HRP20220589A1 - Method of operation of modular iot box with verification of connected modules and associated system with plurality of iot boxes - Google Patents

Method of operation of modular iot box with verification of connected modules and associated system with plurality of iot boxes Download PDF

Info

Publication number
HRP20220589A1
HRP20220589A1 HRP20220589AA HRP20220589A HRP20220589A1 HR P20220589 A1 HRP20220589 A1 HR P20220589A1 HR P20220589A A HRP20220589A A HR P20220589AA HR P20220589 A HRP20220589 A HR P20220589A HR P20220589 A1 HRP20220589 A1 HR P20220589A1
Authority
HR
Croatia
Prior art keywords
modules
box
iot
verification
module
Prior art date
Application number
HRP20220589AA
Other languages
Croatian (hr)
Inventor
Danijel Pavić
Josip Lipovac
Original Assignee
Layer d.o.o.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Layer d.o.o. filed Critical Layer d.o.o.
Priority to HRP20220589AA priority Critical patent/HRP20220589A1/en
Publication of HRP20220589A1 publication Critical patent/HRP20220589A1/en

Links

Landscapes

  • Debugging And Monitoring (AREA)

Abstract

Predmetni izum otkriva način funkcioniranja modularne IoT kutije (100) sa verifikacijom priključenih modula (10.i), i = 1, 2, …, N, koji se nalaze razmješteni u utore (20.j), j = 1, 2, …, M ove predmetne kutije i sustava koji nadzire rad mnoštva takvih kutija. Moduli su povezani sabirnicom (30) s jedinicom za obradu podataka (40) I2C komunikacijskim protokolom. Jedinica za obradu podataka komunicira sa serverom sustava (500) putem jedinice za povezivanje (50) i sa ručnim verifikacijskim uređajem (200) putem verifikacijskog modula (60) povezanog na istu jedinicu za obradu podataka (40) u servisnom načinu rada. Svaka IoT kutija radi u jednom od tri načina rada izabranog od: normalnog načina kada se putem servera (500) upisuje ili čita stanje svakog od modula (10.i) u inicijalno zadanim vremenskim periodima definiranim listom frekvencija modula (LFM), verifikacijskog načina rada kada se utvrđuje funkcionalnost i broj ugrađenih modula (10.i), te servisnog način rada koji omogućuje rekonfiguraciju predmetne kutije (100.k) od strane vanjskog operatera.The related invention discloses the operating method of the modular IoT box (100) with the verification of the connected modules (10.i), i = 1, 2, ..., N, which are located in the slots (20.j), j = 1, 2, ..., M of the box and a system that monitors the operation of a plurality of such boxes. The modules are connected by a bus (30) to the data processing unit (40) using the I2C communication protocol. The data processing unit communicates with the system server (500) via the connection unit (50) and with the manual verification device (200) via the verification module (60) connected to the same data processing unit (40) in service mode. Each IoT box operates in one of three modes of operation chosen from: normal mode when the state of each module (10.i) is written or read through the server (500) in initially set time periods defined by the module frequency list (LFM), verification mode of operation when determining the functionality and number of installed modules (10.i), and the service mode that enables the reconfiguration of the related box (100.k) by an external operator.The subject invention reveals the way the modular IoT box (100) functions with the verification of the connected modules (10.i), i = 1, 2, ..., N, which are located in the slots (20.j), j = 1, 2, ... , M of this subject box and a system that monitors the operation of a plurality of such boxes. The modules are connected by a bus (30) to the data processing unit (40) using the I2C communication protocol. The data processing unit communicates with the system server (500) via the connection unit (50) and with the manual verification device (200) via the verification module (60) connected to the same data processing unit (40) in service mode. Each IoT box works in one of three modes of operation selected from: normal mode when the state of each module (10.i) is written or read through the server (500) in initially set time periods defined by the module frequency list (LFM), verification mode of operation when determining the functionality and number of built-in modules (10.i), and the service mode that enables reconfiguration of the box in question (100.k) by an external operator. The related invention discloses the operating method of the modular IoT box (100) with the verification of the connected modules (10.i), i = 1, 2, ..., N, which are located in the slots (20.j), j = 1, 2, ..., M of the box and a system that monitors the operation of a plurality of such boxes. The modules are connected by a bus (30) to the data processing unit (40) using the I2C communication protocol. The data processing unit communicates with the system server (500) via the connection unit (50) and with the manual verification device (200) via the verification module (60) connected to the same data processing unit (40) in service mode. Each IoT box operates in one of three modes of operation chosen from: normal mode when the state of each module (10.i) is written or read through the server (500) in initially set time periods defined by the module frequency list (LFM ), verification mode of operation when determining the functionality and number of installed modules (10.i), and the service mode that enables the reconfiguration of the related box (100.k) by an external operator.

Description

Područje tehnike The field of technology

Predmetni izum odnosi se na novu i poboljšanu modularnu IoT (eng. Internet of Things, hrv. Internet stvari) kutiju s verifikacijom i upravljanjem priključenih modula raznih namjena u samoj kutiji. Ovakve modularne IoT kutije koriste se u industrijskim procesima akvizicije podataka s mnoštva IoT senzora, industrijskoj automatizaciji kod koje je potrebno upravljati industrijskim procesima s izdvojenog mjesta, u industrijama koje koriste redundantne sigurnosne senzorske sustave i upravljanja, robotici, telekomunikacijskim uslugama i svim drugim procesima koji uključuju mnoštvo mjernih i upravljačkih veličina samog sustava. Stoga, čini se da je područje tehnike definirano kao područje transmisijskih sustava za mjerene vrijednosti, upravljanje ili slične signale. Dodatno, u predmetnom izumu, bežičnim putem se ostvaruje komunikacija sa mnoštvom spomenutih IoT kutija kojima se ili upravlja procesima ili sakupljaju mjerene vrijednosti sa ugrađenih modula u modularnoj IoT kutiji. S obzirom na niže diskutirani tehnički problem, ovaj izum pripada i tehničkom području zaštite računala, njihovih komponenti, programa ili podataka od neovlaštenih aktivnosti trećih osoba. The subject invention relates to a new and improved modular IoT (Internet of Things) box with verification and management of connected modules of various purposes in the box itself. Such modular IoT boxes are used in industrial processes of data acquisition from many IoT sensors, industrial automation where it is necessary to manage industrial processes from a separate place, in industries that use redundant safety sensor systems and controls, robotics, telecommunication services and all other processes that include multitude of measuring and control quantities of the system itself. Therefore, the field of technology seems to be defined as the field of transmission systems for measured values, control or similar signals. Additionally, in the subject invention, wireless communication is achieved with a multitude of mentioned IoT boxes that either manage processes or collect measured values from the built-in modules in the modular IoT box. With regard to the technical problem discussed below, this invention also belongs to the technical field of protecting computers, their components, programs or data from unauthorized activities by third parties.

Tehnički problem Technical problem

Internet stvari (IoT) odnosi se na opremu fizičkih objekata (ili grupe takvih objekata) senzorima, sposobnošću obrade podataka, softverom i drugim tehnologijama kojima se rečeni objekti povezuju i razmjenjuju podatke s drugim uređajima u drugim objektima i sustavima putem interneta ili drugih komunikacijskih mreža ili komunikacijskih kanala. Internet stvari smatra se kolokvijalnim nazivom koji je zaživio, premda sami uređaji ne moraju biti nužno povezani s internetom, samo trebaju biti povezani na računalnu mrežu ili mrežu za razmjenu podataka sa sposobnošću da se mogu pojedinačno adresirati. The Internet of Things (IoT) refers to the equipment of physical objects (or groups of such objects) with sensors, data processing capabilities, software and other technologies that connect said objects and exchange data with other devices in other objects and systems via the Internet or other communication networks or communication channels. The Internet of Things is considered a catch-all term, although the devices themselves do not necessarily need to be connected to the Internet, they just need to be connected to a computer network or data exchange network with the ability to be individually addressed.

IoT područje razvilo se zbog konvergencije više tehnologija, uključujući sveprisutno računalstvo, senzore, a naročito sustave strojnog učenja. Tradicionalna područja ugrađivanja IoT tehnologije jesu procesni sustavi, bežične senzorske mreže, kontrolni sustavi, automatizacije (uključujući automatizacije domova i zgrada), gdje sve pobrojano - samostalno i zbirno omogućava primjenu interneta stvari. Na potrošačkom tržištu, IoT tehnologija najviše je sinonim za proizvode koji se odnose na koncept "pametne kuće", uključujući uređaje i kao što su rasvjetna tijela, termostati, sigurnosni sustavi doma, upravljanje videonadzorom i drugim kućanskim aparatima koji podržavaju jedan ili više tzv. ekosustava, a mogu se kontrolirati putem uređaja povezanih s tim ekosustavom. Najčešće se za takvu kontrolu koriste pametni telefoni i pametni zvučnici. IoT se također koristi u zdravstvenim sustavima. The IoT field has developed due to the convergence of multiple technologies, including ubiquitous computing, sensors, and especially machine learning systems. The traditional areas of incorporating IoT technology are process systems, wireless sensor networks, control systems, automation (including automation of homes and buildings), where everything - independently and collectively enables the application of the Internet of Things. In the consumer market, IoT technology is mostly synonymous with products related to the "smart home" concept, including devices such as lighting fixtures, thermostats, home security systems, control of video surveillance and other household appliances that support one or more so-called ecosystem, and can be controlled through devices connected to that ecosystem. Smartphones and smart speakers are most often used for such control. IoT is also used in healthcare systems.

No, postoji i niz zabrinutosti u vezi s rizicima u rastu IoT tehnologija i proizvoda. Ovdje je posebno riječ o područjima privatnosti i sigurnosti. Stoga se posljedično IoT industrija okreće rješavanje ovih problema, uključujući razvoj međunarodnih i lokalnih standarda, smjernica i regulatornih okvira kojima se sprječava namjerna opstrukcija ili nenamjerna pogreška u radu IoT sustava. But there are also a number of concerns about the risks in the growth of IoT technologies and products. This is particularly the case in the areas of privacy and security. Consequently, the IoT industry is turning to addressing these issues, including the development of international and local standards, guidelines, and regulatory frameworks to prevent intentional obstruction or inadvertent error in the operation of IoT systems.

Rad iz reference 1): Work from reference 1):

1) Tawalbeh, L., Muheidat, F., Tawalbeh, M., & Quwaider, M. (2020). IoT Privacy and Security: Challenges and Solutions. Applied Sciences, 10(12), 4102. doi:10.3390/app10124102 1) Tawalbeh, L., Muheidat, F., Tawalbeh, M., & Quwaider, M. (2020). IoT Privacy and Security: Challenges and Solutions. Applied Sciences, 10(12), 4102. doi:10.3390/app10124102

diskutira pozadinu IoT sustava i sigurnosnih mjera te identificira različite probleme sigurnosti i privatnosti IoT tehnologije. Dodatno, rad analizira pristupe koji se koriste za osiguranje komponenti okruženja i sustava temeljenih na IoT-u i diskutira postojeća sigurnosna rješenja. Ovaj rad sugerira modele privatnosti koji su potrebni i prikladni za različite slojeve IoT aplikacija, kao što je potreba za kriptiranjem informacija pri razmjeni podataka unutar različitih slojeva IoT sustava. discusses the background of IoT systems and security measures and identifies various security and privacy issues of IoT technology. Additionally, the paper analyzes the approaches used to secure components of IoT-based environments and systems and discusses existing security solutions. This paper suggests privacy models that are necessary and appropriate for different layers of IoT applications, such as the need to encrypt information when exchanging data within different layers of IoT systems.

