HRP921484A2 - Vaccine and treatment method of human immunodeficiency virus infection - Google Patents

Vaccine and treatment method of human immunodeficiency virus infection Download PDF

Info

Publication number
HRP921484A2
HRP921484A2 HRP921484A HRP921484A2 HR P921484 A2 HRP921484 A2 HR P921484A2 HR P921484 A HRP921484 A HR P921484A HR P921484 A2 HRP921484 A2 HR P921484A2
Authority
HR
Croatia
Prior art keywords
recombinant
recombinant protein
hiv
protein
vaccine
Prior art date
Application number
Other languages
Croatian (hr)
Inventor
Gale E Smith
Original Assignee
Microgenesys Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microgenesys Inc filed Critical Microgenesys Inc
Priority to HRP921484 priority Critical patent/HRP921484A2/en
Publication of HRP921484A2 publication Critical patent/HRP921484A2/en

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

Sadašnja prijava je djelomični nastavak Američke prijave patenta Ser. Br. 151,976 podnesene 3. veljače 1988. koja je, sa svoje strane, djelomični nastavak Američke patentne prijave Ser. Br. 920,197 podnesene 16. listopada 1986 (sada Ser. Br. 585,266). Spomenute prijave i u njima navedene referencije unesene su u cijelosti u sadašnju prijavu. The present application is a continuation-in-part of U.S. patent application Ser. No. 151,976 filed Feb. 3, 1988, which is in turn a continuation-in-part of U.S. patent application Ser. No. 920,197 filed Oct. 16, 1986 (now Ser. No. 585,266). The mentioned applications and the references mentioned in them have been entered in their entirety in the current application.

Pozadina izuma Background of the invention

Virus humanog nedostatka imuniteta Tip-1 (HIV-1) je retrovirus koji uzrokuje sustavnu infekciju sa glavnom patologijom u imunom sustavu, te predstavlja etiološki agens odgovoran za sindrom stečenog nedostatka imuniteta (AIDS). Barre-Sinoussi i suradnici, Science 220: 868-871 (1983); Popović i suradnici, Science 224: 497-500 (1984). Klinički izolati HIV-1 nazivaju sejoš i virusom limfadenopatije [Feorino i suradnici, Science 225: 69-72 (1984)] i virusom AIDSa [Levy i suradnici, Science 225: 840-842 (1984)]. Human immunodeficiency virus type-1 (HIV-1) is a retrovirus that causes a systemic infection with the main pathology in the immune system, and is the etiological agent responsible for acquired immunodeficiency syndrome (AIDS). Barre-Sinoussi et al., Science 220: 868-871 (1983); Popović et al., Science 224: 497-500 (1984). Clinical isolates of HIV-1 are also referred to as lymphadenopathy virus [Feorino et al., Science 225: 69-72 (1984)] and AIDS virus [Levy et al., Science 225: 840-842 (1984)].

AIDS je postao pandemičan, te je razvoj cjepiva postao prioritetan u svjetskoj zdravstvenoj zaštiti. Visoki postotak osoba inficiranih sa HIV-1 pokazuje progresivni gubitak imune funkcije izazvan padom broja T4 limfocita. Ove T4 stanice, kao i određene nervne stanice, imaju na svojoj površini molekulu nazvanu CD4. HIV-1 prepoznaje molekulu CD4 pomoću receptora smještenog na ovojnici virusne čestice, ulazi u ove stanice i konačno se replicira i ubija stanice. Od djelotvornog cjepiva protiv AIDSa treba očekivati da izazove stvaranje antitijela koja bi se vezivala za ovojnicu HIV-1 i tako spriječila virus da inficira T4 limfocite i druge podložne stanice. AIDS has become a pandemic, and vaccine development has become a priority in global health care. A high percentage of people infected with HIV-1 show a progressive loss of immune function caused by a decrease in the number of T4 lymphocytes. These T4 cells, as well as certain nerve cells, have a molecule called CD4 on their surface. HIV-1 recognizes the CD4 molecule using a receptor located on the envelope of the viral particle, enters these cells and finally replicates and kills the cells. An effective AIDS vaccine should be expected to induce the production of antibodies that would bind to the HIV-1 envelope and thus prevent the virus from infecting T4 lymphocytes and other susceptible cells.

Cjepiva se po pravilu daju zdravim osobama, prije no što su one izložene organizmu koji izaziva oboljenje, kao imuna profilaksa. Također je, međutim, razumno razmotriti korištenje djelotvornog cjepiva protiv AIDSa i u imuniziranju nakon izlaganja, kao imunoterapije oboljenja. Salk, J., Nature, 327: 473-476 (1987). As a rule, vaccines are given to healthy people, before they are exposed to the organism that causes the disease, as an immune prophylaxis. However, it is also reasonable to consider the use of an effective AIDS vaccine in post-exposure immunization as an immunotherapy of the disease. Salk, J., Nature, 327: 473-476 (1987).

Široko se vjeruje da ovojnica HIV-1 ("env") predstavlja najboljeg kandidata u razvoju cjepiva protiv AIDSa. Fransis i Petricciani, New. Eng. J. Med., 1586-1559 (1985); Vogt i Hirsch, Reviews of Infectuous Disease, 8: 991-1000 (1986); Fauci, Proc. Natl. Acad. Sci. USA, 83: 9378-9383. Protein ovojnice HIV-1 je prvo sintetiziran kao glikoprotein sa molekulskom masom od 160,000 (gp160). Ovaj prekursor se nakon toga cijepa na vanjski glikoprotein molekulske mase od 120,000 (gp120) i transmembranski glikoprotein molekulske mase od 41,000 (gp41). Ovi proteini ovojnice su glavni ciljni antigeni za antitijela kod pacijenata oboljelih od AIDSa. Barin i suradnici, Science, 228: 1094-1096 (1985). Pokazano je da je prirodni gp120 imunogen i da je sposoban inducirati neutralizirajuća antitijela kod glodavaca, koza, rezus majmuna i čimpanza. Robey i suradnici, Pruc. Natl. Acad. Sci. USA, 83: 7023-7027 (1986). The HIV-1 envelope ("env") is widely believed to represent the best candidate for AIDS vaccine development. Francis and Petricciani, New. Eng. J. Med., 1586-1559 (1985); Vogt and Hirsch, Reviews of Infectious Disease, 8: 991-1000 (1986); Fauci, Proc. Natl. Acad. Sci. USA, 83: 9378-9383. The HIV-1 envelope protein was first synthesized as a glycoprotein with a molecular weight of 160,000 (gp160). This precursor is then cleaved into an outer glycoprotein of molecular weight 120,000 (gp120) and a transmembrane glycoprotein of molecular weight 41,000 (gp41). These envelope proteins are the main target antigens for antibodies in AIDS patients. Barin et al., Science, 228: 1094-1096 (1985). Natural gp120 has been shown to be immunogenic and capable of inducing neutralizing antibodies in rodents, goats, rhesus monkeys and chimpanzees. Robey and colleagues, Proc. Natl. Acad. Sci. USA, 83: 7023-7027 (1986).

Obzirom na vrlo niske nivoe prirodnog proteina ovojnice HIV-1 u inficiranitn stanicama, kao i na visok rizik koji se javlja u dobivanju cjepiva protiv AIDSa iz stanica inficiranih sa HIV-1, za dobivanje antigena ovojnice koji bi bili korišteni kao cjepiva protiv AIDSa korištene su metode rekombinantne DNK. Tehnologija rekombinantne DNK je do sada najbolja opcija za proizvodnju "subunit" cjepiva protiv AIDSa, obzirom na mogućnosti dobivanja velikih količina sigurnih i ekonomičnih imunogena. Protein ovojnice HIV-1 ekspresiran je u genetički izmijenjenim rekombinantima virusa cjepiva. Chakrabarti i suradnici, Nature, 320: 535-537 (1986); Hu i suradnici, Nature, 320: 537-540 (1986); Kieny i suradnici, Biotechnology, 4: 790-795 (1986). Protein ovojnice je također ekspresiran u bakterijskim stanicama [Putney i suradnici, Scicnce, 234: 1392-1395 (1986)], u stanicama sisavaca [Lasky i suradnici, Science, 23: 209-12 (1986)], te u stanicama insekata. Sintetički peptidi dobiveni iz aminokiselinskih sekvencija u gp41 HIVa-1 također su razmatrani kao kandidati za cjepiva protiv AIDSa. Kennedy i suradnici (1986). Međutim, korištenjem ovih materijala i metoda nije dobiveno uspješno cjepivo protiv AIDSa. Considering the very low levels of natural HIV-1 envelope protein in infected cells, as well as the high risk that occurs in obtaining AIDS vaccines from cells infected with HIV-1, to obtain envelope antigens that would be used as AIDS vaccines, recombinant DNA methods. Recombinant DNA technology is so far the best option for the production of "subunit" vaccines against AIDS, considering the possibilities of obtaining large quantities of safe and economical immunogens. The HIV-1 envelope protein was expressed in genetically engineered vaccine virus recombinants. Chakrabarti et al., Nature, 320: 535-537 (1986); Hu et al., Nature, 320: 537-540 (1986); Kieny et al., Biotechnology, 4: 790-795 (1986). The coat protein is also expressed in bacterial cells [Putney et al., Science, 234: 1392-1395 (1986)], mammalian cells [Lasky et al., Science, 23: 209-12 (1986)], and in insect cells. Synthetic peptides derived from amino acid sequences in HIVa-1 gp41 have also been considered as AIDS vaccine candidates. Kennedy et al. (1986). However, no successful AIDS vaccine was obtained using these materials and methods.

Korištenje vektorskog sustava bakulovirus-stanica insekta, za dobivanje rekombinantnih proteina ovojnice HIV-1, predstavlja jedan aspekt izuma opisanog u Američkoj prijavi Ser. Br. 920,197 istog prijavitelja, podnešenoj 16. listopada 1986 (sada Ser. Br. 585,266). Vidjeti također Ser. Br. 151,976. The use of a baculovirus-insect cell vector system to produce recombinant HIV-1 envelope proteins represents one aspect of the invention described in US application Ser. No. 920,197 of the same applicant, filed Oct. 16, 1986 (now Ser. No. 585,266). See also Ser. No. 151,976.

Pokazano je da bakulovirus ima opću primjenu u dobivanju proteina HIVa-1 i drugih proteina. Na primjer, bakulovirus pod imenom virus nukleusne polihedroze Autographae californicae (AcNPV) korišten je kao vektor za ekspresiranje cijelog gp160 i različitih dijelova gena ovojnice HIV-1 u inficiranim stanicama Spodoptere f'rugiperde (stanice Sf9). U ranijim prijavama istog prijavitelja opisan je i cijepani gen gp160 (rekombinacijski broj Ac3046), protein dobiven iz rekombinanta Ac3046, kao i tehnike pročišćavanja genskog proizvoda Ac3046 koje obuhvaćaju lentil lektinsku afinitetsku kromatografiju i gel filtracijsku kromatografiju. Nađeno je da protein gp160, pročišćen na ovaj način i agregiran u čestice, ima visoku imunogenost kod glodavaca i više vrsta primata. It has been shown that baculovirus has a general application in the production of HIVa-1 and other proteins. For example, a baculovirus called Autographae californicae nuclear polyhedrosis virus (AcNPV) was used as a vector to express the entire gp160 and various parts of the HIV-1 envelope gene in infected Spodoptera f'rugiperda cells (Sf9 cells). Earlier applications by the same applicant also described the cleaved gene gp160 (recombinant number Ac3046), the protein obtained from recombinant Ac3046, as well as purification techniques for the Ac3046 gene product, which include lentil lectin affinity chromatography and gel filtration chromatography. The gp160 protein, purified in this way and aggregated into particles, was found to have high immunogenicity in rodents and several primate species.

Idealno cjepivo protiv AIDSa bi, osim zahtjeva da bude u suštini biološki čisto i apirogeno, trebalo osigurati doživotnu zaštitu od infekcije HIVom-1 nakon jedne ili nekoliko injekcija. To je obično slučaj sa živim atenuiranim cjepivima. Kada se za dobivanje cjepiva koriste ubijene bakterije ili virusi, ili iz njih izolirane tvari kao što su toksoidi i proteini, često se javlja slaba reakcija antitijela i samo kratkotrajan imunitet. Kako bi se ovi nedostaci izbjegli ili minimizirali, može biti dodana dodatna komponenta nazvana ađuvant. Ađuvanti su tvari koje pomažu da se stimulira imuna reakcija. Ađuvanti koji su uobičajeno korišteni u humanim cjepivima su gelovi ili aluminijeve soli (aluminijev fosfat ili aluminijev hidroksid), nazvani alum ađuvanti. Bomford i suradnici, "Adjuvants", Animal Cell Biotech. Vol. 2: 235-250, Academic Press Inc. (London: 1985). An ideal AIDS vaccine, in addition to the requirement to be essentially biologically pure and apyrogenic, should provide lifelong protection against HIV-1 infection after one or several injections. This is usually the case with live attenuated vaccines. When killed bacteria or viruses, or substances isolated from them such as toxoids and proteins, are used to obtain vaccines, a weak antibody reaction and only short-term immunity often occur. In order to avoid or minimize these disadvantages, an additional component called an adjuvant may be added. Adjuvants are substances that help stimulate the immune response. Adjuvants commonly used in human vaccines are gels or aluminum salts (aluminum phosphate or aluminum hydroxide), called alum adjuvants. Bomford et al., "Adjuvants", Animal Cell Biotech. Vol. 2: 235-250, Academic Press Inc. (London: 1985).

Sadašnji izum osigurava cjepivo i metode tretiranja virusa humanog nedostatka imuniteta (HIV), koje obuhvaćaju davanje inficiranoj ili podložnoj osobi rekombinantnog proteina ovojnice HIV. U poželjnoj realizaciji, protein ovojnice može biti pročišćen, agregiran i kombiniran s ađuvantom (na primjer s alumom) da bi bio korišten kao cjepivo. The present invention provides a vaccine and methods of treating human immunodeficiency virus (HIV), comprising administering to an infected or susceptible individual a recombinant HIV envelope protein. In a preferred embodiment, the envelope protein can be purified, aggregated and combined with an adjuvant (for example with alum) to be used as a vaccine.

Kratak opis crteža Brief description of the drawing

Detalji ovoga izuma bit će u daljnjem tekstu navedeni uz poziv na priložene crteže: The details of this invention will be listed below with reference to the attached drawings:

Sl. 1 ilustrira strategiju kloniranja korištenu za izoliranje gena ovojnice HIV-1 (env) iz E. coli plazmida pNA2. Tamna područja su sekvencije DNK iz HIV-1, a otvorena područja potječu iz vektora za kloniranje. Crno područje u plazmidu p1774 konstruirano je od sintetičkog oligonukleotida i uvedeno je kao SmaI-KpnI fragment u SmaI-KpnI mjesta u plazmidu p1614. Pokazana je i sekvencija ovog sintetičkog oligonukleotida. Sl. 1 illustrates the cloning strategy used to isolate the HIV-1 envelope (env) gene from E. coli plasmid pNA2. Dark areas are DNA sequences from HIV-1 and open areas are from cloning vectors. The black region in plasmid p1774 was constructed from a synthetic oligonucleotide and inserted as a SmaI-KpnI fragment into the SmaI-KpnI sites in plasmid p1614. The sequence of this synthetic oligonucleotide is also shown.

Sl. 2 ilustrira strategiju korištenu za konstruiranje rekombinantnog plazmidnog vektora (p3046), koji je sa svoje strane korišten za konstruiranje vektora za ekspresiranje u bakulovirusu, Ac3046. Plazmid pMGS3 sadržava sekvencije (šrafirane zone) iz AcNPV bakulovirusa sa obje strane mjesta za kloniranje u poziciji 4.00. Ovo mjesto ima jedinstvena mjesta za restrikcijske endonukleaze SmaI, KpnI i Bg1II. Polihedrinski promotor AcNPV je u 5' smjeru od pozicije 4.00. Sekvencija 5'-TAATTAATTAA-3' je u 3' smjeru i ima kodon za zaustavljanje translacije u sva tri okvira očitavanja. Plazmid p1774 i sekvencija sintetičkog oligonukleotidnog područja su kao što je opisano na Sl. 1. Plazmid p3046 sadržava cijeli pMGS3, osim sekvencija izmedu mjesta SmaI i Bg1II, gdje je insertiran gen ovojnice HIV-1 iz p1774. Sl. 2 illustrates the strategy used to construct the recombinant plasmid vector (p3046), which in turn was used to construct the baculovirus expression vector, Ac3046. Plasmid pMGS3 contains sequences (hatched areas) from the AcNPV baculovirus on either side of the cloning site at position 4.00. This site has unique sites for the restriction endonucleases SmaI, KpnI and Bg1II. The polyhedron promoter of AcNPV is in the 5' direction from position 4.00. The sequence 5'-TAATTAATTAA-3' is in the 3' direction and has a translation stop codon in all three reading frames. Plasmid p1774 and the sequence of the synthetic oligonucleotide region are as described in FIG. 1. Plasmid p3046 contains the entire pMGS3, except for the sequences between the SmaI and Bg1II sites, where the HIV-1 envelope gene from p1774 was inserted.

Sl. 3 prikazuje nukleotidne sekvencije DNK bočno vezane za kodirajuću sekvenciju gp160 iz Ac3046. Na Sl. 4 je env sekvencija DNK iz 3046, od pozicije +1 do +2267. Sl. 3 shows the DNA nucleotide sequences flanking the gp160 coding sequence from Ac3046. On Fig. 4 is the env sequence of DNA from 3046, from position +1 to +2267.

Sl. 4a-4t prikazuju stvarne sekvencije DNK env segmenta gena HIV-1, zajedno sa sekvencijama sintetičkog oligonukleotida na 5' kraju env gena u Ac3046 (između +1 i +2267). Lokacije mjesta za restrikcijske endonukleaze navedene su iznad sekvencije DNK, a pretpostavljene sekvencije amino kiselina su navedene ispod sekvencije DNK. Baze su numerirane sa desne i sa lijeve strane. Sl. 4a-4t show the actual DNA sequences of the env segment of the HIV-1 gene, together with the sequences of the synthetic oligonucleotide at the 5' end of the env gene at Ac3046 (between +1 and +2267). The locations of the restriction endonuclease sites are listed above the DNA sequence, and the predicted amino acid sequences are listed below the DNA sequence. Bases are numbered on the right and on the left.

Sl. 5a-5h uspoređuju sekvencije DNK u env genu iz Ac3046 sa objavljenim sekvencijama env gena iz LAV-1. Sekvencija iz LAV-1 je gore, a sekvencija iz Ac3046 dolje. Linija (1) ispod sekvencije iz LAV-1 označava da je sekvencija iz Ac3046 u toj poziciji ista. Korišteno je numeriranje sekvencije DNK koje su opisali Wain-Hobson i suradnici, Cell, 40:9-17 (1985) za LAV-1. Sl. 5a-5h compare the DNA sequences in the env gene from Ac3046 with the published env gene sequences from LAV-1. The sequence from LAV-1 is above, and the sequence from Ac3046 is below. The line (1) below the sequence from LAV-1 indicates that the sequence from Ac3046 is the same at that position. The DNA sequence numbering described by Wain-Hobson et al., Cell, 40:9-17 (1985) for LAV-1 was used.

Sl. 6 prikazuje ELISA titre za najveće razblaženje humanog seruma pozitivnog na antitijela protiv HIV-1 (gornji grafikon) i seruma rezus majmuna (doljnji gratikon) uzetog od životinja imuniziranih sa gp160 (IJ55, KL55) ili sa gp120 (AB55, CD55, GH55). ELISA titri su mjereni u odnosu na visoko prošišćene proteine gp120 i gp160. Specifično vezano antitijelo je mjereno sa kozjim anti-humanim IgG HRP konjugatom. Titar predstavlja najveće razblaženje seruma koje u ovom pokusu daje pozitivnu reakciju. Sl. 6 shows ELISA titers for the highest dilution of HIV-1 antibody-positive human serum (upper graph) and rhesus monkey serum (lower graph) obtained from animals immunized with gp160 (IJ55, KL55) or with gp120 (AB55, CD55, GH55). ELISA titers were measured against highly purified proteins gp120 and gp160. Specific antibody binding was measured with goat anti-human IgG HRP conjugate. The titer represents the highest dilution of the serum that gives a positive reaction in this experiment.

