HRP930609A2 - A method for preparing low or medium-density straight-chain polyethylene - Google Patents
A method for preparing low or medium-density straight-chain polyethylene Download PDFInfo
- Publication number
- HRP930609A2 HRP930609A2 HR930609A HRP930609A HRP930609A2 HR P930609 A2 HRP930609 A2 HR P930609A2 HR 930609 A HR930609 A HR 930609A HR P930609 A HRP930609 A HR P930609A HR P930609 A2 HRP930609 A2 HR P930609A2
- Authority
- HR
- Croatia
- Prior art keywords
- titanium
- substrate
- expressed
- ethylene
- solid
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 21
- -1 polyethylene Polymers 0.000 title claims description 9
- 229920000573 polyethylene Polymers 0.000 title claims description 9
- 239000004698 Polyethylene Substances 0.000 title claims description 7
- 239000000758 substrate Substances 0.000 claims description 54
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 50
- 239000010936 titanium Substances 0.000 claims description 48
- 229910052719 titanium Inorganic materials 0.000 claims description 48
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 40
- 239000007787 solid Substances 0.000 claims description 37
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 claims description 31
- 230000003197 catalytic effect Effects 0.000 claims description 28
- 238000006243 chemical reaction Methods 0.000 claims description 25
- 239000005977 Ethylene Substances 0.000 claims description 24
- 239000002245 particle Substances 0.000 claims description 24
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 23
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 22
- 239000003054 catalyst Substances 0.000 claims description 22
- 238000002360 preparation method Methods 0.000 claims description 16
- 125000005234 alkyl aluminium group Chemical group 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 13
- 239000001257 hydrogen Substances 0.000 claims description 13
- 229910052739 hydrogen Inorganic materials 0.000 claims description 13
- 230000001476 alcoholic effect Effects 0.000 claims description 12
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 11
- 229910001629 magnesium chloride Inorganic materials 0.000 claims description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 9
- 239000004711 α-olefin Substances 0.000 claims description 9
- 238000001694 spray drying Methods 0.000 claims description 8
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 claims description 8
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- 125000004432 carbon atom Chemical group C* 0.000 claims description 5
- 238000007334 copolymerization reaction Methods 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 description 14
- 238000006116 polymerization reaction Methods 0.000 description 13
- 239000000725 suspension Substances 0.000 description 13
- 239000000203 mixture Substances 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- 239000000047 product Substances 0.000 description 8
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 8
- 239000000460 chlorine Substances 0.000 description 6
- 229910052801 chlorine Inorganic materials 0.000 description 6
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- YNLAOSYQHBDIKW-UHFFFAOYSA-M diethylaluminium chloride Chemical compound CC[Al](Cl)CC YNLAOSYQHBDIKW-UHFFFAOYSA-M 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 229920000092 linear low density polyethylene Polymers 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 230000004913 activation Effects 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 239000004707 linear low-density polyethylene Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 229920001684 low density polyethylene Polymers 0.000 description 3
- 239000004702 low-density polyethylene Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminum chloride Substances Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 239000003426 co-catalyst Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011949 solid catalyst Substances 0.000 description 2
- CMAOLVNGLTWICC-UHFFFAOYSA-N 2-fluoro-5-methylbenzonitrile Chemical compound CC1=CC=C(F)C(C#N)=C1 CMAOLVNGLTWICC-UHFFFAOYSA-N 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001362 electron spin resonance spectrum Methods 0.000 description 1
- UAIZDWNSWGTKFZ-UHFFFAOYSA-L ethylaluminum(2+);dichloride Chemical compound CC[Al](Cl)Cl UAIZDWNSWGTKFZ-UHFFFAOYSA-L 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920001179 medium density polyethylene Polymers 0.000 description 1
- 239000004701 medium-density polyethylene Substances 0.000 description 1
- 229940094933 n-dodecane Drugs 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- LFXVBWRMVZPLFK-UHFFFAOYSA-N trioctylalumane Chemical compound CCCCCCCC[Al](CCCCCCCC)CCCCCCCC LFXVBWRMVZPLFK-UHFFFAOYSA-N 0.000 description 1
- RSJKGSCJYJTIGS-UHFFFAOYSA-N undecane Chemical compound CCCCCCCCCCC RSJKGSCJYJTIGS-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
Tehničko područje izuma Technical field of the invention
MPK: C08F 210/02 MPK: C08F 210/02
C08F 4/64 C08F 4/64
Predloženi izum odnosi se na područje organske kemijske tehnologije, potanje na pripravu linearnih etilenskih polimera niske ili srednje gustoće postupkom polimerizacije pri povišenoj temperaturi i pod povećanim tlakom, u cjevnom reaktoru, te u prisutnosti specifičnog katalizatora Zieglerovog tipa. The proposed invention relates to the field of organic chemical technology, particularly to the preparation of linear ethylene polymers of low or medium density by the polymerization process at elevated temperature and under increased pressure, in a tubular reactor, and in the presence of a specific Ziegler-type catalyst.
Tehnički problem Technical problem
Postojala je potreba za novim, tehnološki naprednijim postupkom priprave linearnog polietilena niske ili srednje gustoće pri povišenoj temperaturi i pod povećanim tlakom u cijevnom reaktoru i s dobrim iskorištenjem. There was a need for a new, more technologically advanced process for the preparation of linear polyethylene of low or medium density at elevated temperature and under increased pressure in a tubular reactor and with good utilization.
Stanje tehnike State of the art
Neki linearni etilenski polimeri gustoće otprilike 0,915 do otprilike 0,935, poznati u struci, dobiju se kopolimerizacijom etilena s manjim količinama C4-C8-alfa-olefina, te radom pod niskim do srednjim tlakom u plinskoj fazi (fluidnoj ili miješanoj fazi) ili u tekućoj fazi (u otopini ili suspenziji), obično s katalizatorom Zieglerovog tipa, npr. kako je opisano u Kirk-Othmer, “Encyclopedia of Chemical Technology”, 3. izdanje, sv. 16, 1981, str. 385-401. Some linear ethylene polymers of densities from about 0.915 to about 0.935, known in the art, are obtained by copolymerizing ethylene with minor amounts of C4-C8-alpha-olefins, and operating at low to medium pressures in the gas phase (fluid or mixed phase) or in the liquid phase (in solution or suspension), usually with a Ziegler-type catalyst, eg as described in Kirk-Othmer, "Encyclopedia of Chemical Technology", 3rd ed., Vol. 16, 1981, p. 385-401.
Također je poznata polimerizacija etilena ili kopolimerizacija etilena s alfa olefinom s upotrebom katalizatora Zieglerovog tipa, pri čemu se radi pri povišenim temperaturama (obično iznad pribl. 120°C) i pod povišenim tlakovima (obično iznad pribl. 1000 bara), slično u cijevnim reaktorima i uvjetima koji su slični onima koji se u struci primjenjuju za pripravu polietilena niske gustoće uz upotrebu radikalnih inicijatora. Usporedi opis BPS 828 828, US PS 3 723 403 i EPA 832 0009. Zieglerovi katalizatori, upotrijebljeni za tu namjenu, obično obuhvaćaju titanov halogenid ili alkilaluminij, a također mogu obuhvatiti i supstrat. Also known is the polymerization of ethylene or copolymerization of ethylene with an alpha olefin using a Ziegler-type catalyst, which is carried out at elevated temperatures (typically above approx. 120°C) and under elevated pressures (typically above approx. 1000 bar), similar to tube reactors. and conditions similar to those used in the art for the preparation of low-density polyethylene with the use of radical initiators. Compare the description of BPS 828 828, US PS 3 723 403 and EPA 832 0009. Ziegler catalysts, used for this purpose, usually comprise titanium halide or alkylaluminum, and may also comprise a substrate.
Ipak, međutim, polimerizacija etilena pri povišenoj temperaturi i pod povišenim tlakom uz upotrebu Zieglerovih katalizatora uzrokuje brojne teškoće koje dosada još nisu zadovoljavajuće riješene. However, the polymerization of ethylene at elevated temperature and under elevated pressure with the use of Ziegler catalysts causes numerous difficulties that have not yet been satisfactorily resolved.
Međutim, ti problemi uglavnom su posljedica kontroliranja kinetike polimerizacije katalizatora, koji mora djelovati na maksimalnoj razini tijekom kratkog vremena polimerizacije, te nestabilnost alkilaluminija upotrebljenog kao ko-katalizatora, što može uzrokovati neželjene reakcije. Ako ti problemi nisu zadovoljavajuće riješeni, iskorištenja polimerizacije su neželjeno niska i nastali polimer je kontaminiran s visokim sadržajem ostatka katalizatora. However, these problems are mainly due to controlling the polymerization kinetics of the catalyst, which must act at a maximum level during a short polymerization time, and the instability of the alkylaluminum used as a co-catalyst, which can cause unwanted reactions. If these problems are not satisfactorily solved, polymerization yields are undesirably low and the resulting polymer is contaminated with a high content of residual catalyst.
