HRP930932A2 - Safeguarding of underground works and inclinations by using propylene fibres microreinforced concrete and solid tressed anchorage - Google Patents

Safeguarding of underground works and inclinations by using propylene fibres microreinforced concrete and solid tressed anchorage Download PDF

Info

Publication number
HRP930932A2
HRP930932A2 HR930932A HRP930932A HRP930932A2 HR P930932 A2 HRP930932 A2 HR P930932A2 HR 930932 A HR930932 A HR 930932A HR P930932 A HRP930932 A HR P930932A HR P930932 A2 HRP930932 A2 HR P930932A2
Authority
HR
Croatia
Prior art keywords
concrete
mamb
rock
shotcrete
polypropylene fibers
Prior art date
Application number
HR930932A
Other languages
Croatian (hr)
Inventor
Velimir Ukrainczyk
Arevi Ibrahim Ja
Zvonko Rak
Original Assignee
Velimir Ukrainczyk
Arevi Ibrahim Ja
Zvonko Rak
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Velimir Ukrainczyk, Arevi Ibrahim Ja, Zvonko Rak filed Critical Velimir Ukrainczyk
Priority to HR930932A priority Critical patent/HRP930932A2/en
Publication of HRP930932A2 publication Critical patent/HRP930932A2/en
Publication of HRP930932B1 publication Critical patent/HRP930932B1/xx

Links

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Sewage (AREA)

Description

Područje tehnike The field of technology

Izum spada u znanstveno područje građevinarstva discipline: geotehnika i građevni materijali. The invention belongs to the scientific field of civil engineering discipline: geotechnics and building materials.

B) Izumom je omogućeno riješiti slijedeće tehničke probleme: B) The invention made it possible to solve the following technical problems:

B.1. Povećanje generalne (globalne) i lokalne stabilnosti stijenskih pokosa; B.1. Increasing the general (global) and local stability of rock slopes;

B.1.1. Kruta prednapeta sidra omogućavaju povećanje globalne (generalne) i lokalne stabilnosti za desetak postotaka s obzirom na dowel efekat u odnosu na prednapeta sidra male krutosti a istog poprečnog presjeka. B.1.1. Rigid prestressed anchors enable an increase in global (general) and local stability by ten percent due to the dowel effect compared to prestressed anchors of low stiffness and the same cross-section.

B.1.2. Sprezanjem stijene i sloja mikroarmiranog mlaznog betona (s propilensklm vlaknima) s krutim sidrima postiže se povoljnije naponsko-deformacijsko stanje u zoni ojačanog pokosa odnosno tunelskoj primarnoj oblozi. B.1.2. By joining the rock and a layer of micro-reinforced shotcrete (with propylene fibers) with rigid anchors, a more favorable stress-strain condition is achieved in the zone of the reinforced slope, i.e. the tunnel's primary lining.

B.1.3. Kod krutih prednapetih sidara relativno jednostavno postiže se višestruka antikorozivna zaštita što je bitno s gledišta trajnosti ovakvih konstrukclja. B.1.3. With rigid prestressed anchors, multiple anti-corrosion protection is relatively easily achieved, which is important from the point of view of the durability of such constructions.

B.1.4. Povećanje parametara otpornosti pri smicanju sloja MAMB-a s polipropilensklm vlaknima. B.1.4. Increasing the shear resistance parameters of the MAMB layer with polypropylene fibers.

B.1.5. Povećanje modula elastičnosti ideformabilnosti sloja MAMB-a s polipropilenskim vlaknima. B.1.5. Increasing the elasticity modulus of the ideformability of the MAMB layer with polypropylene fibers.

B.1.6. Povećanje otpornosti za pukotine od skupljanja sloja MAMB-a s polipropilensklm vlaknima. B.1.6. Increasing the resistance to shrinkage cracks of the MAMB layer with polypropylene fibers.