Sl. 7 je Tablica koja zbrojno prikazuje imunu reakciju izazvanu cijepljenjem sa gp160, kod seropozitivnih pacijenata. Sl. 7 is a Table summarizing the immune response induced by vaccination with gp160 in seropositive patients.

Sl. 8 (A i B) prikazuje cijepljenjem izazvane reakcije stvaranja antitijela usmjerenih protiv specifičnih epitopa ovojnice HIVa. Sl. 8 (A and B) shows vaccination-induced antibody production responses directed against specific HIV envelope epitopes.

S1. 9 prikazuje cijepljenjem izazvano proliferiranje T-stanica kao reakciju na gp160, kod cijepljenih seropozitivnih osoba. S1. 9 shows the vaccination-induced proliferation of T-cells in response to gp160, in vaccinated seropositive individuals.

Sl. 10 (A-C) prikazuje reakcije proliferiranja limfocita, vezane uz cijepljenje. Sl. 10 (A-C) shows lymphocyte proliferation reactions related to vaccination.

SI. 11 je grafikon koji prikazuje postotnu promjenu stanica CD4 u ovisnosti od vremena, za osobe koje reagiraju i za osobe koje ne reagiraju na cjepivo. SI. 11 is a graph showing percent change in CD4 cells over time for vaccine responders and non-responders.

Sažetak izuma Summary of the invention

Otkriveno je da je rekombinantni protein ovojnice HIVa gp160 ("rgp160"), naročito kada se adsorbira na ađuvant kao što je alum (na primjer aluminijev fosfat), osobito koristan kao cjepivo protiv AIDSa. Jedan aspekt sadašnjeg izuma predstavlja ekspresijski vektor AcNPV, sa kodirajućom sekvencijom za dio gena ovojnice HIV-1 od amino kiseline ekvivalentno je 1 do 757 niza u Wain-Hobson (ibid), koje su amino kiseline 1-752 u rekombinantnom klonu Br. 3046. Sljedeći aspekt izuma je dobivanje rekombinantnog proteina ovojnice HIV-1 (kao i protein po sebi) u stanicama insekta - osobito proteina rpg160 koji je kodiran sekvencijom amino kiselina od 1 do 757 Wain-Hobson tj. 03046 koje imaju 752 ostatka amino kiselina. Recombinant HIVa envelope protein gp160 ("rgp160"), particularly when adsorbed to an adjuvant such as alum (eg aluminum phosphate), has been found to be particularly useful as an AIDS vaccine. One aspect of the present invention is an AcNPV expression vector, with the coding sequence for a portion of the HIV-1 envelope gene from amino acids equivalent to 1 to 757 of the sequence in Wain-Hobson (ibid), which are amino acids 1-752 in recombinant clone Br. 3046. Another aspect of the invention is to obtain recombinant HIV-1 envelope protein (as well as the protein itself) in insect cells - in particular protein rpg160 which is encoded by the sequence of amino acids 1 to 757 Wain-Hobson ie 03046 having 752 amino acid residues.

Drugi aspekti sadašnjeg izuma obuhvaćaju pročišćavanje i gradnju čestica rekombinantnog proteina ovojnice iz genskog proizvoda rekombinantnog bakulovirusa koji proizvodi protein 3046, te adsorbiranje čestica 3046 na agregate aluminijevog fosfata. Other aspects of the present invention include the purification and construction of recombinant envelope protein particles from a recombinant baculovirus gene product that produces protein 3046, and adsorbing the 3046 particles onto aluminum phosphate aggregates.

Izum također obuhvaća profilaktička i/ili terapijska cjepiva protiv AIDSa ili protiv infekcije HIVom, kao i metode za sprečavanje ili za tretiranje AIDSa ili infekcija HIVom. The invention also includes prophylactic and/or therapeutic vaccines against AIDS or HIV infection, as well as methods for preventing or treating AIDS or HIV infection.

Detaljan opis izuma Detailed description of the invention

Primjeri koji slijede ilustriraju izum bez ograničavanja njegovog obujma. The following examples illustrate the invention without limiting its scope.

Rekombinantni bakulovirus, virus nukleusne polihedroze Autographae californicae (AcNPV) sa odcijepljenim genom gp160 HIV-1 koji kodira amino kiseline 1-757 proteina ovojnice HIVa (rekombinant Ac3046), opisan je u Američkoj prijavi Ser. Br. 920,197 istog prijavitelja (sada Ser. Br. 585,260). Stupnjevi kloniranja korišteni za konstruiranje rekombinantnog bakulovirusa koji sadrži gene ili dijelove gena iz HIV-1, također su opisani u navedenoj prijavi i ovdje unijeti kao referencija. A recombinant baculovirus, Autographae californicae nuclear polyhedrosis virus (AcNPV) with a spliced HIV-1 gp160 gene encoding amino acids 1-757 of the HIV envelope protein (recombinant Ac3046), is described in US application Ser. No. 920,197 of the same applicant (now Ser. No. 585,260). The cloning steps used to construct a recombinant baculovirus containing genes or portions of genes from HIV-1 are also described in that application and incorporated herein by reference.

Slijedi detaljan opis genetičko-inženjerskih stupnjeva korištenih za konstruiranje ekspresijskog vektora Ac3046. Korišteni materijali, uključiv i enzime i imunološke reagense, nabavljeni su iz komercijalnih izvora. Također su osigurani primjeri u kojima je opisana primjena izuma. The following is a detailed description of the genetic engineering steps used to construct the Ac3046 expression vector. Materials used, including enzymes and immunological reagents, were obtained from commercial sources. Examples are also provided in which the application of the invention is described.

Oznaka rgp160 je skupna i obuhvaća i druge rekombinantne proteine ovojnice, uključiv proteine gp120 i gp41. Ac3046 je samo jedan od primjera ekspresijskog vektora i rekombinantnog proteina ovojnice prema izumu. The designation rgp160 is collective and includes other recombinant envelope proteins, including gp120 and gp41. Ac3046 is only one example of an expression vector and recombinant envelope protein according to the invention.

PRIMJER 1 EXAMPLE 1

Konstruiranje rekombinantnog bakulovirusa Ac3046 sa sekvencijama iz HIV-1 koje kodiraju amino kiseline 1-757 Construction of recombinant baculovirus Ac3046 with sequences from HIV-1 encoding amino acids 1-757

Kloniranje i ekspresiranje stranih sekvencija za kodiranje proteina, u vektor bakulovirusa, zahtijeva da se kodirajuća sekvencija izravna sa polihedrinskim promotorom i uzvodnim sekvencijama s jedne strane, te sa sekvencijama koje kodiraju bakulovirus s druge strane. Izravnanje je takvo da homologno rekombiniranje sa genomom bakulovirusa rezultira transferom strane kodirajuće sekvencije izravnate sa polihedrinskim promotorom i inaktivnim polihedrinskim genom. Cloning and expression of foreign protein coding sequences into a baculovirus vector requires that the coding sequence be aligned with the polyhedrin promoter and upstream sequences on the one hand, and with the baculovirus coding sequences on the other. The alignment is such that homologous recombination with the baculovirus genome results in the transfer of a foreign coding sequence aligned with the polyhedrin promoter and the inactive polyhedrin gene.

Shodno tome, za korištenje u konstruktima gena ovojnice HIVa, izrađeni su različiti vektori za insertiranje. Vektor za insertiranje MGS3, opisan dolje, izrađen je da bi dodao ATG kodon za iniciranje translacije. Insertiranje stranih sekvencija u ovaj vektor mora biti riješeno tako da se translacijski okvir, ustanovljen kodonom za iniciranje, ispravno održava kroz cijelu stranu sekvenciju. Accordingly, various insertion vectors have been developed for use in HIV envelope gene constructs. The MGS3 insertion vector, described below, was constructed to add an ATG codon for translation initiation. Insertion of foreign sequences into this vector must be resolved so that the translational frame, established by the initiation codon, is correctly maintained throughout the foreign sequence.

Vektor za insertiranje MGS3 konstruiran je od klona restrikcijskog fragmenta EcoRI-I u DNK izoliranoj iz izolata AcMNPV (WT-1) pročišćenog na plakovima. MGS3 je konstruiran tako da sadržava sljedeće strukturalne karakteristike: (a) 4000 bp sekvencije uzvodno od ATG kodona za iniciranje u polihedrinskom genu; (b) polivalentnog vezivnog elementa unešenog mjesno-dirigiranom mutagenezom, koji se sastoji od ATG kodona za iniciranje u poziciji odgovarajućeg polihedrinskog kodona, od restrikcijskih mjesta SmaI, KpnI, Bg1II i od segmenta univerzalnog zaustavnog kodona; i (c) od 1700 bp sekvencije koja se prostire od restrikcijskog mjesta Kpnl (što je unutar polihedrinskog gena) do terminalnog restrikcijskog mjesta EcoRI u klonu EcoRI-I. Vidjeti, na primjer, Sl. 2. The MGS3 insertion vector was constructed from a clone of the EcoRI-I restriction fragment in DNA isolated from a plaque-purified AcMNPV (WT-1) isolate. MGS3 was engineered to contain the following structural features: (a) 4000 bp of sequence upstream of the ATG initiation codon in the polyhedrin gene; (b) a polyvalent binding element introduced by site-directed mutagenesis, consisting of an ATG initiation codon in the position of the corresponding polyhedrin codon, restriction sites SmaI, KpnI, Bg1II and a segment of the universal stop codon; and (c) of 1700 bp of sequence extending from the KpnI restriction site (which is within the polyhedrin gene) to the terminal EcoRI restriction site in clone EcoRI-I. See, for example, FIG. 2.

PRIMJER 2 EXAMPLE 2

Konstruiranje rekombinanata bakulovirusa Construction of recombinant baculoviruses

sa sekvencijama koje kodiraju za LAV env with sequences coding for LAV env

Rekombinantni plazmid označen kao NA2 (Sl. 1) sastoji se od segmenta cijelog provirusa HIV-1, od 21,8 kb, insertiranog u pUC19. Ovaj klon je, kako je izviješteno, infektivan jer nakon transfekcije stanovitih humanih stanica može proizvesti virus. Adachi i suradnici, J. Virol., 58:284-291 (1986). Kompletne sekvencije gena ovojnice sadržane u NA2 derivirane su iz LAV soja HIVa. Barre-Sinoussi (1983). The recombinant plasmid designated NA2 (Fig. 1) consists of a 21.8 kb segment of the entire HIV-1 provirus inserted into pUC19. This clone is reportedly infectious because it can produce virus after transfection of certain human cells. Adachi et al., J. Virol., 58:284-291 (1986). The complete sequences of the envelope genes contained in NA2 were derived from the LAV strain of HIV. Barre-Sinoussi (1983).

Gen ovojnice HIV-1 izoliran je i genetičko-inženjerski obrađen kao što je opisano dolje i prikazano na Sl. 1. Gen ovojnice je prvo izoliran iz NA2 kao restrikcijski fragment EcoRI/SacI od 3846 bp, pa je kloniran u pUC19 na restrikcijskom mjestu EcoRI/SacI. The HIV-1 envelope gene was isolated and genetically engineered as described below and shown in FIG. 1. The envelope gene was first isolated from NA2 as an EcoRI/SacI restriction fragment of 3846 bp, so it was cloned into pUC19 at the EcoRI/SacI restriction site.

Dobiveni plazmid označen je kao p708. The resulting plasmid was designated as p708.

Gen ovojnice je nadalje ponovo izoliran kao restrikcijski fragment KpnI od 2800 bp i kloniran u pUC18 na restrikcijskom mjestu KpnI. Dobiveni klon označen je kao p1614. The coat gene was further re-isolated as a 2800 bp KpnI restriction fragment and cloned into pUC18 at the KpnI restriction site. The resulting clone was designated as p1614.

Restrikcijski fragment Kpnl u p1614 sadržavao je neznatno sječeni dio gena ovojnice HIVa, u kojem je nedostajalo 121 bp odgovarajuće N-terminalne sekvencije. Nedostajući dio gena, koji je obuhvaćao i sekvenciju signalnog peptida, zamijenjen je insertiranjem sintetičkog oligomera sa dva lanca. Insertirani oligomer je načinjen od aminokiselinske sekvencije LAV, uz poželjnu primjenu kodona polihedrinskog gena. Da bi se olakšalo dalje manipuliranje, umjesto ATG kodona za iniciranje istodobno je unešena nova restrikcijska sekvencija SmaI. ATG kodon za iniciranje biti će osiguran iz bakulovirusnog vektora za insertiranje. Dobiveni plazmid označen je kao p1774. The restriction fragment Kpnl in p1614 contained a slightly truncated part of the HIVa envelope gene, which lacked 121 bp of the corresponding N-terminal sequence. The missing part of the gene, which included the signal peptide sequence, was replaced by inserting a synthetic oligomer with two chains. The inserted oligomer is made from the amino acid sequence of LAV, with the preferred use of the codon of the polyhedrin gene. To facilitate further manipulation, a new SmaI restriction sequence was simultaneously introduced instead of the ATG initiation codon. The ATG initiation codon will be provided from the baculovirus insertion vector. The resulting plasmid was designated as p1774.

Kao što se vidi na Sl. 2, restrikcijski fragmenti iz p1774, sa sekvencijama za kodiranje različitih ciomena ovojnice HIV-1, klonirani su u vektor za insertiranje MGS (na primjer, MGS3), tako da je ATG kodon za iniciranje u vektoru za insertiranje bio u okviru sa kodonima gena ovojnice. Konstrukt p3046 sadržavao je restrikcijski fragment Smal/BamHl, izoliran iz p1774 i insertiran u mjesto Smal/Bglll u plazmidnom vektoru pMGS3. Ovaj klon sadržava sekvencije koje kodiraju amino kiseline od 1 do 757 u gp160, a koristi zaustavni kodon osiguran iz vektora MGS3. As seen in Fig. 2, restriction fragments from p1774, with coding sequences for various HIV-1 envelope regions, were cloned into an MGS insertion vector (for example, MGS3) such that the ATG initiation codon in the insertion vector was in frame with the envelope gene codons . Construct p3046 contained the Smal/BamH1 restriction fragment, isolated from p1774 and inserted into the SmaI/BglII site in the pMGS3 plasmid vector. This clone contains the sequences encoding amino acids 1 to 757 of gp160, and uses a stop codon provided from the MGS3 vector.

PRIMJER 3 EXAMPLE 3

Dobivanje i selekcija rekombinantnog bakulovirusa Production and selection of recombinant baculovirus

Plazmid za rekombiniranje env gena HIVa, p3046, taložen je kalcijevim fosfatom sa DNK iz AcMNPV (WT-1) i dodan je neinficiranim stanicama Spodopterae frugiperdae. Himerički gen je nakon toga insertiran u genom AcMNPV, homolognim rekombiniranjem. Rekombinantni virusi su identificirani okluziono-negativnom morfologijom na plakovima. Ovakvi plakovi pokazuju citopatski efekt koji se može identificirati, ali ne i nukleusnu okluziju. Radi dobivanja čistog rekombinantnog virusa izvršena su još dva dodatna pročišćavanja na plakovima. Rekombinantna virusna DNK analizirana je da bi se ustanovilo mjesno-specifično insertiranje env sekvencija HIVa, uspoređivanjem njezinih restrikcijskih i hibridizacijskih karakteristika sa virusnom DNK prirodnog tipa. A plasmid for recombining the HIVa env gene, p3046, was calcium phosphate precipitated with DNA from AcMNPV (WT-1) and added to uninfected Spodopterae frugiperdae cells. The chimeric gene was then inserted into the AcMNPV genome by homologous recombination. Recombinant viruses were identified by occlusion-negative morphology on plaques. Such plaques show an identifiable cytopathic effect but no nuclear occlusion. In order to obtain pure recombinant virus, two additional purifications were performed on plaques. Recombinant viral DNA was analyzed to establish site-specific insertion of HIV env sequences by comparing its restriction and hybridization characteristics with wild-type viral DNA.

PRIMJER 4 EXAMPLE 4

Ekspresiranje env HIVa iz rekombinantnih bakulovirusa Expression of HIV env from recombinant baculoviruses

u inficiranim stanicama insekta in infected insect cells

Ekspresiranje env sekvencija HIVa iz rekombinantnih virusa u stanicama insekta trebalo bi rezultirati sintezom primarnog translacijskog proizvoda. Ovaj primarni proizvud će sadržavati amino kiseline translirane iz kodona koji potječu iz vektora za rekombiniranje. Rezultat je protein kuji sadrži cjelokupne kodirane amino kiseline, od ATG kodona za iniciranje iz ekspresijskog vektora nizvodno od polihedrinskog promotora, sve do signala za kraj transliranja na vektoru za ekspresiranje (primjerice rgp160). Primarni translacijski proizvod Ac3046 bi trebao glasiti Met-Pro-Gly-Arg-Val na terminusu gdje Arg (pozicija 4) predstavlja Arg u poziciji 2 originalnog klona LAV. Kodoni Met-Pro-Gly unešeni su kao rezultat strategije kloniranja. Expression of HIV env sequences from recombinant viruses in insect cells should result in the synthesis of the primary translation product. This primary product will contain amino acids translated from codons originating from the recombination vector. The resulting kuji protein contains the entire coded amino acids, from the ATG initiation codon from the expression vector downstream of the polyhedrin promoter, all the way to the end-of-translation signal on the expression vector (eg rgp160). The primary translation product of Ac3046 should read Met-Pro-Gly-Arg-Val at the terminus where Arg (position 4) represents the Arg in position 2 of the original LAV clone. Met-Pro-Gly codons were introduced as a result of the cloning strategy.

PRIMJER 5 EXAMPLE 5

Nukleotidna sekvencija inserta gp160 i bočno vezane DNK Nucleotide sequence of the gp160 insert and flanking DNA

Nukleotidna sekvencija inserta gp160 i bočno vezane DNK određena je iz restrikcijskih fragmenata izoliranih iz DNK virusnog ekspresijskog vektora Ac3046. Korištena strategija sekvenciranja obuhvaćalaje sljedeće stupnjeve. Fragment EcoRV-BamHI od 3.9 kb pročišćen je restrikcijskom digestijom virusne DNK iz Ac3046. Virusna DNK iz Ac3046 bilaje dobivena iz vanstanienog virusa prisutnog u staničnom mediju kojije korišten za proizvodnju cjepiva. The nucleotide sequence of the gp160 insert and flanking DNA was determined from restriction fragments isolated from the DNA of the viral expression vector Ac3046. The sequencing strategy used included the following steps. The 3.9 kb EcoRV-BamHI fragment was purified by restriction digestion of viral DNA from Ac3046. Viral DNA from Ac3046 was obtained from exogenous virus present in the cell medium used for vaccine production.

Kako je pokazano na Sl. 2, fragment EcoRV-BamHI od 3.9 kg sadržava cjelokupni gen gp160, te 100 bp uzvodne i oko 1000 bp nizvodne bočno vezane DNK. Iz ovoga je određena nukleotidna sekvencija cijelog gena gp160, zajedno sa 100 bp uzvodne i 100 bp nizvodne bočno vezane DNK. As shown in Fig. 2, the 3.9 kg EcoRV-BamHI fragment contains the entire gp160 gene, and 100 bp upstream and about 1000 bp downstream side-linked DNA. From this, the nucleotide sequence of the entire gp160 gene was determined, along with 100 bp of upstream and 100 bp of downstream flanking DNA.

Ukratko, rezultati sekvenciranja okrivaju himerički konstrukt koji je i predviden strategijom kloniranja. Sekvencija gp160 bila je suštinski ista kao što su izvijestili WainHobson i suradnici ( 1985). Sekvencija od 2256 baze izmedu pretpostavljenih kodona za iniciranje i za kraj transliranja predvida 752 aminokiselinski kodon i 28 potencijalnih Nvezanih mjesta za glikoziliranje. Procijenjena molekulska težina ovoga gp160, uključiv i šećerne ostatke, iznosi približno 145,000. In summary, the sequencing results blame the chimeric construct predicted by the cloning strategy. The sequence of gp160 was essentially the same as reported by WainHobson et al (1985). The sequence of 2256 bases between the putative initiation and translation termination codons predicts 752 amino acid codons and 28 potential non-linked glycosylation sites. The estimated molecular weight of this gp160, including sugar residues, is approximately 145,000.

