HRP20210511A1 - PROCEDURE FOR DETERMINATION OF MULTI-DAY AVERAGE CONCENTRATION OF ESTRADIOL IN BLOOD BASED ON THE COMPOSITION OF IgG GLYCOMA FROM BLOOD PLASMA - Google Patents

PROCEDURE FOR DETERMINATION OF MULTI-DAY AVERAGE CONCENTRATION OF ESTRADIOL IN BLOOD BASED ON THE COMPOSITION OF IgG GLYCOMA FROM BLOOD PLASMA Download PDF

Info

Publication number
HRP20210511A1
HRP20210511A1 HRP20210511AA HRP20210511A HRP20210511A1 HR P20210511 A1 HRP20210511 A1 HR P20210511A1 HR P20210511A A HRP20210511A A HR P20210511AA HR P20210511 A HRP20210511 A HR P20210511A HR P20210511 A1 HRP20210511 A1 HR P20210511A1
Authority
HR
Croatia
Prior art keywords
igg
glycans
blood
estradiol
glycan
Prior art date
Application number
HRP20210511AA
Other languages
Croatian (hr)
Inventor
Gordan Lauc
Nikolina LAUC
Original Assignee
Genos D.O.O.
Glycanage Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genos D.O.O., Glycanage Ltd filed Critical Genos D.O.O.
Priority to HRP20210511AA priority Critical patent/HRP20210511A1/en
Priority to EP22718675.6A priority patent/EP4314816A2/en
Priority to PCT/EP2022/058071 priority patent/WO2022207537A2/en
Publication of HRP20210511A1 publication Critical patent/HRP20210511A1/en
Priority to US18/373,311 priority patent/US20240044917A1/en

Links

Abstract

Predmetni izum otkriva postupak određivanja estradiola (<U>E2</U>) putem kvantitativne analize N-glikana vezanih na imunoglobulin G (IgG) iz krvne plazme žena. Iznosi kvantitativnih udjela jednog ili više IgG glikana uvrštavaju se u numerički model koji je ranije dobiven statističkom obradom rezultata studije varijacija kvantitativnog sastava IgG glikana u krvnoj plazmi u odnosu na aktualne koncentracije <U>E2</U>, na skupini žena starosti od 18 do 50 godina a koje u trenutku testiranja nisu bile u nekom medicinskom stanju za koje je poznato da izaziva promjene IgG N-glikana i koncentracija spolnih hormona, te podredno, <U>E2</U> u krvi. Kao rezultat dobiva se prirodni logaritam koncentracije <U>E2</U> u krvi iz kojeg se lako izračunava koncentracija estradiola u krvi. Dijagnostički postupak prema izumu koristan je u određivanju prosječne višednevne koncentracije <U>E2</U> u krvi.The subject invention discloses a procedure for determining estradiol (<U>E2</U>) by quantitative analysis of N-glycans bound to immunoglobulin G (IgG) from the blood plasma of women. The amounts of quantitative parts of one or more IgG glycans are inserted in a numerical model that was previously obtained by statistical processing of the results of a study of variations in the quantitative composition of IgG glycans in blood plasma in relation to current <U>E2</U> concentrations, on a group of women aged 18 to 50 and who at the time of testing were not in any medical condition that is known to cause changes in IgG N-glycan and sex hormone concentrations, and secondarily, <U>E2</U> in the blood. As a result, the natural logarithm of <U>E2</U> concentration in the blood is obtained, from which the concentration of estradiol in the blood is easily calculated. The diagnostic procedure according to the invention is useful in determining the average multi-day concentration of <U>E2</U> in the blood.The present invention discloses a method for determining estradiol (<U>E2</U>) by quantitative analysis of N-glycans bound to immunoglobulin G (IgG) from the blood plasma of women. Quantitative amounts of one or more IgG glycans are included in a numerical model that was previously obtained by statistical processing of the results of a study of variations in the quantitative composition of IgG glycans in blood plasma in relation to current <U>E2</U> concentrations, on a group of women aged 18 to 50 years old and who at the time of testing were not in any medical condition that is known to cause changes in IgG N-glycan and sex hormone concentrations, and secondarily, <U>E2</U> in the blood. As a result, the natural logarithm of <U>E2</U> concentration in the blood is obtained, from which the concentration of estradiol in the blood is easily calculated. The diagnostic procedure according to the invention is useful in determining the average multi-day concentration of <U>E2</U> in the blood. The subject invention discloses a procedure for determining estradiol (<U>E2</U>) by quantitative analysis of N-glycans bound to immunoglobulin G (IgG) from the blood plasma of women. The amounts of quantitative parts of one or more IgG glycans are inserted in a numerical model that was previously obtained by statistical processing of the results of a study of variations in the quantitative composition of IgG glycans in blood plasma in relation to current <U>E2 </U> concentrations, on a group of women aged 18 to 50 and who at the time of testing were not in any medical condition that is known to cause changes in IgG N-glycan and sex hormone concentrations, and secondarily, <U> E2</U> in the blood. As a result, the natural logarithm of <U>E2</U> concentration in the blood is obtained, from which the concentration of estradiol in the blood is easily calculated. The diagnostic procedure according to the invention is useful in determining the average multi-day concentration of <U>E2</U> in the blood.

Description

1.1 Područje izuma 1.1 Field of the invention

Predmetni izum odnosi se na postupak određivanja koncentracije estradiola (E2) putem analize N-glikana vezanih na imunoglobulin G (IgG) iz krvne plazme ispitivane ženske osobe. The present invention relates to the procedure for determining the concentration of estradiol (E2) through the analysis of N-glycans bound to immunoglobulin G (IgG) from the blood plasma of a female subject.

1.2 Tehnički problem 1.2 Technical problem

Predmetni izum rješava tehnički problem pouzdanog određivanja višednevne prosječne koncentracije estradiola (E2) u krvi. The subject invention solves the technical problem of reliable determination of the multi-day average concentration of estradiol (E2) in the blood.

[image] [image]

Poznato je da postojeće dijagnostičke metode koje se baziraju na različitim imunokemijskim metodama nisu prikladne za određivanje višednevne prosječne koncentracije E2 zbog činjenice da njegova koncentracija značajno varira tijekom menstrualnog ciklusa što je posebice izraženo u periodu perimenopauze. Predmetni izum rješava navedeni tehnički problem temeljem kvantitativne analize IgG N-glikana ispitivane ženske osobe, starosti od 18 do 50 godina, iz jednog jedinog uzorka krvi što je nemoguće uz primjenu postojećih imunokemijskih metoda kvantitativne analize E2. It is known that existing diagnostic methods based on different immunochemical methods are not suitable for determining the multi-day average concentration of E2 due to the fact that its concentration varies significantly during the menstrual cycle, which is especially pronounced in the perimenopause period. The present invention solves the mentioned technical problem based on the quantitative analysis of IgG N-glycan of a female subject, aged 18 to 50, from a single blood sample, which is impossible with the use of existing immunochemical methods of quantitative E2 analysis.

1.3 Prethodno stanje tehnike 1.3 Prior art

Glikani su složeni ugljikohidrati pretežito na bazi N-acetil-glukozamina (■), fukoze (▼), manoze (●), galaktoze (○) i N-acetil-neuraminske kiseline (♦), koji su često vezani na proteine, tipično N-glikozidnom vezom i uključeni u brojne fiziološke i patološke procese. Zbog njihove uključenosti u velik broj bioloških procesa od velike su važnosti kao biokemijski pokazatelji općeg zdravstvenog stanja te različitih fizioloških i patoloških stanja ljudskog organizma; vidjeti literaturnu referencu 1: Glycans are complex carbohydrates mainly based on N-acetyl-glucosamine (■), fucose (▼), mannose (●), galactose (○) and N-acetyl-neuraminic acid (♦), which are often attached to proteins, typically N -glycosidic bond and involved in numerous physiological and pathological processes. Due to their involvement in a large number of biological processes, they are of great importance as biochemical indicators of the general state of health and various physiological and pathological conditions of the human organism; see literature reference 1:

1) G. Opdenakker, P. M. Rudd, C. P. Ponting, R. A. Dwek: Concepts and principles of glycobiology, FASEB J. 7 (1993) 1330-1337. 1) G. Opdenakker, P. M. Rudd, C. P. Ponting, R. A. Dwek: Concepts and principles of glycobiology, FASEB J. 7 (1993) 1330-1337.

Imunoglobulin G (IgG) je najzastupljenije protutijelo u krvnoj plazmi čovjeka i ima važnu ulogu o obrani organizma od različitih antigena. IgG je glikoprotein za čiju su stabilnost i funkciju ključni glikani vezani za njegove teške lance. Glikozilacija IgG je također ovisna o različitim fiziološkim (dob, spol, trudnoća) i patološkim stanjima (tumori, infekcije, autoimune bolesti). U stanju tehnike je poznato da se obrazac glikozilacije IgG mijenja sa starošću pojedinca, te je primjerice analizom IgG N-glikana moguće pratiti sam proces starenja i izvesti zaključke o biološkoj dobi ispitivane osobe; vidjeti literaturne reference 2-5: Immunoglobulin G (IgG) is the most abundant antibody in human blood plasma and plays an important role in the body's defense against various antigens. IgG is a glycoprotein whose stability and function are key to the glycans attached to its heavy chains. Glycosylation of IgG also depends on different physiological (age, sex, pregnancy) and pathological conditions (tumors, infections, autoimmune diseases). It is known in the state of the art that the glycosylation pattern of IgG changes with the age of an individual, and for example, by analyzing IgG N-glycans, it is possible to monitor the aging process itself and draw conclusions about the biological age of the subject; see literature references 2-5:

2) R. Parekh, I. Roitt, D. Isenberg, R. Dwek, T. Rademacher: Age-related galactosylation of the N-linked oligosaccharides of human serum IgG, J. Exp. Med. 167 (1988) 1731-1736. 2) R. Parekh, I. Roitt, D. Isenberg, R. Dwek, T. Rademacher: Age-related galactosylation of the N-linked oligosaccharides of human serum IgG, J. Exp. Honey. 167 (1988) 1731-1736.

3) M. Pučić, A. Knežević, J. Vidič, B. Adamczyk, M. Novokmet, O. Polašek, O. Gornik, S. Šupraha-Goreta, M. R. Wormald, I. Redžić, H. Campbell, A. Wright, N. D. Hastie, J. F. Wilson, I. Rudan, M. Wuhrer, P. M. Rudd, D. Josić, G. Lauc: High Throughput Isolation and Glycosylation Analysis of IgG-Variability and Heritability of the IgG Glycome in Three Isolated Human Populations, Molecular & Celular Proteomics 10.10; doi:10.1074/mcp.M111.010090. 3) M. Pučić, A. Knežević, J. Vidič, B. Adamczyk, M. Novokmet, O. Polašek, O. Gornik, S. Supraha-Goreta, M. R. Wormald, I. Redžić, H. Campbell, A. Wright , N. D. Hastie, J. F. Wilson, I. Rudan, M. Wuhrer, P. M. Rudd, D. Josić, G. Lauc: High Throughput Isolation and Glycosylation Analysis of IgG-Variability and Heritability of the IgG Glycome in Three Isolated Human Populations, Molecular & Cellular Proteomics 10.10; doi:10.1074/mcp.M111.010090.

4) EP3011335B1; G. Lauc, M. Pučić-Baković, F. Vučković: Method for the analysis of N-glycans attached to immunoglobulin G from human blood plasma and its use; nositelj: Genos d.o.o. (HR); datum prioriteta: 20.06.2013. 4) EP3011335B1; G. Lauc, M. Pučić-Baković, F. Vučković: Method for the analysis of N-glycans attached to immunoglobulin G from human blood plasma and its use; holder: Genos d.o.o. (HR); priority date: 20.06.2013.

5) J. Krištić, F. Vučković, C. Menni, L. Klarić, T. Keser, I. Beceheli, M. Pučić-Baković, M. Novokmet, M. Mangino, K. Thaqi, P. Rudan, N. Novokmet, J. Sarac, S. Missoni, I. Kolčić, O. Polašek, I. Rudan, H. Campbell, C. Hayward, Y. Aulchenko, A. Valdes, J. F. Wilson, O. Gornik, D. Primorac, V. Zoldoš, T. Spector, G. Lauc: Glycans are a novel biomarker of chronological and biological ages, J. Gerontol. A Biol. Sci. Med. Sci. 69 (2014) 779-789. 5) J. Krištić, F. Vučković, C. Menni, L. Klarić, T. Keser, I. Beceheli, M. Pučić-Baković, M. Novokmet, M. Mangino, K. Thaqi, P. Rudan, N. Novokmet, J. Sarac, S. Missoni, I. Kolčić, O. Polašek, I. Rudan, H. Campbell, C. Hayward, Y. Aulchenko, A. Valdes, J. F. Wilson, O. Gornik, D. Primorac, V Zoldoš, T. Spector, G. Lauc: Glycans are a novel biomarker of chronological and biological ages, J. Gerontol. And Biol. Sci. Honey. Sci. 69 (2014) 779-789.

Estradiol (E2) je ženski spolni hormon is skupine estrogena koji je koristan kao dijagnostički pokazatelj za kliničku procjenu bolesti kao što su hipogonadizam, hirsutizam, policistični ovarijalni sindrom (PCOS), amenoreja, tumori ovarija, za praćenje odgovora na terapiju inhibitorima aromataze kod žena, te za praćenje tretmana povećanja plodnosti; vidjeti literaturnu referencu 6: Estradiol (E2) is a female sex hormone from the group of estrogens, which is useful as a diagnostic indicator for the clinical assessment of diseases such as hypogonadism, hirsutism, polycystic ovarian syndrome (PCOS), amenorrhea, ovarian tumors, for monitoring the response to therapy with aromatase inhibitors in women, and for monitoring fertility treatment; see literature reference 6:

6) H. Ketha, A. Girtman, R. J. Singh: Estradiol assays – The path ahead, Steroids 99 (2015) 39-44. 6) H. Ketha, A. Girtman, R. J. Singh: Estradiol assays – The path ahead, Steroids 99 (2015) 39-44.

Predmetni izum rješava opisani tehnički problem na nov i inventivan način uz primjenu poznate analitičke metodologije kvantitativne analize IgG N-glikana i do sada nepoznate povezanosti njihove varijacije s koncentracijom ženskih spolnih hormona i podredno estradiola (E2) u krvi. The subject invention solves the described technical problem in a new and inventive way with the application of the known analytical methodology of quantitative analysis of IgG N-glycans and the hitherto unknown connection of their variation with the concentration of female sex hormones and estradiol (E2) in the blood.

1.4 Bit izuma 1.4 The essence of the invention

Predmetni izum uključuje postupak određivanja višednevne prosječne koncentracije estradiola (E2) putem analize N-glikana vezanih na imunoglobulin G iz krvne plazme žena, označenih kraticama GP1 do GP24, opće kemijske strukture I: The subject invention includes a procedure for determining the multi-day average concentration of estradiol (E2) through the analysis of N-glycans bound to immunoglobulin G from the blood plasma of women, designated by the abbreviations GP1 to GP24, of the general chemical structure I:

[image] [image]

[image] [image]

gdje rečeni postupak uključuje: where said procedure includes:

(i) kvantitativnu analizu jednog ili više: (i) quantitative analysis of one or more:

(a) fluorescentno derivatiziranih glikana dobivenih oslobađanjem s imunoglobulina G (IgG) pomoću enzima peptid-N4-(N-acetil-beta-glukozaminil)asparagin amidaze (PNGaza F); ili (a) fluorescently derivatized glycans obtained by release from immunoglobulin G (IgG) by the enzyme peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase (PNGase F); or

(b) slobodnih glikana ili odgovarajućih glikopeptida odnosno glikoformi; (b) free glycans or corresponding glycopeptides or glycoforms;

(ii) uvrštavanje dobivenih kvantitativnih udjela rečenih glikana u numerički model koji je ranije dobiven statističkom obradom rezultata studije varijacija kvantitativnog udjela IgG glikana u krvnoj plazmi na skupini žena, a koje u trenutku testiranja nisu bile u fazi menstruacije niti u nekom drugom medicinskom stanju za koje je poznato da izaziva promjene koncentracija spolnih hormona i podredno estradiola u krvi; te (ii) inclusion of the obtained quantitative proportions of said glycans in the numerical model that was previously obtained by statistical processing of the results of the study of variations in the quantitative proportion of IgG glycans in the blood plasma of a group of women, who at the time of testing were not in the menstrual phase or in any other medical condition for which is known to cause changes in the concentrations of sex hormones and, by extension, estradiol in the blood; you

(iii) izračunavanje višednevne prosječne koncentracije estradiola (E2) u krvi ispitivane osobe na osnovi jedne jedine analize. (iii) calculation of the multi-day average concentration of estradiol (E2) in the blood of the subject based on a single analysis.

1.5 Kratak opis slika 1.5 Brief description of the images

Slika 1. Tipični kromatogram 2-aminobenzamidom (2AB)- derivatiziranih IgG N-glikana dobiven pomoću tekućinske kromatografije ultravisoke učinkovitosti (HILIC-UPLC) metodom opisanom u predmetnom izumu s 24 odvojena vrška koji su dalje u tekstu označeni kraticama GP1-GP24. Figure 1. Typical chromatogram of 2-aminobenzamide (2AB)-derivatized IgG N-glycans obtained by ultra-high performance liquid chromatography (HILIC-UPLC) method described in the subject invention with 24 separate peaks which are hereinafter denoted by the abbreviations GP1-GP24.

Slika 2. Podjela broja žena po dobi u analiziranoj skupini; N(žena)= 70. Figure 2. Distribution of the number of women by age in the analyzed group; N(woman)= 70.

Slika 3: Shema protokola uzorkovanja i izvedenih eksperimenata u studiji. B = glikani s račvajućim N-acetilglukozaminom (GlcNAc); E2 = estradiol; F = glikani sa sržno-vezanom fukozom; G0 = glikani bez galaktoze; G1 = glikani s jednom galaktozom; G2 = glikani s dvije galaktoze; MC = menstruacijski ciklus; P = progesteron; S = glikani sa sijalinskom kiselinom; T = testosteron. Figure 3: Scheme of the sampling protocol and experiments performed in the study. B = glycans with branching N-acetylglucosamine (GlcNAc); E2 = estradiol; F = glycans with core-linked fucose; G0 = galactose-free glycans; G1 = glycans with one galactose; G2 = glycans with two galactoses; MC = menstrual cycle; P = progesterone; S = glycans with sialic acid; T = testosterone.

Slika 4. Varijabilnost glikanskih svojstava IgG za svaku ispitanu ženu. Plave okomite linije predstavljaju opseg varijabilnosti definiran najnižom i najvišom razinom agalaktoziliranih (G0), monogalaktoziliranih (G1), digalaktoziliranih (G2), sijaliniziranih (S) i fukoziliranih (F) glikana, te glikana s račvajućim GlcNAc (B) u ukupnom N-glikomu IgG za svaku ženu tijekom 12 tjedana trajanja studije. Crne okomite linije predstavljaju opseg varijabilnosti istih glikanskih svojstava u kontrolnom uzorku (standard). Figure 4. Variability of glycan properties of IgG for each examined woman. Blue vertical lines represent the range of variability defined by the lowest and highest levels of agalactosylated (G0), monogalactosylated (G1), digalactosylated (G2), sialylated (S) and fucosylated (F) glycans, and glycans with branching GlcNAc (B) in the total N-glycome IgG for each woman during the 12-week duration of the study. Black vertical lines represent the extent of variability of the same glycan properties in the control sample (standard).

Slika 5. Model menstruacijskog ciklusa. Primjena modela menstruacijskog ciklusa u određivanju dinamike glavne glikanske strukture GP4 UPLC kromatograma N-glikoma IgG. N(uzoraka) = 500. Figure 5. Menstrual cycle model. Application of the menstrual cycle model in determining the dynamics of the main glycan structure of the GP4 UPLC chromatogram of N-glycome IgG. N(samples) = 500.

Slika 6. Dinamika N-glikozilacije IgG tijekom menstruacijskih ciklusa. Siva krivulja opisuje promjenu razine šest izvedenih glikanskih svojstava IgG: agalaktozilacija (G0), monogalaktozilacija (G1), digalaktozilacija (G2), sijalinizacija (S), prisutnost račvajućeg GlcNAc (B) i sržne fukoze (F) kroz nekoliko uzastopnih menstruacijskih ciklusa. Standardizirana mjerenja glikana omogućavaju usporedbu varijabilnosti različitih izvedenih svojstava glikana IgG. Svaka točka predstavlja jedan uzorak. N(uzoraka) = 500. Figure 6. Dynamics of IgG N-glycosylation during menstrual cycles. The gray curve describes the change in the level of six derived glycan properties of IgG: agalactosylation (G0), monogalactosylation (G1), digalactosylation (G2), sialinization (S), the presence of branching GlcNAc (B) and core fucose (F) over several consecutive menstrual cycles. Standardized glycan measurements enable comparison of the variability of different derived IgG glycan properties. Each point represents one sample. N(samples) = 500.

Slika 7. Dinamika spolnih hormona i N-glikozilacije IgG u menstruacijskom ciklusu. Crna osjenčana krivulja opisuje varijabilnost šest izvedenih glikanskih svojstava IgG: agalaktozilacija (G0), monogalaktozilacija (G1), digalaktozilacija (G2), sijalinizacija (S), prisutnost račvajućeg GlcNAc (B) i sržne fukoze (F), i koncentracije triju spolnih hormona: estradiola (E2; pmol/L), progesterona (P; nmol/L), i testosterona (T; nmol/L) kroz nekoliko uzastopnih menstruacijskih ciklusa. Menstruacijski ciklus je podijeljen na dva jednaka dijela: folikularnu (pravokutnik označen punom crtom) i luteinsku (pravokutnik označen isprekidanom crtom) fazu. Analiza povezanosti (asocijacije) varijabilnosti izvedenih glikanskih svojstava s koncentracijom spolnih hormona nalazi se u Tablici 8. Standardizirana mjerenja glikana omogućavaju usporedbu varijabilnosti različitih izvedenih svojstava glikana IgG. Svaka točka predstavlja jedan uzorak. N(uzoraka) = 500. Figure 7. Dynamics of sex hormones and IgG N-glycosylation in the menstrual cycle. The black shaded curve describes the variability of six derived IgG glycan properties: agalactosylation (G0), monogalactosylation (G1), digalactosylation (G2), sialinization (S), the presence of branching GlcNAc (B) and core fucose (F), and the concentrations of the three sex hormones: of estradiol (E2; pmol/L), progesterone (P; nmol/L), and testosterone (T; nmol/L) through several consecutive menstrual cycles. The menstrual cycle is divided into two equal parts: the follicular (rectangle marked with a solid line) and the luteal (rectangle marked with a dashed line) phase. The analysis of the connection (association) of the variability of the derived glycan properties with the concentration of sex hormones can be found in Table 8. Standardized glycan measurements enable the comparison of the variability of the different derived glycan properties of IgG. Each point represents one sample. N(samples) = 500.

1.6 Detaljni opis izuma 1.6 Detailed description of the invention

Predmetni izum uključuje postupak određivanja višednevne prosječne koncentracije estradiola (E2) putem analize N-glikana vezanih na imunoglobulin G (IgG) iz krvne plazme žena, označenih kraticama GP1 do GP24, opće kemijske strukture I: The subject invention includes a procedure for determining the multi-day average concentration of estradiol (E2) through the analysis of N-glycans bound to immunoglobulin G (IgG) from the blood plasma of women, designated by the abbreviations GP1 to GP24, of the general chemical structure I:

[image] [image]

[image] [image]

Tablica 1. Strukture N-glikana vezanih na imunoglobulin G (IgG). Table 1. Structures of N-glycans bound to immunoglobulin G (IgG).

