HRP20210509A1 - PROCEDURE FOR MENOPAUSE DIAGNOSIS AND FOR PERIMENOPAUSE PERIOD DETERMINATION BASED ON BLOOD PLASMA IgG GLYCOMA COMPOSITION - Google Patents

PROCEDURE FOR MENOPAUSE DIAGNOSIS AND FOR PERIMENOPAUSE PERIOD DETERMINATION BASED ON BLOOD PLASMA IgG GLYCOMA COMPOSITION Download PDF

Info

Publication number
HRP20210509A1
HRP20210509A1 HRP20210509AA HRP20210509A HRP20210509A1 HR P20210509 A1 HRP20210509 A1 HR P20210509A1 HR P20210509A A HRP20210509A A HR P20210509AA HR P20210509 A HRP20210509 A HR P20210509A HR P20210509 A1 HRP20210509 A1 HR P20210509A1
Authority
HR
Croatia
Prior art keywords
image
menopause
igg
perimenopause
glycans
Prior art date
Application number
HRP20210509AA
Other languages
Croatian (hr)
Inventor
Gordan Lauc
Cristina MENNI
Domagoj KIFER
Original Assignee
Genos D.O.O.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genos D.O.O. filed Critical Genos D.O.O.
Priority to HRP20210509AA priority Critical patent/HRP20210509A1/en
Priority to PCT/EP2022/058071 priority patent/WO2022207537A2/en
Priority to EP22718675.6A priority patent/EP4314816A2/en
Publication of HRP20210509A1 publication Critical patent/HRP20210509A1/en
Priority to US18/373,311 priority patent/US20240044917A1/en

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Predmetni izum otkriva postupak dijagnostike menopauze i prolaska kroz perimenopauzu putem kvantitativne analize N-glikana vezanih na imunoglobulin G iz krvne plazme žena. Iznosi kvantitativnih udjela jednog ili više IgG glikana uvrštavaju se u jedan ili više numeričkih modela koji su ranije dobiveni statističkom obradom rezultata studije varijacija kvantitativnog udjela IgG glikana u krvnoj plazmi na skupini žena od kojih su neke bile u menopauzi a neke nisu. Kao rezultat se dobiva broj koji opisuje vjerojatnost da li je ispitivana ženska osoba ušla u fazu menopauze ili nije. Dijagnostički postupak prema izumu koristan je u određivanju da li je ispitivana ženska osoba ušla u fazu perimenopauze ili menopauze.The subject invention discloses a procedure for diagnosing menopause and passing through perimenopause by quantitative analysis of N-glycans bound to immunoglobulin G from the blood plasma of women. The amounts of quantitative parts of one or more IgG glycans are inserted in one or more numerical models previously obtained by statistical processing of the results of a study of variations in the quantitative part of IgG glycan in blood plasma on a group of women, some of whom were in menopause and some who were not. As a result, a number is obtained that describes the probability of whether the examined female person has entered the menopause phase or not. The diagnostic procedure according to the invention is useful in determining whether the examined female person has entered the perimenopause or menopause phase.The subject invention discloses a procedure for diagnosing menopause and passing through perimenopause through the quantitative analysis of N-glycans bound to immunoglobulin G from the blood plasma of women. Quantitative amounts of one or more IgG glycans are included in one or more numerical models previously obtained by statistical processing of the results of a study of variations in the quantitative IgG glycan in blood plasma on a group of women, some of whom were in menopause and some who were not. As a result, a number is obtained that describes the probability of whether the examined female person has entered the menopause phase or not. The diagnostic procedure according to the invention is useful in determining whether the examined female person has entered the perimenopause or menopause phase. The subject invention discloses a procedure for diagnosing menopause and passing through perimenopause by quantitative analysis of N-glycans bound to immunoglobulin G from the blood plasma of women. The amounts of quantitative parts of one or more IgG glycans are inserted in one or more numerical models previously obtained by statistical processing of the results of a study of variations in the quantitative part of IgG glycan in blood plasma on a group of women, some of who were in menopause and some who were not. As a result, a number is obtained that describes the probability of whether the examined female person has entered the menopause phase or not. The diagnostic procedure according to the invention is useful in determining whether the examined female person has entered the perimenopause or menopause phase.

Description

1.1 Područje izuma 1.1 Field of the invention

Predmetni izum odnosi se na postupak dijagnostike menopauze i utvrđivanja perioda perimenopauze putem analize N-glikana vezanih na imunoglobulin G (IgG) iz krvne plazme ispitivane ženske osobe. The subject invention relates to the procedure for diagnosing menopause and determining the period of perimenopause through the analysis of N-glycans bound to immunoglobulin G (IgG) from the blood plasma of a female subject.

1.2 Tehnički problem 1.2 Technical problem

Predmetni izum rješava tehnički problem pouzdanog određivanja da li je ispitivana ženska osoba ušla u fazu perimenopauze ili menopauze. Poznato je da se perimenopauza ili rane faze menopauze teško dijagnosticiraju zbog učestalih varijacija spolnih hormona poput estradiola ili putem analize drugih poznatih biokemijskih markera kao što su folikulostimulirajući hormon (FSH), antimilerovski hormon (AMH) ili inhibitin A ili B. Predmetni izum rješava navedeni tehnički problem temeljem kvantitativne analize IgG N-glikana iz jednog jedinog uzorka krvi ispitivane ženske osobe starosti od 45 do 55 godina. The subject invention solves the technical problem of reliably determining whether the examined female person has entered the perimenopause or menopause phase. It is known that perimenopause or the early stages of menopause are difficult to diagnose due to the frequent variations of sex hormones such as estradiol or through the analysis of other known biochemical markers such as follicle-stimulating hormone (FSH), anti-Müllerian hormone (AMH) or inhibitin A or B. The present invention solves the mentioned technical problem based on the quantitative analysis of IgG N-glycans from a single blood sample of an examined female person aged 45 to 55 years.

1.3 Prethodno stanje tehnike 1.3 Prior art

Glikani su složeni ugljikohidrati pretežito na bazi N-acetil-glukozamina (■), fukoze (▼), manoze (●), galaktoze (○) i N-acetil-neuraminske kiseline (♦), koji su često vezani na proteine, tipično N-glikozidnom vezom i uključeni u brojne fiziološke i patološke procese. Zbog njihove uključenosti u velik broj bioloških procesa od velike su važnosti kao biokemijski pokazatelji općeg zdravstvenog stanja te različitih fizioloških i patoloških stanja ljudskog organizma; vidjeti literaturnu referencu 1: Glycans are complex carbohydrates mainly based on N-acetyl-glucosamine (■), fucose (▼), mannose (●), galactose (○) and N-acetyl-neuraminic acid (♦), which are often attached to proteins, typically N -glycosidic bond and involved in numerous physiological and pathological processes. Due to their involvement in a large number of biological processes, they are of great importance as biochemical indicators of the general state of health and various physiological and pathological conditions of the human organism; see literature reference 1:

1) G. Opdenakker, P. M. Rudd, C. P. Ponting, R. A. Dwek: Concepts and principles of glycobiology, FASEB J. 7 (1993) 1330-1337. 1) G. Opdenakker, P. M. Rudd, C. P. Ponting, R. A. Dwek: Concepts and principles of glycobiology, FASEB J. 7 (1993) 1330-1337.

Imunoglobulin G (IgG) je najzastupljenije protutijelo u krvnoj plazmi čovjeka i ima važnu ulogu o obrani organizma od različitih patogena. IgG je glikoprotein za čiju su stabilnost i funkciju ključni glikani vezani za njegove teške lance. Glikozilacija IgG je također ovisna o različitim fiziološkim (dob, spol, trudnoća) i patološkim stanjima (tumori, infekcije, autoimune bolesti). U stanju tehnike je poznato da se obrazac glikozilacije IgG mijenja sa starošću pojedinca, te je primjerice analizom IgG N-glikana moguće pratiti sam proces starenja i izvesti zaključke o biološkoj dobi ispitivane osobe; vidjeti literaturne reference 2-5: Immunoglobulin G (IgG) is the most abundant antibody in human blood plasma and plays an important role in the body's defense against various pathogens. IgG is a glycoprotein whose stability and function are key to the glycans attached to its heavy chains. Glycosylation of IgG also depends on different physiological (age, sex, pregnancy) and pathological conditions (tumors, infections, autoimmune diseases). It is known in the state of the art that the glycosylation pattern of IgG changes with the age of an individual, and for example, by analyzing IgG N-glycans, it is possible to monitor the aging process itself and draw conclusions about the biological age of the subject; see literature references 2-5:

2) R. Parekh, I. Roitt, D. Isenberg, R. Dwek, T. Rademacher: Age-related galactosylation of the N-linked oligosaccharides of human serum IgG, J. Exp. Med. 167 (1988) 1731-1736. 2) R. Parekh, I. Roitt, D. Isenberg, R. Dwek, T. Rademacher: Age-related galactosylation of the N-linked oligosaccharides of human serum IgG, J. Exp. Honey. 167 (1988) 1731-1736.

3) M. Pučić, A. Knežević, J. Vidič, B. Adamczyk, M. Novokmet, O. Polašek, O. Gornik, S. Šupraha-Goreta, M. R. Wormald, I. Redžić, H. Campbell, A. Wright, N. D. Hastie, J. F. Wilson, I. Rudan, M. Wuhrer, P. M. Rudd, D. Josić, G. Lauc: High Throughput Isolation and Glycosylation Analysis of IgG-Variability and Heritability of the IgG Glycome in Three Isolated Human Populations, Molecular & Celular Proteomics 10.10; doi:10.1074/mcp.M111.010090. 3) M. Pučić, A. Knežević, J. Vidič, B. Adamczyk, M. Novokmet, O. Polašek, O. Gornik, S. Supraha-Goreta, M. R. Wormald, I. Redžić, H. Campbell, A. Wright , N. D. Hastie, J. F. Wilson, I. Rudan, M. Wuhrer, P. M. Rudd, D. Josić, G. Lauc: High Throughput Isolation and Glycosylation Analysis of IgG-Variability and Heritability of the IgG Glycome in Three Isolated Human Populations, Molecular & Cellular Proteomics 10.10; doi:10.1074/mcp.M111.010090.

4) EP3011335B1; G. Lauc, M. Pučić-Baković, F. Vučković: Method for the analysis of N-glycans attached to immunoglobulin G from human blood plasma and its use; nositelj: Genos d.o.o. (HR); datum prioriteta: 20.06.2013. 4) EP3011335B1; G. Lauc, M. Pučić-Baković, F. Vučković: Method for the analysis of N-glycans attached to immunoglobulin G from human blood plasma and its use; holder: Genos d.o.o. (HR); priority date: 20.06.2013.

5) J. Krištić, F. Vučković, C. Menni, L. Klarić, T. Keser, I. Beceheli, M. Pučić-Baković, M. Novokmet, M. Mangino, K. Thaqi, P. Rudan, N. Novokmet, J. Sarac, S. Missoni, I. Kolčić, O. Polašek, I. Rudan, H. Campbell, C. Hayward, Y. Aulchenko, A. Valdes, J. F. Wilson, O. Gornik, D. Primorac, V. Zoldoš, T. Spector, G. Lauc: Glycans are a novel biomarker of chronological and biological ages, J. Gerontol. A Biol. Sci. Med. Sci. 69 (2014) 779-789. doi: 10.1093/gerona/glt190. 5) J. Krištić, F. Vučković, C. Menni, L. Klarić, T. Keser, I. Beceheli, M. Pučić-Baković, M. Novokmet, M. Mangino, K. Thaqi, P. Rudan, N. Novokmet, J. Sarac, S. Missoni, I. Kolčić, O. Polašek, I. Rudan, H. Campbell, C. Hayward, Y. Aulchenko, A. Valdes, J. F. Wilson, O. Gornik, D. Primorac, V Zoldoš, T. Spector, G. Lauc: Glycans are a novel biomarker of chronological and biological ages, J. Gerontol. And Biol. Sci. Honey. Sci. 69 (2014) 779-789. doi: 10.1093/gerona/glt190.

