HRP921047A2 - Watthour meter or wattmeter comprising hall sensors - Google Patents

Watthour meter or wattmeter comprising hall sensors Download PDF

Info

Publication number
HRP921047A2
HRP921047A2 HR921047A HRP921047A HRP921047A2 HR P921047 A2 HRP921047 A2 HR P921047A2 HR 921047 A HR921047 A HR 921047A HR P921047 A HRP921047 A HR P921047A HR P921047 A2 HRP921047 A2 HR P921047A2
Authority
HR
Croatia
Prior art keywords
input
output
signal
current
cell
Prior art date
Application number
HR921047A
Other languages
Croatian (hr)
Inventor
Miro Rozman
Silvo Lebir
Original Assignee
Iskra Tevci Kranj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from YU02383/87A external-priority patent/YU238387A/en
Application filed by Iskra Tevci Kranj filed Critical Iskra Tevci Kranj
Priority to HR921047A priority Critical patent/HRP921047A2/en
Publication of HRP921047A2 publication Critical patent/HRP921047A2/en

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Description

Područje tehnike u koje spada izum The technical field to which the invention belongs

Ovaj izum općenito spada u područje mjerenja električnih promjenljivih veličina (varijabli). Ovdje predstavljena naprava za mjerenje električne energije ili jakosti s Hallovim senzorom koristi Hallov element kao pretvarač struje i multiplikator pa ovaj izum, u užem smislu, spada u područje mjerenja električne jakosti uporabom naprava sa galvanomagnetskim efektom, gdje također spadaju naprave sa Hallovim efektom. Odgovarajuća oznaka prema međunarodnoj klasifikaciji patenata Int.XXX 4 je G01R 21/08. Predložena naprava može se predvidjeti i kao množina poluprovodničkih ili drugih "solid state" sastavnih dijelova, oblikovanih na zajedničkom supstratu ili u njemu, uključujući komponente, koje koriste galvanomagnetski efekt, kao što je npr. Hallov efekt, pa se predloženi izum može prema Int. Cl. 4 uvrstiti i u skupinu H01L 27/22. This invention generally belongs to the field of measuring electrical variable quantities (variables). The device presented here for measuring electrical energy or strength with a Hall sensor uses a Hall element as a current converter and multiplier, so this invention, in a narrower sense, belongs to the area of measuring electrical strength using devices with a galvanomagnetic effect, which also includes devices with the Hall effect. The corresponding designation according to the international patent classification Int.XXX 4 is G01R 21/08. The proposed device can also be envisioned as a plurality of semiconductor or other "solid state" components, formed on a common substrate or in it, including components that use a galvanomagnetic effect, such as the Hall effect, so the proposed invention can according to Int. Cl. 4 to be included in group H01L 27/22.

Tehnički problem Technical problem

Tehnički problem, kojeg rješava ova prijava, predstavlja visoka preciznost linearnog pretvaranja signala napona sa relativnom niskom razinom razreda veličine 1 mV, u frekvenciju u širokom dinamičkom području. Momenti koji ometaju odn. koji su kod mjerenja signala niske razine uzroci nepreciznog pretvaranja i koje zbog toga moramo kompenzirati, prvenstveno su slijedeći: utjecaj napona odmaka (offset) operacijskih ojačivača, utjecaj vremenske i temperaturne nestabilnosti električnih parametara elemenata integratora, utjecaj parazitnih struja odn. struja zbog nabojskih injekcija elektronskih prekidača, struje koja nastaje kod propuštanja (curenja) prekidača te odmak mjernog senzora od idealne linearne ovisnosti ishodnog napona od jakosti magnetskog polja u senzoru, a također je kompenziran utjecaj starenja te naponska i temperaturna ovisnost Hallovog elementa. također nije zanemariv ni problem zaštite od vanjskih smetnji. The technical problem, which is solved by this application, is the high precision of the linear conversion of a voltage signal with a relatively low class level of 1 mV, into a frequency in a wide dynamic range. Moments that interfere or which when measuring low-level signals are the causes of imprecise conversion and which we therefore have to compensate for, are primarily the following: the influence of the offset voltage of the operational amplifiers, the influence of time and temperature instability of the electrical parameters of the integrator elements, the influence of parasitic currents or current due to charge injections of electronic switches, current that occurs when the switch leaks (leakage) and the deviation of the measuring sensor from the ideal linear dependence of the output voltage on the strength of the magnetic field in the sensor, and the effect of aging and the voltage and temperature dependence of the Hall element are also compensated. the problem of protection against external interference is also not negligible.

Stanje tehnike State of the art

U patentnim prijavama DE 37 02 344 A1 i DE 26 12 764 02 (Iskra) predstavljena su slična rješenja za pretvarač Hallovih napona u frekvenciju i to pomoću pretvarača koji radi na principu okretanja integracijskog kondenzatora za smanjenje utjecaja nultih napona. U oba je rješenja zanemaren utjecaj nabojskih injekcija koje unose elektronski prekidači, a pored toga je sistem okretanja integracijskog kondenzatora manje prikladan za izradu u monolitnoj tehnologiji jer kondenzatori sadrže prilične parazitske kapacitete. Citirane patentne prijave ne rješavaju problem temperaturne kompenzacije, starenja i naponske ovisnosti Hallovog senzora. Patent applications DE 37 02 344 A1 and DE 26 12 764 02 (Iskra) present similar solutions for converting Hall voltages into frequency using a converter that works on the principle of turning the integration capacitor to reduce the influence of zero voltages. In both solutions, the influence of charge injections introduced by electronic switches is neglected, and in addition, the turning system of the integration capacitor is less suitable for manufacturing in monolithic technology because the capacitors contain considerable parasitic capacities. The cited patent applications do not address the problem of temperature compensation, aging and voltage dependence of the Hall sensor.

Kao poznato stanje tehnike korištena je literatura: The literature was used as the known state of the art:

1. High-Frequency Voltage-Controlled Continuos-Time Lowpass Filter Using Linearized CMOS Integrators, objavljen u Electronics Letters 3rd July Vol. 22 No. 14 i 1. High-Frequency Voltage-Controlled Continuos-Time Lowpass Filter Using Linearized CMOS Integrators, published in Electronics Letters 3rd July Vol. 22 No. 14 i

2. A Versatile Building Block: The CMOS Differential Difference Amplifier, objavljen u IEEE Journal of Solid State Circuit, Vol. SC-22, No. 2, April 1987. 2. A Versatile Building Block: The CMOS Differential Difference Amplifier, published in IEEE Journal of Solid State Circuits, Vol. SC-22, No. 2, April 1987.

Opis rješenja Description of the solution

Spojni sklop prema ovom izumu rješava problem točnog mjerenja električne energije i jakosti pomoću Hallovog elementa, koji se koristi kao preuzimač struje i kao množitelj veličina koje se razmjerne linijskom naponu UL i struji "na teret". Uporabljena su najmanje dva elementa koji su tako smješteni da se utjecaj magnetskog polja koji izvire od struje "na teret" u oba Hallova elementa zbraja, dok se utjecaj eventualne vanjske smetnje odbrojava te time poništava. Pretvarač Hallova napona u struju obuhvaća ojačivač sa promjenjivim ojačavanjem koji pomoću funkcionalnog generatora kompenzira utjecaja napojnog napona VB i temperature VT na osjetljivost senzora, a istodobno kompenzira naponsku ovisnost senzora VS. The connection circuit according to this invention solves the problem of accurate measurement of electrical energy and strength by means of a Hall element, which is used as a current collector and as a multiplier of quantities proportional to the line voltage UL and the "load" current. At least two elements are used, which are placed in such a way that the influence of the magnetic field originating from the current "on the load" in both Hall elements is added, while the influence of any external interference is subtracted and thereby canceled. The Hall voltage-to-current converter includes an amplifier with variable gain, which, using a functional generator, compensates for the influence of the supply voltage VB and temperature VT on the sensitivity of the sensor, and at the same time compensates for the voltage dependence of the sensor VS.

Pretvarač struje u frekvenciju koristi diferencijalni integrator sa aktivnom povratnom vezom za prigušivanje skupnog načina (common mode) u sistemu za anuliranje utjecaja statičkih odmaka (offset) i to preuključivanjem signalnog izvora između oba ulaza diferencijalnog integratora, sinkrono sa preuključivanjem polariteta ulazne struje mjernog signala, a istodobno ima izvedenu pretvorbu na principu integracije gore/dolje sa promjenom faze promjene polariteta mjernog signala, čime smanjuje utjecaj dinamičkog signala smetnje koja nastaje zbog injekcija naboja kod preuključivanja prekidača. The current-to-frequency converter uses a differential integrator with an active feedback loop to dampen the common mode in the system for canceling the influence of static offsets by switching the signal source between both inputs of the differential integrator, synchronously with switching the polarity of the input current of the measurement signal, and at the same time, it has a conversion based on the principle of integration up/down with the change of the phase of the change of the polarity of the measuring signal, which reduces the influence of the dynamic interference signal caused by the injection of charges when the switch is switched on.