B.1.7. Onemogućavanje pojave mikropukotina sloja MAMB-a s polipropilenskim vlaknima. B.1.7. Preventing the appearance of microcracks in the MAMB layer with polypropylene fibers.

B.1.8. Povećanje homogenosti sloja MAMB-a s polipropilenskim vlaknima. B.1.8. Increasing the homogeneity of the MAMB layer with polypropylene fibers.

B.1.9. Povećanje otpornosti na abraziju sloja MAMB-a s polipropilenskim vlaknima. B.1.9. Increasing the abrasion resistance of the MAMB layer with polypropylene fibers.

B.1.10. Povećanje otpornosti na koroziju sloja MAMB-a s polipropilenskim vlaknima. B.1.10. Increasing the corrosion resistance of the MAMB layer with polypropylene fibers.

B.1.11. Povećanje otpornosti na seizmičko opterećenje sloja MAMB-a s polipropilenskim vlaknima. B.1.11. Increasing the seismic load resistance of the MAMB layer with polypropylene fibers.

B.1.12. Povećanje otpornosti na dinamičko opterećenje (udar) sloja MAMB-a s polipropilenskim vlaknima. B.1.12. Increasing the resistance to dynamic load (impact) of the MAMB layer with polypropylene fibers.

B.2. Ekonomičnost obloge od MAMB-a s polipropilenskim vlaknima ogleda se u sliscećem: B.2. The economic efficiency of the lining made of MAMB with polypropylene fibers is reflected in the following:

B.2.1. Konstituenti koji ulaze u sastav obloge daju sljedeći odnos: B.2.1. The constituents that make up the coating give the following relationship:

C1:C2:C3 = 2,2:7,7:1 C1:C2:C3 = 2.2:7.7:1

gdje je: where is:

C1 - cijena mlaznog betona s armaturnim mrežama 50x100x5 mm C1 - price of shotcrete with reinforcing mesh 50x100x5 mm

C2 - cijena mlaznog betona s čeličnim vlaknima, C2 - price of shotcrete with steel fibers,

C3 - cijena mlaznog betona s polipropilenskim vlaknima. C3 - price of shotcrete with polypropylene fibers.

B.2.2. Ekonomičnost obloge od mlaznog betona nije samo u količini konstituenata već i u sljedećem: B.2.2. The economy of shotcrete coating is not only in the amount of constituents but also in the following:

B.2.2.1 Znatno manji utrošak rada (cca 4 puta u odnosu na sloj iste debljine od klasično armiranog mlaznog betona. B.2.2.1 Significantly lower labor consumption (approx. 4 times compared to a layer of the same thickness of classically reinforced shotcrete.

B.2.2.2 Manji je utrošak materijala (MAMB) te manji odskok pri prskanju, B.2.2.2 There is less material consumption (MAMB) and less rebound when spraying,

B.2.2.3 Znatno skraćenje vremena neophodnog za nabacivanje sloja mlaznog betona u odnosu na klasično armirani mlazni beton. B.2.2.3 Considerable shortening of the time necessary for casting a layer of shotcrete compared to classically reinforced shotcrete.

B.2.2.4 Prednost u organizaciji rada u skučenom prostoru u odnosu na klasično armirani mlazni beton. B.2.2.4 Advantage in the organization of work in a confined space compared to classically reinforced shotcrete.

B.2.2.5 Sigurniji (povoljniji) su uvjeti rada u odnosu na klasično armirani mlazni beton. B.2.2.5 The working conditions are safer (more favorable) compared to conventional reinforced shotcrete.

B.2.2.6 Kruta prednapeta sidra pri sprezanju stijene i sloja MAMB-a daju racionalniju konstrukciju u odnosu na klasično armirani mlazni beton i klasična (neprednapeta) sidra. B.2.2.6 Rigid prestressed anchors when connecting the rock and the MAMB layer provide a more rational construction compared to classically reinforced shotcrete and classical (non-prestressed) anchors.