Menopauza je definirana kao razdoblje u životu žene koje nastupa 12 ili više mjeseci nakon zadnje menstruacije. Karakterizirana je potpunim ili gotovo potpunim iscrpljenjem ovarija, što rezultira vrlo niskim razinama ženskog spolnog hormona estradiola u serumu, te značajno povećanom koncentracijom folikulostimulirajućeg hormona (FSH). Uobičajeni simptomi najčešće počinju oko 47 godine ili 4-6 godina prije nastupanja menopauze. Najčešći simptomi menopauze su napadi vrućine, neredovita menstrualna krvarenja, nesanica, promjene raspoloženja (anksioznost, depresija), mastodinija, glavobolja i vaginalna suhoća. Menopause is defined as the period in a woman's life that occurs 12 or more months after the last menstrual period. It is characterized by complete or almost complete exhaustion of the ovaries, which results in very low levels of the female sex hormone estradiol in the serum, and a significantly increased concentration of follicle-stimulating hormone (FSH). Common symptoms usually begin around age 47 or 4-6 years before menopause. The most common symptoms of menopause are hot flashes, irregular menstrual bleeding, insomnia, mood changes (anxiety, depression), mastodynia, headache and vaginal dryness.

Razdoblje tranzicije iz normalne fertilne dobi žene do nastupanja menopauze poznato je kao perimenopauza. Karakterizirana je smanjenjem koncentracije inhibina B, promjenjivom ili povećanom koncentracijom FSH, smanjenom koncentracijom AMH i blagim smanjenjem broja antralnih folikula. Te su promjene popraćene varijacijom intervala menstruacije, smanjenjem plodnosti i pojavom menopauzalnih simptoma; vidjeti literaturne reference 6 i 7: The period of transition from a woman's normal fertile age to the onset of menopause is known as perimenopause. It is characterized by a decrease in the concentration of inhibin B, a variable or increased concentration of FSH, a decreased concentration of AMH and a slight decrease in the number of antral follicles. These changes are accompanied by a variation in the interval of menstruation, a decrease in fertility and the appearance of menopausal symptoms; see literature references 6 and 7:

6) T. Hillard: NICE guideline – Menopause: diagnosis and management, Post Reprod. Health. 22 (2016) 56-58; 6) T. Hillard: NICE guideline – Menopause: diagnosis and management, Post Reprod. Health. 22 (2016) 56-58;

7) J. L. Bacon: The Menopause Transition, Obstet. Gynecol. Clin. N. Am. 44 (2017) 285-296. 7) J.L. Bacon: The Menopause Transition, Obstet. Gynecol. Clin. N. Am. 44 (2017) 285-296.

Iako je poznato da se IgG N-glikani mijenjaju s dobi, njihova povezanost sa stanjem perimenopauze ili menopauze kod žena općenito nije ispitana. Posebno nije poznato da li se njihovom analizom mogu izvoditi zaključci o nastupanju faze perimenopauze ili menopauze. Although IgG N-glycans are known to change with age, their association with perimenopausal or menopausal status in women has generally not been examined. In particular, it is not known whether their analysis can draw conclusions about the onset of the perimenopause or menopause phase.

Predmetni izum rješava opisani tehnički problem na nov i inventivan način uz primjenu poznate analitičke metodologije kvantitativne analize IgG N-glikana i do sada nepoznate povezanosti njihove varijacije s nastupanjem faze perimenopauze i menopauze. The subject invention solves the described technical problem in a new and inventive way with the application of the known analytical methodology of quantitative analysis of IgG N-glycans and the hitherto unknown connection of their variation with the onset of perimenopause and menopause.

1.4 Bit izuma 1.4 The essence of the invention

Predmetni izum uključuje postupak dijagnostike menopauze i utvrđivanja perioda perimenopauze putem analize N-glikana vezanih na imunoglobulin G (IgG) iz krvne plazme žena, označenih kraticama GP1 do GP22, opće kemijske strukture I: The subject invention includes a procedure for diagnosing menopause and determining the period of perimenopause through the analysis of N-glycans bound to immunoglobulin G (IgG) from the blood plasma of women, denoted by the abbreviations GP1 to GP22, of the general chemical structure I:

[image] [image]

I AND

[image] [image]

gdje rečeni postupak uključuje: where said procedure includes:

(i) kvantitativnu analizu jednog ili više: (i) quantitative analysis of one or more:

(a) fluorescentno derivatiziranih glikana oslobođenih s IgG pomoću enzima peptid-N4-(N-acetil-beta-glukozaminil) asparagin amidaze (PNGaza F); ili (a) fluorescently derivatized glycans released from IgG by the enzyme peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine amidase (PNGase F); or

(b) slobodnih glikana ili odgovarajućih glikopeptida odnosno glikoformi; (b) free glycans or corresponding glycopeptides or glycoforms;

(ii) uvrštavanje dobivenih rezultata kvantitativnih udjela rečenih glikana u jedan ili više numeričkih modela koji su ranije dobiveni statističkom obradom rezultata studije varijacija kvantitativnog udjela IgG glikana u krvnoj plazmi na odabranoj skupini žena od kojih su neke bile u menopauzi a neke nisu; te (ii) inclusion of the obtained results of quantitative proportions of said glycans in one or more numerical models that were previously obtained by statistical processing of the results of the study of variations in the quantitative proportion of IgG glycans in blood plasma on a selected group of women, some of whom were in menopause and some who were not; you

(iii) izračunavanje rezultata u obliku broja koji opisuje vjerojatnost da je ispitivana ženska osoba prošla kroz perimenopauzu i ušla u fazu menopauze. (iii) calculating the result in the form of a number that describes the probability that the examined female person has passed through perimenopause and entered the menopause phase.

Odabrana skupina žena iz koraka (ii) bila je starosti od 45 do 55 godina, te se spomenuti postupak dijagnostike primjenjuje na subjektima koji pripadaju tom rasponu godina. The selected group of women from step (ii) was between the ages of 45 and 55, and the aforementioned diagnostic procedure is applied to subjects who belong to that age range.

Rezultat postupka dijagnostike prema izumu iz koraka (iii) interpretira se na slijedeći način: The result of the diagnostic procedure according to the invention from step (iii) is interpreted as follows:

(a) ako je rezultat između 0,5 i 1,0, ispitivana ženska osoba je prošla kroz perimenopauzu i ušla u fazu menopauze; a (a) if the score is between 0.5 and 1.0, the female subject has passed through perimenopause and entered the menopause phase; And

(b) ako je rezultat između 0 i 0,5 ispitivana ženska osoba nije prošla kroz perimenopauze i ušla u fazu perimenopauzu. (b) if the result is between 0 and 0.5, the examined woman has not gone through perimenopause and entered the perimenopause phase.

Postupak dijagnostike prema izumu uključuje izračun vjerojatnosti[image] da je ispitivana ženska osoba stupila u fazu menopauze a koja se izračunava pomoću numeričkog modela: The diagnostic procedure according to the invention includes the calculation of the probability [image] that the examined female person has entered the menopause phase, which is calculated using a numerical model:

[image] [image]

gdje su:[image] ,[image] ,[image] i[image] Logit transformirane vrijednosti relativne površine ispod vršaka istoimenih glikana GP2, GP4, GP12 i GP22 iz kromatograma izabrane kvantitativne analitičke tehnike. where: [image] , [image] , [image] and [image] Logit transformed values of the relative area under the peaks of the glycans of the same name GP2, GP4, GP12 and GP22 from the chromatogram of the selected quantitative analytical technique.

Alternativno, postupak dijagnostike prema izumu temelji se na izračunu vjerojatnost[image] da je ispitivana ženska osoba stupila u fazu menopauze izračunava pomoću formule: Alternatively, the diagnostic procedure according to the invention is based on the calculation of the probability[image] that the examined female person has entered the menopause phase, calculated using the formula:

[image] [image]

gdje su: where are they:

-[image] Logit transformirana vrijednost relativne površine ispod vrška glikana GP12 iz kromatograma odgovarajuće kvantitativne analitičke tehnike, -[image] Logit transformed value of the relative area under the GP12 glycan peak from the chromatogram of the appropriate quantitative analytical technique,

-[image] ,[image] ,[image] i[image] prosječne godišnje promjene u Logit transformiranim vrijednostima relativne površine ispod vršaka istoimenih glikana G11, G12, G13 i G16 iz kromatograma odgovarajuće kvantitativne analitičke tehnike. -[image] ,[image] ,[image] and [image] average annual changes in Logit transformed values of the relative area under the peaks of glycans of the same name G11, G12, G13 and G16 from the chromatogram of the corresponding quantitative analytical technique.

1.5 Kratak opis slika 1.5 Brief description of the images

Slika 1. Tipični kromatogram RapiFluorom (RF) derivatiziranih IgG N-glikana dobiven pomoću tekućinske kromatografije ultravisoke učinkovitosti (HILIC-UPLC-FLR) metodom opisanom u predmetnom izumu s 22 odvojena vrška koji su dalje u tekstu označeni kraticama GP1-GP22. Figure 1. Typical chromatogram of RapiFluor (RF) derivatized IgG N-glycans obtained by ultra-high performance liquid chromatography (HILIC-UPLC-FLR) method described in the subject invention with 22 separate peaks which are hereinafter denoted by the abbreviations GP1-GP22.

Slika 2A. Modelom procijenjene prosječne razine IgG N-glikana GP1-GP11 kod žena prije i nakon nastupanja menopauze. Trake pogrešaka označavaju 95% interval pouzdanosti prosječne razine navedenih IgG N-glikana. Figure 2A. Model-estimated average levels of IgG N-glycan GP1-GP11 in women before and after the onset of menopause. Error bars indicate the 95% confidence interval of the mean level of the indicated IgG N-glycans.

Slika 2B. Modelom procijenjene prosječne razine IgG N-glikana GP12-GP22 kod žena prije i nakon nastupanja menopauze. Trake pogrešaka označavaju 95% interval pouzdanosti prosječne razine navedenih IgG N-glikana. Figure 2B. Model-estimated average levels of IgG N-glycan GP12-GP22 in women before and after the onset of menopause. Error bars indicate the 95% confidence interval of the mean level of the indicated IgG N-glycans.

Slika 3A. Modelom procijenjene prosječne godišnje promjene razina IgG N-glikana GP1-GP11 kod žena prije i nakon perioda perimenopauze, tj. nastupanja menopauze. Trake pogrešaka označavaju 95% interval pouzdanosti prosječne godišnje promjene razine navedenih IgG N-glikana. Figure 3A. Model estimated average annual changes in levels of IgG N-glycan GP1-GP11 in women before and after the perimenopause period, i.e. the onset of menopause. Error bars indicate the 95% confidence interval of the mean annual change in the level of the indicated IgG N-glycans.