Sistem također obuhvaća povratnu vezu za kompenzaciju utjecaja statičkih napona odmaka, povratnu vezu za smanjenje veličine valova napona na izlazu integratora, a koja je posljedica nesimetrije Hallovog senzora. Dano je i rješenje za prigušivanje valova ulaznog signala i to filtrom na principu okretanja kondenzatora. The system also includes a feedback connection for compensating the influence of static offset voltages, a feedback connection for reducing the size of the voltage waves at the output of the integrator, which is a consequence of the asymmetry of the Hall sensor. There is also a solution for damping the input signal waves with a filter based on the principle of turning the capacitor.

Opisane mjere povećavaju točnost, dinamičko područje mjerenja te osjetljivost naprave za mjerenje, a istodobno se spojni sklop, uz iznimku kvarcnog kristala, može realizirati u monolitnoj tehnologiji na poluprovodničkoj pločici, bez vanjskih elemenata, zajedno sa Hallovim senzorima. The described measures increase the accuracy, the dynamic range of the measurement and the sensitivity of the measuring device, and at the same time, the connection circuit, with the exception of the quartz crystal, can be realized in monolithic technology on a semiconductor plate, without external elements, together with Hall sensors.

Opisi slika Image descriptions

Slika 1 shema bloka cijele naprave za mjerenje Figure 1 is a block diagram of the entire measuring device

Slika 2 električna shema varijante rješenja diferencijalog integratora i upravljačke logike u sistemu sa I/F (=struja/frekvencija) pretvaračem Figure 2 electrical diagram of a differential integrator solution variant and control logic in a system with an I/F (=current/frequency) converter

Slika 3 električna shema varijante rješenja diferencijalnog integratora i upravljačke logike u sistemu sa delta modulatorom Figure 3 electrical diagram of a variant of the differential integrator solution and control logic in a system with a delta modulator

Slika 4 električna shema povratne omče s filtrom za prigušivanje skupnog načina Figure 4 electrical schematic of a feedback loop with a group mode attenuation filter

Slika 5 električna shema povratne omče sa transkonduktivnim ojačivačem za prigušivanje skupnog načina Figure 5 electrical schematic of a feedback loop with a transconductance amplifier for common mode damping

Slika 6 pretvarač Hallovog napona u struju Figure 6 Hall voltage to current converter

Slika 7 bipolarni referencijalni izvor struje Figure 7 bipolar reference current source

Slika 8 dvostruki bipolarni referencijalni izvor struje Figure 8 double bipolar reference current source

Slika 9 kućište naprave za mjerenje za jednofazno mjerenje Figure 9 housing of the measuring device for single-phase measurement

Slika 10 kućište naprave za mjerenje za trofazno mjerenje. Figure 10 housing of the measuring device for three-phase measurement.

Zadaća je izuma zamjena poznatog principa kompenzacije nultih napona s okretanjem kondenzatora sa principom preuključivanja mjerne struje između ulaza diferencijalnog integratora sinkrono sa okretanjem polariteta mjerne struje sa periodičkim signalom, kojoj se exor vratima mijenja faza sa svrhom da se postigne integracija prema dolje i prema dolje, kojom se kompenziraju dinamički signali smetnji koje unose elektronski prekidači. Prednost korištenja diferencijalnog integratora umjesto integratora sa okretanjem kondenzatora se osim u jednostavnijoj praktičnoj realizaciji ogleda i u tome da svi prekidači za preuključivanje signalnih izvora djeluju pri naponu blizu nultog potencijala, što osigurava jednake radne uvjete za sve prekidače, a uz to su prekidači po svojim dimenzijama manji, pa to oboje osigurava minimalni utjecaj nabojskih injekcija koje nastaju kod preuključivanja prekidača na točnost pretvorbe mjerene jakosti u frekvenciju. The task of the invention is to replace the known principle of compensation of zero voltages with the turning of the capacitor with the principle of switching the measuring current between the inputs of the differential integrator synchronously with the turning of the polarity of the measuring current with a periodic signal, which phase is changed by the exor gate with the purpose of achieving integration down and down, which dynamic interference signals introduced by electronic switches are compensated. The advantage of using a differential integrator instead of an integrator with capacitor rotation is, apart from a simpler practical implementation, also reflected in the fact that all switches for switching signal sources operate at a voltage close to zero potential, which ensures equal working conditions for all switches, and in addition, the switches are smaller in size , both of which ensure the minimal impact of charge injections that occur when switching the switch on the accuracy of the conversion of the measured strength into frequency.

Slika 1 prikazuje shemu bloka cjelokupne naprave za mjerenje koja informaciju o mrežnom naponu UL preuzima preko jednog ili dva pretvarača napona u struju (1, 2), preko kojih napaja oba senzora S1 i S2 (4, 5), koji su u kaskadu vezani sa integratorom Hallovih napona (3) koji omogućava okretanje polariteta pomoću exor vratiju (16), ovisno o signalima C (=C1 ili C2 ili C3, ovisno o varijanti) i P (=P1 ili P2 ili P3 ili P4, ovisno o varijanti) koje generiraju vremenska baza na osnovi kvarcnog oscilatora (19) odn. vremenska baza na osnovi linijske frekvencije (18) ili kontrolna logika 10. Na amplitudu mjerne struje (±IS) utječe ojačivač sa promjenljivim ojačavanjem (8) kojemu se funkcionalnim generatorom (177) u ovisnosti od napojnog napona spoja VB, pada napona na napojnim stezaljkama senzora VS i napona, koji je linearno razmjeran temperaturi VT, podešava ojačavanje sa svrhom da se kompenzira utjecaj starenja i naponske ovisnosti Hallovog elementa za preciznost djelovanja naprave za mjerenje. Mjerna struja (±IS), referencijalni strujni izvori (±IR1) (6) i (±IR2) (7), struja za komepnzaciju valova (±IV), struja za kompenzaciju nultih napona (IO) i struja za kompenzaciju nabojskih injekcija prekidača (±IC) vode se na ulaz diferencijalnog integratora (9) koji mjernu struju (±IS) upravljačkom logikom (10) pretvara u impulsni niz FOUT. Preklopni signali za periodičko preuključivanje polariteta mjernoj struji (±IS) i preklopni signal P za određivanje smjera integracije također određuje upravljačka logika iz vremenskih baza (18) odn. (19), u ovisnosti o uporabljenoj varijanti djelovanja pretvorbe. Signali za kompenzaciju interno generiranih smetnji (±IV), (IO) i (±IC) generiraraju se na činjenici da smetajući signali različite prirode različito utječu na vjerojatnost dolaska ishodnog impulsa FOUT. Kompenzacijska struja (±IV) generirana je kad je na izlazu iz pretvarača, u momentu, kada je periodički signal C(C= ili C1 ili C2 ili C3) u logičkom stanju 1, broj impulsa različit od onog u trenutku kada je u stanju O. Ove razlike registrira dvosmjerno brojilo U/D (v 12), čiji se sadržaj u trenutku preuključivanja signala P prenosi u memoriju L, a izlazom memorije L upravlja D/A pretvarač pomoću strujnog izlaza, kojemu se signalom P kontrolira polaritet. Na sličan je način generirana kompenzacijska struja (±IC), s tom razlikom da su zamijenjene uloge signala C i P. Kompenzacijska struja (IO) koja izjednačava utjecaj napona odmaka, iznimna je prema kriteriju učestalosti nastupa izlaznog impulsa FOUT ovisno o stanju signala C i P na ulazu exor vratiju (15). Figure 1 shows the block diagram of the entire measuring device, which receives information about the mains voltage UL via one or two voltage-to-current converters (1, 2), through which it supplies both sensors S1 and S2 (4, 5), which are connected in cascade with by an integrator of Hall voltages (3) which enables polarity reversal by means of an exor gate (16), depending on the signals C (=C1 or C2 or C3, depending on the variant) and P (=P1 or P2 or P3 or P4, depending on the variant) which generate a time base based on a quartz oscillator (19) or time base based on the line frequency (18) or control logic 10. The amplitude of the measuring current (±IS) is affected by the amplifier with variable gain (8) whose functional generator (177) depending on the supply voltage of the connection VB, the voltage drop on the supply terminals of the sensor VS and the voltage, which is linearly proportional to the temperature VT, adjusts the gain with the purpose of compensating the effect of aging and voltage dependence of the Hall element for the precision of the measurement device. Measuring current (±IS), reference current sources (±IR1) (6) and (±IR2) (7), wave compensation current (±IV), zero voltage compensation current (IO) and switch charge injection compensation current (±IC) are fed to the input of the differential integrator (9) which converts the measured current (±IS) into a pulse sequence FOUT with control logic (10). Switching signals for periodic polarity switching to the measuring current (±IS) and switching signal P for determining the direction of integration are also determined by the control logic from the time bases (18) or (19), depending on the used variant of the conversion effect. Internally generated interference compensation signals (±IV), (IO) and (±IC) are generated based on the fact that interfering signals of different nature affect the probability of arrival of the output pulse FOUT differently. The compensation current (±IV) is generated when it is at the output of the converter, at the moment when the periodic signal C(C= or C1 or C2 or C3) is in the logical state 1, the number of pulses is different from that at the moment when it is in the state O These differences are registered by the two-way counter U/D (v 12), the content of which is transferred to the memory L at the moment of switching the signal P, and the output of the memory L is controlled by the D/A converter using the current output, the polarity of which is controlled by the signal P. The compensating current (±IC) was generated in a similar way, with the difference that the roles of signals C and P were swapped. The compensating current (IO), which equalizes the influence of the offset voltage, is exceptional according to the criterion of the frequency of occurrence of the output pulse FOUT depending on the state of signals C and P at the entrance to the exor gate (15).