Opis rješenja tehničkog problema s izvedbenim primjerima Description of the solution to the technical problem with practical examples
U skladu s izumom polietilen niske ili srednje gustoće proizvodi se kopolimerizacijom etilena s C4-C6-alfa-oleofinom, djelomično pri povišenim temperaturama i pod povišenim tlakom, u cijevnom reaktoru i u prisutnosti katalizatora Zieglerovog tipa, pri čemu katalizator obuhvaća trialkilaluminij s kratkim alkilnim lancem, kao ko-katalizator, i čvrstu komponentu, pri čemu se čvrstu komponentu dobije In accordance with the invention, low or medium density polyethylene is produced by copolymerization of ethylene with C4-C6-alpha-olefin, partially at elevated temperatures and under elevated pressure, in a tubular reactor and in the presence of a Ziegler-type catalyst, wherein the catalyst comprises trialkylaluminum with a short alkyl chain, as a co-catalyst, and a solid component, whereby the solid component is obtained
- raspršnim sušenjem etanolne otopine magnezijevog klorida, tako da nastane supstrat čvrstih čestica magnezijevog klorida koji sadrži alkoholne hidrokside, pri čemu barem 70 mas. % čestica je reda veličine između 0,5 i 10 μm, a sadržaj alkoholnih hidroksila, izražen kao etanol, kreće se od 3 do 15 mas. %; - by spray drying the ethanol solution of magnesium chloride, so that a substrate of solid particles of magnesium chloride is formed which contains alcoholic hydroxides, where at least 70 wt. % of particles is of the order of size between 0.5 and 10 μm, and the content of alcoholic hydroxyls, expressed as ethanol, ranges from 3 to 15 wt. %;
- reakcijom supstrata s titanovim tetrakloridom, da se stvori aktivirani supstrat sa sadržajem vezanog titana, izraženog kao metal, od 0,8 do 4,0 mas. %, te sadržajem alkoholnih hidroksila, izraženim kao etanol, od 0,02 do 4 mas. %, i - by reaction of the substrate with titanium tetrachloride, to create an activated substrate with a content of bound titanium, expressed as metal, from 0.8 to 4.0 wt. %, and the content of alcoholic hydroxyls, expressed as ethanol, from 0.02 to 4 wt. %, i
- reakcijom aktiviranog supstrata s alkil aluminijevim kloridom, s atomnim omjerom između aluminija u alkil-aluminijevom kloridu i titana u aktiviranom supstratu od 2:1 do 20:1, pri temperaturi od 0 do 120°C i vremenu od 100 sati do 15 minuta, da se klorira titan i djelomično ili potpuno reducira titan iz četverovalentnog stanja do trovalentnog stanja i da se dobije čvrstu komponentu katalizatora, pri čemu je atomni omjer između aluminija u trialkilaluminiju i titana u čvrstoj komponenti katalizatora jednak ili veći od 15:1. - by the reaction of the activated substrate with alkyl aluminum chloride, with an atomic ratio between aluminum in the alkyl aluminum chloride and titanium in the activated substrate from 2:1 to 20:1, at a temperature from 0 to 120°C and a time from 100 hours to 15 minutes, to chlorinate titanium and partially or completely reduce titanium from the tetravalent state to the trivalent state and to obtain a solid catalyst component, wherein the atomic ratio between aluminum in the trialkylaluminum and titanium in the solid catalyst component is equal to or greater than 15:1.
Priprava supstrata: Substrate preparation:
Katalitički supstrat pripremi se raspršnim sušenjem etanol otopine magnezijevog klorida. The catalytic substrate is prepared by spray drying an ethanol solution of magnesium chloride.
Kako je poznato, raspršno sušenje je postupak pomoću kojeg se raspršuje otopinu topive tvari u isparljivom otapalu da nastanu kapljice fino distribuirane tekućine i kapljice se dovedu u dodir s inertnim (nereaktivnim) vrućim plinom koji protječe u istom smjeru ili suprotnom smjeru u odnosu na kapljice, pri čemu se otapalo ispari, a otopljen materijal se odvoji u obliku čvrstih čestica, obično kuglica relativno ujednačene veličine. As is known, spray drying is a process by which a solution of a soluble substance is sprayed in a volatile solvent to form droplets of finely distributed liquid and the droplets are brought into contact with an inert (non-reactive) hot gas flowing in the same or opposite direction to the droplets, in which the solvent evaporates and the dissolved material separates as solid particles, usually globules of relatively uniform size.
U skladu s izumom raspršno sušenje vrši se pod takovim uvjetima da se dobije magnezijev klorid sa sadržajem alkoholnih hidroksila u točnom području vrijednosti. To se može postići primjenom metode raspršnog sušenja općeg tipa prikazanog u US-PS 4 421 674, čiji opis se ovdje pridodaje kao referenca, pri čemu je ta metoda modificirana tako da se dobije supstrat manje veličine čestica i razmjerno manjeg sadržaja alkoholnih skupina nego što je potrebno za predloženi katalizator. In accordance with the invention, spray drying is carried out under such conditions as to obtain magnesium chloride with a content of alcoholic hydroxyls in the exact range of values. This can be accomplished by using a spray drying method of the general type disclosed in US-PS 4,421,674, the disclosure of which is incorporated herein by reference, wherein that method is modified to produce a substrate of smaller particle size and relatively lower alcohol group content than required for the proposed catalyst.
Karakteristično, najprije se pripremi koncentriranu otopinu magnezijevog klorida u etanolu. Od prednosti je da upotrijebljeni magnezijev klorid sadrži vode ispod ili pribl. 0,7 mas. %. Također je od prednosti pripremiti otopinu otapanjem otprilike 40 mas. dijelova magnezijevog klorida na 100 mas. dijelova etanola, pri čemu se radi pri otprilike 130°C i pod tlakom dušika otprilike 5 bara. Typically, a concentrated solution of magnesium chloride in ethanol is first prepared. It is advantageous that the magnesium chloride used contains water below or approx. 0.7 wt. %. It is also advantageous to prepare the solution by dissolving approximately 40 wt. parts of magnesium chloride per 100 wt. parts of ethanol, which is done at about 130°C and under a nitrogen pressure of about 5 bar.
Otopinu se zatim uvodi u napravu za raspršno sušenje u suprotnom smjeru od tijeka plinovitog dušika, pri čemu dušik ima ulaznu temperaturu otprilike 350°C i izlaznu temperaturu otprilike 230°C. Proizvod, dobiven pod tim uvjetima, je supstrat magnezijev klorid koji sadrži alkoholne hidroksile i ima slijedeće značajke: The solution is then introduced into the spray dryer in the opposite direction to the flow of nitrogen gas, the nitrogen having an inlet temperature of approximately 350°C and an outlet temperature of approximately 230°C. The product obtained under these conditions is a magnesium chloride substrate that contains alcoholic hydroxyls and has the following characteristics:
- oblik i veličina čestica: sferna, pri čemu barem 70 mas. % čestica ima promjer 0,5 do 10μm; - shape and size of particles: spherical, with at least 70 wt. % of particles have a diameter of 0.5 to 10 μm;
- sadržaj alkoholnih hidroksila, izražen kao etanol: 3 do 15 mas. %; - content of alcoholic hydroxyls, expressed as ethanol: 3 to 15 wt. %;
- nasipna gustoća: 0,3 do 0,5 g/ml; - bulk density: 0.3 to 0.5 g/ml;
- poroznost: 0,6 do 0,8 ml/g i - porosity: 0.6 to 0.8 ml/g i
- specifična površina: 2 do 20 m2/g. - specific area: 2 to 20 m2/year.
U izvedbi kojoj se daje prednost barem 90% čestica ima promjer od 0,5 do 10 μm i sadržaj alkoholnih hidroksila, izražen kao etanol, otprilike 10 mas. %. In a preferred embodiment at least 90% of the particles have a diameter of 0.5 to 10 μm and an alcohol hydroxyl content, expressed as ethanol, of approximately 10 wt. %.
Karakterističan supstrat prema izumu sadrži 23 mas. % Mg, 67 mas. % Cl i 10 mas. % alkoholnih hidroksila (izraženih kao etanol). A characteristic substrate according to the invention contains 23 wt. % Mg, 67 wt. % Cl and 10 wt. % alcohol hydroxyls (expressed as ethanol).
