106295A patent/TW259708B/zh active
Also Published As
Publication number | Publication date |
---|---|
MY137408A (en) | 2009-01-30 |
YU53193A (en) | 1996-10-09 |
IL106609A0 (en) | 1993-12-08 |
TW259708B (en) | 1995-10-11 |
KR950703054A (en) | 1995-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4243349B2 (en) | Animal cells and methods for influenza virus replication | |
JP5264843B2 (en) | Method for replication of influenza virus in cell culture, and influenza virus obtainable by this method | |
EP0583142A2 (en) | Hepatitis A virus vaccine | |
CA2455189C (en) | Methods for producing an active constituent of a pharmaceutical or a diagnostic agent in an mdck cell suspension culture | |
CA2197683C (en) | Method for preparing an influenza virus, antigens obtained and applications thereof | |
US20050118698A1 (en) | Multiplication of viruses in a cell culture | |
EP3184119A1 (en) | Chromatography based purification strategies for measles scaffold based viruses | |
CN102395600B (en) | Inactivated dengue virus vaccine with aluminium-free adjuvant | |
HRP950088A2 (en) | Para-influenza virus-containing vaccines for preventing porcine reproductive and respiratory syndrome | |
HRP980187A2 (en) | Influenza vaccine | |
CN102978169A (en) | Methods of producing influenza vaccine compositions | |
KR20210154988A (en) | Methods of detection and removal of rhabdoviruses from cell lines | |
Mayor et al. | Immunofluorescent, cytochemical, and microcytological studies on the growth of the simian vacuolating virus (SV-40) in tissue culture | |
CN105745218A (en) | Removal of residual cell culture impurities | |
CN100467062C (en) | Method of production of purified hepatitis A virus particles and vaccine preparation | |
HRP931103A2 (en) | Hepatitis a virus vaccine | |
EP4144753A1 (en) | Influenza virus production method using disposable culture process system, and test for quickly checking conditions for influenza virus antigen purification | |
Breese Jr et al. | Effect of hydroxyurea on the development of African swine fever virus. | |
RU2314125C1 (en) | Method for preparing inactivated vaccine against hepatitis a virus | |
CA2250714C (en) | Animal cells and processes for the replication of influenza viruses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A1OB | Publication of a patent application | ||
AIPI | Request for the grant of a patent on the basis of a substantive examination of a patent application | ||
OBST | Application withdrawn |