Analiza sekvencije 200 baza bočne DNK ukazuje na ispravno insertiranje, kao što je ilustrirano na Sl. 3, 4 i 5. Sequence analysis of 200 bases of flanking DNA indicated a correct insertion, as illustrated in FIG. 3, 4 and 5.

PRIMJER 6 EXAMPLE 6

Aminokiselinska sekvencija gp160 Amino acid sequence of gp160

Korištenjem standardnog automatiziranog Edmanovog degradiranja i HPLC procedura, određeno je da je N-terminalna sekvencija prvih 15 ostataka u gp160 identična sekvenciji predviđenoj na bazi sekvencije DNK. U proteinu gp160 nije prisutan N-terminalni metionin. To je konzistentno s nalazom da se polihedrinski protein u AcNPV također proizvodi bez N-terminalnog metionina. Slijedi skupni prikaz stvarne sekvencije DNK iz gp160 i N-terminalne proteinske sekvencije, određen analiziranjem DNK iz AcNPV 3046 i pročišćenog gp160 (Tablica 1). Using standard automated Edman degradation and HPLC procedures, the N-terminal sequence of the first 15 residues in gp160 was determined to be identical to the sequence predicted based on the DNA sequence. The N-terminal methionine is not present in the gp160 protein. This is consistent with the finding that the polyhedrin protein in AcNPV is also produced without the N-terminal methionine. The following is a summary of the actual DNA sequence from gp160 and the N-terminal protein sequence, determined by analyzing DNA from AcNPV 3046 and purified gp160 (Table 1).

TABLICA 1 TABLE 1

Env gen LAV u ekspresijskom vektoru AcNPV 3046 Env gene of LAV in AcNPV 3046 expression vector

Ostatak Residue

2 3 4 5 6 7 8 9 10 11 12 13 14 2 3 4 5 6 7 8 9 10 11 12 13 14

Pro Gly Arg Val Lys Glu Lys Tyr Gln His Leu Trp Arg Trp Gly Pro Gly Arg Val Lys Glu Lys Tyr Gln His Leu Trp Arg Trp Gly

ATG CCC GGG CGT GTG AAG GAG AAG TAC CAA CAC TGG CGT TGG GGC ATG CCC GGG CGT GTG AAG GAG AAG TAC CAA CAC TGG CGT TGG GGC

Ovi rezultati su uspoređeni sa originalnim klonom LAV-1 kako slijedi (Tablica 2). These results were compared to the original LAV-1 clone as follows (Table 2).

TABLICA 2 TABLE 2

Env gon LAV u originalnom klonu LAV-1 Env gon LAV in the original LAV-1 clone

Ostatak Residue

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Met Arg Val Lys Glu Lys Tyr Gln His Leu Trp Arg Trp Gly Met Arg Val Lys Glu Lys Tyr Gln His Leu Trp Arg Trp Gly

ATG AGA GTG AAG GAG AAG TAT CAG CAC TTG TGG AGA TGG GGG ATG AGA GTG AAG GAG AAG TAT CAG CAC TTG TGG AGA TGG GGG

PRIMJER 7 EXAMPLE 7

Pročišćavanje rekombinantnog gp160 Purification of recombinant gp160

Jedan aspekt sadašnjeg izuma je postupak korišten za ekstrakciju i pročišćavanje rekombinantnog proteina ovojnice HIV-1, kodiranog u ekspresijskom vektoru Ac3046. Rekombinantni protein ovojnice HIV-1, gp160, dobiva se u stanicama S. frugiperda tijekom 4-5 dana nakon inficiranja sa Ac3046. Pročišćavanje ovoga rgp160 obuhvaća sljedeće One aspect of the present invention is the process used to extract and purify the recombinant HIV-1 envelope protein encoded by the Ac3046 expression vector. Recombinant HIV-1 envelope protein, gp160, is produced in S. frugiperda cells 4-5 days after infection with Ac3046. Purification of this rgp160 involves the following

stupnjeve: degrees:

1. Ispiranje stanica 1. Cell washing

2. Liziranje stanica 2. Cell lysis

3. Gel-filtracijsku kromatografiju 3. Gel-filtration chromatography

4. Lentil lektinsku afinitetnu kromatografiju 4. Lentil lectin affinity chromatography

5. Dijalizu. 5. Dialysis.

Ovaj Primjer opisuje pročišćavanje rekombinantnog gp160 iz približno 2 x 109 stanica inficiranih sa Ac3046. This Example describes the purification of recombinant gp160 from approximately 2 x 109 cells infected with Ac3046.

1. Ispiranje stanica Inficirane stanice su isprane u puferu koji sadržava 50mM Tris pufera (pH 7.5), 1 mM EDTA i 1 % Tritona X-100. Stanice su iznova suspendirane u ovom puferu, homogenizirane korištenjem standardih metoda i centrifugirane 20 minuta pri 5000 obrtaja u minuti. Proces je ponovljen tri puta. 1. Cell washing Infected cells were washed in a buffer containing 50 mM Tris buffer (pH 7.5), 1 mM EDTA and 1% Triton X-100. Cells were resuspended in this buffer, homogenized using standard methods, and centrifuged for 20 minutes at 5000 rpm. The process was repeated three times.

2. Liziranje stanica Isprane stanice su lizirane izlaganjem ultrazvuku u SOmM Tris pufera (pH 8.0 - 8.5), 4% dezoksiholata i 1 % β-Swrkaptoetanola. Izlaganje ultrazvuku se vrši standardnim metodama. Nakon toga, cijeli su samo ostaci nukleusne membrane i oni se uklanjaju centrifugiranjem 30 minuta pri 5000 obrtaja u minuti. Supernatant koji sadržava ekstrahirani gp160 slobodan je od cijelih stanica, što je potvrdeno promatranjem kroz optički mikroskop. 2. Cell lysis Washed cells were lysed by exposure to ultrasound in SOmM Tris buffer (pH 8.0 - 8.5), 4% deoxycholate and 1% β-Swrcaptoethanol. Exposure to ultrasound is performed using standard methods. After that, only the remnants of the nuclear membrane are intact and they are removed by centrifugation for 30 minutes at 5000 rpm. The supernatant containing the extracted gp160 is free from whole cells, which was confirmed by observation through an optical microscope.

3. Gel filtriranje Gel filtriranje se vrši u staklenom stupcu Pharmacia 5.0 x 50 cm, napunjenom sa smololn Sephacryl (Pharmacia). Ukupni volumen sloja je oko 1750 ml. Da bi se stupac i spojevi depirogenirali i sanitizirali, tijekozn 24 sata je kroz stupac propušteno najmanje 6 litara 0.1 N NaOH. Efluent iz stupca je spojen sa protočnom ultravioletnom stanicom, monitorom i rekorderom (Pharmacia), pa je stupac nakon toga uravnotežen sa 4 litre Gel filtracijskog pufera. Sirovi gp160 je napunjen u stupac i razvijan sa Gel filtracijskim puferom. 3. Gel filtration Gel filtration is performed in a Pharmacia 5.0 x 50 cm glass column filled with Sephacryl resin (Pharmacia). The total volume of the layer is about 1750 ml. In order to depyrogenate and sanitize the column and compounds, at least 6 liters of 0.1 N NaOH were passed through the column for 24 hours. The effluent from the column was connected to a flow-through ultraviolet cell, monitor and recorder (Pharmacia), and the column was then equilibrated with 4 liters of Gel filtration buffer. Crude gp160 was loaded onto the column and developed with Gel Filtration Buffer.

Stupac razdvaja sirovu smjesu u tri glavne frakcije koje apsorbiraju UV svjetlost. Prvi maksimum silazi sa stupca između oko 500 i 700 ml, drugi između 700 i 1400 ml, a treći između 1400 i 1900 ml pufera. Isti profil je opažen i na malim analitičkim stupcima, iz čega je izveden zaključak da prvi maksimum daje materijal sa molekulskom težinom od ≥ 2,000,000. The column separates the crude mixture into three main fractions that absorb UV light. The first maximum comes from the column between about 500 and 700 ml, the second between 700 and 1400 ml, and the third between 1400 and 1900 ml of buffer. The same profile was observed on small analytical columns, from which it was concluded that the first maximum gives material with a molecular weight of ≥ 2,000,000.

Ovaj maksimum je djelomično proziran, obzirom na koncentraciju lipida i lipidnih kompleksa visoke molekulske težine. Ovaj maksimum također sadržava od 10 do 20% gp160 ekstrahiranog iz inficiranih stanica. Ova frakcija gpl60 je, kako izgleda, kompleksirana sama sa sobom ili s drugim staničnim komponentama, da bi davala agregate visoke molekulske težine. This maximum is partially transparent, due to the concentration of lipids and lipid complexes of high molecular weight. This peak also contains from 10 to 20% of gp160 extracted from infected cells. This fraction of gp160 appears to be complexed with itself or with other cellular components to form high molecular weight aggregates.

Drugi, široki maksimum sadržava veći dio gp160 i proteina sa molekulskom težinom između oko 18,000 i 200,000. The second, broad peak contains most of gp160 and proteins with molecular weights between about 18,000 and 200,000.

Treći maksimum sadržava malo proteina, a veći dio apsorbiranja UV svjetlosti rezultat je prisustva β-merkaptoetanola u uzorku. The third maximum contains little protein, and most of the absorption of UV light is the result of the presence of β-mercaptoethanol in the sample.

Kada se drugi maksimum prvi put detektira praćenjem UV apsorbancije, efluent iz stupca se direktno unosi u lentil lektinski stupac. Kada drugi maksimum izađe iz stupca, efluent se isključuje sa lentil lektinskog stupca i odbacuje se. When the second maximum is first detected by monitoring the UV absorbance, the effluent from the column is fed directly into the lentil lectin column. When the second peak exits the column, the effluent is excluded from the lentil lectin column and discarded.

4. Lentil lektin Lentil lektinski afinitetni gel medij (Lentil Lectin-Sepharose 4B) nabavljen je na veliko od Pharmacie. Lentil lektin je izoliran afinitetnom kromatografijom na Sephadexu do čistoće od više od 98%, nakon čega je imobiliziran kupliranjem za Sepharosu 4B korištenjem cijanogen bromida. Matrica sadržava oko 2 mg liganda na ml gela. Lentil lektinski stupac je 5.0 x 30 cm stakleni stupac (Pharmacia) koja sadržava 125 ml gela lentil lektin-Sepharose 4B. Afinitetna matrica se može ponovo koristiti nakon iscrpnog ispiranja i regeneriranja postupkom koji preporučuje dobavljač. Kada se ne koristi, gel se skladišti u stupcu, u otopini 0.9 % NaCl, 1 mM MnCl2, 1 mM CaCl2, i 0.01 % thimerosala. Stupac se ispire i uravnotežuje sa 250 ml lentil lektinskog pufera opisanog gore, prije svake uporabe. 4. Lentil lectin Lentil lectin affinity gel medium (Lentil Lectin-Sepharose 4B) was purchased in bulk from Pharmacia. Lentil lectin was isolated by affinity chromatography on Sephadex to a purity of more than 98%, after which it was immobilized by coupling to Sepharose 4B using cyanogen bromide. The matrix contains about 2 mg of ligand per ml of gel. The lentil lectin column is a 5.0 x 30 cm glass column (Pharmacia) containing 125 ml of lentil lectin-Sepharose 4B gel. The affinity matrix can be reused after extensive washing and regeneration using the procedure recommended by the supplier. When not in use, the gel is stored in the column, in a solution of 0.9% NaCl, 1 mM MnCl2, 1 mM CaCl2, and 0.01% thimerosal. The column is washed and equilibrated with 250 ml of the lentil lectin buffer described above, before each use.

Sirovi gp160 se nanosi na stupac direktno, kako se eluira sa gel filtracijskog stupca, kako je opisano gore. Kada se sirovi gp160 veže za stupac, ispire se sa 800 ml lentil lektinskog pufera koji sadržava 0.1 % dezoksiholata. Pod ovim uvjetima se cjelokupan gp160 veže za stupac. Lentil lektinski pufer plus 0.3M α-metil monosida koristi se za eluiranje vezanih glikoproteina, što se kontrolira kroz UV monitor na valnoj dužini od 280 nm. Crude gp160 is applied to the column directly, as eluted from the gel filtration column, as described above. When crude gp160 is bound to the column, it is washed with 800 ml of lentil lectin buffer containing 0.1% deoxycholate. Under these conditions, all gp160 binds to the column. Lentil lectin buffer plus 0.3M α-methyl monoside is used to elute bound glycoproteins, which is controlled through a UV monitor at a wavelength of 280 nm.

5. Dijaliza Šećeri i dezoksiholati se uklanjaju konvencionalnom dijalizom. 5. Dialysis Sugars and deoxycholates are removed by conventional dialysis.

Pročišćavanje gp160 iz 1 litre inficiranih stanica može se skupno prikazati u sljedećoj tablici (Tablica 3). Purification of gp160 from 1 liter of infected cells can be summarized in the following table (Table 3).

U sljedećoj realizaciji, umjesto gel filtriranja može se koristiti konvencionalna ionoizmjenjivačka kromatografija. Slično, redosljed stupnjeva nije kritičan: na primjer, gel filtriranje ili ionoizmjenjivačka kromatografija može slijediti nakon stupnja lentil lektinskog pročišćavanja. Prema izumu se također mogu koristiti i drugi reagensi. Na primjer, umjesto dezoksiholata se za pručišćavanje rekombinantnog proteina mogu koristiti i drugi deterdženti. Oni obuhvaćaju neionske deterdžente kao što su Tween 20 (polisorbat 20), Tween 80, Lubrol i Triton X-100. In the following embodiment, conventional ion exchange chromatography can be used instead of gel filtration. Similarly, the order of the steps is not critical: for example, gel filtration or ion exchange chromatography may follow the lentil lectin purification step. Other reagents can also be used according to the invention. For example, instead of deoxycholate, other detergents can be used to purify the recombinant protein. These include nonionic detergents such as Tween 20 (polysorbate 20), Tween 80, Lubrol and Triton X-100.

TABLlCA 3 - Skupni prikaz pročišćavanja TABLE 3 - Summary of purification

[image] [image]

________________ ________________

1Ukupni protein je procijenjen iz apsorbancije na 280nm. 1 Total protein was estimated from the absorbance at 280 nm.

PRIMJER 8 EXAMPLE 8

A. Sklapanje čestica gp160 A. Assembly of gp160 particles

Kao jedan aspekt sadašnjeg izuma, otkriveno je da se antigen gpl60 može sklapati u čestice molekiilske težine od ≥ 2,000,000 za vrijeme pročišćavanja. Protein gp160 ekstrahiran je iz stanica kao smjesa 80-90% monomera (molekulska težina 160,000) i 10-20% polimera (oblik čestica). Stupanje gel fitriranja uklanja agregirani oblik gp160. Pokušaji da se gp160 pročisti iz ove frakcije (prvi maksimum koji silazi s gel filtracijskog stupca) ukazuju da je on kompleksiran s drugim proteinima iz stanice, a moguće čak i sa fragmentima membrane. Međutim, antigen gp160 u drugom maksimumu koji silazi sa gel filtracijskog stupca ima molekulsku težinu od oko 160,000 - 300,000, te je prema tome pretežno monomernog ili dimernog oblika. As one aspect of the present invention, it has been discovered that the gp160 antigen can be assembled into particles having a molecular weight of ≥ 2,000,000 during purification. The gp160 protein was extracted from cells as a mixture of 80-90% monomer (molecular weight 160,000) and 10-20% polymer (particulate form). Running gel filtration removes the aggregated form of gp160. Attempts to purify gp160 from this fraction (the first peak coming off the gel filtration column) indicate that it is complexed with other proteins from the cell, and possibly even with membrane fragments. However, the gp160 antigen in the second peak coming off the gel filtration column has a molecular weight of about 160,000 - 300,000, and is therefore predominantly monomeric or dimeric.

Građenje agregata ili polimera gp160 odvija se za vrijeme razvijanja lentil lektinskog stupca. Određeno je da antigen oblikuje agregate bez obzira na to eluira li se s lektinskog stupca u 0.5% dezoksihulatu, što je oko 0.2% kritične koncentracije micela (CMC) za dezoksiholat, ili se gp160 eluira sa stupca u 0.1 % dezoksiholatu. The construction of aggregates or polymers of gp160 takes place during the development of the lentil lectin column. It was determined that the antigen forms aggregates regardless of whether it is eluted from the lectin column in 0.5% deoxycholate, which is about 0.2% of the critical micelle concentration (CMC) for deoxycholate, or gp160 is eluted from the column in 0.1% deoxycholate.

Veličina agregata mjeri se na FPLC stupcu visoke rezolucije Superose 12 (Pharmacia). Uzorci iz reprezentativnih partija pročišćenog gp160 su veličine koja je pretežno jednaka ili veća od 2,000,000 molekulskih težina plavog dekstranskog standarda veličina. Aggregate size is measured on a Superose 12 high-resolution FPLC column (Pharmacia). Samples from representative batches of purified gp160 are of a size substantially equal to or greater than 2,000,000 molecular weights of the blue dextran size standard.

Izučavanje umrežavanja koje su proveli Schwaller i suradnici (1989) demonstrira da gp160 proizveden u stanicama insekta predstavlja tetramer identičnih jedinica. Ovo izučavanje je također pokazalo da je gp160 tetrameran i u stanicama inficiranim HIVom i u česticama virusa. Prema tome, čestice rekombinantnog gpl6U mugu imati tercijarne i kvaternerne strukture slične onima koje se javljaju u prirodnom gp160 iz HIV. A cross-linking study by Schwaller et al. (1989) demonstrates that gp160 produced in insect cells is a tetramer of identical units. This study also showed that gp160 is a tetramer in both HIV-infected cells and virus particles. Therefore, recombinant gp16U particles may have tertiary and quaternary structures similar to those found in native HIV gp160.

Ispravna trodimenzionalna struktura mogla bi biti važna za oblikovanje epitopa koji zahtijevaju pravilno uvijanje gp160. Vjerojatno je, obzirom da su neglikozilirani proteini uklonjeni iz veze sa antigenum gp160 za vrijeme vezivanja i ispiranja na lentil lektinskom stupcu, da hidrofobni dijelovi gp160 počinju graditi međumolekulske asocijacije. Dezoksiholat vjerojatno nije vezan za gp160, obzirom da se koncentracija može držati iznad CMC a da antigen juš uvijek gradi komplekse. Sklapanje ovog antigena u agregate je, kako izgleda, prirođena osobina ovoga proteina kada je on pročišćen u skladu s izumom. Moguće je da vrlo hidrofobna N-terminalna sekvencija, prisutna na proteinu gp160, pridonosi prirodnoj sposobnosti ovuga proteina da gradi čestice. Nakon pročišćavanja, kompleksi gp160 mogu biti sterilno filtrirani kroz celulozno-acetatni filtar od 0.2 μm bez znatnijeg gubitka proteina. The correct three-dimensional structure could be important for shaping epitopes that require proper folding of gp160. It is likely, considering that non-glycosylated proteins are removed from the connection with the gp160 antigen during binding and washing on the lentil lectin column, that the hydrophobic parts of gp160 begin to form intermolecular associations. Deoxycholate is probably not bound to gp160, given that the concentration can be kept above the CMC and the antigen still forms complexes. Assembly of this antigen into aggregates is, apparently, an innate property of this protein when it is purified in accordance with the invention. It is possible that the highly hydrophobic N-terminal sequence present on the gp160 protein contributes to the natural ability of this protein to build particles. After purification, gp160 complexes can be sterile filtered through a 0.2 μm cellulose-acetate filter without significant protein loss.

B. Analiza oblikovanja čestica B. Analysis of particle formation

Analiza pručišćenih čestica gp160 elektronskonm mikroskopijom, pokazuje da su to sferične čestice proteinskog izgleda, veličine od 30 do 100 nm. Analysis of purified gp160 particles by electron microscopy shows that they are spherical particles with a protein appearance, size from 30 to 100 nm.