Priprava aktiviranog supstrata: Preparation of the activated substrate:
Aktivirani supstrat priprema se reakcijom supstrata s titanovim tetrakloridom dok se ne fiksira 0,8 do 4,0 mas. % titana izraženog kao metal, i smanjenjem sadržaja alkoholnih hidroksila, izraženih kao etanol, na vrijednost u području od 0,02 do 4 mas. %. The activated substrate is prepared by reacting the substrate with titanium tetrachloride until 0.8 to 4.0 wt. % of titanium expressed as metal, and by reducing the content of alcoholic hydroxyls, expressed as ethanol, to a value in the range of 0.02 to 4 wt. %.
U izvedbi kojoj se daje prednost čvrsti supstrat suspendira se u tekućem titanovom tetrakloridu; tako npr. suspendira se 70 do 80 mas. dijelova supstrata u 100 mas. dijelova titanovog tetraklorida. Nastalu suspenziju zagrije se zatim na temperaturu od 80 do 100°C u vremenu od 15 do 60 minuta. In a preferred embodiment, the solid substrate is suspended in liquid titanium tetrachloride; so, for example, 70 to 80 wt. parts of the substrate in 100 wt. parts of titanium tetrachloride. The resulting suspension is then heated to a temperature of 80 to 100°C for 15 to 60 minutes.
Zatim se aktivirani supstrat odvoji od suviška titanovog tetraklorida i čvrstu tvar se ispire dok klor ne nestane iz eluata. U tu svrhu može se upotrijebiti tekući parafin, kao npr. n-dekan. The activated substrate is then separated from the excess titanium tetrachloride and the solid is washed until the chlorine disappears from the eluate. For this purpose, liquid paraffin, such as n-decane, can be used.
Radom pod gore spomenutim uvjetima dobije se aktivirani nosioc koji sadrži titan i alkoholne hidroksile, te ima slijedeća karakteristična svojstva: By working under the above-mentioned conditions, an activated carrier containing titanium and alcohol hydroxyls is obtained, and has the following characteristic properties:
- oblik i veličina čestica: slično kao kod supstrata; - shape and size of particles: similar to the substrate;
- sadržaj alkoholnog hidroksila, izraženog kao etanol: 0,02 do 4 mas. %; - alcohol hydroxyl content, expressed as ethanol: 0.02 to 4 wt. %;
- sadržaj titana, izraženog kao metal: 0,8 do 4 mas. %; - content of titanium, expressed as metal: 0.8 to 4 wt. %;
- nasipna gustoća: slična supstratu; - bulk density: similar to the substrate;
- poroznost: 0,7 do 1 ml/g; - porosity: 0.7 to 1 ml/g;
- specifična površina: 10 do 100 m2/g. - specific area: 10 to 100 m2/year.
U izvedbi kojoj se daje prednost aktivirani supstrat sadrži 2 do 3 mas. % vezanog titana izraženog kao metal i 0,6 do 3 mas. % alkoholnih hidroksila izraženih kao etanol. Karakterističan aktivirani supstrat u skladu s izumom sadrži: 21 mas. % Mg, 74,7 mas. % Cl, 2,3 mas. % Ti i 2 mas. % alkoholnih hidroksila (izraženih kao etanol). In a preferred embodiment, the activated substrate contains 2 to 3 wt. % of bound titanium expressed as metal and 0.6 to 3 wt. % alcoholic hydroxyls expressed as ethanol. A characteristic activated substrate according to the invention contains: 21 wt. % Mg, 74.7 wt. % Cl, 2.3 wt. % Ti and 2 wt. % alcohol hydroxyls (expressed as ethanol).
Priprava katalitičke komponente (na temelju patentne prijave P 695/87); Preparation of the catalytic component (on the basis of patent application P 695/87);
Katalitičku komponentu pripremi se kemijskom pretvorbom aktiviranog supstrata s alkilaluminijevim kloridom tako da se klorira titan i da ga se djelomično ili u cijelosti reducira iz četverovalentnog do trovalentnog stanja. The catalytic component is prepared by chemical conversion of the activated substrate with alkylaluminum chloride so that titanium is chlorinated and partially or completely reduced from the tetravalent to the trivalent state.
Alkilaluminijevi kloridi, prikladni za tu namjenu, odabrani su između dialkilaluminijevog klorida, alkil-aluminijevog diklorida i alkilaluminijevog seskvi klorida, pri čemu alkil sadrži 2 do 4 atoma ugljika. The alkylaluminum chlorides suitable for this purpose are selected from dialkylaluminum chloride, alkylaluminum dichloride and alkylaluminum sesquichloride, wherein the alkyl contains 2 to 4 carbon atoms.
Među njima od prednosti su tvari dietilaluminijev klorid, etilaluminijev diklorid i etilaluminijev seskviklorid. Spoj najveće prednosti je dietilaluminijev klorid. Among them, the substances diethylaluminum chloride, ethylaluminum dichloride and ethylaluminum sesquichloride are of advantage. The most advantageous compound is diethylaluminum chloride.
Reakciju se provodi s atomnim omjerom između aluminija (u alkilaluminijevom kloridu) i titana (u aktiviranom supstratu) od 2:1 do 20:1. Uvjeti reakcije između alkilaluminijevog klorida i aktiviranog supstrata kritični su s obzirom na pripravu čvrste katalitičke komponente prikladne za namjenu s skladu s izumom. The reaction is carried out with an atomic ratio between aluminum (in the alkylaluminum chloride) and titanium (in the activated substrate) from 2:1 to 20:1. The reaction conditions between the alkylaluminum chloride and the activated substrate are critical to the preparation of a solid catalytic component suitable for use in accordance with the invention.
Potonje je utvrđeno, da u danom reakcijskom trenutku postoji minimalno vrijeme tijekom kojeg reagensi moraju ostati u dodiru, da čvrsta katalitička komponenta dobije željene karakteristike. The latter found that at a given reaction moment there is a minimum time during which the reagents must remain in contact for the solid catalytic component to acquire the desired characteristics.
Tako je npr. pri reakcijskoj temperaturi 0°C do sobne temperature (20 do 25°C) prikladno trajanje reakcije otprilike 100 sati, dok je kod rada pri 100 do 120°C, da se dosegne željeni učinak, obično potrebno samo otprilike 15 minuta. Thus, for example, at a reaction temperature of 0°C to room temperature (20 to 25°C), a suitable reaction time is about 100 hours, while when working at 100 to 120°C, to reach the desired effect, it usually only takes about 15 minutes .
Reakciju između alkilaluminijevog klorida i aktiviranog supstrata obično se provodi otprilike 15 minuta do otprilike 100 sati, i pri reakcijskim temperaturama otprilike od 120°C do otprilike 0°C. The reaction between the alkylaluminum chloride and the activated substrate is typically carried out for about 15 minutes to about 100 hours, and at reaction temperatures of about 120°C to about 0°C.
U izvedbi kojoj se daje prednost reakciju se provodi u vremenu od 0,5 do 4 sata, pri čemu se radi pri temperaturama od 80 do 50°C. U pojednostavljenoj izvedbi primjenjuju se također gore navedeni omjeri između aluminija i titana od 4:1 do 10:1. In the preferred embodiment, the reaction is carried out for 0.5 to 4 hours, at temperatures of 80 to 50°C. In a simplified version, the above ratios between aluminum and titanium from 4:1 to 10:1 are also applied.
Tijekom reakcije između alkilaluminijevog klorida i aktiviranog supstrata dio ili sav titan reducira se iz četverovalentnog u trovalentno stanje i normalno čvrsta katalitička komponenta sadrži količinu trovalentnog titana koja je jednaka 20 do 50 % od cijelog titana. During the reaction between the alkylaluminum chloride and the activated substrate, some or all of the titanium is reduced from the tetravalent to the trivalent state and normally the solid catalytic component contains an amount of trivalent titanium equal to 20 to 50% of the total titanium.
Također tijekom reakcije titan se klorira i veže značajne količine klora, što se vidi iz povećanja veza titan-klor u ESR spektrima. Also during the reaction, titanium is chlorinated and binds significant amounts of chlorine, which can be seen from the increase in titanium-chlorine bonds in the ESR spectra.
U svakom slučaju, kod rada na gore opisani način proizvod ima katalitičku komponentu slijedećih svojstava: In any case, when working in the manner described above, the product has a catalytic component with the following properties:
- oblik i veličina čestica: slično kao kod supstrata; - shape and size of particles: similar to the substrate;
- sadržaj alkoholnog hidroksila, izražen kao etanol: obično niži od 2 mas. %; - alcohol hydroxyl content, expressed as ethanol: usually lower than 2 wt. %;
- sadržaj titana, izražen kao metal: 0,4 do 4,0 mas. %; - titanium content, expressed as metal: 0.4 to 4.0 wt. %;
- omjer između trovalentnog titana i zbroja trovalentnog i četverovalentnog titana: od 0,2:1 do 0,5:1; - the ratio between trivalent titanium and the sum of trivalent and tetravalent titanium: from 0.2:1 to 0.5:1;
- nasipna gustoća: slična supstratu; - bulk density: similar to the substrate;
- pozornost: 0,6 do 1,2 ml/g; - attention: 0.6 to 1.2 ml/g;
- specifična površina: 20 do 120 m2/g. - specific area: 20 to 120 m2/year.