Slika 3B. Modelom procijenjene prosječne godišnje promjene razina IgG N-glikana GP12-GP22 kod žena prije i nakon perioda perimenopauze, tj. nastupanja menopauze. Trake pogrešaka označavaju 95% interval pouzdanosti prosječne godišnje promjene razine navedenih IgG N-glikana. Figure 3B. Model estimated average annual changes in levels of IgG N-glycan GP12-GP22 in women before and after the perimenopause period, i.e. the onset of menopause. Error bars indicate the 95% confidence interval of the mean annual change in the level of the indicated IgG N-glycans.

Slika 4. ROC krivulje A-C dobivene analizom specifičnosti i osjetljivosti vjerojatnosti menopauze izračunatih jednadžbama za klasifikaciju žena na one u menopauzi i one koje još nisu u menopauzi na podskupu podataka za testiranje. Osjenčano područje oko krivulje označava 95% interval pouzdanosti. ROC krivulja prikazana na panelu A odgovara jednadžbi (3), na panelu B jednadžbi (4), te na panelu C jednadžbi (5). Figure 4. ROC curves A-C obtained from analysis of specificity and sensitivity of menopausal probabilities calculated by equations for classifying women into menopausal and non-menopausal women on the testing subset. The shaded area around the curve indicates the 95% confidence interval. The ROC curve shown in panel A corresponds to equation (3), in panel B to equation (4), and in panel C to equation (5).

Slika 5. ROC krivulje A-C dobivene analizom specifičnosti i osjetljivosti vjerojatnosti izračunatih jednadžbama za klasifikaciju žena na one u menopauzi i one koje još nisu u menopauzi na podskupu podataka za testiranje. Osjenčano područje oko krivulje označava 95% interval pouzdanosti. ROC krivulja prikazana na panelu A odgovara jednadžbi (6), na panelu B jednadžbi (7), te na panelu C jednadžbi (8). Figure 5. ROC curves A-C obtained from the specificity and sensitivity analysis of the probabilities calculated by the equations for classifying women into menopausal and non-menopausal women on the testing subset. The shaded area around the curve indicates the 95% confidence interval. The ROC curve shown in panel A corresponds to equation (6), in panel B to equation (7), and in panel C to equation (8).

Slika 6. ROC krivulje A-C dobivene analizom specifičnosti i osjetljivosti vjerojatnosti izračunatih jednadžbama za klasifikaciju žena na one u menopauzi i one koje još nisu u menopauzi na podskupu podataka za testiranje. Osjenčano područje oko krivulje označava 95% interval pouzdanosti. ROC krivulja prikazana na panelu A odgovara jednadžbi (9), na panelu B jednadžbi (10), te na panelu C jednadžbi (11). Figure 6. ROC curves A-C obtained from the specificity and sensitivity analysis of the probabilities calculated by the equations for classifying women into menopausal and non-menopausal women on the testing subset. The shaded area around the curve indicates the 95% confidence interval. The ROC curve shown in panel A corresponds to equation (9), in panel B to equation (10), and in panel C to equation (11).

1.6 Detaljni opis izuma 1.6 Detailed description of the invention

Predmetni izum uključuje postupak dijagnostike menopauze i utvrđivanja perioda perimenopauze putem analize N-glikana vezanih na imunoglobulin G (IgG) iz krvne plazme žena, označenih kraticama GP1 do GP22, opće kemijske strukture I i konkretnih struktura prikazanih u Tablici 1: The subject invention includes a procedure for diagnosing menopause and determining the period of perimenopause through the analysis of N-glycans bound to immunoglobulin G (IgG) from the blood plasma of women, denoted by the abbreviations GP1 to GP22, of the general chemical structure I and the specific structures shown in Table 1:

[image] [image]

I AND

[image] [image]

Tablica 1. Strukture N-glikana vezanih na imunoglobulin G (IgG) iz krvne plazme žena. Table 1. Structures of N-glycans bound to immunoglobulin G (IgG) from the blood plasma of women.

[image] [image] [image] [image]

naznačen time, da rečeni postupak uključuje: characterized by the fact that said procedure includes:

(i) kvantitativnu analizu jednog ili više: (i) quantitative analysis of one or more:

(a) fluorescentno derivatiziranih glikana oslobođenih s IgG pomoću enzima peptid-N4-(N-acetil-beta-glukozaminil) asparagin amidaze (PNGaza F); ili (a) fluorescently derivatized glycans released from IgG by the enzyme peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine amidase (PNGase F); or

(b) slobodnih glikana ili odgovarajućih glikopeptida odnosno glikoformi; (b) free glycans or corresponding glycopeptides or glycoforms;

nekom od prikladnih analitičkih tehnika, pri čemu se kvantitativni udjeli glikana ili odgovarajućih glikopeptida dobivaju normalizacijom, dijeljenjem površine ispod vrška svakog od traženih glikana s ukupnom površinom svih vrškova glikana ili glikoformi iz uzorka; by some of the suitable analytical techniques, whereby the quantitative proportions of glycans or corresponding glycopeptides are obtained by normalization, by dividing the area under the peak of each of the requested glycans by the total area of all peaks of glycans or glycoforms from the sample;

(ii) uvrštavanje dobivenih rezultata kvantitativnih udjela rečenih glikana u jedan ili više numeričkih modela koji su ranije dobiveni statističkom obradom rezultata studije varijacija kvantitativnog udjela IgG glikana u krvnoj plazmi na odabranoj skupini žena od kojih su neke bile u menopauzi a neke nisu; te (ii) inclusion of the obtained results of quantitative proportions of said glycans in one or more numerical models that were previously obtained by statistical processing of the results of the study of variations in the quantitative proportion of IgG glycans in blood plasma on a selected group of women, some of whom were in menopause and some who were not; you

(iii) izračunavanje rezultata u obliku broja koji opisuje vjerojatnost da je ispitivana ženska osoba prošla kroz perimenopauzu i ušla u fazu menopauze. (iii) calculating the result in the form of a number that describes the probability that the examined female person has passed through perimenopause and entered the menopause phase.

Odabrana skupina žena iz koraka (ii) bila je starosti od 45 do 55 godina, te se spomenuti postupak dijagnostike primjenjuje na subjektima koji pripadaju tom rasponu godina. The selected group of women from step (ii) was between the ages of 45 and 55, and the aforementioned diagnostic procedure is applied to subjects who belong to that age range.

Rezultat postupka prema izumu iz koraka (iii) interpretira se na slijedeći način: The result of the procedure according to the invention from step (iii) is interpreted as follows:

(a) ako je rezultat između 0,5 i 1,0, ispitivana ženska osoba je prošla kroz perimenopauzu i ušla u fazu menopauze; a (a) if the score is between 0.5 and 1.0, the female subject has passed through perimenopause and entered the menopause phase; And

(b) ako je rezultat između 0 i 0,5 ispitivana ženska osoba nije prošla kroz perimenopauze i ušla u fazu perimenopauzu. (b) if the result is between 0 and 0.5, the examined woman has not gone through perimenopause and entered the perimenopause phase.

Postupak dijagnostike prema izumu uključuje izračun vjerojatnosti[image] da je ispitivana ženska osoba prošla kroz perimenopauzu i stupila u fazu menopauze a koja se izračunava pomoću numeričkog modela: The diagnostic procedure according to the invention includes the calculation of the probability [image] that the examined female person went through perimenopause and entered the menopause phase, which is calculated using a numerical model:

[image] [image]

gdje su:[image] ,[image] ,[image] i[image] Logit transformirane vrijednosti relativne površine ispod vršaka istoimenih glikana GP2, GP4, GP12 i GP22 iz kromatograma izabrane kvantitativne analitičke tehnike. where: [image] , [image] , [image] and [image] Logit transformed values of the relative area under the peaks of the glycans of the same name GP2, GP4, GP12 and GP22 from the chromatogram of the selected quantitative analytical technique.

Alternativno, postupak dijagnostike prema izumu temelji se na izračunu vjerojatnost[image] da je ispitivana ženska osoba prošla kroz perimenopauzu i stupila u fazu menopauze izračunava pomoću formule: Alternatively, the diagnostic procedure according to the invention is based on the calculation of the probability[image] that the examined female person went through perimenopause and entered the menopause phase, calculated using the formula:

[image] [image]

gdje su: where are they:

-[image] Logit transformirana vrijednost relativne površine ispod vrška glikana GP12 iz kromatograma odgovarajuće kvantitativne analitičke tehnike, -[image] Logit transformed value of the relative area under the GP12 glycan peak from the chromatogram of the appropriate quantitative analytical technique,

-[image] ,[image] ,[image] i[image] prosječne godišnje promjene u Logit transformiranim vrijednostima relativne površine ispod vršaka istoimenih glikana G11, G12, G13 i G16 iz kromatograma odgovarajuće kvantitativne analitičke tehnike. -[image] ,[image] ,[image] and [image] average annual changes in Logit transformed values of the relative area under the peaks of glycans of the same name G11, G12, G13 and G16 from the chromatogram of the corresponding quantitative analytical technique.

Pošto sami glikani nemaju UV-apsorpciju, nisu prikladni za detekciju standardnim UV-VIS ili fluorescentnim (FLR) detektorima koji se koriste u različitim tehnikama kvantitativne analize poput tekućinske kromatografije ultravisoke učinkovitosti (UPLC). Zbog toga se, nakon njihova oslobađanja s imunoglobulina G (IgG) iz krvne plazme, isti derivatiziraju prikladnim reagensima koji se kovalentno vežu na glikane, nakon čega odgovarajući glikanski derivati imaju UV-apsorpciju i prikladni su za detekciju tijekom kvantitativne analize. U tom smislu postupak dijagnostike prema izumu temelji se na derivatizaciji glikana reagensima izabranim iz skupine koju čine: Since glycans themselves do not absorb UV, they are not suitable for detection by standard UV-VIS or fluorescence (FLR) detectors used in various quantitative analysis techniques such as ultra-high performance liquid chromatography (UPLC). Therefore, after their release from immunoglobulin G (IgG) from the blood plasma, they are derivatized with suitable reagents that covalently bind to glycans, after which the corresponding glycan derivatives have UV absorption and are suitable for detection during quantitative analysis. In this sense, the diagnostic procedure according to the invention is based on glycan derivatization with reagents selected from the group consisting of:

(i) kombinacija prikladnog aromatskog amina poput 2-aminobenzamida (2AB) ili prokainamida (PR) i nekog prikladog reducensa za reduktivnu aminaciju: kompleks 2-pikolin boran (BH3•NC5H4-2-CH3) ili natrijev cijanoborhidrid (NaBH3CN); (i) combination of a suitable aromatic amine such as 2-aminobenzamide (2AB) or procainamide (PR) and a suitable reductant for reductive amination: 2-picoline borane complex (BH3•NC5H4-2-CH3) or sodium cyanoborohydride (NaBH3CN);

[image] [image]

ili or

(ii) 2,5-dioxopirolidin-1-il-[2N-[2-(N',N'-dietilamino)etil] karbamoil]-kinolin-6-il-karbamat (RF), poznat pod trgovačkim imenom RapiFluor-MS tvrtke Waters (SAD): (ii) 2,5-dioxopyrrolidin-1-yl-[2N-[2-(N',N'-diethylamino)ethyl] carbamoyl]-quinolin-6-yl-carbamate (RF), known under the trade name RapiFluor- MS from Waters (USA):

[image] . [image] .