Radi dodatnog testiranja prisustva čestica, pročišćeni gp160 analiziran je gel filtriranjem. Oko 100 μg gp160 nenešenoje na FPLC gel filtracijski stupac Superose 12, HR 10/30 (Pharmacia, Inc.). Ovaj stupac je prvo kalibriran sa proteinskim standardima molekulskih težina. Proteinski profil sa ovog stupca je visoko reproducibilan; volumen eluiranja je obratno proporcionalan molekulskoj težini proteinskog standarda. Stupac razdvaja monomerni gp160 od polimernih oblika i isključuje globularne proteine molekulske težine ≥ 2 x 106. Kada se razvija na ovom stupcu, praktički sav pročišćeni gp160 eluira se u praznom To further test the presence of particles, purified gp160 was analyzed by gel filtration. About 100 μg of gp160 was loaded onto a FPLC gel filtration column Superose 12, HR 10/30 (Pharmacia, Inc.). This column was first calibrated with protein standards of molecular weights. The protein profile from this column is highly reproducible; the elution volume is inversely proportional to the molecular weight of the protein standard. The column separates monomeric gp160 from polymeric forms and excludes globular proteins of molecular weight ≥ 2 x 106. When developed on this column, virtually all purified gp160 is eluted in the blank

volumenu i, shodno tome, ima molekulsku težinu ≥ 2 x 106 (2,000,000). by volume and, accordingly, has a molecular weight ≥ 2 x 106 (2,000,000).

PRIMJER 9 EXAMPLE 9

A. Adsorpcija gp160 na alum A. Adsorption of gp160 on alum

Djelotvornost netopljivih aluminijevih spojeva kao imunoloških ađuvanata ovisi o potpunosti adsorbiranja antigena na čvrstu fazu. Kao dio sadašnjeg izuma, otkriveno je da se sa alumom mogu dobiti kompozicije koje će djelotvorno adsorbirati pg160 i to na pH vrijednostima na kojima se neće smanjiti snaga kompleksa gp160-alum kao imunogena. Faktori koji su kontrolirani za vrijeme oblikovanja ove kompozicije aluma (aluminij fosfatnog gela) bili su sljedeći: The effectiveness of insoluble aluminum compounds as immune adjuvants depends on the complete adsorption of the antigen to the solid phase. As part of the present invention, it has been discovered that compositions can be obtained with alum that will effectively adsorb pg160 at pH values at which the potency of the gp160-alum complex as an immunogen will not be reduced. The factors that were controlled during the formulation of this alum composition (aluminum phosphate gel) were as follows:

1. Optimalno pH za adsorbiranje antigena na alum je oko 5,0. Međutim, otkriveno je da gp160 gubi imunogenost na pH 6.5 u usporedbi sa pH 7.5, tako da je pripremljen alum sa pH od 7.1 ± 0.1. Otkriveno je da će se na ovom pH na alum adsorbirati još uvijek praktički 100% gp160. 1. The optimal pH for adsorbing antigens on alum is around 5.0. However, gp160 was found to lose immunogenicity at pH 6.5 compared to pH 7.5, so alum with a pH of 7.1 ± 0.1 was prepared. It was found that at this pH, practically 100% of the gp160 will still be adsorbed onto the alum.

2. Ionska jačina koja potječe od prisutnog NaCl je relativno niska i iznosi manje od 0.15 M. 2. The ionic strength originating from the NaCl present is relatively low and amounts to less than 0.15 M.

3. Korišten je molski višak aluminijevog klorida u odnosu na natrijev fosfat, kako bi se osiguralo da u supernatantu ne bLlde slobodnih fosfatnih iona. 3. A molar excess of aluminum chloride was used in relation to sodium phosphate, in order to ensure that there are no free phosphate ions in the supernatant.

4. Antigen gp160 dodavan je u svježe pripremljeni alum, kako bi se zaustavio rast kristala i minimizirala veličina čestica. 4. Antigen gp160 was added to freshly prepared alum to stop crystal growth and minimize particle size.

Niže je naveden postupak za dobivanje 200 ml aluma i adsorbiranje pročišćenog gp160 na alum tako da koncetracija antigena bede 40 μg/ml. Below is the procedure for obtaining 200 ml of alum and adsorbing the purified gp160 on the alum so that the antigen concentration is 40 μg/ml.

B. Pripremanje reagenasa B. Preparation of reagents

(ukupni volumen formulacije 200 ml) (total volume of formulation 200 ml)

U sterilnim, apirogenim bočicama ili čašama od 100 ml pripremaju se sljedeće otopine. Pripremaju se soli za Otopinu 1 i Otopinu 2 i natrijev hidroksid, pa se filtrira kroz celulozno-acetatni filtar od 0.2 μm u sterilne, apirogene boce od 100 ml. The following solutions are prepared in sterile, pyrogen-free vials or 100 ml glasses. Salts for Solution 1 and Solution 2 and sodium hydroxide are prepared, then filtered through a 0.2 μm cellulose-acetate filter into sterile, pyrogenic 100 ml bottles.

[image] [image]

Tretirati otopine 30 minuta u autoklavu, uz lagano ispuštanje. Ohladiti do sobne temperature. Treat the solutions for 30 minutes in an autoclave, with gentle draining. Cool to room temperature.

C. Oblikovanje aluma C. Molding of alum

1. Dodati Otopinu 1 (aluminijev klorid-natrijev acetat) u posudu za formuliranje, korištenjem sterilnih pipeta od 25 ml za jednokratnu uporabu. Zabilježiti volumen Otopine 1 i započeti sa miješanjem otopine. 1. Add Solution 1 (aluminum chloride-sodium acetate) to the formulation container, using sterile 25 ml disposable pipettes. Record the volume of Solution 1 and start mixing the solution.

2. Dodati Otopinu 2 (natrijev fosfat) u posudu, korištenjem sterilnih pipeta od 25 ml za jednokratnu uporabu, te nastaviti miješanje za vrijeme građenja taloga i zabilježiti volumen Otopine 2. 2. Add Solution 2 (sodium phosphate) to the container, using sterile 25 ml single-use pipettes, and continue mixing while the precipitate forms and record the volume of Solution 2.

3. Dodati 3 ml Otopine 3 (natrijev hidroksid) i nastaviti miješanje još 5 minuta. Uzeti uzorak od 0.5 ml i izmjeriti pH. Ako je pH manje od 7.0, dodati još 0.5 ml natrijevog hidroksida, miješati još 5 minuta i iznova izmjeriti pH. Nastaviti sve dok pH ne bude između 7.0 i 7.2. 3. Add 3 ml of Solution 3 (sodium hydroxide) and continue mixing for another 5 minutes. Take a 0.5 ml sample and measure the pH. If the pH is less than 7.0, add another 0.5 ml of sodium hydroxide, mix for another 5 minutes and measure the pH again. Continue until the pH is between 7.0 and 7.2.

4. Odrediti ukupni volumen dodat u posudu za formuliranje (Otopina 1 + Otopina 2 + Otopina 3), nakon toga dodati sterilnu VZI do volumena od 100 ml. 4. Determine the total volume added to the formulation container (Solution 1 + Solution 2 + Solution 3), then add sterile VZI to a volume of 100 ml.

5. Odmah dodati 8,000 μg pročišćenog gp160 u 100 ml l mM Tris, pH 7.5, direktno u posudu za formuliranje. 5. Immediately add 8,000 μg of purified gp160 in 100 ml of 1 mM Tris, pH 7.5, directly to the formulation vessel.

6. Nastaviti miješanje najmanje 20 minuta, a nakon toga uliti formulirano cjepivo u sterilne fiole. 6. Continue mixing for at least 20 minutes, and then pour the formulated vaccine into sterile vials.

PRIMJER 10 EXAMPLE 10

Imunogenost gp160 apsorbiranog na alum Immunogenicity of gp160 absorbed on alum

(reakcija specifičnih antitijela) (reaction of specific antibodies)

Prihvaćena metoda za određivanje imunogenosti antigenskog preparata (cjepiva) je mjerenje reakcije specifičnih antitijela u skupinama miševa kojima je dana po jedna doza antigena. Na kraju 4. tjedna miševima je uzeta krv i nivoi u serumu za antitijela protiv naznačenog antigena (uobičajeno antigena korištenog za imuniziranje životinja) mjereni su standardnim testom za antitijela, na primjer ELISA (imunosorbentno ispitivanje sa enzimskim vezivanjem). The accepted method for determining the immunogenicity of an antigen preparation (vaccine) is to measure the reaction of specific antibodies in groups of mice that were given one dose of the antigen. At the end of the 4th week, the mice were bled and serum levels of antibodies against the designated antigen (usually the antigen used to immunize the animals) were measured by a standard antibody test, for example ELISA (enzyme-linked immunosorbent assay).

Imunogenost kod miševa, za pročišćeni gp160 bez ađuvanta na pH 6.0 i apsorbiran na alum (kao što je opisano u Primjeru 9) na pH 7.5, ili smiješan sa Freundovim kompletnim ađuvantom, skupno je prikazana u Tablici 4. Immunogenicity in mice, for purified gp160 without adjuvant at pH 6.0 and adsorbed on alum (as described in Example 9) at pH 7.5, or mixed with Freund's complete adjuvant, is shown collectively in Table 4.

TABLICA 4 TABLE 4

[image] [image]

Miševi imunizirani sa jednom dozom od 1.0 μg antigena gp160 bez ikakvog dodanog ađuvanta pokazuju reakciju antitijela protiv gp160 (vidjeti gornju tablicu). Međutim, znatno jača reakcija antitijela se zapaža u skupini miševa imuniziranih sa 1.0 μg gp160 apsorbiranog na alumski ađuvant. Jedna doza od manje od 0.1 μg gp160 izmiješanog sa kompletnim Freundovim ađuvantom, ili formuliranog sa alumom, serokonvertirati će ≥ 50% imuniziranih miševa. Iako u manjoj mjeri, antigen gp160 bio je imunogen kod miševa i kao neformulirani antigen pri pH 7.5 i pri pH 6.0, ali je na nižim pH zamijećen gubitak imunogenosti. Mice immunized with a single dose of 1.0 μg of gp160 antigen without any added adjuvant show an antibody response against gp160 (see table above). However, a significantly stronger antibody reaction was observed in the group of mice immunized with 1.0 μg of gp160 absorbed on alum adjuvant. A single dose of less than 0.1 μg of gp160 mixed with complete Freund's adjuvant, or formulated with alum, will seroconvert ≥ 50% of immunized mice. Although to a lesser extent, the gp160 antigen was immunogenic in mice both as unformulated antigen at pH 7.5 and at pH 6.0, but a loss of immunogenicity was observed at lower pH.

PRIMJER 11 EXAMPLE 11

Imunogenost gp160 apsorbiranog na alum (ELISA test seruma) Immunogenicity of gp160 absorbed on alum (ELISA test of serum)

Sposobnost formulacije, koja je kandidat za cjepivo, da izazove imunu reakciju predstavlja vrlo važnu biološku osobinu. Sljedeći opiti izvršeni su kako bi se utvrdilo da li je cjepivo od gp160 formuliranog sa alumom imunogena kod životinja, te da li alumski ađuvant povećava ovu imunogenost. The ability of a vaccine candidate formulation to elicit an immune response is a very important biological property. The following tests were performed to determine whether the gp160 vaccine formulated with alum is immunogenic in animals, and whether the alum adjuvant increases this immunogenicity.

Nultoga dana, miševima (skupine od po 10) je ubrizgana po jedna doza (0.5 μg, 1.0 μg ili 5.0 μg) samog gp160, gp160 apsorbiranog na alum ili gp160 u kompletnom Freundovom ađuvantu (CFA). 28. dana, miševima je uzeta krv, pa su serumi ispitani u ELISA testu (rozblaženje 1:10) kako bi se utvrdilo prisustvo antitijela protiv gp160. On day zero, mice (groups of 10) were injected with one dose (0.5 μg, 1.0 μg, or 5.0 μg) of gp160 alone, gp160 adsorbed on alum, or gp160 in complete Freund's adjuvant (CFA). On day 28, the mice were bled, and the sera were tested in an ELISA test (dilution 1:10) to determine the presence of antibodies against gp160.

Rezultati za serume prikupljene 28, dana skupno su prikazani u Tablici 5. U svim skupinama je više od 50% miševa pokazalo serokonverziju. U svim dozama su broj serokonvertiranja 1 prosječna adsorbancija seruma (OD450nm pri razblaženju 1:10 u ELISA testu) bili viši za gp160 apsorbiran na alum, u odnosu na vrijednosti dobivene kod miševa imuniziranih sa samim gp160. The results for the sera collected on 28 days are shown collectively in Table 5. In all groups, more than 50% of mice showed seroconversion. At all doses, the number of seroconversions and the average serum absorbance (OD450nm at 1:10 dilution in the ELISA test) were higher for gp160 adsorbed on alum, compared to the values obtained in mice immunized with gp160 alone.

Rezultati ukazuju da alumski ađuvant u značajnoj mjeri povećava imunogenost antigena gp160. The results indicate that the alum adjuvant significantly increases the immunogenicity of the gp160 antigen.

__________________ __________________

2Miševima je uzeta krv 28 dana nakon imuniziranja i serumi su testirani u razblaženju 1:10 u ELISA testu u odnosu na gel-prečišćeni gp160. Slični rezultati dobiveni su korištenjem komercijalnog ELISA testa (Genetic Systems, Inc.; EIATM ELISA) u odnosu na prirodne proteine HIV-1 pri razblaženju seruma od 1:400. 2Mice were bled 28 days after immunization and sera were tested at a 1:10 dilution in an ELISA assay against gel-purified gp160. Similar results were obtained using a commercial ELISA (Genetic Systems, Inc.; EIATM ELISA) against native HIV-1 proteins at a serum dilution of 1:400.

3Broj serokonvertiranih miševa (P) prema ukupnom testiranom broju (N). 3 Number of seroconverted mice (P) according to the total number tested (N).

TABLICA 5 - 28 dana nakon injekcije TABLE 5 - 28 days after injection

[image] [image]

_____________________ _____________________

4Broj miševa koji su serokonvertirali (P) u poređenju s ukupnim testiranim brojem (N) na 28 dana nakon imunizacije s 0.5 μg, 1 μg ili 5 μg HIV-1 VaxSynTM. 4Number of mice that seroconverted (P) compared to the total number tested (N) at 28 days after immunization with 0.5 μg, 1 μg, or 5 μg of HIV-1 VaxSynTM.

5Srednja apsorbancija (OD450) za serokonvertirane miševe mjerena sponzorovim ELISA testom u odnosu na gp160, pri razblaženju seruma 1:10. 5Mean absorbance (OD450) for seroconverted mice measured by sponsor's ELISA against gp160, at 1:10 serum dilution.

PRIMJER 12 EXAMPLE 12

Podaci o neutraliziranju Neutralization data

Ispitivanja neutraliziranjta HIV-1 predstavlja prihvaćenu metodu za određivanje da li će preparat antitijela inhibirati infekciju kulture podložnih humanih limfocitnih stanica virusom HIV-1. Antiserumi životinja imuniziranih sa gp160 analizirani su u testu neutrliziranja HIV-1, a rezultati su skupno prikazani u Tablici 6. HIV-1 neutralization assays are an accepted method for determining whether an antibody preparation will inhibit HIV-1 infection of a culture of susceptible human lymphocyte cells. Antisera from animals immunized with gp160 were analyzed in the HIV-1 neutralization test, and the results are collectively presented in Table 6.

TABLICA 6 TABLE 6

[image] [image]

_______________ _______________

6μg gp160 ili gp120 davanog u vrijeme prve/druge/treće imunizacije. 6μg of gp160 or gp120 given at the time of the first/second/third immunization.

7Najveće razblaženje antiseruma koji će inhibirati infekciju za 50%, u odnosu na stanice inficirane sa HIV-1 koje su bile izložene serumu neimuniziranih životinja. 7 The highest dilution of antiserum that will inhibit infection by 50%, compared to cells infected with HIV-1 that were exposed to the serum of non-immunized animals.

Morski prašćići, kunići i resuz majmuni su također imunizirani s gp160 (uz korištenje aluma ili Freundovog ađuvanta). Općenito, imuniziranje ovih životinja dalo je dobru reakciju antitijela protiv proteina ovojnica HIV-1. Guinea pigs, rabbits and rhesus monkeys were also immunized with gp160 (using alum or Freund's adjuvant). In general, immunization of these animals produced a good antibody response against HIV-1 envelope proteins.

PRIMJER 13 EXAMPLE 13

Imunogenost kod čimpanza Immunogenicity in chimpanzees

Genetički promatrano, čimpanza je čovjekov najbliži rođak i trenutačno je jedini životinjski model za infekcije sa HIV-l. U opitu sigurnosti/imunogenosti kod tri čimpanze, dvije čimpanze su bile imunizirane sa 40 μg ili 80 μg gp160 u cjepivu formuliranoj sa alumom. Svaka je bila reimunizirana nakon 4 tjedna sa 40 μg, odnosno sa 80 μg gp160. Kontrolna životinja je u isto vrijeme cijepljena sa 1 ml slane otopine. Uzorci seruma svake životinje analizirani su tjedno da bi se otkrilo prisustvo antitijela protiv gp160 i HIV-1 virusnih antigena, korištenjem tri imunološka testa - ELISA testa u odnosu na pročišćeni gp160, razvijenog u MicroGeneSys, Inc., testa Western Blot i komercijalnog ELISA testa za HIV-l. Rezultati ovih analiza opisani su dolje. Genetically speaking, the chimpanzee is man's closest relative and is currently the only animal model for HIV-1 infection. In a safety/immunogenicity study in three chimpanzees, two chimpanzees were immunized with 40 μg or 80 μg of gp160 in an alum-formulated vaccine. Each was reimmunized after 4 weeks with 40 μg and 80 μg of gp160. A control animal was inoculated with 1 ml of saline at the same time. Serum samples from each animal were analyzed weekly for the presence of antibodies against gp160 and HIV-1 viral antigens, using three immunoassays - an ELISA against purified gp160, developed at MicroGeneSys, Inc., a Western Blot assay, and a commercial ELISA for HIV-1. The results of these analyzes are described below.

A. ELISA (MGSerch HIV 160) A. ELISA (MGSerch HIV 160)

Test ELISA MGSearch HIV 160, gdje je MGSearch zaštićeni žig tvrtke MicroGeneSys, Inc. iz Meridena, Connecticut, S.A.D., predstavlja imunosorbentni test protiv gp160 i opisan je u Američkoj patentnoj prijavi Ser.Br. 920,197 (sada 585,266) istog prijavitelja. MGSearch HIV 160 ELISA test, where MGSearch is a registered trademark of MicroGeneSys, Inc. of Meriden, Connecticut, U.S.A., presents an immunosorbent assay against gp160 and is described in U.S. Patent Application Ser.No. 920,197 (now 585,266) of the same applicant.

Uzorci seruma uzeti prije imuniziranja i tjedno, tijekom 11 tjedana nakon primarnog imuniziranja, razblaženi su od 1:10 do 1:100,000 i zatim podvrgnuti inkubaciji sa nitroceluloznim trakama koje u jednoj točki sadržavaju po 100 μg pročišćenog gp160. Titar krajnje točke razblaženja predstavlja najveće razblaženje u kojem je test bio pozitivan na antitijela protiv gp160, određeno pomoću konjugata kozjeg anti-humanog IgG i alkalne fosfataze. Serum samples taken before immunization and weekly for 11 weeks after primary immunization were diluted from 1:10 to 1:100,000 and then incubated with nitrocellulose strips containing 100 μg of purified gp160 at one point. The endpoint titer of the dilution represents the highest dilution at which the test was positive for antibodies against gp160, determined using a conjugate of goat anti-human IgG and alkaline phosphatase.

Uzorci seruma kontrolne životinje i pre-imunih seruma imuniziranih životinja bili su negativni. Čimpanza koja je primila dozu od 80 μg bila je pozitivna u razblaženju 1:10 do 4. tjedna. Titri antitijela protiv gp160 nastavili su rasti do 5. tjedna, u koje je vrijeme titar krajnje točke razblaženja bio približno 1:100,000 odnosno 1:2,000,000. Titar antitijela je kod obje životinje neznatno opao tijekom 6-11. tjedna. Serum samples from control animals and pre-immune sera from immunized animals were negative. A chimpanzee receiving a dose of 80 μg was positive at a 1:10 dilution by week 4. Anti-gp160 antibody titers continued to rise until week 5, at which time the end-point dilution titer was approximately 1:100,000 and 1:2,000,000, respectively. The antibody titer decreased slightly in both animals during days 6-11. week.