Na slici 2 detaljnije su prikazani blokovi (9) i (10) sa slike 1. Vidi se prva varijanta pretvarača mjerne struje (±IS) s frekvencijom, koja djeluje na principu integracije dolje/gore s kompenzacijom naboja. Mjerna je struja integirana u diferencijalnom integratoru (9) sa dva integratora (101, 102), čiji su izlazi preko aktivne povratne omče za prigušivanje skupnog načina (103) (common mode rejection feedback) jedan s drugim preko mostića spojeni s prekidačima (127 do 130), koji spajaju kompenzacijske izlaze (103d, 103f) povratne omče (103) sa invertirajućim ulazima integratora (101, 102). Prekidači (127 do 130) imaju zadaću da komutiraju mjerenu struju (±IS), referencijalne struje (±IR1) i (±IR2) te kompenzacijske struje (±IK1) i (±IK2) iz povratne omče (103) između oba invertirajuća ulaza integratora (101) i (102) u svrhu anuliranja napona odmaka operacionih ojačivača i senzora. Figure 2 shows blocks (9) and (10) from Figure 1 in more detail. The first variant of the measuring current converter (±IS) with frequency can be seen, which works on the principle of integration down/up with charge compensation. The measured current is integrated in a differential integrator (9) with two integrators (101, 102), whose outputs are connected to switches (127 to 130), which connect the compensation outputs (103d, 103f) of the feedback loop (103) with the inverting inputs of the integrator (101, 102). Switches (127 to 130) have the task of switching the measured current (±IS), reference currents (±IR1) and (±IR2) and compensation currents (±IK1) and (±IK2) from the feedback loop (103) between both inverting inputs integrators (101) and (102) for the purpose of canceling the offset voltage of operational amplifiers and sensors.

Polaritet ulaznog signala mijenja se sinkrono sa preukjučivanjem prekidača, pa se mjerena struja integrira nesmetano, dok se svi signali, kojima se preuključivanjem prekidača ne mijenja polaritet, anuliraju nakon dva preuključivanja. Izlazi integratora (101, 102) dolaze u diferencijalni ojačivač (106) na čiji su izlaz vezani komparativni stupanj bez histereze (108) i komparativni stupanj sa histerezom (107) koji upravljačkom logikom (10) generiraju signal R, koji služi za aktiviranje kompenzacijskog impulsa preko prekidača (123, 124), signal P4, koji izmjenom faze određuje smjer integracije periodičkog signala C, signal C3 za preuključivanje prekidača (127, 130) te izlaznu frekvenciju FOUT iz ulaznih signala C1, P1, CL odn. C2, P2, CL koje dobivamo iz vremenskih baza (18) odn. (19). Ulazni signali C1 i P1 generiraju se u razvodniku frekvencije (18) na osnovi mrežne frekvencije preko komparativnog stupnja (17). Frekvencija signala P1 puno je manja od frekvencije C1. Vremenska baza (19) uz signale C2 i P2, koje u varijanti rješenja uporabimo umjesto signala C1 i P1, također generira kvantizacijski signal CL za stvaranje izlazne frekvencije. The polarity of the input signal changes synchronously with switching on the switch, so the measured current is integrated smoothly, while all signals, whose polarity is not changed by switching on the switch, are canceled after two switching on. The outputs of the integrator (101, 102) enter the differential amplifier (106), whose output is connected to a comparative stage without hysteresis (108) and a comparative stage with hysteresis (107), which generate the signal R with the control logic (10), which serves to activate the compensation pulse through the switches (123, 124), signal P4, which by changing the phase determines the direction of integration of the periodic signal C, signal C3 for switching the switches (127, 130) and the output frequency FOUT from the input signals C1, P1, CL or C2, P2, CL which we get from time bases (18) or (19). The input signals C1 and P1 are generated in the frequency divider (18) on the basis of the network frequency via the comparative stage (17). The frequency of the signal P1 is much lower than the frequency of C1. The time base (19) in addition to signals C2 and P2, which in the solution variant we use instead of signals C1 and P1, also generates a quantization signal CL to create the output frequency.

Preklopni signal P4 generira se na osnovi preuključivanja komparatinog stupnja (108), koji detektira prolaske napona integratora (9) kroz nulu s time da uz svaki prolazak stupnja (108) iz logičkog stanja 0 u stanje 1 prenosi signal P1 odn. P2 iz ulaza D ćelije (113) na izlaz, čime se signal za preuključivanje polariteta P4 sinkronizira s prolazima napona integratora kroz potencijal nula. NAND vrata (109) služe za sprečavanje utjecaja smetnji i to na način da iz stupnja (108) propuštaju signal samo u vrijeme dok egzistira kompenzacijski impuls, a EXOR vrata (110) osiguravaju pravilni režim djelovanja kod izmjene polariteta P4 signala. Signal za aktiviranje kompenzacijskog impulsa R određuje komparativni stupanj sa histerezom (107) pomoću EXOR vratiju (111), koja uzimaju u obzir izmjenu smjera integracije i D ćelije (114), koja koja kompenzacijski impuls sinkronizira sa taktnim signalom CL iz kvarcnog oscilatora XXXX. Kompenzacijski impuls se pomoću invertora (117) i NAND vratiju XXX kvantizira i dijeli razvodnikom frekvencije (122) koji na izlazu generira izlaznu frekvenciju FOUT. The switching signal P4 is generated on the basis of the switching of the comparator stage (108), which detects the passage of the voltage of the integrator (9) through zero, with the fact that with each passage of the stage (108) from the logical state 0 to the state 1 it transmits the signal P1 or P2 from the input of cell D (113) to the output, thereby synchronizing the polarity switching signal P4 with the integrator voltage crossings through potential zero. The NAND gate (109) is used to prevent the influence of disturbances in such a way that the signal passes from the stage (108) only during the time when there is a compensating pulse, and the EXOR gate (110) ensures the correct mode of operation when the polarity of the P4 signal is changed. The signal for activating the compensation pulse R determines the comparative stage with hysteresis (107) by means of the EXOR gate (111), which takes into account the change of the integration direction, and the D cell (114), which synchronizes the compensation pulse with the clock signal CL from the quartz oscillator XXXX. the pulse is quantized using the inverter (117) and the NAND gate XXX and divided by the frequency divider (122) which generates the output frequency FOUT at the output.

Ovisno o prirodi referencijalnog strujnog izvora, kod kompenzacije naboja razlikujemo tri podvarijante ove prve varijante. Depending on the nature of the reference current source, we distinguish between three sub-variants of this first variant in case of charge compensation.

Prva podvarijanta prve varijante obuhvaća dvostruki bipolarni referencijalni strujni izvor (±IR1, ±IR2) čime je osigurano simetrično iniciranje oba integratora, a posljedica toga je da kompenzacijske struje IK i IK2 iz povratne omče (103) ne primaju informaciju o kompenzacijskom impulsu. Ovu činjenicu možema uporabiti u varijanti, jer se u povratnoj omči nalazi filtar za prigušivanje valova mjernog signala (±IS). Izmjena polariteta obje referencijalne struje sa signalom P osigurava anuliranje utjecaja napona odmaka operacijskih ojačivača koji se koriste u referencijalnim strujnim generatorima (6, 7). The first subvariant of the first variant includes a double bipolar reference current source (±IR1, ±IR2), which ensures symmetrical initiation of both integrators, and the consequence is that the compensation currents IK and IK2 from the feedback loop (103) do not receive information about the compensation pulse. This fact can be used in a variant, because in the feedback loop there is a filter for damping the waves of the measurement signal (±IS). Changing the polarity of both reference currents with the P signal ensures the cancellation of the influence of the offset voltage of the operational amplifiers used in the reference current generators (6, 7).

Druga podvarijanta prve varijante za kompenzaciju obuhvaća samo referencijalni izvor (±IR1), jednostavnija je ali ne omogućava uporabu filtra za prigušivanje valova mjerene struje. The second sub-variant of the first variant for compensation includes only the reference source (±IR1), is simpler but does not allow the use of a filter for damping the waves of the measured current.