S druge pak strane, predmetni izum koncentriran je samo na dio gore pobrojenih tehničkih problema koji se događaju na čvorovima sustava, a koji su osjetljivi na neovlašteno korištenje. Takva mjesta predstavljaju modularne IoT kutije koje se koriste za koncentraciju senzorskih modula ili upravljačkih modula IoT sustava. IoT kutije nalaze se često na nepristupačnim mjestima, mjestima koja nisu uvijek pod nadzorom ili su smještena na izdvojena mjesta - a od vitalne su važnosti za funkcioniranje sustava. No, takva mjesta je vrlo problematično i skupo adekvatno osigurati da se spriječi, primjerice, proizvoljna izmjena ili dodavanje / priključivanje dodatnih IoT modula na infrastrukturu, recimo „fake“ modula sa adresama koje emuliraju stvarne IoT module ali posjeduju drugu namjenu. Naime, IoT infrastruktura je koncipirana za jednostavno dodavanje IoT modula što je u suprotnosti sa rastućim sigurnosnim uvjetima. Primjerice, pri korištenju I2C protokola za serijsku komunikaciju između IoT modula, dovoljno je imati samo dvije žice za prijenos signala, vidjeti npr. https://i2c.info/ i napajanje kako bi se novi modul dodao u sustav. Takva jednostavnost dodavanja modula ujedno kreira i veliku potencijalnu opasnost za kompromitiranje funkcionalnosti samog sustava i nenamjernih pogrešaka pri dodavanju ili uklanjanju modula. On the other hand, the subject invention is concentrated only on a part of the technical problems listed above that occur on system nodes, which are sensitive to unauthorized use. Such places represent modular IoT boxes that are used to concentrate sensor modules or control modules of IoT systems. IoT boxes are often located in inaccessible places, places that are not always monitored or placed in isolated places - and they are vital for the functioning of the system. However, such places are very problematic and expensive to ensure adequately to prevent, for example, arbitrary modification or addition / connection of additional IoT modules to the infrastructure, for example "fake" modules with addresses that emulate real IoT modules but have a different purpose. Namely, the IoT infrastructure is designed for easy addition of IoT modules, which is in contrast to the growing security requirements. For example, when using the I2C protocol for serial communication between IoT modules, it is enough to have only two wires for signal transmission, see for example https://i2c.info/ and a power supply in order to add a new module to the system. Such simplicity of adding modules also creates a great potential danger for compromising the functionality of the system itself and unintentional errors when adding or removing modules.

Štoviše, treba reći da svaki senzor ili modul IoT sustava koji je dizajniran da koristi gore navedeni I2C komunikacijski protokol posjeduje svoju hardversku jedinstvenu i nepromjenjivu adresu uređaja, vidjeti primjerice: https://i2cdevices.org/devices. Ova činjenica olakšava komunikaciju sa IoT kutijama, ali komplicira kontrolu izmjene modula bez autorizacije, autorizaciju i detekciju spajanja novih IoT modula, samo-dijagnostiku i uočavanje pogrešaka u sustavu kao i upravljanje sa velikim brojem čvorova – modularnih IoT kutija u realnom vremenu. Moreover, it should be said that each sensor or module of an IoT system that is designed to use the above I2C communication protocol has its own hardware unique and immutable device address, see for example: https://i2cdevices.org/devices. This fact facilitates communication with IoT boxes, but complicates the control of changing modules without authorization, authorization and detection of connection of new IoT modules, self-diagnostics and detection of errors in the system, as well as management of a large number of nodes - modular IoT boxes in real time.

Osnovni tehnički problem koji se rješava predmetnim izumom je administracija takovih IoT kutija na siguran način od strane servera koji upravlja mnoštvom kutija. Ova administracija uključuje i dodavanje senzora ili modula koji imaju iste adrese na način da ih server sustava bilježi kao različite uređaje, dijagnostiku sustava na zahtjev ili auto-dijagnostiku te prevenciju arbitrarnih izmjena modula. Stoga, sigurnosni aspekt, cijelog IoT sustava s aspekta korisnika i praktično onemogućeno dodavanje modula bez autorizacije predstavljeno je na nov i inventivan način ovom predmetnom prijavom patenta, uz uvjet da se i dalje se koriste standardni I2C protokol i standardizirani I2C uređaji, a po potrebi kriptografske metode razmjene podataka između slojeva, npr. između IoT kutija i servera sustava. The basic technical problem that is solved by the subject invention is the administration of such IoT boxes in a safe way by a server that manages a multitude of boxes. This administration also includes adding sensors or modules that have the same addresses in such a way that the system server records them as different devices, on-demand system diagnostics or auto-diagnostics, and prevention of arbitrary module changes. Therefore, the security aspect of the entire IoT system from the user's point of view and the practically impossible addition of modules without authorization is presented in a new and inventive way by this subject patent application, with the condition that the standard I2C protocol and standardized I2C devices are still used, and if necessary, cryptographic data exchange methods between layers, eg between IoT boxes and system servers.

Prethodno stanje tehnike Prior art

Tehnički problem koji je diskutiran u prethodnom poglavlju pojavio se odmah sa I2C standardnom. Tako primjerice u referenci 2) se diskutira sigurnosni sustav, izveden na hardverskom nivou, posebno dizajniran za I2C protokol: The technical problem discussed in the previous chapter appeared immediately with the I2C standard. For example, reference 2) discusses a security system implemented at the hardware level, specially designed for the I2C protocol:

2) US patent US 6,510,522 B1 za izum naziva: APPARATUS AND METHOD FOR PROVIDING ACCESS SECURITY TO A DEVICE COUPLED UPON A TWO-WIRE BIDIRECTIONAL BUS; nositelj prava je Compaq Information Technologie [US] 2) US patent US 6,510,522 B1 for the invention entitled: APPARATUS AND METHOD FOR PROVIDING ACCESS SECURITY TO A DEVICE COUPLED UPON A TWO-WIRE BIDIRECTIONAL BUS; copyright holder is Compaq Information Technologie [US]

U referencama koje slijede, vidi se napor vodećih svjetskih kompanija da se spomenuti tehnički problem adekvatno riješi u relativno ranoj fazi nastanka i korištenja I2C protokola od prije 5, 10 i više godina: In the references that follow, you can see the effort of the world's leading companies to adequately solve the mentioned technical problem at a relatively early stage of the creation and use of the I2C protocol from 5, 10 or more years ago:

3) US prijava patenta US 2016/210480A1 za izum naziva: ACCESS AND PROTECTION OF I2C INTERFACES; nositelja prava IBM [US], 3) US patent application US 2016/210480A1 for the invention entitled: ACCESS AND PROTECTION OF I2C INTERFACES; rights holder IBM [US],

4) US patent US 7,779,254 B1 za izum naziva: MECHANISM TO ENHANCE AND ENFORCE MULTIPLE INDEPENDENT LEVELS OF SECURITY IN A MICROPROCESSOR MEMORY AND I/O BUS CONTROLLER; nositelja prava ROCKWELL COLLINS INC [US], te 4) US patent US 7,779,254 B1 for the invention entitled: MECHANISM TO ENHANCE AND ENFORCE MULTIPLE INDEPENDENT LEVELS OF SECURITY IN A MICROPROCESSOR MEMORY AND I/O BUS CONTROLLER; rights holder ROCKWELL COLLINS INC [US], and

5) US patent US 7,398,345 B2 za izum naziva: INTER-INTEGRATED CIRCUIT BUS ROUTER FOR PROVIDING INCREASED SECURITY; nositelja prava Hewlett-Packard Developement Company [US]. 5) US patent US 7,398,345 B2 for the invention entitled: INTER-INTEGRATED CIRCUIT BUS ROUTER FOR PROVIDING INCREASED SECURITY; copyright holder Hewlett-Packard Development Company [US].

Sva gore pobrojana tehnička rješenja odnose se na rješavanje problema najčešće na nivou funkcioniranja hardware-a. S druge pak strane, reference 6), 7) i 8) odnose se na (modularne) kutije dizajnirane za akviziciju podataka s mnoštva senzora, posebno senzora koji se koriste u industriji 4.0: All the technical solutions listed above refer to solving problems, most often at the level of hardware functioning. On the other hand, references 6), 7) and 8) refer to (modular) boxes designed to acquire data from a multitude of sensors, especially sensors used in Industry 4.0:

6) US patent US 11,067,976 B2 za izum naziva: DATA COLLECTION SYSTEMS HAVING A SELF-SUFFICIENT DATA ACQUISITION BOX; nositelja prava Strong Force IoT Portfolio 2016 LLC [US], 6) US patent US 11,067,976 B2 for the invention entitled: DATA COLLECTION SYSTEMS HAVING A SELF-SUFFICIENT DATA ACQUISITION BOX; rights holder Strong Force IoT Portfolio 2016 LLC [US],

7) Međunarodne prijave patenta objavljene kao WO 2005/101281 A1 za izum naziva: FIELD REPLACEABLE SENSOR MODULE AND METHODS OF USE THEREOF; nositelja prava Tyco Flow Control Inc. [US], te 7) International patent applications published as WO 2005/101281 A1 for the invention entitled: FIELD REPLACEABLE SENSOR MODULE AND METHODS OF USE THEREOF; rights holder Tyco Flow Control Inc. [US], te

8) Pregledni rad, Dave Astels: MULTI-SENSOR IoT ENVIRONMENTAL SENSOR BOX WITH CIRCUITPYTHON, koji je dohvatljiv na poveznici: https://learn.adafruit.com/remote-iot-environmental-sensor 8) Review paper, Dave Astels: MULTI-SENSOR IoT ENVIRONMENTAL SENSOR BOX WITH CIRCUITPYTHON, which is available at the link: https://learn.adafruit.com/remote-iot-environmental-sensor

U referenci 8) detaljno se opisuje izvedba uređaja, recimo IoT senzorske kutije, koja je opremljena GPS-om, senzorima temperature, vlažnosti, tlaka i kvalitete zraka. Prema tako opisanom rješenju, svi senzori ažuriraju prema računalnom oblaku svoje vrijednosti, a na način da se vrijednosti očitavaju i šalju s obilježjem vremena i lokacije, putem Wi-Fi mreže kako bi se omogućilo i praćenje lokacije i praćenje senzora u vremenu. No, ipak se radi o hobističkom uređaju kod kojeg su sigurnosni problemi od drugotne važnosti. Reference 8) describes in detail the performance of a device, say an IoT sensor box, which is equipped with GPS, temperature, humidity, pressure and air quality sensors. According to the solution described in this way, all sensors update their values according to the computer cloud, and in such a way that the values are read and sent with time and location characteristics, via the Wi-Fi network, in order to enable both location tracking and sensor tracking in time. However, it is still a hobbyist device where security issues are of secondary importance.

Predmetno tehničko rješenje ovog izuma rješava sigurnosne probleme koristeći postojeće standarde i autorizacijske postupke koji su više orijentirani na kompjuterski implementirani izum kod kojeg dio verifikacijskog računalnog kôda, a koji se nalazi u svakoj od IoT kutija (ili tehnički gledano routera za module) u jedinici za obradu podataka - permanentno obavlja tehničku funkciju opisanu ranije u sekciji kao tehnički problem. The subject technical solution of this invention solves security problems by using existing standards and authorization procedures that are more oriented towards a computer-implemented invention where a part of the verification computer code, which is located in each of the IoT boxes (or technically speaking routers for the modules) in the processing unit data - permanently performs the technical function described earlier in the section as a technical problem.

Bit izuma The essence of invention

Predmetni izum orijentiran je na zaštitu postupka rada modularne IoT kutije unutar sustava sa P modularnih kutija, k = 1, 2, … P, gdje se svaka od navedenih IoT kutija sastoji od: The subject invention is oriented to the protection of the work procedure of a modular IoT box within a system with P modular boxes, k = 1, 2, ... P, where each of the aforementioned IoT boxes consists of:

A. proizvoljnog broja M utora za module, dimenzijski i električni izvedenih da mogu prihvatiti proizvoljan broj N modula, gdje je N ≤ M, i gdje su svi moduli dizajnirani za komunikaciju I2C komunikacijskim protokolom na način da posjeduju svoju jedinstvenu I2C adresu, A. an arbitrary number M of module slots, dimensionally and electrically designed to accept an arbitrary number N of modules, where N ≤ M, and where all modules are designed to communicate with the I2C communication protocol in such a way that they have their own unique I2C address,

B. gdje su moduli proizvoljno izabrani iz seta I2C uređaja bez ograničenja, a naročito iz skupine različitih senzora, analogno-digitalnih pretvarača (ADP) i digitalno-analognih pretvarača (DAP), radio modula kao i modula za prikaz i unos podataka, B. where the modules are arbitrarily chosen from a set of I2C devices without restrictions, and in particular from a group of different sensors, analog-to-digital converters (ADP) and digital-to-analog converters (DAP), radio modules as well as modules for display and data entry,

C. sabirnice, dizajnirane za povezivanje IoT modula koji funkcioniraju u slave modu odgovarajućim ožičenjem s jedinicom za obradu podataka koja je konfigurirana da funkcionira u master modu, C. buses, designed to connect IoT modules operating in slave mode by appropriate wiring to a data processing unit configured to operate in master mode,

D. opcijski, jednog ili više multipleksera ugrađenih u sabirnicu koji omogućuju korištenje dva ili više modula s istom namjenom i istom ugrađenom I2C adresom na način da ih jedinica za obradu podataka, radi rečenog mutipleksera, interno vidi kao set potpuno različitih modula s različitom I2C adresom unutar iste I2C sheme spajanja, a D. optional, one or more multiplexers built into the bus that allow the use of two or more modules with the same purpose and the same built-in I2C address in such a way that the data processing unit, for the sake of said mutiplexer, sees them internally as a set of completely different modules with different I2C addresses within the same I2C connection scheme, a

E. gdje je jedinica za obradu podataka dodatno povezna s jedinicom za povezivanje i barem jednim verifikacijskim modulom koji je izveden ili samostalno ili kao jedan od modula IoT kutije, gdje je namjena jedinice za obradu podataka procesiranje signala zaprimljenih sa spomenutih modula ili upravljanim ponašanjem pojedinog modula i verifikacijskog modula, te uspostava komunikacije preko jedinice sa povezivanje sa vanjskim serverom sustava. E. where the data processing unit is additionally connected to the connection unit and at least one verification module that is implemented either independently or as one of the modules of the IoT box, where the purpose of the data processing unit is to process the signals received from the mentioned modules or the managed behavior of an individual module and verification module, and establishment of communication through the unit with connection to the external server of the system.