Ovaj tip reakcije sličan je kako kvantitativno, tako i kvalitativno, reakciji antitijela koja se uobičajeno dobija kod čimpanza cijepljenih cjepivom protiv virusa humanog hepatita B. This type of reaction is similar, both quantitatively and qualitatively, to the antibody reaction that is usually obtained in chimpanzees vaccinated with the human hepatitis B virus vaccine.

B. Komercijalni ELISA test B. Commercial ELISA test

Is ELISA MGSearch HIV 160 i Western Blot testova seruma čimpanza imuniziranih cjepivom VaxSyn8 bilo je jasno da su životinje serokonvertirane i da posjeduju antitijela protiv rekombinantnog gp160. Da bi se odredilo proizvode li životinje i antitijela protiv HIVa koja prepoznaju proteine ovojnice prirodnog virusa, serumi prije imunizacije i serumi uzeti od 1 do 11. tjedna testirani su priznatim, komercijalnim kompletom za ELISA test, kompletom LAV EIATM tvrtke Genetic System Corporation, Seattle, Washington, U.S.A. Životinja imunizirana sa 80 μg gp160 bila je pozitivna pri razblaženju l:100 do 2. tjedna i nastavila je pokazivati povećavanje nivoa antitijela sve do 6. tjedna. Životinja imunizirana sa 40 μg bila je pozitivna u razblaženju 1:100 do 6. tjedna. Both MGSearch HIV 160 ELISA and Western Blot tests of sera from chimpanzees immunized with the VaxSyn8 vaccine showed that the animals were seroconverted and possessed antibodies against recombinant gp160. To determine whether the animals produced anti-HIV antibodies that recognized the envelope proteins of the native virus, pre-immunization sera and sera collected from weeks 1 to 11 were tested with a recognized commercial ELISA kit, the LAV EIATM kit from Genetic System Corporation, Seattle, Washington, U.S.A. An animal immunized with 80 μg of gp160 was positive at a dilution of 1:100 by week 2 and continued to show increasing antibody levels until week 6. An animal immunized with 40 μg was positive at a 1:100 dilution by week 6.

PRIMJER 14 EXAMPLE 14

Distribucija antitijela između gp120 i gp41 Distribution of antibodies between gp120 and gp41

Važno je odrediti da li je reakcija antitijela protiv gp160 kod cijepljenih životinja usmjerena protiv gp41, gp120, ili oba. Za detekciju i mjerenje distribucije antitijela protiv različitih područja proteina ovojnice HIV-1 korišteno je više imunoloških metoda, uključiv radioimunološko taloženje (RIP), imunofluorescenciju (IF), analizu Western Blot (WB) i kvantitativni ELISA test protiv tri različita rekombinantna antigena ovojnice. It is important to determine whether the antibody response against gp160 in vaccinated animals is directed against gp41, gp120, or both. Multiple immunological methods were used to detect and measure the distribution of antibodies against different regions of the HIV-1 envelope protein, including radioimmunoprecipitation (RIP), immunofluorescence (IF), Western Blot (WB) analysis, and quantitative ELISA against three different recombinant envelope antigens.

Sl. 6 skupno prikazuje imunoreaktivnost tri različita rekombinantna antigena: [ART] [TAB] (1) gd120-delta (isječeni rekombinantni gp120 iz HIV-1 kome nedostaje oko 40 amino kiselina sa C-terminusa molekule); [ART] [TAB] (2) gp120 (kompletan rekombinantni gp120 iz HIV-1); i [ART] [TAB] (3) gp160. Sl. 6 collectively shows the immunoreactivity of three different recombinant antigens: [ART] [TAB] (1) gd120-delta (truncated recombinant gp120 from HIV-1 missing about 40 amino acids from the C-terminus of the molecule); [ART] [TAB] (2) gp120 (complete recombinant gp120 from HIV-1); and [ART] [TAB] (3) gp160.

Humani serumi dobiveni od 50 osoba pozitivnih na antitijela protiv HIV-1 i 3 zbirna humana seruma bili su visoko reaktivni sa gp160 i umjereno reaktivni sa gp120, dok je malo ili nimalo antitijela reagiralo sa isječenim gp120. Vjerojatno je da isječeni gp120, koji predstavlja više od 90% vanjskog glikoproteina HIV-1, sadrži zaštitne determinante. Opažanje da humani serumi pozitivni na AIDS imaju malo antitijela protiv ovoga područja ovojnice, konzistentno je sa činjenicom da imuna reakcija na virusnu infekeiju nije u potpunosti zaštitna i da humani pozitivni serumi obično pokazuju nizak nivo inhibirajućeg djelovanja in vitro. Human sera obtained from 50 HIV-1 antibody-positive individuals and 3 pooled human sera were highly reactive with gp160 and moderately reactive with gp120, while little or no antibody reacted with truncated gp120. It is likely that the truncated gp120, which represents more than 90% of the outer glycoprotein of HIV-1, contains protective determinants. The observation that AIDS-positive human sera have few antibodies against this region of the envelope is consistent with the fact that the immune response to viral infection is not fully protective and that human positive sera usually show a low level of inhibitory activity in vitro.

Nasuprot tome, rezus majmuni imunizirani bilo sa imunogenom gp160 ili sa isječenim gp120, imaju antitijela koja snažno reagiraju sa isječenim gp120 dijelom ovojnice HIV-1. Ova razlika u distribuciji mjesta duž ovojnice virusa, koja prepoznaje antitijelo, te viši titri opaženi kod majmuna, mogu objasniti činjenicu da serumi majmuna imaju visoke neutralizirajuće titre. In contrast, rhesus monkeys immunized with either the gp160 immunogen or the truncated gp120 have antibodies that strongly react with the truncated gp120 portion of the HIV-1 envelope. This difference in the distribution of sites along the virus envelope, which is recognized by the antibody, and the higher titers observed in monkeys, may explain the fact that monkey sera have high neutralizing titers.

Kvantitativna procjena imunoreaktivnosti ova tri rekombinantna antigena ovojnice sa humanim serumima i sa imunim serumima rezusa, predstavljena je na Sl. 7. Svi testirani serumi majmuna imaju visok titar antitijela protiv isječenog antigena gp120 (gp120-delta), uključiv i serume životinja imuniziranih sa gp160. Quantitative evaluation of the immunoreactivity of these three recombinant envelope antigens with human sera and with rhesus immune sera is presented in FIG. 7. All tested monkey sera have a high titer of antibodies against the truncated gp120 antigen (gp120-delta), including the sera of animals immunized with gp160.

________________ ________________

8VaxSyn je zaštićeni žig tvrtke MicroGeneSys, Inc., za ovdje opisano cjepivo protiv AIDSa. 8VaxSyn is a trademark of MicroGeneSys, Inc., for the AIDS vaccine described herein.

Ovi rezultati pokazuju da rekombinantni gp160 kod rezus majmuna izaziva reakciju antitijela koja je različita od one koja se često javlja za vrijeme prirodne infekcije. U gp 120-delta području proteina gp160 postoje epitopi koji su djelotvorno prepoznati kod imuniziranih majmuna, a koje ne opaža humani imuni sustav za vrijeme infekcije. Ovi novi epitopi bi mogli biti važni za zaštitu protiv HIV-1, i mogli bi predstavljati važnu osobinu rekombinantnog gp160 u prevenciji i tretmanu infekcije HIVom. These results show that recombinant gp160 in rhesus monkeys elicits an antibody response that is different from that often seen during natural infection. In the gp 120-delta region of the gp160 protein, there are epitopes that are effectively recognized in immunized monkeys, but which are not recognized by the human immune system during infection. These new epitopes may be important for protection against HIV-1, and may represent an important feature of recombinant gp160 in the prevention and treatment of HIV infection.

PRIMJER 15 EXAMPLE 15

Terapeutsko davanje cjepiva Therapeutic administration of vaccines

Da bi se odredili učinci cijepljenja kloniranim gp160 HIVa (dobivenim u bakulovirusnom sustavu kako je opisano gore), na osobe inficirane HIVom, obavljen je klinički pokus sa 30 humanih HIV-seropozitivnih pacijenata. To determine the effects of vaccination with cloned HIV gp160 (obtained in the baculovirus system as described above) on HIV-infected individuals, a clinical trial was conducted with 30 human HIV-seropositive patients.

Cijepljenje rekombinantnim gp160 dovelo je do povećanja humoralnih i staničnih imunih reakcija, specifičnih na gp160 HIVa, kod 19 do 30 (63%) HIV-seropozitivnih dobrovoljaca. Četrnaest od 15 (93%) dobrovoljca koji su primili 6 doza cjepiva pokazali su povećanje ukupnog nivoa antitijela protiv gp160. Prema tome, rekombinantni proteini HIVa (tj. rgp41, rgp120, rgp160 i njihove smjese) mogu se pogodno davati u metodi za tretiranje humanih pacijenata inficiranih HIVom. Vaccination with recombinant gp160 led to an increase in humoral and cellular immune responses, specific to HIVa gp160, in 19 to 30 (63%) HIV-seropositive volunteers. Fourteen of 15 (93%) volunteers who received 6 doses of the vaccine showed an increase in the total level of antibodies against gp160. Accordingly, recombinant HIVa proteins (ie, rgp41, rgp120, rgp160, and mixtures thereof) can be conveniently administered in a method for treating human patients infected with HIV.

Djelotvorne količine proteina HIVa, korištene u ovoj realizaciji izuma, mogu se utvrditi u skladu s tehnikama koje su dobro poznate u znanosti, kao što su tehnike ilustrirane dolje. Općenito, ovakve djelotvorne količine mogu se kretati od oko 1 μg do oko 100 μg po kilogramu tjelesne mase pacijenta. Frekvencija davanja se također može utvrditi poznatim načinima. U poželjnoj realizaciji, davanje će biti parenteralnim putem, tj. intravenozno, intraperitonealno, intramuskularno, intradermalno itd., kao što će biti dobro poznato stručnjacima. Effective amounts of HIV protein used in this embodiment of the invention can be determined according to techniques well known in the art, such as the techniques illustrated below. In general, such effective amounts may range from about 1 μg to about 100 μg per kilogram of patient body weight. The frequency of administration can also be determined by known means. In a preferred embodiment, administration will be by the parenteral route, i.e., intravenously, intraperitoneally, intramuscularly, intradermally, etc., as will be well known to those skilled in the art.

A. Odabir dobrovoljaca A. Selection of volunteers

Regrutirano je trideset dobrovoljaca sa HIV infekcijom. Mogli su pristupiti samo seropozitivni dobrovoljci sa ranim stupnjem infekcije, definiranim kao Walter Reed stupanj 1 ili 2 (broj CD4 stanica tijekom najmanje 3 mjeseca ne manji od 400, sa ili bez limfadenopatije). (Redfield i suradnici, New Engl. J. Med. 314: 131-132 (1986). Dodatni kriteriji suzili su dobrovoljce na odrasle osobe od 18 do 50 godina, sa normalnom kompletnom krvnom slikom, koje ne pokazuju znakove oboljenja krajnjih organa, koje nisu zlorabile alkohol ili droge u posljednjih 12 mjeseci i koje nisu koristile antiretrovirusne niti imunomodulirajuće lijekove. Svi pacijenti su prošli dvomjesečnu osnovnu procjenu, a nakon toga su slučajnom metodom podijeljeni u skupine za tretiranje. Za vrijeme tretmana niti jedan pacijent nije dobivao nikakve antiretrovirusne niti imunomodulirajuće lijekove. Thirty volunteers with HIV infection were recruited. Only seropositive volunteers with an early stage of infection, defined as Walter Reed stage 1 or 2 (CD4 cell count for at least 3 months not less than 400, with or without lymphadenopathy) were eligible. (Redfield et al., New Engl. J. Med. 314: 131-132 (1986). Additional criteria narrowed the volunteers to adults 18 to 50 years of age, with a normal complete blood count, who showed no signs of end-organ disease, who had not abused alcohol or drugs in the past 12 months and had not used antiretroviral or immunomodulating drugs. All patients underwent a two-month baseline assessment and were then randomized to treatment groups. No patient received any antiretroviral or immunomodulating drugs during treatment. meds.

Dvadeset šest od 30 dobrovoljaca bili su muškarci; 4 su bile žene. Četrnaest je bilo kavkaskog (bijelog) tipa, 13 crnih i 3 latinoameričkog podrijetla. Srednja starost je bila 29 godina (opseg od 18 do 49). Prilikom pristupa, 8 dobrovoljaca svrstano je Walter Reed stupanj 1, a 22 dobrovoljca u Walter Reed stupanj 2. Srednji osnovni broj CD4 stanica bio je 668 (opseg od 388 do 1639). Srednje vrijeme između prvobitne dijagnoze i pristupa pokusima bilo je 24 mjeseca (opseg od 3 do 49 mjeseci). Twenty-six of the 30 volunteers were men; 4 were women. Fourteen were Caucasian (white), 13 black and 3 Hispanic. The median age was 29 years (range, 18 to 49). At entry, 8 volunteers were classified as Walter Reed stage 1, and 22 volunteers were staged as Walter Reed stage 2. The median baseline CD4 cell count was 668 (range, 388 to 1639). The median time between initial diagnosis and access to trials was 24 months (range, 3 to 49 months).

B. Cjepiva i program cijepljenja B. Vaccines and vaccination program

Kao što je opisano, test cjepiva sadržavala su neinfektivni "subunit" glikoprotein deriviran iz gp160, kao rekombinantni protein ekspresiran pomoću bakulovirusa. Imunogeni protein dobiven je u stanicama Lepidoptera-insekta, biokemijski je pročišćen i apsorbiran je na aluminijev fosfat da bi se dobila konačna formulacija cjepiva. As described, the test vaccines contained a non-infectious "subunit" glycoprotein derived from gp160, as a recombinant protein expressed by baculovirus. The immunogenic protein was obtained in Lepidoptera-insect cells, biochemically purified and adsorbed on aluminum phosphate to obtain the final vaccine formulation.

Korištene su formulacije sa tri doze gp160: 40 μg/ml, 160 μg/ml i 320 μg/ml. Volumen injekcije za doze od 40 μg i 160 μg bio je 1 ml; za davanje injekcije sa 640 μg gp160 korištena su 2 ml formulacije od 320 μg/ml. Formulations with three doses of gp160 were used: 40 μg/ml, 160 μg/ml and 320 μg/ml. The injection volume for the 40 μg and 160 μg doses was 1 ml; for injection with 640 μg of gp160, 2 ml of the 320 μg/ml formulation was used.

Trideset dobrovoljaca raspoređeno je u šest skupina od po pet osoba. Ispitana su dva programa imuniziranja: Program A, sa cijepljenjem na dan 0, 30 i 120; i Program B, sa cijepljenjem na dan 0, 30, 60, 120, 150 i 180. Za svaki Program (A ili B) bilo je po tri skupine koje su dobivale različite doze cjepiva (Tablica 7 dolje). Sva cijepljenja vršena su intramuskularnim injekcijama u deltoidni mišić. Trajanje pokusa bilo je 10 mjeseci: 2 mjeseca osnovne procjene i 8 mjeseci ocjenjivanja nakon prvog cijepljenja. Thirty volunteers were divided into six groups of five people each. Two immunization programs were examined: Program A, with vaccination on days 0, 30 and 120; and Program B, with vaccination on day 0, 30, 60, 120, 150 and 180. For each Program (A or B) there were three groups that received different doses of vaccine (Table 7 below). All vaccinations were performed by intramuscular injections into the deltoid muscle. The duration of the experiment was 10 months: 2 months of baseline assessment and 8 months of evaluation after the first vaccination.

TABLICA 7 - Program imuniziranja TABLE 7 - Immunization program

[image] [image]

C. Procjena sigurnosti i toksičnosti C. Safety and Toxicity Assessment

Svaki dobrovoljac je intervjuiran i pregledan na 0, 1, 2, 3, 15 i 30 dana nakon svake injekcije. Dobrovoljci su ispitivani u vezi s groznicom, nahladom, mučninom, povraćanjem, artralgijom (bolom u zglavcima, mialgijom (bolom u mišićima), osjećajem nelagodnosti, urtikarijom (koprivnjačom), krčanjem crijeva, nesvjesticom ili glavoboljom. Ispitivanja radi procjene lokalne reakcije na mjestu ubizgavanja obuhvaćala su crvenilo, otok, svrabež, bol i osjetljivost, obezbojenje kože, pucanje kože, promjene regionalne limfadenopatije, promjene u funkcioniranju injektiranog ekstremiteta, te oblikovanje potkožne nodule na mjestu ubrizgavanja. Također je, jednom mjesečno, rađena kompletna krvna slika, kemija seruma, koagulacijski profil i analiza urina. Each volunteer was interviewed and examined at 0, 1, 2, 3, 15 and 30 days after each injection. Volunteers were examined for fever, chills, nausea, vomiting, arthralgia (joint pain, myalgia (muscle pain), malaise, urticaria (hives), intestinal cramping, fainting, or headache. Examination to assess local reaction at the injection site they included redness, swelling, itching, pain and sensitivity, skin discoloration, skin cracking, changes in regional lymphadenopathy, changes in the functioning of the injected limb, and the formation of a subcutaneous nodule at the injection site. Also, once a month, a complete blood count, serum chemistry, coagulation profile and urinalysis.

Stanična imuna funkcija ocjenjivana je fonotipiranjem T-stanica (stanični fenotipi ukupnih limfocita, CD4 i CD8 stanica) kao što je opisao Rikman sa suradnicima, Clinical Immuno. 52: 85-95, 1989; Birx sa suradnicima, J. Acquir. Immune Defic. Syndr. 4: 188-196, 1991). Također je ocjenjivana proliferativna reakcija T-stanica na mitogene (bobice Phytolaccae ili Con A) i na kontrolne antigene (Candida alhicans i tetanus). Birx i suradnici, vidjeti gore. Stanična imuna funkcija in vivo ocjenjivana je testiranjem odložene hipersenzibilnosti kože na kontrolne antigene (tj. zaušnjake, tetanus toxoid, Candia albicans i trichophyton). Cellular immune function was assessed by T-cell phonotyping (cellular phenotypes of total lymphocytes, CD4 and CD8 cells) as described by Rikman et al., Clinical Immuno. 52: 85-95, 1989; Birx et al., J. Acquir. Immune Deficiency. Syndr. 4: 188-196, 1991). The proliferative reaction of T-cells to mitogens (Phytolaccae berries or Con A) and to control antigens (Candida alchicans and tetanus) was also evaluated. Birx et al., see above. In vivo cellular immune function was assessed by delayed skin hypersensitivity testing to control antigens (ie, mumps, tetanus toxoid, Candia albicans, and trichophyton).

Kvantitativne virusne kulture u mononukleusnim stanicama periferijske krvi (PBMC) i u plazmi određivane su kao što je opisao Burke sa suradnicilna, J. Acquir. Immune Defic. Syndr. 3: 1159-1167, 1991. Lančana reakcija DNK polimeraze (Wages i suradnici, J. Med. Vir-ol. 33: 58-63, 1991) i nivoi antigena p24 u serumu određivani su da bi se kontrolirala količina virusa HIV in vivo. Quantitative viral cultures in peripheral blood mononuclear cells (PBMC) and plasma were determined as described by Burke et al., J. Acquir. Immune Deficiency. Syndr. 3: 1159-1167, 1991. DNA polymerase chain reaction (Wages et al., J. Med. Vir-ol. 33: 58-63, 1991) and serum p24 antigen levels were determined to control the amount of HIV virus in vivo. .

Nisu zamijećeni dokazi sustavne toksičnosti, ali je kod 87% subjekata (po 13 u svakoj skupini za cijepljenje) opažena lokalna reaktogeničnost. Lokalne reakcije obuhvaćale su tvrdoću, osjetljivost, te ublikovanje prolazne potkožne nodule na mjestu ubrizgavanja; rijetko je opažano povećanje regionalne adenopatije. Nijedna osoba nije odbila ponovno cijepljenje. Nije bilo razlika u lokanlim reakcijama kod prvog imniziranja i ponovnog cijepljenja, niti ovisno o dozi. No evidence of systemic toxicity was observed, but local reactogenicity was observed in 87% of subjects (13 in each vaccination group). Local reactions included hardness, tenderness, and the formation of a transient subcutaneous nodule at the injection site; an increase in regional adenopathy was rarely observed. No person refused revaccination. There were no differences in local reactions during the first immunization and revaccination, nor depending on the dose.