B.2.2.7 Sprezanje stijene i sloja MAMB-a (s polipropilenskim vlaknima) ima primjenu u sljedećem geotehničkim radovima: B.2.2.7 Bonding of rock and layer of MAMB (with polypropylene fibers) is used in the following geotechnical works:

- osiguranje strmih stijenskih pokosa, - securing steep rock slopes,

- osiguranje podzemnih iskopa, - insurance of underground excavations,

- osiguranje iskopa za temeljenje objekata, - ensuring excavation for the foundation of buildings,

- potpornim konstrukcijama. - supporting structures.

Stanje tehnike State of the art

Mikroarmirani mlazni beton (MAMB) već je nekoliko godina u svijetu prihvaćen kao efikasni način ojačanja stijene nakon iskopa bilo za radove na površini ili kod podzemnih objekata, pa čak i kao definitivna obloga. Micro-reinforced shotcrete (MAMB) has been accepted worldwide for several years as an efficient way of strengthening rock after excavation, either for work on the surface or for underground structures, and even as a definitive lining.

Čelična vlakna u mikroarmiranom mlaznom betonu su skoro u potpunosti zamijenlia čelične armaturne mreže. Steel fibers in microreinforced shotcrete have almost completely replaced steel reinforcing mesh.

O stanju promjene MAMB-a s čeličnim vlaknima od strane više firmi objavljivane su publikacije. Kao najnovija je Tunnelling the World izdana od firme 'IDramixll - Belglja (Izdanje 1991 godine). U ovoj se publikaciji iznosi povijesni razvoj i daje referencna lista izvedenih objekata. Several companies have published publications on the state of MAMB modification with steel fibers. The latest is Tunnelling the World published by the company 'IDramixll - Belgium (1991 edition). This publication presents the historical development and provides a reference list of the constructed objects.

Primjena MAMB-a s čeličnim vlaknima je već usvojena u velikom broju tehnički naprednih zemalja. The application of MAMB with steel fibers has already been adopted in a large number of technically advanced countries.

Međutim, primjena polipropilenskih vlakana u betonu poznata je jedino u sprječavanju pojave mikropukotina u mladom betonu, te se u tu svrhu primjenjuju vlakna debljine približno 0.020 mm. However, the use of polypropylene fibers in concrete is known only to prevent the appearance of microcracks in young concrete, and for this purpose fibers with a thickness of approximately 0.020 mm are used.

Opis rješenja Description of the solution

OPĆI PRIKAZ GENERAL VIEW

Predmet izuma je novi postupak rješenja osiguranja podzemnih radova i pokosa upotrebom polipropilenskim vlaknima mikroarmiranog betona i krutih prednapetih sidara. The subject of the invention is a new procedure for securing underground works and slopes using micro-reinforced concrete with polypropylene fibers and rigid prestressed anchors.

To je konstrukcija kod koje se koriste sva najpovoljnija svojstva materijala od kojih je ona sastavljena, a to su: čelični štapovi - kruta sidra koja preuzimaju vlačne sile i MAMB s polipropilenskim vlaknima, koji preuzima vlačna, savojna i smična naprezanja u elementima između sidara. It is a construction that uses all the most favorable properties of the materials from which it is composed, namely: steel rods - rigid anchors that absorb tensile forces and MAMB with polypropylene fibers, which absorbs tensile, bending and shear stresses in the elements between the anchors.