[image] [image] [image] [image] [image] [image] [image] [image]

naznačen time, da rečeni postupak uključuje slijedeće korake: characterized by the fact that said procedure includes the following steps:

(i) kvantitativnu analizu jednog ili više: (i) quantitative analysis of one or more:

(a) fluorescentno derivatiziranih glikana dobivenih oslobađanjem s imunoglobulina G (IgG) pomoću enzima peptid-N4-(N-acetil-beta-glukozaminil)asparagin amidaze (PNGaza F); ili (a) fluorescently derivatized glycans obtained by release from immunoglobulin G (IgG) by the enzyme peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase (PNGase F); or

(b) slobodnih glikana ili odgovarajućih glikopeptida odnosno glikoformi; (b) free glycans or corresponding glycopeptides or glycoforms;

nekom od prikladnih analitičkih tehnika, pri čemu se kvantitativni udjeli glikana ili odgovarajućih glikopeptida dobivaju normalizacijom, dijeljenjem površine ispod vrška svakog od traženih glikana s ukupnom površinom svih vrškova glikana ili glikoformi iz uzorka; by some of the suitable analytical techniques, whereby the quantitative proportions of glycans or corresponding glycopeptides are obtained by normalization, by dividing the area under the peak of each of the requested glycans by the total area of all peaks of glycans or glycoforms from the sample;

(ii) uvrštavanje dobivenih kvantitativnih udjela rečenih glikana u numerički model koji je ranije dobiven statističkom obradom rezultata studije varijacija kvantitativnog udjela IgG glikana u krvnoj plazmi na skupini žena, a koje u trenutku testiranja nisu bile u fazi menstruacije niti u nekom drugom medicinskom stanju za koje je poznato da izaziva promjene koncentracija spolnih hormona i podredno estradiola u krvi; te (ii) inclusion of the obtained quantitative proportions of said glycans in the numerical model that was previously obtained by statistical processing of the results of the study of variations in the quantitative proportion of IgG glycans in the blood plasma of a group of women, who at the time of testing were not in the menstrual phase or in any other medical condition for which is known to cause changes in the concentrations of sex hormones and, by extension, estradiol in the blood; you

(iii) izračunavanje višednevne prosječne koncentracije estradiola (E2) u krvi ispitivane osobe na osnovi jedne jedine analize. (iii) calculation of the multi-day average concentration of estradiol (E2) in the blood of the subject based on a single analysis.

Rečena studija varijacije kvantitativnog udjela IgG glikana u krvnoj plazmi iz koraka (ii) provedena je na skupini žena starosti od 18 do 50 godina. Said study of the variation of the quantitative proportion of IgG glycans in blood plasma from step (ii) was conducted on a group of women aged 18 to 50 years.

Rečeni kvantitativni udjeli glikana GP1-GP24 uvrštavaju se u numerički model pri čemu se izračunava logaritam množinske koncentracije estradiola (E2) u krvi: Said quantitative shares of GP1-GP24 glycans are included in the numerical model, whereby the logarithm of the mass concentration of estradiol (E2) in the blood is calculated:

Log c(E2) = -15,529•GP4 - 2,602•GP8 + 5,589•GP10 + 9,699•GP12 + 53,911•GP15 + 9,901•GP16 - 1,990•GP2•GP10 - 0,065•GP2•GP12 + 3,601•GP2•GP15 + 0,007•GP2•GP16 + 0,465•(GP4)2 + 2,889•GP4•GP8 + 5,106•GP4•GP10 - 0,817•GP4•GP12 - 8,606•GP4•GP15 + 1,490•GP4•GP18 + 1,689•(GP8)2 - 9,048•GP8•GP10 - 0,999• GP8•GP12 - 2,253•GP8•GP15 + 3,143•(GP10)2 + 0,712•GP10•GP12 - 3,505•GP10•GP15 - 4,753•GP10•GP16 + 1,128•GP10•GP18 - 4,584•GP12•GP15 + 1,138•GP12•GP16 - 1,355•GP12•GP18 - 0,598•GP12•GP22 - 0,904•GP12•GP23 - 4,638(GP15)2 + 0,287•GP15•GP16 - 3,049•GP15•GP18 + 2,492(GP16)2 - 3,041•GP16•GP18 Log c(E2) = -15.529•GP4 - 2.602•GP8 + 5.589•GP10 + 9.699•GP12 + 53.911•GP15 + 9.901•GP16 - 1.990•GP2•GP10 - 0.065•GP2•GP12 + 3.601•GP2•GP15 + 0.007 •GP2•GP16 + 0.465•(GP4)2 + 2.889•GP4•GP8 + 5.106•GP4•GP10 - 0.817•GP4•GP12 - 8.606•GP4•GP15 + 1.490•GP4•GP18 + 1.689•(GP8)2 - 9.048 •GP8•GP10 - 0.999• GP8•GP12 - 2.253•GP8•GP15 + 3.143•(GP10)2 + 0.712•GP10•GP12 - 3.505•GP10•GP15 - 4.753•GP10•GP16 + 1.128•GP10•GP18 - 4.584• GP12•GP15 + 1.138•GP12•GP16 - 1.355•GP12•GP18 - 0.598•GP12•GP22 - 0.904•GP12•GP23 - 4.638(GP15)2 + 0.287•GP15•GP16 - 3.049•GP15•GP18 + 2.492(GP16) 2 - 3,041•GP16•GP18

gdje faktori GP2, GP4, GP8, GP10, GP12, GP15, GP16, GP18, GP22 i GP23 predstavljaju prirodni logaritam relativne površine ispod vršaka istoimenih glikana GP2, GP4, GP8, GP10, GP12, GP15, GP16, GP18, GP22, GP23 iz kromatograma izabrane kvantitativne analitičke tehnike. where the factors GP2, GP4, GP8, GP10, GP12, GP15, GP16, GP18, GP22 and GP23 represent the natural logarithm of the relative area under the peaks of the glycans of the same name GP2, GP4, GP8, GP10, GP12, GP15, GP16, GP18, GP22, GP23 from chromatogram of the chosen quantitative analytical technique.

Postupak dijagnostike prema izumu u koraku (iii) uključuje dobivanje rezultata koncentracija estradiola u krvi izraženog kao prirodni logaritam množinske koncentracije estradiola, Log c(E2), iz kojeg se onda izračunava vrijednost njegove množinske koncentracije, c, izražena u pikomolovima po mililitru (pmol/mL). The diagnostic procedure according to the invention in step (iii) includes obtaining the result of the concentration of estradiol in the blood expressed as the natural logarithm of the mass concentration of estradiol, Log c(E2), from which the value of its mass concentration, c, expressed in picomoles per milliliter (pmol/ mL).

Pošto sami glikani nemaju UV-apsorpciju, nisu prikladni za detekciju standardnim UV-VIS ili fluorescentnim (FLR) detektorima koji se koriste u različitim tehnikama kvantitativne analize poput tekućinske kromatografije ultravisoke učinkovitosti (UPLC). Zbog toga se, nakon njihova oslobađanja s imunoglobulina G (IgG) iz krvne plazme, isti derivatiziraju prikladnim reagensima koji se kovalentno vežu na glikane, nakon čega odgovarajući glikanski derivati imaju UV-apsorpciju i prikladni su za detekciju tijekom kvantitativne analize. Since glycans themselves do not absorb UV, they are not suitable for detection by standard UV-VIS or fluorescence (FLR) detectors used in various quantitative analysis techniques such as ultra-high performance liquid chromatography (UPLC). Therefore, after their release from immunoglobulin G (IgG) from the blood plasma, they are derivatized with suitable reagents that covalently bind to glycans, after which the corresponding glycan derivatives have UV absorption and are suitable for detection during quantitative analysis.

U tom smislu postupak dijagnostike prema izumu temelji se na derivatizaciji glikana reagensima izabranim iz skupine koju čine: In this sense, the diagnostic procedure according to the invention is based on glycan derivatization with reagents selected from the group consisting of:

(i) kombinacija prikladnog aromatskog amina poput 2-aminobenzamida (2AB) ili prokainamida (PR) i nekog prikladog reducensa za reduktivnu aminaciju: kompleks 2-pikolin boran (BH3•NC5H4-2-CH3; 2PB) ili natrijev cijanoborhidrid (NaBH3CN); (i) combination of a suitable aromatic amine such as 2-aminobenzamide (2AB) or procainamide (PR) and a suitable reductant for reductive amination: 2-picoline borane complex (BH3•NC5H4-2-CH3; 2PB) or sodium cyanoborohydride (NaBH3CN);

[image] [image]

ili or

(ii) 2,5-dioxopirolidin-1-il-[2N-[2-(N',N'-dietilamino)etil] karbamoil]-kinolin-6-il-karbamat (RF), poznat pod trgovačkim imenom RapiFluor-MS tvrtke Waters (SAD): (ii) 2,5-dioxopyrrolidin-1-yl-[2N-[2-(N',N'-diethylamino)ethyl] carbamoyl]-quinolin-6-yl-carbamate (RF), known under the trade name RapiFluor- MS from Waters (USA):

[image] . [image] .

Primjena opisanih derivatizacijskih reagensa opisana je u stanju tehnike; vidjeti literaturnu referencu 7: The application of the described derivatization reagents is described in the state of the art; see literature reference 7:

7) T. Keser, T. Pavić, G. Lauc, O. Gornik: Comparison of 2-Aminobenzamide, Procainamide and RapiFluor-MS as Derivatizing Agents for High-Throughput HILIC-UPLC-FLR-MS N-glycan Analysis, Front. Chem. 6 (2018) 321; doi: 10.3389/fchem.2018.00324. 7) T. Keser, T. Pavić, G. Lauc, O. Gornik: Comparison of 2-Aminobenzamide, Procainamide and RapiFluor-MS as Derivatizing Agents for High-Throughput HILIC-UPLC-FLR-MS N-glycan Analysis, Front. Chem. 6 (2018) 321; doi: 10.3389/fchem.2018.00324.

Kao prikladne analitičke tehnike za kvantitativnu analizu koriste se: tekućinska kromatografija ultravisoke učinkovitosti (UPLC), MALDI-TOF masena spektrometrija (engl. matrix-assisted laser desorption/ionization time-of-flight), tekućinska kromatografija spregnuta s masenom spektrometrijom (LC-MS) ili kapilarna elektroforeza (CE), ili druge pogodne kvantitativne analitičke tehnike. Opis kvantitativne analize IgG N-glikana različitim analitičkim tehnikama opisan je u stanju tehnike; vidjeti literaturnu referencu 4. Suitable analytical techniques for quantitative analysis are: ultra-high performance liquid chromatography (UPLC), MALDI-TOF mass spectrometry (matrix-assisted laser desorption/ionization time-of-flight), liquid chromatography coupled with mass spectrometry (LC-MS ) or capillary electrophoresis (CE), or other suitable quantitative analytical techniques. The description of the quantitative analysis of IgG N-glycans using different analytical techniques is described in the state of the art; see literature reference 4.

Studija praćenja varijabilnosti N-glikana vezanih na imunoglobulin G u odnosu na koncentracije spolnih hormona i, podredno, estradiola (E2) tijekom različitih faza menstrualnog ciklusa kod žena starosti od 18 do 50 godina i razvoj dijagnostičkog postupka prema izumu A study of monitoring the variability of N-glycans linked to immunoglobulin G in relation to the concentrations of sex hormones and, secondarily, estradiol (E2) during different phases of the menstrual cycle in women aged 18 to 50 years and the development of a diagnostic procedure according to the invention

U studiji su sudjelovale zdrave odrasle žene starosti od 18-50 godina. Uključivanje je provedeno na temelju podataka o prethodnim menstruacijskim ciklusima, zdravstvenom stanju i životnim navikama svake osobe dobivenim putem eliminacijskog upitnika. Uključni kriteriji za sudjelovanje u studiji bili su: starost osobe (između 18 i 50 god.), te redoviti i normalni menstruacijski ciklusi; vidjeti literaturnu referencu 8: Healthy adult women aged 18-50 participated in the study. Inclusion was based on data on previous menstrual cycles, health status and lifestyle habits of each person obtained through an elimination questionnaire. Inclusive criteria for participation in the study were: the person's age (between 18 and 50 years), and regular and normal menstrual cycles; see literature reference 8:

8) M. Mihm, S. Gangooly, S. Muttukrishna: The normal menstrual cycle in women, Anim. Reprod. Sci. 124 (2011) 229-236. 8) M. Mihm, S. Gangooly, S. Muttukrishna: The normal menstrual cycle in women, Anim. Reprod. Sci. 124 (2011) 229-236.

U studiju su uključene samo one žene koje nisu imale dijagnosticirane bolesti za koje je poznato da utječu na promjene u glikanskim obrascima IgG. To su najčešće upalne bolesti poput autoimunih oboljenja, razne infekcije, te tumori; vidjeti literaturnu referencu 9: Only those women who had no diagnosed diseases known to affect changes in glycan patterns of IgG were included in the study. These are most often inflammatory diseases such as autoimmune diseases, various infections, and tumors; see literature reference 9:

9) I. Gudelj, G. Lauc, M. Pezer: Immunoglobulin G glycosylation in aging and diseases, Cell. Immunol. 333 (2018) 65-79. 9) I. Gudelj, G. Lauc, M. Pezer: Immunoglobulin G glycosylation in aging and diseases, Cell. Immunol. 333 (2018) 65-79.

Isključni kriteriji za sudjelovanje u studiji bili su: trudnoća, dojenje, menopauza, korištenje oralne kontracepcije, korištenje drugih hormonskih pripravaka, pušenje cigareta i korištenje alkohola. U studiju je uključeno sveukupno 70 zdravih odraslih žena u rasponu od 19 do 48 godina starosti, vidjeti Sliku 2. Exclusive criteria for participation in the study were: pregnancy, breastfeeding, menopause, use of oral contraceptives, use of other hormonal preparations, cigarette smoking and alcohol use. A total of 70 healthy adult women between the ages of 19 and 48 were included in the study, see Figure 2.

Protokol studije. U svrhu analize N-glikozilacije imunoglobulina G prikupljani su uzorci krvne plazme. Uzorkovanje je provedeno od rujna do studenog 2016. godine, kroz dvanaest uzastopnih tjedana, jednom tjedno (ujutro) u pravilnim razmacima od sedam dana, te neovisno o fazi menstruacijskog ciklusa pojedine žene. Detaljni postupak uzimanja uzoraka krvi opisan je u Primjeru 1. Study protocol. In order to analyze the N-glycosylation of immunoglobulin G, blood plasma samples were collected. Sampling was carried out from September to November 2016, for twelve consecutive weeks, once a week (in the morning) at regular intervals of seven days, and regardless of the phase of the menstrual cycle of an individual woman. The detailed procedure for taking blood samples is described in Example 1.

Imunokemijska metoda određivanja koncentracije spolnih hormona Immunochemical method of determining the concentration of sex hormones

Koncentracije spolnih hormona estradiola (E2), progesterona (P) i testosterona (T) izmjerene su u uzorcima plazme kemiluminiscentnom imunokemijskom metodom posredovanom mikročesticama (engl. chemiluminescent microparticle immuno assay, CMIA) na ARCHITECT® i1000SR (Abbott Diagnostics) automatiziranom sustavu uz korištenje komercijalnih setova reagensa za detekciju hormona s promjenjivim testnim protokolima navedenog proizvođača; vidjeti literaturnu refrencu 10: The concentrations of the sex hormones estradiol (E2), progesterone (P) and testosterone (T) were measured in plasma samples using a chemiluminescent microparticle immunoassay (CMIA) on an ARCHITECT® i1000SR (Abbott Diagnostics) automated system using commercial sets of reagents for hormone detection with variable test protocols of the specified manufacturer; see literary reference 10:

10) R. Stricker, R. Eberhart, M. C. Chevailler, F. A. Quinn, P. Bischof, R. Stricker: Establishment of detailed reference values for luteinizing hormone, follicle stimulating hormone, estradiol, and progesterone during different phases of the menstrual cycle on the Abbott ARCHITECT analyzer, Clin. Chem. Lab. Med. 44 (2006) 883-887. 10) R. Stricker, R. Eberhart, M. C. Chevailler, F. A. Quinn, P. Bischof, R. Stricker: Establishment of detailed reference values for luteinizing hormone, follicle stimulating hormone, estradiol, and progesterone during different phases of the menstrual cycle on the Abbott ARCHITECT analyzer, Clin. Chem. Lab. Honey. 44 (2006) 883-887.

Detaljni postupak provedbe kvantitativne analize spolnih hormona i podredno estradiola (E2) opisan je u Primjeru 1. The detailed procedure for quantitative analysis of sex hormones and estradiol (E2) is described in Example 1.

Analitika N-glikana iz krvne plazme Analysis of N-glycans from blood plasma

Izolacija uzorka krvne plazme iz žena za svrhu provedbe dijagnostike estradiola (E2) provedena je prema metodologiji poznatoj u stanju tehnike; vidjeti literaturnu referencu 4. Također, izolacija IgG iz krvne plazme vršena je prema postupku poznatom u stanju tehnike; vidjeti literaturne reference 3 i 11: Isolation of a blood plasma sample from women for the purpose of estradiol (E2) diagnostics was carried out according to the methodology known in the state of the art; see literature reference 4. Also, isolation of IgG from blood plasma was performed according to a procedure known in the state of the art; see literature references 3 and 11:

11) I. Trbojević Akmačić, I. Ugrina, G. Lauc: Comparative Analysis and Validation of Different Steps in Glycomics Studies, Methods Enzymol. 586 (2017) 37-55. 11) I. Trbojević Akmačić, I. Ugrina, G. Lauc: Comparative Analysis and Validation of Different Steps in Glycomics Studies, Methods Enzymol. 586 (2017) 37-55.

Detaljni postupak obrade uzoraka i analitike N-glikana IgG opisan je u Primjeru 1. Redosljed izlaženja vršaka glikana GP1-GP24 u opisanoj HILIC-UPLC-FLR metode i odgovarajuća retencijska vremena (tR) prikazani su u Tablici 2. The detailed procedure of sample processing and analysis of IgG N-glycans is described in Example 1. The sequence of exposure of glycan peaks GP1-GP24 in the described HILIC-UPLC-FLR method and the corresponding retention times (tR) are shown in Table 2.

Reprezentativni HPLC kromatogram separacije svih predmetnih N-glikana GP1-GP24 prikazan je na Slici 1. A representative HPLC chromatogram of the separation of all subject N-glycans GP1-GP24 is shown in Figure 1.

Tablica 2. Retencijska vremena (tR) 2-aminobenzamidom (2-AB) obilježenih IgG glikana označenih kraticama GP1-GP24 dobivena opisanom UPLC-HILIC analitičkom metodom čiji je tipični kromatogram prikazan na Slici 1. Table 2. Retention times (tR) of 2-aminobenzamide (2-AB) labeled IgG glycans marked with the abbreviations GP1-GP24 obtained by the described UPLC-HILIC analytical method whose typical chromatogram is shown in Figure 1.

[image] [image]

Obrada i analiza rezultata studije Processing and analysis of study results

Uklanjanje varijacija glikanskih podataka uslijed serija eksperimenata Removal of variations in glycan data due to series of experiments

Kako bi se smanjila varijacija zbog serija eksperimenata (engl. batch effect) svi uzorci iste osobe, koji su sakupljani u 12 vremenskih točaka, bili su analizirani na istoj pločici. Na svaku pločicu su stoga nasumično raspoređeni uzorci plazme najviše tri do pet osoba tako da je prosjek godina ispitanica na svakoj pločici bio podjednak. Pločice su sadržavale i standardni uzorak plazme u pentaplikatu koji je služio za kontrolu nebiološke varijabilnosti, odnosno tehničke varijacije metode. Ovakvim analitičkim pristupom izbjegnuta je varijacija među pločicama te nije bilo potrebe izvoditi uobičajenu korekciju glikanskih podataka na razlike u serijama (engl. batch correction). In order to reduce the variation due to series of experiments (eng. batch effect), all samples of the same person, which were collected at 12 time points, were analyzed on the same plate. Therefore, plasma samples from a maximum of three to five people were randomly distributed on each plate so that the average age of the test subjects on each plate was equal. The plates also contained a standard plasma sample in pentaplicate, which was used to control non-biological variability, that is, technical variation of the method. With this analytical approach, variation between plates was avoided, and there was no need to perform the usual correction of glycan data for differences in batches (eng. batch correction).

Obrada glikanskih podataka. Svaki kromatogram dobiven analizom N-glikana IgG tekućinskom kromatografijom integriran je na isti način i podijeljen na 24 glikanska vrška. Glikanski podatci su najprije normalizirani na ukupnu površinu (engl. total chromatographic area). To znači da je površina svakog glikanskog (kromatografskog) vrška podijeljena s ukupnom površinom odgovarajućeg kromatograma kako bi glikanska mjerenja različitih uzoraka bila usporediva. Količina N-glikana u svakom vršku prikazana je kao postotak od ukupne integrirane površine (% area); vidjeti literaturnu referencu 3. Set od 20-ak ručno integriranih kromatograma korišten je kao predložak za automatsko integriranje svih kromatograma N-glikana IgG u ovoj studiji; vidjeti literaturnu referencu 12: Glycan data processing. Each chromatogram obtained from the analysis of N-glycans by IgG liquid chromatography was integrated in the same way and divided into 24 glycan peaks. Glycan data were first normalized to the total area (total chromatographic area). This means that the area of each glycan (chromatographic) peak is divided by the total area of the corresponding chromatogram to make the glycan measurements of different samples comparable. The amount of N-glycan in each peak is shown as a percentage of the total integrated area (% area); see literature reference 3. A set of about 20 manually integrated chromatograms was used as a template for automatic integration of all IgG N-glycan chromatograms in this study; see literature reference 12:

12) A. Agakova, F. Vučković, L. Klarić, G. Lauc, F. Agakov: Automated Integration of a UPLC Glycomic Profile, Methods Mol Biol. 1503 (2017) 217-233. 12) A. Agakova, F. Vučković, L. Klarić, G. Lauc, F. Agakov: Automated Integration of a UPLC Glycomic Profile, Methods Mol Biol. 1503 (2017) 217-233.

Određivanje izvedenih svojstava glikana IgG Determination of derived glycan properties of IgG

Osim 24 direktno izmjerenih glikanskih svojstava, za IgG je izračunato i 6 izvedenih svojstava koja grupiraju glikane određenih strukturnih osobina radi lakše analize i razumijevanja bioloških procesa u kojima sudjeluju; vidjeti Tablicu 3. In addition to 24 directly measured glycan properties, 6 derived properties were calculated for IgG, which group glycans with certain structural properties for easier analysis and understanding of the biological processes in which they participate; see Table 3.

Izvedena svojstva predstavljaju relativnu zastupljenost: Derived properties represent relative representation:

(i) galaktoziliranih glikana: G0 = glikani bez galaktoze; G1 = glikani s jednom galaktozom; G2 = glikani s dvije galaktoze; (i) galactosylated glycans: G0 = galactose-free glycans; G1 = glycans with one galactose; G2 = glycans with two galactoses;

(ii) sijaliniziranih glikana: S = glikani s terminalnom sijalinskom kiselinom; (ii) sialylated glycans: S = glycans with terminal sialic acid;

(iii) fukoziliranih glikana: F = glikani sa sržnom fukozom; te (iii) fucosylated glycans: F = glycans with core fucose; you

(iv) glikana s račvajućim N-acetilglukozaminom, GlcNAc: (B = engl. bisecting) u ukupnom N-glikomu IgG. (iv) glycans with branching N-acetylglucosamine, GlcNAc: (B = bisecting) in the total N-glycome of IgG.