U izvedbi kojoj se daje prednost katalitička komponenta sadrži 2 do 3 mas. % titana i 1 mas. % alkoholnih hidroksila izraženih kao etanol. In a preferred embodiment, the catalytic component contains 2 to 3 wt. % of titanium and 1 wt. % alcoholic hydroxyls expressed as ethanol.
Karakteristična katalitička komponenta sadrži: 21 mas. % Mg, 74 mas. % Cl, 2,4 mas. % Ti, 1,8 mas. % Al i 0,8 mas. % alkoholnih hidroksila (izraženih kao etanol). The characteristic catalytic component contains: 21 wt. % Mg, 74 wt. % Cl, 2.4 wt. % Ti, 1.8 wt. % Al and 0.8 wt. % alcohol hydroxyls (expressed as ethanol).
U najboljoj izvedbi reakciju se provodi između alkilaluminijevog klorida i aktivnog supstrata u internom otapalu, npr. u parafinskom nosiocu, naročitim tekućim parafinskim ugljikovodicima koji sadrže iznad 7 ugljikovih atoma. In the best embodiment, the reaction is carried out between the alkylaluminum chloride and the active substrate in an internal solvent, for example in a paraffin carrier, especially liquid paraffinic hydrocarbons containing more than 7 carbon atoms.
U nastavku navode se primjeri gore spomenutih parafinskih ugljikovodika: n-dekan, n-undekan, n-dodekan i komercijalni proizvod ISOPAR tvrtke EXXON koji obuhvaća razgranate C10-C12-izoparafine. The following are examples of the above-mentioned paraffinic hydrocarbons: n-decane, n-undecane, n-dodecane and the commercial product ISOPAR by EXXON, which includes branched C10-C12-isoparaffins.
Prisutnost nosioca olakšava kontrolu reakcijske topline i dobivanja katalitičke komponente u obliku suspenzije koja se može uvoditi izravno u cijevni reaktor. The presence of the carrier facilitates the control of the reaction heat and the obtaining of the catalytic component in the form of a suspension that can be introduced directly into the tubular reactor.
Katalizator: Catalyst:
Katalizator obuhvaća gore spomenutu čvrstu komponentu i trialkilaluminij kratkog alkilnog lanca. The catalyst comprises the solid component mentioned above and trialkylaluminum of a short alkyl chain.
Podrobnije, trialkilaluminij ima 2 do 4 ugljikova atoma u alkilnoj skupini. Od svih spojeva u tom razredu od posebne prednosti je trietilaluminij. Trialkilaluminij koji ima alkilni lanac, podalje od gore spomenute maksimalne granice, u postupku priprave ravnih polietilena niske gustoće ne daje zadovoljavajuće rezultate. More specifically, trialkylaluminum has 2 to 4 carbon atoms in the alkyl group. Of all the compounds in this class, triethylaluminum is of particular advantage. Trialkylaluminum, which has an alkyl chain, away from the above-mentioned maximum limit, does not give satisfactory results in the process of preparing flat low-density polyethylene.
Obje komponente katalizatora uvode se neovisno u cijevni reaktor. U izvedbi, kojoj se daje prednost, čvrstu katalitičku komponentu uvodi se u obliku suspenzije u prethodno spomenutom ugljikovodičnom nosiocu. Both catalyst components are introduced independently into the tubular reactor. In a preferred embodiment, the solid catalytic component is introduced as a suspension in the aforementioned hydrocarbon carrier.
U svim primjerima obje komponente dovode se tolikom količinom da se održava atomni omjer između aluminija u trialkilaluminiju i titana u čvrstoj komponenti pri vrijednostima koje su obično u području od 15:1 do 70:1, a ponajprije u području od 15:1 do 45:1. In all examples, both components are fed in an amount such that the atomic ratio between aluminum in the trialkylaluminum and titanium in the solid component is maintained at values typically in the range of 15:1 to 70:1, preferably in the range of 15:1 to 45: 1.
Prikladno je dovesti trialkilaluminij u reaktor u obliku otopine u ugljikovodičnom otapalu, npr. u prethodno spomenutom proizvode ISOPAR G. It is convenient to introduce trialkylaluminum into the reactor in the form of a solution in a hydrocarbon solvent, for example in the aforementioned ISOPAR G product.
Polimerizacija: Polymerization:
Kod priprave linearnog polietilena niske gustoće kopolimerizira se etilen s alfa-olefinom, koji ima 4 do 8 atoma ugljika u molekuli, u prisutnosti prethodno opisanog katalizatora, u cijevnom reaktoru koji radi pod visokim tlakom i pri povišenoj temperaturi, u razmjerno kratkom vremenu zadržavanja pod uvjetima polimerizacije. In the preparation of linear low-density polyethylene, ethylene is copolymerized with alpha-olefin, which has 4 to 8 carbon atoms in the molecule, in the presence of the previously described catalyst, in a tube reactor operating under high pressure and at elevated temperature, in a relatively short retention time under the conditions polymerization.
U pojedinostima opći uvjeti reakcije su slijedeći: In detail, the general reaction conditions are as follows:
- temperatura: 100 do 280°C, - temperature: 100 to 280°C,
- tlak: 1200 do 2000 bara i - pressure: 1200 to 2000 bar i
- vrijeme zadržavanja: 25 do 60 sekundi. - retention time: 25 to 60 seconds.
Pod tim uvjetima, i kad se kao komonomer upotrijebi komonomer etilen-buten-1, može se dobiti linearni polietilen niske ili srednje gustoće koji obično ima značajke u slijedećem rasponu vrijednosti: Under these conditions, and when ethylene-butene-1 comonomer is used as comonomer, low or medium density linear polyethylene can be obtained, which usually has characteristics in the following range of values:
- gustoća: 0,915 do 0,940 g/ml, (metoda ASTM-D 2839); - density: 0.915 to 0.940 g/ml, (ASTM-D 2839 method);
- maseni protok taline: 0,6 do 25 g/10 min, (uvjeti E, metoda ASTM-D 1238, postupak A); - melt mass flow rate: 0.6 to 25 g/10 min, (conditions E, method ASTM-D 1238, procedure A);
- smično naprezanje: 28 do 23, (metoda ASTM-D 1238); - shear stress: 28 to 23, (ASTM-D 1238 method);
- sadržaj butena-1: od 2 do 8 mas. %, (određeno pomoću IR-a, metoda ASTM-D 2238-69); - butene-1 content: from 2 to 8 wt. %, (determined by IR, method ASTM-D 2238-69);
- udarna čvrstoća: 50 do 100 g, (metoda ASTM-H 1709); - impact strength: 50 to 100 g, (ASTM-H 1709 method);
- zamućenje: 5 - 9, (metoda ASTM-D 1003); - turbidity: 5 - 9, (ASTM-D 1003 method);
- rastezanje: 4 do 6 (μm); - stretching: 4 to 6 (μm);
- boja: od A do B. - color: from A to B.
Vrijednost rastezanja određuje se pri konstantnom tijeku polimera (30 okretaja pužnog vijka u minuti) i s konstantnim povećanjem brzine rasteznog valjka (od 25 okr./min do 120 okr./min) dok se film ne prekine. Ispitivanje se zatim ponovi kad je brzina rasteznog valjka malo manja od prekidne brzine. Tu brzinu drži se 5 minuta. Ako po isteku tog vremena ne dođe do prekida izmjeri se film s mikrometrom i izmjerenu debljinu izrazi se u mikrometrima. The stretch value is determined at a constant polymer flow (30 revolutions of the screw per minute) and with a constant increase in the speed of the stretching roller (from 25 rpm to 120 rpm) until the film breaks. The test is then repeated when the speed of the stretching roller is slightly lower than the breaking speed. This speed is maintained for 5 minutes. If at the end of this time there is no break, measure the film with a micrometer and express the measured thickness in micrometers.
Vrijednosti boje utvrđuju se po modificiranoj metodi ASTM-D 1725 usporedbom ispitanog polietilena s polietilenima spomenutih poznatih boja, po gore navedenoj standardnoj metodi. Referentnim polietilenima pripisuju se obično vrijednosti boje po ljestvici od A do D. The color values are determined according to the modified ASTM-D 1725 method by comparing the tested polyethylene with the polyethylenes of the mentioned known colors, according to the above-mentioned standard method. Reference polyethylenes are usually assigned color values on a scale from A to D.