Treća podvarijanta prve varijante koristi jednostavni referencijalni strujni generator bez mogućnosti izmjene polariteta. U tom se slučaju integracija dolje/gore odvija izmijenjenim upravljanjem prekidača (127 do 130) sa signalom C3 kojeg generiraju vrata (115, 116, 119, 120, 121). U vrijeme trajanja kompenzacijskog impulsa signal C3 zauzima logičko stanje 1 kada se integracija odvija prema gore bez obzira na signal C1 odn. C2, te logičko stanje 0 u vrijeme trajanja kompenzacijskog impulsa kada se integracija odvija prema dolje. U vrijeme, dok nema kompenzacijskog impulsa, signal C3 identičan je signalu C1 odnosno C2. Ova varijanta omogućava najjednostavniju realizaciju, ali ne uklanja utjecaj napona odmaka operacijskog ojačivača u referencijalnom strujnom generatoru. The third sub-variant of the first variant uses a simple reference current generator without the ability to change polarity. In this case, the down/up integration takes place by changing the control of the switches (127 to 130) with the signal C3 generated by the gates (115, 116, 119, 120, 121). During the duration of the compensating pulse, the C3 signal occupies the logical state 1 when the integration takes place upwards regardless of the C1 signal or C2, and logical state 0 during the duration of the compensating pulse when the integration takes place downwards. During the time when there is no compensation pulse, signal C3 is identical to signal C1 or C2. This variant enables the simplest implementation, but does not remove the influence of the offset voltage of the operational amplifier in the reference current generator.

Na sl. 3 vidi se druga varijanta pretvarača napona u frekvenciju i to na bazi delta modulatora odnosno modulatora širine impulsa. U ovoj je varijanti referencijalni strujni izvor (±IR1) na ulaze, diferencijalnog integratora (9) spojen preko prekidača (161, 162) kojima upravljaju signali (QR, QR) iz upravljačke logike (10). Fig. 3 shows another variant of the voltage-to-frequency converter based on a delta modulator or pulse width modulator. In this variant, the reference current source (±IR1) is connected to the inputs of the differential integrator (9) via switches (161, 162) controlled by signals (QR, QR) from the control logic (10).

U prvoj varijanti druge varijante prekidačima (161, 162) upravlja delta modulator, koji je sastavljen iz: komparativnog stupnja (108) koji registrira polaritet izlaznog napona diferencijalnog integratora (9), D ćelije (15) koja signal iz stupnja (108) sinkronizira s referencijalnom frekvencijom CL te exor vratiju (152) koja preko RS ćelije (154) određuju upravljačke signale (QR) i (QR) za prekidače (161, 162), ovisno o stanju periodičkog signala P1 odnosno P2 i stanju Q izlaza D ćelije (151). Izlazna frekvencija FOUT ostvarena je pomoću dvosmjernog brojila (156), čiji je izlaz za određivanje smjera brojanja (U/D) preko exor vratiju spojen na izlaz ćelije (151), dok je ulaz brojanja spojen na referencijalnu frekvenciju CL. Izlazi (QN-1, QN) brojila (156) su preko invertora (157) i vratiju (158, 159) priključeni na RS ulaze ćelije (16) koja generira izlaznu frekvenciju. Ova se frekvencija nadalje dijeli razvodnikom frekvencija (122). In the first variant of the second variant, the switches (161, 162) are controlled by a delta modulator, which is composed of: a comparative stage (108) which registers the polarity of the output voltage of the differential integrator (9), a D cell (15) which synchronizes the signal from the stage (108) with by the reference frequency CL and the exor gate (152) which via the RS cell (154) determines the control signals (QR) and (QR) for the switches (161, 162), depending on the state of the periodic signal P1 or P2 and the state of the Q output of the D cell (151 ). The output frequency FOUT is achieved by means of a two-way counter (156), whose output for determining the direction of counting (U/D) is connected to the output of the cell (151) via the exor gate, while the counting input is connected to the reference frequency CL. The outputs (QN-1, QN) of the counter (156) are connected via the inverter (157) and the gate (158, 159) to the RS inputs of the cell (16) which generates the output frequency. This frequency is further divided by a frequency divider (122).

Druga podvarijanta druge varijante se od prve razlikuje samo po tome da se umjesto komparativnog stupnja (108) koristi komparativni stupanj sa histerezom (107), čime se smanjuje frekvencija preuključivanja signala (QR i QR) i povećava točnost pretvaranja. U ovoj se podvarijanti izmjena polariteta odnosno smjera integracije mora sinkronizirati s preuključivanjem komparativnog stupnja (107), a to obavlja D ćelija (150) koja iz signala P1 odnosno P2 stvara signal P3, koji preko exor vratiju (16) mijenja fazu periodičkom signalu C. The second sub-variant of the second variant differs from the first only in that instead of the comparative stage (108) a comparative stage with hysteresis (107) is used, which reduces the signal switching frequency (QR and QR) and increases the conversion accuracy. In this sub-variant, the change of polarity or the direction of integration must be synchronized with the switching of the comparative stage (107), and this is done by the D cell (150), which from the signal P1 or P2 creates the signal P3, which through the exor gate (16) changes the phase to the periodic signal C.

U obje podvarijante može se koristiti bipolarni referencijalni strujni izvor kojemu je signalom P izmjenjen polaritet, čime se uklanja utjecaj napona odmaka operacijskog ojačivača, koji se nalazi u referencijalnom izvoru. U slučaju kada se koristi jednostavni referencijalni izvor bez mogućnosti izmjene polariteta, na ulaz vratiju (152) je umjesto signala P1 odnosno P2 potisnuto logičko stanje 1. In both sub-variants, a bipolar reference current source can be used, the polarity of which is changed by the P signal, which removes the influence of the offset voltage of the operational amplifier, which is located in the reference source. In the case when a simple reference source is used without the possibility of changing the polarity, the logic state 1 is pushed to the input gate (152) instead of the signal P1 or P2.

Prva varijanta povratne omče The first variant of the return loop

Na sl. 4 prikazana je shema električnog spojnog sklopa prve varijante povratne omče za prigušivanje skupnog načina (103) iz filtra za prigušivanje veličine valova mjerenog signala. Zadaća povratne omče je ta da osigurava simetrični tok izlaznog napona integratora (101) i (102) bez obzira na njihovo nesimetrično aktiviranje. Za povećavanje simetrije koristi se aktivna povratna omča sa operacijskim ojačivačem (54), čije ojačavanje određuju otpornici (55, 56). U slučaju kada naponi na ulazima 103a i 103b u odnosu na nulti potencijal nisu simetrični, u točki međusobnog kontakta otpornika (58, 59) dolazi do napona UCM, kojeg ojačivač (54) ojačava, a na izlazu pomoću razvodnika otpornika (50, 51) odnosno (52, 53) stvara kompenzacijske tokove za izjednačavanje nesimetrije (IK1) odnosno (IK2). Otpornici (50, 53) imaju negativne vrijednosti otpornika (51, 52), što se postiže negativnim impedancijskim konvertorom. Time se osigurava visoka izlazna impedancija na kompenzacijskim izlazima (103d) i (103f). Otpornici 50 i 51 mogu imati jednake ili različite vrijednosti kao otpornici (52, 53). U slučaju kada otpornici (50) i (51) imaju za faktor N manju vrijednost od otpornika (52, 53), atenuira se ulazna struja u diferencijalni integrator. U tom su slučaju potrebni manji kapaciteti integracijskih kondenzatora, što je u monolitnoj tehnologiji vrlo poželjno. Fig. 4 shows the diagram of the electrical connection circuit of the first variant of the feedback loop for damping the collective mode (103) from the filter for damping the size of the waves of the measured signal. The task of the feedback loop is to ensure the symmetrical flow of the output voltage of the integrators (101) and (102) regardless of their asymmetrical activation. To increase the symmetry, an active feedback loop with operational amplifier (54) is used, whose amplification is determined by resistors (55, 56). In the case when the voltages at the inputs 103a and 103b are not symmetrical in relation to the zero potential, at the point of mutual contact of the resistors (58, 59) there is a voltage UCM, which is amplified by the amplifier (54), and at the output using the resistor distributor (50, 51) that is, (52, 53) creates compensatory flows to equalize the asymmetry (IK1) and (IK2). Resistors (50, 53) have negative values of resistors (51, 52), which is achieved by a negative impedance converter. This ensures a high output impedance at the compensation outputs (103d) and (103f). Resistors 50 and 51 can have the same or different values as resistors (52, 53). In the case when resistors (50) and (51) have a factor N smaller than resistors (52, 53), the input current to the differential integrator is attenuated. In this case, smaller capacities of integration capacitors are required, which is highly desirable in monolithic technology.

Filtar za prigušivanje valova može se priključiti paralelno sa otpornikom (51). Filtar se sastoji iz kondenzatora (57), kojemu se priključne stezaljke s kontaktnim mostićem (60, 61, 62, 63) okreću pomoću signala iz izlaza RS ćelije (64), ovisno o signalima C i P na ulazu exor vratiju (66). The wave damping filter can be connected in parallel with the resistor (51). The filter consists of a capacitor (57), to which the connecting terminals with a contact bridge (60, 61, 62, 63) are turned using the signal from the output of the RS cell (64), depending on the signals C and P at the input of the exor gate (66).