Spomenuta IoT kutija sprječava proizvoljnu izmjenu ili dodavanje modula u utorima koje nadzire, te provodi samo-dijagnostiku. Ovo je riješeno na način da spomenuta kutija izvršava neki od tri moguća načina rada koji su izabrani od: The aforementioned IoT box prevents arbitrary modification or addition of modules in the slots it monitors, and performs self-diagnostics. This is solved in such a way that the mentioned box executes one of the three possible modes of operation which are chosen from:

- normalnog načina rada kada moduli komuniciraju sa serverom putem spomenute kutije u inicijalno zadanim vremenskim periodima definiranim listom frekvencija ugrađenih modula (LFM), - normal mode of operation when the modules communicate with the server via the mentioned box in the initially set time periods defined by the frequency list of the built-in modules (LFM),

- verifikacijskog načina rada kada se utvrđuje funkcionalnost i broj ugrađenih modula, te - verification mode of operation when determining the functionality and number of installed modules, and

- servisnog način rada koji omogućuje rekonfiguraciju predmetne kutije i izmjenu/zamjenu modula od strane operatera. - service mode that enables the reconfiguration of the box in question and the modification/replacement of the module by the operator.

U normalnom načinu rada jedinica za obradu podataka konfigurirana je kao master koja komunicira s i-tim modulom konfiguriranim kao slave frekvencijom koja je prethodno definirana za dani modul i nalazi se lokalno pohranjena na listi frekvencija modula (LFM), a u fazi komuniciranja: In normal operation mode, the data processing unit is configured as a master that communicates with the i-th module configured as a slave with a frequency that is previously defined for the given module and is locally stored in the list of module frequencies (LFM), and in the communication phase:

- ili se očitana vrijednosti s nekog specificiranog modula prosljeđuje putem jedinice za povezivanje preko nekog od kompatibilnih pristupnika prema serveru, - or the read value from a specified module is forwarded via the connection unit via one of the compatible gateways to the server,

- ili se prethodno zaprimljena vrijednost za specificirani i-ti modul sa servera, a pohranjena u memoriju jedinice za obradu podataka, upisuje u registar modula tog modula radi izvršavanja funkcije spomenutog modula. - or the previously received value for the specified i-th module from the server, and stored in the memory of the data processing unit, is written into the module register of that module in order to perform the function of the mentioned module.

U verifikacijskom načinu rada, jedinica za obradu podataka skenira sve dostupne I2C adrese priključenih modula, a očitanu listu dostupnih adresa sprema lokalno kao listu L1 i uspoređuje tu novo očitanu očitanu listu L1 sa prethodno spremljenom listom L0. Ukoliko je: In the verification mode, the data processing unit scans all available I2C addresses of the connected modules, saves the read list of available addresses locally as L1 list and compares the newly read L1 list with the previously saved L0 list. If:

(i) L1<>L0 ponavlja verifikaciju stanja do R puta i generira dodatne liste L2, L3, … LR, a u slučaju da su sve liste iz skupa {L2, L3, …, LR} različite od L0, jedinica za obradu podataka izvještava, putem jedinice za povezivanje, server o očitanoj pogrešci na kutiji k i potrebom za fizičkim servisom ili kontrolom sklopova kutije k; a ako je barem 50% vrijednosti lista odabranih od {L2, L3, …, LR} identično listi L0, tada jedinica za obradu podataka izvještava, putem jedinice za povezivanje, server o tranzijentnoj poteškoći sustava i nastavlja s upisom ili ispisom podataka u/sa modula u normalnom načinu rada; ili (i) L1<>L0 repeats state verification up to R times and generates additional lists L2, L3, … LR, and in case all lists from the set {L2, L3, …, LR} are different from L0, the data processing unit reports , through the connection unit, the server about the read error on the box k and the need for physical service or control of the circuits of the box k; and if at least 50% of list values selected from {L2, L3, …, LR} are identical to list L0, then the data processing unit reports, through the connection unit, the server about the transient difficulty of the system and continues writing or writing data to/from module in normal operation mode; or

(ii) L1 = L0 jedinica za obradu podataka izvještava, putem jedinice za povezivanje, server o normalnom funkcioniranju kutije k i nastavlja s upisom ili ispisom podataka u/sa modula u normalnom načinu rada, a (ii) L1 = L0 the data processing unit reports, through the connection unit, to the server about the normal functioning of the box k and continues to write or write data to/from the module in normal mode, and

gdje se verifikacijski način rada uključuje ili periodički ili putem verifikacijskog modula aktiviranog iz neposredne blizine same kutije k. where the verification mode is switched on either periodically or via a verification module activated from the immediate vicinity of the box itself k.

Servisni način rada aktivira se spajanjem ručnog verifikacijskog uređaja na verifikacijski modul izabrane kutije pri čemu jedinica za obradu podataka sadrži listu digitalno potpisanih identifikatora koji moraju odgovarati verifikacijskom uređaju kojim se vrši spajanje kako bi se spriječio neovlašteno spajanje. Pri tome i verifikacijski uređaj informira server, a dodatno i IoT kutija nezavisno informira server da je počeo servisni tretman na k-toj kutiji. Nakon toga server, putem verifikacijskog uređaja, rezervira vremenski period T kroz koji spomenuta kutija k samostalno ne može vršiti verifikacijski način rada, a unaprijed definirana izmijenjena lista modula L0 sa korespondirajućim frekvencijama modula LFM, koje je serviser napravio na predmetnoj kutiji, putem njegovog verifikacijskog uređaja upisuje se izravno u memoriju jedinice za obradu podataka, nakon čega se varijabla T postavi na vrijednost T=0 i izvrši se barem jedan verifikacijski način rada. Ukoliko je verifikacijski način rada prolazan, putem verifikacijskog modula se ta informacija prenese i prikaže na verifikacijskom uređaju servisera, nakon čega se način rada kutije prebaci u normalan, a verifikacijski uređaj obavijesti nezavisno server da je kutija u cijelosti operativna. Service mode is activated by connecting a manual verification device to the verification module of the selected box, where the data processing unit contains a list of digitally signed identifiers that must match the verification device used to connect to prevent unauthorized connection. At the same time, the verification device also informs the server, and additionally the IoT box independently informs the server that the service treatment has started on the k-th box. After that, the server, through the verification device, reserves a time period T during which the aforementioned box k cannot independently perform the verification mode, and a predefined modified list of modules L0 with corresponding frequencies of the module LFM, which the service technician made on the box in question, through his verification device it is written directly into the memory of the data processing unit, after which the variable T is set to the value T=0 and at least one verification mode is performed. If the verification mode is transitory, this information is transferred via the verification module and displayed on the servicer's verification device, after which the box operation mode switches to normal, and the verification device independently informs the server that the box is fully operational.

U jednom od aspekta prema izumu, verifikacijski modul odabran iz skupine koju čine NFC ili Bluetooth® Low Energy sklop koji omogućava dvosmjernu komunikaciju između verifikacijskog modula i verifikacijskog uređaja. Verifikacijski uređaj preferirano je mobilni uređaj opremljen kompatibilnim sklopom za komunikaciju s verifikacijskim elementom ili modulom IoT kutije. U još jednom aspektu prema izumu, jedinica za povezivanje odabrana je od WI-FI, LoRaWAN i Bluetooth Low Energy radio modula, poželjno LoRaWAN modula, a izvedena je ili kao samostalni modul vezan za jedinicu za obradu podataka ili kao jedan od modula spomenute IoT kutije. In one of the aspects according to the invention, the verification module selected from the group consisting of NFC or Bluetooth® Low Energy circuit that enables two-way communication between the verification module and the verification device. The verification device is preferably a mobile device equipped with a compatible circuit for communicating with the verification element or IoT box module. In another aspect according to the invention, the connection unit is selected from WI-FI, LoRaWAN and Bluetooth Low Energy radio modules, preferably LoRaWAN modules, and is implemented either as an independent module connected to the data processing unit or as one of the modules of the mentioned IoT box .

Predmetni izum također otkriva sustav za praćenje rada mnoštva modularnih IoT kutija sa P modularnih prethodno opisanih kutija, a koji se dodatno sastoji od servera, nadzorne konzole samog sustava, verifikacijskog uređaja i serije od Q pristupnika. Bitna karakteristika sustava je da: The subject invention also discloses a system for monitoring the operation of a number of modular IoT boxes with P modular boxes previously described, which additionally consists of a server, a monitoring console of the system itself, a verification device and a series of Q gateways. The essential characteristic of the system is that:

- svaki od spomenutih verifikacijskih uređaja komunicira, u jedinici vremena, samo s jednom IoT kutijom k i serverom sustava, - each of the mentioned verification devices communicates, in a unit of time, only with one IoT box k and system server,

- da je serija pristupnika ista ili međusobno različita i izabrana iz skupine koju čine: Wi-Fi, LoRaWAN ili Bluetooth Low Energy pristupnici, a gdje su spomenuti pristupnici kompatibilni sa ugrađenim IoT kutijama sa kojima su povezani i omogućavaju pouzdanu vezu IoT kutija sa serverom putem Interneta, - that the series of gateways is the same or mutually different and chosen from the group consisting of: Wi-Fi, LoRaWAN or Bluetooth Low Energy gateways, and where the said gateways are compatible with the built-in IoT boxes to which they are connected and enable a reliable connection of the IoT boxes with the server via internet,

- da sustav bilježi u vremenu stanje svakog od modula ugrađenog u neku kutije i prati stanje svih promjena konfiguracije spomenutih modula u svakoj IoT kutiji, te vodi servisne liste o kojima izvješćuje operatera putem nadzorne konzole, te - that the system records in time the state of each of the modules installed in a box and monitors the state of all configuration changes of the mentioned modules in each IoT box, and maintains service lists that are reported to the operator via the monitoring console, and

- sam sustav omogućava trećim osobama komunikaciju sa serverom radi daljnje analize i upravljanjem podataka koji se učitavaju u ili iščitavaju iz modula smještenim u IoT kutijama radi nadzora procesa koji su vezani za spomenute IoT kutije. - the system itself allows third parties to communicate with the server for further analysis and management of data that is loaded into or read from the modules located in the IoT boxes in order to monitor the processes related to the mentioned IoT boxes.

U jednom aspektu izuma svi verifikacijski uređaji u sustavu opremljeni su lokacijskom uslugom, koja pri svakom spajanju sa nekim verifikacijskim modulom određene IoT kutije prosljeđuje, kao kontrolni element, serveru i lokaciju gdje je IoT kutija očitana, a u slučaju izostanka GPS signala koristi se triangulacija signala mobilnih operatera i tako određuje približna lokacija IoT kutije u servisnom načinu rada. In one aspect of the invention, all verification devices in the system are equipped with a location service, which, when connected to a verification module of a certain IoT box, forwards, as a control element, the location where the IoT box was read to the server, and in the absence of a GPS signal, triangulation of mobile signals is used operator and thus determines the approximate location of the IoT box in service mode.