Do podataka o štetnom djelovanju na imunološki sustav nije se došlo ni mjerenjem in vitro, preko proliferativne reakcije na mitogen ili antigen-specifične proliferativne reakcije, niti mjerenjem in vivo, preko reakcija u testiranju odložene hipersenzibilnosti kože, niti mjerenjem ubrzavanja kvantitativnog smanjenja broja CD4 stanica. Osnovni srednji broj CD4 stanica bio je 716 za osobe koje reagiraju i 605 za osobe koje ne reagiraju na cjepivo. Srednji broj CD4 stanica u danima 180-240 bio je 714 za osobe koje reagiraju i 561 za osobe koje ne reagiraju na cjepivo. Za vrijeme 240 dana ispitivanja, neto promjena srednjeg broja CD4 stanica bila je -0.2% za osobe koje reagiraju i -7.3% za osobe koje ne reagiraju na cjepivo (Sl. 11). HIV-imunogenost inducirana cjepivom nije bila povezana sa indikacijama o ubrzanom smanjenju broja CD4 stanica niti kod jedne osobe, za cijelo vrijeme trajanja pokusa. Data on adverse effects on the immune system were not obtained either by measuring in vitro, via the proliferative reaction to mitogen or antigen-specific proliferative reactions, nor by measuring in vivo, via reactions in delayed skin hypersensitivity testing, nor by measuring the acceleration of the quantitative decrease in the number of CD4 cells. The baseline median CD4 cell count was 716 for responders and 605 for vaccine non-responders. Median CD4 cell counts on days 180-240 were 714 for responders and 561 for vaccine non-responders. During the 240-day trial, the net change in median CD4 cell count was -0.2% for responders and -7.3% for vaccine non-responders (Fig. 11). HIV-immunogenicity induced by the vaccine was not associated with indications of an accelerated decrease in the number of CD4 cells in any individual during the entire duration of the experiment.

Da bi se ispitala mogućnost povećane replikacije HIVa i povećanog broja virusa kod pojedinih osoba, kao posljedice cijepljenja, aktivnost virusa in vivo je mjerena na kvantitativnim kulturama virusa u plazmi i u PBMC, preko lančane reakcije DNK polimeraze i preko nivoa antigena p24 u serumu. Testovi na kvantitativnim kulturama i testovi lančane reakcije DNK polimeraze nisu za vrijeme pokusa pokazali nikakve promjene. Antigen p24 se kod testiranih osoba nije mogao detektirati. In order to examine the possibility of increased HIV replication and an increased number of viruses in certain individuals, as a consequence of vaccination, the activity of the virus in vivo was measured on quantitative cultures of the virus in plasma and in PBMC, via DNA polymerase chain reaction and via the p24 antigen level in serum. Quantitative culture tests and DNA polymerase chain reaction tests did not show any changes during the experiment. Antigen p24 could not be detected in the tested persons.

D. Ispitivanje imunogenosti D. Immunogenicity test

Antitijela usmjerena protiv proteina HIVa mjerena su korištenjem kako rekombinantno dobivenih virusnih genskih proizvoda go160, p66 i p24, tako i cijelog virusnog lizata prototipnog MN soja HIVa. Korištene su tehllike Dot Blot i Western Blot, kako su ih opisali Toubin i suradnici, Pruc. Natl. Acad. Sci. USA 76: 4350-4354 (1979). Također su mjerene reakcije antitijela na specifične epitope ovojnice (vidjeti Sl. 7). Antibodies directed against HIV proteins were measured using recombinantly obtained viral gene products go160, p66 and p24, as well as the entire viral lysate of the prototype MN strain of HIV. Dot Blot and Western Blot techniques were used, as described by Toubin et al., Proc. Natl. Acad. Sci. USA 76: 4350-4354 (1979). Antibody reactions to specific envelope epitopes were also measured (see Fig. 7).

Epitopi 88 (amino kiseline 88-98 u gp120) i 448C (amino kiseline 448-514 u gp120) na Sl. 7 odabrani su stoga što je objavljeno da antitijela usmjerena protiv tih područja gp120 koreliraju sa ranim stupnjevima infekcije HIVom. Epitopes 88 (amino acids 88-98 in gp120) and 448C (amino acids 448-514 in gp120) in FIG. 7 were chosen because antibodies directed against these regions of gp120 have been reported to correlate with early stages of HIV infection.

Epitopi 106 (amino kiselne 106-121 u gp120), 241 (amino kiseline 241-272), 254, (amino kiseline 254-272), 300 (amino kiseline 300-340), 308 (amino kiseline 308-322), 422 (amino kiseline 422-454) i 735 (amino kiseline 735-752) odabrani su zbog svoje navodne funkcionalne važnosti. Epitopi 106 i 422 su implicirani u CD4-vezivanju; epitopi 241, 254 i 735 su implicirani u skupno-specitičnom netltraliziranju; i epitopi 300 i 308 su implicirani u tip-specifičnom neutraliziranju. Epitopes 106 (amino acids 106-121 in gp120), 241 (amino acids 241-272), 254, (amino acids 254-272), 300 (amino acids 300-340), 308 (amino acids 308-322), 422 (amino acids 422-454) and 735 (amino acids 735-752) were chosen for their putative functional importance. Epitopes 106 and 422 are implicated in CD4-binding; epitopes 241, 254 and 735 are implicated in group-specific neutralization; both epitopes 300 and 308 are implicated in type-specific neutralization.

Epitop 582 (amino kiseline 582-602) odabran je kao kontrola, obzirom da predstavlja imunodominantni domen ovojnice u prirodnoj infekciji HIVom. Dodatni ispitivani epitopi obuhvaćaju 49 (amino kiseline 49-128); i 342 (amino kiseline 342-405). Epitope 582 (amino acids 582-602) was chosen as a control, since it represents the immunodominant envelope domain in natural HIV infection. Additional epitopes investigated include 49 (amino acids 49-128); and 342 (amino acids 342-405).

Na Sl. 7, šrafirana polja označavaju dokumentiranu promjenu u imunoj reakciji usmjerenoj na ovojnicu HIVa. Šrafirana polja sa (=) označavaju primarnu humoralnu reakciju; šrafirana polja sa (+) označavaju sekundarnu humoralnu reakciju; (-) označava antitijelo negativno prema specifičnom epitopu prije i nakon imuniziranja; i (+) označava antitijelo pozitivno prema specitičnom epitopu prije i nakon imuniziranja, ali bez kvantitativne promjene. Šrafirana polja sa (•) označavaju novu reakciju proliferacije T-stanica na gp16O nakon imuniziranja. Samo (•) označavada nema stanične reakcije na gp160; hb označava "visoku osnovnu vrijednost" (ne može se interpretirati); i nd znači "nije rađeno". On Fig. 7, hatched boxes indicate a documented change in the immune response directed at the HIV envelope. Hatched fields with (=) indicate primary humoral reaction; hatched fields with (+) indicate secondary humoral reaction; (-) indicates an antibody negative to a specific epitope before and after immunization; and (+) indicates antibody positive for specific epitope before and after immunization, but without quantitative change. Hatched fields with (•) indicate a new T-cell proliferation response to gp16O after immunization. Only (•) indicates no cellular response to gp160; hb stands for "high base value" (cannot be interpreted); and nd means "not done".

Neutralizacijsko djelovanje mjereno je u odnosu na tri prototipna izolata (HIV-IIIB, RF i MN) u ispitivanju inhibiranja sincitija opisanog kod Nare, Nuture, 333: 469-470 (1988). HIV-specifične stanične reakcije mjerene su tehnikom određivanja proliferacije poznatih limfocita, uz korištenje gp160, p24 i kontrolnog proteina bakulovirusnog ekspresijskog sustava (Birx, vidjeti gore). Neutralizing activity was measured against three prototype isolates (HIV-IIIB, RF and MN) in the syncytium inhibition assay described by Nara, Nuture, 333: 469-470 (1988). HIV-specific cellular responses were measured by a known lymphocyte proliferation assay technique, using gp160, p24 and the control protein of the baculovirus expression system (Birx, see above).

E. Osobe koje reagiraju i koje ne reagiraju na cjepivo E. Vaccine responders and non-responders

Pojedinci su klasificirani kao osobe koje reagiraju na cjepivo samo ako je sa serijom cijepljenja bila povezana i stanična i humoralna imuna reakcija (vidjeti S1. 7). Cjepivom inducirani humoralni imunitet definiran je kao serokonvertiranje ka specifičnim epitopima ovojnice HIVa i/ili kao imuna reakcija na epitope specifične za ovojnicu nakon sekundarnog ponovnog cijepljenja. Cjepivom inducirani stanični imunitet definiran je kao razvitak nove, reproducibilne, sa cjepivom povezane proliferativne reakcije na gp160. Osobe kod kojih nije razvijena ni humoralna niti stanična imuna reakcija, kao i osobe kod kojih je razvijena samo humoralna ili samo stanična proliferativna reakcija na epitope u gp160 ili na ovojnicu HIVa, klasificirane su kao osobe koje ne reagiraju na cjepivo. Individuals were classified as vaccine responders only if both cellular and humoral immune responses were associated with the vaccination series (see S1. 7). Vaccine-induced humoral immunity was defined as seroconversion to specific HIV envelope epitopes and/or as an immune response to envelope-specific epitopes after secondary revaccination. Vaccine-induced cellular immunity is defined as the development of a new, reproducible, vaccine-associated proliferative response to gp160. Persons in whom neither a humoral nor cellular immune reaction developed, as well as persons in whom only a humoral or only a cellular proliferative reaction to epitopes in gp160 or to the HIV envelope developed, were classified as non-responders to the vaccine.

F. Humoralna reakcija inducirana cjepivom F. Vaccine-induced humoral reaction

Kako se vidi na Sl. 7, 19 od 30 osoba (63%) pokazalo je cjepivom inducirano povećanje kako humoralne, tako i stanične imune reakcije specifične na gp160 iz HIVa. Ovih 19 klasificirano je kao "osobe koje reagiraju na As can be seen in Fig. 7, 19 of 30 individuals (63%) showed a vaccine-induced increase in both humoral and cellular immune responses specific to HIV gp160. These 19 are classified as “responders to

_____________________________________ ________________________________________

90vakva definicija osoba kuje reagiraju na cjepivo visuko je restriktivna u svjetlu znanstvenih ciljeva ovuga pokusa, koji se sastoje u procjeni mogućnusti imuniziranja nakon infekcije. This definition of people who react to the vaccine is highly restrictive in light of the scientific goals of this experiment, which consist in assessing the possibility of immunization after infection.

cjepivo". 6 od 11 "osoba koje ne reagiraju na cjepivo" pokazalo je samo humoralnu ili samo staničnu imunu reakciju. Svih 7 osoba kod kojih se nije pokazala nikakva primjetna reakcija na cjepivo, primilo je samo po tri doze (Program A). Nisu opažene nikakve promjene u vezivanju antitijela za polimerazu HIVa (p66), proizvod strukturalnog gena (p24) ili kontrolni antigen različit od HIVa, tetanus. Ni kod jedne osobe nisu se razvila anti-bakulovirusna antitijela protiv kontrolnog proteina stanica Lepidoptere. vaccine". 6 of the 11 "vaccine non-responders" showed only a humoral or only cellular immune reaction. All 7 people who did not show any noticeable reaction to the vaccine received only three doses each (Program A). They did not no changes observed in antibody binding to HIV polymerase (p66), structural gene product (p24), or non-HIV checkpoint antigen, tetanus No individuals developed anti-baculovirus antibodies against the Lepidoptera cell checkpoint protein.

Povećanje broja antitijela protiv ovojnice (gp160) opaženo je kod 13 osoba u Western Blot analizi u kojoj je korišćen cjelokupan lizat virusa HIV-MN. Promjene su bile povezane sa programom imuniziranja. Kod tri od 15 osoba (20%) u Programu A i kod 10 od 15 osoba (67%) u Programu B razvilo se povećanje broja antitijela protiv proteina ovojnice (P=0.025 u dvostrukom Fischerovom testu točnosti). Svih 13 osoba je također serokonvertiralo ka specifičnim epitopima ovojnice. An increase in the number of antibodies against the envelope (gp160) was observed in 13 individuals in a Western Blot analysis in which the entire lysate of the HIV-MN virus was used. The changes were related to the immunization program. Three out of 15 people (20%) in Program A and 10 out of 15 people (67%) in Program B developed an increase in the number of antibodies against the envelope protein (P=0.025 in two-fold Fischer's exact test). All 13 individuals also seroconverted to specific envelope epitopes.

Suprotno, od 10 osoba koje nisu serokonvertirale ni prema jednom specifičnom epitopu ovojnice, ni jedna nije, u testu Western Blot, pokazala povećanje broja antitijela usmjerenih protiv ovojnice. Preostalih 7 osoba koje su serokonvertirale u odnosu na specifične epitope ovojnice, ni jedna nije, u testu Western Blot, pokazala promjenu u broju antitijela usmjerenih protiv kompletne ovojnice virusa. Niti kod jedne osobe nisu opažene promjene u broju antitijela usmjerenih protiv proteina HIVa koji ne pripadaju ovojnici. Conversely, of the 10 individuals who did not seroconvert to any specific envelope epitope, none showed an increase in the number of antibodies directed against the envelope in the Western Blot test. Of the remaining 7 persons who seroconverted in relation to specific epitopes of the envelope, not one of them showed a change in the number of antibodies directed against the complete envelope of the virus in the Western Blot test. No changes in the number of antibodies directed against non-enveloped proteins of HIV were observed in any individual.

Četrnaest od 15 osoba (93%) u Programu B (6 doza) pokazalo je povećanje ukupnog broja antitijela protiv gp160, za razliku od samo 7 od 15 osoba (47%) u Programu A (3 doze) (P=0.01 u dvostrukom Fischerovom testu). (Sl. 7). Fourteen of 15 subjects (93%) in Program B (6 doses) showed an increase in the total number of anti-gp160 antibodies, in contrast to only 7 of 15 subjects (47%) in Program A (3 doses) (P=0.01 in two-tailed Fischer test). (Fig. 7).

Kao što je ilustrirano na Sl. 8, zastupljenost svakog od epitopa specifičnih za gp160, prije i nakon imuniziranja, bila je sljedeća: epitop 49 (27 na 70%), epitop 88 (28 na 52%), epitop 106 (50 na 87%), epitop 214 (0 na 14%), epitop 254 (0 na 13%), epitop 300 (47 na 77%), epitop 308 (42 na 69%), epitop 342 (0 na 27%), epitop 422 (3 na 10%), epitop 448C (73 na 87%) i epitop 735 (17 na 33%). Cjepivom indilcirana serokonverzija opažena je u odnosu na sve specifične epitope osim 58? (Sl. 7). Antitijela (serokonverzija) usmjerena protiv epitopa 241, 254 ili 342 opažena su samo nakon cijepljenja. As illustrated in FIG. 8, the representation of each of the gp160-specific epitopes, before and after immunization, was as follows: epitope 49 (27 to 70%), epitope 88 (28 to 52%), epitope 106 (50 to 87%), epitope 214 (0 to 14%), epitope 254 (0 to 13%), epitope 300 (47 to 77%), epitope 308 (42 to 69%), epitope 342 (0 to 27%), epitope 422 (3 to 10%), epitope 448C (73 on 87%) and epitope 735 (17 on 33%). Vaccine-induced seroconversion was observed for all specific epitopes except 58? (Fig. 7). Antibodies (seroconversion) directed against epitopes 241, 254 or 342 were observed only after vaccination.

Sekundarne imune reakcije detektirane su u odnosu na sljedeće epitope: 88, 106, 300, 448C i 582. Zastupljenost antitijela usmjerenog protiv epitopa 582 bila je 100% prije cijepljenja, a samo jedna osoba (3%) je pokazala sekundarnu imunu reakciju. Secondary immune reactions were detected against the following epitopes: 88, 106, 300, 448C and 582. The representation of antibody directed against epitope 582 was 100% before vaccination, and only one person (3%) showed a secondary immune reaction.

Obrazac cjepivom induciranih antitijela protiv HIVa, usmjerenih protiv epitopa ovojnice, bio je varijabilan (SI. 7). Primarna reakcija antitijela (serokonverzija) u odnosu na najmanje jedan epitop, opažena je kod 20 osoba; 14 od 15 osoba u Programu B i 6 od 15 osoba rasporedenih u Program A (P=0.005 u dvostrukon i Fischerovom testu). Osobe iz Programa A serokonvertirale su u odnosu na samo 15 od 110 (14%) potencijlnih epitopa The pattern of vaccine-induced anti-HIV antibodies directed against envelope epitopes was variable (SI. 7). Primary antibody reaction (seroconversion) in relation to at least one epitope was observed in 20 persons; 14 out of 15 people in Program B and 6 out of 15 people assigned to Program A (P=0.005 in two-tailed and Fischer's test). Individuals from Program A seroconverted against only 15 of 110 (14%) potential epitopes

protiv kojih prije imuniziranja nisu posjedovale antitijela. Osobe iz Programa B serokonvertirale su u odnosu na 60 od 129 (47%) (P<0.0001 u dvostrukom Fischerovom testu). Serokonverzija u odnosu na tri ili više epitopa ovojnice usljedilaje kod 9 osoba (60%) raspoređenih u Program B, ali kod samo 2 osobe (13%) raspoređene u Program A (P=0.02 u dvostrukom Fischerovom testu). against which they did not have antibodies before immunization. Individuals from Program B seroconverted versus 60 of 129 (47%) (P<0.0001 in two-tailed Fischer test). Seroconversion in relation to three or more envelope epitopes occurred in 9 persons (60%) assigned to Program B, but in only 2 persons (13%) assigned to Program A (P=0.02 in double Fischer test).

Neutralizirajuće djelovanje u serumu protiv tri različite vrste (HIV-IIIB, MN i RF) određeno je u dane 0, 90 i 195 kod 7 osoba. Četiri od 5 osoba koje reagiraju na cjepivo pokazale su povećanje neutralizirajućeg djelovanja prema jednom ili više izolata. Osobe koje reagiraju na cjepivo su također, u odnosu na osobe koje ne reagiraju na cjepivo, pokazale povećanu sposobnost da inhibiraju stvaranje sincitija. Neutralizing activity in serum against three different types (HIV-IIIB, MN and RF) was determined on days 0, 90 and 195 in 7 individuals. Four out of 5 vaccine responders showed an increase in neutralizing activity against one or more isolates. Vaccine responders also, relative to non-vaccine responders, showed an increased ability to inhibit syncytial formation.

G. Cjepivom inducirane stanične reakcije G. Vaccine-induced cellular reactions

Promjene u staničnim imunim reakcijama utemeljene su na usporedbi srednjih indeksa stimuliranja limfocita (LSI) prije cijepljenja (osnovne vrijednosti) i nakon cijepljenja, korištenjem Wilcoxonovog testa zbroja redova. Changes in cellular immune responses were based on comparison of pre-vaccination (baseline) and post-vaccination mean lymphocyte stimulation indices (LSIs) using the Wilcoxon rank sum test.

Dvadeset jedna od 30 osoba (70%) razvila je nakon imuniziranja novu reakciju proliferiranja T-stanica (Sl. 7). Twenty-one out of 30 persons (70%) developed a new T-cell proliferation reaction after immunization (Fig. 7).

Sl. 9 ilustrira proliferativne reakcije na gp160, p24 i kontrolni protein bakulovirusa kod četiri tipične osobe koje reagiraju na cjepivo, u ovisnosti o vremenu. Kod svih osoba se proliferiranje inducirano sa gp160 povećavalo sa osnovne srednje vrijednosti LSI od 3 na LSI od 10 (izračunato korištenjem srednje vrijednosti od 4 vrijednosti dobivene nakon posljednjeg imuniziranja). Suprotno tome, za proliferativnu reakciju protiv HIV-proteina p24 ili kontrolnog proteina bakulovirusa, nije opažena nikakva promjena. Sl. 9 illustrates the time-dependent proliferative responses to gp160, p24, and baculovirus checkpoint protein in four typical vaccine responders. In all subjects, gp160-induced proliferation increased from a baseline mean LSI of 3 to an LSI of 10 (calculated using the mean of 4 values obtained after the last immunization). In contrast, no change was observed for the proliferative reaction against the HIV-protein p24 or the baculovirus control protein.