Prema ovome, nova konstrukcija je nastala sprezanjem stijene koja može preuzeti velika tlačna naprezanja i sloja mikroarmiranog mlaznog betona (s polipropilenskim vlaknima) s krutim prednapetim sidrima. Ovim postupkom se poboljšavaju mehanička svojstva jedne šire zone stijenskog masiva čija debljina otprilike odgovara duljini sidara, a čime se postiže povoljnlje naponsko-deformacijsko stanje u zoni pokosa odnosno oko podzemnog otvora. Tehnologija i faze izvedbe potporne sidrene konstrukcije prikazane su na sl. 2. According to this, the new structure was created by joining rock that can take on high compressive stresses and a layer of micro-reinforced shotcrete (with polypropylene fibers) with rigid prestressed anchors. This procedure improves the mechanical properties of a wider zone of the rock mass whose thickness roughly corresponds to the length of the anchors, and which achieves a favorable stress-deformation state in the shear zone, i.e. around the underground opening. The technology and stages of execution of the supporting anchor structure are shown in Fig. 2.

Tehnički prikaz nove tehnologlje dat je na sl. 2 gdje su izdvojeni osnovni ciljevi sidrenja u zoni utjecaja krutih prednapetih sidara i utjecaja sloja MAMB-a. The technical presentation of the new technology is given in Fig. 2, where the basic goals of anchoring in the zone of influence of rigid prestressed anchors and the influence of the MAMB layer are highlighted.

Utjecaj krutih prednapetih sidara vidljiv je iz slika 3 i 4 i jednadžbe (2). The influence of rigid prestressed anchors can be seen from Figures 3 and 4 and equation (2).

[image] [image]

[image] [image]

[image] [image]

S porastom Tb raste Fs As Tb increases, Fs increases

S porastom Tdow, raste Fs As Tdow increases, Fs increases

Tdow raste s porastom krutosti geot. sidara. Tdow increases with increasing geot stiffness. anchor.

UTJECAJ MIKROARMIRANOG MLAZNOG BETONA ( MAMB) INFLUENCE OF MICRO-REINFORCED JET CONCRETE (MAMB)

Od izrazito krhkog materijala, dodavanjem polipropilenskih vlakana, beton postaje elastoplastično, žilavo gradivo. U tu svrhu se, prema tehnologiji opisanoj u ovoj patentnoj prijavi koriste polipropilenska vlakna debljine 0,i do 2,0 mm glatka i profilirana (X-presjeka). Radi poboljšanja prionljivosti takvih vlakana i betona koristi se polimerni dodatak. Radni dijagram MAMB opterećenog na savijanje ima karakterističan oblik prema slici 5. From an extremely fragile material, by adding polypropylene fibers, concrete becomes an elastoplastic, tough material. For this purpose, smooth and profiled (X-section) polypropylene fibers with a thickness of 0.1 to 2.0 mm are used according to the technology described in this patent application. In order to improve the adhesion of such fibers and concrete, a polymer additive is used. The working diagram of the MAMB loaded in bending has a characteristic shape according to Figure 5.

[image] [image]

Sl. 5. Karakteristični oblik radnog dijagrama MAMB ispitanog prema.ASTM C-1018 Sl. 5. The characteristic shape of the MAMB working diagram tested according to ASTM C-1018

Provedena su ispitivanja tunelske obloge i obloge pokosa izvedenih od MAMB s polipropilenskim vlaknima. Na izvedenim površinama ispitana je nosivost obloge pomoću hidrauličnih preša. Tests of the tunnel lining and the lining of the slopes made of MAMB with polypropylene fibers were carried out. The load-bearing capacity of the coating was tested on the derived surfaces using hydraulic presses.

Ova ispitivanja su pokazala These tests have shown

- da je nosivost takve obloge jednaka ili veća od nosivosti klasične obloge s čeličnim armaturnim mrežama ili obloge armirane čeličnim vlaknima; - that the load capacity of such cladding is equal to or greater than the load capacity of classic cladding with steel reinforcing mesh or cladding reinforced with steel fibres;

- da je ponašanje obloge nakon pojave pukotina na mjestu maksimalnog momenta sila karakteristično za elastoplastične materijale. - that the behavior of the lining after the appearance of cracks at the point of maximum force moment is characteristic of elastoplastic materials.