Tablica 3. Formule za izračun izvedenih glikanskih svojstava IgG. Table 3. Formulas for calculating the derived glycan properties of IgG.

[image] [image]

Povezanost dinamike spolnih hormona i glikanskih svojstava IgG u menstruacijskom ciklusu. Vremenski pomak u dinamici spolnih hormona i glikanskih svojstava IgG temelji se na usporedbi njihovih najviših vrijednosti (vršak) tijekom menstruacijskog ciklusa. Dan menstruacijskog ciklusa u kojem je primijećena najveća koncentracija pojedinog spolnog hormona i najveća razina pojedinog glikanskog svojstva izračunat je prema formuli (1): Relationship between the dynamics of sex hormones and the glycan properties of IgG in the menstrual cycle. The temporal shift in the dynamics of sex hormones and glycan properties of IgG is based on the comparison of their highest values (peak) during the menstrual cycle. The day of the menstrual cycle in which the highest concentration of an individual sex hormone and the highest level of an individual glycan property was observed was calculated according to formula (1):

MC vršak (X) = Vršak (X) x MC duljina trajanja (1) MC Peak (X) = Peak (X) x MC Duration (1)

gdje je: where is:

X1, X2 ∈ X; X1 = spolni hormon, X2 = glikansko svojstvo; MC duljina trajanja = 30 dana (prosječna duljina trajanja menstruacijskog ciklusa u studiji); MC = menstruacijski ciklus. Primjer: X1, X2 ∈ X; X1 = sex hormone, X2 = glycan property; MC duration = 30 days (average duration of the menstrual cycle in the study); MC = menstrual cycle. Example:

MC vršak (E2) = 45% x 30 dana = 0,45 x 30 dana = 13,5 ~ 13. dan MC MC peak (E2) = 45% x 30 days = 0.45 x 30 days = 13.5 ~ 13th day MC

MC Vršak (S) = 84% x 30 dana = 0,84 x 30 dana = 25,2 ~ 25. dan MC MC Peak (S) = 84% x 30 days = 0.84 x 30 days = 25.2 ~ 25th day MC

Vrijeme koje je prošlo od dana u kojem je primijećena najveća koncentracija pojedinog spolnog hormona do dana u kojem je primijećena najveća razina određenog glikanskog svojstva predstavlja vremenski pomak (MC Pomak) u dinamici ovih svojstava tijekom menstruacijskog ciklusa, a izračunata je prema formuli (2): The time that passed from the day when the highest concentration of a particular sex hormone was observed to the day when the highest level of a specific glycan property was observed represents a time shift (MC Shift) in the dynamics of these properties during the menstrual cycle, and was calculated according to formula (2):

MC Pomak (X1, X2) = MC Vršak (X2) - MC Vršak (X1) (2) MC Offset (X1, X2) = MC Peak (X2) - MC Peak (X1) (2)

gdje je: where is:

X1, X2 ∈ X; X1 = spolni hormon, X2 = glikansko svojstvo; MC duljina trajanja = 30 dana (prosječna duljina trajanja menstruacijskog ciklusa u studiji); MC = menstruacijski ciklus. Primjer: X1, X2 ∈ X; X1 = sex hormone, X2 = glycan property; MC duration = 30 days (average duration of the menstrual cycle in the study); MC = menstrual cycle. Example:

MC Pomak (S, E2) = MC Vršak (S) – MC Vršak (E2) = 25. dan – 13. dan = 12 dana MC Shift (S, E2) = MC Peak (S) – MC Peak (E2) = 25th day – 13th day = 12 days

Statistička analiza dobivenih rezultata. Podatci su analizirani i vizualizirani pomoću programskog jezika R (verzija 3.0.1). Dinamika glikana i spolnih hormona u menstruacijskom ciklusu aproksimirana je u modelu menstruacijskog ciklusa. Duljina menstruacijskih ciklusa u studiji standardizirana je dijeljenjem duljine trajanja pojedinačnih menstruacijskih ciklusa sa 100% čime je omogućeno pozicioniranje i usporedba glikanskih podataka unutar zajedničkog modela menstruacijskog ciklusa neovisno o trajanju svakog pojedinačnog menstruacijskog ciklusa. Glikanska mjerenja standardizirana su dijeljenjem svakog mjerenja s njegovom prosječnom vrijednosti kako bi se omogućila usporedba između različitih glikanskih svojstava. Analiza povezanosti menstruacijskog ciklusa s glikanskim svojstvima izvedena je korištenjem linearnog mješovitog modela. U linearnom mješovitom modelu fiksirana varijabla bila je dob, dok je nasumična varijabla bila subjekt (osoba). Pretpostavljeni periodični obrazac longitudinalnih mjerenja glikana modeliran je kao linearna kombinacija sinusne i kosinusne funkcije za faze menstruacijskog ciklusa. Analiza povezanosti koncentracije spolnih hormona s izvedenim svojstvima glikana provedena je korištenjem linearnog mješovitog modela. U linearnom mješovitom modelu fiksirana varijabla bila je dob, dok je nasumična varijabla bila subjekt (osoba). p vrijednosti su korigirane na višestruko testiranje Benjamini-Hochberg metodom. p vrijednosti manje od 0,05 su smatrane statistički značajnima. Statistical analysis of the obtained results. Data were analyzed and visualized using the R programming language (version 3.0.1). The dynamics of glycans and sex hormones in the menstrual cycle are approximated in the menstrual cycle model. The length of menstrual cycles in the study was standardized by dividing the duration of individual menstrual cycles by 100%, which enabled the positioning and comparison of glycan data within a common menstrual cycle model, independent of the duration of each individual menstrual cycle. Glycan measurements were standardized by dividing each measurement by its average value to allow comparison between different glycan properties. Analysis of the relationship between the menstrual cycle and glycan properties was performed using a linear mixed model. In the linear mixed model, the fixed variable was age, while the random variable was the subject (person). The assumed periodic pattern of longitudinal glycan measurements was modeled as a linear combination of sine and cosine functions for the phases of the menstrual cycle. The analysis of the relationship between the concentration of sex hormones and the derived glycan properties was performed using a linear mixed model. In the linear mixed model, the fixed variable was age, while the random variable was the subject (person). p values were corrected for multiple testing using the Benjamini-Hochberg method. p values less than 0.05 were considered statistically significant.

Karakteristike ispitanica. Prilikom uključivanja žena u istraživanje, prikupljeni su osnovni opći, antropometrijski i zdravstveni podatci vezani uz menstruacijski ciklus svake osobe. Opis ispitivane kohorte dan je u Tablici 4. Characteristics of the test subjects. When including women in the research, basic general, anthropometric and health data related to the menstrual cycle of each person were collected. The description of the examined cohort is given in Table 4.

Tablica 4. Opis karakteristika ispitanica koje su bile uključene u studiju. Table 4. Description of the characteristics of the subjects who were included in the study.

[image] [image]

Prije uključivanja u studiju bio je djelomično poznat zdravstveni status ispitanica, odnosno bilo je poznato da osoba ne boluje od akutne ili kronične bolesti, ne koristi hormonsku nadomjesnu terapiju i nije u stanju trudnoće ili menopauze. Na taj je način osigurana selektivnost u odabiru ispitivane populacije kako bi samo zdrave osobe bile uključene u studiju, te kako bi se isključio mogući utjecaj navedenih zdravstvenih faktora na glikozilaciju IgG; vidjeti literaturnu refrencu 9. Kontinuirane varijable s normalnom raspodjelom prikazane su kao srednja vrijednost ± SD. Kategoričke varijable prikazane su kao postotci. WHtR (engl. waist-to-hight ratio) je omjer opsega struka i visine kao pokazatelj distribucije masnoće u trbušnom dijelu tijela; vidjeti literaturnu referencu 13: Prior to inclusion in the study, the health status of the subjects was partially known, that is, it was known that the person does not suffer from an acute or chronic disease, does not use hormone replacement therapy, and is not in a state of pregnancy or menopause. In this way, selectivity was ensured in the selection of the investigated population so that only healthy people were included in the study, and in order to exclude the possible influence of the aforementioned health factors on IgG glycosylation; see literature reference 9. Continuous variables with normal distribution are presented as mean ± SD. Categorical variables are presented as percentages. WHtR (waist-to-height ratio) is the ratio of waist circumference to height as an indicator of fat distribution in the abdominal part of the body; see literature reference 13:

13) Q. Ibrahim, M. Ahsan: Measurement of Visceral Fat, Abdominal Circumference and Waist-hip Ratio to Predict Health Risk in Males and Females, Pak. J. Biol. Sci. 22 (2019) 168-173. 13) Q. Ibrahim, M. Ahsan: Measurement of Visceral Fat, Abdominal Circumference and Waist-hip Ratio to Predict Health Risk in Males and Females, Pak. J. Biol. Sci. 22 (2019) 168-173.

U studiju je ukupno uključeno 70 zdravih žena. Sve ispitanice su izjavile da imaju redovite, normalne menstruacijske cikluse. Duljina menstruacijskih ciklusa ispitanica prije uključivanja u studiju prosječno je trajala 30 dana s menstruacijskim krvarenjima od 6 dana. Svoju prvu menstruaciju ispitanice su dobile u prosjeku s 13 godina. Iz rezultata je vidljivo da su ispitanice većinom visokoobrazovane osobe ili studentice mlađe životne dobi. Prosječna dob analizirane skupine je 27 godina. Nadalje, sve ispitanice imaju zdrave životne navike, ne puše i ne konzumiraju alkohol, a velika većina ih ima zdravu tjelesnu težinu s normalnom količinom masnog tkiva u trbušnom dijelu tijela (80%). Većinom su to slobodne, neudane žene koje još nisu pokušale zasnovati obitelj, zbog čega među ispitanicama prevladavaju osobe koje nikad nisu iskusile trudnoću (67%), porod (67%) ili pobačaj (86%). A total of 70 healthy women were included in the study. All test subjects stated that they have regular, normal menstrual cycles. The length of the menstrual cycles of the subjects before inclusion in the study lasted an average of 30 days with menstrual bleeding of 6 days. The test subjects got their first period at the age of 13 on average. It is evident from the results that the respondents are mostly highly educated persons or young students. The average age of the analyzed group is 27 years. Furthermore, all test subjects have healthy lifestyle habits, do not smoke or consume alcohol, and the vast majority of them have a healthy body weight with a normal amount of fat tissue in the abdominal part of the body (80%). Most of them are single, unmarried women who have not yet tried to start a family, which is why among the respondents there are people who have never experienced pregnancy (67%), childbirth (67%) or abortion (86%).

Pregled studije. Uzorkovanje se odvijalo kroz 12 uzastopnih tjedana unutar tri mjeseca tijekom kojih je svakoj ženi jednom tjedno uzeta krv i iz nje je odvojena plazma; vidjeti Sliku 3. Detalji statističke obrade rezultata studije opisani su u Primjeru 2. Study overview. Sampling took place over 12 consecutive weeks within three months during which blood was taken from each woman once a week and plasma was separated from it; see Figure 3. Details of the statistical processing of the study results are described in Example 2.

Biološka varijabilnost IgG glikana Biological variability of IgG glycans

Kako bi se utvrdilo postoje li promjene u N-glikozilaciji IgG tijekom studije, prvo je bilo potrebno odrediti biološku varijabilnost svakog glikana. U tu je svrhu na svim pločicama, uz uzorke, analiziran i jedan te isti uzorak poznatog glikanskog profila (standard), čija promjena predstavlja tehničku varijabilnost metode. Biološka varijabilnost glikana je zatim izračunata kao omjer srednjih vrijednosti varijabilnosti uzorka poznatog glikanskog profila (standarda) i uzoraka iz studije za svaki od 24 glikanska vrška i pomnožen sa 100%. Omjer manji od 100% znači da je biološka varijabilnost analiziranog glikanskog vrška, tj. glikana, veća od tehničke varijabilnosti metode. Usporedbom varijabilnosti glikanskih profila standarda s glikanskim profilima uzoraka, otkiveno je da biološka varijabilnost premašuje analitičku varijabilnost u 14 od 24 glikanska vrška IgG praćena u studiji; vidjeti Tablicu 5 i Sliku 1. Podebljani su omjeri onih glikanskih vršaka koji imaju statistički značajnu biološku varijabilnost. Strukture glikanskih vršaka prikazane su na Slici 1. In order to determine whether there were changes in IgG N-glycosylation during the study, it was first necessary to determine the biological variability of each glycan. For this purpose, in addition to the samples, one and the same sample of a known glycan profile (standard) was analyzed on all plates, the change of which represents the technical variability of the method. The biological glycan variability was then calculated as the ratio of the mean variability values of the sample of known glycan profile (standard) and the study samples for each of the 24 glycan peaks and multiplied by 100%. A ratio less than 100% means that the biological variability of the analyzed glycan peak, i.e. the glycan, is greater than the technical variability of the method. By comparing the variability of the glycan profiles of the standards with the glycan profiles of the samples, it was found that the biological variability exceeds the analytical variability in 14 of the 24 IgG glycan peaks monitored in the study; see Table 5 and Figure 1. Ratios of those glycan peaks with statistically significant biological variability are in bold. The structures of glycan peaks are shown in Figure 1.

Tablica 5. Biološka varijabilnost pojedinačnih IgG glikana u menstruacijskom ciklusu. Table 5. Biological variability of individual IgG glycans in the menstrual cycle.

[image] [image]

GP = glikanski vršak GP1-GP24. GP = glycan peak GP1-GP24.

Varijabilnost izvedenih glikanskih svojstava IgG. Variability of derived glycan properties of IgG.

Nakon što je određena biološka varijabilnost pojedinačnih glikana IgG, na isti je način određena i varijabilnost glikanskih svojstava koja grupiraju glikane sličnih strukturnih osobina, poput glikana s jednom galaktozom (G1), dvije galaktoze (G2) ili bez galaktoze (G0), zatim glikane sa sijalinskom kiselinom (S), račvajućim N-acetilglukozaminom (B) i IgG glikane sa sržno vezanom fukozom (F), prvo za svaku osobu zasebno, a zatim i na razini grupe. Opseg promjena glikozilacijskih svojstava unutar jedne osobe bio je najizraženiji za sijalinizirane (najveća razlika između najniže i najviše vrijednosti približno 21%) i agalaktozilirane (najveća razlika između najniže i najviše vrijednosti približno 16%) glikane, dok su fukozilirani glikani IgG imali najmanju intra-individualnu varijaciju (najveća razlika između najniže i najviše vrijednosti manja od 3%) tijekom menstruacijskih ciklusa; vidjeti Sliku 4. After the biological variability of individual IgG glycans was determined, the variability of glycan properties was determined in the same way, which groups glycans with similar structural properties, such as glycans with one galactose (G1), two galactoses (G2) or without galactose (G0), then glycans with sialic acid (S), branching N-acetylglucosamine (B) and IgG glycans with core-bound fucose (F), first for each person separately, and then at the group level. The range of changes in glycosylation properties within a single individual was most pronounced for sialylated (the largest difference between the lowest and highest values approximately 21%) and agalactosylated (the largest difference between the lowest and highest values approximately 16%) glycans, while fucosylated IgG glycans had the lowest intra-individual variation (greatest difference between the lowest and highest values less than 3%) during menstrual cycles; see Figure 4.

Za analiziranu grupu ispitanica izračunate su srednje vrijednosti, medijani, vrijednost prvog i trećeg kvartila, te minimalne i maksimalne vrijednosti izvedenih glikanskih svojstava IgG. Razina pojedinih glikanskih svojstava dana je u Tablici 6. Mean values, medians, values of the first and third quartiles, and minimum and maximum values of derived glycan properties of IgG were calculated for the analyzed group of subjects. The level of individual glycan properties is given in Table 6.

Tablica 6. Razina pojedinih izvedenih glikanskih svojstava u uzorcima plazme (n= 776) analizirane grupe ispitanica (N= 70) i kontrolnim uzorcima (n= 56) standarda. Prikazan je relativni udio galaktozilacije: G0 = agalaktozilacija, G1 = monogalaktozilacija, G2 = digalaktozilacija; sijalinizacije (S); rasjecajućeg GlcNAc (B); te fukozilacije (F); IgG u ukupnoj površini svih glikanskih svojstava. Q1 = prvi kvartil (25. percentila), Q3 = treći kvartil (75. percentila). Table 6. Level of certain derived glycan properties in plasma samples (n= 776) of the analyzed group of test subjects (N= 70) and control samples (n= 56) of the standard. The relative share of galactosylation is shown: G0 = agalactosylation, G1 = monogalactosylation, G2 = digalactosylation; sialinization (S); cleaving GlcNAc (B); and fucosylation (F); IgG in the total area of all glycan properties. Q1 = first quartile (25th percentile), Q3 = third quartile (75th percentile).

[image] [image]

IGS = izvedeno glikozilacijsko svojstvo izrađen kao % ukupne površine; min = minimum; Q1 = prvi kvartil (25. percentila); SV = srednja vrijednost; MD = medijan; Q3 = treći kvartil (75. percentila); maks = maksimum. IGS = derived glycosylation property made as % of total area; min = minimum; Q1 = first quartile (25th percentile); SV = mean value; MD = median; Q3 = third quartile (75th percentile); max = maximum.

Varijabilnost je izražena kao interkvartilni raspon prvog i trećeg kvartila. U analiziranoj grupi ispitanica nije bilo većih odstupanja razine izvedenih svojstava u usporedbi s vrijednostima izvedenih glikanskih svojstava IgG u kontrolnim uzorcima. Fukozilacija i monogalaktozilacija glikana IgG imale su najmanju varijabilnost unutar ispitivane grupe, dok je najvarijabilnije bilo glikozilacijsko svojstvo povezano s razinom agalaktozilacije glikana IgG. Variability is expressed as the interquartile range of the first and third quartiles. In the analyzed group of test subjects, there were no major deviations in the level of derived properties compared to the values of derived glycan properties of IgG in the control samples. Fucosylation and monogalactosylation of IgG glycans had the lowest variability within the examined group, while the most variable was the glycosylation property associated with the level of agalactosylation of IgG glycans.

Menstruacijski ciklusi ispitanica. Informacije o menstruacijskim ciklusima ispitanice su prijavljivale putem upitnika pri svakom vađenju krvi. Prikupljeni podatci korišteni su za izračun duljine trajanja menstruacijskih ciklusa tijekom studije. Opis menstruacijskih ciklusa ispitanica tijekom studije prikazan je u Tablici 7. Menstrual cycles of the test subjects. Information about menstrual cycles was reported by the subjects through a questionnaire at each blood draw. The collected data were used to calculate the duration of menstrual cycles during the study. The description of the menstrual cycles of the subjects during the study is shown in Table 7.

Iako su sve žene do uključivanja u studiju izjavile da imaju redovite i normalne menstruacijske cikluse, naši rezultati otkrili su određena odstupanja. Najizraženija odstupanja primijećena su vezano uz duljinu trajanja menstruacijskih ciklusa. Tijekom studije, najkraći menstruacijski ciklus bio je svega 20 dana, dok je najdulji trajao čak 72 dana. Although all women reported having regular and normal menstrual cycles prior to inclusion in the study, our results revealed certain discrepancies. The most pronounced deviations were observed in relation to the length of menstrual cycles. During the study, the shortest menstrual cycle was only 20 days, while the longest lasted as long as 72 days.

Unatoč velikoj razlici u duljini menstruacijskih ciklusa, provedena analiza pokazala je da većina žena (86%) ima normalne menstruacijske cikluse u trajanju između 26 i 34 dana s prosječnom duljinom trajanja od 30 dana; vidjeti literaturnu referencu 8. Za statističku obradu odabrano je 140 normalnih menstruacijskih ciklusa (oko 70% od ukupnog broja zabilježenih menstruacijskih ciklusa) u kojima je prikupljeno 500 uzoraka plazme od 60 žena. Despite the great difference in the length of menstrual cycles, the analysis carried out showed that the majority of women (86%) have normal menstrual cycles lasting between 26 and 34 days with an average length of 30 days; see literature reference 8. 140 normal menstrual cycles (about 70% of the total number of recorded menstrual cycles) were selected for statistical processing, in which 500 plasma samples were collected from 60 women.

Tablica 7. Menstruacijski ciklusi ispitanica uključenih u studiju. Table 7. Menstrual cycles of the subjects included in the study.

[image] [image]

Aproksimacija modela menstruacijskog ciklusa. Kako bi se provele daljnje statističke analize, podatci iz odabranih 140 menstruacijskih ciklusa grupirani su unutar zajedničkog modela menstruacijskog ciklusa, vidjeti Sliku 5. S obzirom da odabrani menstruacijski ciklusi imaju različitu duljinu trajanja (od 26 do 34 dana), bilo ih je potrebno normalizirati. Normalizacija menstruacijskih ciklusa izvedena je tako da je duljina trajanja svakog menstruacijskog ciklusa podijeljena sa 100%. Na taj su se način glikanski podatci i podatci o koncentracijama spolnih hormona izmjereni u raznim vremenskim točkama unutar pojedinačnih menstruacijskih ciklusa mogli jednostavno pozicionirati u zajedničkom modelu menstruacijskog ciklusa i omogućiti potrebne statističke analize. Approximation of the menstrual cycle model. In order to carry out further statistical analyses, the data from the selected 140 menstrual cycles were grouped within a common menstrual cycle model, see Figure 5. Considering that the selected menstrual cycles have different durations (from 26 to 34 days), it was necessary to normalize them. Normalization of menstrual cycles was performed by dividing the duration of each menstrual cycle by 100%. In this way, glycan data and data on sex hormone concentrations measured at various time points within individual menstrual cycles could be easily positioned in a common model of the menstrual cycle and enable the necessary statistical analyses.

Varijabilnost N-glikozilacije IgG tijekom menstruacijskog ciklusa. Jedan od glavnih ciljeva ove studije bio je utvrditi dolazi li do promjene glikanskog profila IgG s promjenom spolnih hormona. Glikanski podatci iz 140 odabranih menstruacijskih ciklusa analizirani su u zajedničkom modelu menstruacijskog ciklusa. Provedenom analizom longitudinalnih glikanskih mjerenja otkrivena je periodična ciklička dinamika razine agalaktoziliranih (G0), monogalaktoziliranih (G1), digalaktoziliranih (G2) i sijaliniziranih (S) glikana, te glikana s račvajućim GlcNAc (B) u ukupnom glikomu IgG, dok je razina fukoziliranih glikana tijekom menstruacijskog ciklusa ostala nepromijenjena; vidjeti Sliku 6. Variability of IgG N-glycosylation during the menstrual cycle. One of the main goals of this study was to determine whether the glycan profile of IgG changes with changes in sex hormones. Glycan data from 140 selected menstrual cycles were analyzed in a common menstrual cycle model. The analysis of longitudinal glycan measurements revealed periodic cyclic dynamics of the level of agalactosylated (G0), monogalactosylated (G1), digalactosylated (G2) and sialylated (S) glycans, as well as glycans with branched GlcNAc (B) in the total IgG glycome, while the level of fucosylated glycans remained unchanged during the menstrual cycle; see Figure 6.