Spomenimo na kraju da linearni polietilen niske gustoće, dobiven postupkom prema izumu, nema nikakvog mirisa tijekom faze pretvorbe u film. Finally, let us mention that the linear low-density polyethylene, obtained by the process according to the invention, does not have any odor during the phase of conversion into a film.
Kod rada u skladu s izumom također se može mijenjati gustoću nastalog polimera u navedenom području, uglavnom mijenjanjem alfa-olefina i kakvoće alfa-olefina, kopolimeriziranog s etilenom. Ti kopolimeri imaju obično sadržaj alfa-olefina koji se može kretati od 2 do 8 mas. %. When working in accordance with the invention, the density of the resulting polymer in the specified area can also be changed, mainly by changing the alpha-olefin and the quality of the alpha-olefin copolymerized with ethylene. These copolymers usually have an alpha-olefin content that can range from 2 to 8 wt. %.
Alfa-olefin, koji ima prednost za namjenu izuma, je buten-1. U izvedbi, kojoj se daje prednost, u cijevni reaktor uvodi se smjesu etilena, butena-1 i vodika (koji djeluje kao regulator molekulne mase), pri čemu je molni omjer između etilena i butena-1 od 70 do 30 i od 40 do 60. The alpha-olefin which is preferred for the purpose of the invention is butene-1. In the preferred embodiment, a mixture of ethylene, butene-1 and hydrogen (which acts as a molecular weight regulator) is introduced into the tubular reactor, with the molar ratio between ethylene and butene-1 being 70 to 30 and 40 to 60 .
Kad se radi pod prethodno spomenutim općim uvjetima u skladu s izumom, proizvodi su linearni polietileni niske gustoće u količini otprilike 200000 g na 1 g titana u katalizatoru. When operating under the aforementioned general conditions in accordance with the invention, linear low density polyethylenes are produced in an amount of approximately 200,000 g per 1 g of titanium in the catalyst.
Slijedeći izvedbeni primjeri pojašnjavaju izum bez namjere ograničenja. The following examples illustrate the invention without the intention of limitation.
Primjer 1 Example 1
Priprava supstrata Substrate preparation
40 g magnezijevog klorida u obliku komadića (sadržaj vode ispod 0,7 mas. %) otopi se u 100 kg etanola (sadržaj vode ispod 0,2 mas. %), pri čemu se radi pri 130°C i pod tlakom dušika od 5 bara. 40 g of magnesium chloride in the form of pieces (water content below 0.7 wt. %) is dissolved in 100 kg of ethanol (water content below 0.2 wt. %), at 130°C and under a nitrogen pressure of 5 pond.
Pri istoj temperaturi i pod istim tlakom otopinu se dovodi u napravu za raspršeno sušenje tipa “Closed Cycle Drying”, tvrtke Messrs. NIRO, pri čemu se radi u istom smjeru protoka i s potpunom rekuperacijom isparenog organskog otapala. At the same temperature and under the same pressure, the solution is fed into a spray drying device of the type "Closed Cycle Drying", company Messrs. NIRO, where it is done in the same flow direction and with complete recovery of the evaporated organic solvent.
U toj napravi otopinu se razdijeli na kapljice, radi se s protokom plinovitog dušika s ulaznom temperaturom od 350°C i s izlaznom temperaturom od 225 do 235°C. In this device, the solution is divided into droplets, it works with a flow of gaseous nitrogen with an inlet temperature of 350°C and an outlet temperature of 225 to 235°C.
Pod tim uvjetima s dna raspršenog uređaja za sušenje pokupi se granuliranu čvrstu tvar slijedećih svojstava: Under these conditions, a granular solid substance with the following properties is collected from the bottom of the spray drying device:
- oblik i veličina čestica: sferan, pri čemu otprilike 90 mas. % čestica ima promjer od 0,5 do 10 mikrometara; - shape and size of particles: spherical, with approximately 90 wt. % of particles have a diameter of 0.5 to 10 micrometers;
- sadržaj alkoholnog hidroksila, izražen kao etanol: 10 mas. %; - alcohol hydroxyl content, expressed as ethanol: 10 wt. %;
- nasipna gustoća: 0,4 g/ml; - bulk density: 0.4 g/ml;
- poroznost: 0,7 ml/g; - porosity: 0.7 ml/g;
- specifična površina: 3 m2/g - specific area: 3 m2/year
Priprava aktiviranog supstrata Preparation of the activated substrate
45 kg supstrata dobivenog kako je gore opisano suspendira se u 60 kg titanovog tetraklorida. Smjesu se grije 30 minuta pri 100°C. Po isteku tog vremena smjesu se ohladi, kemijski nepretvoren titanov klorid se odfiltrira i čvrstu tvar se ispire s n-dekanom dok klor nestane iz eluata. 45 kg of the substrate obtained as described above is suspended in 60 kg of titanium tetrachloride. The mixture is heated for 30 minutes at 100°C. At the end of this time, the mixture is cooled, the chemically unchanged titanium chloride is filtered off and the solid substance is washed with n-decane until the chlorine disappears from the eluate.
Proizvod je aktivirani supstrat slijedećih značajki: The product is an activated substrate with the following features:
- oblik i dimenzije čestica: slično kao kod supstrata; - shape and dimensions of the particles: similar to the substrate;
- sadržaj alkoholnog hidroksila, izražen kao etanol: 2,5 mas. %; - alcohol hydroxyl content, expressed as ethanol: 2.5 wt. %;
- sadržaj titana, izražen kao metal: 2,3 mas. %; - titanium content, expressed as metal: 2.3 wt. %;
- nasipna gustoća: slična kao kod supstrata; - bulk density: similar to the substrate;
- poroznost: slična kao kod supstrata; - porosity: similar to the substrate;
- specifična površina: 18 m2/g. - specific area: 18 m2/year.
Priprava katalitičke komponente Preparation of the catalytic component
45 kg aktiviranog supstrata, dobivenog kako je gore opisano, suspendira se u 100 l C10-C12-izoparafina (ISOPAR G). Tvar se zagrijava na 70°C i miješa se uz postupno dodavanje 18 kg dietilaluminijevog klorida tijekom 1 sata. Na kraju tog postupka tvar se uz miješanje drži daljnji sat pri 70°C. 45 kg of the activated substrate, obtained as described above, is suspended in 100 l of C10-C12-isoparaffin (ISOPAR G). The substance is heated to 70°C and mixed with the gradual addition of 18 kg of diethylaluminum chloride over 1 hour. At the end of this procedure, the substance is kept with stirring for another hour at 70°C.
Dobivena tvar bila je katalitička komponenta u obliku čvrstih čestica suspendiranih u tekućem nosiocu. Čestice čvrste tvari imale su slijedeća svojstva: The obtained substance was a catalytic component in the form of solid particles suspended in a liquid carrier. The solid particles had the following properties:
- oblik i veličina čestica: slično kao kod supstrata; - shape and size of particles: similar to the substrate;
- sadržaj alkoholnog hidroksila, izražen kao etanol: 0,8 mas. %. - alcohol hydroxyl content, expressed as ethanol: 0.8 wt. %.
- sadržaj titana, izražen kao metal: 2,3 mas. %; - titanium content, expressed as metal: 2.3 wt. %;
- omjer titana u trovalentnom stanju prema zbroju titana u trovalentnom i četverovalentnom stanju: 0,35/1; - the ratio of titanium in the trivalent state to the sum of titanium in the trivalent and tetravalent state: 0.35/1;
- nasipna gustoća: slična kao kod supstrata; - bulk density: similar to the substrate;
- poroznost: 0,8 g/ml; - porosity: 0.8 g/ml;
- specifična površina: 26 m2/g. - specific area: 26 m2/year.
Primjer 2 Example 2
Upotrijebljen je čelični cijevni reaktor unutrašnjeg promjera 2,54 cm i duljine 460 m, opremljen s izmjenjivačima za kontrolu temperature. A steel tube reactor with an inner diameter of 2.54 cm and a length of 460 m was used, equipped with heat exchangers for temperature control.
Na jednom kraju reaktora preko alternativnog kompresora uvodilo se 12 tona/sat smjese etilena, butena-1 i vodika, pri čemu je molekulni omjer etilena prema butenu-1 bio otprilike 50:50, a količina vodika 2000 ppm (broj čestica na milijun u volumenu) u cjelokupnoj količini plina. At one end of the reactor, via an alternative compressor, 12 tons/hour of a mixture of ethylene, butene-1 and hydrogen was introduced, where the molecular ratio of ethylene to butene-1 was approximately 50:50, and the amount of hydrogen was 2000 ppm (number of particles per million in volume ) in the entire amount of gas.