Predmetni izum otkriva i korištenje modularnih IoT kutija u industrijskim procesima akvizicije podataka sa mnoštva IoT senzora, industrijskoj automatizaciji kod koje je potrebno upravljati industrijskim procesima sa izdvojenog mjesta, u industrijama koje koriste redundantne sigurnosne sustave senzorike i upravljanja, robotici, telekomunikacijskim uslugama i svim drugim procesima koji uključuju IoT module koji funkcioniraju putem I2C protokola. The subject invention also reveals the use of modular IoT boxes in industrial processes of data acquisition from many IoT sensors, industrial automation where it is necessary to manage industrial processes from a separate location, in industries that use redundant security systems of sensors and control, robotics, telecommunications services and all other processes which include IoT modules that function via the I2C protocol.

Kratki opis crteža Brief description of the drawing

Crtež 1 predstavlja shematski prikaz modularne IoT kutije prema predmetnom izumu. Drawing 1 is a schematic representation of a modular IoT box according to the subject invention.

Crtež 2 predstavlja način aktivacije servisnog načina rada iz neposredne blizine modularne IoT kutije. Drawing 2 represents the way to activate the service mode from the immediate vicinity of the modular IoT box.

Crtež 3 predstavlja shematski prikaz sustava povezivanja mnoštva modularnih IoT kutija nadziranih od strane jednog servera. Drawing 3 is a schematic view of the system of connecting a number of modular IoT boxes monitored by a single server.

Detaljni opis izuma Detailed description of the invention

Kako je više puta spomenuto, predmetni izum odnosi se na novu i poboljšanu modularnu IoT (eng. Internet of Things, hrv. Internet stvari) kutiju s verifikacijom i upravljanjem priključenih modula raznih namjena. Ovakve modularne IoT kutije koriste se u industrijskim procesima akvizicije podataka sa mnoštva IoT senzora, industrijskoj automatizaciji kod koje je potrebno upravljati industrijskim procesima sa izdvojenog mjesta, u industrijama koje koriste redundantne sigurnosne senzorske sustave i upravljanja, robotici, telekomunikacijskim uslugama i svim drugim procesima kod kojih postoji potreba za izmjenjivanjem ugrađenih IoT modula. As has been mentioned several times, the subject invention relates to a new and improved modular IoT (Internet of Things) box with verification and management of connected modules of various purposes. Such modular IoT boxes are used in industrial processes of data acquisition from many IoT sensors, industrial automation where it is necessary to manage industrial processes from a separate place, in industries that use redundant safety sensor systems and controls, robotics, telecommunications services and all other processes where there is a need to replace embedded IoT modules.

Sama IoT kutija (100), otkrivena prema predmetnom izumu, prikazana je na crtežu 1. IoT kutija (100) sastoji se od kućišta za smještaj proizvoljnog N broja IoT modula (10.i), i = 1, 2, …, N, unutar za to predviđenih M utora za modul (20.j), j = 1, 2, …, M, uz uvjet da je zadovoljeno N ≤ M. U predmetnom izumu svi moduli (10.i) dizajnirani su za komunikaciju I2C komunikacijskim protokolom na način da svaki modul posjeduje svoju jedinstvenu I2C adresu (11.i). The IoT box (100) itself, disclosed according to the subject invention, is shown in drawing 1. The IoT box (100) consists of a housing for housing an arbitrary N number of IoT modules (10.i), i = 1, 2, ..., N, within the M slots provided for the module (20.j), j = 1, 2, ..., M, with the condition that N ≤ M is satisfied. In the present invention, all modules (10.i) are designed for communication using the I2C communication protocol in such a way that each module has its unique I2C address (11.i).

Za potrebe ovog teksta modul (10.i) „smješten“ u utor (20.j) ima jedno od tri ekvivalentna značenja: For the purposes of this text, the module (10.i) "placed" in the slot (20.j) has one of three equivalent meanings:

- da je modul (10.i) fizički smješten u taj uto (20.j), ili - that the module (10.i) is physically located in that tu (20.j), or

- da je modul (10.i) priključen na taj utor elektronikom, npr. svojim analogno-digitalnim pretvaračem, dok se, primjerice, senzorski dio - recimo NTC otpornik za mjerenje temperature – nalazi izvan IoT (kutije) na mjestu gdje se mjeri temeperatura, ili - that the module (10.i) is connected to that slot by electronics, for example with its analog-to-digital converter, while, for example, the sensor part - for example, an NTC resistor for measuring temperature - is outside the IoT (box) at the place where the temperature is measured , or

- da je modul (10.i) izmješten izvan kutije, recimo akcelerometar robotske ruke, ali je fizički i električki povezan u utor (20.j) IoT kutije. - that the module (10.i) is moved outside the box, say the accelerometer of the robotic arm, but is physically and electrically connected to the slot (20.j) of the IoT box.

Popis takvih IoT modula dostupan je na stranicama koje se bave problematikom I2C komunikacije, npr.: https://i2cdevices.org/devices. Standard komunikacije opisan je u dokumentu koji se može naći na poveznici: https://www.nxp.com/docs/en/user-guide/UM10204.pdf. A list of such IoT modules is available on pages dealing with I2C communication issues, for example: https://i2cdevices.org/devices. The communication standard is described in the document that can be found at the link: https://www.nxp.com/docs/en/user-guide/UM10204.pdf.

Tijekom godina I2C-sabirnica je postala de facto svjetski standard koji je sada implementiran u preko 1000 različitih modula i licenciran za više od 50 tvrtki koje se bave izradom IoT modula. Tako među popisanim modulima nalazimo različite senzore izabrane iz grupe senzora: temperature, vlage, tlaka, plinova; serije analogno-digitalnih (ADC) i digitalno-analognih pretvarača (DAC), akcelerometara, magnetometara, IC (infracrvenih) senzora za mjerenje udaljenosti, EPROM memorija, te svakovrsnih drugih modula iz Industrije 4.0 koji se koriste u mjeriteljskoj i upravljačkoj elektronici. Posebno se tu ističu setovi radio modula raznih namjena izabranih od Bluetooth Low Energy (BLE), NFC, Wi-Fi, pa sve do LoRaWAN modula. Praktično ne postoji senzor, I/U jedinica ili pretvornik koji nije moguće naći prilagođen za I2C komunikaciju. Poznato je da su prednosti I2C standarda u jednostavnoj komunikaciji koja se doslovno odvija serijski „po dvije žice“ na način da neki master uređaj pozove neki slave senzor, ADC ili sličan modul (10.i) putem adrese (11.i) koja je tvornički ugrađena u rečeni modul (10.i). Na taj način mogu se vršiti upisivanja vrijednosti u modul (10.i) i naravno čitanja vrijednosti iz nekog modula (10.i) – što omogućava upravljanje na daljinu. Over the years, the I2C-bus has become a de facto world standard that is now implemented in over 1,000 different modules and licensed to more than 50 companies engaged in the production of IoT modules. Thus, among the listed modules we find different sensors selected from the group of sensors: temperature, humidity, pressure, gases; series of analog-to-digital (ADC) and digital-to-analog converters (DAC), accelerometers, magnetometers, IC (infrared) distance sensors, EPROM memories, and all kinds of other Industry 4.0 modules used in measurement and control electronics. In particular, the sets of radio modules for various purposes, selected from Bluetooth Low Energy (BLE), NFC, Wi-Fi, and even LoRaWAN modules, stand out here. There is practically no sensor, I/O unit or converter that cannot be found adapted for I2C communication. It is known that the advantages of the I2C standard are in the simple communication that literally takes place serially "by two wires" in such a way that a master device calls a slave sensor, ADC or similar module (10.i) via an address (11.i) that is factory set built into said module (10.i). In this way, values can be written into the module (10.i) and, of course, values can be read from a module (10.i) - which enables remote control.

Naravno, ova jednostavnost standarda ima i svoje probleme u primjeni kada se želi na istu I2C sabirnicu (30) spojiti više modula (10.i) – iste namjene, recimo radi redundancije i povećavanje točnosti mjerenja. I2C standard nije prilagođen takvom rješenju. Kao izlaz iz te situacije je postojanje / korištenje jednog ili više multipleksera (MUX) (31) ugrađenih u sabirnicu. Korištenje takvih multipleksera (31) omogućuje da dva ili više modula s istom namjenom i istom ugrađenom I2C adresom budu mapirani kao set potpuno različitih modula (10.i) s različitom I2C adresom (11.i) unutar iste I2C sheme spajanja. Za takve namjene može se, npr. iskoristiti Adafruit TCA9548A 1-to-8 I2C Multiplexer, vidjeti: https://learn.adafruit.com/adafruit-tca9548a-1-to-8-i2c-multiplexer-breakout Of course, this simplicity of the standard also has its problems in application when one wants to connect several modules (10.i) to the same I2C bus (30) - for the same purpose, say for redundancy and increasing the accuracy of measurements. The I2C standard is not adapted to such a solution. The way out of this situation is the existence / use of one or more multiplexers (MUX) (31) built into the bus. Using such multiplexers (31) allows two or more modules with the same purpose and the same built-in I2C address to be mapped as a set of completely different modules (10.i) with different I2C address (11.i) within the same I2C connection scheme. For such purposes, for example, the Adafruit TCA9548A 1-to-8 I2C Multiplexer can be used, see: https://learn.adafruit.com/adafruit-tca9548a-1-to-8-i2c-multiplexer-breakout

Za normalno funkcioniranje ovakve IoT kutije, osim spomenutih modula (10.i) potrebna je barem jedna jedinica za obradu podataka (40) opremljena internom memorijom, izvedena u formi mikro-kontrolera, npr. ATSAMD51 https://www.adafruit.com/product/3857 ili sofisticiranijeg sustava, recimo tipa https://www.arduino.cc/. Uz spomenuto, treba nadodati napajanje (70), jedinicu ili modul za povezivanje (50) te verifikacijski modul (60). For the normal functioning of this IoT box, in addition to the mentioned modules (10.i), at least one data processing unit (40) equipped with internal memory, implemented in the form of a micro-controller, eg ATSAMD51 https://www.adafruit.com/ product/3857 or a more sophisticated system, say https://www.arduino.cc/. In addition to the above, a power supply (70), a connection unit or module (50) and a verification module (60) should be added.

Dimenzioniranje kapaciteta napajanje (70) ovisi o frekvenciji korištenja spomenute IoT kutije (100), te komunikacijskoj opremi i naravno – načinu i vrsti ugrađene senzorike/modula; koriste li moduli (10.i) odvojeno napajanje ili napajanje same kutije. U nekoj osnovnoj izvedbi napajanje je baterija, no može biti izvedeno i kao eksterno napajanje iz mreže, napajanje solarnim panelom ili na bilo koji drugi način poznat u stanju tehnike koji je adekvatan za deklariranu i projektiranu potrošnju same IoT modularne kutije. Dimensioning the capacity of the power supply (70) depends on the frequency of use of the mentioned IoT box (100), and the communication equipment and of course – the method and type of embedded sensors/modules; do the modules (10.i) use a separate power supply or the power supply of the box itself. In a basic version, the power supply is a battery, but it can also be performed as an external power supply from the network, power supply by a solar panel or in any other way known in the state of the art that is adequate for the declared and designed consumption of the IoT modular box itself.

Jedinica za povezivanje (50) izvedena je kao samostalna jedinica ili kao jedan od modula (10.i) pridružen listi I2C uređaja same IoT kutije. Ova jedinica za povezivanje omogućava da se IoT kutija (100.k) djelatno poveže sa pristupnikom (300.l), l = 1, 2, …, Q koji ima kompatibilan radio modul sa jedinicom za povezivanje. U slučaju da je IoT kutija dominantno senzorska kutija koja šalje podatke senzora koji sporo variraju u vremenu, tada su prikladni pristupnici LoRaWAN tipa imajući na umu potrošnju sklopovlja, autonomnost sustava i doseg LoRaWAN komunikacijske tehnologije koji se mjeri u kilometrima, a na otvorenom čak 10-15 km od IoT uređaja do pristupnika. U nekom dobro definiranom tehnološkom ili tehnološko-poslovnom okruženju gdje napajanje IoT kutije ne predstavlja problem, vjerojatan način komunikacije IoT kutije sa pristupnikom je stabilan WiFi radio modul ili Low Energy (LE) Bluetoth tehnologija kao dva najčešća robusna industrijska standarda. The connection unit (50) is implemented as an independent unit or as one of the modules (10.i) attached to the list of I2C devices of the IoT box itself. This connection unit allows the IoT box (100.k) to be actively connected to the gateway (300.l), l = 1, 2, ..., Q which has a compatible radio module with the connection unit. In the event that the IoT box is predominantly a sensor box that sends sensor data that varies slowly in time, then LoRaWAN-type gateways are suitable, keeping in mind the circuit consumption, system autonomy, and the reach of LoRaWAN communication technology, which is measured in kilometers, and outdoors as much as 10- 15 km from the IoT device to the gateway. In some well-defined technological or technological-business environment where the power supply of the IoT box is not a problem, the likely way of communication of the IoT box with the gateway is a stable WiFi radio module or Low Energy (LE) Bluetooth technology as the two most common robust industry standards.