Odnos N-glikozilacije IgG s fazama menstruacijskog ciklusa. Budući da je utvrđeno da se N-glikozilacija IgG mijenja tijekom menstruacijskog ciklusa, bilo je potrebno utvrditi i detaljno opisati specifične promjene u sastavu glikana. Analizom dinamike glikozilacijskih profila utvrđena su dva obrasca s obzirom na smjer i opseg promjena glikanskih svojstava IgG u pojedinim fazama menstruacijskog ciklusa. Iz rezultata je vidljivo da grupa glikana, u koju spadaju digalaktozilirani (G2) i sijalinizirani (S) glikani, ima isti obrazac promjena i doseže svoju najveću razinu u luteinskoj fazi menstruacijskog ciklusa. S druge strane, grupa glikana koju čine agalaktozilirani (G0) i monogalaktozilirani (G1) glikani, kao i glikani s račvajućim GlcNAc (B), ima svoj zajednički obrazac promjena koji je suprotan prethodno opisanoj grupi, i doseže svoju najveću razinu u folikularnoj fazi menstruacijskog ciklusa; vidjeti Sliku 7. The relationship of IgG N-glycosylation with the phases of the menstrual cycle. Since IgG N-glycosylation was found to change during the menstrual cycle, it was necessary to determine and describe in detail specific changes in glycan composition. Analysis of the dynamics of glycosylation profiles revealed two patterns with regard to the direction and extent of changes in the glycan properties of IgG in certain phases of the menstrual cycle. The results show that the group of glycans, which includes digalactosylated (G2) and sialinized (S) glycans, has the same pattern of changes and reaches its highest level in the lutein phase of the menstrual cycle. On the other hand, the group of glycans consisting of agalactosylated (G0) and monogalactosylated (G1) glycans, as well as glycans with branching GlcNAc (B), has its own common pattern of changes that is opposite to the previously described group, and reaches its highest level in the follicular phase of menstruation. cycles; see Figure 7.

Odnos glikozilacije IgG i spolnih hormona tijekom menstruacijskog ciklusa. Budući da je ustanovljeno da se u određenim fazama menstruacijskog ciklusa događaju uvijek iste promjene glikanskih svojstava, bilo je potrebno ispitati jesu li te promijene u N-glikozilaciji IgG na neki način povezane s promjenom koncentracije spolnih hormona tijekom menstruacijskog ciklusa. Iako postoje studije o mogućem utjecaju spolnih hormona, posebice estrogena, na sijalinizaciju i galaktozilaciju IgG, usporedbom obrazaca dinamike spolnih hormona i glikanskih svojstava IgG tijekom menstruacijskog ciklusa otkriveno je da se točka menstruacijskog ciklusa u kojoj je primijećena najveća koncentracija estradiola ne poklapa s točkom menstruacijskog ciklusa u kojoj je prisutnost digalaktoziliranih i sijaliniziranih glikana najveća; vidjeti za usporedbu literaturne reference 14 i 15: The relationship between glycosylation of IgG and sex hormones during the menstrual cycle. Since it was established that the same changes in glycan properties always occur in certain phases of the menstrual cycle, it was necessary to examine whether these changes in N-glycosylation of IgG are in some way related to changes in the concentration of sex hormones during the menstrual cycle. Although there are studies on the possible influence of sex hormones, especially estrogen, on the sialinization and galactosylation of IgG, by comparing the patterns of the dynamics of sex hormones and the glycan properties of IgG during the menstrual cycle, it was revealed that the point of the menstrual cycle where the highest concentration of estradiol was observed does not coincide with the point of the menstrual cycle in which the presence of digalactosylated and sialylated glycans is the highest; see for comparison literature references 14 and 15:

14) C. Engdahl, A. Bondt, U. Harre, J. Raufer, R. Pfeifle, A. Camponeschi, M. Wuhrer, M. Seeling, I. L. Mårtensson, F. Nimmerjahn, G. Krönke, H. U. Scherer, H. Forsblad-d'Elia, G. Schett: Estrogen induces St6gal1 expression and increases IgG sialylation in mice and patients with rheumatoid arthritis: a potential explanation for the increased risk of rheumatoid arthritis in postmenopausal women, Arthritis Res. Ther. 20 (2018) 84. 14) C. Engdahl, A. Bondt, U. Harre, J. Raufer, R. Pfeifle, A. Camponeschi, M. Wuhrer, M. Seeling, I. L. Mårtensson, F. Nimmerjahn, G. Krönke, H. U. Scherer, H. Forsblad-d'Elia, G. Schett: Estrogen induces St6gal1 expression and increases IgG sialylation in mice and patients with rheumatoid arthritis: a potential explanation for the increased risk of rheumatoid arthritis in postmenopausal women, Arthritis Res. Ther. 20 (2018) 84.

15) A. Ercan, W. M. Kohrt, J. Cui, K. D. Deane, M. Pezer, E. W. Yu, J. S. Hausmann, H. Campbell, U. B. Kaiser, P. M. Rudd, G. Lauc, J. F. Wilson, J. S. Finkelstein, P. A. Nigrovic: Estrogens regulate glycosylation of IgG in women and men. JCI Insight 2 (2017) e89703. doi: 10.1172/jci.insight.89703. 15) A. Ercan, W. M. Kohrt, J. Cui, K. D. Deane, M. Pezer, E. W. Yu, J. S. Hausmann, H. Campbell, U. B. Kaiser, P. M. Rudd, G. Lauc, J. F. Wilson, J. S. Finkelstein, P. A. Nigrovic: Estrogens. regulate glycosylation of IgG in women and men. JCI Insight 2 (2017) e89703. doi: 10.1172/jci.insight.89703.

Dan menstruacijskog ciklusa u kojem su zabilježene najveće vrijednosti (vršak) glikanskih svojstava IgG i spolnih hormona prikazani su u Tablici 8. Iz rezultata je vidljivo da je najveća razina digalaktozilacije i sijalinizacije IgG u približno 25. danu luteinske faze, što je vremenski pomak od 12 dana nakon najviše koncentracije estradiola u približno 13. danu folikularne faze menstruacijskog ciklusa. Nadalje, najveća razina digalaktozilacije i sijalinizacije IgG događa se 9 dana nakon najviše koncentracije testosterona koja je u približno 16. danu menstruacijskog ciklusa, i istovremeno s najvišom koncentracijom progesterona u luteinskoj fazi menstruacijskog ciklusa; vidjeti Sliku 7. The day of the menstrual cycle in which the highest values (peak) of the glycan properties of IgG and sex hormones were recorded are shown in Table 8. The results show that the highest level of digalactosylation and sialinization of IgG is on approximately day 25 of the luteal phase, which is a time shift of 12 days after the highest estradiol concentration on approximately the 13th day of the follicular phase of the menstrual cycle. Furthermore, the highest level of IgG digalactosylation and sialinization occurs 9 days after the highest concentration of testosterone, which is approximately on day 16 of the menstrual cycle, and simultaneously with the highest concentration of progesterone in the luteal phase of the menstrual cycle; see Figure 7.

Tablica 8. Najveće vrijednosti (vrškovi) izvedenih glikanskih svojstava IgG i spolnih hormona u menstruacijskom ciklusu. Table 8. Highest values (peaks) of derived glycan properties of IgG and sex hormones in the menstrual cycle.

[image] [image]

MC = menstruacijski ciklus; GS = glikansko svojstvo: G0, G1, G2, S, B, F; T = testosteron; E2 = estradiol; P = progesteron; uiv = u isto vrijeme. MC = menstrual cycle; GS = glycan property: G0, G1, G2, S, B, F; T = testosterone; E2 = estradiol; P = progesterone; uiv = at the same time.

Najveća zastupljenost agalaktoziliranih, monogalaktoziliranih i glikana s račvajućim GlcNAc na IgG nije pokazala podudarnost s niti jednom od točaka za koje su primijećene najveće koncentracije spolnih hormona tijekom menstruacijskog ciklusa. The highest prevalence of agalactosylated, monogalactosylated and glycans with branched GlcNAc on IgG did not show coincidence with any of the points for which the highest concentrations of sex hormones were observed during the menstrual cycle.

Umjesto toga, razina račvajućeg GlcNAc na IgG doseže svoj maksimum približno 9. dana menstruacijskog ciklusa, a razina agalaktozilacije i monogalaktozilacije IgG je najveća oko 10. dana folikularne faze menstruacijskog ciklusa, nakon luteinsko-folikularne faze koja je prijelazna faza između dva menstruacijska ciklusa, i za koju su generalno karakteristične najniže razine proučavanih spolnih hormona; vidjeti literaturnu referencu 16: Instead, the level of branching GlcNAc on IgG reaches its maximum on approximately day 9 of the menstrual cycle, and the level of agalactosylation and monogalactosylation of IgG is highest around day 10 of the follicular phase of the menstrual cycle, after the lutein-follicular phase which is the transitional phase between the two menstrual cycles, and which are generally characterized by the lowest levels of studied sex hormones; see literature reference 16:

16) B. G. Reed, B. R. Carr: The Normal Menstrual Cycle and the Control of Ovulation. 2018 Aug 5. In: K. R. Feingold, B. Anawalt, A. Boyce, G. Chrousos, W. W. de Herder, K. Dungan, A. Grossman, J. M. Hershman, J. Hofland, G. Kaltsas, C. Koch, P. Kopp, M. Korbonits, R. McLachlan, J. E. Morley, M. New, J. Purnell, F. Singer, C. A. Stratakis, D. L. Trence, D. P. Wilson (editori). Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000. PMID: 25905282. 16) B. G. Reed, B. R. Carr: The Normal Menstrual Cycle and the Control of Ovulation. 2018 Aug 5. In: K. R. Feingold, B. Anawalt, A. Boyce, G. Chrousos, W. W. de Herder, K. Dungan, A. Grossman, J. M. Hershman, J. Hofland, G. Kaltsas, C. Koch, P. Kopp, M. Korbonits, R. McLachlan, J.E. Morley, M. New, J. Purnell, F. Singer, C.A. Stratakis, D.L. Trence, D.P. Wilson (editors). Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000. PMID: 25905282.

Dan menstruacijskog ciklusa u kojem je zabilježena najveća srednja vrijednost navedenih varijabli i njihov međusobni vremenski pomak u menstruacijskom ciklusu izračunati su prema formulama (1) i (2). Budući da je otkrivena neusklađenost dinamike spolnih hormona i glikanskih svojstava IgG u menstruacijskom ciklusu, bilo je potrebno ispitati može li se pronaći veza između ovih vremenski pomaknutih događaja. The day of the menstrual cycle in which the highest mean value of the mentioned variables was recorded and their mutual time shift in the menstrual cycle were calculated according to formulas (1) and (2). Since the mismatch between the dynamics of sex hormones and the glycan properties of IgG in the menstrual cycle was discovered, it was necessary to investigate whether a connection could be found between these time-shifted events.

Analiza povezanosti glikanskih svojstava IgG s razinom spolnih hormona u menstruacijskom ciklusu prikazana je u Tablici 9. The analysis of the association of glycan properties of IgG with the level of sex hormones in the menstrual cycle is presented in Table 9.

Tablica 9. Povezanost (asocijacija) koncentracije spolnih hormona s dinamikom promjene N-glikozilacije IgG u menstruacijskom ciklusu. Table 9. Correlation (association) of the concentration of sex hormones with the dynamics of changes in IgG N-glycosylation in the menstrual cycle.

[image] [image]

GS = izvedeno glikansko svojstvo: agalaktozilirani glikani (G0), monogalaktozilirani glikani (G1), digalaktozilirani glikani (G2), sijalinizirani glikani (S), glikani s račvajućim GlcNAc (B), sržno-fukozilirani glikani (F); MC = menstruacijski ciklus; T = testosteron; E2 = estradiol; P = progesteron; vršak glikanskog svojstva (GS) IgG je vremenska točka u fazi menstruacijskog ciklusa izražena u postotcima (%) u kojoj je primijećena najveća razina glikana IgG sličnih strukturnih osobina tj. analiziranog glikanskog svojstva. Vršak hormona je vremenska točka u fazi menstruacijskog ciklusa izražena u postotcima (%) u kojoj je primijećena najveća koncentracija analiziranog spolnog hormona. GS = derived glycan property: agalactosylated glycans (G0), monogalactosylated glycans (G1), digalactosylated glycans (G2), sialinized glycans (S), branched GlcNAc glycans (B), core-fucosylated glycans (F); MC = menstrual cycle; T = testosterone; E2 = estradiol; P = progesterone; the peak glycan property (GS) of IgG is the time point in the phase of the menstrual cycle expressed in percentages (%) in which the highest level of glycan IgG with similar structural properties, i.e. the analyzed glycan property, was observed. The peak of the hormone is the time point in the phase of the menstrual cycle expressed in percentages (%) in which the highest concentration of the analyzed sex hormone was observed.

p vrijednost opisuju statističku značajnost funkcionalnog efekta pojedinog hormona na razinu glikanskog svojstva u menstruacijskom ciklusu. p vrijednosti su korigirane (engl. adjusted) na višestruko testiranje Benjamini-Hochberg metodom. Statistički značajnima smatrane su p vrijednosti manje od 0,05 (označene podebljano). Duljina trajanja jednog menstruacijskog ciklusa je 100%. Folikularna faza = 0% do 50% menstruacijskog ciklusa, luteinska faza – 50% do 100% menstruacijskog ciklusa. The p value describes the statistical significance of the functional effect of individual hormones on the level of glycan property in the menstrual cycle. p values were adjusted for multiple testing using the Benjamini-Hochberg method. p values less than 0.05 (marked in bold) were considered statistically significant. The duration of one menstrual cycle is 100%. Follicular phase = 0% to 50% of the menstrual cycle, luteal phase – 50% to 100% of the menstrual cycle.

Rezultati pokazuju kako sva svojstva koja opisuju N-glikozilaciju IgG imaju statistički značajnu asocijaciju s koncentracijom estradiola (E2), progesterona i testosterona u menstruacijskom ciklusu. The results show that all properties describing IgG N-glycosylation have a statistically significant association with the concentration of estradiol (E2), progesterone and testosterone in the menstrual cycle.

Nadalje, analiza pokazuje da progesteron i estradiol imaju isti smjer funkcionalnog učinka na glikozilacijska svojstva IgG. Iz toga proizlazi da je estradiol (E2) pozitivno povezan sa sijalinizacijom, dok je progesteron, uz sijalinizaciju, pozitivno povezan i sa digalaktozilacijom IgG u menstruacijskom ciklusu. Furthermore, the analysis shows that progesterone and estradiol have the same direction of functional effect on the glycosylation properties of IgG. It follows that estradiol (E2) is positively associated with sialinization, while progesterone, along with sialinization, is positively associated with digalactosylation of IgG in the menstrual cycle.

Nadalje, estradiol i progesteron su negativno povezani s proizvodnjom IgG glikoformi koje sadrže račvajući GlcNAc ili jednu galaktozu, dok je progesteron negativno povezan s agalaktozilacijom IgG. Furthermore, estradiol and progesterone are negatively associated with the production of IgG glycoforms containing branching GlcNAc or single galactose, while progesterone is negatively associated with IgG agalactosylation.

S druge strane, testosteron ima sasvim suprotan smjer funkcionalnog učinka na N-glikozilaciju IgG u usporedbi s progesteronom i estradiolom. Naime, testosteron pokazuje negativan funkcionalni učinak na digalaktozilaciju i sijalinizaciju N-glikana IgG, a pozitivni učinak na agalaktozilaciju, monogalaktozilaciju i fukozilaciju IgG tijekom menstruacijskog ciklusa. On the other hand, testosterone has a completely opposite direction of functional effect on IgG N-glycosylation compared to progesterone and estradiol. Namely, testosterone shows a negative functional effect on digalactosylation and sialinization of IgG N-glycans, and a positive effect on agalactosylation, monogalactosylation and fucosylation of IgG during the menstrual cycle.

Utjecaj menstruacijskog ciklusa na glikozilaciju IgG The influence of the menstrual cycle on IgG glycosylation

S obzirom na otkrivene promjene glikanskih svojstava tijekom menstruacijskog ciklusa i njihovu povezanost s koncentracijom spolnih hormona bilo je potrebno ispitati koliki je stvarni opseg promjena u glikanskim svojstvima IgG tijekom menstruacijskog ciklusa. Considering the detected changes in glycan properties during the menstrual cycle and their connection with the concentration of sex hormones, it was necessary to examine the actual extent of changes in the glycan properties of IgG during the menstrual cycle.

Opseg varijacije glikanskih svojstava IgG tijekom menstruacijskog ciklusa prikazan je u Tablici 10. The range of variation of glycan properties of IgG during the menstrual cycle is shown in Table 10.

Tablica 10. Povezanost (asocijacija) menstruacijskog ciklusa i varijabilnosti N-glikozilacije IgG. Table 10. Association between the menstrual cycle and the variability of IgG N-glycosylation.

[image] [image]

GS = izvedeno glikansko svojstvo: agalaktozilirani glikani (G0), monogalaktozilirani glikani (G1), digalaktozilirani glikani (G2), sijalinizirani glikani (S), glikani s račvajućim GlcNAc (B), sržno-fukozilirani glikani (F); MC = menstruacijski ciklus; SD = standardna devijacija; vršak glikanskog svojstva (GS) IgG je vremenska točka u fazi menstruacijskog ciklusa izražena u postotcima (%) u kojoj je primijećena najveća razina glikana IgG sličnih strukturnih osobina tj. analiziranog glikanskog svojstva; varijabilnost glikanskog svojstva je učinak pojedine faze menstruacijskog ciklusa na izvedena glikanska svojstva IgG izražena u postotcima (%) i standardnim devijacijama (SD); varijabilnost je izračunata iz omjera srednjih vrijednosti najveće razine (vršak) i svih mjerenja glikanskog svojstva IgG u određenoj fazi menstruacijskog ciklusa; OsobaVar je varijabilnost glikanskog svojstva koja proizlazi iz razlika u glikozilaciji IgG između osoba; MCVar je varijabilnost glikanskog svojstva IgG koja nastaje zbog menstruacijskog ciklusa; p vrijednost opisuje statističku značajnost varijabilnosti glikanskih svojstava IgG tijekom menstruacijskog ciklusa; p vrijednosti su korigirane (engl. adjusted) na višestruko testiranje Benjamini-Hochberg metodom. Statistički značajnima smatrane su p vrijednosti manje od 0,05 (označene podebljano). Duljina trajanja jednog menstruacijskog ciklusa je 100%. Folikularna faza – 0% do 50% trajanja menstruacijskog ciklusa, luteinska faza – 50% do 100% trajanja menstruacijskog ciklusa. GS = derived glycan property: agalactosylated glycans (G0), monogalactosylated glycans (G1), digalactosylated glycans (G2), sialinized glycans (S), branched GlcNAc glycans (B), core-fucosylated glycans (F); MC = menstrual cycle; SD = standard deviation; the peak glycan property (GS) of IgG is the time point in the phase of the menstrual cycle expressed in percentages (%) in which the highest level of glycan IgG with similar structural properties, i.e. the analyzed glycan property, was observed; the variability of the glycan property is the effect of a particular phase of the menstrual cycle on the derived glycan properties of IgG expressed in percentages (%) and standard deviations (SD); variability was calculated from the ratio of the mean values of the highest level (peak) and all measurements of the glycan property of IgG in a certain phase of the menstrual cycle; PersonVar is the variability of glycan properties arising from differences in IgG glycosylation between individuals; MCVar is the variability of the glycan property of IgG that occurs due to the menstrual cycle; The p value describes the statistical significance of the variability of glycan properties of IgG during the menstrual cycle; p values were adjusted for multiple testing using the Benjamini-Hochberg method. p values less than 0.05 (marked in bold) were considered statistically significant. The duration of one menstrual cycle is 100%. Follicular phase – 0% to 50% of the duration of the menstrual cycle, luteal phase – 50% to 100% of the duration of the menstrual cycle.

Iz rezultata je vidljivo da je opseg varijabilnosti glikanskih svojstava IgG koji je povezan s fazom menstruacijskog ciklusa vrlo mali i kreće se od 0,5% do 1,1%. Glikanska svojstva sa strukturnim osobinama povezanima s galaktozilacijom i sijalinizacijom najviše su se mijenjala tijekom menstruacijskog ciklusa – varijacija agalaktozilacije (G0) bila je 1,1%, a digalaktozilacije (G2) i sijalinizacije (S) 1,0%. Umjereno promjenjivi bili su glikani s jednom galaktozom – monogalaktozilacija (G1) 0,8%, a glikani s račvajućim N-acetilglukozaminom (B) 0,5%, dok se razina fukozilacije (F) nije mijenjala tijekom menstruacijskog ciklusa. It is evident from the results that the extent of variability of glycan properties of IgG, which is related to the phase of the menstrual cycle, is very small and ranges from 0.5% to 1.1%. Glycan properties with structural features related to galactosylation and sialinization changed the most during the menstrual cycle - the variation of agalactosylation (G0) was 1.1%, and the variation of digalactosylation (G2) and sialinization (S) was 1.0%. Glycans with one galactose were moderately variable - monogalactosylation (G1) 0.8%, and glycans with branching N-acetylglucosamine (B) 0.5%, while the level of fucosylation (F) did not change during the menstrual cycle.

Nadalje, u ovoj studiji je određeno koliko sam menstruacijski ciklus doprinosi ukupnoj varijabilnosti N-glikozilacije IgG. Detaljne analize pokazuju da menstruacijski ciklus može objasniti od 0,06% varijabilnosti u razini glikana s račvajućim GlcNAc (p= 0,01) do najviše 0,72% varijabilnosti u razini monogalaktoziliranih glikana (p= 3,36 x 10-22) na IgG. Za usporedbu, razlike u načinu na koji pojedina osoba glikozilira IgG može objasniti visokih 86% varijacija u razini račvajućeg GlcNAc, dok se razina agalaktozilacije između dviju osoba iz istog razloga može razlikovati za čak 98%. Rezultati stoga pokazuju da promjene u N-glikozilaciji IgG koje nastaju zbog samog menstruacijskog ciklusa čine manje od 0,8% varijabilnosti u razini bilo kojeg glikanskog svojstava IgG u ispitivanoj skupini žena. Furthermore, this study determined how much the menstrual cycle itself contributes to the overall variability of IgG N-glycosylation. Detailed analyzes show that the menstrual cycle can explain from 0.06% of the variability in the level of branched GlcNAc glycans (p= 0.01) to a maximum of 0.72% of the variability in the level of monogalactosylated glycans (p= 3.36 x 10-22) at IgG. In comparison, differences in the way an individual glycosylate IgG can explain a high 86% of the variation in the level of branching GlcNAc, while the level of agalactosylation between two individuals for the same reason can differ by as much as 98%. The results therefore show that changes in IgG N-glycosylation caused by the menstrual cycle itself account for less than 0.8% of the variability in the level of any IgG glycan property in the studied group of women.

Drugi aspekti obrade rezultata studije Other aspects of processing the study results

Normalizacija i „batch“ korekcija podataka dobivenih nakon UHPLC analize su provedene s ciljem uklanjanja eksperimentalne pogreške; normalizacija je provedena dijeljenjem površine svakog pojedinačnog kormatografskog vrška s ukupnom površinom kromatograma. Normalization and "batch" correction of data obtained after UHPLC analysis were performed with the aim of removing experimental error; normalization was performed by dividing the area of each individual chromatographic peak by the total area of the chromatogram.

Prije „batch“ korekcije normalizirani podaci su log-transformirani zbog nagnutosti distribucije podataka na desnu stranu („right-skewness“). Log-transformirani podaci su korigirani za „batch“ koristeći “ComBat” metodu (R paket sva) kojom su tehnički izvori varijacije modelirani kao „batch“ kovarijanta; vidjeti literaturnu referencu 17: Before the "batch" correction, the normalized data were log-transformed due to the right-skewness of the data distribution. Log-transformed data were corrected for "batch" using the "ComBat" method (R package sva) by which technical sources of variation were modeled as "batch" covariates; see literature reference 17:

17) J. T. Leek, W. E. Johanson, H. S. Parker, E. J. Fertig, A. E. Jaffe, Y. Zhang, J. D. Storey, L. C. Torres, Surrogate Variable Analysis. R package version 3.38.0 (2020). 17) J. T. Leek, W. E. Johanson, H. S. Parker, E. J. Fertig, A. E. Jaffe, Y. Zhang, J. D. Storey, L. C. Torres, Surrogate Variable Analysis. R package version 3.38.0 (2020).