Na istom kraju reaktora uvodilo se je suspenziju čvrste katalitičke komponente, pripremljene kako je opisano u primjeru 1, pomoću podizne crpke, količinom od 25 1/sat suspenzije koja je sadržavala 20 g/l katalitičke komponente suspendirane u smjesi C10-C12-izoparafina ISOPAR G. At the same end of the reactor, a suspension of the solid catalytic component, prepared as described in example 1, was introduced by means of a lifting pump, in an amount of 25 1/hour of suspension containing 20 g/l of the catalytic component suspended in a mixture of C10-C12-isoparaffin ISOPAR G .
Iznad mjesta za uvođenje gore navedene suspenzije na kraju reaktora uvodi se, također pomoću podizne crpke, trietilaluminij u obliku 10%-tne (mas.) otopine u ISOPARU G. Podrobnije, uvodi se 6 do 8 1/sat otopine tako da je na ulazu atomni omjer između aluminija u trietilaluminiju prema titanu u čvrstoj katalitičkoj komponenti otprilike 50. Above the place for introducing the above-mentioned suspension at the end of the reactor, triethylaluminum in the form of a 10% (wt.) solution in ISOPAR G is introduced, also by means of a lift pump. More specifically, 6 to 8 1/hour of solution are introduced so that at the entrance the atomic ratio of aluminum in triethylaluminum to titanium in the solid catalytic component is approximately 50.
Polimerizacija se provodi pod slijedećim uvjetima: Polymerization is carried out under the following conditions:
- tlak na ulazu u reaktor: 1500 bara; - pressure at the entrance to the reactor: 1500 bar;
- pad tlaka u reaktoru: 200 bara; - pressure drop in the reactor: 200 bar;
- ulazna temperatura: 60°C; - inlet temperature: 60°C;
- temperatura aktivacije: 100°C; - activation temperature: 100°C;
- vršna temperatura: 250°C; - peak temperature: 250°C;
- vrijeme zadržavanja: 30 sekundi. - holding time: 30 seconds.
Da se katalizator dezaktivira dovodi se blizu izlaza iz reaktora 2,5 1/sat glicerola. To deactivate the catalyst, 2.5 1/hour of glycerol is brought near the outlet of the reactor.
Kod rada pod gore navedenim uvjetima stupanj pretvorbe, izračunat kao etilen, iznosi otprilike 55 mas. %. Na izlazu iz reaktora dobije se polimer višeg stupnja dekompresije, pri čemu se polimer vodi izravno iz dekompresora u ekstruder. When operating under the above conditions, the degree of conversion, calculated as ethylene, is approximately 55 wt. %. At the exit from the reactor, a polymer with a higher degree of decompression is obtained, whereby the polymer is led directly from the decompressor to the extruder.
Nakon čišćenja i sjedinjavanja s prethodno spomenutim dovodnim monomerima, kemijski nepretvoreni monomeri i vodik vraćaju se natrag na ulaz reaktora. After cleaning and combining with the aforementioned feed monomers, the chemically unconverted monomers and hydrogen are returned to the reactor inlet.
Tijekom 30-dnevnog neprekidnog rada prosječno iskorištenje iznosilo je 2300 kg/sat linearnog polietilena niske gustoće (200000 g na jedan g titana u katalizatoru) slijedećih značajki: During the 30-day continuous operation, the average utilization was 2300 kg/hour of linear low-density polyethylene (200,000 g per one g of titanium in the catalyst) with the following characteristics:
- gustoća: 0,9200 do 0,9205 g/ml, - density: 0.9200 to 0.9205 g/ml,
- maseni protok taline: 1,0 do 1,1 g/10 min, - melt mass flow: 1.0 to 1.1 g/10 min,
- smično naprezanje: 28, - shear stress: 28,
- sadržaj butena-1: 3-3,2 mas. % po molu, - butene-1 content: 3-3.2 wt. % by mole,
- udarna čvrstoća: 80 do 10 g, - impact strength: 80 to 10 g,
- zamućenje: 6 - 8, - blurring: 6 - 8,
- rastezanje: 5 do 6 mikrometara (μm), - stretching: 5 to 6 micrometers (μm),
- boja: od A do B, - color: from A to B,
- miris polimernog proizvoda: standardni, - polymer product smell: standard,
- nema nikakvog mirisa tijekom faze tvorbe filma. - there is no smell during the film formation phase.
Primjer 3 Example 3
(usporedbeni) (comparative)
S obzirom na pripravu supstrata i pripravu aktivnog supstrata čvrsta katalitička komponenta pripremljena je do pojedinosti na isti način kako je opisano u primjeru 1. With respect to substrate preparation and active substrate preparation, the solid catalytic component was prepared in detail in the same manner as described in Example 1.
15 kg aktivnog supstrata suspendirano je zatim u 600 l ISOPARA G. Smjesa je uz miješanje držana pri sobnoj temperaturi (20 do 25°C) i tijekom 1 sata dodano je 40 l 30 %-tne (mas.) otopine dietilaluminijevog klorida u ISOPARU G. Na kraju tog postupka tvar je držana uz miješanje daljnjih sat pri istoj temperaturi. 15 kg of the active substrate was then suspended in 600 l of ISOPAR G. The mixture was kept at room temperature (20 to 25°C) with stirring and 40 l of a 30% (wt.) solution of diethylaluminum chloride in ISOPAR G was added for 1 hour. At the end of that procedure, the substance was kept with stirring for another hour at the same temperature.
Dobivena je čvrsta katalitička komponenta u obliku čvrstih čestica suspendiranih u tekućem nosiocu. A solid catalytic component was obtained in the form of solid particles suspended in a liquid carrier.
Distribuirana čvrsta tvar imala je slijedeće značajke: The distributed solid had the following characteristics:
- oblik i veličina čestice: slično kao kod supstrata; - particle shape and size: similar to the substrate;
- sadržaj alkoholnog hidroksila, izražen kao etanol: 2 mas. %. - alcohol hydroxyl content, expressed as ethanol: 2 wt. %.
- sadržaj titana, izražen kao metal: 2,3 mas. %; - titanium content, expressed as metal: 2.3 wt. %;
- omjer titana u trovalentnom stanju prema zbroju titana u trovalentnom i četverovalentnom stanju: 0,15/1; - the ratio of titanium in the trivalent state to the sum of titanium in the trivalent and tetravalent state: 0.15/1;
- nasipna gustoća: slična kao kod supstrata; - bulk density: similar to the substrate;
- pozornost: 1 g/ml; - attention: 1 g/ml;
- specifična površina: 30 m2/g. - specific area: 30 m2/year.
Primjer 4 Example 4
(usporedba) (comparison)
Polimerizacija se provodi slično kao u primjeru 2, pri čemu se upotrebljava čvrstu katalitičku komponentu opisanu u primjeru 3. Polymerization is carried out similarly to example 2, using the solid catalytic component described in example 3.
Na jednom kraju reaktora uvodi se 12 tona/sat smjese etilena, butena-1 i vodika, pri čemu molni omjer etilena i butena-1 iznosi 50:50, a količina vodika je 600 ppm cjelokupnog plina. Na istom kraju reaktora uvodi se količina od 20 l/sat suspenzije čvrste katalitičke komponente, pripremljene na način opisan u primjeru 3, koja sadrži 25 g/l čvrste komponente. Gore poviše uvodi se 10%-tenu (mas.) otopinu trietilaluminijevog klorida u ISOPARU G količinom od 8 do 10 l/sat. At one end of the reactor, 12 tons/hour of a mixture of ethylene, butene-1 and hydrogen is introduced, where the molar ratio of ethylene and butene-1 is 50:50, and the amount of hydrogen is 600 ppm of the entire gas. At the same end of the reactor, a quantity of 20 l/hour of the solid catalytic component suspension, prepared in the manner described in example 3, containing 25 g/l of the solid component, is introduced. Above, a 10% (by mass) solution of triethylaluminum chloride is introduced into ISOPAR G in an amount of 8 to 10 l/hour.
Polimerizaciju se provodi pod slijedećim uvjetima: Polymerization is carried out under the following conditions:
- tlak na ulazu u reaktor: 1500 bara; - pressure at the entrance to the reactor: 1500 bar;
- pad tlaka u reaktoru: 200 bara; - pressure drop in the reactor: 200 bar;
- ulazna temperatura: 60°C; - inlet temperature: 60°C;
- temperatura aktivacije: 120°C; - activation temperature: 120°C;
- vršna temperatura: 235°C; - peak temperature: 235°C;
- vrijeme zadržavanja: 30 sekundi. - holding time: 30 seconds.
Blizu izlaza iz reaktora dovodi se 4 l/sat glicerola, da se dezaktivira katalizator. Near the exit from the reactor, 4 l/hour of glycerol is supplied to deactivate the catalyst.
Nakon čišćenja i dodatka svježih monomera kemijski nepretvoreni monomeri i vodik vraćaju se natrag na ulaz reaktora. After cleaning and addition of fresh monomers, chemically unconverted monomers and hydrogen are returned to the reactor inlet.