Cjepivom inducirane promjene srednje vrijednosti LSI za sve osobe, za osobe svrstane u pod-skupine ovisno o reagiranju na cjepivo, te za osobe svrstane u skupine prema programu imuniziranja, ilustrirane su na Sl. 10. Vaccine-induced changes in the mean value of LSI for all persons, for persons classified into sub-groups depending on the reaction to the vaccine, and for persons classified into groups according to the immunization program, are illustrated in Fig. 10.

Promjena u proliferativnoj reakciji na gp160 u značajnoj se mjeri razlikovala između osoba koje reagiraju i osoba koje ne reagiraju na cjepivo (<0.001, dvostruki Wilcoxonov test). Proliferativne reakcije na gp160 inducirane u Programu B (6 doza) bile su veće od reakcija indliciranih u Programu A (3 doze) (P < 0.10, dvostruki Wilcoxonov test). The change in proliferative response to gp160 was significantly different between responders and non-responders (<0.001, two-tailed Wilcoxon test). Proliferative responses to gp160 induced in Program B (6 doses) were greater than those induced in Program A (3 doses) (P < 0.10, two-fold Wilcoxon test).

Devetnaest od 21 osobe koja je razvila proliferativnu reakciju na gp160 također su razvile i humoralnu reakciju (osobe koje reagiraju na cjepivo). Maksimalni srednji indeks stimuliranja limfocita (LSI) u odnosu na gp160, opažen za sve osobe koje reagiraju na cjepivo, bio je 50.1. Međutim, reakcija svake osobe koja reagira na cjepivo bila je različita (maksimalne vrijednosti kretale su se u opsegu od 3 do 171) (Sl. 7), isto kao i ovisnost veličine i trajanja staničnih reakcija na gp160 od vremena cijepljenja (Sl. 9). Nineteen of the 21 people who developed a proliferative reaction to gp160 also developed a humoral reaction (vaccine responders). The maximum mean lymphocyte stimulation index (LSI) to gp160 observed for all vaccine responders was 50.1. However, the response of each individual responding to the vaccine was different (maximum values ranged from 3 to 171) (Fig. 7), as was the dependence of the magnitude and duration of cellular responses to gp160 on the time of vaccination (Fig. 9). .

H. Diskusija rezultata H. Discussion of results

Usprkos ograničenoj veličini uzorka u ovom pokusu, pokazalo se da je sa imunogenošću cjepiva povezano nekoliko faktora. Šest od 15 osoba (40%) u Programu A u odnosu na 13 od 15 osoba (87%) u Programu B bile su osobe koje reagiraju na cjepivo (P=0.02, dvostruki Fischerov test) (SI. 7). Od 16 osoba sa srednjim osnovnim brojem CD4 sanica većim od 600 stanicia/ml, 13 (81 %) su bile osobe koje reagiraju na cjepivo, za razliku od 6 od 14 (43%) osoba čiji je srednji početni broj CD4 stanica bio manji od 600 stanica/ml (P=0.07, dvostruki Fischerov test). Kao što je skupno ilustrirano u Tablici 8, višekratno imuniziranje poboljšalo je imunogenost čak i kod pacijenata sa početnim brojem CD4 stanica manjim od 600 stanica/ml. Na primjer, 5 od 6 osoba l1 Programu B (6 injekcija) bile su osobe koje reagiraju na cjepivo, u usporedbi sa samo 1 od 8 osoba u Programu A (3 injekcije) (P=0.03, dvostruki Fischerov test) (Tablica 8). Despite the limited sample size in this trial, several factors have been shown to be associated with vaccine immunogenicity. Six of 15 individuals (40%) in Program A versus 13 of 15 individuals (87%) in Program B were vaccine responders (P=0.02, two-tailed Fischer test) (SI. 7). Of the 16 subjects with a mean baseline CD4 cell count greater than 600 cells/ml, 13 (81%) were vaccine responders, in contrast to 6 of 14 (43%) subjects whose mean baseline CD4 cell count was less than 600 cells/ml (P=0.07, double Fischer test). As collectively illustrated in Table 8, multiple immunizations improved immunogenicity even in patients with baseline CD4 cell counts less than 600 cells/ml. For example, 5 of 6 individuals in Program B (6 injections) were vaccine responders, compared with only 1 of 8 individuals in Program A (3 injections) (P=0.03, two-tailed Fischer test) (Table 8). .

TABLICA 8 TABLE 8

Imuna reaktivnost na gp160 u ovisnosti od osnovnog Baseline-dependent immune reactivity to gp160

broja CD4 stanica i programa imuniziranja CD4 cell count and immunization program

[image] [image]

Terapijsku primjenu cjepiva prvi je započeo Pasteur u 19. stoljeću, za tretiranje akutne infekcije bjesnilom. Prikladnost takvoga pristupa u tretiranju drugih infekcija nije široko izučavana. Iako postoje i drugi primjeri post-infektivnog modificiranja virusnospecifičnog imuniteta (na primjer nakon izlaganja virusu hepatita A ili B), nedostaju dobro dokumentirane studije izvršene na čovjeku, koje bi demostrirale mogućnost korištenja ovoga pristupa kod razvijenih ili kroničnih virusnih infekcija. The therapeutic use of vaccines was first started by Pasteur in the 19th century, to treat acute rabies infection. The suitability of such an approach in the treatment of other infections has not been widely studied. Although there are other examples of post-infectious modification of virus-specific immunity (for example after exposure to the hepatitis A or B virus), there is a lack of well-documented human studies demonstrating the possibility of using this approach in developed or chronic viral infections.

Sadašnji izum osigurava modificiranje virusno-specifičnog imuniteta, aktivnim imuniziranjem nakon infekcije. Konkretno, cjepivo sa gp160, deriviranim iz gena ovojnice HIVa, uvećala je humanu virusno-specifičnu humoralnu i staničnu reakciju kod 19 od 30 osoba inficiranih ranim oblikom HIVa. The present invention provides modification of virus-specific immunity, by active immunization after infection. In particular, a vaccine with gp160, derived from the HIV envelope gene, increased the human virus-specific humoral and cellular response in 19 of 30 people infected with an early form of HIV.

Ovo proučavanje je kvalitativno i kvantitativno mjerilo različite reakcije antitijela na specifične epitope HIVa kod prirodne infekcije, u usporedbi sa reakcijama nakon postinfektivtlog imniziranja. Na takav način je kod 70% već inficiranih osoba dokumentirana cjepivom inducirana humoralna imunogenost. Na primjer, dvadeset osoba (19 osoba koje reagiraju i 1 osoba koja ne reagira na cjepivo) serokonvertiralo je protiv specifičnih epitopa ovojnice. Serokonverzija povezana iskljllčivo sa cijepljenjem (epitopi 241, 254 i 342) javila se kod 10 osoba. This study qualitatively and quantitatively measured different antibody responses to specific epitopes of HIV in natural infection, compared to responses after post-infectious immunization. In this way, vaccine-induced humoral immunogenicity was documented in 70% of already infected persons. For example, twenty individuals (19 responders and 1 vaccine non-responder) seroconverted against specific envelope epitopes. Seroconversion associated exclusively with vaccination (epitopes 241, 254 and 342) occurred in 10 persons.

Kao dodatak, variranja u humoralnoj reakciji na ovo cjepivo, što je karakterizirano preko mapiranja epitopa, omogućit će analizu uzroka i posljedica specitičnih reakcija antitijela, te dati jedinstvenu priliku za karakteriziranje potencijalnih imunoregulacijskih mehanizama koji se ne pobuđuju prilikom prirodne infekcije. In addition, variations in the humoral response to this vaccine, which is characterized through epitope mapping, will enable analysis of the causes and consequences of specific antibody reactions, and provide a unique opportunity to characterize potential immunoregulatory mechanisms that are not triggered during natural infection.

Iako značenje neutralizirajućeg djelovanja u serumu in vivo trenutačno nije poznato, opaženo povećanje neutralizirajućeg djelovanja protiv različitih vrsta HIVa (IIIB, RF, MN) kod 4 od 5 osoba koje realgiraju na cjepivo, ukazuje da post-infekcijsko imuniziranje uzrokuje promjene funkcionalnih antitijela. Testirano cjepivo induciralo je povećanje kapaciteta neutraliziranja u serumu protiv različitih vrsta HIVa, te će potencijalno biti od pomoći u definiranju skupno-specifičnih neutralizacijskih epitopa. Although the significance of neutralizing activity in serum in vivo is currently unknown, the observed increase in neutralizing activity against different types of HIV (IIIB, RF, MN) in 4 of 5 vaccine responders indicates that post-infection immunization causes changes in functional antibodies. The tested vaccine induced an increase in neutralizing capacity in serum against different types of HIV, and will potentially be helpful in defining group-specific neutralizing epitopes.

Proliferativna reakcija protiv proteina ovojnice HIVa rijetko se javlja kod prirodne infekcije HIVom. Međutim, nakon imuniziranja sa gp160, reakcija proliferiranja specifičnih T-stanica dokumentirana je kod 21 osobe (70%). Razlog za ovu razliku nije jasan. Jedna je mogućnost da nova proliferativna reakcija može biti usmjerena protiv jednog ili više epitopa ovojnice koji su jedinstveni za cjepivo (kao rezltat tehnologije dobivanja cjepiva ili alternativne obrade antigena in vivo). Druga mogućnost je da protein korišten u izučavanju proliferacije možda ne stimulira primarnu proliferativnu reakciju T-staniea protiv homolognih "divljih" ovojnica prirodnog virusa. Međutim, dobiveni su dodatni dokazi da cijepljenje pojačava staničnu imunu reakciju kod domaćina: odabrane osobe koje reagiraju na cjepivo pokazale su, nakon ponovljenog imuniziranja, reakciju stvaranja citotoksičnih T-stanica specifičnih za tip HIV-IIlB. A proliferative reaction against the HIV envelope protein rarely occurs in natural HIV infection. However, after immunization with gp160, a proliferative response of specific T-cells was documented in 21 individuals (70%). The reason for this difference is not clear. One possibility is that the new proliferative response may be directed against one or more envelope epitopes that are unique to the vaccine (as a result of vaccine production technology or alternative antigen processing in vivo). Another possibility is that the protein used in the proliferation study may not stimulate the primary proliferative response of T-cells against the homologous "wild-type" envelopes of the native virus. However, additional evidence was obtained that vaccination enhances the cellular immune response in the host: selected vaccine responders showed, after repeated immunization, a response to produce HIV-IIlB-specific cytotoxic T-cells.

Faktori odgovorni za imunoreaktivnost cjepiva kod osoba inficiranih HIVom još uvijek nisu razjašnjeni. Č:ak i u ranom stupnju infekcije, pojedine osobe suboptimalno reagiraju na različita cjepiva u usporedbi sa odgovarajućom kontrolom. Hiporeaktivnost je pripisivana ranoj disregulaciji B-stanica i disfunkciji T-stanica. Ovdje je imunoreaktivnost cjepiva povezana s osnovnim brojem CD4 stanica, što je konzistentno sa hipotezom da imunološki ststus domaćina čini važnu determinantu imunoreaktivnosti cjepiva. međutim, program imuniziranja je također utjecao na reaktivnost cjepiva: Program B (6 injekcija) se, kod osoba unutar istog opsega broja T-stanica, pokazao superiornijim. Doista, smanjena reaktivnost opažena kod osoba sa nižim brojem CD4 stanica može se popraviti povećavanjem broja cijepljenja, što ukazuje da se imunoreaktivnost domaćina može još više popraviti daljnjim modificiranjem doziranja, režima, ađuvanata ili formulacija. The factors responsible for vaccine immunoreactivity in HIV-infected persons are still not elucidated. Even at an early stage of infection, individual individuals respond suboptimally to various vaccines compared to an appropriate control. Hyporesponsiveness has been attributed to early B-cell dysregulation and T-cell dysfunction. Here, vaccine immunoreactivity is associated with baseline CD4 cell count, which is consistent with the hypothesis that host immune status is an important determinant of vaccine immunoreactivity. however, immunization schedule also influenced vaccine reactivity: Schedule B (6 injections) was superior in individuals within the same range of T-cell counts. Indeed, the reduced reactivity observed in individuals with lower CD4 cell counts can be ameliorated by increasing the number of vaccinations, indicating that host immunoreactivity can be further improved by further modifying dosages, regimens, adjuvants, or formulations.

Iako su se javljale sumnje u sigurnost aktivnog imuniziranja osoba inficiranih HIVom pomoću HIV-specitičnih proizvoda cjepiva, nema nikakvih dokaza o imuno-specitičnoj toksičnosti. Kvantitativne kulture, testovi lančane reakcije DNK polimeraze i ispitivanja antigena u serumu pokazuju povećan nivo HIVa in vivo. Faktor koji odlično odslikava replikaciju HIVa in vivo, brzina smanjivanja broja CD4 stanica, pokazao je pozitivne promjene kod testiranili osoba, a naročito kod osoba koje reagiraju na cjepivo. Promjena srednjeg broja CD4 stanica iznosila je -0.2% za osobe koje reagiraju, te -7.3% za osobe koje ne reagiraju na cjepivo. Ovi podaei pokazuju da post-infekcijska imuna reaktivnost nije povezana sa povećanim propadanjem CD4 ststanica, te ukazuje na povezanost sa smanjenjem repliciranjem HIVa in vivo. Although doubts have been raised about the safety of actively immunizing HIV-infected persons with HIV-specific vaccine products, there is no evidence of immuno-specific toxicity. Quantitative cultures, DNA polymerase chain reaction assays, and serum antigen assays show increased levels of HIV in vivo. A factor that perfectly reflects the replication of HIV in vivo, the rate of decrease in the number of CD4 cells, showed positive changes in the tested persons, especially in persons who respond to the vaccine. The change in mean CD4 cell count was -0.2% for responders and -7.3% for non-responders. These data show that post-infectious immune reactivity is not associated with increased CD4 cell depletion, and suggests an association with reduced HIV replication in vivo.

Rezultati cijepljenja u ovom izučavanju su također uspoređeni sa bazom podataka za deset inficiranih, netretiranih osoba koje odgovaraju po starosti, etničkoj skupini i osnovnom broju CD4 stanica. Srednji broj CD4 stanica je smanjen za 8.7% u ovoj referencijalnoj skupini, smanjen za 7.2% kod osoba raspoređenih u Program A, a povećan za 0.6% kod osoba raspoređenih u Program B. Ovi rezultati ukazuju da je post-infekcijsko cijepljenje sa Vaccination results in this study were also compared to a database of ten infected, untreated individuals matched for age, ethnicity, and baseline CD4 cell count. The mean CD4 cell count decreased by 8.7% in this reference group, decreased by 7.2% in individuals assigned to Program A, and increased by 0.6% in individuals assigned to Program B. These results indicate that post-infection vaccination with

rekombinantnim proteinima ovojnice HIVa moguće i, osim toga, daju ohrabrenje u smislu profilaktičkih primjena ovih cjepiva. by recombinant HIV envelope proteins possible and, moreover, provide encouragement in terms of prophylactic applications of these vaccines.

CJEPIVA I METODE TRETIRANJA VIRUSA VACCINES AND VIRUS TREATMENT METHODS

HUMANOG NEDOSTATKA IMUNITETA HUMAN IMMUNITY DEFICIENCY

NUKLEOTIDNE SEKVENCE DNK BOČNO VEZANE ZA KODIRAJU]U SEKVENCU gp160 IZ Ac3046 DNA NUCLEOTIDE SEQUENCES LATERALLY LINKED TO CODING]IN THE SEQUENCE OF gp160 FROM Ac3046

TGCTGATATC ATGGAGATAA TTAAAATGAT AACCATCTCG CAAATAAATA TGCTGATATC ATGGAGATAA TTAAAATGAT AACCATCTCG CAAATAAATA

-100 -100

AGTATTTTAC TGTTTTCGTA ACAGTTTTGT AATAAAAAAA CCTATAAATA AGTATTTTAC TGTTTTCGTA ACAGTTTTGT AATAAAAAAA CCTATAAATA

-50 -50

ATG -----/3046/----- TAATTAATTAA GT ACC GAC TCT GCT GAA GAG ATG -----/3046/----- TAATTAATTAA GT ACC GAC TCT GCT GAA GAG

+ 1 +2256 + 1 +2256

GAG GAA ATT CTC CTT GAA GTT TCC CTG GTG TTC AAA GTA AAG GAG GAG GAA ATT CTC CTT GAA GTT TCC CTG GTG TTC AAA GTA AAG GAG

+2288 +2288

TTT GCA CCA GAC GCA CCT CTG TTC ACT GGT CCG GCG TAT TAA TTT GCA CCA GAC GCA CCT CTG TTC ACT GGT CCG GCG TAT TAA

+2333 +2374 +2333 +2374

3. 3.

CJEPIVA I METODE TRETIRANJA VIRUSA VACCINES AND VIRUS TREATMENT METHODS

HUMANOG NEDOSTATKA IMUNITETA HUMAN IMMUNITY DEFICIENCY

NUKLEOTIDNE SEKVENCE DNK I PRETPOSTAVLJENE SEKVENCE DNA NUCLEOTIDE SEQUENCES AND PRESUMED SEQUENCES

AMINO KISELINA NA KRAJU GENA U Ac3046 AMINO ACID AT THE END OF THE GENE IN Ac3046

FIG. 4a FIG. 4a

S enzinima: With engines:

[image] [image]

CJEPIVA I METODE TRETIRANJA VIRUSA VACCINES AND VIRUS TREATMENT METHODS

HUMANOG NEDOSTATKA IMUNITETA HUMAN IMMUNITY DEFICIENCY

FIG. 4b FIG. 4b

[image] [image]

CJEPIVA I METODE TRETIRANJA VIRUSA HUMANOG NEDOSTATKA IMUNITETA VACCINES AND METHODS OF TREATMENT OF HUMAN IMMUNE DEFICIENCY VIRUS

FIG. 4c FIG. 4c

[image] [image]

CJEPIVA I METODE TRETIRANJA VIRUSA HUMANOG NEDOSTATKA IMUNITETA VACCINES AND METHODS OF TREATMENT OF HUMAN IMMUNE DEFICIENCY VIRUS

FIG. 4d FIG. 4d

[image] CJEPIVA I METODE TRETIRANJA VIRUSA HUMANOG NEDOSTATKA IMUNITETA [image] VACCINES AND METHODS OF TREATMENT OF HUMAN IMMUNE DEFICIENCY VIRUS

FIG. 4e FIG. 4e

[image] CJEPIVA I METODE TRETIRANJA VIRUSA HUMANOG NEDOSTATKA IMUNITETA [image] VACCINES AND METHODS OF TREATMENT OF HUMAN IMMUNE DEFICIENCY VIRUS

FIG. 4f FIG. 4f

[image] CJEPIVA I METODE TRETIRANJA VIRUSA HUMANOG NEDOSTATKA IMUNITETA [image] VACCINES AND METHODS OF TREATMENT OF HUMAN IMMUNE DEFICIENCY VIRUS

FIG. 4g FIG. 4 years

[image] CJEPIVA I METODE TRETIRANJA VIRUSA HUMANOG NEDOSTATKA IMUNITETA [image] VACCINES AND METHODS OF TREATMENT OF HUMAN IMMUNE DEFICIENCY VIRUS

FIG. 4h FIG. 4h

[image] CJEPIVA I METODE TRETIRANJA VIRUSA HUMANOG NEDOSTATKA IMUNITETA [image] VACCINES AND METHODS OF TREATMENT OF HUMAN IMMUNE DEFICIENCY VIRUS

FIG. 4i FIG. 4i

[image] CJEPIVA I METODE TRETIRANJA VIRUSA HUMANOG NEDOSTATKA IMUNITETA [image] VACCINES AND METHODS OF TREATMENT OF HUMAN IMMUNE DEFICIENCY VIRUS

FIG. 4j FIG. 4j

[image] CJEPIVA I METODE TRETIRANJA VIRUSA HUMANOG NEDOSTATKA IMUNITETA [image] VACCINES AND METHODS OF TREATMENT OF HUMAN IMMUNE DEFICIENCY VIRUS