Druga varijanta povratne omče Another variant of the return loop

Druga varijanta povratne omče (103) na sl. 5 izvedena je s transkonduktivnim ojačivačem (67) sa paralelnim izlazima (68, 69) (103d, 103f) i dva diferencijalna ulaza (gl. literaturu: (2)), čiji su invertirajući ulazi vezani na stezaljku 103c, a neinvertirajući ulazi na stezaljke (103a) odnosno (103b). Transkonduktivni ojačivač izrađen je na način prikazan u literaturi (1), s razlikom da su mu izlazni tranzistori udvostručeni i to sa svrhom da nastanu dva neovisna izlaza, a uz to ima dva ulazna diferencijalna stupnja, kao što je prikazano u literaturi (2). The second variant of the feedback loop (103) in Fig. 5 is performed with a transconductive amplifier (67) with parallel outputs (68, 69) (103d, 103f) and two differential inputs (see literature: (2)), whose inverting inputs are connected to terminal 103c, and non-inverting inputs to terminals (103a) and (103b). The transconductive amplifier is made in the manner shown in the literature (1), with the difference that its output transistors are doubled with the purpose of creating two independent outputs, and it also has two input differential stages, as shown in the literature (2).

Pretvarač Hallovog napona u struju (±IS) prikazuje sl. 6. Pretvarač obuhvaća dva ulaza za napajanje senzora (I1, I2), koji mogu biti kratko spojeni ako oba senzora napajamo iz samo jednog pretvarača dalekovodnog napona u struju (1). Najmanje dva Hallova elementa (170, 171) su pomoću regulacijskih ojačivača (174, 175) serijski tako spojeni da se Hallovi naponi pojedinih senzora zbrajaju. Zbroj napona obaju senzora nakon toga se ojačava ojačivačem sa promjenljivim ojačavanjem (176), a ojačavanje mu ovisi od razine izlaznog signala funkcionalnog generatora (177), koji ojačavanje stupnja mijenja (176) ovisno o napojnom naponu V3, padu napona na napojnim stezaljkama senzora VS i naponu koji je proporcionalan temperaturi VT, a u svrhu da se kompenziraju utjecaji starenja, promjene napojnog napona i temperature na osjetljivost senzora. The Hall voltage-to-current converter (±IS) is shown in Fig. 6. The converter includes two inputs for powering the sensors (I1, I2), which can be short-circuited if both sensors are fed from only one transmission voltage-to-current converter (1). At least two Hall elements (170, 171) are connected in series using control amplifiers (174, 175) so that the Hall voltages of individual sensors are added. The sum of the voltages of both sensors is then amplified by an amplifier with a variable gain (176), and its amplification depends on the level of the output signal of the functional generator (177), which changes the gain of the stage (176) depending on the supply voltage V3, the voltage drop on the supply terminals of the sensor VS and a voltage that is proportional to the temperature VT, in order to compensate for the effects of aging, changes in supply voltage and temperature on the sensitivity of the sensor.

Funkcionalna ovisnost ojačavanja stupnja (176) određena je eksperimentalno na temelju mjerenja senzora. Pretvaranje napona u struju odvija se na otporniku (178) koji je na jednom kraju spojen sa izlazom ojačivača (176), a na drugom kraju sa neinvertirajućim ulazom prvog regulacijskog ojačivača (175). Izlazna stezaljka (±IS) je preko prekidača spojena na virtualnu masu diferencijalnog integratora (9). Polaritet mjernog signala mijenja se okretanjem napojnih stezaljki senzora (170, 171) pomoću kontaktnih mostića (172, 173), kojima upravljaju signali (QS, QS) na izlazu RS ćelije (179), kojom preko EXOR vratiju (16) upravljaju periodički signali C i P. The functional dependence of the stage gain (176) was determined experimentally based on sensor measurements. The conversion of voltage into current takes place on the resistor (178), which is connected at one end to the output of the amplifier (176), and at the other end to the non-inverting input of the first regulatory amplifier (175). The output terminal (±IS) is connected to the virtual mass of the differential integrator (9) via a switch. The polarity of the measurement signal is changed by turning the supply terminals of the sensor (170, 171) using contact bridges (172, 173), which are controlled by the signals (QS, QS) at the output of the RS cell (179), which is controlled via the EXOR gate (16) by periodic signals C and P.

Pritom se smatra da signal C predstavlja jedan od varijanti signala C1, C2, C3, ovisno od uporabljene varijante. Slično vrijedi za signal P, koji predstavlja jedan od varijantnih signala P1, P2, P3 ili P4. It is considered that signal C represents one of the variants of signals C1, C2, C3, depending on the used variant. The same applies to signal P, which represents one of the variant signals P1, P2, P3 or P4.

Shema električnog spojnog sklopa bipolarnog referencijalnog strujnog generatora prikazana je na sl. 7. Generator referencijalnog napona (81) napaja se strujnim generatorima (80) i analognim invertorom (82), koji određuje simetričnost pozitivne i negativne stezaljke referencijalnog napona u odnosu na potencijal izlazne stezaljke (±IR). Pretvaranje referencijalnog napona u struju (±IR) odvija se na otporniku (84), koji je prvim priključkom spojen sa naponskim monitorom (83), a drugim priključkom na neinvertirajući ulaz analognog invertora (82). Polaritet referencijalne struje određuje signal P preko analognih prekidača (85, 86) i to preuključivanjem neinvertirajućeg ulaza naponskog monitora (83) između obje stezaljke referencijalnog generatora (81). The diagram of the electrical connection circuit of the bipolar reference current generator is shown in Fig. 7. The reference voltage generator (81) is powered by current generators (80) and an analog inverter (82), which determines the symmetry of the positive and negative terminals of the reference voltage in relation to the potential of the output terminal (±IR). Conversion of the reference voltage into current (±IR) takes place on the resistor (84), which is connected to the voltage monitor (83) by the first connection, and to the non-inverting input of the analog inverter (82) by the second connection. The polarity of the reference current is determined by the signal P via analog switches (85, 86) by switching the non-inverting input of the voltage monitor (83) between both terminals of the reference generator (81).

Protufazni bipolarni referencijalni strujni izvor (±IR1, ±IR2) prikazuje sl. 8. Referencijalne struje dobivamo na izlazu otporničkih razvodnika (93, 95) odnosno (94, 96), koji su na ulazu spojeni sa monitorima napona (91) odnosno (92). Ulazi ovih monitora su preko kontaktnog mostića (90) spojeni sa suprotnim polovima referencijalnog generatora (81). Polaritet izlaznih struja određuje signal P (=P1 ili P2 ili P3) za upravljanje kontaktnim mostićem (90). Otpornici (95) i (96) imaju negativne vrijednosti te su izvedeni sa negativnim impedancijskim konvertorom, čime osiguravamo veliki izlazni otpor strujnog generatora. U slučaju, kada povratna omča (103) na sI. 2 i 4 ima nesimetrično dimenzionirane otporničke razvodnike, otpornici (93, 95) imaju vrijednosti koje su za isti faktor N izmijenjene u odnosu na otpornike (94, 96). Protufazni referencijalni strujni izvor uporabljen je u varijanti s filtrom za prigušivanje valova mjerene struje. The opposite-phase bipolar reference current source (±IR1, ±IR2) is shown in Fig. 8. Reference currents are obtained at the output of resistor distributors (93, 95) and (94, 96), respectively, which are connected at the input to voltage monitors (91) and (92) ). The inputs of these monitors are connected to the opposite poles of the reference generator (81) via a contact bridge (90). The polarity of the output currents is determined by the signal P (=P1 or P2 or P3) for controlling the contact bridge (90). Resistors (95) and (96) have negative values and are designed with a negative impedance converter, which ensures a high output resistance of the current generator. In case, when the return loop (103) on sI. 2 and 4 have asymmetrically dimensioned resistor distributors, resistors (93, 95) have values that are changed by the same factor N in relation to resistors (94, 96). The anti-phase reference current source is used in the variant with a filter for damping the measured current waves.

Opisani sistem mjerenja može se realizirati na poluprovodničkoj pločici, koja je zatvorena u kućište koje prikazuje sl. 9. Poluprovodnička pločica (205) sastoji se iz dva Hallova senzora (203, 204) koji se nalaze na suprotnim rubovima, a u sredini se nalazi sklop za mjerenje koji je zatvoren u keramičko odnosno plastično kućište (201), koje je umetnuto u izolirani prorez (207) u vodiču (206) po kojem teče dalekovodna struja. Vodič struje (206) aktivira magnetsko polje u feromagnetskoj jezgri (202), koja je okružena kućištem sa mjernim sistemom (201), a na mjestu na kojem se nalaze Hallovi senzori (203, 204) tvori dva zračna proreza u kojem je aktivirano magnetsko polje suprotno orijentirano. Takav raspored omogućava kompenzaciju utjecaja eventualnih magnetskih polja, koja stvaraju smetnje, jer su isti u prorezima jednako orijentirani i jer je integrator Hallovih napona tako spojen da zbraja suprotno orijentirane vrijednosti, dok one, koji su jednako orijentirane, anulira. The described measurement system can be implemented on a semiconductor board, which is enclosed in the housing shown in Fig. 9. The semiconductor board (205) consists of two Hall sensors (203, 204) located on opposite edges, and in the middle there is a circuit for measurement which is enclosed in a ceramic or plastic case (201), which is inserted into an insulated slot (207) in the conductor (206) through which the long-distance current flows. The current conductor (206) activates the magnetic field in the ferromagnetic core (202), which is surrounded by the housing with the measuring system (201), and in the place where the Hall sensors (203, 204) are located, it forms two air slots in which the magnetic field is activated oppositely oriented. Such an arrangement enables the compensation of the influence of possible magnetic fields, which cause interference, because they are equally oriented in the slots and because the integrator of Hall voltages is connected in such a way that it adds the oppositely oriented values, while canceling those that are equally oriented.