[image] [image]

Sl. 6. Dijagrami iz ispitivanja nosivosti tunelske obloge od MAMB Sl. 6. Diagrams from the load-bearing test of the MAMB tunnel lining

I obloga bez armature (d=7.5 cm) And lining without reinforcement (d=7.5 cm)

II obloga armirana čeličnim mrežama (d=10 cm) II lining reinforced with steel nets (d=10 cm)

III obloga armirana čeličnim vlaknima (d=14 cm) III cladding reinforced with steel fibers (d=14 cm)

IV obloga armirana polipropilenskim vlaknima (d=14 cm) IV lining reinforced with polypropylene fibers (d=14 cm)

KRATKI PRIKAZ OSNOVA PRORAČUNA NAPREZANJA, DEFORMACIJA I DIMENZIONIRANJE PRIMARNOG OSIGURANJA ISKOPA BRIEF DESCRIPTION OF THE BASIS OF CALCULATING STRESS, DEFORMATION AND DIMENSIONING OF PRIMARY EXCAVATION INSURANCE

PRORAČUN NAPREZANJA 1 DEFORMACIJA CALCULATION OF STRESS 1 DEFORMATION

Rezultati analize naprezanja oko podzemnih otvora prema teoriji elastičnosti mogu se ograničiti samo na stijenu izvanredne kvalitete, tj. onu koja je po "Q" i "RMR" klasifikacijama označena kao iznimno dobra. Za sve ostale kategorije treba uzeti u obzir činjenicu da pri deformacijama masiva dolazi do otvaranja pukotina, do gnječenja i puzanja pukotinske ispune u kontaktima slojeva, te naročito do pojave djelomične ili potpune degradacije geotehničkih karakteristika masiva, iako stijena unutar pojedinih blokova zadržava mehanička svojstva kompaktne stijene. Ponašanje stijene kao masiva karakterizira se pri tome nelinearnim odnosom naprezanja i deformacija, pojavom puzanja, plastifikacije ili viskoznog tečenja, odnosno povećanjem deformacija i bez daljeg većeg povećanja naprezanja. Provedena mjeren.ia uz podzemne prostorije pokazuju da je odnos naprezanja i deformacija vrlo složen, da je gotovo redovito izražena i anizotropija, tako da su stvarne pojave daleko od onog sto daju rezultati teorije elastičnosti. The results of stress analysis around underground openings according to the theory of elasticity can be limited only to rock of exceptional quality, i.e. that which is marked as exceptionally good according to the "Q" and "RMR" classifications. For all other categories, it is necessary to take into account the fact that during the deformation of the massif, cracks open, crushing and creeping of the crack filling in the contacts of the layers, and especially the appearance of partial or complete degradation of the geotechnical characteristics of the massif, even though the rock within individual blocks retains the mechanical properties of compact rock . The behavior of rock as a massif is characterized by a non-linear relationship between stress and deformation, the occurrence of creep, plastification or viscous flow, i.e. an increase in deformation without a further increase in stress. The measurements carried out near the underground rooms show that the relationship between stress and deformation is very complex, that anisotropy is almost regularly expressed, so that the actual phenomena are far from what the results of the theory of elasticity give.