Primjena opisanih derivatizacijskih reagensa opisana je u stanju tehnike; vidjeti literaturunu referencu 8: The application of the described derivatization reagents is described in the state of the art; see literature reference 8:

8) T. Keser, T. Pavić, G. Lauc, O. Gornik: Comparison of 2-Aminobenzamide, Procainamide and RapiFluor-MS as Derivatizing Agents for High-Throughput HILIC-UPLC-FLR-MS N-glycan Analysis, Front. Chem. 6 (2018) 321; doi: 10.3389/fchem.2018.00324. 8) T. Keser, T. Pavić, G. Lauc, O. Gornik: Comparison of 2-Aminobenzamide, Procainamide and RapiFluor-MS as Derivatizing Agents for High-Throughput HILIC-UPLC-FLR-MS N-glycan Analysis, Front. Chem. 6 (2018) 321; doi: 10.3389/fchem.2018.00324.

Kao prikladne analitičke tehnike za kvantitativnu analizu koriste se: tekućinska kromatografija ultravisoke učinkovitosti (UPLC), MALDI-TOF masena spektrometrija (engl. matrix-assisted laser desorption/ionization time-of-flight), tekućinska kromatografija spregnuta s masenom spektrometrijom (LC-MS) ili kapilarna elektroforeza (CE), ili druge pogodne kvantitativne analitičke tehnike. Opis kvantitativne analize IgG N-glikana različitim analitičkim tehnikama opisan je u stanju tehnike; vidjeti literaturnu referencu 4. Suitable analytical techniques for quantitative analysis are: ultra-high performance liquid chromatography (UPLC), MALDI-TOF mass spectrometry (matrix-assisted laser desorption/ionization time-of-flight), liquid chromatography coupled with mass spectrometry (LC-MS ) or capillary electrophoresis (CE), or other suitable quantitative analytical techniques. The description of the quantitative analysis of IgG N-glycans using different analytical techniques is described in the state of the art; see literature reference 4.

Analitika N-glikana iz krvne plazme Analysis of N-glycans from blood plasma

Izolacija uzorka krvne plazme iz žena za svrhu provedbe dijagnostike menopauze i utvrđivanja prolaska kroz perimenopauzu provedena je prema metodologiji poznatoj u stanju tehnike; vidjeti literaturnu referencu 4. Također, izolacija IgG iz krvne plazme vršena je prema postupku poznatom u stanju tehnike; vidjeti literaturne reference 3 i 9: Isolation of a blood plasma sample from women for the purpose of diagnosing menopause and determining the passage through perimenopause was carried out according to the methodology known in the state of the art; see literature reference 4. Also, isolation of IgG from blood plasma was performed according to a procedure known in the state of the art; see literature references 3 and 9:

9) I. Trbojević Akmačić, I. Ugrina, G. Lauc: Comparative Analysis and Validation of Different Steps in Glycomics Studies, Methods Enzymol. 586 (2017) 37-55. doi: 10.1016/bs.mie.2016.09.027. 9) I. Trbojević Akmačić, I. Ugrina, G. Lauc: Comparative Analysis and Validation of Different Steps in Glycomics Studies, Methods Enzymol. 586 (2017) 37-55. doi: 10.1016/bs.mie.2016.09.027.

Za demonstraciju provedbe predmetnog izuma, u fazi derivatizacije oslobođenih N-glikana s IgG, isti su derivatizirani reagensom RF prema postupku opisanom u literaturnoj referenci 8 i uputi proizvođača, vidjeti literaturnu referencu 10: For a demonstration of the implementation of the subject invention, in the derivatization phase of the released N-glycans with IgG, they were derivatized with the RF reagent according to the procedure described in literature reference 8 and the manufacturer's instructions, see literature reference 10:

10) GlycoWorks RapiFluor-MS N-glycan Kit – 96 Samples; Waters Corporation, 34 Maple Street, Milford, MA 01757 (SAD); www.waters.com; vidjeti na poveznici: https://www.waters.com/waters/library.htm?cid=511436&lid=134834845&lcid=134834844&locale=en_US. 10) GlycoWorks RapiFluor-MS N-glycan Kit – 96 Samples; Waters Corporation, 34 Maple Street, Milford, MA 01757 (USA); www.waters.com; see at the link: https://www.waters.com/waters/library.htm?cid=511436&lid=134834845&lcid=134834844&locale=en_US.

Tipični kromatogram RapiFluorom (RF) derivatiziranih IgG N-glikana dobiven pomoću opisane HILIC-UPLC-FLR metode s 22 odvojena vrška koji su dalje u tekstu označeni kraticama GP1-GP22 prikazan je na Slici 1. A typical chromatogram of RapiFluor (RF) derivatized IgG N-glycans obtained using the described HILIC-UPLC-FLR method with 22 separate peaks, which are further denoted by the abbreviations GP1-GP22, is shown in Figure 1.

Redosljed izlaženja vršaka glikana GP1-GP22 u opisanoj HILIC-UPLC-FLR metode i odgovarajuća retencijska vremena (tR) prikazani su u Tablici 2. The order of appearance of glycan peaks GP1-GP22 in the described HILIC-UPLC-FLR method and the corresponding retention times (tR) are shown in Table 2.

Tablica 2. Retencijska vremena (tR) RapiFluorom (RF) obilježenih IgG glikana označenih kraticama GP1-GP22 dobivena opisanom UPLC-HILIC metodom čiji je tipični kromatogram prikazan na Slici 1. Table 2. Retention times (tR) of RapiFluor (RF)-labeled IgG glycans marked with abbreviations GP1-GP22 obtained by the described UPLC-HILIC method, whose typical chromatogram is shown in Figure 1.

[image] [image]

Studija praćenja varijabilnosti N-glikana vezanih na imunoglobulin G kod žena starosti 45 do 55 godina od kojih su neke ušle u fazu menopauze a neke nisu A study of monitoring the variability of N-glycans bound to immunoglobulin G in women aged 45 to 55 years, some of whom have entered menopause and some who have not

U provedbi studije varijacije N-glikana GP1-GP22 vezanih na IgG iz krvne plazme žena korišten je TwinsUK, najveći svjetski registar odraslih blizanaca te jedna od klinički najdetaljnije opisanih kohorti, osnovana u 1992. godini. Cilj TwinsUK registra je istraživanje genske i okolišne pozadine raznih kompleksnih patofizioloških stanja. TwinsUK je danas jedna od najgenotipiziranijih i fenotipiziranijih kohorti na svijetu te trenutačno obuhvaća oko 14000 jednojajčanih i dvojajčanih blizanaca. TwinsUK, the world's largest registry of adult twins and one of the most clinically described cohorts, founded in 1992, was used in the study of the variation of N-glycans GP1-GP22 bound to IgG from the blood plasma of women. The aim of the TwinsUK registry is to investigate the genetic and environmental background of various complex pathophysiological conditions. TwinsUK is today one of the most genotyped and phenotyped cohorts in the world and currently includes around 14,000 identical and fraternal twins.

Uzorci pune krvi su sakupljani od strane TwinsUK registra u više vremenskih točaka (minimalno 1, maksimalno 3 po osobi) tijekom 20 godina. Puna krv je sakupljana u EDTA epruvetu i dobro promiješana. Epruveta je zatim stajala na sobnoj temperaturi te potom centrifugirana da se odvoji plazma. Plazma je prebačena u čistu epruvetu te pohranjena u zamrzivač na -80 ili -20 ̊C. Whole blood samples were collected by the TwinsUK registry at multiple time points (minimum 1, maximum 3 per person) over 20 years. Whole blood was collected in an EDTA tube and mixed well. The test tube was then left at room temperature and then centrifuged to separate the plasma. The plasma was transferred to a clean test tube and stored in a freezer at -80 or -20 ̊C.

Analizirano je ukupno 6032 uzorka: A total of 6032 samples were analyzed:

(i) 1865 pojedinaca u tri vremenske točke (ukupno 5595 uzoraka); (i) 1865 individuals at three time points (5595 samples in total);

(ii) 156 pojedinaca u dvije vremenske točke (ukupno 312 uzoraka); te (ii) 156 individuals at two time points (312 samples in total); you

(iii) 125 pojedinaca u jednoj vremenskoj točki (125 uzoraka). (iii) 125 individuals at one time point (125 samples).

Izolacija IgG iz krvne plazme provedena je prema postupku opisanom u literaturnim referencama 3 i 9. Deglikozilacija izoliranog IgG provedena je pomoću enzima peptid-N4-(N-acetil-beta-glukozaminil) asparagin amidaze (PNGaza F), Brzo obilježavanje tako oslobođenih N-glikana provedeno je tretmanom s reagensom RapiFluor-MS tvrtke Waters (SAD), koji se bazira na 2,5-dioxopirolidin-1-il-[2N-[2-(N',N'-dietilamino)etil]karbamoil]-kinolin-6-il-karbamatu (RF). Nakon toga, derivatizirani N-glikani pročišćeni su ekstrakcijom na čvrstoj fazi koja se temelji na hidrofilnim interakcijama. Tako pročišćeni uzorci analizirani su visokoučinkovitom tekućinskom kromatografijom ultravisoke učinkovitosti baziranoj na hidrofilnim interakcijama uz fluorescentni detektor (HILIC-UPLC-FLR). Isolation of IgG from blood plasma was performed according to the procedure described in literature references 3 and 9. Deglycosylation of the isolated IgG was performed using the enzyme peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine amidase (PNGase F). of glycans was carried out by treatment with the RapiFluor-MS reagent from Waters (USA), which is based on 2,5-dioxopyrrolidin-1-yl-[2N-[2-(N',N'-diethylamino)ethyl]carbamoyl]-quinoline -6-yl-carbamate (RF). Subsequently, the derivatized N-glycans were purified by solid phase extraction based on hydrophilic interactions. The purified samples were analyzed by high-performance ultrahigh-performance liquid chromatography based on hydrophilic interactions with a fluorescent detector (HILIC-UPLC-FLR).

Kromatogrami dobiveni kao rezultat opisane analize ručno su integrirani prema pripadajućim razdvojenim glikanskim skupinama; vidjeti primjerice Sliku 1. Količina glikana u svakoj glikanskoj skupini (GP) izražena je kao postotak ukupne integrirane površine (% area) kako bi se omogućila relativna kvantifikacija N-glikana imunoglobulina G. Kromatografski vrškovi koji sadrže glikanske skupine odgovaraju glikanskim strukturama opisanim u literaturnoj referenci 8. The chromatograms obtained as a result of the described analysis were manually integrated according to the associated separated glycan groups; see for example Figure 1. The amount of glycans in each glycan group (GP) is expressed as a percentage of the total integrated area (% area) to allow relative quantification of immunoglobulin G N-glycans. Chromatographic peaks containing glycan groups correspond to glycan structures described in the literature reference 8.

Prikladnost UHPLC sustava za analizu N-glikana kontrolirana je tijekom svake analitičke vožnje koristeći interno pripremljen standard N-glikana imunoglobulina G obilježenih 2-aminobenzamidom (2AB) kao što je to opisano u literaturnoj referenci 9. The suitability of the UHPLC system for N-glycan analysis was controlled during each analytical run using an in-house prepared 2-aminobenzamide (2AB)-labeled immunoglobulin G N-glycan standard as described in literature reference 9.

Detaljni opis eksperimentalnog dijela provedbe studije varijabilnosti IgG N-glikana GP1-GP22 u žena starosti 45-55 godina opisan je u Primjeru 1. A detailed description of the experimental part of the study of the variability of IgG N-glycans GP1-GP22 in women aged 45-55 years is described in Example 1.