Procijenjeni „batch“ utjecaji su oduzeti od log-transformiranih mjerenja s namjerom korekcije eksperimentalnog šuma. Srednja vrijednost estradiola (E2) izračunata je za svakog ispitanika na osnovu pojedinačnih mjerenja te su vrijednosti log-transformirane. Prije razvijanja modela strojnog učenja 33% podataka je izdvojeno kako bi sačinjavali set podataka koji je će biti korišten za završnu validaciju rezultata. Preostalih 67% podataka korišteno je za razvijanje linearnog modela. Glikani koji će biti uključeni u konačni model odabrani su metodom odabira najboljeg podskupa unatrag (eng. Stepwise Backward Selection) koristeći statsmodels modul; vidjeti literaturnu referencu 18: The estimated "batch" effects were subtracted from the log-transformed measurements with the intention of correcting the experimental noise. The mean value of estradiol (E2) was calculated for each subject based on individual measurements, and the values were log-transformed. Before developing the machine learning model, 33% of the data was extracted to make up the data set that will be used for the final validation of the results. The remaining 67% of the data was used to develop a linear model. The glycans to be included in the final model were selected by the Stepwise Backward Selection method using the statsmodels module; see literature reference 18:

18) Seabold, Skipper, Josef Perktold: „statsmodels: Econometric and statistical modeling with python; Proceedings of the 9th Python in Science Conference (2010). 18) Seabold, Skipper, Josef Perktold: "statsmodels: Econometric and statistical modeling with python; Proceedings of the 9th Python in Science Conference (2010).

Na taj je način odabrano deset kromatografskih vrškova, GP2, GP4, GP8, GP10, GP12, GP15, GP16, GP18, GP22 i GP23 za koje je p-vrijednost bila <0,001. Nadalje, s ciljem unaprjeđenja predviđanja srednje vrijednosti estradiola linearnim modelom, navedenom setu podataka dodane su polinomalne kombinacije svih glikana s drugim stupnjem (korištena je klasa PolynomialFeatures). Broj svojstava je potom reduciran na 35 tako da je izabran najmanji broj svojstava nakon kojih se R2 značajno ne povećava koristeći klasu SelectKBest; kao funkcija odabira je korištena „mutual_info_regression“. Na navedeni način su transformirani svi podaci. U svrhu predviđanja log-srednje vrijednosti estradiola (E2) na osnovu vrijednosti kromatografskih vrškova razvijen je strojnim učenjem linearni regresijski model. Također, parametri za model su utvrđeni koristeći klasu GridSearchCV s kros-validacijom koristeći ShuffleSplit klasu, tako da su podaci deset puta podijeljeni nasumično u petine od kojih je jedna skupina korištena za validaciju parametara. Navedenim postupkom su utvrđeni sljedeći parametri kao najbolji: 'copy_X': True, 'fit_intercept': False, 'normalize': True. Model s navedenim parametrima ima R2 = 0,551 na testnom uzorku kross-validacije provedene na prethodno opisan način, dok je na testnom uzorku (izdvojenom prije razvijanja modela) R2 = 0,547, maksimalna pogreška 1,04 i kvadrat srednjom vrijednosti greške 0,09. In this way, ten chromatographic peaks were selected, GP2, GP4, GP8, GP10, GP12, GP15, GP16, GP18, GP22 and GP23, for which the p-value was <0.001. Furthermore, with the aim of improving the prediction of the mean value of estradiol by the linear model, polynomial combinations of all glycans with the second degree were added to the specified data set (PolynomialFeatures class was used). The number of properties was then reduced to 35 by selecting the smallest number of properties after which R2 does not increase significantly using the SelectKBest class; "mutual_info_regression" was used as the selection function. All data were transformed in the specified manner. In order to predict the log-mean value of estradiol (E2) based on the values of the chromatographic peaks, a linear regression model was developed using machine learning. Also, the parameters for the model were determined using the GridSearchCV class with cross-validation using the ShuffleSplit class, so that the data were divided ten times randomly into fifths, one group of which was used for parameter validation. The following parameters were found to be the best by the mentioned procedure: 'copy_X': True, 'fit_intercept': False, 'normalize': True. The model with the specified parameters has R2 = 0.551 on the test sample of the cross-validation carried out in the previously described manner, while on the test sample (separated before developing the model) R2 = 0.547, the maximum error is 1.04 and the mean square error value is 0.09.

Konačni numerički model za izračuvanje višednevne prosječne koncentracije stradiola (E2) u krvi žena iz rezultata kvantitativne analize IgG N-glikana je slijedeći: The final numerical model for calculating the multi-day average concentration of estradiol (E2) in the blood of women from the results of the quantitative analysis of IgG N-glycan is as follows:

Log c(E2) = -15,529•GP4 - 2,602•GP8 + 5,589•GP10 + 9,699•GP12 + 53,911•GP15 + 9,901•GP16 - 1,990•GP2•GP10 - 0,065•GP2•GP12 + 3,601•GP2•GP15 + 0,007•GP2•GP16 + 0,465•(GP4)2 + 2,889•GP4•GP8 + 5,106•GP4•GP10 - 0,817•GP4•GP12 - 8,606•GP4•GP15 + 1,490•GP4•GP18 + 1,689•(GP8)2 - 9,048•GP8•GP10 - 0,999• GP8•GP12 - 2,253•GP8•GP15 + 3,143•(GP10)2 + 0,712•GP10•GP12 - 3,505•GP10•GP15 - 4,753•GP10•GP16 + 1,128•GP10•GP18 - 4,584•GP12•GP15 + 1,138•GP12•GP16 - 1,355•GP12•GP18 - 0,598•GP12•GP22 - 0,904•GP12•GP23 - 4,638(GP15)2 + 0,287•GP15•GP16 - 3,049•GP15•GP18 + 2,492(GP16)2 - 3,041•GP16•GP18 Log c(E2) = -15.529•GP4 - 2.602•GP8 + 5.589•GP10 + 9.699•GP12 + 53.911•GP15 + 9.901•GP16 - 1.990•GP2•GP10 - 0.065•GP2•GP12 + 3.601•GP2•GP15 + 0.007 •GP2•GP16 + 0.465•(GP4)2 + 2.889•GP4•GP8 + 5.106•GP4•GP10 - 0.817•GP4•GP12 - 8.606•GP4•GP15 + 1.490•GP4•GP18 + 1.689•(GP8)2 - 9.048 •GP8•GP10 - 0.999• GP8•GP12 - 2.253•GP8•GP15 + 3.143•(GP10)2 + 0.712•GP10•GP12 - 3.505•GP10•GP15 - 4.753•GP10•GP16 + 1.128•GP10•GP18 - 4.584• GP12•GP15 + 1.138•GP12•GP16 - 1.355•GP12•GP18 - 0.598•GP12•GP22 - 0.904•GP12•GP23 - 4.638(GP15)2 + 0.287•GP15•GP16 - 3.049•GP15•GP18 + 2.492(GP16) 2 - 3,041•GP16•GP18

gdje faktori GP2, GP4, GP8, GP10, GP12, GP15, GP16, GP18, GP22 i GP23 predstavljaju prirodni logaritam relativne površine ispod vršaka istoimenih glikana GP2, GP4, GP8, GP10, GP12, GP15, GP16, GP18, GP22, GP23 iz kromatograma izabrane kvantitativne analitičke tehnike. where the factors GP2, GP4, GP8, GP10, GP12, GP15, GP16, GP18, GP22 and GP23 represent the natural logarithm of the relative area under the peaks of the glycans of the same name GP2, GP4, GP8, GP10, GP12, GP15, GP16, GP18, GP22, GP23 from chromatogram of the chosen quantitative analytical technique.

Za pripremu podataka i razvoj modela za strojno učenje je korišten programski jezik Python verzija 3.7.6, Python paket Scikit-learn i Jupyter notebook; vidjeti literaturne reference 19 i 20: The programming language Python version 3.7.6, Python package Scikit-learn and Jupyter notebook were used for data preparation and machine learning model development; see literature references 19 and 20:

19) Scikit-learn: Machine Learning in Python, Pedregosa… JMLR 12 (2011) 2825-2830. 19) Scikit-learn: Machine Learning in Python, Pedregosa... JMLR 12 (2011) 2825-2830.

20) T. Kluyver, B. Ragan-Kelley, F. Perez: Jupyter Notebooks – a publishing format for reproducible computational workflows. In: F. Loizides, B. Schmidt (Ed.): Positioning and Power in Academic Publishing; Players, Agents and Agendas. Clifton, VA: IOS Press (2016) 87-90. 20) T. Kluyver, B. Ragan-Kelley, F. Perez: Jupyter Notebooks – a publishing format for reproducible computational workflows. In: F. Loizides, B. Schmidt (Ed.): Positioning and Power in Academic Publishing; Players, Agents and Agendas. Clifton, VA: IOS Press (2016) 87-90.

Upotreba dijagnostičkog postupka prema izumu i pripadajućeg numeričkog modela u kliničkoj praksi The use of the diagnostic procedure according to the invention and the associated numerical model in clinical practice

Dijagnostički postupak prema izumu koristi se za određivanje prosječne višednevne koncentracije estradiola (E2) u krvi na osnovi jedne jedine analize krvi, što je nemoguće uz primjenu postojećih imunokemijskih metoda kvantitativne analize E2. The diagnostic procedure according to the invention is used to determine the average multi-day concentration of estradiol (E2) in the blood on the basis of a single blood analysis, which is impossible with the application of existing immunochemical methods of quantitative analysis of E2.

Alternativno, dijagnostički postupak prema izumu koristi se za određivanje prosječne koncentracije estradiola (E2) u krvi tijekom proteklih mjesec dana. Alternatively, the diagnostic procedure according to the invention is used to determine the average concentration of estradiol (E2) in the blood during the past month.

Opcionalno, dijagnostički postupak prema izumu koristi se za određivanje prosječne koncentracije estradiola (E2) u krvi tijekom proteka dva mjeseca. Optionally, the diagnostic procedure according to the invention is used to determine the average concentration of estradiol (E2) in the blood during the past two months.

Alternativno, dijagnostički postupak prema izumu koristi se za određivanje prosječne koncentracije estradiola (E2) u krvi tijekom proteka tri mjeseca. Alternatively, the diagnostic procedure according to the invention is used to determine the average concentration of estradiol (E2) in the blood during the past three months.

1.7 Primjeri izvođenja izuma 1.7 Examples of the implementation of the invention

Opće napomene General notes

Nazivlje IgG N-glikana koji su ključni za predmetni izum izvedeno je prema pravilima Oxford nomenklature. The name of the IgG N-glycans, which are key to the present invention, is derived according to the rules of the Oxford nomenclature.

Korištene kemikalije, reagensi i pribor nabavljeni su od slijedećih dobavljača: 2-aminobenzamid (2AB): Sigma-Aldrich, SAD; 2-pikolin boran (2PB): Sigma-Aldrich; acetonitril HPLC grade: Scharlab; acetonitril LC-MS: J. T. Baker; amonijev klorid (NH4Cl): Acros Organics; amonijev hidrogenkarbonat (NH4HCO3): Acros Organics; dimetil sulfoksid (DMSO): Sigma-Aldrich; etanol: Carlo Erba; mravlja kiselina (HCOOH): Merck; Igepal CA-630: Sigma-Aldrich; kalijev dihidrogenfosfat (KH2PO4): Sigma-Aldrich; kalijev klorid (KCl): EMD Milipore; kloridna kiselina (HCl): Kemika; natrijev dodecilsulfat (SDS): Sigma-Aldrich; natrijev hidrogenfosfat (Na2HPO4): Acros Organics; natrijev hidrogenkarbonat (NaHCO3): Merck; natrijev hidroksid (NaOH): Kemika; natrijev klorid (NaCl): Carlo Erba; octena kiselina (CH3COOH): Merck; otopina amonijaka: Merck; tris(hidroksimetil)aminometan (Tris): Acros Organics; ultračista voda: Milipore; peptid-N-glikozidaza F (PNGaza F; 10 U/mL): Promega; ARC Estradiol RGT: Abbott Diagnostics; ARC Progesterone RGT: Abbott Diagnostics; ARC 2nd Gen Testo RGT: Abbott Diagnostics; ARC Trigger solution: Abbott Diagnostics; ARC Pre-trigger solution: Abbott Diagnostics; GHP Acroprep 0,20 µm filter pločica: Pall; GHP Acroprep 0,45 µm filter pločica: Pall; pločica za prikupljanje uzoraka s 96 jažica, zapremnine 1 i 2 mL: Waters; Protein G pločica: BIA Separations; pločica monolita s proteinom G (96 jažica). The chemicals, reagents and accessories used were obtained from the following suppliers: 2-aminobenzamide (2AB): Sigma-Aldrich, USA; 2-picoline borane (2PB): Sigma-Aldrich; acetonitrile HPLC grade: Scharlab; acetonitrile LC-MS: J. T. Baker; ammonium chloride (NH4Cl): Acros Organics; ammonium hydrogencarbonate (NH4HCO3): Acros Organics; dimethyl sulfoxide (DMSO): Sigma-Aldrich; ethanol: Carlo Erba; formic acid (HCOOH): Merck; Igepal CA-630: Sigma-Aldrich; potassium dihydrogen phosphate (KH2PO4): Sigma-Aldrich; potassium chloride (KCl): EMD Millipore; hydrochloric acid (HCl): Chemistry; sodium dodecyl sulfate (SDS): Sigma-Aldrich; sodium hydrogen phosphate (Na2HPO4): Acros Organics; sodium bicarbonate (NaHCO3): Merck; sodium hydroxide (NaOH): Chemistry; sodium chloride (NaCl): Carlo Erba; Acetic acid (CH3COOH): Merck; ammonia solution: Merck; tris(hydroxymethyl)aminomethane (Tris): Acros Organics; ultrapure water: Millipore; peptide-N-glycosidase F (PNGase F; 10 U/mL): Promega; ARC Estradiol RGT: Abbott Diagnostics; ARC Progesterone RGT: Abbott Diagnostics; ARC 2nd Gen Test RGT: Abbott Diagnostics; ARC Trigger solution: Abbott Diagnostics; ARC Pre-trigger solution: Abbott Diagnostics; GHP Acroprep 0.20 µm filter plate: Pall; GHP Acroprep 0.45 µm filter plate: Pall; 96-well sample collection plate, 1 and 2 mL volumes: Waters; Protein G plate: BIA Separations; protein G monolith plate (96 wells).

Istraživanje je provedeno uz primjenu slijedećih uređaja: ARCHITECT® i1000SR analizator, Abbott Diagnostics; ABgene PCR pločice, Thermo Scientific; Acquity UPLC Glycan BEH amidna kolona, 130 Å, 1,7 µm, 2,1 mm x 100 mm, Waters; Acquity UPLC H-Class tekućinska kromatografija ultravisokih performansi, Waters; Reakcijske tubice ARC, Abbott Diagnostics; Centrifuga model 5840, Eppendorf; Digestor DIGIM 15 AFM, Schneider; Sistem za pročišćavanje vode Direct-Q 3UV, Millipore; Analitička vaga Explorer®, Ohaus; pH-metar FiveEasyTM, Mettler Toledo; Tehnička vaga model JL1502-G, Mettler Toledo; Laboratorijska pećnica LAB. HOT AIR OVEN, M.R.C.; Laboratorijski inkubator LAB. INCUBATOR, M.R.C.; Centrifuga miniSpin, Eppendorf; Magnetska miješalica MR 3000 D, Heildoph; Spektrofotometar Nanodrop ND-8000, Thermo Scientific; Pipet-Lite XLS ručne mikropipete jedno- i višekanalne raznih volumena, Rainin; Kružna tresilica model 3023, GFL; Rotacijski vakuum koncentrator Savant SC210A SpeedVac i Savant zamka za otapalo, Thermo Scientific; Refrigerated Vapor Traps RVT400 i vakuumska pumpa OFP400, Thermo Scientific; Uređaj za filtriranje uz pomoć vakuuma (od engl. vacuum manifold) i vakuumska pumpa, Pall; Laboratorijska tresilica Vortex-Genie 2, Scientific Industries. The research was conducted using the following devices: ARCHITECT® i1000SR analyzer, Abbott Diagnostics; ABgene PCR plates, Thermo Scientific; Acquity UPLC Glycan BEH amide column, 130 Å, 1.7 µm, 2.1 mm x 100 mm, Waters; Acquity UPLC H-Class Ultra High Performance Liquid Chromatography, Waters; ARC reaction tubes, Abbott Diagnostics; Centrifuge model 5840, Eppendorf; Digestor DIGIM 15 AFM, Schneider; Water purification system Direct-Q 3UV, Millipore; Analytical balance Explorer®, Ohaus; pH-meter FiveEasyTM, Mettler Toledo; Technical scale model JL1502-G, Mettler Toledo; Laboratory oven LAB. HOT AIR OVEN, M.R.C.; Laboratory incubator LAB. INCUBATOR, M.R.C.; Centrifuge miniSpin, Eppendorf; Magnetic mixer MR 3000 D, Heildoph; Spectrophotometer Nanodrop ND-8000, Thermo Scientific; Pipet-Lite XLS manual micropipettes single- and multi-channel of various volumes, Rainin; Circular shaker model 3023, GFL; Savant SC210A SpeedVac rotary vacuum concentrator and Savant solvent trap, Thermo Scientific; Refrigerated Vapor Traps RVT400 and vacuum pump OFP400, Thermo Scientific; Vacuum manifold and vacuum pump, Pall; Laboratory shaker Vortex-Genie 2, Scientific Industries.

Značenja korištenih kratica su slijedeća: The meanings of the abbreviations used are as follows:

PNGaza F = enzim peptid-N4-(N-acetil-beta-glukozaminil)asparagin amidaza; PNGase F = peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase enzyme;

2AB = 2-amino-benzamid; 2AB = 2-amino-benzamide;

DMF = N,N-dimetilformamid, otapalo; DMF = N,N-dimethylformamide, solvent;

EDTA = N,N,N',N'-etilendiamino-tetraoctena kiselina, dikalijeva sol; EDTA = N,N,N',N'-ethylenediamine-tetraacetic acid, dipotassium salt;

EU = jedinice emisije (engl. emission units); EU = emission units (Eng. emission units);

GP = glikanski vršak (engl. glycan peak); GP = glycan peak (engl. glycan peak);

HILIC = tekućinska kromatografija sa hidrofilnim međudjelovanjem, dolazi od engleskog termina „hydrophilic interaction liquid chromatography“; HILIC = liquid chromatography with hydrophilic interaction, comes from the English term "hydrophilic interaction liquid chromatography";

IgG = imunoglobulin G; IgG = immunoglobulin G;

MC = menstruacijski ciklus; MC = menstrual cycle;

RT = retencijsko vrijeme (tR); vrijeme zadržavanja glikana na koloni (engl. retention time); RT = retention time (tR); glycan retention time on the column (eng. retention time);

PR = prokainamid; PR = procainamide;

RF = 2,5-dioxopirolidin-1-il-[2N-[2-(N',N'-dietilamino)etil] karbamoil]-kinolin-6-il-karbamat (RapiFluor-MS); RF = 2,5-dioxopyrrolidin-1-yl-[2N-[2-(N',N'-diethylamino)ethyl] carbamoyl]-quinolin-6-yl-carbamate (RapiFluor-MS);

SD = standardna devijacija; SD = standard deviation;

SDS = natrijev dodecilsulfat, tenzid; SDS = sodium dodecyl sulfate, surfactant;

UPLC = tekućinska kromatografija ultravisoke učinkovitosti, dolazi od engleskog termina „ultra-high performance liquid chromatography. UPLC = ultra-high performance liquid chromatography, comes from the English term "ultra-high performance liquid chromatography."

Primjer 1. Studija praćenja varijabilnosti N-glikana vezanih na imunoglobulin G u odnosu na koncentracije spolnih hormona i, podredno, estradiola (E2) tijekom različitih faza menstrualnog ciklusa kod žena starosti od 18 do 50 godina Example 1. Study of monitoring the variability of N-glycans attached to immunoglobulin G in relation to the concentrations of sex hormones and, secondarily, estradiol (E2) during different phases of the menstrual cycle in women aged 18 to 50 years

U studiji je sudjelovalo ukupno 70 zdravih odraslih žene starosti od 18-50 godina; vidjeti Sliku 2. Uključivanje je provedeno na temelju podataka o prethodnim menstruacijskim ciklusima, zdravstvenom stanju i životnim navikama svake osobe dobivenim putem eliminacijskog upitnika. Uključni kriteriji za sudjelovanje u studiji bili su: starost osobe (između 18 i 50 god.), te redoviti i normalni menstruacijski ciklusi. U studiju su se uključivale samo one žene koje nemaju dijagnosticirane bolesti za koje je poznato da utječu na promjene u glikanskim obrascima IgG. Sve ispitanice su potpisale informirani pristanak za sudjelovanje u istraživanju, a studiju su odobrila Etička povjerenstva Medicinskog fakulteta Sveučilišta u Zagrebu i Medicinskog fakulteta u Pekingu, Kina. Studija je provedena u skladu s načelima Helsinške deklaracije. A total of 70 healthy adult women aged 18-50 participated in the study; see Figure 2. Inclusion was carried out on the basis of data on previous menstrual cycles, health status and lifestyle habits of each person obtained through an elimination questionnaire. Inclusive criteria for participation in the study were: the person's age (between 18 and 50 years), and regular and normal menstrual cycles. Only those women without diagnosed diseases known to affect changes in glycan patterns of IgG were included in the study. All subjects signed an informed consent to participate in the research, and the study was approved by the Ethics Committees of the Faculty of Medicine, University of Zagreb and the Faculty of Medicine in Beijing, China. The study was conducted in accordance with the principles of the Declaration of Helsinki.

Protokol studije. U svrhu analize N-glikozilacije imunoglobulina G prikupljani su uzorci krvne plazme. Uzorkovanje je provedeno od rujna do studenog 2016. godine, kroz dvanaest uzastopnih tjedana, jednom tjedno (ujutro) u pravilnim razmacima od sedam dana, te neovisno o fazi menstruacijskog ciklusa pojedine žene. Pri svakom posjetu, od zdravih ispitanica uzeto je 5 mL pune krvi venepunkcijom u epruvete s EDTA antikoagulansom (BD Vacutainer® K2EDTA REF 368861 epruvete) rutinskom procedurom u Naftnoj bolnici Jidong u kineskoj provinciji Hebei. Uzorci krvi inkubirani su 30 min na sobnoj temperaturi, nakon čega je uslijedilo centrifugiranje na 1670g tijekom 10 min na 4 °C radi odvajanje plazme. Uzorci plazme čuvani su na -80 °C do daljnje analize. Prilikom svakog posjeta ispitanice su ispunile kratak upitnik vezano uz zdravstveno stanje i menstruacijski ciklus od zadnjeg vađenja krvi. Dobiveni podatci korišteni su za određivanje duljine trajanja menstruacijskog ciklusa svake žene za vrijeme trajanja studije. U svim uzorcima krvne plazme određena je i koncentracija triju spolnih hormona - estradiola (E2) kao najaktivnije forme estrogena, progesterona (P) i testosterona (T) kako bi se omogućilo praćenje faza menstruacijskih ciklusa u žena. Study protocol. In order to analyze the N-glycosylation of immunoglobulin G, blood plasma samples were collected. Sampling was carried out from September to November 2016, for twelve consecutive weeks, once a week (in the morning) at regular intervals of seven days, and regardless of the phase of the menstrual cycle of an individual woman. At each visit, 5 mL of whole blood was collected from healthy subjects by venipuncture into tubes with EDTA anticoagulant (BD Vacutainer® K2EDTA REF 368861 tubes) as a routine procedure at the Jidong Petroleum Hospital in Hebei Province, China. Blood samples were incubated for 30 min at room temperature, followed by centrifugation at 1670 g for 10 min at 4 °C to separate plasma. Plasma samples were stored at -80 °C until further analysis. At each visit, the subjects filled out a short questionnaire related to their state of health and menstrual cycle since the last blood draw. The obtained data were used to determine the length of each woman's menstrual cycle for the duration of the study. In all blood plasma samples, the concentration of three sex hormones - estradiol (E2) as the most active form of estrogen, progesterone (P) and testosterone (T) was determined in order to enable the monitoring of the phases of menstrual cycles in women.