Nakon miniranja, bez obzira da li se radi o iskopu u cijelom profilu ili djelomičnom iskopu, dolazi do rastresanja obodnog prstena stijene različite dubine od ruba profila. U ovoj zoni stijena je puna vidljlvih i nevidljivih pukotina. Materijal može biti rastresen i na veću dubinu, ponekad oslobođen naprezanja i time doveden u nestabilno stanje, a u svakom slučaju mehanički degradiran u odnosu na intaktnu stijenu. Pažljivo konturno miniranje i "prespliting" donekle će umanjiti štetne utjecaje na kvalitetu stijene. Nakon otvaranja profila, primarno stanje naprezanja prelazi u sekundarno, i uz otvor bi došlo do najveće koncentracije naprezanja, ukoliko rubni prsten stijene nije mehanički oslabljen. Dolazi do pojave plastificiranja i viskoznog tečenja, pa i pojava klizanja. Obično se ti procesi ograničavaju samo na manju zonu uz profil i primarnim osiguranjem zaustavljaju. Deformacije treba osiguranjima ograničiti na onu veličinu koju može stijena još preuzeti bez drobljenja i destrukcije. Tendencija NATM (Nove austrijske tunelske metode) je u izbjegavanju "teškog"-"Jakog" podgrađivanja i izazivanja velikog reaktivnog tlaka u podgradi, uz dozvoljavanje deformacija stijene uz najviše moguće korištenje kapaciteta nošenja same stijene. After blasting, regardless of whether it is an excavation in the entire profile or a partial excavation, the circumferential ring of rock with a different depth from the edge of the profile is disturbed. In this zone, the rock is full of visible and invisible cracks. The material can be scattered to a greater depth, sometimes released from stress and thereby brought to an unstable state, and in any case mechanically degraded compared to the intact rock. Careful contour blasting and "presplitting" will somewhat reduce the harmful effects on the quality of the rock. After the opening of the profile, the primary state of stress changes to a secondary one, and the greatest concentration of stress would occur next to the opening, if the edge ring of the rock is not mechanically weakened. Plasticization and viscous flow occur, as well as slippage. Usually, these processes are limited only to a smaller zone along the profile and are stopped by primary insurance. Deformations should be limited by insurance to the size that the rock can still take without crushing and destruction. The tendency of NATM (New Austrian Tunneling Method) is to avoid "heavy"-"Strong" subgrade and causing high reactive pressure in the subgrade, while allowing rock deformations with the maximum possible use of the bearing capacity of the rock itself.

Podgrada s velikim kapacitetom deformacija - malom krutošću proizvesti će manji reaktivni tlak na stijenu, a za što će biti potrebna veća konvergencija. Nasuprot tome, kruta podprada ili obloga ugrađena neposredno nakon iskopa spriječiti će plastificiranje stijene, ali uz ostvarivanje velikog tlaka na stijenu. A subgrade with a large deformation capacity - low stiffness will produce a lower reactive pressure on the rock, which will require greater convergence. In contrast, a rigid underlayment or lining installed immediately after excavation will prevent plasticization of the rock, but with the realization of a large pressure on the rock.

Ove pojave objašnjava Rabchewich-ev dijagram odnosa konvergencije i mogućeg tlaka podgrade dan na sl. 7. These phenomena are explained by Rabchewich's diagram of the relationship of convergence and possible subgrade pressure given in Fig. 7.

[image] [image]

Umjesto raspodjela naprezanja prema teoriji elastičnosti, Kastner predlaže analizu naprezanja stijene na temelju graničnog stanja ravnoteže, prema Mohr-Coulombovoj teoriji čvrstoće koja je prihvatljiva i za sve materijale koji imaju manju vlačnu čvrstoću od tlačne (sl. 8). Instead of stress distribution according to the theory of elasticity, Kastner proposes an analysis of rock stress based on the limit state of equilibrium, according to the Mohr-Coulomb theory of strength, which is also acceptable for all materials that have lower tensile strength than compressive strength (fig. 8).

[image] [image]

[image] [image]

Stijena i podgrada čine statički neodređeni sistem u kojem su međusobni utjecaji određeni zajedničkim deformacijama. Bitni faktor pri tome je deformatibilnost podgrade, jer će podatljiva podgrada pratiti ostvarivanje konvergencije uz realiziranje manjeg reaktivnog tlaka. Ravnotežno stanje nastupa upravo kada je reakcija podgrade jednaka tlaku iznutra potrebnom da se ostvari ista konvergencija. The rock and subgrade form a statically indeterminate system in which mutual influences are determined by common deformations. An important factor in this is the deformability of the subgrade, because a compliant subgrade will follow the realization of convergence while realizing a lower reactive pressure. The equilibrium state occurs precisely when the subgrade reaction is equal to the internal pressure required to achieve the same convergence.