Uz sve navedeno, IoT kutija je opremljena barem jednim verifikacijskim modulom (60) izvedenim također kao samostalna jedinica ili kao jedan od modula (10.i) koji je pridružen listi I2C uređaja same IoT kutije. Prema varijantama predmetnog izuma, ovaj verifikacijski modul (60) realiziran je ili kao Bluetoth Low Energy (BLE) radio modul / tehnologija https://en.wikipedia.org/wiki/Bluetooth_Low_Energy) ili kao neki od NFC modula, vidjeti poveznicu na: https://en.wikipedia.org/wiki/Near-field_communication. Uloga ovog verifikacijskog modula je da omogućava vanjskom ručnom verifikacijskom uređaju (200) pouzdanu kratkodosežnu dvosmjernu komunikaciju sa IoT kutijom u koju je ugrađen kako bi se izvršio servis ili rekonfiguracija predmetne IoT kutije. Primjer takve komunikacije prikazan je na crtežu 2 gdje je ručni verifikacijski uređaj (200) u formi mobitela opremljen vanjskim NFC modulom (210) dizajniranim za razmjenu podataka sa verifikacijskim modulom (60) IoT kutije. In addition to all of the above, the IoT box is equipped with at least one verification module (60) performed also as an independent unit or as one of the modules (10.i) that is attached to the list of I2C devices of the IoT box itself. According to variants of the subject invention, this verification module (60) is realized either as a Bluetooth Low Energy (BLE) radio module / technology https://en.wikipedia.org/wiki/Bluetooth_Low_Energy) or as one of the NFC modules, see the link at: https://en.wikipedia.org/wiki/Near-field_communication. The role of this verification module is to enable an external hand-held verification device (200) to have reliable short-range two-way communication with the IoT box in which it is installed in order to perform service or reconfiguration of the IoT box in question. An example of such communication is shown in drawing 2 where a hand-held verification device (200) in the form of a mobile phone is equipped with an external NFC module (210) designed for data exchange with the verification module (60) of the IoT box.

Predmetne IoT kutije (100.k), gdje je k = 1, 2, …, P dizajnirane su za rad u sustavu koji je prikazan na crtežu 3. Spomenuti sustav ili platforma za kontinuirano praćenje rada modularnih IoT kutija (100.k) sa P modularnih kutija, k = 1, 2, …, P, sastoji se od servera (500), nadzorne konzole (600) samog sustava koji nadgleda operater, barem jednog verifikacijskog uređaja (200) i serije pristupnika (300.l), l = 1, 2, …, Q. Svaka IoT kutija (100.k), kako je opisana iznad, putem svojeg radio modula spaja se na barem jedna pristupnik (300.l) s kojim djelatno može, prema prethodnim definiciji i potrebama, razmjenjivati podatke sa modula (10.i) prema serveru (500) i obrnuto. Ta komunikacija može biti normalna ili kriptirana, što ovisi o samoj arhitekturi sustava i željama naručitelja. Subject IoT boxes (100.k), where k = 1, 2, ..., P are designed to work in the system shown in drawing 3. The mentioned system or platform for continuous monitoring of the work of modular IoT boxes (100.k) with P modular boxes, k = 1, 2, ..., P, consists of a server (500), a monitoring console (600) of the system itself that is monitored by the operator, at least one verification device (200) and a series of gateways (300.l), l = 1, 2, …, Q. Each IoT box (100.k), as described above, is connected via its radio module to at least one gateway (300.l) with which it can actively, according to the previous definition and needs, exchange data from the module (10.i) to the server (500) and vice versa. This communication can be normal or encrypted, which depends on the architecture of the system itself and the wishes of the client.

Kako je poznato u stanju tehnike, takvi sustavi su dizajnirani na način da: As is known in the state of the art, such systems are designed in such a way that:

- svaki od spomenutih verifikacijskih uređaja (200) komunicira, u jedinici vremena, samo s jednom IoT kutijom (100.k) i serverom sustava (500), - each of the mentioned verification devices (200) communicates, in a unit of time, only with one IoT box (100.k) and system server (500),

- da je serija pristupnika (300.l) ista ili međusobno različita i izabrana iz skupine koju čine: Wi-Fi, LoRaWAN ili Bluetooth Low Energy pristupnici, a gdje su spomenuti pristupnici kompatibilni sa ugrađenim IoT kutijama (100.k) sa kojima su povezani i omogućavaju pouzdanu vezu kutija (100.k) sa serverom (500) putem Interneta (400), - that the series of gateways (300.l) is the same or mutually different and chosen from the group consisting of: Wi-Fi, LoRaWAN or Bluetooth Low Energy gateways, and where said gateways are compatible with built-in IoT boxes (100.k) with which they are connected and enabling a reliable connection of boxes (100.k) with the server (500) via the Internet (400),

- da sustav bilježi u vremenu stanje svakog od modula (10.i) ugrađenog u neku kutije (100.j) i prati stanje svih promjena konfiguracije spomenutih modula u svakoj IoT kutiji, te vodi servisne liste o kojima izvješćuje operatera nadzorne konzole (600), te - that the system records in time the state of each of the modules (10.i) installed in a box (100.j) and monitors the state of all configuration changes of the mentioned modules in each IoT box, and maintains service lists about which it reports to the operator of the monitoring console (600) , you

- da sustav omogućava trećim osobama komunikaciju sa serverom (500) radi daljnje analize i upravljanjem podataka koji se učitavaju u ili iščitavaju iz modula (10.i) samih IoT kutijama (100.j), a radi nadzora procesa koji su vezani za spomenute kutije (100.j). - that the system enables third parties to communicate with the server (500) for further analysis and management of data that is loaded into or read from the module (10.i) by the IoT boxes (100.j) themselves, and for the purpose of monitoring processes related to the aforementioned boxes (100.j).

Gore navedena komunikacija sustava sa trećim osobama je esencijalna radi široke i centralizirane primjene takvog sustava u industriji 4.0. Naime, ta komunikacija se odvija na način da se zainteresirane osobe, ukoliko imaju odgovarajuće sigurnosne ovlasti, spajaju na server (500) i upravljaju podacima koji dolaze sa modula (10.i), upisuju podatke u takve module (10.i) koji su smješteni u kutijama nad kojima imaju nadzor, ili pak konfiguriraju i projektiraju izmjene senzorskog/modularnog sadržaja spomenutih kutija preko ovlaštenih osoba i drugog osoblja opremljenog verifikacijskim uređajima (200). Prema jednom od aspekata izuma, svi verifikacijski uređaji (200) opremljeni su i lokacijskom uslugom, koja pri svakom spajanju sa nekim verifikacijskim modulom (60) određene IoT kutije (100.k) prosljeđuje, kao kontrolni element, serveru (500) i lokaciju gdje je IoT kutija (100.k) očitana, a u slučaju izostanka GPS signala koristi se triangulacija signala mobilnih operatera i tako određuje približna lokacija IoT kutije (100.k) u servisnom načinu rada. Ovo posljednje sprječava neautorizirane promjene položaja kutije, kao i pouzdanu rekonfiguraciju sustava. The above system communication with third parties is essential for the wide and centralized application of such a system in Industry 4.0. Namely, this communication takes place in such a way that the interested persons, if they have the appropriate security authority, connect to the server (500) and manage the data coming from the module (10.i), enter data into such modules (10.i) that are placed in the boxes over which they have control, or configure and design changes to the sensor/modular content of said boxes through authorized persons and other personnel equipped with verification devices (200). According to one of the aspects of the invention, all verification devices (200) are also equipped with a location service, which at each connection with a verification module (60) of a certain IoT box (100.k) forwards, as a control element, to the server (500) and the location where the IoT box (100.k) is read, and in the absence of a GPS signal, triangulation of mobile operators' signals is used to determine the approximate location of the IoT box (100.k) in service mode. The latter prevents unauthorized changes to the position of the box, as well as reliable reconfiguration of the system.

Razvidno je da se gore opisani sustav jednostavno koristi u industrijskim procesima akvizicije podataka sa mnoštva IoT senzora, industrijskoj automatizaciji kod koje je potrebno upravljati industrijskim procesima sa izdvojenog mjesta, u industrijama koje koriste redundantne sigurnosne sustave senzorike i upravljanja, robotici, telekomunikacijskim uslugama i svim drugim procesima koji uključuju IoT module koji funkcioniraju putem I2C protokola. No, ipak, najvažnije o sustavu do sada nije rečeno, a to je sigurnosni aspekt koji je u ovaj sustav ugrađen i koji predstavlja predmetni izum. Ovaj sigurnosti aspekt sadržan je u načinu samog rada svake IoT kutije sustava. Prema predmetnom izumu, svako od kutija dizajnirana je za jedan od moguća tri načina rada diskutirana niže. It is clear that the system described above is easily used in industrial processes of data acquisition from many IoT sensors, industrial automation where it is necessary to manage industrial processes from a separate place, in industries that use redundant safety systems of sensors and control, robotics, telecommunication services and all other processes that include IoT modules that function via the I2C protocol. However, the most important thing about the system has not been said so far, and that is the security aspect that is built into this system and that represents the subject invention. This security aspect is contained in the way each IoT box system works. According to the present invention, each of the boxes is designed for one of the three possible modes of operation discussed below.

U normalnom načinu rada, jedinica za obradu podataka (40) predmetne IoT kutije konfigurirana je kao master koja komunicira s i-tim modulom (10.i) konfiguriranim kao slave i to frekvencijom koja je prethodno definirana za dani modul (10.i) i nalazi se lokalno pohranjena na listi frekvencija modula (LFM), upisanoj u memoriju jedinice za obradu podataka. Primjerice, ako se radi o senzoru ambijentalne temperature za koji nije realno očekivati drastične promjene u jedinici vremena, sasvim je plauzibilno da za taj senzor na LFM listi bude upisana vrijednost od 1 minute, kao period unutar kojeg sustav radi „update“ vrijednosti takvog senzora. Za industrijske procese koji uključuju npr. AVG (automated guided vehicle) sustave unutar skladišta, snezorika mora imati odzive koji su reda 10 ms. Bez obzira na navedenu LFM listu, u samoj fazi komuniciranja sa modulima: In normal operation, the data processing unit (40) of the IoT box in question is configured as a master that communicates with the i-th module (10.i) configured as a slave with a frequency previously defined for the given module (10.i) and it is locally stored in the module frequency list (LFM), written into the memory of the data processing unit. For example, if it is an ambient temperature sensor for which it is not realistic to expect drastic changes in a unit of time, it is quite plausible that a value of 1 minute should be entered for that sensor in the LFM list, as a period during which the system updates the value of such a sensor. For industrial processes that include, for example, AVG (automated guided vehicle) systems inside warehouses, the sensor must have responses of the order of 10 ms. Regardless of the specified LFM list, in the very phase of communicating with the modules:

- ili se očitana vrijednosti s modula (10.i) prosljeđuje putem jedinice za povezivanje (50) preko nekog od kompatibilnih pristupnika (300.l) prema serveru (500), - or the read value from the module (10.i) is forwarded via the connection unit (50) via one of the compatible gateways (300.l) to the server (500),

- ili se prethodno zaprimljena vrijednost za i-ti modul sa servera (500), a pohranjena u memoriju jedinice za obradu podataka (40), upisuje u registar modula (10.i) radi izvršavanja funkcije spomenutog modula (10.i). - or the previously received value for the i-th module from the server (500), and stored in the memory of the data processing unit (40), is written into the register of the module (10.i) in order to perform the function of the mentioned module (10.i).