Statistička obrada rezultata studije te formiranje numeričkih modela za dijagnostiku perimenopauze i menopauze Statistical processing of the study results and the formation of numerical models for the diagnosis of perimenopause and menopause

S ciljem mogućnosti usporedbe površina ispod vršaka kromatograma različitih uzoraka, izračunate su relativne površine ispod vršaka kromatograma na način da je površina ispod vrška kromatograma podijeljena s ukupnom površinom kromatograma. Dobivene relativne površine su logit transformirane prema jednadžbi (1), čime je omogućena aproksimacija razdiobe relativnih površina normalnom razdiobom. Učinak serije na mjerenja je uklonjen primjenom ComBat metode (R paket „sva“); vidjeti literaturnu referencu 11: In order to be able to compare the areas under the chromatogram peaks of different samples, the relative areas under the chromatogram peaks were calculated in such a way that the area under the chromatogram peak was divided by the total chromatogram area. The obtained relative areas were logit transformed according to equation (1), which enabled the approximation of the distribution of relative areas by a normal distribution. The batch effect on the measurements was removed using the ComBat method (R package "all"); see literature reference 11:

[image] [image]

11) J. T. Leek, W. E. Johnson, H. S. Parker, A. E. Jaffe, J. D. Storey: The sva package for removing batch effects and other unwanted variation in high-throughput experiments, Bioinformatics 28 (2012) 882-883; doi:10.1093/bioinformatics/bts034. 11) J. T. Leek, W. E. Johnson, H. S. Parker, A. E. Jaffe, J. D. Storey: The sva package for removing batch effects and other unwanted variation in high-throughput experiments, Bioinformatics 28 (2012) 882-883; doi:10.1093/bioinformatics/bts034.

Tako dobiveni podaci korišteni su u svim daljnjim analizama. Pri određivanju odnosa između menopauze i N-glikoma imunoglobulina G korišten je linearni mješoviti model (R paket „lme4“); vidjeti literaturnu referencu 12: The data thus obtained were used in all further analyses. A linear mixed model (R package "lme4") was used to determine the relationship between menopause and immunoglobulin G N-glycome; see literature reference 12:

12) D. Bates, M. Mächler, B. Bolker, S. Walker: Fitting Linear Mixed-Effects Models Using lme4, J. Stat. Softw. 67 (2015) doi:10.18637/jss.v067.i01. 12) D. Bates, M. Mächler, B. Bolker, S. Walker: Fitting Linear Mixed-Effects Models Using lme4, J. Stat. Software. 67 (2015) doi:10.18637/jss.v067.i01.

Za svaku glikansku strukturu N-glikoma prilagođen je model u kojem je zavisna varijabla logit transformirana relativna površina glikana, a fiksni faktori su bili status menopauze, te dob koja je ugniježđena u faktor statusa menopauze kako bismo za svaku skupinu žena (ovisno o statusu menopauze) procijenili efekt dobi na promjenu glikana. Zavisnost pojedinih mjerenja, kao posljedica dizajna studije u kojoj su pojedine žene uzorkovane od jedan do tri puta, te pripadaju istoj obitelji (blizanke), kontrolirana je nasumičnim efektima među kojima su jedinstvena oznaka ispitanice – ugniježđena u jedinstvenu oznaku obitelji kao nasumični odsječci, te dob kao nasumični nagib. Pomoću prilagođenog modela, procijenjena je srednja relativna površina korigirana na efekt dobi (i odgovarajući 95% interval pouzdanosti) za uzorke uzorkovane kod žena prije i poslije menopauze, te su procijenjene srednje vrijednost uspoređene post-hoc t-testom uz prilagodbu za višestruka testiranja prema Benjamini-Hochberg metodi (R paket „emmeans“); vidjeti literaturne reference 13 i 14: For each glycan structure of N-glycomes, a model was adapted in which the dependent variable was the logit transformed relative glycan area, and the fixed factors were menopause status, and age nested in the menopause status factor so that for each group of women (depending on menopause status) evaluated the effect of age on glycan change. The dependence of individual measurements, as a consequence of the design of the study in which individual women were sampled from one to three times and belong to the same family (twins), was controlled by random effects, among which were the unique identifier of the subject - nested in the unique identifier of the family as random sections, and age as a random slope. Using the fitted model, the age-corrected mean relative area (and corresponding 95% confidence interval) was estimated for samples sampled from pre- and postmenopausal women, and the estimated means were compared by post-hoc t-test with adjustment for Benjamini multiple testing. -Hochberg methods (R package "emmeans"); see literature references 13 and 14:

13) R. Lenth: Emmeans: Estimated Marginal means, aka Least-Squares Means. R Package Version 1.5.4.; vidjeti poveznicu: 13) R. Lenth: Emmeans: Estimated Marginal means, aka Least-Squares Means. R Package Version 1.5.4.; see link:

https://cran.r-project.org/web/packages/emmeans/index.html; https://cran.r-project.org/web/packages/emmeans/index.html;

14) Y. Benjamini, Y. Hochberg: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, J. R. Stat. Soc. Ser. B 57 (1995) 289-300. 14) Y. Benjamini, Y. Hochberg: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, J.R. Stat. Soc. Sir. B 57 (1995) 289-300.

doi:10.1111/j.2517-6161.1995.tb02031.x. doi:10.1111/j.2517-6161.1995.tb02031.x.

Također su procijenjene i srednje godišnje promjene u relativnim površinama (i odgovarajući 95% interval pouzdanosti) za uzorke uzorkovane kod žena prije i poslije menopauze. Usporedbe su također napravljene post-hoc t-testom uz prilagodbu za višestruka testiranja prema Benjamini-Hochberg metodi opisanoj u literaturnim referencama 13 i 14. Mean annual changes in relative areas (and corresponding 95% confidence intervals) were also estimated for samples collected from pre- and postmenopausal women. Comparisons were also made by post-hoc t-test with adjustment for multiple testing according to the Benjamini-Hochberg method described in references 13 and 14.

Dobiveni rezultati prikazani su grafički u kojima je procijenjena srednja vrijednost prikazana točkom, a odgovarajući 95% interval pouzdanosti prikazan je trakama pogreške. Na grafičkom prikazu naznačena je statistička značajnost razlike između vrijednosti dobivenih uzorkovanjem prije i nakon nastupanja menopauze kao p vrijednost (korigirana na višestruko testiranje) iznad prikazanih srednjih vrijednosti (R paket „ggplot2“); vidjeti literaturnu referencu 15: The obtained results are presented graphically in which the estimated mean value is shown as a point, and the corresponding 95% confidence interval is shown with error bars. The statistical significance of the difference between the values obtained by sampling before and after the onset of menopause is indicated on the graphic display as a p value (corrected for multiple testing) above the displayed mean values (R package "ggplot2"); see literature reference 15:

15) H. Wickham: ggplot2: Elegant Graphics for Data Analysis (2016) Springer-Verlag, New York, SAD. 15) H. Wickham: ggplot2: Elegant Graphics for Data Analysis (2016) Springer-Verlag, New York, USA.

Razvoj numeričkog modela za dijagnozu menopauze i utvrđivanje perioda perimenopauze Development of a numerical model for the diagnosis of menopause and determination of the perimenopause period

Model A: model temeljen na N-glikomu jednog uzorka. S obzirom na starost žena u vrijeme nastupanja menopauze, za razvoj modela, koji omogućuje dijagnozu menopauze na temelju N-glikoma imunoglobulina G, korišteni su samo uzorci dobiveni od žena starosti između 45 i 55 godina. Podaci analiziranih uzoraka podijeljeni su u podskup za trening modela i podskup za testiranje modela. Podskup za trening modela temeljen je na nasumičnom odabiru po jednog mjerenja iz svake obitelji s ciljem uklanjanja međusobne zavisnosti između uzoraka. Podskup za testiranje modela je sadržavao sve preostale podatke. Prilagođen je L1-regularizirani logistički model, koji kao zavisnu varijablu ima status menopauze (dihotomna varijabla – „da“ ili „ne“), dok kao nezavisnu varijable uzima logit transformirane [jednadžbom (1)] relativne površine ispod svih vršaka kromatograma N-glikoma IgG; vidjeti literaturnu referencu 16: Model A: model based on the N-glycome of a single sample. Considering the age of women at the time of onset of menopause, only samples obtained from women aged between 45 and 55 were used for the development of the model, which enables the diagnosis of menopause based on the N-glycome of immunoglobulin G. The data of the analyzed samples are divided into a subset for model training and a subset for model testing. The subset for model training is based on the random selection of one measurement from each family with the aim of removing mutual dependence between samples. The model testing subset contained all remaining data. An L1-regularized logistic model was adapted, which has menopause status as a dependent variable (dichotomous variable – "yes" or "no"), while as an independent variable it takes the logit transformed [equation (1)] of the relative areas under all peaks of the N-glycome chromatogram IgG; see literature reference 16:

16) J. Friedman, T. Hastie, R. Tibshirani: Regularization Paths for Generalized Linear Models via Coordinate Descent, J. Stat. Softw. 33 (2010) 1-22; doi:10.18637/jss.v033.i01. 16) J. Friedman, T. Hastie, R. Tibshirani: Regularization Paths for Generalized Linear Models via Coordinate Descent, J. Stat. Software. 33 (2010) 1-22; doi:10.18637/jss.v033.i01.

L1-regularizacija, poznata i kao Lasso regularizacija, primijenjena je s ciljem sprječavanja prenaučenosti i smanjenja složenosti konačnog modela. Metoda deseterostruke unakrsne provjere primijenjena je za izračun koeficijenata nezavisnih varijabli modela na podskupu za trening modela. Hiperparametar[image] je korišten radi smanjena broja prediktora na 4 ili manje (R paket „caret“); vidjeti literaturnu referencu 17: L1-regularization, also known as Lasso regularization, was applied with the aim of preventing overlearning and reducing the complexity of the final model. The tenfold cross-validation method was applied to calculate the coefficients of the model's independent variables on the training subset of the model. Hyperparameter[image] was used to reduce the number of predictors to 4 or less (R package "caret"); see literature reference 17:

17) M. Kuhn: caret: Classification and Regression Training (2020). R package version 6.0-86. https://CRAN.R-project.org/package=caret. 17) M. Kuhn: caret: Classification and Regression Training (2020). R package version 6.0-86. https://CRAN.R-project.org/package=caret.

Formulom konačnog modela izračunata je vjerojatnost da N-glikom IgG dolazi iz populacije žena koje su prošle kroz period perimenopauze i nalaze se u menopauzi za svaki uzorak iz podskupa za testiranje modela. Dobivene predikcije menopauze i stvarni statusi menopauze analizirani su ROC (engl. Receiver Operating Characteristic) analizom (R paket „pROC“), a dobiveni rezultati prikazani su ROC krivuljom; vidjeti literaturne reference 15 i 18: The final model formula calculated the probability that N-glycome IgG came from the population of perimenopausal and menopausal women for each sample from the model testing subset. The obtained predictions of menopause and the actual statuses of menopause were analyzed with ROC (Receiver Operating Characteristic) analysis (R package "pROC"), and the obtained results were presented with a ROC curve; see literature references 15 and 18:

18) X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J.-C. Sanchez, M. Müller: pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 12 (2011) 77. doi:10.1186/1471-2105-12-77. 18) X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J.-C. Sanchez, M. Müller: pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 12 (2011) 77. doi:10.1186/1471-2105-12-77.