Imunokemijska metoda određivanja koncentracije spolnih hormona Immunochemical method of determining the concentration of sex hormones

Koncentracije spolnih hormona estradiola (E2), progesterona (P) i testosterona (T) izmjerene su u uzorcima plazme kemiluminiscentnom imunokemijskom metodom posredovanom mikročesticama (engl. chemiluminescent microparticle immuno assay, CMIA) na ARCHITECT® i1000SR (Abbott Diagnostics) automatiziranom sustavu uz korištenje komercijalnih setova reagencija za detekciju hormona s promjenjivim testnim protokolima navedenog proizvođača; vidjeti literaturnu referencu 10. Prije mjerenja koncentracija spolnih hormona, sustav je potrebno kalibrirati pomoću otopina za kalibriranje na hormon čija se koncentracija određuje. Reakcijska smjesa za određivanje koncentracije spolnih hormona dobiva se miješanjem uzorka plazme, paramagnetskih mikročestica obloženih protutijelima na hormon od interesa, te konjugata hormona od interesa obilježenog akridinom u jednokratnim ARC reakcijskim tubicama (Abbott Diagnostics). Na mikročestice obložene protutijelima prvo se veže hormon iz plazme, a na preostala slobodna antitijela na mikročesticama vežu se akridinilirani konjugati hormona od interesa koji u doticaju s predaktivacijskom (engl. pre-trigger solution; H2O2, φ = 1,32%) i aktivacijskom (engl. trigger solution; NaOH, c = 0,35 M) otopinom pokreću reakciju kemiluminiscencije. Kemiluminiscentni signali detektiraju se pomoću ARHITECT i System optike i izražavaju u relativnim svjetlosnim jedinicama (engl. relative light units, RLUs). Koncentracija hormona u plazmi obrnuto je proporcionalna detektiranim RLU jedinicama. Ova analiza provedena je u suradnji s Endokrinološkim laboratorijem Bolnice za ženske bolesti i porode Kliničkog bolničkog centra Zagreb. The concentrations of the sex hormones estradiol (E2), progesterone (P) and testosterone (T) were measured in plasma samples using a chemiluminescent microparticle immunoassay (CMIA) on an ARCHITECT® i1000SR (Abbott Diagnostics) automated system using commercial sets of reagents for hormone detection with variable test protocols of the specified manufacturer; see literature reference 10. Before measuring sex hormone concentrations, the system must be calibrated using calibration solutions for the hormone whose concentration is being determined. The reaction mixture for determining the concentration of sex hormones is obtained by mixing a plasma sample, paramagnetic microparticles coated with antibodies to the hormone of interest, and a conjugate of the hormone of interest labeled with acridine in disposable ARC reaction tubes (Abbott Diagnostics). The hormone from the plasma is first bound to the microparticles coated with antibodies, and the acridinylated conjugates of the hormone of interest are bound to the remaining free antibodies on the microparticles, which are in contact with the pre-trigger solution (H2O2, φ = 1.32%) and the activation ( trigger solution; NaOH, c = 0.35 M) trigger the chemiluminescence reaction with the solution. Chemiluminescent signals are detected using ARHITECT and System optics and expressed in relative light units (relative light units, RLUs). The concentration of hormones in plasma is inversely proportional to the detected RLU units. This analysis was carried out in cooperation with the Endocrine Laboratory of the Hospital for Women's Diseases and Childbirth of the Zagreb Clinical Hospital Center.

Analitika N-glikana iz krvne plazme. Izolacija uzorka krvne plazme iz žena za svrhu provedbe dijagnostike estradiola (E2) provedena je prema metodologiji poznatoj u stanju tehnike; vidjeti literaturnu referencu 4. Također, izolacija IgG iz krvne plazme vršena je prema postupku poznatom u stanju tehnike; vidjeti literaturne reference 3 i 9. Analysis of N-glycans from blood plasma. Isolation of a blood plasma sample from women for the purpose of estradiol (E2) diagnostics was carried out according to the methodology known in the state of the art; see literature reference 4. Also, isolation of IgG from blood plasma was performed according to a procedure known in the state of the art; see literature references 3 and 9.

Izolacija imunoglobulina G (IgG). Imunoglobulin G je izoliran iz uzoraka krvne plazme afinitetnom kromatografijom vezanjem na protein G pločicu s 96 jažica (BIA Separations) uz korištenje vakuum uređaja za filtriranje pločica (od eng. vacuum manifold, Pall). Svi koraci izolacije IgG odvijaju se pri tlaku od oko 380 mmHg, osim pri nanošenju uzorka plazme i eluiranju IgG kada se koristi smanjeni tlak od oko 200 mmHg. Izolacija imunoglobulina G iz krvne plazme izvodi se u digestoru, a korištene otopine se prije upotrebe filtriraju kroz 0,2 µm Supor PES filtar (Nalgene). Prije nanošenja uzoraka plazme, protein G pločicu je bilo potrebno pripremiti uzastopnim ispiranjem s otopinama, redom: 2 mL ultračiste vode (18 MΩ/cm pri 25°C), 2 mL 1x koncentriranog pufera PBS pH 7.4 (137 mmol/L NaCl; 2,7 mmol/L Na2HPO4; 9,7 mmol/L KH2PO4; 2,2 mmol/L KCl; titrirano s NaOH do pH 7,4), 1 mL 0,1 mol/L HCOOH pH 2,5; 2 mL 10x koncentriranog pufera PBS pH 6,6; te uravnotežiti ispiranjem s 4 mL 1x koncentriranog pufera PBS pH 7,4. Osim uzoraka ispitanica (100 µL), na svaku pločicu je nasumično stavljeno po pet alikvota standardnog uzorka plazme (50 µL), a po jedna jažica je ostavljena prazna kao negativna kontrola. Uzorci plazme su promiješani i centrifugirani 10 min na 1479 g (centrifuga model 5840, Eppendorf). Zatim su razrijeđeni 1x koncentriranim puferom PBS pH 7,4 u omjeru 1:7 (v/v) te filtrirani kroz 0,45 µm GHP AcroPrep filtar pločicu s 96 jažica (Pall) upotrebom vakuum uređaja za pločice (Pall). Filtrirani uzorci plazme naneseni su na protein G pločicu i isprani tri puta s 2 mL 1x koncentriranog pufera PBS pH 7,4 kako bi se uklonili nevezani proteini. Vezani IgG eluiran je s protein G pločice ispiranjem s 1 mL 0,1 mol/L HCOOH, te je neutraliziran sa 170 µL 1 mol/L NH4HCO3. Protein G pločica je regenerirana radi mogućnosti ponovnog korištenja ispiranjem s 1 mL 0,1 mol/L HCOOH, 2 mL 10x koncentriranog pufera PBS pH 6,6, 4 mL 1x koncentriranog pufera PBS pH 7,4, te 1 mL pufera za skladištenje protein G pločice (etanol φ = 20%, 20 mmol/L Tris; 0,1 mol/L NaCl; titrirano s HCl do pH 7,4), nakon čega je dodano još 1 mL pufera za skladištenje i pločica je spremljena na 4 °C. Isolation of immunoglobulin G (IgG). Immunoglobulin G was isolated from blood plasma samples by affinity chromatography by binding to a protein G plate with 96 wells (BIA Separations) with the use of a vacuum device for filtering plates (vacuum manifold, Pall). All steps of IgG isolation take place at a pressure of about 380 mmHg, except for plasma sample application and IgG elution when a reduced pressure of about 200 mmHg is used. Isolation of immunoglobulin G from blood plasma is performed in a digester, and the used solutions are filtered through a 0.2 µm Supor PES filter (Nalgene) before use. Before applying the plasma samples, the protein G plate had to be prepared by successive washing with solutions, respectively: 2 mL of ultrapure water (18 MΩ/cm at 25°C), 2 mL of 1x concentrated buffer PBS pH 7.4 (137 mmol/L NaCl; 2 .7 mmol/L Na2HPO4; 9.7 mmol/L KH2PO4; 2.2 mmol/L KCl; titrated with NaOH to pH 7.4), 1 mL 0.1 mol/L HCOOH pH 2.5; 2 mL of 10x concentrated buffer PBS pH 6.6; and equilibrate by washing with 4 mL of 1x concentrated buffer PBS pH 7.4. In addition to the test samples (100 µL), five aliquots of the standard plasma sample (50 µL) were randomly placed on each plate, and one well was left empty as a negative control. Plasma samples were mixed and centrifuged for 10 min at 1479 g (centrifuge model 5840, Eppendorf). They were then diluted with 1x concentrated buffer PBS pH 7.4 in a ratio of 1:7 (v/v) and filtered through a 0.45 µm GHP AcroPrep 96-well filter plate (Pall) using a plate vacuum device (Pall). Filtered plasma samples were applied to a protein G plate and washed three times with 2 mL of 1x concentrated buffer PBS pH 7.4 to remove unbound proteins. Bound IgG was eluted from the protein G plate by washing with 1 mL of 0.1 mol/L HCOOH, and was neutralized with 170 µL of 1 mol/L NH4HCO3. The protein G plate was regenerated for reuse by washing with 1 mL of 0.1 mol/L HCOOH, 2 mL of 10x concentrated buffer PBS pH 6.6, 4 mL of 1x concentrated buffer PBS pH 7.4, and 1 mL of protein storage buffer G plates (ethanol φ = 20%, 20 mmol/L Tris; 0.1 mol/L NaCl; titrated with HCl to pH 7.4), after which another 1 mL of storage buffer was added and the plate was stored at 4 ° C.

Određivanje koncentracije imunoglobulina G. Koncentracija IgG izoliranog iz plazme određena je za svaki uzorak mjerenjem apsorbancije pri 280 nm pomoću Nanodrop ND-8000 spektrofotometra (Thermo Scientific). Dio volumena IgG eluata je izdvojen i osušen u rotacijskom vakuum koncentratoru SpeedVac Concentrator SC210A (Thermo Scientific). Eluati su spremljeni na -20 °C do daljnje upotrebe. Determination of immunoglobulin G concentration The concentration of IgG isolated from plasma was determined for each sample by measuring the absorbance at 280 nm using a Nanodrop ND-8000 spectrophotometer (Thermo Scientific). Part of the volume of the IgG eluate was separated and dried in a rotary vacuum concentrator SpeedVac Concentrator SC210A (Thermo Scientific). Eluates were stored at -20 °C until further use.

Denaturacija i deglikozilacija imunoglobulina G u otopini. Osušeni uzorci IgG denaturirani su dodatkom 30 µL SDS (γ = 1,33%), te inkubirani 10 min pri 65 °C, nakon čega su ohlađeni na sobnoj temperaturi tijekom 30 min. Svakom uzorku je dodano 10 µL Igepal CA-630 (Sigma Aldrich) otopine (φ = 4%) kako bi se deaktivirao suvišak SDS, a pločica je inkubirana 15 min na sobnoj temperaturi. Molekule imunoglobulina G su deglikozilirane dodatkom 10 µL 5x koncentriranog PBS pufera i 1,25 U PNGaze F (Promega). PNGaza F cijepa N-glikozidnu vezu između unutarnjeg GlcNAc glikana i asparaginskog ostatka proteinskog dijela molekule. Reakcija oslobađanja N-glikana provedena je inkubacijom uzoraka tijekom 18 h pri 37 °C. Denaturation and deglycosylation of immunoglobulin G in solution. Dried IgG samples were denatured by adding 30 µL of SDS (γ = 1.33%), and incubated for 10 min at 65 °C, after which they were cooled at room temperature for 30 min. 10 µL of Igepal CA-630 (Sigma Aldrich) solution (φ = 4%) was added to each sample to deactivate excess SDS, and the plate was incubated for 15 min at room temperature. Immunoglobulin G molecules were deglycosylated by adding 10 µL of 5x concentrated PBS buffer and 1.25 U PNGase F (Promega). PNGase F cleaves the N-glycosidic bond between the internal GlcNAc glycan and the asparagine residue of the protein part of the molecule. The N-glycan release reaction was carried out by incubating the samples for 18 h at 37 °C.

Fluorescentno obilježavanje s 2-aminobenzamidom (2AB) i pročišćavanje 2AB-derivatiziranih N-glikana IgG. Budući da glikani u svojoj strukturi ne posjeduju kromofore, nemoguće ih je detektirati spektrofotometrijskim metodama. Slobodni N-glikani se stoga obilježavaju fluorescentnom bojom 2-aminobenzamidom (2AB). Postupak obilježavanja provodi se u digestoru s uvijek svježe pripremljenom otopinom za obilježavanje koja se sastoji od 2AB (γ = 19,2 mg/mL) i 2-pikolin borana (2PB; γ = 44,8 mg/mL) otopljenima u otopini octene kiseline (HAc) i dimetilsulfoksida (DMSO) u omjeru 30:70 (v/v). Svakom uzorku dodano je po 25 µL otopine za obilježavanje, nakon čega su uzorci inkubirani 2 h pri 65 °C kako bi se provela reakcija obilježavanja N-glikana. Nakon obilježavanja, iz uzoraka je potrebno ukloniti onečišćenja, kao što su proteini, suvišak fluorescentne boje i ostali reagensi, korištenjem tekućinske kromatografije temeljene na hidrofilnim interakcijama uz ekstrakciju na čvrstoj fazi (engl. hydrophilic interaction liquid chromatography – solid phase extraction, HILIC-SPE). Nakon hlađenja tijekom 30 min na sobnoj temperaturi, svakom je uzorku dodano 700 µL ohlađenog acetonitrila (φ = 100%, 4 °C), te su uzorci prebačeni na GHP AcroPrep 0,2 µm filter pločicu. Filter pločicu je bilo potrebno prethodno pripremiti ispiranjem svake jažice s 200 µL etanola (φ = 70%), 200 µL ultračiste vode i ohlađenim acetonitrilom (φ = 96%, 4 °C). Između svakog od ovih koraka, filter pločica se prazni pomoću vakuum uređaja za filtriranje (engl. vacuum manifold), a vakuum ne smije prelaziti 2 inHg. Nakon prebacivanja na GHP AcroPrep 0,2 µm filter pločicu, uzorci su inkubirani 2 min na sobnoj temperaturi. Tijekom inkubacije dolazi do vezanja slobodnih 2AB obilježenih N-glikana za hidrofilnu polipropilensku membranu pločice. Svaki uzorak je zatim ispran 4 puta s 200 µL ohlađenog acetonitrila (φ = 96%, 4°C), nakon čega je uslijedila elucija glikana s membrane pločice. Elucija 2-AB obilježenih N-glikana izvodi se u dva istovjetna koraka: u svaku jažicu dodaje se po 90 µL ultračiste vode nakon čega slijedi 15 minutna inkubacija na sobnoj temperaturi uz protresanje na kružnoj tresilici model 3023 (GIF), te sakupljanje eluata centrifugiranjem 5 min pri 164 g u centrifugi model 5840 (Eppendorf) u ABgene PCR pločice. Pročišćeni fluorescentno obilježeni N-glikani IgG spremaju se na -20 °C do daljnje upotrebe. Fluorescence labeling with 2-aminobenzamide (2AB) and purification of 2AB-derivatized IgG N-glycans. Since glycans do not have chromophores in their structure, it is impossible to detect them by spectrophotometric methods. Free N-glycans are therefore labeled with the fluorescent dye 2-aminobenzamide (2AB). The marking procedure is carried out in a digester with always freshly prepared marking solution consisting of 2AB (γ = 19.2 mg/mL) and 2-picoline borane (2PB; γ = 44.8 mg/mL) dissolved in acetic acid solution (HAc) and dimethylsulfoxide (DMSO) in a ratio of 30:70 (v/v). 25 µL of the labeling solution was added to each sample, after which the samples were incubated for 2 h at 65 °C to carry out the N-glycan labeling reaction. After marking, it is necessary to remove impurities from the samples, such as proteins, excess fluorescent dye and other reagents, using liquid chromatography based on hydrophilic interactions with solid phase extraction (eng. hydrophilic interaction liquid chromatography - solid phase extraction, HILIC-SPE). . After cooling for 30 min at room temperature, 700 µL of chilled acetonitrile (φ = 100%, 4 °C) was added to each sample, and the samples were transferred to a GHP AcroPrep 0.2 µm filter plate. The filter plate had to be prepared beforehand by washing each well with 200 µL of ethanol (φ = 70%), 200 µL of ultrapure water and cooled acetonitrile (φ = 96%, 4 °C). Between each of these steps, the filter plate is emptied using a vacuum manifold, and the vacuum must not exceed 2 inHg. After transferring to a GHP AcroPrep 0.2 µm filter plate, the samples were incubated for 2 min at room temperature. During incubation, free 2AB labeled N-glycans bind to the hydrophilic polypropylene membrane of the plate. Each sample was then washed 4 times with 200 µL of chilled acetonitrile (φ = 96%, 4°C), followed by elution of glycans from the plate membrane. The elution of 2-AB labeled N-glycans is performed in two identical steps: 90 µL of ultrapure water is added to each well, followed by 15-minute incubation at room temperature with shaking on a circular shaker model 3023 (GIF), and eluate collection by centrifugation 5 min at 164 g in a centrifuge model 5840 (Eppendorf) in ABgene PCR plates. Purified fluorescently labeled IgG N-glycans are stored at -20 °C until further use.

Analiza N-glikana IgG tekućinskom kromatografijom. Fluorescentno obilježeni N-glikani IgG analizirani su metodom tekućinske kromatografije ultravisoke djelotvornosti temeljenom na hidrofilnim interakcijama (HILIC-UPLC) na amidnoj ACQUITY UPLC® Glycan BEH koloni (Waters, USA) duljine 100 mm, promjerom 2,1 mm i veličinom čestica 1,7 μm prema prethodno utvrđenom protokolu; vidjeti literaturnu referencu 3. Navedena analiza provedena je na uređaju Acquity UPLC H-Class (Waters) kojeg čine modul za upravljanje otapalima (engl. quaternary solvent manager, QSM), modul za upravljanje uzorcima (engl. sample manager, SM) i fluorescencijski (FLR) detektor. Instrument je kontroliran programom Empower 3, verzija 3471 (Waters, USA). Analysis of IgG N-glycans by liquid chromatography. Fluorescently labeled IgG N-glycans were analyzed by ultrahigh-performance liquid chromatography based on hydrophilic interactions (HILIC-UPLC) on an amide ACQUITY UPLC® Glycan BEH column (Waters, USA) with a length of 100 mm, a diameter of 2.1 mm and a particle size of 1.7 μm according to the previously established protocol; see literature reference 3. The aforementioned analysis was performed on an Acquity UPLC H-Class device (Waters) consisting of a quaternary solvent manager (QSM), a sample manager (SM) and a fluorescence ( FLR) detector. The instrument is controlled by the Empower 3 program, version 3471 (Waters, USA).

Uzorci glikana se za analizu pripremaju miješanjem s acetonitrilom (φ = 100%) u omjeru uzorak : ACN = 20 : 80 (v/v). Za mobilnu fazu korišteni su amonijev formijat (HCOONH4; c = 100 mM, pH 4,4) kao otapalo A i acetonitril (φ = 100%) kao otapalo B, a sustav je između analiza ispiran otopinom acetonitrila (φ = 75%). Uzorci su ohlađeni na 10 °C prije injektiranja, a odvajanje na koloni odvijalo se pri 60 °C. Glikani se na koloni razdvajaju na temelju njihove različite interakcije sa stacionarnom, odnosno, mobilnom fazom pri čemu je stacionarna faza polarna, a mobilnu fazu čini nepolarno otapalo s rastućim volumnim udjelom polarnog otapala. U postupku odvajanja korišten je linearni gradijent od 25-38% otapala A pri protoku od 0,40 mL/min tijekom analitičkog postupka u trajanju od 27 min. Razdvojeni glikani detektirani su pomoću FLR detektora pri valnoj duljini ekscitacije i emisije za 2-AB (λex = 250 nm, λem = 428 nm). Sustav je kalibriran pomoću vanjskog standarda kojeg čine fluorescentno obilježeni oligomeri glukoze (engl. dextran ladder) pri čemu je vrijeme zadržavanja glikana na koloni (engl. retention time, RT) izraženo u jedinicama glukoze (engl. glucose units, GU). Razdvajanjem 2AB-obilježenih N-glikana IgG opisanim postupkom tekućinske kromatografije nastaje karakteristični kromatogram od 24 glikanska vrška; vidjeti literaturnu referencu 3. Glycan samples are prepared for analysis by mixing with acetonitrile (φ = 100%) in the ratio sample : ACN = 20 : 80 (v/v). For the mobile phase, ammonium formate (HCOONH4; c = 100 mM, pH 4.4) was used as solvent A and acetonitrile (φ = 100%) as solvent B, and the system was washed with acetonitrile solution (φ = 75%) between analyses. The samples were cooled to 10 °C before injection, and the separation on the column took place at 60 °C. Glycans are separated on the column based on their different interaction with the stationary or mobile phase, where the stationary phase is polar, and the mobile phase consists of a non-polar solvent with an increasing volume fraction of polar solvent. In the separation procedure, a linear gradient of 25-38% solvent A was used at a flow rate of 0.40 mL/min during the analytical procedure lasting 27 min. Separated glycans were detected using an FLR detector at the excitation and emission wavelengths for 2-AB (λex = 250 nm, λem = 428 nm). The system is calibrated using an external standard consisting of fluorescently labeled glucose oligomers (dextran ladder), where the glycan retention time on the column (eng. retention time, RT) is expressed in glucose units (eng. glucose units, GU). By separating the 2AB-labeled N-glycans of IgG using the described liquid chromatography procedure, a characteristic chromatogram of 24 glycan peaks is created; see literature reference 3.

Redoslijed izlaženja vršaka glikana GP1-GP24 u opisanoj HILIC-UPLC-FLR metode i odgovarajuća retencijska vremena (tR) prikazani su u Tablici 2. Reprezentativni HPLC kromatogram separacije svih predmetnih N-glikana GP1-GP24 prikazan je na Slici 1. The sequence of exposure of the peaks of glycans GP1-GP24 in the described HILIC-UPLC-FLR method and the corresponding retention times (tR) are shown in Table 2. A representative HPLC chromatogram of the separation of all subject N-glycans GP1-GP24 is shown in Figure 1.

Primjer 2. Obrada i analiza rezultata studije te formiranje numeričkog modela za određivanje estradiola (E2) u krvi žena na osnovi kvantitativne analize N-glikana IgG Example 2. Processing and analysis of study results and formation of a numerical model for the determination of estradiol (E2) in the blood of women based on the quantitative analysis of IgG N-glycans

Uklanjanje varijacija glikanskih podataka uslijed serija eksperimenata. Kako bi se smanjila varijacija zbog serija eksperimenata (engl. batch effect) svi uzorci iste osobe, koji su sakupljani u 12 vremenskih točaka, bili su analizirani na istoj pločici. Na svaku pločicu su stoga nasumično raspoređeni uzorci plazme najviše tri do pet osoba tako da je prosjek godina ispitanica na svakoj pločici bio podjednak. Pločice su sadržavale i standardni uzorak plazme u pentaplikatu koji je služio za kontrolu nebiološke varijabilnosti, odnosno tehničke varijacije metode. Ovakvim analitičkim pristupom izbjegnuta je varijacija među pločicama te nije bilo potrebe izvoditi uobičajenu korekciju glikanskih podataka na razlike u serijama (engl. batch correction). Removal of variations in glycan data due to series of experiments. In order to reduce the variation due to series of experiments (eng. batch effect), all samples of the same person, which were collected at 12 time points, were analyzed on the same plate. Therefore, plasma samples from a maximum of three to five people were randomly distributed on each plate so that the average age of the test subjects on each plate was equal. The plates also contained a standard plasma sample in pentaplicate, which was used to control non-biological variability, that is, technical variation of the method. With this analytical approach, variation between plates was avoided, and there was no need to perform the usual correction of glycan data for differences in batches (eng. batch correction).