Kod rada pod gore navedenim uvjetima početni stupanj pretvorbe etilena bio je 36% i dobiveno je 1500 kg/sat polimera (160000 g na g titana). When operating under the above-mentioned conditions, the initial degree of ethylene conversion was 36% and 1500 kg/hour of polymer (160000 g per g of titanium) was obtained.
Da bi se održao taj stupanj pretvorbe bilo je potrebno postupno povećati količinu trietilaluminija samo nekoliko sati nakon početka pokusa. Količina 10%-tne otopine trietilaluminija u ISOPARU G narasla je na 18 do 20 l/sat nakon 10 dana kada je reakcija zustavljena. In order to maintain this degree of conversion, it was necessary to gradually increase the amount of triethylaluminum only a few hours after the start of the experiment. The amount of 10% triethylaluminum solution in ISOPAR G increased to 18 to 20 l/hour after 10 days when the reaction was stopped.
Polimer dobiven u tom vremenu imao je slijedeće značajke: The polymer obtained at that time had the following characteristics:
- gustoća: 0,921 g/ml, - density: 0.921 g/ml,
- maseni protok taline: 0,9 do 1 g/10 min, - melt mass flow: 0.9 to 1 g/10 min,
- sadržaj butena-1: 3,1 % po molu, - butene-1 content: 3.1 % by mole,
- udarna čvrstoća: 80 do 100 g, - impact strength: 80 to 100 g,
- zamućenje: 6,2; - turbidity: 6.2;
- rastezanje: 5μm, - stretch: 5μm,
- boja: od A do B, - color: from A to B,
- miris polimernog proizvoda: standardni, - polymer product smell: standard,
- miris po ugljikovodiku tijekom tvorbe polimernog filma. - hydrocarbon smell during the formation of the polymer film.
Primjer 5 Example 5
(usporedbeni) (comparative)
Čvrstu katalitičku komponentu pripremi se točno tako kako je opisano u primjeru 1 s obzirom na pripravu supstrata i pripravu aktiviranog supstrata. The solid catalytic component was prepared exactly as described in Example 1 with respect to substrate preparation and activated substrate preparation.
45 kg nastalog aktivnog supstrata suspendira se zatim u 1800 l smjese C10-C12-izoparafina (ISOPAR G). 45 kg of the resulting active substrate is then suspended in 1800 l of the C10-C12-isoparaffin mixture (ISOPAR G).
Tvar se drži uz miješanje pri 20 do 25°C i doda se 85 kg 30%-tne (mas.) otopine tri-n-oktilaluminija, nakon čega slijedi 48 kg 30%-tne (mas.) otopine dietilaluminijevog klorida u istom C10-C12-izoparafinskom otapalu. The substance is kept under stirring at 20 to 25°C and 85 kg of a 30% (w/w) solution of tri-n-octylaluminum is added, followed by 48 kg of a 30% (w/w) solution of diethylaluminum chloride in the same C10 -C12-isoparaffinic solvent.
Na kraju postupka dodavanja tvari se uz miješanje drže 1 sat pri istoj temperaturi. At the end of the addition process, the substances are kept at the same temperature for 1 hour with stirring.
Dobivena je čvrsta katalitička komponenta u obliku čvrstih čestica u tekućem nosiocu. A solid catalytic component was obtained in the form of solid particles in a liquid carrier.
Čestice čvrste tvari imale su slijedeće značajke: The solid particles had the following characteristics:
- oblik i veličina čestica: slično kao kod supstrata; - shape and size of particles: similar to the substrate;
- sadržaj alkoholnog hidroksila, izražen kao etanol: 1,8 mas. %. - alcohol hydroxyl content, expressed as ethanol: 1.8 wt. %.
- sadržaj titana, izražen kao metal: 2,3 mas. %; - titanium content, expressed as metal: 2.3 wt. %;
- omjer titana u trovalentnom stanju prema zbroju titana u trovalentnom i četverovalentnom stanju: 0,20/1; - ratio of titanium in the trivalent state to the sum of titanium in the trivalent and tetravalent state: 0.20/1;
- nasipna gustoća: slična kao kod supstrata; - bulk density: similar to the substrate;
- poroznost: 0,9 g/ml; - porosity: 0.9 g/ml;
- specifična površina: 29 m2/g. - specific area: 29 m2/year.
Primjer 6 Example 6
(usporedba) (comparison)
Upotrijebljen je čelični cijevni reaktor unutrašnjeg promjera 3,175 cm i duljine 600 m, opremljen s izmjenjivačima za kontrolu temperature. Na jednom kraju reaktora preko alternativnog kompresora uvodilo se je 15500 kg/sat smjese etilena, butena-1 i vodika, pri čemu je molekularni omjer etilena prema butenu-1 bio otprilike 50:50, a količina vodika 1000 ppm s obzirom na cjelokupnu količinu plina. A steel tubular reactor with an internal diameter of 3.175 cm and a length of 600 m, equipped with heat exchangers for temperature control, was used. At one end of the reactor, via an alternative compressor, 15,500 kg/hour of a mixture of ethylene, butene-1 and hydrogen was introduced, where the molecular ratio of ethylene to butene-1 was approximately 50:50, and the amount of hydrogen was 1000 ppm with respect to the entire amount of gas .
Na istom kraju reaktora uvodilo se je suspenziju čvrste katalitičke komponente s protokom od 34 1/sat, pripremljene kako je opisano u primjeru 5, koja je sadržavala 25 g/l čvrste komponente. Istovremeno, gore se uvodilo 30%-tnu (mas.) otopinu tri-n-oksilaluminija u C10-C12-izoparafinima pomoću podizne crpke količine od 50 l/sat. At the same end of the reactor, a suspension of the solid catalytic component was introduced with a flow rate of 34 1/hour, prepared as described in example 5, which contained 25 g/l of the solid component. At the same time, a 30% (wt.) solution of tri-n-oxylaluminum in C10-C12-isoparaffins was introduced above by means of a lifting pump at a rate of 50 l/hour.
Polimerizacija se je provodila pod slijedećim uvjetima: The polymerization was carried out under the following conditions:
- tlak na ulazu u reaktor: 1400 bara; - pressure at the entrance to the reactor: 1400 bar;
- pad tlaka u reaktoru: 200 bara; - pressure drop in the reactor: 200 bar;
- ulazna temperatura: 60°C; - inlet temperature: 60°C;
- temperatura aktivacije: 125°C; - activation temperature: 125°C;
- vršna temperatura: 230°C; - peak temperature: 230°C;
- vrijeme zadržavanja: 55 sekundi. - retention time: 55 seconds.
Blizu izlaza iz reaktora dovodi se 7 l/sat dietilenglikola da se katalizator dezaktivira. Near the exit from the reactor, 7 l/hour of diethylene glycol is fed to deactivate the catalyst.
Kod rada pod gore navedenim uvjetima početni stupanj pretvorbe izražen kao etilen iznosi otprilike 34%, a učinak je bio 1900 kg/sat (100000 g na jedan g titana) polimera slijedećih značajki: When operating under the above conditions, the initial degree of conversion expressed as ethylene is approximately 34%, and the output was 1900 kg/hour (100000 g per one g of titanium) of polymer with the following characteristics:
- gustoća: 0,9200 g/ml; - density: 0.9200 g/ml;
- maseni protok taline: 1,0 g/10 min; - melt mass flow rate: 1.0 g/10 min;
- smično naprezanje: 29,0; - shear stress: 29.0;
- sadržaj butena-1: 3 mol. %; - butene-1 content: 3 mol. %;
- udarna čvrstoća: 80 g; - impact strength: 80 g;
- zamućenje: 15; - blurring: 15;
- rastezanje: 5 mikrometara (μm); - stretching: 5 micrometers (μm);
- boja: od C do D, (od žute do duboko žute); - color: from C to D, (from yellow to deep yellow);
- miris polimirnog proizvoda: oštro nadražujući i trajan tijekom tvorbe filma. - the smell of the polymer product: strongly irritating and lasting during the formation of the film.
Navod o najboljoj izvedbi za gospodarsko korištenje izuma Citation of the best performance for the economic use of the invention
Upotrijebljen je čelični cijevni reaktor unutrašnjeg promjera 2,54 cm i duljine 460 m opremljen s izmjenjivačima za kontrolu temperature. Na jednom kraju reaktora, preko alternativnog kompresora, u protok od 12 tona/sat uvodilo se smjesu etilena, buten-1 i vodika, pri čemu je molekulni omjer etilena prema butenu-1 bio otprilike 50:50, a količina vodika 2000 pm (broj čestica na milijun u volumenu) u cjelokupnoj količini plina. A steel tube reactor with an inner diameter of 2.54 cm and a length of 460 m was used, equipped with heat exchangers for temperature control. At one end of the reactor, via an alternative compressor, a mixture of ethylene, butene-1 and hydrogen was introduced into the flow of 12 tons/hour, where the molecular ratio of ethylene to butene-1 was approximately 50:50, and the amount of hydrogen was 2000 pm (number particles per million in volume) in the entire amount of gas.