Prosječnom stručnjaku područja razvidno je da izbor jedinice za povezivanje (50) kao i izbor kompatibilnog pristupnika (300.l) u takvoj shemi igra binu ulogu, sve kako bi se spriječila problematična latencija u dvosmjernoj komunikaciji prema serveru (500). It is clear to the average expert in the field that the choice of the connection unit (50) as well as the choice of the compatible gateway (300.l) in such a scheme plays a secondary role, all in order to prevent problematic latency in the two-way communication to the server (500).

U verifikacijskom načinu rada, jedinica za obradu podataka (40) skenira sve dostupne adrese (11.i) priključenih modula (10.i). U stanju tehnike takav postupak opisan je u preglednom radu vezanom za Arduino: https://create.arduino.cc/projecthub/abdularbi17/how-to-scan-i2c-address-in-arduino-eaadda, gdje je prikazan tzv. I2C Scanner Arduino Code. Na sličan ili isti način, ovo se može postići i sa drugim mikrokontrolerima, no „komplikacija“ postaje nešto veća kada se, opcijski, uključe i eventualan jedan ili više multipleksera (31) neke IoT kutije u proces skeniranja. Uglavnom, očitanu listu dostupnih adresa sprema se lokalno kao lista L1 i uspoređuje sa netom očitanu listu L1 sa prethodno spremljenom listom L0. Ovdje sada postoji nekoliko varijanti prema izumu, varijante (i) i (ii), opisane niže. In the verification mode, the data processing unit (40) scans all available addresses (11.i) of the connected modules (10.i). In the state of the art, such a procedure is described in a review paper related to Arduino: https://create.arduino.cc/projecthub/abdularbi17/how-to-scan-i2c-address-in-arduino-eaadda, where the so-called I2C Scanner Arduino Code. In a similar or the same way, this can be achieved with other microcontrollers, but the "complication" becomes somewhat greater when, optionally, one or more multiplexers (31) of an IoT box are included in the scanning process. Basically, the read list of available addresses is saved locally as the L1 list and compares the net read L1 list with the previously saved L0 list. Here now there are several variants according to the invention, variants (i) and (ii), described below.

(i) Ukoliko je lista L1 različita od liste L0 ponavlja se verifikacija stanja do R puta i generiraju se dodatne liste L2, L3, …, LR. U slučaju da su sve liste iz skupa {L2, L3, …, LR} različite od L0, jedinica za obradu podataka (40) izvještava, putem jedinice za povezivanje (50), server (500) o očitanoj pogrešci na kutiji (100.k) i potrebom za fizičkim servisom ili kontrolom sklopova kutije (100.k). Ako je barem 50% vrijednost lista odabranih od {L2, L3, …, LR} identično inicijalnoj listi L0, tada jedinica za obradu podataka (40) izvještava, putem jedinice za povezivanje (50), server (500) o tranzijentnoj poteškoći sustava i nastavlja s upisom ili ispisom podataka u/sa modula (10.i) u normalnom načinu rada. (i) If list L1 is different from list L0, state verification is repeated up to R times and additional lists L2, L3, ..., LR are generated. In the case that all the lists from the set {L2, L3, ..., LR} are different from L0, the data processing unit (40) reports, via the connection unit (50), the server (500) about the read error on the box (100. k) and the need for physical service or control of the box assemblies (100.k). If at least 50% of the value of the list selected from {L2, L3, ..., LR} is identical to the initial list L0, then the data processing unit (40) reports, via the connection unit (50), the server (500) about the transient difficulty of the system and continues writing or writing data to/from the module (10.i) in normal mode.

(ii) Ukoliko je lista L1 ista kao lista L0, tada jedinica za obradu podataka (40) izvještava, putem jedinice za povezivanje (50), server (500), o normalnom funkcioniranju kutije (100.k) i nastavlja s upisom ili ispisom podataka u/sa module (10.i) u normalnom načinu rada. (ii) If list L1 is the same as list L0, then the data processing unit (40) reports, via the connection unit (50), the server (500) about the normal functioning of the box (100.k) and continues with writing or printing data in/with module (10.i) in normal mode.

U ovom posljednjem slučaju ovaj verifikacijski način rada uključuje se ili periodički ili putem verifikacijskog modula (60) aktiviranog iz neposredne blizine same kutije (100.k). In this last case, this verification mode is activated either periodically or via the verification module (60) activated from the immediate vicinity of the box itself (100.k).

Ovaj verifikacijski način rada, osim samo-dijagnostike, ne dozvoljava promjene korištenih IoT modula (10.i) u nekoj kutiji (100.k) bez direktne intervencije vanjskog operatera i za to generiranog servisnog ili drugog naloga zapisanog na serveru (500). Ovaj način rada je bitan da se očuva integritet sustava, no na tzv. software-skoj razini implementacije bez zadiranja u pitanja I2C standarda ili standarda korištenih standardno dobavljivih sklopova / modula / senzora koji su I2C kompatibilni. U tome je i razlika prema prethodnom stanju tehnike. This verification mode of operation, apart from self-diagnostics, does not allow changes to the used IoT modules (10.i) in a box (100.k) without the direct intervention of an external operator and a generated service or other order recorded on the server (500). This mode of operation is important to preserve the integrity of the system, but on the so-called at the software level of implementation without interfering with the issues of I2C standards or standards of used standard available circuits / modules / sensors that are I2C compatible. This is also the difference compared to the previous state of the art.

U servisnom načinu rada, prvi korak je aktiviranje tog načina rada spajanjem ručnog verifikacijskog uređaja (200) na verifikacijski modul (60) izabrane kutije (100.k). Radi povećane sigurnosti, jedinica za obradu podataka (40) sadrži listu digitalno potpisanih identifikatora koji moraju odgovarati verifikacijskom uređaju (200) kojim se vrši spajanje – sve kako bi se spriječio neovlašteno spajanje. Pri tom procesu i verifikacijski uređaj (200) informira server (500), a dodatno i IoT kutije (100.k) nezavisno informira server (500) da je počeo servisni tretman na k-toj kutiji. Jasno je da i server (500) provjerava je li na toj kutiji bio zakazan servis ili rekonfiguracija. Nakon pozitivnih identifikacija, server (500), putem uređaja (200) rezervira vremenski period T kroz koji kutija (100.k) samostalno ne može vršiti verifikacijski način rada i možemo reći da je ista privremeno onesposobljena za standardni rad. Ujedno se unaprijed definirana izmijenjena lista modula L0, koje je zamijenio serviser, sa korespondirajućim frekvencijama očitanja podataka LFM koje je serviser napravio na predmetnoj kutiji, putem uređaja (200), upisuje izravno u memoriju jedinice za obradu podataka (40). Po završetku fizičkog dijela servisnog načina rada na hardware-u, varijabla T postavi se na vrijednost T=0 i izvrši se barem jedan verifikacijski način rada. Ukoliko je taj verifikacijski način prolazan, putem verifikacijskog modula (60) se ta informacija prenese i prikaže na verifikacijskom uređaju (200) servisera, nakon čega se način rada kutije prebaci u normalan, a verifikacijski uređaj (200) obavijesti nezavisno server (500) da je kutija (100.k) u cijelosti operativna. In the service mode, the first step is to activate that mode by connecting the manual verification device (200) to the verification module (60) of the selected box (100.k). For increased security, the data processing unit (40) contains a list of digitally signed identifiers that must match the verification device (200) used to make the connection - all to prevent unauthorized connection. During this process, the verification device (200) also informs the server (500), and additionally the IoT boxes (100.k) independently inform the server (500) that the service treatment has started on the k-th box. It is clear that the server (500) also checks whether service or reconfiguration was scheduled on that box. After positive identifications, the server (500), through the device (200), reserves a time period T during which the box (100.k) cannot independently perform the verification mode of operation and we can say that it is temporarily disabled for standard operation. At the same time, a predefined modified list of modules L0, replaced by the service technician, with the corresponding reading frequencies of the LFM data made by the service technician on the subject box, via the device (200), is written directly into the memory of the data processing unit (40). Upon completion of the physical part of the service mode on the hardware, the variable T is set to the value T=0 and at least one verification mode is performed. If this verification mode is passable, this information is transmitted via the verification module (60) and displayed on the verification device (200) of the service technician, after which the box operation mode is switched to normal, and the verification device (200) independently informs the server (500) that is the box (100.k) fully operational.

Servisni protokoli i izvođenje zadanih radnji na nekoj od kutija (100.k) nezavisno se kontrolira i putem upravljačke konzole (600) sustava, gdje se mogu i ručno unositi izmjene koje zahtijevaju najveći prioritet postupanja. Takvo postupanje može se odnositi, ali nije ograničeno na upisivanje novih IoT kutija u sustav, brisanje IoT kutija iz sustava i/ili drugih osjetljivih radnji koje zahtijevaju superviziju nadglednika sustava. Service protocols and execution of default actions on some of the boxes (100.k) are independently controlled through the control console (600) of the system, where changes that require the highest priority of action can also be entered manually. Such action may include, but is not limited to, enrolling new IoT boxes into the system, deleting IoT boxes from the system, and/or other sensitive actions that require the supervision of a system supervisor.

Kako je prije napomenuto, svi verifikacijski uređaji (200) opremljeni su lokacijskom uslugom, koja pri svakom spajanju sa nekim verifikacijskim modulom (60) određene IoT kutije (100.k) prosljeđuje, kao kontrolni element, serveru (500) i lokaciju gdje je IoT kutija (100.k) očitana. U slučaju izostanka GPS signala koristi se triangulacija signala mobilnih operatera i tako određuje približna lokacija IoT kutije (100.k) u servisnom načinu rada što čini dodatnu sigurnost i robusnost samog sustava. Servisni način rada ne dozvoljava stoga samostalne izmjene sustava bez supervizije servera (500), a ujedno se provjerava i lokacija predmetnih IoT kutija (100.k). As mentioned before, all verification devices (200) are equipped with a location service, which, when connected to a verification module (60), transmits, as a control element, the location where the IoT box (100.k) is to the server (500) box (100.k) read. In the absence of a GPS signal, the triangulation of mobile operators' signals is used and thus determines the approximate location of the IoT box (100.k) in service mode, which makes the system itself extra secure and robust. The service mode therefore does not allow independent changes to the system without server supervision (500), and at the same time the location of the IoT boxes in question is checked (100.k).

U daljnjim aspektima prema izumu može se koristi i AI (umjetna inteligencija) za praćenje mogućih kvarova u sustavu i procjena je li očitana vrijednost s nekog modula neke kutije vjerodostojna, odgovara li aktivnosti za koju je namijenjena. Takav sustav je poznat u stanju tehnike, vidjeti npr. Facebook® Prophet sustav: https://facebook.github.io/prophet/ i vrlo je koristan u nezavisnom promatranju ponašanja sustava nad kojima se ima „elektronički“ nadzor. In further aspects according to the invention, AI (artificial intelligence) can be used to monitor possible failures in the system and assess whether the value read from a module of a box is credible, whether it corresponds to the activity for which it is intended. Such a system is known in the state of the art, see for example the Facebook® Prophet system: https://facebook.github.io/prophet/ and is very useful in independent observation of the behavior of systems over which there is "electronic" supervision.

Industrijska primjenjivost Industrial applicability

Iz svega do sada napisanog, jasno je da se predmetne IoT kutije i sam sustav nadzora naročito koristi u industrijskim procesima akvizicije podataka sa mnoštva IoT senzora, industrijskoj automatizaciji kod koje je potrebno upravljati industrijskim procesima sa izdvojenog mjesta, u industrijama koje koriste redundantne sigurnosne sustave senzorike i upravljanja, robotici, telekomunikacijskim uslugama i svim drugim procesima koji uključuju IoT module koji funkcioniraju putem I2C protokola. Iz pobrojanog je jasno da je industrijska primjenjivost ovog izuma očigledna. From everything written so far, it is clear that the subject IoT boxes and the monitoring system itself are especially used in industrial processes of data acquisition from many IoT sensors, industrial automation where it is necessary to manage industrial processes from a separate location, in industries that use redundant safety systems of sensors and management, robotics, telecommunication services and all other processes that include IoT modules that function via the I2C protocol. From the foregoing, it is clear that the industrial applicability of this invention is obvious.