Interval pouzdanosti (uz razinu od 95%) površine ispod ROC krivulje određen je metodom ponovnog uzorkovanja (engl. bootstrap) uz broj uzoraka od 2000. S ciljem demonstracije da je za prediktivnost menopauze odgovoran cjelokupni N-glikom IgG, a ne razine pojedinih struktura, kompletni je postupak ovog poglavlja ponovljen još dva puta uz izbacivanje glikanskih struktura kao prediktora koje su bile odabrane u konačnom modelu ranijih iteracija. The confidence interval (with a level of 95%) of the area under the ROC curve was determined by the bootstrap method with the number of samples of 2000. With the aim of demonstrating that the overall N-glycome IgG, and not the levels of individual structures, is responsible for the predictability of menopause. the complete procedure of this chapter was repeated two more times with the elimination of glycan structures as predictors that were selected in the final model of earlier iterations.

Model B: model temeljen na prosječnoj godišnjoj promjeni u N-glikomu imunoglobulina G. Prosječna je godišnja promjena izračunana dijeljenjem razlike logit transformiranih relativnih površina ispod vršaka sa razlikom u dobi između točaka uzorkovanja izraženih u godinama prema jednadžbi (2): Model B: model based on the average annual change in the N-glycome of immunoglobulin G. The average annual change is calculated by dividing the difference of the logit-transformed relative areas under the peaks by the difference in age between sampling points expressed in years according to equation (2):

[image] [image]

S obzirom na starost žena u vrijeme nastupanja menopauze, za razvoj modela, koji omogućuje dijagnozu menopauze na temelju prosječne godišnje promjene u N-glikomu IgG, korištene su samo promjene u kojima je druga vremenska točka dobivena od žena starosti između 45 i 55 godina, te razlika u dobi između prve i druge vremenske točke koja je manja od 10 godina. Podaci analiziranih uzoraka podijeljeni su u podskup za trening modela i podskup za testiranje modela. Podskup za trening modela je temeljen na nasumičnom odabiru po jednog mjerenja iz svake obitelji s ciljem uklanjanja međusobne zavisnosti između uzoraka. Podskup za testiranje modela je sadržavao sve preostale podatke. Prilagođen je L1-regularizirani logistički model, koji kao zavisnu varijablu ima status menopauze (dihotomna varijabla – „da“ ili „ne“), dok kao nezavisnu varijable uzima prosječne godišnje promjene, prema jednadžbi (2), relativne površine ispod svih vršaka kromatograma N-glikoma IgG; vidjeti literaturnu referencu 16. Metoda deseterostruke unakrsne provjere je primijenjena za izračun koeficijenata nezavisnih varijabli modela na podskupu za trening modela. Hiperparametar[image] je korišten radi smanjena broja prediktora na 4 ili manje (R paket „caret“); vidjeti literaturnu referencu 17. Considering the age of women at the time of onset of menopause, for the development of the model, which enables the diagnosis of menopause based on the average annual change in N-glycome IgG, only changes were used in which the second time point was obtained from women between the ages of 45 and 55, and age difference between the first and second time points that is less than 10 years. The data of the analyzed samples are divided into a subset for model training and a subset for model testing. The subset for model training is based on the random selection of one measurement from each family with the aim of removing mutual dependence between samples. The model testing subset contained all remaining data. An L1-regularized logistic model was adapted, which has menopause status as a dependent variable (dichotomous variable - "yes" or "no"), while as an independent variable it takes the average annual changes, according to equation (2), of the relative area under all peaks of the chromatogram N - glycoma IgG; see literature reference 16. The ten-fold cross-validation method was applied to calculate the coefficients of the model's independent variables on the model's training subset. Hyperparameter[image] was used to reduce the number of predictors to 4 or less (R package "caret"); see literature reference 17.

Formulom konačnog modela izračunata je vjerojatnost da prosječna godišnja promjena u N-glikomu IgG dolazi iz populacije žena koje su prošle kroz perimenopauzu i malaze se u menopauzi za svako mjerenje iz podskupa za testiranje modela. Dobivene predikcije menopauze i stvarni statusi menopauze su analizirani ROC (engl. Receiver Operating Charactristic) analizom (R paket „pROC“), a dobiveni rezultati su prikazani ROC krivuljom; vidjeti literaturne reference 15 i 18. Interval pouzdanosti (uz razinu od 95%) površine ispod ROC krivulje je određen metodom ponovnog uzorkovanja (engl. bootstrap) uz broj uzoraka od 2000. S ciljem demonstracije da je za prediktivnost menopauze odgovoran cjelokupni N-glikom IgG, a ne razine pojedinih struktura, kompletni je postupak ovog poglavlja ponovljen još dva puta uz izbacivanje glikanskih struktura kao prediktora koje su bile odabrane u konačnom modelu ranijih iteracija. The final model formula calculated the probability that the average annual change in N-glycome IgG came from a population of perimenopausal and postmenopausal women for each measurement from the model testing subset. The obtained predictions of menopause and the actual statuses of menopause were analyzed by ROC (Receiver Operating Characteristic) analysis (R package "pROC"), and the obtained results were presented with a ROC curve; see literature references 15 and 18. The confidence interval (at the 95% level) of the area under the ROC curve was determined by the bootstrap method with the number of samples of 2000. With the aim of demonstrating that the entire N-glycome IgG is responsible for the predictability of menopause. , and not the levels of individual structures, the complete procedure of this chapter was repeated two more times with the elimination of glycan structures as predictors that were selected in the final model of earlier iterations.

Kombinacija modela A i modela B. Razvoj modela koji kombinira informacije o prosječnoj godišnjoj promjeni u N-glikomu imunoglobulina G i razina struktura N-glikoma IgG-a uzorkovanog u drugoj vremenskoj točki prilagođen je na istom podskupu podataka kao i model temeljen samo na prosječnoj godišnjoj promjeni u N-glikomu IgG. Podskup za testiranje modela je također bio jednak podskupu za testiranje modela temeljenog samo na prosječnoj godišnjoj promjeni u N-glikomu IgG. Prilagođen je L1-regularizirani logistički model, koji kao zavisnu varijablu ima status menopauze (dihotomna varijabla – „da“ ili „ne“), dok kao nezavisnu varijable uzima prosječne godišnje promjene, prema jednadžbi (2), relativne površine ispod svih vršaka kromatograma N-glikoma IgG i logit transformirane, prema jednadžbi (1), relativne površine ispod svih vršaka kromatograma N-glikoma IgG uzorkovanog u drugoj vremenskoj točki; vidjeti literaturnu referencu 16. Metoda deseterostruke unakrsne provjere je primijenjena za izračun koeficijenata nezavisnih varijabli modela na podskupu za trening modela. Hiperparametar[image] je korišten radi smanjena broja prediktora na 5 ili manje (R paket „caret“); vidjeti literaturnu referencu 17. Combination of Model A and Model B. The development of a model combining information on the average annual change in immunoglobulin G N-glycome and the level of IgG N-glycome structures sampled at a different time point was fitted on the same subset of data as the model based only on the average annual change in N-glycome IgG. The subset for testing the model was also equal to the subset for testing the model based only on the mean annual change in N-glycome IgG. An L1-regularized logistic model was adapted, which has menopause status as a dependent variable (dichotomous variable - "yes" or "no"), while as an independent variable it takes the average annual changes, according to equation (2), of the relative area under all peaks of the chromatogram N -glycoma IgG and logit transformed, according to equation (1), the relative area under all peaks of the chromatogram of N-glycoma IgG sampled at the second time point; see literature reference 16. The ten-fold cross-validation method was applied to calculate the coefficients of the model's independent variables on the model's training subset. Hyperparameter[image] was used to reduce the number of predictors to 5 or less (R package "caret"); see literature reference 17.

Formulom konačnog modela izračunata je vjerojatnost da izmjereni N-glikom dolazi iz populacije žena koje su prošle kroz perimenopauzu i nalaze se u menopauzi za svako mjerenje iz podskupa za testiranje modela. Dobivene predikcije menopauze i stvarni statusi menopauze su analizirani ROC (engl. Receiver Operating Charactristic) analizom (R paket „pROC“), a rezultati su prikazani ROC krivuljom; vidjeti literaturne reference 15 i 18. Interval pouzdanosti (uz razinu od 95%) površine ispod ROC krivulje je određen metodom ponovnog uzorkovanja (engl. bootstrap) uz broj uzoraka od 2000. S ciljem demonstracije da je za prediktivnost menopauze odgovoran cjelokupni N-glikom IgG, a ne razine pojedinih struktura, kompletni je postupak ovog poglavlja ponovljen još dva puta uz izbacivanje glikanskih struktura kao prediktora koje su bile odabrane u konačnom modelu ranijih iteracija. The final model formula calculated the probability that the measured N-glycome was from the population of perimenopausal and menopausal women for each measurement from the model testing subset. The obtained predictions of menopause and the actual statuses of menopause were analyzed by ROC (Receiver Operating Characteristic) analysis (R package "pROC"), and the results were presented with a ROC curve; see literature references 15 and 18. The confidence interval (at the 95% level) of the area under the ROC curve was determined by the bootstrap method with the number of samples of 2000. With the aim of demonstrating that the entire N-glycome IgG is responsible for the predictability of menopause. , and not the levels of individual structures, the complete procedure of this chapter was repeated two more times with the elimination of glycan structures as predictors that were selected in the final model of earlier iterations.

Rezultati statističke analize Results of statistical analysis

Od ukupno 6032 uzorka, 5080 uzoraka je dolazilo od žena s poznatim statusom menopauze u trenutku uzorkovanja: 185 žena uzorkovanih u jednoj vremenskoj točci, 370 žena uzorkovanih u dvije vremenske točke i 1385 žena uzorkovanih u tri vremenske točke. Preostali uzorci su dolazili ili od muškaraca ili od žena s nepoznatim statusom menopauze. Prosječna dob nastupanja menopauze, za žene kojima je uzorkovanjem obuhvaćena menopauza, je 48,6 godina, uz standardnu devijaciju (SD) od 6,0 godina. Uzroci od žena koje nisu bile u menopauzi uzorkovani su pri dobi od 43,1 ± 7,0 godina, dok su uzorci žena koje su bile u menopauzi uzorkovani pri prosječnoj dobi od 62,8 ± 8,2 godine. Of a total of 6032 samples, 5080 samples came from women with known menopausal status at the time of sampling: 185 women sampled at one time point, 370 women sampled at two time points, and 1385 women sampled at three time points. The remaining samples came from either men or women with unknown menopausal status. The average age of onset of menopause, for women whose menopause was included in the sampling, is 48.6 years, with a standard deviation (SD) of 6.0 years. Causes from non-menopausal women were sampled at an average age of 43.1 ± 7.0 years, while samples from postmenopausal women were sampled at an average age of 62.8 ± 8.2 years.

Odnos između N-glikoma IgG i menopauze. Broj uspješno određenih profila N-glikana IgG u uzorcima uzorkovanim u žena s poznatim statusom menopauze opisan je u Tablici 3. Relationship between N-glycome IgG and menopause. The number of successfully determined IgG N-glycan profiles in samples sampled from women with known menopausal status is described in Table 3.

Tablica 3. Uzorci kojima je određen N-glikom imunoglobulina G. Table 3. Samples with which the N-glycome of immunoglobulin G was determined.