FIG. 4k FIG. 4k

[image] CJEPIVA I METODE TRETIRANJA VIRUSA HUMANOG NEDOSTATKA IMUNITETA [image] VACCINES AND METHODS OF TREATMENT OF HUMAN IMMUNE DEFICIENCY VIRUS

FIG. 4l FIG. 4 l

[image] CJEPIVA I METODE TRETIRANJA VIRUSA HUMANOG NEDOSTATKA IMUNITETA [image] VACCINES AND METHODS OF TREATMENT OF HUMAN IMMUNE DEFICIENCY VIRUS

FIG. 4m FIG. 4 m

[image] CJEPIVA I METODE TRETIRANJA VIRUSA HUMANOG NEDOSTATKA IMUNITETA [image] VACCINES AND METHODS OF TREATMENT OF HUMAN IMMUNE DEFICIENCY VIRUS

FIG. 4n FIG. 4n

[image] CJEPIVA I METODE TRETIRANJA VIRUSA HUMANOG NEDOSTATKA IMUNITETA [image] VACCINES AND METHODS OF TREATMENT OF HUMAN IMMUNE DEFICIENCY VIRUS

FIG. 4o FIG. 4o

[image] CJEPIVA I METODE TRETIRANJA VIRUSA HUMANOG NEDOSTATKA IMUNITETA [image] VACCINES AND METHODS OF TREATMENT OF HUMAN IMMUNE DEFICIENCY VIRUS

FIG. 4p FIG. 4 p

[image] CJEPIVA I METODE TRETIRANJA VIRUSA HUMANOG NEDOSTATKA IMUNITETA [image] VACCINES AND METHODS OF TREATMENT OF HUMAN IMMUNE DEFICIENCY VIRUS

FIG. 4q FIG. 4q

[image] CJEPIVA I METODE TRETIRANJA VIRUSA HUMANOG NEDOSTATKA IMUNITETA [image] VACCINES AND METHODS OF TREATMENT OF HUMAN IMMUNE DEFICIENCY VIRUS

FIG. 4r FIG. 4r

[image] CJEPIVA I METODE TRETIRANJA VIRUSA HUMANOG NEDOSTATKA IMUNITETA [image] VACCINES AND METHODS OF TREATMENT OF HUMAN IMMUNE DEFICIENCY VIRUS

FIG. 4s FIG. 4s

[image] [image]

Enzimi koji se cijepaju: Cleaving enzymes:

[image] [image]

Enzimi koji se ne cijepaju: Non-cleaving enzymes:

[image] [image]

CJEPIVA I METODE TRETIRANJA VIRUSA HUMANOG NEDOSTATKA IMUNITETA VACCINES AND METHODS OF TREATMENT OF HUMAN IMMUNE DEFICIENCY VIRUS

FIG. 4t FIG. 4t

BROJOTVORENIH BAZA ENV GENAA U Ac3046: 2256 OF NUMBERED BASES OF ENV GENAA IN Ac3046: 2256

BROJ KODONA AMINO KISELINA: = 2256 ÷ 3 = 752 NUMBER OF AMINO ACID CODONS: = 2256 ÷ 3 = 752

[image] [image]

Ukupna procjenaa težine Total weight estimate

ne-glikoziranih polipeptida: = 84,895.5 of non-glycosylated polypeptides: = 84,895.5

Ukupan broj glikozicacijskih mjesta: Total number of glycosylation sites:

28 x 2100 (po oligo saharidu) 28 x 2100 (per oligosaccharide)

Ukupna ocijenjena molekularna težina gp160 = 84,895.5 + 58800 Total estimated molecular weight of gp160 = 84,895.5 + 58800

= 143,695.5 = 143,695.5

CJEPIVA I METODE TRETIRANJA VIRUSA HUMANOG NEDOSTATKA IMUNITETA VACCINES AND METHODS OF TREATMENT OF HUMAN IMMUNE DEFICIENCY VIRUS

USPOREDBA SEKVENCE LAV-1 I REKOMBINANTNE Ac3046 pg160 SEKVENCE COMPARISON OF LAV-1 SEQUENCE AND RECOMBINANT Ac3046 pg160 SEQUENCE

Sekvenca i odgovarajući kodoni na vrhu reedova su oni koje predviđa The sequence and the corresponding codons at the top of the reeds are those it predicts

FIG. 5a obrađivanje i Wain-Hobson i suradnici (1985). Sekvenca na dnu svakog FIG. 5a processing and Wain-Hobson et al. (1985). The sequence at the bottom of each

reda je ona određenaa zaaa Ac33046 iz rekombinanznog virusa DNK. sequence is the one determined for Ac33046 from recombinant DNA virus.

[image] [image]

[image] [image]

[image] [image]

[image] [image]

[image] [image]

[image] [image]

CJEPIVA I METODE TRETIRANJA VIRUSA HUMANOG NEDOSTATKA IMUNITETA VACCINES AND METHODS OF TREATMENT OF HUMAN IMMUNE DEFICIENCY VIRUS

FIG. 5b FIG. 5b

[image] [image]

[image] [image]

[image] [image]

[image] [image]

[image] [image]

[image] CJEPIVA I METODE TRETIRANJA VIRUSA HUMANOG NEDOSTATKA IMUNITETA [image] VACCINES AND METHODS OF TREATMENT OF HUMAN IMMUNE DEFICIENCY VIRUS

FIG. 5c FIG. 5c

[image] [image]

[image] [image]

[image] [image]

[image] [image]

[image] [image]

[image] [image]

CJEPIVA I METODE TRETIRANJA VIRUSA HUMANOG NEDOSTATKA IMUNITETA VACCINES AND METHODS OF TREATMENT OF HUMAN IMMUNE DEFICIENCY VIRUS

FIG. 5d FIG. 5d

[image] [image]

[image] [image]

[image] [image]

[image] [image]

[image] [image]

[image] [image]

[image] CJEPIVA I METODE TRETIRANJA VIRUSA HUMANOG NEDOSTATKA IMUNITETA [image] VACCINES AND METHODS OF TREATMENT OF HUMAN IMMUNE DEFICIENCY VIRUS

FIG. 5e FIG. 5e

[image] [image]

[image] [image]

[image] [image]

[image] [image]

[image] [image]

[image] [image]

[image] CJEPIVA I METODE TRETIRANJA VIRUSA HUMANOG NEDOSTATKA IMUNITETA [image] VACCINES AND METHODS OF TREATMENT OF HUMAN IMMUNE DEFICIENCY VIRUS

FIG. 5f FIG. 5 f

[image] [image]

[image] [image]

[image] [image]

[image] [image]

[image] [image]

[image] [image]

[image] [image]

CJEPIVA I METODE TRETIRANJA VIRUSA HUMANOG NEDOSTATKA IMUNITETA VACCINES AND METHODS OF TREATMENT OF HUMAN IMMUNE DEFICIENCY VIRUS

FIG. 5g FIG. 5 years

[image] [image]

[image] [image]

[image] [image]

[image] [image]

[image] [image]

[image] [image]

[image] CJEPIVA I METODE TRETIRANJA VIRUSA HUMANOG NEDOSTATKA IMUNITETA [image] VACCINES AND METHODS OF TREATMENT OF HUMAN IMMUNE DEFICIENCY VIRUS

FIG. 5h FIG. 5 a.m

[image] [image]

[image] [image]

[image] [image]

[image] [image]

[image] [image]

[image] [image]

Claims (36)

1. Metoda tretiranja osoba inficiranih virusom humanog nedostatka imuniteta (HIV), naznačena time, što se sastoji u davanju inficiranoj osobi rekombinantnog proteina ovojnice HIVa.1. A method of treating persons infected with the human immunodeficiency virus (HIV), indicated by the fact that it consists in giving the infected person a recombinant HIV envelope protein. 2. Metoda prema zahtjevu 1, naznačena time, što se rekombinantni protein daje u dozi od oko 1 do 100 μg po kilogramu tjelesne mase.2. The method according to claim 1, characterized in that the recombinant protein is given in a dose of about 1 to 100 μg per kilogram of body weight. 3. Metoda prema zahtjevu 1, naznačena time, što se rekombinantni protein daje u dozi od oko 10 μg do oko 4000 μg.3. The method according to claim 1, characterized in that the recombinant protein is administered in a dose of about 10 μg to about 4000 μg. 4. Metoda prema zahtjevu 1, naznačena time, što se rekombinantni protein daje u dozi od oko 40 μg do oko 1280 μg.4. The method according to claim 1, characterized in that the recombinant protein is given in a dose of about 40 μg to about 1280 μg. 5. Metoda prema zahtjevu 3, naznačena time, što se daju najmanje tri doze.5. The method according to claim 3, characterized in that at least three doses are administered. 6. Metoda prema zahtjevu 4, naznačena time, što se daje najmanje šest doza.6. The method according to claim 4, characterized in that at least six doses are administered. 7. Metoda prema zahtjevu 5, naznačena time, što se pojedine doze daju u intervalima od oko 30 do 60 dana.7. The method according to claim 5, characterized in that individual doses are given at intervals of about 30 to 60 days. 8. Metoda prema zahtjevu 6, naznačena time, što se pojedine doze daju u intervalima od oko 30 do 60 dana.8. The method according to claim 6, characterized in that individual doses are given at intervals of about 30 to 60 days. 9. Metoda tretiranje osoba inficiranih virusom humanog nedostatka imuniteta (HIV), naznačena time, što se sastoji u davanju inficiranoj osobi rekombinantnog proteina ovojnice HIVa, u količini dovoljnoj da izazove pojačanu HIV-specifičnu staničnu ili humoralnu reakciju.9. A method of treating persons infected with the human immunodeficiency virus (HIV), indicated by the fact that it consists in giving the infected person a recombinant HIV envelope protein, in an amount sufficient to cause an enhanced HIV-specific cellular or humoral reaction. 10. Metoda prema zantjevu 1, naznačena time, što se rekombinantni protein proizvodi u ekspresijskom sustavu bakulovirus-stanice insekta.10. The method according to claim 1, characterized in that the recombinant protein is produced in the baculovirus-insect cell expression system. 11. Metoda prema zahtjevu 3, naznačena time, što se rekombinantni protein proizvodi u ekspresijskom sustavu bakulovirus-stanice insekta.11. The method according to claim 3, characterized in that the recombinant protein is produced in the baculovirus-insect cell expression system. 12. Metoda prema zahtjevu 5, naznačena time, što se rekombinantni protein proizvodi u ekspresijskom sustavu bakulovirus-stanice insekta.12. The method according to claim 5, characterized in that the recombinant protein is produced in the baculovirus-insect cell expression system. 13. Metoda prema zahtjevu 1, naznačena time, što rekombinantni protein ima molekulsku težinu od približno 145,000.13. The method according to claim 1, characterized in that the recombinant protein has a molecular weight of approximately 145,000. 14. Metoda prema zahtjevu 3, naznačena time, što rekombinantni protein ima molekulsku težinu od približno 145,000.14. The method according to claim 3, characterized in that the recombinant protein has a molecular weight of approximately 145,000. 15. Metoda prema zahtjevu 5, naznačena time, što rekombinantni protein ima molekulsku težinu od približno 145,000.15. The method according to claim 5, characterized in that the recombinant protein has a molecular weight of approximately 145,000. 16. Metoda prema zahtjevu 1, naznačena time, što protein ovojnice HIVa predstavlja barem jedan od gp 160, gp120 i gp41.16. The method according to claim 1, characterized in that the HIVa envelope protein represents at least one of gp 160, gp120 and gp41. 17. Metoda prema zahtjevu 3, naznačena time, što protein ovojnice HIVa predstavlja barem jedan od gp160, gp120 i gp41.17. The method according to claim 3, characterized in that the HIV envelope protein represents at least one of gp160, gp120 and gp41. 18. Metoda prema zahtjevu 5, naznačena time, što protein ovojnice HIVa predstavlja barem jedan od gp160, gp120 i gp41.18. The method according to claim 5, characterized in that the HIV envelope protein represents at least one of gp160, gp120 and gp41. 19. Metoda prema zahtjevu 1, naznačena time, što je rekombinantni protein ekspresiran bakulovirusnim vektorom za stanice insekta, Ac 3046.19. The method according to claim 1, characterized in that the recombinant protein is expressed by a baculovirus vector for insect cells, Ac 3046. 20. Metoda prema zahtjevu 3, naznačena time, što je rekombinantni protein ekspresiran bakulovirusnim vektorom za stanice insekta, Ac3046.20. The method according to claim 3, characterized in that the recombinant protein is expressed by a baculovirus vector for insect cells, Ac3046. 21. Metoda prema zahtjevu 5, naznačena time, što je rekombinantni protein ekspresiran bakulovirusnim vektorom za stanice insekta, Ac3046.21. The method according to claim 5, characterized in that the recombinant protein is expressed by a baculovirus vector for insect cells, Ac3046. 22. Metoda prema zahtjevu 1, naznačena time, što je rekombinantni protein aglomeriran u čestice sa molekulskom težinom od najmanje oko 2,000,000.22. The method according to claim 1, characterized in that the recombinant protein is agglomerated into particles with a molecular weight of at least about 2,000,000. 23. Metoda prema zahtjevu 3, naznačena time, što je rekombinantni protein aglomeriran u čestice sa molekulskom težinom od najmanje oko 2,000,000.23. The method according to claim 3, characterized in that the recombinant protein is agglomerated into particles with a molecular weight of at least about 2,000,000. 24. Metoda prema zahtjevu 5, naznačena time, što je rekombinantni protein aglomeriran u čestice sa molekulskom težinom od najmanje 2,000,000.24. The method according to claim 5, characterized in that the recombinant protein is agglomerated into particles with a molecular weight of at least 2,000,000. 25. Metoda prema zahtjevu 1, naznačena time, što je rekombinantni protein kombiniran sa ađuvantom.25. The method according to claim 1, characterized in that the recombinant protein is combined with an adjuvant. 26. Metoda prema zahtjevu 3, naznačena time, što je rekombinantni protein kombiniran s ađuvantom.26. The method according to claim 3, characterized in that the recombinant protein is combined with an adjuvant. 27. Metoda prema zahtjevu 5, naznačena time, što je rekombinantni protein kombiniran s ađuvantom.27. The method according to claim 5, characterized in that the recombinant protein is combined with an adjuvant. 28. Metoda za tretiranje osoba inficiranih virusom humanog nedostatka imuniteta (HIV), naznačena time, što se inficiranoj osobi daje preparat koji se sastoji od rekombinantnog proteina ovojnice HIVa i alumskog ađuvanta, pri čemu je rekombinantni protein oblikovan u čestice sa molekulskom težinom od najmanje oko 2,000,000.28. A method for treating persons infected with the human immunodeficiency virus (HIV), characterized in that the infected person is given a preparation consisting of a recombinant HIV envelope protein and an alum adjuvant, wherein the recombinant protein is formed into particles with a molecular weight of at least approx. 2,000,000. 29. Metoda prema zahtjevu 28, naznačena time, što je rekombinantni protein proizveden u ekspresijskom sustavu bakulovirus-stanica insekta.29. The method according to claim 28, characterized in that the recombinant protein is produced in the baculovirus-insect cell expression system. 30. Metoda prema zahtjevu 28, naznačena time, što je rekombinantni protein odabran iz skupine koja obuhvaća rekombinantni gp160, rekombinantni gp120, rekombinantni gp41, rekombinantni protein ovojnice HIVa sa molekulskom težinom oko 145,000, te rekombinantni protein ekspresiran vektorom Ac3046.30. The method according to claim 28, characterized in that the recombinant protein is selected from the group comprising recombinant gp160, recombinant gp120, recombinant gp41, recombinant HIVa envelope protein with a molecular weight of about 145,000, and recombinant protein expressed by the Ac3046 vector. 31. Metoda prema zahtjevu 28, naznačena time, što rekombinantni protein sadržava oko 757 uzastopnih amino kiselina iz gp160, a suštinski ne sadržava oko 40 uzastopnih amino kiselina iz gp160.31. The method according to claim 28, characterized in that the recombinant protein contains about 757 consecutive amino acids from gp160, and essentially does not contain about 40 consecutive amino acids from gp160. 32. Metoda prema zahtjevu 28, naznačena time, što se rekombinantni protein daje u dozi od oko 10 μg do oko 4000 μg.32. The method according to claim 28, characterized in that the recombinant protein is administered in a dose of about 10 μg to about 4000 μg. 33. Preparat terapijskog cjepiva protiv HIVa, naznačen time, što sadržava rekombinantni protein ovojnice HIVa i alumski ađuvant, pri čemu je rekombinantni protein oblikovan u čestice sa molekulskom težinom od najmanje oko 2,000,000.33. A therapeutic vaccine preparation against HIV, characterized in that it contains a recombinant HIV envelope protein and an alum adjuvant, wherein the recombinant protein is formed into particles with a molecular weight of at least about 2,000,000. 34. Preparat prema zahtjevu 33, naznačen time, što je rekombinantni protein ovojnice HIVa osiguran u količini od oko 10 μg do oko 4000 μg po dozi.34. The preparation according to claim 33, characterized in that the recombinant HIV envelope protein is provided in an amount of about 10 μg to about 4000 μg per dose. 35. Preparat prema zahtjevu 34, naznačen time, što je rekombinantni protein proizveden u ekspresijskom sustavu bakulovirus-stanica insekta.35. The preparation according to claim 34, characterized in that the recombinant protein is produced in the baculovirus-insect cell expression system. 36. Preparat prema zahtjevu 34, naznačen time, što rekombinantni protein sadržava oko 757 uzastopnih amino kiselina iz gp160, jedan gp160 peptid prikraćen otprilike na poziciji 757 i bitno isključuje cca 40 graničnih amino kiselina iz gp160.36. The preparation according to claim 34, characterized in that the recombinant protein contains about 757 consecutive amino acids from gp160, one gp160 peptide shortened approximately at position 757 and substantially excludes about 40 bordering amino acids from gp160.
HRP921484 1992-12-31 1992-12-31 Vaccine and treatment method of human immunodeficiency virus infection HRP921484A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HRP921484 HRP921484A2 (en) 1992-12-31 1992-12-31 Vaccine and treatment method of human immunodeficiency virus infection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HRP921484 HRP921484A2 (en) 1992-12-31 1992-12-31 Vaccine and treatment method of human immunodeficiency virus infection

Publications (1)

Publication Number Publication Date
HRP921484A2 true HRP921484A2 (en) 1994-12-31

Family

ID=10945862

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP921484 HRP921484A2 (en) 1992-12-31 1992-12-31 Vaccine and treatment method of human immunodeficiency virus infection

Country Status (1)

Country Link
HR (1) HRP921484A2 (en)

Similar Documents

Publication Publication Date Title
AU732809B2 (en) Compositions and methods for treating viral infections
IE921875A1 (en) Vaccine and treatment method for human immunodeficiency¹virus
US6248574B1 (en) Polypeptides selectively reactive with antibodies against human immunodeficiency virus and vaccines comprising the polypeptides
WO1991009872A1 (en) Hiv-1 env fragment fusion protein
GB2196634A (en) Monoclonal antibodies to HIV and related peptides
EP0327180A2 (en) Vaccine containing polypeptides derived from the envelope gene of human immunodeficiency virus type 1
US20080267989A1 (en) Hiv Gp-41-Membrane Proximal Region Arrayed On Hepatitis B Surface Antigen Particles as Novel Antigens
HRP921484A2 (en) Vaccine and treatment method of human immunodeficiency virus infection
AU2006200454B2 (en) Compositions and methods for treating viral infections
US6290963B1 (en) Anti-HIV compositions containing native and recombinant peptides
Vogt et al. Heterologous HIV-2 challenge of rhesus monkeys immunized with recombinant vaccinia viruses and purified recombinant HIV-2 proteins
SI9200420A (en) Vaccine and treatment method for human immunodeficiency virus
HU211505A9 (en) Vaccine composition for the treatment of hiv infections
LV10492B (en) Vaccine and treatment method for human immunodeficiency virus
AU2004201321A1 (en) Compositions and methods for treating viral infections
LV10497B (en) Process for the production of a vaccine containing polypeptides derived from the envelope gene of human immunodeficiency virus type i
AU2006200455A1 (en) Compositions and methods for treating viral infections
AU2004208648A1 (en) Compositions and methods for treating infections
MXPA99003380A (en) Compositions and methods for treating viral infections

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
ODBI Application refused