Obrada glikanskih podataka. Svaki kromatogram dobiven analizom N-glikana IgG tekućinskom kromatografijom integriran je na isti način i podijeljen na 24 glikanska vrška. Glikanski podatci su najprije normalizirani na ukupnu površinu (engl. total chromatographic area). To znači da je površina svakog glikanskog (kromatografskog) vrška podijeljena s ukupnom površinom odgovarajućeg kromatograma kako bi glikanska mjerenja različitih uzoraka bila usporediva. Količina N-glikana u svakom vršku prikazana je kao postotak od ukupne integrirane površine (% area); vidjeti literaturnu referencu 3. Set od 20-ak ručno integriranih kromatograma korišten je kao predložak za automatsko integriranje svih kromatograma N-glikana IgG u ovoj studiji; vidjeti literaturnu referencu 12. Glycan data processing. Each chromatogram obtained from the analysis of N-glycans by IgG liquid chromatography was integrated in the same way and divided into 24 glycan peaks. Glycan data were first normalized to the total area (total chromatographic area). This means that the area of each glycan (chromatographic) peak is divided by the total area of the corresponding chromatogram to make the glycan measurements of different samples comparable. The amount of N-glycan in each peak is shown as a percentage of the total integrated area (% area); see literature reference 3. A set of about 20 manually integrated chromatograms was used as a template for automatic integration of all IgG N-glycan chromatograms in this study; see literature reference 12.

Određivanje izvedenih svojstava glikana IgG. Osim 24 direktno izmjerenih glikanskih svojstava, za IgG je izračunato i 6 izvedenih svojstava koja grupiraju glikane određenih strukturnih osobina radi lakše analize i razumijevanja bioloških procesa u kojima sudjeluju; vidjeti Tablicu 3. Determination of derived glycan properties of IgG. In addition to 24 directly measured glycan properties, 6 derived properties were calculated for IgG, which group glycans with certain structural properties for easier analysis and understanding of the biological processes in which they participate; see Table 3.

Povezanost dinamike spolnih hormona i glikanskih svojstava IgG u menstruacijskom ciklusu. Vremenski pomak u dinamici spolnih hormona i glikanskih svojstava IgG temelji se na usporedbi njihovih najviših vrijednosti (vršak) tijekom menstruacijskog ciklusa. Dan menstruacijskog ciklusa u kojem je primijećena najveća koncentracija pojedinog spolnog hormona i najveća razina pojedinog glikanskog svojstva izračunat je prema formulama (1) i (2). Relationship between the dynamics of sex hormones and the glycan properties of IgG in the menstrual cycle. The temporal shift in the dynamics of sex hormones and glycan properties of IgG is based on the comparison of their highest values (peak) during the menstrual cycle. The day of the menstrual cycle in which the highest concentration of an individual sex hormone and the highest level of an individual glycan property was observed was calculated according to formulas (1) and (2).

Statistička analiza dobivenih rezultata Statistical analysis of the obtained results

Podatci su analizirani i vizualizirani pomoću programskog jezika R (verzija 3.0.1). Dinamika glikana i spolnih hormona u menstruacijskom ciklusu aproksimirana je u modelu menstruacijskog ciklusa. Duljina menstruacijskih ciklusa u studiji standardizirana je dijeljenjem duljine trajanja pojedinačnih menstruacijskih ciklusa sa 100% čime je omogućeno pozicioniranje i usporedba glikanskih podataka unutar zajedničkog modela menstruacijskog ciklusa neovisno o trajanju svakog pojedinačnog menstruacijskog ciklusa. Glikanska mjerenja standardizirana su dijeljenjem svakog mjerenja s njegovom prosječnom vrijednosti kako bi se omogućila usporedba između različitih glikanskih svojstava. Analiza povezanosti menstruacijskog ciklusa s glikanskim svojstvima izvedena je korištenjem linearnog mješovitog modela. U linearnom mješovitom modelu fiksirana varijabla bila je dob, dok je nasumična varijabla bila subjekt (osoba). Pretpostavljeni periodični obrazac longitudinalnih mjerenja glikana modeliran je kao linearna kombinacija sinusne i kosinusne funkcije za faze menstruacijskog ciklusa. Analiza povezanosti koncentracije spolnih hormona s izvedenim svojstvima glikana provedena je korištenjem linearnog mješovitog modela. U linearnom mješovitom modelu fiksirana varijabla bila je dob, dok je nasumična varijabla bila subjekt (osoba). p vrijednosti su korigirane na višestruko testiranje Benjamini-Hochberg metodom. p vrijednosti manje od 0,05 su smatrane statistički značajnima. Data were analyzed and visualized using the R programming language (version 3.0.1). The dynamics of glycans and sex hormones in the menstrual cycle are approximated in the menstrual cycle model. The length of menstrual cycles in the study was standardized by dividing the duration of individual menstrual cycles by 100%, which enabled the positioning and comparison of glycan data within a common menstrual cycle model, independent of the duration of each individual menstrual cycle. Glycan measurements were standardized by dividing each measurement by its average value to allow comparison between different glycan properties. Analysis of the relationship between the menstrual cycle and glycan properties was performed using a linear mixed model. In the linear mixed model, the fixed variable was age, while the random variable was the subject (person). The assumed periodic pattern of longitudinal glycan measurements was modeled as a linear combination of sine and cosine functions for the phases of the menstrual cycle. The analysis of the relationship between the concentration of sex hormones and the derived glycan properties was performed using a linear mixed model. In the linear mixed model, the fixed variable was age, while the random variable was the subject (person). p values were corrected for multiple testing using the Benjamini-Hochberg method. p values less than 0.05 were considered statistically significant.

Karakteristike ispitanica. Prilikom uključivanja žena u istraživanje, prikupljeni su osnovni opći, antropometrijski i zdravstveni podatci vezani uz menstruacijski ciklus svake osobe. Opis ispitivane kohorte dan je u Tablici 4. Characteristics of the test subjects. When including women in the research, basic general, anthropometric and health data related to the menstrual cycle of each person were collected. The description of the examined cohort is given in Table 4.

Prije uključivanja u studiju bio je djelomično poznat zdravstveni status ispitanica, odnosno bilo je poznato da osoba ne boluje od akutne ili kronične bolesti, ne koristi hormonsku nadomjesnu terapiju i nije u stanju trudnoće ili menopauze. Na taj je način osigurana selektivnost u odabiru ispitivane populacije kako bi samo zdrave osobe bile uključene u studiju, te kako bi se isključio mogući utjecaj navedenih zdravstvenih faktora na glikozilaciju IgG; vidjeti literaturnu referencu 9. Prior to inclusion in the study, the health status of the subjects was partially known, that is, it was known that the person does not suffer from an acute or chronic disease, does not use hormone replacement therapy, and is not in a state of pregnancy or menopause. In this way, selectivity was ensured in the selection of the investigated population so that only healthy people were included in the study, and in order to exclude the possible influence of the aforementioned health factors on IgG glycosylation; see literature reference 9.

U studiju je ukupno uključeno 70 zdravih žena. Sve ispitanice su izjavile da imaju redovite, normalne menstruacijske cikluse. Duljina menstruacijskih ciklusa ispitanica prije uključivanja u studiju prosječno je trajala 30 dana s menstruacijskim krvarenjima od 6 dana. Svoju prvu menstruaciju ispitanice su dobile u prosjeku s 13 godina. Iz rezultata je vidljivo da su ispitanice većinom visoko obrazovane osobe ili studentice mlađe životne dobi. Prosječna dob analizirane skupine je 27 godina. Nadalje, sve ispitanice imaju zdrave životne navike, ne puše i ne konzumiraju alkohol, a velika većina ih ima zdravu tjelesnu težinu s normalnom količinom masnog tkiva u trbušnom dijelu tijela (80%). Većinom su to slobodne, neudane žene koje još nisu pokušale zasnovati obitelj, zbog čega među ispitanicama prevladavaju osobe koje nikad nisu iskusile trudnoću (67%), porod (67%) ili pobačaj (86%). A total of 70 healthy women were included in the study. All test subjects stated that they have regular, normal menstrual cycles. The length of the menstrual cycles of the subjects before inclusion in the study lasted an average of 30 days with menstrual bleeding of 6 days. The test subjects got their first period at the age of 13 on average. It is evident from the results that the respondents are mostly highly educated persons or young students. The average age of the analyzed group is 27 years. Furthermore, all test subjects have healthy lifestyle habits, do not smoke or consume alcohol, and the vast majority of them have a healthy body weight with a normal amount of fat tissue in the abdominal part of the body (80%). Most of them are single, unmarried women who have not yet tried to start a family, which is why among the respondents there are people who have never experienced pregnancy (67%), childbirth (67%) or abortion (86%).

Pregled studije. Uzorkovanje se odvijalo kroz 12 uzastopnih tjedana unutar tri mjeseca tijekom kojih je svakoj ženi jednom tjedno uzeta krv i iz nje je odvojena plazma; vidjeti Sliku 3. Sedam ispitanica (10%) nije uspjelo završiti predviđeni protokol uzorkovanja te je za njih prikupljeno manje od planiranih 12 uzoraka plazme. Kao razlozi odustajanja navedeni su fizički simptomi poput vrtoglavice i bljedila u licu, te niska razina željeza u krvi tj. anemija, dok je jedna ispitanica odustala zbog privatnih razloga. Nadalje, tijekom studije jedna je ispitanica oboljela od gripe, a dvije od prehlade zbog čega su koristile analgetike za ublažavanje simptoma bolesti - snižavanje temperature i uklanjanje boli, zbog čega su njihovi podatci isključeni iz statističke obrade. U konačnici je, umjesto planiranih 840 uzoraka, tijekom studije prikupljeno 806 uzoraka plazme od 70 žena. U 776 uzoraka (96%) je uspješno analiziran glikanski profil IgG, vidjeti Sliku 1, te je određena koncentracija spolnih hormona estradiola (E2), progesterona (P) i testosterona (T). Study overview. Sampling took place over 12 consecutive weeks within three months during which blood was taken from each woman once a week and plasma was separated from it; see Figure 3. Seven subjects (10%) failed to complete the intended sampling protocol, and less than the planned 12 plasma samples were collected for them. Physical symptoms such as dizziness and pallor in the face, as well as a low level of iron in the blood, i.e. anemia, were listed as the reasons for giving up, while one respondent gave up due to personal reasons. Furthermore, during the study, one subject became ill with the flu, and two with a cold, which is why they used analgesics to alleviate the symptoms of the disease - lowering the temperature and eliminating pain, which is why their data were excluded from statistical processing. Ultimately, instead of the planned 840 samples, 806 plasma samples from 70 women were collected during the study. In 776 samples (96%), the IgG glycan profile was successfully analyzed, see Figure 1, and the concentration of sex hormones estradiol (E2), progesterone (P) and testosterone (T) was determined.

Biološka varijabilnost IgG glikana. Kako bi se utvrdilo postoje li promjene u N-glikozilaciji IgG tijekom studije, prvo je bilo potrebno odrediti biološku varijabilnost svakog glikana. U tu je svrhu na svim pločicama, uz uzorke, analiziran i jedan te isti uzorak poznatog glikanskog profila (standard), čija promjena predstavlja tehničku varijabilnost metode. Biološka varijabilnost glikana je zatim izračunata kao omjer srednjih vrijednosti varijabilnosti uzorka poznatog glikanskog profila (standarda) i uzoraka iz studije za svaki od 24 glikanska vrška i pomnožen sa 100%. Omjer manji od 100% znači da je biološka varijabilnost analiziranog glikanskog vrška, tj. glikana, veća od tehničke varijabilnosti metode. Usporedbom varijabilnosti glikanskih profila standarda s glikanskim profilima uzoraka, otkiveno je da biološka varijabilnost premašuje analitičku varijabilnost u 14 od 24 glikanska vrška IgG praćena u studiji; vidjeti Tablicu 5 i Sliku 1. Biological variability of IgG glycans. In order to determine whether there were changes in IgG N-glycosylation during the study, it was first necessary to determine the biological variability of each glycan. For this purpose, in addition to the samples, one and the same sample of a known glycan profile (standard) was analyzed on all plates, the change of which represents the technical variability of the method. The biological glycan variability was then calculated as the ratio of the mean variability values of the sample of known glycan profile (standard) and the study samples for each of the 24 glycan peaks and multiplied by 100%. A ratio less than 100% means that the biological variability of the analyzed glycan peak, i.e. the glycan, is greater than the technical variability of the method. By comparing the variability of the glycan profiles of the standards with the glycan profiles of the samples, it was found that the biological variability exceeds the analytical variability in 14 of the 24 IgG glycan peaks monitored in the study; see Table 5 and Figure 1.

Varijabilnost izvedenih glikanskih svojstava IgG. Nakon što je određena biološka varijabilnost pojedinačnih glikana IgG, na isti je način određena i varijabilnost glikanskih svojstava koja grupiraju glikane sličnih strukturnih osobina, poput glikana s jednom galaktozom (G1), dvije galaktoze (G2) ili bez galaktoze (G0), zatim glikane sa sijalinskom kiselinom (S), račvajućim N-acetilglukozaminom (B) i IgG glikane sa sržno vezanom fukozom (F), prvo za svaku osobu zasebno, a zatim i na razini grupe. Opseg promjena glikozilacijskih svojstava unutar jedne osobe bio je najizraženiji za sijalinizirane (najveća razlika između najniže i najviše vrijednosti približno 21%) i agalaktozilirane (najveća razlika između najniže i najviše vrijednosti približno 16%) glikane, dok su fukozilirani glikani IgG imali najmanju intra-individualnu varijaciju (najveća razlika između najniže i najviše vrijednosti manja od 3%) tijekom menstruacijskih ciklusa; vidjeti Sliku 4. Variability of derived glycan properties of IgG. After the biological variability of individual IgG glycans was determined, the variability of glycan properties was determined in the same way, which groups glycans with similar structural properties, such as glycans with one galactose (G1), two galactoses (G2) or without galactose (G0), then glycans with sialic acid (S), branching N-acetylglucosamine (B) and IgG glycans with core-bound fucose (F), first for each person separately, and then at the group level. The range of changes in glycosylation properties within one individual was most pronounced for sialylated (the largest difference between the lowest and highest values approximately 21%) and agalactosylated (the largest difference between the lowest and highest values approximately 16%) glycans, while fucosylated IgG glycans had the lowest intra-individual variation (greatest difference between the lowest and highest values less than 3%) during menstrual cycles; see Figure 4.

Za analiziranu grupu ispitanica izračunate su srednje vrijednosti, medijani, vrijednost prvog i trećeg kvartila, te minimalne i maksimalne vrijednosti izvedenih glikanskih svojstava IgG. Razina pojedinih glikanskih svojstava dana je u Tablici 6. Mean values, medians, values of the first and third quartiles, and minimum and maximum values of derived glycan properties of IgG were calculated for the analyzed group of subjects. The level of individual glycan properties is given in Table 6.

Varijabilnost je izražena kao interkvartilni raspon prvog i trećeg kvartila. U analiziranoj grupi ispitanica nije bilo većih odstupanja razine izvedenih svojstava u usporedbi s vrijednostima izvedenih glikanskih svojstava IgG u kontrolnim uzorcima. Fukozilacija i monogalaktozilacija glikana IgG imale su najmanju varijabilnost unutar ispitivane grupe, dok je najvarijabilnije bilo glikozilacijsko svojstvo povezano s razinom agalaktozilacije glikana IgG. Variability is expressed as the interquartile range of the first and third quartiles. In the analyzed group of test subjects, there were no major deviations in the level of derived properties compared to the values of derived glycan properties of IgG in the control samples. Fucosylation and monogalactosylation of IgG glycans had the lowest variability within the examined group, while the most variable was the glycosylation property associated with the level of agalactosylation of IgG glycans.

Menstruacijski ciklusi ispitanica. Informacije o menstruacijskim ciklusima ispitanice prijavljivale su se putem upitnika pri svakom vađenju krvi. Prikupljeni podatci korišteni su za izračun duljine trajanja menstruacijskih ciklusa tijekom studije. Opis menstruacijskih ciklusa ispitanica tijekom studije prikazan je u Tablici 7. Menstrual cycles of the test subjects. Information about the subject's menstrual cycles was reported via a questionnaire at each blood draw. The collected data were used to calculate the duration of menstrual cycles during the study. The description of the menstrual cycles of the subjects during the study is shown in Table 7.

Za statističku obradu odabrano je 140 normalnih menstruacijskih ciklusa (oko 70% od ukupnog broja zabilježenih menstruacijskih ciklusa) u kojima je prikupljeno 500 uzoraka plazme od 60 žena. For statistical processing, 140 normal menstrual cycles (about 70% of the total number of recorded menstrual cycles) were selected, in which 500 plasma samples were collected from 60 women.

Aproksimacija modela menstruacijskog ciklusa. Kako bi se provele daljnje statističke analize, podatci iz odabranih 140 menstruacijskih ciklusa grupirani su unutar zajedničkog modela menstruacijskog ciklusa, vidjeti Sliku 5. S obzirom da odabrani menstruacijski ciklusi imaju različitu duljinu trajanja (od 26 do 34 dana), bilo ih je potrebno normalizirati. Normalizacija menstruacijskih ciklusa izvedena je tako da je duljina trajanja svakog menstruacijskog ciklusa podijeljena sa 100%. Na taj su se način glikanski podatci i podatci o koncentracijama spolnih hormona izmjereni u raznim vremenskim točkama unutar pojedinačnih menstruacijskih ciklusa mogli jednostavno pozicionirati u zajedničkom modelu menstruacijskog ciklusa i omogućiti potrebne statističke analize. Approximation of the menstrual cycle model. In order to carry out further statistical analyses, the data from the selected 140 menstrual cycles were grouped within a common menstrual cycle model, see Figure 5. Considering that the selected menstrual cycles have different durations (from 26 to 34 days), it was necessary to normalize them. Normalization of menstrual cycles was performed by dividing the duration of each menstrual cycle by 100%. In this way, glycan data and data on sex hormone concentrations measured at various time points within individual menstrual cycles could be easily positioned in a common model of the menstrual cycle and enable the necessary statistical analyses.

Varijabilnost N-glikozilacije IgG tijekom menstruacijskog ciklusa. Jedan od glavnih ciljeva ove studije bio je utvrditi dolazi li do promjene glikanskog profila IgG s promjenom spolnih hormona. Glikanski podatci iz 140 odabranih menstruacijskih ciklusa analizirani su u zajedničkom modelu menstruacijskog ciklusa. Provedenom analizom longitudinalnih glikanskih mjerenja otkrivena je periodična ciklička dinamika razine agalaktoziliranih (G0), monogalaktoziliranih (G1), digalaktoziliranih (G2) i sijaliniziranih (S) glikana, te glikana s račvajućim GlcNAc (B) u ukupnom glikomu IgG, dok je razina fukoziliranih glikana tijekom menstruacijskog ciklusa ostala nepromijenjena; vidjeti Sliku 6. Variability of IgG N-glycosylation during the menstrual cycle. One of the main goals of this study was to determine whether the glycan profile of IgG changes with changes in sex hormones. Glycan data from 140 selected menstrual cycles were analyzed in a common menstrual cycle model. The analysis of longitudinal glycan measurements revealed periodic cyclic dynamics of the level of agalactosylated (G0), monogalactosylated (G1), digalactosylated (G2) and sialylated (S) glycans, as well as glycans with branched GlcNAc (B) in the total IgG glycome, while the level of fucosylated glycans remained unchanged during the menstrual cycle; see Figure 6.

Odnos N-glikozilacije IgG s fazama menstruacijskog ciklusa. Budući da je utvrđeno da se N-glikozilacija IgG mijenja tijekom menstruacijskog ciklusa, bilo je potrebno utvrditi i detaljno opisati specifične promjene u sastavu glikana. Analizom dinamike glikozilacijskih profila utvrđena su dva obrasca s obzirom na smijer i opseg promjena glikanskih svojstava IgG u pojedinim fazama menstruacijskog ciklusa. Iz rezultata je vidljivo da grupa glikana, u koju spadaju digalaktozilirani (G2) i sijalinizirani (S) glikani, ima isti obrazac promjena i doseže svoju najveću razinu u luteinskoj fazi menstruacijskog ciklusa. S druge strane, grupa glikana koju čine agalaktozilirani (G0) i monogalaktozilirani (G1) glikani, kao i glikani s račvajućim GlcNAc (B), ima svoj zajednički obrazac promjena koji je suprotan prethodno opisanoj grupi, i doseže svoju najveću razinu u folikularnoj fazi menstruacijskog ciklusa; vidjeti Sliku 7. The relationship of IgG N-glycosylation with the phases of the menstrual cycle. Since IgG N-glycosylation was found to change during the menstrual cycle, it was necessary to determine and describe in detail specific changes in glycan composition. Analysis of the dynamics of glycosylation profiles revealed two patterns with respect to the direction and extent of changes in the glycan properties of IgG in certain phases of the menstrual cycle. The results show that the group of glycans, which includes digalactosylated (G2) and sialinized (S) glycans, has the same pattern of changes and reaches its highest level in the lutein phase of the menstrual cycle. On the other hand, the group of glycans consisting of agalactosylated (G0) and monogalactosylated (G1) glycans, as well as glycans with branching GlcNAc (B), has its own common pattern of changes that is opposite to the previously described group, and reaches its highest level in the follicular phase of menstruation. cycles; see Figure 7.

Odnos glikozilacije IgG i spolnih hormona tijekom menstruacijskog ciklusa. Budući da je ustanovljeno da se u određenim fazama menstruacijskog ciklusa događaju uvijek iste promjene glikanskih svojstava, bilo je potrebno ispitati jesu li te promijene u N-glikozilaciji IgG na neki način povezane s promjenom koncentracije spolnih hormona tijekom menstruacijskog ciklusa. Dan menstruacijskog ciklusa u kojem su zabilježene najveće vrijednosti (vrškovi) glikanskih svojstava IgG i spolnih hormona prikazani su u Tablici 8. The relationship between glycosylation of IgG and sex hormones during the menstrual cycle. Since it was established that the same changes in glycan properties always occur in certain phases of the menstrual cycle, it was necessary to examine whether these changes in N-glycosylation of IgG are in some way related to changes in the concentration of sex hormones during the menstrual cycle. The day of the menstrual cycle in which the highest values (peaks) of the glycan properties of IgG and sex hormones were recorded are shown in Table 8.

Dan menstruacijskog ciklusa u kojem je zabilježena najveća srednja vrijednost navedenih varijabli i njihov međusobni vremenski pomak u menstruacijskom ciklusu izračunati su prema formulama (1) i (2). The day of the menstrual cycle in which the highest mean value of the mentioned variables was recorded and their mutual time shift in the menstrual cycle were calculated according to formulas (1) and (2).