Mjerni sistem s dva Hallova elementa, koji su smješteni na dva suprotna ruba poluprovodničke pločice, uz jednofazno mjerenje električne energije omogućava uporabom Aronovih veza također dvofazno i trofazno mjerenje. The measurement system with two Hall elements, which are located on two opposite edges of the semiconductor wafer, in addition to the single-phase measurement of electricity, also enables two-phase and three-phase measurement by using Aron connections.

Kućište za dvofazno odnosno trofazno mjerenje prikazuje sl. 10. Kod ovog se rasporeda senzori (203) i (204) nalaze u zračnim prorezima (212, 213) u dva odvojena feromagnetska prstena (207, 209). Aktiviraju se strujom različitih faza preko vodiča (208), (210). Cijeli je sistem od stranih magnetskih polja zaštićen feromagnetskim kućištem (21), koje je prepolovljeno stijenom (214), na kojoj se nalazi pukotina (215) u kojoj je smješteno kućište (201) sa poluprovodničkom pločicom (205) i to tako da je simetrala stijene (214) identična sa simetralom između Hallovih senzora (203, 204). The case for two-phase or three-phase measurement is shown in Fig. 10. In this arrangement, the sensors (203) and (204) are located in air slots (212, 213) in two separate ferromagnetic rings (207, 209). They are activated by the current of different phases through conductors (208), (210). The entire system is protected from foreign magnetic fields by a ferromagnetic housing (21), which is cut in half by a rock (214), on which there is a crack (215) in which the housing (201) with a semiconductor plate (205) is located, and that is so that the bisector rocks (214) identical to the bisector between the Hall sensors (203, 204).

Kućište prikazano na slici 10 možemo uporabljati i za jednofazni sistem kada želimo ekstremno zaštićen mjerni sistem koji će biti dobro zaštićen od vanjskih polja i to tako da se jezgre (207, 209) aktiviraju jednofaznom strujom. The case shown in Figure 10 can also be used for a single-phase system when we want an extremely protected measuring system that will be well protected from external fields, and that is so that the cores (207, 209) are activated by single-phase current.

Claims (15)