Elastične deformacije koje nastaju pri prelasku s primarnog stanja naprezanja na sekundarno (uslijed otvaranja profila) praktički su trenutne pa se te deformacije ne spriječavaju primarnim osiguranjem. The elastic deformations that occur during the transition from the primary state of stress to the secondary (due to the opening of the profile) are practically instantaneous, so these deformations are not prevented by primary securing.

DIMENZIONIRANJE PRIMARNOG OSIGURANJA DIMENSIONING OF PRIMARY INSURANCE

Reaktivni tlak primarnog osiguranja iznosi: The reactive pressure of the primary insurance is:

Pa=Ps+Pb+Pm Pa=Ps+Pb+Pm

gdje je: where is:

Ps - granični (reaktivni) tlak sidara Ps - limiting (reactive) anchor pressure

Pb - granični (reaktivni) tlak ljuske od mlaznog betona Pb - limiting (reactive) pressure of the shotcrete shell

Pm - granični (reaktivni) tlak čeličnih mreža u sloju od mlaznog betona Pm - limiting (reactive) pressure of steel meshes in a layer of shotcrete

Graničnl (reaktivni) tlak sidara iznosi: The limiting (reactive) pressure of the anchors is:

[image] [image]

gdje je: where is:

As- površina poprečnog presjeka sidara (m2) As- cross-sectional area of anchors (m2)

бvd - granica velikih deformacija čelika (kN/m2) bvd - limit of large steel deformations (kN/m2)

e1 i e2- razmak sidara (m) e1 and e2 - distance between anchors (m)

Granični (reaktivni) tlak ljuske od mlaznog betona iznosi: The limit (reactive) pressure of the shotcrete shell is:

[image] [image]

gdje je: where is:

бpr - čvrstoća betonske prizme (kN/m2) bpr - concrete prism strength (kN/m2)

d - debljlna sloja mlaznog betona (m) d - thickness of shotcrete layer (m)

ar- radijus betonske ljuske (m) ar- radius of the concrete shell (m)

Granični (reaktivni) tlak od čeličnih mreža (u sloju mlaznog betona) iznosi The limit (reactive) pressure of the steel mesh (in the shotcrete layer) amounts to

: :

[image] [image]

Prema tome ukupni reaktivni tlak od ljuske armiranog betona iznosi: Therefore, the total reactive pressure from the shell of reinforced concrete amounts to:

[image] [image]

[image] [image]

Claims (1)

1. Postupak osiguranja podzemnih radova i pokosa upotrebom polipropilenskim vlaknima mikroarmiranog mlaznog betona (MAMB) i krutih prednapetih sidara, koji je naznačen time, da se u smjesu mlaznog betona pomiješaju glatka ili profilirana polipropilenska vlakna duljine 0 0,1 do 2,0 mm i polimerni dodatatak za povećanje prionjivosti vlakana i betona, te se tako dobivena elastoplastična betonska ljuska pomoću prednapetih čeličnih sidara spreže sa stijenskim masivom, tvoreći jedinstvenu nosivu konstrukciju.1. The procedure for securing underground works and cutting using polypropylene fibers of micro-reinforced shotcrete (MAMB) and rigid prestressed anchors, which is indicated by mixing smooth or profiled polypropylene fibers with a length of 0 0.1 to 2.0 mm into the shotcrete mixture and polymer additive to increase the adhesion of fibers and concrete, and the thus obtained elastoplastic concrete shell is connected to the rock massif using pre-stressed steel anchors, forming a unique load-bearing structure.
HR930932A 1993-05-26 1993-05-26 Safeguarding of underground works and inclinations by using propylene fibres microreinforced concrete and solid tressed anchorage HRP930932A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HR930932A HRP930932A2 (en) 1993-05-26 1993-05-26 Safeguarding of underground works and inclinations by using propylene fibres microreinforced concrete and solid tressed anchorage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HR930932A HRP930932A2 (en) 1993-05-26 1993-05-26 Safeguarding of underground works and inclinations by using propylene fibres microreinforced concrete and solid tressed anchorage