Reference References

10.i Modul; i = 1, 2, …, N 10.i Module; i = 1, 2, ..., N

11.i I2C adresa senzora 10.i 11.i I2C sensor address 10.i

20.j Utor za modul; j = 1, 2, …, M 20.j Module slot; j = 1, 2, ..., M

30 Sabirnica, I2C sabirnica 30 Bus, I2C bus

31 Multiplekser za I2C sabirnicu 31 Multiplexer for I2C bus

40 Jedinica za obradu podataka 40 Data processing unit

50 Jedinica za povezivanje 50 Connecting unit

60 Verifikacijski modul, BLE modul ili NFC modul 60 Verification module, BLE module or NFC module

70 Napajanje 70 Power supply

100.k Kutija; k = 1, 2, …, P 100.k Box; k = 1, 2, ..., P

200 Ručni verifikacijski uređaj 200 Manual verification device

210 Komunikacijski modul, npr. NFC modul 210 Communication module, eg NFC module

300.l [LoRa ili Wi-Fi] pristupnik; l = 1, 2, …, Q 300.l [LoRa or Wi-Fi] gateway; l = 1, 2, ..., Q

400 Internet 400 Internet

500 Server 500 servers

600 Nadzorna konzola 600 Monitoring console

Claims (10)

1. Postupak rada modularne IoT kutije (100.k) unutar sustava sa P modularnih kutija, k = 1, 2, … P, gdje se svaka IoT kutija (100.k) sastoji od: - proizvoljnog broja utora za module (20.j), j = 1, 2, …, M, dimenzijski i električni izvedenih da mogu prihvatiti proizvoljan broj modula (10.i), i = 1, 2, …, N; gdje je N ≤ M, gdje su svi moduli dizajnirani za komunikaciju I2C komunikacijskim protokolom na način da posjeduju svoju jedinstvenu I2C adresu (11.i), - gdje su moduli (10.i) proizvoljno izabrani iz seta I2C uređaja bez ograničenja, a naročito iz skupine različitih senzora, analogno-digitalnih pretvarača (ADP) i digitalno-analognih pretvarača (DAP), radio modula kao i modula za prikaz podataka, - sabirnice (30), dizajnirane za povezivanje modula (10.i) koji funkcioniraju u slave modu odgovarajućim ožičenjem s jedinicom za obradu podataka (40) koja je konfigurirana da funkcionira u master modu, - opcijski, jednog ili više multipleksera (31) ugrađenih na sabirnicu koji omogućuju korištenje dva ili više modula s istom namjenom i istom ugrađenom I2C adresom na način da ih jedinica za obradu podataka (40) +vidi kao set potpuno različitih modula (10.i) s različitom I2C adresom (11.i) unutar iste I2C sheme spajanja, - gdje je jedinica za obradu podataka (40) dodatno povezna s jedinicom za povezivanje (50) i barem jednim verifikacijskim modulom (60) koji je izveden ili samostalno ili kao jedan od modula (10.i), gdje je namjena jedinice (40) procesiranje signala zaprimljenih sa spomenutih modula (10.i) ili upravljanim ponašanjem pojedinog modula (10.i) i verifikacijskog modula (60), te uspostava komunikacije preko jedinice sa povezivanje (50) sa vanjskim serverom sustava (500), gdje spomenuta IoT kutija (100.k) sprječava proizvoljnu izmjenu ili dodavanje modula (10.i) u utorima (20.j) koje nadzire, te provodi samo-dijagnostiku, na način da spomenuta kutija (100.k) izvršava neki od tri moguća načina rada, naznačen time, da su ti načini izabrani od: normalnog načina rada kada moduli (10.i) komuniciraju sa serverom (500) putem spomenute kutije (100.k) u inicijalno zadanim vremenskim periodima definiranim listom frekvencija ugrađenih modula (LFM), verifikacijskog načina rada kada se utvrđuje funkcionalnost i broj ugrađenih modula (10.i), te servisnog način rada koji omogućuje rekonfiguraciju predmetne kutije (100.k) i izmjenu modula (10.i) od strane operatera.1. The operation procedure of a modular IoT box (100.k) within a system with P modular boxes, k = 1, 2, ... P, where each IoT box (100.k) consists of: - an arbitrary number of slots for modules (20.j), j = 1, 2, ..., M, dimensionally and electrically designed to accept an arbitrary number of modules (10.i), i = 1, 2, ..., N; where N ≤ M, where all modules are designed to communicate with the I2C communication protocol in such a way that they have their own unique I2C address (11.i), - where modules (10.i) are arbitrarily chosen from a set of I2C devices without restrictions, and in particular from a group of different sensors, analog-to-digital converters (ADP) and digital-to-analog converters (DAP), radio modules as well as data display modules, - buses (30), designed to connect modules (10.i) operating in slave mode by appropriate wiring with a data processing unit (40) configured to operate in master mode, - optionally, one or more multiplexers (31) installed on the bus that allow the use of two or more modules with the same purpose and the same built-in I2C address in such a way that the data processing unit (40) sees them as a set of completely different modules (10.i ) with a different I2C address (11.i) within the same I2C connection scheme, - where the data processing unit (40) is additionally connected to the connection unit (50) and at least one verification module (60) which is performed either independently or as one of the modules (10.i), where the purpose of the unit (40) is processing of signals received from the mentioned modules (10.i) or controlled by the behavior of individual modules (10.i) and verification module (60), and establishing communication via the connection unit (50) with the external server of the system (500), where the mentioned IoT box (100.k) prevents arbitrary modification or addition of modules (10.i) in the slots (20.j) it monitors, and performs self-diagnostics, in such a way that the mentioned box (100.k) executes one of three possible modes of operation, indicated by the fact that these modes are selected from: the normal mode of operation when the modules (10.i) communicate with the server (500) via the mentioned box (100.k) in the initially set time periods defined by the frequency list of the built-in modules (LFM ), the verification mode of operation when the functionality and the number of installed modules are determined (10.i), and the service mode that enables the reconfiguration of the box in question (100.k) and the modification of the module (10.i) by the operator. 2. Postupak rada modularne IoT kutije (100.k) prema zahtjevu 1, naznačen time, da je u normalnom načinu rada jedinica za obradu podataka (40) konfigurirana kao master koja komunicira s i-tim modulom (10.i) konfiguriranim kao slave sa frekvencijom koja je prethodno definirana za dani modul (10.i) i nalazi se lokalno pohranjena na listi frekvencija (LFM), a u fazi komuniciranja: - ili se očitana vrijednosti s modula (10.i) prosljeđuje putem jedinice za povezivanje (50) preko nekog od kompatibilnih pristupnika (300.l) prema serveru (500), - ili se prethodno zaprimljena vrijednost za i-ti modul sa servera (500), a pohranjena u memoriju jedinice za obradu podataka (40), upisuje u registar modula (10.i) radi izvršavanja funkcije spomenutog modula (10.i).2. The method of operation of the modular IoT box (100.k) according to claim 1, characterized in that in the normal mode of operation the data processing unit (40) is configured as a master that communicates with the ith module (10.i) configured as a slave with the frequency that was previously defined for the given module (10.i) and is locally stored in the list of frequencies (LFM), and in the communication phase: - or the read value from the module (10.i) is forwarded via the connection unit (50) via one of the compatible gateways (300.l) to the server (500), - or the previously received value for the i-th module from the server (500), and stored in the memory of the data processing unit (40), is written into the register of the module (10.i) in order to perform the function of the mentioned module (10.i). 3. Postupak rada modularne IoT kutije (100.k) prema zahtjevu 1, naznačen time, da u verifikacijskom načinu rada, jedinica za obradu podataka (40) skenira sve dostupne adrese (11.i) priključenih modula (10.i), očitanu listu dostupnih adresa sprema lokalno kao listu L1 i uspoređuje tu očitanu listu L1 sa prethodno spremljenom listom L0, te ukoliko je: (i) L1<>L0 ponavlja verifikaciju stanja do R puta i generira dodatne liste L2, L3, … LR, a u slučaju da su sve liste iz skupa {L2, L3, …, LR} različite od L0, jedinica za obradu podataka (40) izvještava, putem jedinice za povezivanje (50), server (500) o očitanoj pogrešci na kutiji (100.k) i potrebom za fizičkim servisom ili kontrolom sklopova kutije (100.k); a ako je barem 50% vrijednost lista odabranih od {L2, L3, …, LR} identično listi L0, tada jedinica za obradu podataka (40) izvještava, putem jedinice za povezivanje (50), server (500) o tranzijentnoj poteškoći sustava i nastavlja s upisom ili ispisom podataka u/sa modula (10.i) u normalnom načinu rada; ili (ii) L1 = L0 jedinica za obradu podataka (40) izvještava, putem jedinice za povezivanje (50), server (500), o normalnom funkcioniranju kutije (100.k) i nastavlja s upisom ili ispisom podataka u/sa module (10.i) u normalnom načinu rada, gdje se verifikacijski način rada uključuje ili periodički ili putem verifikacijskog modula (60) aktiviranog iz neposredne blizine same kutije (100.k).3. The operation procedure of the modular IoT box (100.k) according to claim 1, characterized by the fact that in the verification mode, the data processing unit (40) scans all available addresses (11.i) of the connected modules (10.i), read saves the list of available addresses locally as list L1 and compares the read list L1 with the previously saved list L0, and if: (i) L1<>L0 repeats state verification up to R times and generates additional lists L2, L3, … LR, and in case all lists from the set {L2, L3, …, LR} are different from L0, the data processing unit ( 40) reports, through the connection unit (50), the server (500) about the error read on the box (100.k) and the need for physical service or control of the box assemblies (100.k); and if at least 50% of the value of the list selected from {L2, L3, ..., LR} is identical to the list L0, then the data processing unit (40) reports, via the connection unit (50), the server (500) about the transient difficulty of the system and continues writing or writing data to/from the module (10.i) in normal mode; or (ii) L1 = L0 the data processing unit (40) reports, via the connection unit (50), the server (500) about the normal functioning of the box (100.k) and continues to write or write data to/from the module (10 .i) in normal operation mode, where the verification mode is switched on either periodically or via the verification module (60) activated from the immediate vicinity of the box itself (100.k). 4. Postupak rada modularne IoT kutije (100.k) prema zahtjevu 1 i 3 naznačen time, da se servisni način rada aktivira spajanjem ručnog verifikacijskog uređaja (200) na verifikacijski modul (60) izabrane kutije (100.k) pri čemu jedinica za obradu podataka (40) sadrži listu digitalno potpisanih identifikatora koji moraju odgovarati verifikacijskom uređaju (200) kojim se vrši spajanje kako bi se spriječio neovlašteno spajanje, pri čemu i verifikacijski uređaj (200) informira server (500) a dodatno i IoT kutije (100.k) nezavisno informira server (500) da je počeo servisni tretman na k-toj kutiji, nakon čega server, putem uređaja (200) rezervira vremenski period T kroz koji kutija (100.k) samostalno ne može vršiti verifikacijski način rada, a unaprijed definirana izmijenjena lista senzora L0 sa korespondirajućim frekvencijama očitanja podataka LFM koje je serviser napravio na predmetnoj kutiji, putem uređaja (200), upisuje se izravno u memoriju jedinice za obradu podataka (40), nakon čega se varijabla T postavi na vrijednost T=0 i izvrši se barem jedan verifikacijski način rada, koji – ukoliko je prolazan, putem verifikacijskog modula (60) se prenese i prikaže na verifikacijskom uređaju (200) servisera, nakon čega se način rada kutije prebaci u normalan, a verifikacijski uređaj (200) obavijesti nezavisno server (500) da je kutija (100.k) u cijelosti operativna.4. The operation procedure of the modular IoT box (100.k) according to claim 1 and 3, characterized in that the service mode is activated by connecting the manual verification device (200) to the verification module (60) of the selected box (100.k), whereby the unit for data processing (40) contains a list of digitally signed identifiers that must correspond to the verification device (200) used to make the connection in order to prevent unauthorized connection, whereby the verification device (200) informs the server (500) and additionally the IoT boxes (100. k) independently informs the server (500) that service treatment has begun on the k-th box, after which the server, via the device (200), reserves a time period T during which the box (100.k) cannot independently perform verification mode, and in advance the defined modified list of sensors L0 with the corresponding frequencies of LFM data readings made by the service technician on the box in question, through the device (200), is written directly into the memory of the data processing unit (40), after which the variable T is set to the value T=0 and at least one verification mode is performed, which - if it is transitory, is transmitted via the verification module (60) and displayed on the verification device (200) of the service technician, after which the box's mode of operation is switched to normal, and the verification device (200) informs independently server (500) that the box (100.k) is fully operational. 5. Postupak rada modularne IoT kutije (100.k) prema nekom od zahtjeva 1, 3 ili 4, naznačen time, da je verifikacijski modul (60) odabran iz skupine koju čine NFC ili Bluetooth® Low Energy sklop koji omogućava dvosmjernu komunikaciju između verifikacijskog modula (60) i verifikacijskog uređaja (200).5. The operation procedure of the modular IoT box (100.k) according to one of claims 1, 3 or 4, characterized in that the verification module (60) is selected from the group consisting of NFC or Bluetooth® Low Energy circuit that enables two-way communication between the verification module (60) and verification device (200). 6. Postupak rada modularne IoT kutije (100.k) prema zahtjevu 5, naznačen time, da je verifikacijski uređaj (200) mobilni uređaj opremljen kompatibilnim sklopom za komunikaciju s verifikacijskim elementom modulom (60) IoT kutije.6. The operation procedure of the modular IoT box (100.k) according to claim 5, characterized in that the verification device (200) is a mobile device equipped with a compatible circuit for communication with the verification element module (60) of the IoT box. 7. Postupak rada modularne IoT kutije (100.k) prema bilo kojem od prethodnih zahtjeva, naznačen time, da je jedinica za povezivanje (50) odabrana od WI-FI, LoRaWAN i Bluetooth Low Energy radio modula, poželjno LoRaWAN modula, izvedena ili kao samostalni modul vezan za jedinicu za obradu podataka (40) ili kao jedan od modula (10.i) spomenute IoT kutije (100.k).7. The method of operation of the modular IoT box (100.k) according to any of the preceding claims, characterized in that the connection unit (50) is selected from WI-FI, LoRaWAN and Bluetooth Low Energy radio modules, preferably LoRaWAN modules, performed or as an independent module connected to the data processing unit (40) or as one of the modules (10.i) of the aforementioned IoT box (100.k). 8. Sustav za praćenje rada modularnih IoT kutija (100.k) sa P modularnih kutija, k = 1, 2, …, P, koji se sastoji od servera (500), nadzorne konzole (600) samog sustava, barem jednog verifikacijskog uređaja (200) i serije pristupnika (300.l), l = 1, 2, …, Q, gdje se svaka IoT kutija (100.k) sastoji od: - proizvoljnog broja utora za module (20.j), j = 1, 2, …, M, dimenzijski i električni izvedenih da mogu prihvatiti proizvoljan broj modula (10.i), i = 1, 2, …, N; gdje je N ≤ M, gdje su svi moduli dizajnirani za komunikaciju I2C komunikacijskim protokolom na način da posjeduju svoju jedinstvenu I2C adresu (11.i), - gdje su moduli (10.i) proizvoljno izabrani iz seta I2C uređaja bez ograničenja, a naročito iz skupine različitih senzora, analogno-digitalnih pretvarača (ADP) i digitalno-analognih pretvarača (DAP), radio modula kao i modula za prikaz podataka, - sabirnice (30), dizajnirane za povezivanje modula (10.i) koji funkcioniraju u slave modu odgovarajućim ožičenjem s jedinicom za obradu podataka (40) koja je konfigurirana da funkcionira u master modu, - opcijski, jednog ili više multipleksera (31) ugrađenih u sabirnicu koji omogućuju korištenje dva ili više modula s istom namjenom i istom ugrađenom I2C adresom na način da ih jedinica za obradu podataka (40) vidi kao set potpuno različitih modula (10.i) s različitom I2C adresom (11.i) unutar iste I2C sheme spajanja, - gdje je jedinica za obradu podataka (40) dodatno povezna s jedinicom za povezivanje (50) i barem jednim verifikacijskim modulom (60) koji je izveden ili samostalno ili kao jedan od modula (10.i), gdje je namjena jedinice (40) procesiranje signala zaprimljenih sa spomenutih modula (10.i) ili upravljanim ponašanjem pojedinog modula (10.i) i verifikacijskog modula (60), te uspostava komunikacije preko jedinice sa povezivanje (50) sa vanjskim serverom sustava (500), naznačen time da: - svaki od spomenutih verifikacijskih uređaja (200) komunicira, u jedinici vremena, samo s jednom IoT kutijom (100.k) i serverom sustava (500), - da je serija pristupnika (300.l) ista ili međusobno različita i izabrana iz skupine koju čine: Wi-Fi, LoRaWAN ili Bluetooth Low Energy pristupnici, a gdje su spomenuti pristupnici kompatibilni sa ugrađenim IoT kutijama (100.k) sa kojima su povezani i omogućavaju pouzdanu vezu kutija (100.k) sa serverom (500) putem Interneta (400), - da sustav bilježi u vremenu stanje svakog od modula (10.i) ugrađenog u neku kutije (100.j) i prati stanje svih promjena konfiguracije spomenutih modula u svakoj IoT kutiji, te vodi servisne liste o kojima izvješćuje operatera nadzorne konzole (600), te - da sustav omogućava trećim osobama komunikaciju sa serverom (500) radi daljnje analize i upravljanjem podataka koji se učitavaju u ili iščitavaju iz modula (10.i) u IoT kutijama (100.j) radi nadzora procesa koji su vezani za spomenute kutije (100.j).8. System for monitoring the operation of modular IoT boxes (100.k) with P modular boxes, k = 1, 2, ..., P, consisting of a server (500), a monitoring console (600) of the system itself, at least one verification device (200) and series of gateways (300.l), l = 1, 2, …, Q, where each IoT box (100.k) consists of: - an arbitrary number of slots for modules (20.j), j = 1, 2, ..., M, dimensionally and electrically designed to accept an arbitrary number of modules (10.i), i = 1, 2, ..., N; where N ≤ M, where all modules are designed to communicate with the I2C communication protocol in such a way that they have their own unique I2C address (11.i), - where modules (10.i) are arbitrarily chosen from a set of I2C devices without restrictions, and in particular from a group of different sensors, analog-to-digital converters (ADP) and digital-to-analog converters (DAP), radio modules as well as data display modules, - buses (30), designed to connect modules (10.i) operating in slave mode by appropriate wiring with a data processing unit (40) configured to operate in master mode, - optionally, one or more multiplexers (31) built into the bus that allow the use of two or more modules with the same purpose and the same built-in I2C address in such a way that the data processing unit (40) sees them as a set of completely different modules (10.i) with a different I2C address (11.i) within the same I2C connection scheme, - where the data processing unit (40) is additionally connected to the connection unit (50) and at least one verification module (60) which is performed either independently or as one of the modules (10.i), where the purpose of the unit (40) is processing of signals received from the mentioned modules (10.i) or controlled by the behavior of individual modules (10.i) and verification module (60), and establishing communication via the connection unit (50) with the external server of the system (500), indicated that: - each of the mentioned verification devices (200) communicates, in a unit of time, only with one IoT box (100.k) and system server (500), - that the series of gateways (300.l) is the same or mutually different and chosen from the group consisting of: Wi-Fi, LoRaWAN or Bluetooth Low Energy gateways, and where said gateways are compatible with built-in IoT boxes (100.k) with which they are connected and enabling a reliable connection of boxes (100.k) with the server (500) via the Internet (400), - that the system records in time the state of each of the modules (10.i) installed in a box (100.j) and monitors the state of all configuration changes of the mentioned modules in each IoT box, and maintains service lists about which it reports to the operator of the monitoring console (600) , you - that the system enables third parties to communicate with the server (500) for further analysis and management of the data that is loaded into or read from the module (10.i) in the IoT boxes (100.j) for the purpose of monitoring the processes related to the mentioned boxes (100 .j). 9. Sustav za praćenje rada modularnih IoT kutija (100.k) prema zahtjevu 8, naznačen time, da su svi verifikacijski uređaji (200) opremljeni lokacijskom uslugom, koja pri svakom spajanju sa nekim verifikacijskim modulom (60) određene IoT kutije (100.k) prosljeđuje, kao kontrolni element, serveru (500) i lokaciju gdje je IoT kutija (100.k) očitana, a u slučaju izostanka GPS signala koristi se triangulacija signala mobilnih operatera i tako određuje približna lokacija IoT kutije (100.k) u servisnom načinu rada.9. A system for monitoring the operation of modular IoT boxes (100.k) according to claim 8, characterized by the fact that all verification devices (200) are equipped with a location service, which at each connection with a verification module (60) of a certain IoT box (100. k) forwards, as a control element, to the server (500) the location where the IoT box (100.k) was read, and in the absence of a GPS signal, mobile operator signal triangulation is used and thus determines the approximate location of the IoT box (100.k) in the service area mode of operation. 10. Korištenje modularna IoT kutije (100.k) s funkcionalnošću opisanom zahtjevima 1-7 koja je smještena unutar sustava sa P modularnih kutija, k = 1, 2, … P, definiranih zahtjevom 8 ili 9, naznačena time, da se naročito koristi u industrijskim procesima akvizicije podataka sa mnoštva IoT senzora, industrijskoj automatizaciji kod koje je potrebno upravljati industrijskim procesima sa izdvojenog mjesta, u industrijama koje koriste redundantne sigurnosne sustave senzorike i upravljanja, robotici, telekomunikacijskim uslugama i svim drugim procesima koji uključuju IoT module koji funkcioniraju putem I2C protokola.10. Use of a modular IoT box (100.k) with the functionality described in claims 1-7, which is located within a system with P modular boxes, k = 1, 2, ... P, defined by claim 8 or 9, characterized by the fact that it is particularly used in industrial processes of data acquisition from many IoT sensors, industrial automation where it is necessary to manage industrial processes from a separate place, in industries that use redundant safety systems of sensors and control, robotics, telecommunication services and all other processes that include IoT modules that function via I2C protocol.
HRP20220589AA 2022-05-06 2022-05-06 Method of operation of modular iot box with verification of connected modules and associated system with plurality of iot boxes HRP20220589A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HRP20220589AA HRP20220589A1 (en) 2022-05-06 2022-05-06 Method of operation of modular iot box with verification of connected modules and associated system with plurality of iot boxes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HRP20220589AA HRP20220589A1 (en) 2022-05-06 2022-05-06 Method of operation of modular iot box with verification of connected modules and associated system with plurality of iot boxes