[image] [image]

* Ukupan broj ispitanica/obitelji može biti manji ili jednak zbroju broja ispitanica/obitelji u grupi žena koje jesu i grupi žena koje nisu u menopauzi jer pojedina ispitanica/obitelj može imati uzorak prije i nakon nastupanja menopauze. * The total number of test subjects/families may be less than or equal to the sum of the number of test subjects/families in the group of women who are and in the group of women who are not in menopause because an individual test subject/family may have a sample before and after the onset of menopause.

Analizom linearnim mješovitim modelom pokazano je da za većinu glikanskih struktura N-glikoma IgG postoji razlika u prosječnoj relativnoj površini ispod vršaka kromatograma, ovisno o tome je li uzorak uzorkovani prije ili nakon nastupanja menopauze; vidjeti Sliku 2A (GP1-GP11) i Sliku 2B (GP12-GP22). Rezultati također ukazuju na razliku u prosječnoj godišnjoj promjeni relativne površine ispod vršaka kromatograma ovisno o tome je li drugi uzorak uzorkovan prije ili nakon nastupanja menopauze; vidjeti Sliku 3A (GP1-GP11) i Sliku 3B (GP12-GP22). Linear mixed model analysis showed that for most glycan structures of N-glycome IgG there is a difference in the average relative area under the peaks of the chromatogram, depending on whether the sample was sampled before or after the onset of menopause; see Figure 2A (GP1-GP11) and Figure 2B (GP12-GP22). The results also indicate a difference in the average annual change in the relative area under the chromatogram peaks depending on whether the second sample was sampled before or after the onset of menopause; see Figure 3A (GP1-GP11) and Figure 3B (GP12-GP22).

Dijagnoza menopauze Diagnosis of menopause

Menopauzu je moguće dijagnosticirati koristeći profil IgG N-glikana. L1-regularizirani logistički model temeljen na N-glikomu jednog uzorka. Ukupni broj uzoraka primijenjen za razvoj dijagnostičkog testa temeljenog na N-glikomu IgG prikazan je u Tablici 4. Opisi podskupova korištenih za trening i testiranje modela prikazani su Tablicama 5 i 6. Menopause can be diagnosed using the IgG N-glycan profile. L1-regularized logistic model based on one-sample N-glycome. The total number of samples used to develop the N-glycome IgG-based diagnostic test is shown in Table 4. Descriptions of the subsets used for model training and testing are shown in Tables 5 and 6.

Tablica 4. Svi uzorci uzorkovani kod žena starosti između 45 i 55 godina. Table 4. All samples sampled from women aged between 45 and 55 years.

[image] [image]

Tablica 5. Nasumično odabrani podskup podataka (jedan uzorak po obitelji) za trening modela temeljenog na količini glikanskih struktura N-glikoma imunoglobulina G. Table 5. A randomly selected subset of data (one sample per family) for training a model based on the amount of glycan structures of the immunoglobulin G N-glycome.

[image] [image]

Tablica 6. Podskup podataka za testiranje modela temeljenog na količini glikanskih struktura N-glikoma imunoglobulina G i prilagođenog na podskupu za trening. Table 6. Data subset for testing the model based on the amount of glycan structures of the immunoglobulin G N-glycome and adapted to the training subset.

[image] [image]

Dobiveni rezultati pokazuju da je primjenom N-glikoma IgG moguće odrediti vjerojatnost da je prošao period perimenopause i da je nastupila menopauza. Jednadžbom (3) moguće je na temelju 4 vrška kromatograma IgG N-glikoma izračunati vjerojatnost da je nastupila menopauza kod testirane žene: The obtained results show that using N-glycome IgG it is possible to determine the probability that the period of perimenopause has passed and that menopause has occurred. Using equation (3), it is possible to calculate the probability that menopause has occurred in the tested woman based on the 4 peaks of the IgG N-glycome chromatogram:

[image] [image]

ROC analizom (engl. Receiver Operating Characteristic analysis) vjerojatnosti dobivene jednadžbom (3) na podskupu za testiranje daju ROC krivulju koja zatvara srednju površinu od[image] ([image] ), a prikazana je na Slici 4(A). By ROC analysis (Receiver Operating Characteristic analysis), the probabilities obtained by equation (3) on the testing subset give a ROC curve that closes the middle surface of [image] ([image] ), and is shown in Figure 4(A).

Odabrani vršci u jednadžbi (3) rezultat su L1-regularizacije s ciljem pojednostavljenja modela za izračun rezultata. Pojednostavljenje modela izbacivanjem prediktora moguće je zbog značajne korelacije između relativnih površina ispod vršaka kromatograma koje odgovaraju relativnim količinama pojedinih glikanskih struktura u N-glikomu IgG. Tu činjenicu potvrđuje mogućnost definicije drugih modela, odabirom nekih drugih struktura iz N-glikoma IgG-a, koji ROC analizom daju ROC krivulje tek nešto manje površine. Na primjer, vjerojatnost dobivena jednadžbom (4) rezultira sa srednjom površinom ispod ROC krivulje[image] ([image] ), a jednadžbom (5) rezultira sa srednjom površinom ispod ROC krivulje[image] ([image] ). ROC krivulje za dane primjere su prikazane na Slici 4 (B,C). The selected peaks in equation (3) are the result of L1-regularization with the aim of simplifying the model for calculating the results. Simplifying the model by dropping predictors is possible due to the significant correlation between the relative areas under the chromatogram peaks that correspond to the relative amounts of individual glycan structures in the IgG N-glycome. This fact is confirmed by the possibility of defining other models, by selecting some other structures from the N-glycome of IgG, which by ROC analysis give ROC curves with a slightly smaller area. For example, the probability obtained by equation (4) results in the mean area under the ROC curve[image] ([image] ), and by equation (5) results in the mean area under the ROC curve[image] ([image] ). ROC curves for the given examples are shown in Figure 4 (B,C).

[image] [image]

[image] [image]

L1-regularizirani logistički model temeljen na promjeni u N-glikomu između dvije vremenske točke. Ukupni broj mjerenja primijenjen za razvoj dijagnostičkog testa temeljenog na N-glikomu IgG prikazan je Tablicom 7. Opisi podskupa korištenih za trening i testiranje modela su također dani Tablicama 8 i 9. L1-regularized logistic model based on change in N-glycome between two time points. The total number of measurements used to develop the N-glycome IgG-based diagnostic test is shown in Table 7. Descriptions of the subsets used for model training and testing are also given in Tables 8 and 9.

Tablica 7. Razdioba svih mjerenja dobivenih iz uzoraka uzorkovanih u dvije vremenske točke pri čemu je starost žena u drugoj vremenskoj točki između 45 i 55 godina, vremenski razmak između tih dviju vremenski točaka je manji od 10 godina i niti jedna ispitanica nije bila u menopauzi u trenutku prvog uzorkovanja. Table 7. Distribution of all measurements obtained from samples sampled at two time points, where the age of women at the second time point is between 45 and 55 years, the time gap between these two time points is less than 10 years, and none of the subjects was in menopause in at the moment of the first sampling.

[image] [image]

Tablica 8. Nasumično odabrani podskup podataka (jedno mjerenje po obitelji) za trening modela temeljenog na promjeni u količini glikanskih struktura N-glikoma IgG. Table 8. Randomly selected subset of data (one measurement per family) for training a model based on the change in the amount of glycan structures of the N-glycome of IgG.

[image] [image]

Tablica 9. Podskup podataka za testiranje modela temeljenog na promjeni u količini glikanskih struktura N-glikoma IgG i prilagođenog na podskupu za trening. Table 9. Data subset for testing the model based on the change in the amount of glycan structures of the N-glycome of IgG and adapted to the training subset.

[image] [image]

Dobiveni rezultati pokazuju da je primjenom prosječne godišnje promjene N-glikoma IgG moguće odrediti vjerojatnost da je prošao period perimenopauze i da je nastupila menopauza. Jednadžbom (6) moguće je na temelju 4 vrška kromatograma N-glikoma IgG izračunati vjerojatnost da je nastupila menopauza kod testirane žene. The obtained results show that using the average annual change in N-glycome IgG, it is possible to determine the probability that the perimenopause period has passed and that menopause has occurred. Using equation (6), it is possible to calculate the probability that menopause has occurred in the tested woman based on the 4 peaks of the IgG N-glycome chromatogram.

[image] [image]

ROC analizom (engl. Receiver Operating Characteristic analysis) vjerojatnosti dobivene jednadžbom (6) na podskupu za testiranje daju ROC krivulju koja zatvara srednju površinu od[image] ([image] ), a prikazana je na Slici 5 (A). By ROC analysis (Receiver Operating Characteristic analysis), the probabilities obtained by equation (6) on the testing subset give a ROC curve that closes the middle surface of [image] ([image] ), and is shown in Figure 5 (A).

Odabrani vršci u jednadžbi (6) rezultat su L1-regularizacije s ciljem pojednostavljenja modela za izračun rezultata. Pojednostavljenje modela izbacivanjem prediktora moguće je zbog značajne korelacije između relativnih srednjih godišnjih promjena površina ispod vršaka kromatograma. Tu činjenicu potvrđuje mogućnost definicije drugih modela, odabirom nekih drugih struktura iz N-glikoma IgG, koji ROC analizom daju ROC krivulje tek nešto manje površine. Na primjer, vjerojatnosti dobivena jednadžbom (7) rezultira sa srednjom površinom ispod ROC krivulje[image] ([image] ), a jednadžbom (8) rezultira sa srednjom površinom ispod ROC krivulje[image] ([image] ). ROC krivulje za dane primjere su prikazane na Slici 5 (B,C). The selected peaks in equation (6) are the result of L1-regularization with the aim of simplifying the model for calculating the results. Simplification of the model by dropping the predictor is possible due to the significant correlation between the relative mean annual changes of the areas under the chromatogram peaks. This fact is confirmed by the possibility of defining other models, by selecting some other structures from the N-glycome of IgG, which, by ROC analysis, give ROC curves with a slightly smaller area. For example, probabilities obtained by equation (7) result in the mean area under the ROC curve[image] ([image] ), and equation (8) results in the mean area under the ROC curve[image] ([image] ). ROC curves for the given examples are shown in Figure 5 (B,C).

[image] [image]

[image] [image]

L1-regularizirani logistički model temeljen na promjeni u N-glikomu između dvije vremenske točke i N-glikomu druge vremenske točke. Ukupni broj mjerenja primijenjen za razvoj dijagnostičkog testa temeljenog na N-glikomu IgG prikazan je Tablicom 7. Opisi podskupova korištenih za trening i testiranje modela su također dani Tablicama 8 i 9. L1-regularized logistic model based on change in N-glycome between two time points and N-glycome of another time point. The total number of measurements used to develop the N-glycome IgG-based diagnostic test is shown in Table 7. Descriptions of the subsets used for model training and testing are also given in Tables 8 and 9.

Dobiveni rezultati pokazuju da je kombiniranom primjenom prosječne godišnje promjene N-glikoma IgG i samog profila N-glikoma drugog uzorka, moguće odrediti vjerojatnost da je prošao period perimenopauze i da je nastupila menopauza. Jednadžbom (9) moguće je na temelju 4 vrška kromatograma N-glikoma IgG izračunati vjerojatnost da je nastupila menopauza kod testirane žene. The obtained results show that by combined application of the average annual change of N-glycome IgG and the N-glycome profile of the second sample, it is possible to determine the probability that the perimenopause period has passed and that menopause has occurred. Using equation (9), it is possible to calculate the probability that menopause has occurred in the tested woman based on the 4 peaks of the IgG N-glycome chromatogram.