1. Naprava za mjerenje električne energije ili jakosti s Hallovim senzorom za generaciju korisnog signala s promjenjivim polaritetom (±IS), koji je linearno razmjeran trenutnoj potrošnji u mreži, a koji pretvaračem struje u frekvenciju pretvorimo u imupulsni niz (FOUT) naznačen time, da obuhvaća, najmanje dva Hallova elementa (203, 204), koji su tako smješteni u različitim zračnim prorezima (212, 213) u feromagnetskoj jezgri (202) odnosno (207 i 209) da je smjer vektora H jakosti magnetskog polja u prvom prorezu (212) suprotno polariziran u odnosu na smjer vektora H u drugom prorezu (213); da pretvarač (3, 4, 5, 8) Hallova napona u struju (±IS) obuhvaća ojačivač sa promjenljivim ojačavanjem i integratorom Hallovih napona pojedinih senzora te spojni sklop za okretanje polariteta korisnog signala pomoću periodičkog signala C, kojemu fazu određuje periodički signal P pomoću exor vratiju (16).1. A device for measuring electrical energy or strength with a Hall sensor for the generation of a useful signal with variable polarity (±IS), which is linearly proportional to the current consumption in the network, and which is converted into an impulse sequence (FOUT) by a current-to-frequency converter, indicated by the fact that includes at least two Hall elements (203, 204), which are located in different air slots (212, 213) in the ferromagnetic core (202) and (207 and 209), respectively, so that the direction of the vector H of the magnetic field strength in the first slot (212 ) oppositely polarized in relation to the direction of the vector H in the second slot (213); that the converter (3, 4, 5, 8) of the Hall voltage into the current (±IS) includes an amplifier with variable amplification and an integrator of the Hall voltages of individual sensors and a circuit for reversing the polarity of the useful signal using the periodic signal C, the phase of which is determined by the periodic signal P using exor door (16). 2. Spojni sklop prema zahtjevu 1, naznačen time, da je pretvarač struje (IS) u frekvenciju (FOUT) izveden sa diferencijalnim integratorom (9), koji se sastoji iz dvaju integratora (101) i (102), čiji su izlazi povratnom omčom za prigušivanje skupnog načina (103) preko kontaktnog mostića sa prekidačima (127, 128, 129, 130) spojeni na neinvertirajuće ulaze integratora (101) i (102); da su neinvertirajući ulazi (103a, 103b) povratne omče (103) spojeni na izlaze integratora (101, 102), dok je invertirajući ulaz (103c) spojen na masu; da se prekidačima (127, 128, 129, 130) upravlja preko RS ćelije (163) periodičkim signalom kojeg stvaraju vremenska baza (18) ili vremenska baza (19) ili upravljačka logika (10); da su izlazi integratora (101, 102) spojeni na ulaz diferencijalnog ojačivača (106), čiji je izlaz spojen na ulaz upravljačke logike (10).2. Connection circuit according to claim 1, indicated by the fact that the current (IS) to frequency (FOUT) converter is made with a differential integrator (9), which consists of two integrators (101) and (102), whose outputs are feedback loops to dampen the collective mode (103) via a contact bridge with switches (127, 128, 129, 130) connected to the non-inverting inputs of the integrator (101) and (102); that the non-inverting inputs (103a, 103b) of the feedback loop (103) are connected to the integrator outputs (101, 102), while the inverting input (103c) is connected to ground; that the switches (127, 128, 129, 130) are controlled via the RS cell (163) by a periodic signal generated by the time base (18) or the time base (19) or the control logic (10); that the outputs of the integrator (101, 102) are connected to the input of the differential amplifier (106), whose output is connected to the input of the control logic (10). 3. Spojni sklop prema zahtjevu 1 ili 2, naznačen time, da povratna omča za prigušivanje skupnog načina (103) obuhvaća ojačivač (54), čiji je neinvertirajući ulaz preko otpornika (58) i (59) spojen na ulaze (103a) i (103b), dok je invertirajući ulaz preko otpornika (56) spojen na ulaz (103c); da je izlaz ojačivača (54) preko otporničkih razvodnika otpornicima (50, 51, 52, 53) spojen na izlaze (103d) i (103f); da je između izlaza ojačivača (54) i izlaza (103d) spojen filtar kojeg tvore kondenzator (57) sa kontaktnim mostićem (60, 61, 62, 63) i upravljačkim spojnim sklopom (64, 65, 66).3. The connection circuit according to claim 1 or 2, characterized in that the feedback loop for damping the collective mode (103) comprises an amplifier (54), whose non-inverting input is connected via resistors (58) and (59) to the inputs (103a) and ( 103b), while the inverting input is connected to the input (103c) through the resistor (56); that the output of the amplifier (54) is connected to the outputs (103d) and (103f) via resistor distributors with resistors (50, 51, 52, 53); that a filter formed by a capacitor (57) with a contact bridge (60, 61, 62, 63) and a control circuit (64, 65, 66) is connected between the output of the amplifier (54) and the output (103d). 4. Spojni sklop prema zahtjevu 1 i 2, naznačen time, da povratna omča za prigušivanje skupnog načina (103) obuhvaća transkonduktivni ojačivač (67) sa dva paralelna strujna izlaza (68, 69) i dvostruki diferencijalni stupanj na ulazu; da je neinvertirajući ulaz prvog diferencijalnog stupnja spojen na ulaz 103a, a drugi neinvertirajući ulaz na ulaz (103b), dok su oba invertirajuća ulaza spojena na ulaz (103c); da su strujni izlazi (68) i (69) direktno spojeni na izlaze (103d) i (103f).4. The connection circuit according to claim 1 and 2, characterized in that the feedback loop for damping the collective mode (103) comprises a transconductive amplifier (67) with two parallel current outputs (68, 69) and a double differential stage at the input; that the non-inverting input of the first differential stage is connected to input 103a, and the second non-inverting input to input (103b), while both inverting inputs are connected to input (103c); that current outputs (68) and (69) are directly connected to outputs (103d) and (103f). 5. Spojni sklop prema zahtjevima 1 do 4 te sl. 2, naznačen time, da je strujni izvor ulaznog signala (±IS) na ulaz diferencijalnog integratora (9) spojen u točci kontakta prekidača (127) i (128); da su referencijalni strujni izvori (±IR1) i (±IR2) preko prekidača (123) i (124) spojeni na točku kontakta prekidača (128, 129) odn. (127, 130); da je signal R za upravljanje kompenzacijskog impulsa preko prekidača (123, 124) generiran na izlazu D ćelije (114), čiji je D ulaz preko vratiju (111) spojen na izlaz tolerancijskog stupnja sa histerezom (107), dok je taktni ulaz D ćelije (114) spojen na CL izlaz vremenske baze (19); da je signal polariteta P4 generiran na izlazu D ćelije (113) te signala P1 odnosno P2, ovisno o stanju izlaza tolerancijskog stupnja 108, koji je preko vratiju (109), (110) i invertora (112) spojen na taktni ulaz D ćelije (113); da se signali QC i QC za preuključivanje kontaktnog mostića (127, 128, 129, 130), a koji se ne prekrivaju, generiraju na izlazu RS ćelije (131) iz taktnih signala C1 odnosno C2 iz vremenskih baza (18) ili (19) odnosno iz signala C3, kojeg generiraju vrata (115, 116, 119, 120, 121), ovisno o signalima R, P i C1 odnosno C2; da se izlazna frekvencija FOUT stvara pomoću razvodnika frekvencije (122), čiji je ulaz za brojanje preko vratiju (118) i invertora (117) spojen na izlaz ćelije (114) i vremensku bazu (19).5. Connection circuit according to claims 1 to 4 and Fig. 2, characterized in that the current source of the input signal (±IS) is connected to the input of the differential integrator (9) at the contact point of the switches (127) and (128); that the reference current sources (±IR1) and (±IR2) are connected via switches (123) and (124) to the contact point of switches (128, 129) or (127, 130); that the signal R for controlling the compensation pulse via the switch (123, 124) is generated at the output of the D cell (114), whose D input is connected via the gate (111) to the output of the tolerance stage with hysteresis (107), while the clock input of the D cell (114) connected to the CL output of the time base (19); that the P4 polarity signal is generated at the output of the D cell (113) and the P1 or P2 signal, depending on the state of the output of the tolerance stage 108, which is connected to the clock input of the D cell via the gates (109), (110) and the inverter (112) ( 113); that the QC and QC signals for switching the contact bridge (127, 128, 129, 130), which do not overlap, are generated at the output of the RS cell (131) from the clock signals C1 and C2 respectively from the time bases (18) or (19) that is, from signal C3, generated by gates (115, 116, 119, 120, 121), depending on signals R, P and C1, respectively C2; that the output frequency FOUT is created by means of a frequency divider (122), whose input for counting is connected to the output of the cell (114) and the time base (19) through the gate (118) and the inverter (117). 6. Spojni sklop prema zahtjevima 1 do 4 te sl. 3, naznačen time, da je strujni izvor ulaznog signala (±IS) spojen na ulaz diferencijalnog integratora (9) u zajedničku točku prekidača (127, 130); a referencijalni strujni izvor (±IR1) preko prekidača (161, 162) spojen na invertirajuće ulaze integratora (101, 102); da se signali QR i QR generiraju na izlazima RS ćelije (154), čijim R i S ulazima upravljaju vrata (152), kojima je jedan ulaz spojen na izlaz D ćelije (151) za sinkronizaciju signala iz tolerancijskog stupnja (108) odnosno tolerancijskog stupnja s histerezom (107) sa referencijalnom frekvencijom CL iz vremenske baze 19, a drugi je ulaz exor vratiju (152) spojen na signale P1 odnosno P2 iz vremenskih baza (18, 19) odnosno na logičko stanje 1; da se signali QC i QC za preklapanje kontaktnog mostića (127, 128, 129, 130) na izlazu RS ćelije (163) generiraju iz taktnih signala C1 odnosno C2 iz vremenskih baza (18) ili (19); da je Q izlaz sinkronizacijske ćelije (151) preko prvog ulaza exor vratiju (153) spojen na ulaz za određivanje smjera brojanja (U/D) brojila (156), dok je drugi ulaz exor vratiju (153) spojen na signal P1 odnosno P2 iz vremenskih baza (18), (19) odnosno na signal P3 sa izlaza D ćelije (150), koji signal P1 odnosno P2 na D vratima D ćelije (150) preko taktnog ulaza sinkronizira sa izlaznim signalom komparativnog stupnja sa histerezom (107); da se izlazna frekvencija FOUT generira (RS) ćelijom (160), ćiji su R i S ulazi spojeni preko vratiju (158) i (159), a invertor (157) na QN i QN-1 izlaze dvosmjernog brojila (156), dok je taktni ulaz (RS) ćelije (160) spojen na signal CL iz vremenske baze, a izlaz ćelije (160) na ulaz izlaznog razvodnika frekvencije (122).6. Connection circuit according to claims 1 to 4 and Fig. 3, characterized in that the current source of the input signal (±IS) is connected to the input of the differential integrator (9) in the common point of the switch (127, 130); and the reference current source (±IR1) via the switch (161, 162) connected to the inverting inputs of the integrator (101, 102); that the QR and QR signals are generated at the outputs of the RS cell (154), whose R and S inputs are controlled by the gate (152), one input of which is connected to the output of the D cell (151) for synchronizing the signals from the tolerance stage (108) or the tolerance stage with hysteresis (107) with reference frequency CL from time base 19, and the second input to the exor gate (152) is connected to signals P1 or P2 from time bases (18, 19) or to logic state 1; that the signals QC and QC for switching the contact bridge (127, 128, 129, 130) at the output of the RS cell (163) are generated from the clock signals C1 and C2 respectively from the time bases (18) or (19); that the Q output of the synchronization cell (151) via the first input of the exor gate (153) is connected to the input for determining the counting direction (U/D) of the counter (156), while the second input of the exor gate (153) is connected to the signal P1 or P2 from of time bases (18), (19) or to the signal P3 from the output of the D cell (150), which the signal P1 or P2 on the D gate of the D cell (150) via the clock input synchronizes with the output signal of the comparative stage with hysteresis (107); that the output frequency FOUT is generated (RS) by the cell (160), whose R and S inputs are connected via the gates (158) and (159), and the inverter (157) to the QN and QN-1 outputs of the two-way counter (156), while is the clock input (RS) of the cell (160) connected to the signal CL from the time base, and the output of the cell (160) to the input of the output frequency divider (122). 7. Spojni sklop prema zahtjevima 1 do 6, koji obuhvaća povratnu omču za kompenzaciju nultih napona (13), koja se sastoji iz dvosmjernog brojila, zatvarač (LATCH) te D/A pretvarač sa strujnim izlazom, naznačen time, da se ulazom za određivanje smjera brojanja dvosmjernog brojila (U/D) upravlja exor vratima (15) u ovisnosti od signala C i P iz vremenskih baza, a ulaz brojanja izlaznom frekvencijom FOUT.7. Connection assembly according to claims 1 to 6, which includes a feedback loop for compensation of zero voltages (13), which consists of a two-way counter, a shutter (LATCH) and a D/A converter with a current output, characterized in that the input for determining the counting direction of the two-way counter (U/D) controls the exor gate (15) depending on the signals C and P from the time bases, and the counting input by the output frequency FOUT. 8. Spojni sklop prema zahtjevima 1 do 6, naznačen time, da obuhvaća povratnu vezu za kompenzaciju izmjenične komponente u ulaznom signalu (12), koja sadrži dvosmjerno brojilo, koje ima ulaz za određivanje smjera brojanja kojim upravlja signal C, a ulaz brojanja izlaznom frekvencijom FOUT, zatvarač (L) = (LATCH) i D/A pretvarač sa strujnim izlazom, čiji je polaritet određen signalom P iz vremenske baze.8. The connection circuit according to claims 1 to 6, characterized in that it includes a feedback connection for compensating the alternating component in the input signal (12), which contains a two-way counter, which has an input for determining the direction of counting controlled by the signal C, and an input for counting the output frequency FOUT, latch (L) = (LATCH) and a D/A converter with a current output, the polarity of which is determined by the P signal from the time base. 9. Spojni sklop prema zahtjevima 1 do 6, naznačen time, da obuhvaća povratnu omču (14) za kompenzaciju dinamičkih signala smetnji, koja obuhvaća dvosmjerno brojilo (U/D), koje ima ulaz za određivanje smjera brojanja kojim upravlja signal P iz vremenske baze, a ulaz brojanja izlaznom frekvencijom FOUT, zatvarač (L) i D/A pretvarač sa strujnim izlazom, kojemu polaritet određuje signal C iz vremenske baze.9. The connection circuit according to claims 1 to 6, characterized in that it includes a feedback loop (14) for compensation of dynamic interference signals, which includes a two-way counter (U/D), which has an input for determining the direction of counting controlled by the signal P from the time base , and the counting input with the output frequency FOUT, shutter (L) and D/A converter with current output, whose polarity is determined by signal C from the time base. 10. Spojni sklop prema zahtjevima 1 do 9, naznačen time, da je bipolarni strujni referencijalni izvor (±IR) izveden iz referencijalnog napona (81), koji se dovodi preko dva strujna izvora (80) i analognog invertora (82), čiji je neinvertirajući ulaz spojen na prvi priključak otpornika (84), a drugi priključak na izlaz monitora napona (83), kojemu je preko prekidača (85) i (86), kojima upravlja signal P, neinvertirajući ulaz spojen na oba priključka naponske referencije (81).10. Connection circuit according to claims 1 to 9, characterized in that the bipolar current reference source (±IR) is derived from the reference voltage (81), which is supplied via two current sources (80) and an analog inverter (82), whose the non-inverting input connected to the first terminal of the resistor (84), and the second terminal to the output of the voltage monitor (83), to which the non-inverting input is connected to both terminals of the voltage reference (81) through the switches (85) and (86), controlled by the signal P . 11. Spojni sklop prema zahtjevima 1 do 9, naznačen time, da je protufazni bipolarni strujni izvor (±IR1) i (±IR2) preko naponskih monitora (91) i (92) te otporničkih razvodnika (93, 95) i (94, 96) tako izveden da se polaritet određuje signalom P iz vremenske baze (18, 19) preko kontaktnog mostića (90).11. Connection circuit according to claims 1 to 9, indicated by the fact that the opposite-phase bipolar current source (±IR1) and (±IR2) is via voltage monitors (91) and (92) and resistor distributors (93, 95) and (94, 96) designed so that the polarity is determined by the signal P from the time base (18, 19) via the contact bridge (90). 12. Spojni sklop prema zahtjevima 1 do 11, naznačen time, da je signalni strujni izvor (±IS) izveden iz Hallovih napona, koje generiraju Hallovi elementi (170) i (171) preko regulacijskih ojačivača (174) i (175) i stupnja ojačavanja sa promjenljivim ojačavanjem (176) sa otpornikom (178), kojemu je prvi priključak spojen na izlaz ojačivača (176), a drugi na neinvertirajući ulaz regulacijskog ojačivača (175); da je ojačavanje stupnja (176) određeno naponom iz funkcionalnog generatora (177), koji predstavlja funkciju napojnog napona spojnog sklopa VB, napojnog napona (VS) na napojnim priključcima senzora (170), (171) te napona VT, koji je linearno razmjeran s temperaturom; da su napojni priključci senzora (I1) i (I2) preko kontaktnih mostića (172) i (173) spojeni na senzore te upravljani signalom QS iz RS ćelije (179), čije izlazno stanje određuju exor vrata 816) ovisno o signalima P i C iz vremenskih baza (18) odnosno (19) ili upravljačke logike (10).12. Connection circuit according to claims 1 to 11, characterized in that the signal current source (±IS) is derived from Hall voltages, which are generated by Hall elements (170) and (171) via control amplifiers (174) and (175) and stage amplification with variable amplification (176) with a resistor (178), the first connection of which is connected to the output of the amplifier (176), and the second to the non-inverting input of the control amplifier (175); that the amplification of the stage (176) is determined by the voltage from the functional generator (177), which is a function of the supply voltage of the connection circuit VB, the supply voltage (VS) at the supply connections of the sensor (170), (171) and the voltage VT, which is linearly proportional to temperature; that the power connections of the sensors (I1) and (I2) are connected to the sensors via contact bridges (172) and (173) and controlled by the signal QS from the RS cell (179), whose output state is determined by the exor gate 816) depending on the signals P and C from time bases (18) or (19) or control logic (10). 13. Spojni sklop prema zahtjevima 1 do 12, slika 9, naznačen time, da su senzori (203, 204) smješteni na suprotnim rubovima poluprovodničke pločice (205), a između su smješteni ostali dijelovi spojnog sklopa i to tako da preko simetrale između oba senzora teče dalekovodna struja preko rascijepljenog vodiča (206), koji u prorezima (212) i (213) feromagnetskog prstena (202) aktivira suprotno polarizirana magnetska polja; da je vodič struje (206) poluprovodničkom pločicom (205) spojen na neferomagnetsko kućište (201) te da se zračni prorezi (212) i (213) u odnosu na poluprovodničku pločicu (205) nalaze na mjestima na kojima se na poluprovodničkoj pločici (202) nalaze oba Hallova senzora (203, 204).13. Connection assembly according to claims 1 to 12, Figure 9, characterized by the fact that the sensors (203, 204) are located on opposite edges of the semiconductor plate (205), and other parts of the connection assembly are located in between, so that across the bisector between both of the sensor, long-distance current flows through the split conductor (206), which activates oppositely polarized magnetic fields in the slots (212) and (213) of the ferromagnetic ring (202); that the current conductor (206) is connected to the non-ferromagnetic housing (201) by means of a semiconductor plate (205) and that the air slots (212) and (213) in relation to the semiconductor plate (205) are located in the places where they are on the semiconductor plate (202) ) are found by both Hall sensors (203, 204). 14. Spojni sklop prema zahtjevima 1 do 13, sl. 10, preuređen za dvo- ili trofazno mjerenje električne energije ili jakosti u Aronovim vezama, naznačen time, da su senzori (203), (204), koji su smješteni na suprotnim rubovima poluprovodničke pločice (205) na kojoj se inače nalaze svi ostali spojevi, umetnuti u zračne proreze (212), (213) dvaju odvojenih feromagnetskih prstena (207), (209), koji se aktiviraju strujama iz različitih vodova dalekovoda preko vodiča (208) i (210), a cjelokupni se raspored nalazi u zatvorenom feromagnetskom kućištu (211), koje je prepolovljeno feromagnetskom stijenom (214) sa prorezom (215), u koju je neferomagnetsko kućište (201) sa poluprovodničkom pločicom (205) tako namješteno da je simetrala stijena (214) identična sa simetralom između oba Hallova senzora (203), (204).14. Connection assembly according to claims 1 to 13, Fig. 10, rearranged for two- or three-phase measurement of electrical energy or strength in Aron connections, indicated by the fact that the sensors (203), (204), which are located on the opposite edges of the semiconductor plate (205) on which all other connections are normally located, inserted into the air slots (212), (213) of two separate ferromagnetic rings (207), (209), which are activated by currents from different lines of the transmission line through conductors (208) and (210), and the entire arrangement is located in a closed ferromagnetic housing (211), which is bisected by a ferromagnetic wall (214) with a slot (215), into which a non-ferromagnetic housing (201) with a semiconductor plate (205) is arranged so that the bisector rock (214) identical to the bisector between both Hall sensors (203), (204). 15. Kućište prema zahtjevu 14, naznačen time, da se oba feromagnetska prstena (207), (209) aktiviraju istom strujom.15. Housing according to claim 14, characterized in that both ferromagnetic rings (207), (209) are activated by the same current.
HR921047A 1987-12-24 1992-10-14 Watthour meter or wattmeter comprising hall sensors HRP921047A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HR921047A HRP921047A2 (en) 1987-12-24 1992-10-14 Watthour meter or wattmeter comprising hall sensors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
YU02383/87A YU238387A (en) 1987-12-24 1987-12-24 Gauge of electric power - energy with hall's sensor
HR921047A HRP921047A2 (en) 1987-12-24 1992-10-14 Watthour meter or wattmeter comprising hall sensors