Publications (2)

Publication Number Publication Date
HRP930932A2 true HRP930932A2 (en) 1995-02-28
HRP930932B1 HRP930932B1 (en) 2001-12-31

Family

ID=10945965

Family Applications (1)

Application Number Title Priority Date Filing Date
HR930932A HRP930932A2 (en) 1993-05-26 1993-05-26 Safeguarding of underground works and inclinations by using propylene fibres microreinforced concrete and solid tressed anchorage

Country Status (1)

Country Link
HR (1) HRP930932A2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0347092A2 (en) * 1988-06-11 1989-12-20 Redland Roof Tiles Limited Process for the production of concrete building products

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0347092A2 (en) * 1988-06-11 1989-12-20 Redland Roof Tiles Limited Process for the production of concrete building products

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JP 01-154997 A (KUMAGI GUMI CO LTD) 1989-06-16 (abstract) World Patents Index [online]. London, U.K.: Derwent Publications, Ltd. Retrieved from: Questel/Orbit, Paris, France. DW 198930 Accesion No. 1989-217064. *
JP 57-1996759 A (SHINETSU CHEM.IND. CO. LTD.) 1982-12-02 (abstract) World Patents Index [online]. London, U.K.: Derwent Publications, Ltd. Retrieved from: Questel/Orbit, Paris, France. DW 198303 Accesion No. 1983-05717K. *

Also Published As

Publication number Publication date
HRP930932B1 (en) 2001-12-31

Similar Documents

Publication Publication Date Title
Spang et al. Action of fully-grouted bolts in jointed rock and factors of influence
Li et al. Shear resistance contribution of support systems in double shear test
Mohamed et al. Testing, design, and field implementation of GFRP RC soft-eyes for tunnel construction
Ozhan et al. Critical tendon bond length for prestressed ground anchors in pullout performance tests conducted in sand
Cao Bolt profile configuration and load transfer capacity optimisation
Tan et al. Slope stabilization using soil nails: design assumptions and construction realities
Singh et al. A semi-empirical method for the design of support systems in underground openings
Schlosser et al. Reinforced earth
Vanderwalle The use of steel fibre reinforced shotcrete for the support of mine openings (509KB
HRP930932A2 (en) Safeguarding of underground works and inclinations by using propylene fibres microreinforced concrete and solid tressed anchorage
Thyni Design of shotcrete for dynamic rock support by static testing
Garrity Near-surface reinforcement of masonry arch highway bridges
Pells et al. On the resistance provided by grouted rock reinforcement to shear along bedding planes and joints
Korany Effective techniques for restoration of heritage masonry
Mittal et al. River bank erosion control by soil nailing
Barley Soil nailing case histories and developments
Weerasinghe et al. A technical review of rock anchorage practice 1976–1996
Gollegger et al. Fiber reinforced concrete segmental lining: Evolution and technical viability assessment
Brown The dynamic environment of ground support and reinforcement
Reid et al. De-bonding of shotcrete linings at the substrate boundary
Wietek et al. FC dimensioning
Bajno et al. Problems with Maintaining in Required Technical Condition and Revitalization of Medieval Defense Fortries
Rispin et al. Safer, deeper, faster: sprayed concrete—an integral component of development mining
Dube Investigations into the mechanisms of rock support provided by sprayed liners
Sharma et al. Repair Options for Corrosion-damaged Prestressed Concrete Structures

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
ODRP Renewal fee for the maintenance of a patent

Payment date: 20010526

Year of fee payment: 9

B1PR Patent granted
PBON Lapse due to non-payment of renewal fee

Effective date: 20020527