Publications (1)

Publication Number Publication Date
HRP20220589A1 true HRP20220589A1 (en) 2023-11-10

Family

ID=88600931

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP20220589AA HRP20220589A1 (en) 2022-05-06 2022-05-06 Method of operation of modular iot box with verification of connected modules and associated system with plurality of iot boxes

Country Status (1)

Country Link
HR (1) HRP20220589A1 (en)

Similar Documents

Publication Publication Date Title
CN107643738B (en) Process control communication between a portable field maintenance tool and a process control instrument
CN107643739B (en) Process control communication between portable field maintenance tool and asset management system
US9702732B2 (en) Process variable transmitter with loop-powered wireless transceiver
US10386824B2 (en) Binding of devices in a process plant using I/O-abstracted field device configurations
US11734213B2 (en) Integration of multiple communication physical layers and protocols in a process control input/output device
US11212322B2 (en) Automated discovery of security policy from design data
US20080112388A1 (en) FDT for EDDL-Based Field Devices
US8762598B2 (en) Arrangement with a superordinated control unit and at least one intelligent field device connectable with the control unit
WO2014094982A1 (en) Commissioning system and method for a secure exchange of sensitive information for the commissioning and configuring of technical equipment
CN103312772A (en) Data acquisition system applied to internet of things and corresponding device
US20180107609A1 (en) Intelligent field input/output (i/0) terminal for industrial control and related system and method
WO2015001041A1 (en) A gateway system for facilitating the interoperability between different service domains and a multitude of communication protocols within and outside a home network
JP2009048289A (en) Field communication system
CN110161896B (en) Control system for a power supply assembly and associated method for starting, controlling and monitoring a power supply assembly
HRP20220589A1 (en) Method of operation of modular iot box with verification of connected modules and associated system with plurality of iot boxes
JP4873220B2 (en) Field communication system
US20220141230A1 (en) Measuring system, communication component, device, process and computer program for a communication component of a measuring system for synchronizing access data
CN216596008U (en) Site communicator equipment
Eshita Khatun et al. Smart Residence Incorporating with Internet of Things (IoT)
CN111741461A (en) Authority grant for field devices
Song et al. Design and implementation of ZigBee based wireless sensor and actuator networks in service robot intelligent space

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application