Na istom kraju reaktora uvodilo se je u suspenziju čvrste katalitičke komponente pripremljene kako je opisano u primjeru 1, pomoću podizne crpke, količinom od 25 l/sat suspenzije koja je sadržavala 20 g/l katalitičke komponente suspendirane u smjesi C10-C12-izoparafina ISOPAR G. At the same end of the reactor, the suspension of the solid catalytic component prepared as described in example 1 was introduced into the suspension, using a lift pump, in an amount of 25 l/hour of the suspension containing 20 g/l of the catalytic component suspended in the mixture of C10-C12-isoparaffin ISOPAR G .
Iznad mjesta za uvođenje gore navedene suspenzije, na kraju reaktora, uvodilo se je, također pomoću podizne crpke, trietilaluminij u obliku 10 %-tne (mas.) otopine u ISOPARU G. Potanje, uvodilo se je 6 do 8 l/sat otopine, tako da je na ulazu atomni omjer između aluminija u trietilaluminiju prema titanu u čvrstoj katalitičkoj komponenti bio otprilike 50. Above the place for introducing the above-mentioned suspension, at the end of the reactor, triethylaluminum in the form of a 10% (wt.) solution in ISOPAR G. Potanje was introduced, also using a lift pump, 6 to 8 l/hour of solution was introduced, so that at the inlet the atomic ratio of aluminum in triethylaluminum to titanium in the solid catalytic component was approximately 50.
Polimerizacija se je provodila pod slijedećim uvjetima: The polymerization was carried out under the following conditions:
- tlak na ulazu u reaktor: 1500 bara; - pressure at the entrance to the reactor: 1500 bar;
- pad tlaka u reaktoru: 200 bara; - pressure drop in the reactor: 200 bar;
- ulazna temperatura: 60°C; - inlet temperature: 60°C;
- temperatura aktivacije: 100°C; - activation temperature: 100°C;
- vršna temperatura: 250°C; - peak temperature: 250°C;
- vrijeme zadržavanja: 30 sekundi. - holding time: 30 seconds.
Da se dezaktivira katalizator blizu izlaza reaktora dovodilo se je 2,5 l/sat glicerola. To deactivate the catalyst near the outlet of the reactor, 2.5 l/hour of glycerol was supplied.
Kod rada pod gore navedenim uvjetima stupanj pretvorbe, računat kao etilen, iznosio je otprilike 55 mas. %. Na izlazu iz reaktora dobiven je polimer višeg stupnja dekompresije, pri čemu se polimer vodio izravno iz dekompresora u ekstruder. When operating under the above-mentioned conditions, the degree of conversion, calculated as ethylene, was approximately 55 wt. %. At the exit from the reactor, polymer with a higher degree of decompression was obtained, whereby the polymer was led directly from the decompressor to the extruder.
Nakon čišćenja i sjedinjavanja s prethodno spomenutim dovodnim monomerima kemijski nepretvoreni monomeri i vodik vraćeni su natrag na ulaz reaktora. After cleaning and combining with the previously mentioned feed monomers, the chemically unconverted monomers and hydrogen were returned back to the reactor inlet.
Tijekom 30-dnevnog neprekidnog rada prosječno iskorištenje iznosilo je 2300 kg/sat linearnog polietilena niske gustoće (200000 g na jedan g titana u katalizatoru) slijedećih značajki: During the 30-day continuous operation, the average utilization was 2300 kg/hour of linear low-density polyethylene (200,000 g per one g of titanium in the catalyst) with the following characteristics:
- gustoća: 0,9200 do 0,9205 g/ml; - density: 0.9200 to 0.9205 g/ml;
- maseni protok taline: 1,0 do 1,1 g/10 min; - melt mass flow: 1.0 to 1.1 g/10 min;
- smično naprezanje: 28; - shear stress: 28;
- sadržaj butena-1: 3,0 – 3,2 % po molu; - butene-1 content: 3.0 – 3.2% per mole;
- udarna čvrstoća: 80 do 10 g; - impact strength: 80 to 10 g;
- zamućenje: 6 – 8; - turbidity: 6 – 8;
- rastezanje 5 do 6 mikrometara (µm); - stretching 5 to 6 micrometers (µm);
- boja: od A do B; - color: from A to B;
- miris polimernog proizvoda: standardni; - polymer product smell: standard;
- nama nikakvog mirisa tijekom tvorbe filma. - no smell to us during the making of the film.
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT20123/86A IT1190319B (en) | 1986-04-17 | 1986-04-17 | PROCEDURE FOR THE PREPARATION OF LOW OR MEDIUM DENSITY POLYETHYLENE AND CATALYSTS SUITABLE FOR THE PURPOSE |
YU65290A YU47431B (en) | 1986-04-17 | 1990-04-03 | PROCEDURE FOR PREPARING POLYETHYLENE, RIGHT CHAIN, SMALL OR MEDIUM DENSITY |
Publications (2)
Publication Number | Publication Date |
---|---|
HRP930609A2 true HRP930609A2 (en) | 1996-04-30 |
HRP930609B1 HRP930609B1 (en) | 1998-12-31 |
Family
ID=26327405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
HR930609 HRP930609B1 (en) | 1986-04-17 | 1993-03-30 | A method for preparing low or medium-density straight-chain polyethylene |
Country Status (1)
Country | Link |
---|---|
HR (1) | HRP930609B1 (en) |
-
1993
- 1993-03-30 HR HR930609 patent/HRP930609B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
HRP930609B1 (en) | 1998-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3058690B2 (en) | High temperature polymerization process using ionic catalyst to produce polyolefin | |
RU2165436C2 (en) | Method of preventing clogging in polymerization reactors | |
US5391654A (en) | Method for homo- or copolymerizing ethene | |
RU2094440C1 (en) | Method of preparing solid ethylene copolymerization catalyst component | |
EP0123767B1 (en) | Method of preparing a supported ziegler-catalyst for the polymerisation of alpha-olefins | |
CN101550210B (en) | High-density polyethylene resin and preparation method thereof | |
JPS59196302A (en) | Preparation of active solid hydrocarbon useful for olefin polymerization and synthesis of olefinnic polymer or copolymer using same as catalyst | |
JP2001524134A (en) | Polymerizable compositions containing alpha-olefin hydrocarbon monomers and methods of using them | |
EP0080052A1 (en) | Improved catalyst composition for copolymerizing ethylene | |
CA1277096C (en) | Method of preparing low or medium-density straight- chain polyethylene,and catalysts suitable for this purpose | |
WO2018217122A1 (en) | Method for producing a reagent to decrease hydrodynamic resistance of turbulent flow of liquid hydrocarbons in pipelines | |
EP0097131B1 (en) | Method of preparing low-density ethylene copolymers | |
US4530980A (en) | Method of copolymerization in suspension of ethylene with straight-chain alpha-olefins to obtain low-density copolymers | |
EP3652217B1 (en) | Polymerization and isolation of low viscosity polymers using pastillation technology | |
KR100533057B1 (en) | Heat treatment of ziegler-natta catalysts to increase activity in solution polymerization process | |
HRP930609A2 (en) | A method for preparing low or medium-density straight-chain polyethylene | |
WO1993007187A1 (en) | Catalyst for ethylene polymerization at high temperatures | |
JP2926515B2 (en) | Process for producing ethylene-butene-1 copolymer | |
US5880055A (en) | Catalyst for polymerization of ethylene | |
WO2019162445A1 (en) | Process | |
US5571877A (en) | Method of preparing low or medium-density straight-chain polyethylene, and catalysts suitable for this purpose | |
CA2027037C (en) | Process for the preparation of ethylene-propylene copolymers | |
FR2540502A1 (en) | PROCESS FOR PRODUCING LOW DENSITY LINEAR POLYETHYLENE | |
US3194800A (en) | Polymerization of ethylene with cyanides | |
EP3843964B1 (en) | Method to form solid polymer particles from a polymer melt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A1OB | Publication of a patent application | ||
AIPI | Request for the grant of a patent on the basis of a substantive examination of a patent application | ||
PPPP | Transfer of rights |
Owner name: POLIMERI EUROPA S.R.L., IT |
|
B1PR | Patent granted | ||
ODRP | Renewal fee for the maintenance of a patent |
Payment date: 20060404 Year of fee payment: 20 |
|
PB20 | Patent expired after termination of 20 years |
Effective date: 20100404 |