Budući da je otkrivena neusklađenost dinamike spolnih hormona i glikanskih svojstava IgG u menstruacijskom ciklusu, bilo je potrebno ispitati može li se pronaći veza između ovih vremenski pomaknutih događaja. Analiza povezanosti glikanskih svojstava IgG s razinom spolnih hormona u menstruacijskom ciklusu prikazana je u Tablici 9. Since the mismatch between the dynamics of sex hormones and the glycan properties of IgG in the menstrual cycle was discovered, it was necessary to investigate whether a connection could be found between these time-shifted events. The analysis of the association of glycan properties of IgG with the level of sex hormones in the menstrual cycle is presented in Table 9.

Utjecaj menstruacijskog ciklusa na glikozilaciju IgG. S obzirom na otkrivene promjene glikanskih svojstava tijekom menstruacijskog ciklusa i njihovu povezanost s koncentracijom spolnih hormona, bilo je potrebno ispitati koliki je stvarni opseg promjena u glikanskim svojstvima IgG tijekom menstruacijskog ciklusa. Opseg varijacije glikanskih svojstava IgG tijekom menstruacijskog ciklusa prikazan je u Tablici 10. The influence of the menstrual cycle on IgG glycosylation. Given the detected changes in glycan properties during the menstrual cycle and their association with the concentration of sex hormones, it was necessary to examine the actual extent of changes in the glycan properties of IgG during the menstrual cycle. The range of variation of glycan properties of IgG during the menstrual cycle is shown in Table 10.

Drugi aspekti obrade rezultata studije Other aspects of processing the study results

Normalizacija i „batch“ korekcija podataka dobivenih nakon UHPLC analize provedene su s ciljem uklanjanja eksperimentalne pogreške. Normalizacija je provedena dijeljenjem površine svakog pojedinačnog kormatografskog vrška s ukupnom površinom kromatograma. Prije „batch“ korekcije normalizirani podaci su log-transformirani zbog nagnutosti distribucije podataka na desnu stranu („right-skewness“). Log-transformirani podaci su korigirani za „batch“ koristeći “ComBat” metodu (R paket sva) kojom su tehnički izvori varijacije modelirani kao „batch“ kovarijanta; vidjeti literaturnu referencu 17. Procijenjeni „batch“ utjecaji su oduzeti od log-transformiranih mjerenja s namjerom korekcije eksperimentalnog šuma. Srednja vrijednost estradiola (E2) izračunata je za svakog ispitanika na osnovu pojedinačnih mjerenja te su vrijednosti log-transformirane. Prije razvijanja modela strojnog učenja 33% podataka je izdvojeno kako bi sačinjavali set podataka koji je će biti korišten za završnu validaciju rezultata. Preostalih 67% podataka korišteno je za razvijanje linearnog modela. Glikani koji će biti uključeni u konačni model odabrani su metodom odabira najboljeg podskupa unatrag (eng. Stepwise Backward Selection) koristeći statsmodels modul; vidjeti literaturnu referencu 18. Na taj način je odabrano deset kromatografskih vrškova, GP2, GP4, GP8, GP10, GP12, GP15, GP16, GP18, GP22 i GP23 za koje je p-vrijednost bila <0,001. Normalization and "batch" correction of data obtained after UHPLC analysis were carried out with the aim of removing experimental error. Normalization was performed by dividing the area of each individual chromatographic peak by the total area of the chromatogram. Before the "batch" correction, the normalized data were log-transformed due to the right-skewness of the data distribution. Log-transformed data were corrected for "batch" using the "ComBat" method (R package sva) by which technical sources of variation were modeled as "batch" covariates; see literature reference 17. The estimated "batch" effects were subtracted from the log-transformed measurements with the intention of correcting the experimental noise. The mean value of estradiol (E2) was calculated for each subject based on individual measurements, and the values were log-transformed. Before developing the machine learning model, 33% of the data was extracted to make up the data set that will be used for the final validation of the results. The remaining 67% of the data was used to develop a linear model. The glycans to be included in the final model were selected by the Stepwise Backward Selection method using the statsmodels module; see literature reference 18. In this way, ten chromatographic peaks, GP2, GP4, GP8, GP10, GP12, GP15, GP16, GP18, GP22 and GP23 were selected for which the p-value was <0.001.

Nadalje, s ciljem unaprjeđenja predviđanja srednje vrijednosti estradiola linearnim modelom, navedenom setu podataka dodane su polinomalne kombinacije svih glikana s drugim stupnjem (korištena je klasa PolynomialFeatures). Broj svojstava je potom reduciran na 35 tako da je izabran najmanji broj svojstava nakon kojih se R2 značajno ne povećava koristeći klasu SelectKBest; kao funkcija odabira je korištena „mutual_info_regression“. Na navedeni način su transformirani svi podaci. U svrhu predviđanja log-srednje vrijednosti estradiola (E2) na osnovu vrijednosti kormatografskih vrškova razvijen je strojnim učenjem linearni regresijski model. Furthermore, with the aim of improving the prediction of the mean value of estradiol by the linear model, polynomial combinations of all glycans with the second degree were added to the specified data set (PolynomialFeatures class was used). The number of properties was then reduced to 35 by selecting the smallest number of properties after which R2 does not increase significantly using the SelectKBest class; "mutual_info_regression" was used as the selection function. All data were transformed in the specified manner. In order to predict the log-mean value of estradiol (E2) based on the value of the chromatographic peaks, a linear regression model was developed using machine learning.

Također, parametri za model su utvrđeni koristeći klasu GridSearchCV s kros-validacijom koristeći ShuffleSplit klasu tako da su podaci deset puta podijeljeni nasumično u petine od kojih je jedna skupina korištena za validaciju parametara. Navedenim postupkom su utvrđeni sljedeći parametri kao najbolji: 'copy_X': True, 'fit_intercept': False, 'normalize': True. Model s navedenim parametrima ima R2 = 0,551 na testnom uzorku kross-validacije provedene na prethodno opisan način, dok je na testnom uzorku (izdvojenom prije razvijanja modela) R2 = 0,547, maksimalna pogreška 1,04 i kvadrat srednjom vrijednosti greške 0,09. Also, the parameters for the model were determined using the GridSearchCV class with cross-validation using the ShuffleSplit class so that the data were divided ten times randomly into fifths, one group of which was used for parameter validation. The following parameters were found to be the best by the mentioned procedure: 'copy_X': True, 'fit_intercept': False, 'normalize': True. The model with the specified parameters has R2 = 0.551 on the test sample of the cross-validation carried out in the previously described manner, while on the test sample (separated before developing the model) R2 = 0.547, the maximum error is 1.04 and the mean square error value is 0.09.

Iz te je analize kreiran numerički model za određivanje prosječne viešdnevne koncentracije estradiola (E2) u krvi ispitivane žene starosti od 18 do 50 godina, kako je to opisano u predmetnom izumu. Based on this analysis, a numerical model was created for determining the average daily concentration of estradiol (E2) in the blood of examined women aged 18 to 50, as described in the subject invention.

Zaključak Conclusion

Predmetni izum otkriva dijagnostičku metodu određivanja određivanje estradiola (E2) kod žena starosti od 18 do 50 godina, na osnovi kvantitativne analize N-glikana vezanih za imunoglobulin G (IgG) iz njezine krvne plazme, odnosno, uzorka krvi. The present invention discloses a diagnostic method for determining the determination of estradiol (E2) in women aged 18 to 50, based on the quantitative analysis of N-glycans bound to immunoglobulin G (IgG) from her blood plasma, that is, a blood sample.

Razvoj rečene dijagnostičke metode omogućili su rezultati studije koja je bila provedena na skupini žena starosti 18-50 godina. Ta je studija pokazala da se N-glikani vezani na IgG, označeni oznakama GP1-GP24, a poglavito glikani GP2, GP4, GP8, GP10, GP12, GP15, GP16, GP18, GP22, GP23, mijenjaju u skladu s koncentracijom E2 u krvi zdravih žena, unutar navedenih dobnih granica, a tijekom njihova menstruacijskog ciklusa. Tip međuovisnosti je statistički obrađen na osnovi rezultata provedene studije, iz čega je generiran numerički model koji omogućava direktan izračun logaritma množinske koncentracije, Log c(E2) u krvi. Iz njega se dalje lako izračunava i njegova množinska koncentracija, c, izražena u pikomolovima po mililitru [pmol/mL], na osnovi jedne jedine analize uzorka krvi ispitivane ženske osobe. The development of said diagnostic method was made possible by the results of a study conducted on a group of women aged 18-50. This study showed that N-glycans bound to IgG, labeled GP1-GP24, and especially glycans GP2, GP4, GP8, GP10, GP12, GP15, GP16, GP18, GP22, GP23, change according to the concentration of E2 in the blood healthy women, within the specified age limits, and during their menstrual cycle. The type of interdependence was statistically processed based on the results of the conducted study, from which a numerical model was generated that enables the direct calculation of the logarithm of the mass concentration, Log c(E2) in the blood. From it, its mass concentration, c, expressed in picomoles per milliliter [pmol/mL], is easily calculated, based on a single analysis of the blood sample of the examined female person.

1.8 Industrijska primjenjivost 1.8 Industrial Applicability

Predmetni izum otkriva dijagnostički postupak za određivanje estradiola (E2) u krvi žena. Zbog toga je industrijska primjenjivost predmetnog izuma neupitna. The subject invention discloses a diagnostic procedure for determining estradiol (E2) in the blood of women. Therefore, the industrial applicability of the subject invention is unquestionable.

Claims (10)

1. Postupak određivanja višednevne prosječne koncentracije estradiola <E2> putem analize N-glikana vezanih na imunoglobulin G iz krvne plazme žena, označenih kraticama GP1 do GP24, opće kemijske strukture I: [image] [image] [image] [image] [image] naznačen time, da rečeni postupak uključuje: (i) kvantitativnu analizu jednog ili više: (a) fluorescentno derivatiziranih glikana dobivenih oslobađanjem s imunoglobulina G <IgG> pomoću enzima peptid-N4-<N-acetil-beta-glukozaminil>asparagin amidaze <PNGaza F>; ili (b) slobodnih glikana ili odgovarajućih glikopeptida odnosno glikoformi; (ii) uvrštavanje dobivenih kvantitativnih udjela rečenih glikana u numerički model koji je ranije dobiven statističkom obradom rezultata studije varijacija kvantitativnog udjela IgG glikana u krvnoj plazmi na skupini žena, a koje u trenutku testiranja nisu bile u fazi menstruacije niti u nekom drugom medicinskom stanju za koje je poznato da izaziva promjene koncentracija spolnih hormona i podredno estradiola u krvi; te (iii) izračunavanje višednevne prosječne koncentracije estradiola <E2> u krvi ispitivane osobe na osnovi jedne jedine analize.1. The procedure for determining the multi-day average concentration of estradiol <E2> through the analysis of N-glycans bound to immunoglobulin G from the blood plasma of women, designated by the abbreviations GP1 to GP24, of the general chemical structure I: [image] [image] [image] [image] [image] characterized by the fact that said procedure includes: (i) quantitative analysis of one or more: (a) fluorescently derivatized glycans obtained by release from immunoglobulin G <IgG> using the enzyme peptide-N4-<N-acetyl-beta-glucosaminyl>asparagine amidase <PNGase F>; or (b) free glycans or corresponding glycopeptides or glycoforms; (ii) inclusion of the obtained quantitative proportions of said glycans in the numerical model that was previously obtained by statistical processing of the results of the study of variations in the quantitative proportion of IgG glycans in the blood plasma of a group of women, who at the time of testing were not in the menstrual phase or in any other medical condition for which is known to cause changes in the concentrations of sex hormones and, by extension, estradiol in the blood; you (iii) calculation of the multi-day average concentration of estradiol <E2> in the blood of the subject based on a single analysis. 2. Postupak prema zahtjevu 1, naznačen time, da je skupina žena iz koraka (ii) starosti od 18 do 50 godina.2. The procedure according to claim 1, characterized in that the group of women from step (ii) is aged between 18 and 50 years. 3. Postupak prema zahtjevu 1 ili 2, naznačen time, da je koncentracija estradiola u koraku (iii) izražena kao prirodni logaritam množinske koncentracije estradiola, Log c<E2>, u krvi, iz kojeg se onda izračunava vrijednost njegove množinske koncentracije, c, izražena u pikomolovima po mililitru <pmol/mL>.3. The method according to claim 1 or 2, characterized in that the concentration of estradiol in step (iii) is expressed as the natural logarithm of the mass concentration of estradiol, Log c<E2>, in the blood, from which the value of its mass concentration, c, is then calculated. expressed in picomoles per milliliter <pmol/mL>. 4. Postupak prema zahtjevu 3, naznačen time, da se logaritam množinske koncentracije estradiola u krvi izračunava pomoću numeričkog modela: Log c<E2> = -15,529•GP4 - 2,602•GP8 + 5,589•GP10 + 9,699•GP12 + 53,911•GP15 + 9,901•GP16 - 1,990•GP2•GP10 - 0,065•GP2•GP12 + 3,601•GP2•GP15 + 0,007•GP2•GP16 + 0,465•(GP4)2 + 2,889•GP4•GP8 + 5,106•GP4•GP10 - 0,817•GP4•GP12 - 8,606•GP4•GP15 + 1,490•GP4•GP18 + 1,689•(GP8)2 - 9,048•GP8•GP10 - 0,999• GP8•GP12 - 2,253•GP8•GP15 + 3,143•(GP10)2 + 0,712•GP10•GP12 - 3,505•GP10•GP15 - 4,753•GP10•GP16 + 1,128•GP10•GP18 - 4,584•GP12•GP15 + 1,138•GP12•GP16 - 1,355•GP12•GP18 - 0,598•GP12•GP22 - 0,904•GP12•GP23 - 4,638(GP15)2 + 0,287•GP15•GP16 - 3,049•GP15•GP18 + 2,492(GP16)2 - 3,041•GP16•GP18 gdje faktori GP2, GP4, GP8, GP10, GP12, GP15, GP16, GP18, GP22 i GP23 predstavljaju prirodni logaritam relativne površine ispod vršaka istoimenih glikana GP2, GP4, GP8, GP10, GP12, GP15, GP16, GP18, GP22, GP23 iz kromatograma izabrane kvantitativne analitičke tehnike.4. The method according to claim 3, characterized in that the logarithm of the mass concentration of estradiol in the blood is calculated using a numerical model: Log c<E2> = -15.529•GP4 - 2.602•GP8 + 5.589•GP10 + 9.699•GP12 + 53.911•GP15 + 9.901•GP16 - 1.990•GP2•GP10 - 0.065•GP2•GP12 + 3.601•GP2•GP15 + 0.007 •GP2•GP16 + 0.465•(GP4)2 + 2.889•GP4•GP8 + 5.106•GP4•GP10 - 0.817•GP4•GP12 - 8.606•GP4•GP15 + 1.490•GP4•GP18 + 1.689•(GP8)2 - 9.048 •GP8•GP10 - 0.999• GP8•GP12 - 2.253•GP8•GP15 + 3.143•(GP10)2 + 0.712•GP10•GP12 - 3.505•GP10•GP15 - 4.753•GP10•GP16 + 1.128•GP10•GP18 - 4.584• GP12•GP15 + 1.138•GP12•GP16 - 1.355•GP12•GP18 - 0.598•GP12•GP22 - 0.904•GP12•GP23 - 4.638(GP15)2 + 0.287•GP15•GP16 - 3.049•GP15•GP18 + 2.492(GP16) 2 - 3,041•GP16•GP18 where the factors GP2, GP4, GP8, GP10, GP12, GP15, GP16, GP18, GP22 and GP23 represent the natural logarithm of the relative area under the peaks of the glycans of the same name GP2, GP4, GP8, GP10, GP12, GP15, GP16, GP18, GP22, GP23 from chromatogram of the chosen quantitative analytical technique. 5. Postupak prema bilo kojem od prethodnih zahtjeva, naznačen time, da se glikani derivatiziraju reagensima izabranim iz skupine koju čine: (i) kombinacija prikladnog aromatskog amina poput 2-amino benzamida <2AB> ili prokainamida (PR) i nekog prikladog reducensa za reduktivnu aminaciju kao što je kompleks 2-pikolin borana <BH3•NC5H4-2-CH3> ili natrijev cijanoborhidrid <NaBH3CN>; [image] ili (ii) 2,5-dioxopirolidin-1-il-<2N-<2-<N',N'-dietilamino>etil> karbamoil>-kinolin-6-il-karbamat <RF>: [image] .5. The method according to any of the preceding claims, characterized in that the glycans are derivatized with reagents selected from the group consisting of: (i) a combination of a suitable aromatic amine such as 2-amino benzamide <2AB> or procainamide (PR) and a suitable reductant for reductive amination such as 2-picoline borane complex <BH3•NC5H4-2-CH3> or sodium cyanoborohydride <NaBH3CN> ; [image] or (ii) 2,5-dioxopyrrolidin-1-yl-<2N-<2-<N',N'-diethylamino>ethyl> carbamoyl>-quinolin-6-yl-carbamate <RF>: [image] . 6. Postupak prema bilo kojem od prethodnih zahtjeva, naznačen time, da je analitička tehnika izabrana iz skupine koju čine: tekućinska kromatografija ultravisoke učinkovitosti <UPLC>; MALDI-TOF masena spektrometrija; tekućinska kromatografija spregnuta s masenom spektrometrijom <LC-MS>; ili kapilarna elektroforeza <CE>.6. The method according to any of the preceding claims, characterized in that the analytical technique is chosen from the group consisting of: ultrahigh efficiency liquid chromatography <UPLC>; MALDI-TOF mass spectrometry; liquid chromatography coupled with mass spectrometry <LC-MS>; or capillary electrophoresis <CE>. 7. Upotreba postupka prema bilo kojem od prethodnih zahtjeva za određivanje prosječne višednevne koncentracije estradiola u krvi.7. Use of the method according to any one of the preceding claims for determining the average multi-day concentration of estradiol in the blood. 8. Upotreba postupka prema bilo kojem od prethodnih zahtjeva za određivanje prosječne koncentracije estradiola u krvi tijekom proteklih mjesec dana.8. Use of the method according to any of the previous claims for determining the average concentration of estradiol in the blood during the past month. 9. Upotreba postupka prema bilo kojem od prethodnih zahtjeva za određivanje prosječne koncentracije estradiola u krvi tijekom protekla dva mjeseca.9. Use of the method according to any one of the preceding claims for determining the average concentration of estradiol in the blood during the past two months. 10. Upotreba postupka prema bilo kojem od prethodnih zahtjeva za određivanje prosječne koncentracije estradiola u krvi tijekom protekla tri mjeseca.10. Use of the method according to any one of the preceding claims for determining the average concentration of estradiol in the blood during the past three months.
HRP20210511AA 2021-03-30 2021-03-30 PROCEDURE FOR DETERMINATION OF MULTI-DAY AVERAGE CONCENTRATION OF ESTRADIOL IN BLOOD BASED ON THE COMPOSITION OF IgG GLYCOMA FROM BLOOD PLASMA HRP20210511A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
HRP20210511AA HRP20210511A1 (en) 2021-03-30 2021-03-30 PROCEDURE FOR DETERMINATION OF MULTI-DAY AVERAGE CONCENTRATION OF ESTRADIOL IN BLOOD BASED ON THE COMPOSITION OF IgG GLYCOMA FROM BLOOD PLASMA
EP22718675.6A EP4314816A2 (en) 2021-03-30 2022-03-28 Diagnostic process for the determination of perimenopause or menopause status via analysis of the igg glycome
PCT/EP2022/058071 WO2022207537A2 (en) 2021-03-30 2022-03-28 DIAGNOSTIC PROCESS FOR THE DETERMINATION OF PERIMENOPAUSE OR MENOPAUSE STATUS VIA ANALYSIS OF THE IgG GLYCOME
US18/373,311 US20240044917A1 (en) 2021-03-30 2023-09-27 METHOD FOR THE ASSESSMENT OF PERIMENOPAUSE OR MENOPAUSE STATUS VIA ANALYSIS OF THE IgG GLYCOME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HRP20210511AA HRP20210511A1 (en) 2021-03-30 2021-03-30 PROCEDURE FOR DETERMINATION OF MULTI-DAY AVERAGE CONCENTRATION OF ESTRADIOL IN BLOOD BASED ON THE COMPOSITION OF IgG GLYCOMA FROM BLOOD PLASMA

Publications (1)

Publication Number Publication Date
HRP20210511A1 true HRP20210511A1 (en) 2022-10-14

Family

ID=88069593

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP20210511AA HRP20210511A1 (en) 2021-03-30 2021-03-30 PROCEDURE FOR DETERMINATION OF MULTI-DAY AVERAGE CONCENTRATION OF ESTRADIOL IN BLOOD BASED ON THE COMPOSITION OF IgG GLYCOMA FROM BLOOD PLASMA

Country Status (1)

Country Link
HR (1) HRP20210511A1 (en)

Similar Documents

Publication Publication Date Title
Mustieles et al. Bisphenol A and its analogues: A comprehensive review to identify and prioritize effect biomarkers for human biomonitoring
Anckaert et al. Multicenter analytical performance evaluation of a fully automated anti-Müllerian hormone assay and reference interval determination
Jonklaas et al. Total and free thyroxine and triiodothyronine: measurement discrepancies, particularly in inpatients
Jorge et al. Statistical Model to Analyze Quantitative Proteomics Data Obtained by 18O/16O Labeling and Linear Ion Trap Mass Spectrometry: Application to the Study of Vascular Endothelial Growth Factor-induced Angiogenesis in Endothelial Cells* S
Turtoi et al. Novel comprehensive approach for accessible biomarker identification and absolute quantification from precious human tissues
EP2966985B1 (en) Identification and monitoring of monoclonal immunoglobulins by molecular mass
Tambor et al. CysTRAQ—a combination of iTRAQ and enrichment of cysteinyl peptides for uncovering and quantifying hidden proteomes
HRP20130568A2 (en) Procedure for analysis of n-glycans attached to immunoglobulin g from human blood serum and the use thereof
JP2009500597A (en) Fibrosis marker
Deriš et al. Immunoglobulin G glycome composition in transition from premenopause to postmenopause
Liu et al. Development and validation of a sensitive LC-MS/MS method for simultaneous quantification of thirteen steroid hormones in human serum and its application to the study of type 2 diabetes mellitus
Sołkiewicz et al. Variability of serum IgG sialylation and galactosylation degree in women with advanced endometriosis
Trbojević-Akmačić et al. Comparative analysis of transferrin and IgG N-glycosylation in two human populations
Pugeat et al. Recommendations for investigation of hyperandrogenism
EP2511707B1 (en) Method for detection of basic peptide and reagent for detection of basic peptide
WO2013121368A2 (en) A process for detection and optional quantification of an analyte
Shi et al. Quantitative characterization of glycoproteins in neurodegenerative disorders using iTRAQ
EP3543694A1 (en) Methods and compositions for diagnosing preeclampsia
HRP20210511A1 (en) PROCEDURE FOR DETERMINATION OF MULTI-DAY AVERAGE CONCENTRATION OF ESTRADIOL IN BLOOD BASED ON THE COMPOSITION OF IgG GLYCOMA FROM BLOOD PLASMA
Chiu et al. Development of an efficient mAb quantification assay by LC-MS/MS using rapid on-bead digestion
Vizi et al. Serum hepcidin measurements in healthy dogs using liquid chromatography/tandem mass spectrometry
JP5068819B2 (en) Means and methods for examining hemolytic anemia
EP3341736A1 (en) A method of detecting molecules in proximity to a target molecule in a sample
Valdés et al. Development of MS-based methods for identification and quantification of proteins altered during early pregnancy in dogs
US20240044917A1 (en) METHOD FOR THE ASSESSMENT OF PERIMENOPAUSE OR MENOPAUSE STATUS VIA ANALYSIS OF THE IgG GLYCOME

Legal Events

Date Code Title Description
A1OB Publication of a patent application
OBST Application withdrawn