Publications (1)

Publication Number Publication Date
HRP921047A2 true HRP921047A2 (en) 1995-12-31

Family

ID=26316832

Family Applications (1)

Application Number Title Priority Date Filing Date
HR921047A HRP921047A2 (en) 1987-12-24 1992-10-14 Watthour meter or wattmeter comprising hall sensors

Country Status (1)

Country Link
HR (1) HRP921047A2 (en)

Similar Documents

Publication Publication Date Title
US4806846A (en) High accuracy direct reading capacitance-to-voltage converter
JP4037481B2 (en) Monolithic integrated sensor circuit
US5604433A (en) Offset compensation for magnetic-field sensor with Hall effect device
US7301353B2 (en) Sensor element for providing a sensor signal, and method for operating a sensor element
US4843311A (en) Wattmeter comprising a hall sensor and an A/D converter
US20080265880A1 (en) Magnetic Sensor Circuit and Portable Terminal Provided With Such Magnetic Sensor Circuit
Pastre et al. A Hall sensor analog front end for current measurement with continuous gain calibration
JPS6148777A (en) Compensator for variation of conversion coefficient of magnetic field sensor
US4862382A (en) Arrangement for processing the output signals of a resistance bridge
KR20110013378A (en) Magnetic field sensor measuring a direction of a magnetic field in a plane and current sensor
EP0296968B1 (en) Integrated poly-phase power meter
AU687214B2 (en) Low power magnetometer circuits
JPH0335627B2 (en)
CA2046344C (en) Arrangement for processing sensor signals
US5867054A (en) Current sensing circuit
US4972141A (en) Watthour meter or wattmeter comprising hall sensors
Blagojevic et al. SOI hall-sensor front end for energy measurement
Cichocki et al. A switched-capacitor interface for capacitive sensors based on relaxation oscillators
US4808918A (en) Watthour meter comprising a Hall sensor and a voltage-frequency converter for very low voltages
Elangovan et al. A simple digital interface circuit for giant magneto-resistance sensors
EP0100102B1 (en) Circuit for integrating an analog signal and converting it into a digital signal
Schott et al. High-accuracy analog Hall probe
HRP921047A2 (en) Watthour meter or wattmeter comprising hall sensors
EP1386173B1 (en) Capacitance measuring circuit
PT87830B (en) INTEGRATED POLYPHASIC ELECTRIC POWER SYSTEM

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
ODBC Application rejected