[image] [image]

ROC analizom (engl. Receiver Operating Characteristic analysis) vjerojatnosti dobivene jednadžbom (9) na podskupu za testiranje daju ROC krivulju koja zatvara srednju površinu od[image] ([image] ), a prikazana je na Slici 6 (A). By ROC analysis (Receiver Operating Characteristic analysis), the probabilities obtained by equation (9) on the testing subset give a ROC curve that closes the middle surface of [image] ([image] ), and is shown in Figure 6 (A).

Odabrani vršci u jednadžbi (9) rezultat su L1-regularizacije s ciljem pojednostavljenja modela za izračun rezultata. Pojednostavljenje modela izbacivanjem prediktora moguće je zbog značajne korelacije između relativnih srednjih godišnjih promjena površina ispod vršaka kromatograma. Tu činjenicu potvrđuje mogućnost definicije drugih modela, odabirom nekih drugih struktura iz N-glikoma IgG, koji ROC analizom daju ROC krivulje tek nešto manje površine. Na primjer, vjerojatnost dobivena jednadžbom (10) rezultira srednjom površinom ispod ROC krivulje[image] ([image] ), a jednadžbom (11) rezultira sa srednjom površinom ispod ROC krivulje[image] ([image] ). ROC krivulje za dane primjere su prikazane na Slici 6 (B,C). The selected peaks in equation (9) are the result of L1-regularization with the aim of simplifying the model for calculating the results. Simplification of the model by dropping the predictor is possible due to the significant correlation between the relative mean annual changes of the areas under the chromatogram peaks. This fact is confirmed by the possibility of defining other models, by selecting some other structures from the N-glycome of IgG, which, by ROC analysis, give ROC curves with a slightly smaller area. For example, the probability obtained by equation (10) results in the mean area under the ROC curve[image] ([image] ), and by equation (11) it results in the mean area under the ROC curve[image] ([image] ). ROC curves for the given examples are shown in Figure 6 (B,C).

[image] [image]

[image] [image]

Tumačenje rezultata modela Interpretation of model results

Predloženim modelima, na temelju N-glikoma i/ili promjeni N-glikoma IgG kao rezultat dobivamo broj između 0 i 1, koji odgovara procijenjenoj vjerojatnosti da je žena čiji je uzorak u menopauzi u trenutku uzimanja uzorka. Kao graničnu vrijednost određena je vrijednost od 0,5. Žene s procijenjenom vjerojatnosti manjom od 0,5 proglašavaju se da nisu u menopauzi, dok se žene s procijenjenom vjerojatnosti većom od 0,5 proglašavaju da jesu u menopauzi. With the proposed models, based on N-glycome and/or change of N-glycome IgG as a result, we get a number between 0 and 1, which corresponds to the estimated probability that the woman whose sample is in menopause at the time of taking the sample. A value of 0.5 was determined as the limit value. Women with an estimated probability of less than 0.5 are declared not to be in menopause, while women with an estimated probability of more than 0.5 are declared to be in menopause.

Detaljni opis statističke obrade rezultata opisane studije varijabilnosti IgG N-glikana GP1-GP22 u žena starosti 45-55 godina i postupci generiranja numeričkih modela koji služe za dijagnostiku menopauze prema izumu opisani su u Primjeru 2. A detailed description of the statistical processing of the results of the described study of the variability of IgG N-glycans GP1-GP22 in women aged 45-55 and the procedures for generating numerical models used for the diagnosis of menopause according to the invention are described in Example 2.

Upotreba dijagnostičkog postupka prema izumu i pripadajućih numeričkih modela u kliničkoj praksi The use of the diagnostic procedure according to the invention and associated numerical models in clinical practice

Dijagnostički postupak prema izumu koristi se za određivanje da li je ispitivana ženska osoba prošla kroz perimenopauzu i ušla u fazu menopauze. Alternativno, postupak dijagnostike prema izumu koristi se za određivanje je li ispitivana ženska osoba ušla u fazu perimenopauze. The diagnostic procedure according to the invention is used to determine whether the examined female person has gone through perimenopause and entered the menopause phase. Alternatively, the diagnostic procedure according to the invention is used to determine whether the examined female person has entered the perimenopause phase.

1.7 Primjeri izvođenja izuma 1.7 Examples of the implementation of the invention

Opće napomene General notes

Nazivlje IgG N-glikana koji su ključni za predmetni izum FA1, A2, A2B, FA2G0, M5, FA2BG0, A2G1[6], A2G1[3], FA2G1[6], A2G1[3], FA2BG1[6], FA2BG1[3], A2G2, A2BG2, FA2G2, FA2BG2, FA2G1S1[3], FA2G1S1[6], A2G2S1, FA2G2S1, FA2BG2S1, A2G2S2, A2BG2S2, FA2G2S2, FA2BG2S2 izvedeno je prema pravilima Oxford nomenklature. Names of IgG N-glycans that are key to the present invention FA1, A2, A2B, FA2G0, M5, FA2BG0, A2G1[6], A2G1[3], FA2G1[6], A2G1[3], FA2BG1[6], FA2BG1[ 3].

Značenja korištenih kratica su slijedeća: The meanings of the abbreviations used are as follows:

PNGaza F = enzim peptid-N4-(N-acetil-beta-glukozaminil)asparagin amidaza; PNGase F = peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase enzyme;

2AB = 2-aminobenzamid; 2AB = 2-aminobenzamide;

DMF = N,N-dimetilformamid, otapalo; DMF = N,N-dimethylformamide, solvent;

EDTA = N,N,N',N'-etilendiamino-tetraoctena kiselina, dinatrijeva sol dihidrat; EDTA = N,N,N',N'-ethylenediamine-tetraacetic acid, disodium salt dihydrate;

PR = prokainamid; PR = procainamide;

RF = 2,5-dioxopirolidin-1-il-[2N-[2-(N',N'-dietilamino)etil] karbamoil]-kinolin-6-il-karbamat (RapiFluor-MS); RF = 2,5-dioxopyrrolidin-1-yl-[2N-[2-(N',N'-diethylamino)ethyl] carbamoyl]-quinolin-6-yl-carbamate (RapiFluor-MS);

SD = standardna devijacija; SD = standard deviation;

e = Eulerov broj; e = Euler's number;

HILIC = tekućinska kromatografija sa hidrofilnim međudjelovanjem, dolazi od engleskog termina „hydrophilic interaction liquid chromatography“; HILIC = liquid chromatography with hydrophilic interaction, comes from the English term "hydrophilic interaction liquid chromatography";

IgG = imunoglobulin G; IgG = immunoglobulin G;

UPLC = tekućinska kromatografija ultravisoke učinkovitosti, dolazi od engleskog termina „ultra-high performance liquid chromatography. UPLC = ultra-high performance liquid chromatography, comes from the English term "ultra-high performance liquid chromatography."

Primjer 1. Studija praćenja varijabilnosti N-glikana vezanih na imunoglobulin G kod žena starosti 45 do 55 godina od kojih su neke ušle u fazu menopauze a neke nisu Example 1. A study of monitoring the variability of N-glycans bound to immunoglobulin G in women aged 45 to 55 years, some of whom have entered menopause and some who have not

U provedbi studije varijacije N-glikana GP1-GP22 vezanih na IgG iz krvne plazme žena korišten je registar TwinsUK. Uzorci pune krvi su sakupljani od strane TwinsUK registra u više vremenskih točaka (minimalno 1, maksimalno 3 po osobi) tijekom 20 godina. Puna krv je sakupljana u EDTA epruvetu i dobro promiješana. Epruveta je zatim stajala na sobnoj temperaturi te potom centrifugirana da se odvoji plazma. Plazma je prebačena u čistu epruvetu te pohranjena u zamrzivač na -80 ili -20 ̊C. The TwinsUK registry was used in the study of the variation of N-glycans GP1-GP22 bound to IgG from the blood plasma of women. Whole blood samples were collected by the TwinsUK registry at multiple time points (minimum 1, maximum 3 per person) over 20 years. Whole blood was collected in an EDTA tube and mixed well. The test tube was then left at room temperature and then centrifuged to separate the plasma. The plasma was transferred to a clean test tube and stored in a freezer at -80 or -20 ̊C.

Analizirano je ukupno 6032 uzorka: A total of 6032 samples were analyzed:

(i) 1865 pojedinaca u tri vremenske točke (ukupno 5595 uzoraka); (i) 1865 individuals at three time points (5595 samples in total);

(ii) 156 pojedinaca u dvije vremenske točke (ukupno 312 uzoraka); te (ii) 156 individuals at two time points (312 samples in total); you

(iii) 125 pojedinaca u jednoj vremenskoj točki (125 uzoraka). (iii) 125 individuals at one time point (125 samples).

Uzorci krvi su vađeni blizu vremena sakupljanja informacija o fenotipovima. Uzorci su pristigli u 60-ak kutija rasporeda 10x10 te nisu bili randomizirani. Provedena je računalna, a zatim i manualna randomizacija na 67 pločica, u tri serije (otprilike 20-ak pločica po seriji) s razmacima od dva tjedna kako bi se minimalizirala vjerojatnost pogreške uslijed dugotrajnog manualnog randomiziranja. Svaka od 67 pločica sadrži 96 jažica koje su popunjene prema sljedećem rasporedu: 90 uzoraka pojedinaca iz TwinsUK kohorte, pet standardnih uzoraka (tzv. standardni uzorci plazme, interni standardi) te jedan uzorak ultračiste vode (tzv. slijepi uzorak). Prilikom randomizacije u obzir se uzimala vrsta uzorka (pacijent ili kontrola), spol te dob budući da svaka od 67 pločica mora podjednako dobro opisivati analiziranu populaciju. Korišteno je pet standardnih uzoraka po pločici zbog korigiranja na razlike u serijama (tzv. učinak serije). Blood samples were taken close to the time of collection of phenotype information. The samples arrived in about 60 10x10 boxes and were not randomized. Computer and then manual randomization was performed on 67 tiles, in three series (approximately 20 tiles per series) with intervals of two weeks in order to minimize the probability of error due to long-term manual randomization. Each of the 67 plates contains 96 wells that are filled according to the following schedule: 90 samples from individuals from the TwinsUK cohort, five standard samples (so-called standard plasma samples, internal standards) and one sample of ultrapure water (so-called blank sample). During randomization, the type of sample (patient or control), gender and age were taken into account, since each of the 67 tiles must describe the analyzed population equally well. Five standard samples per plate were used to correct for batch differences (the so-called batch effect).

Izolacija imunoglobulina G iz humane plazme. Izolacija N-glikana vezanih na imunoglobulin G u humanoj plazmi koja prethodi glikanskoj analizi uz HILIC-UPLC-FLR sustav, sastoji se od dva dijela: od izolacije imunoglobulina G iz humane plazme protein G pločicom te od deglikozilacije, obilježavanja i pročišćavanja N-glikana koristeći GlycoWorks RapiFluor-MS N-glycan kit. Imunoglobulin G je iz uzoraka humane plazme izoliran koristeći protein G monolitnu pločicu s 96 jažica (Bia separations, Slovenia) prema protokolu opisanom u literaturnim referencama 3 i 9. Nakon izolacije imunoglobulina G koristeći protein G pločicu, prikladan volumen eluata imunoglobulina G (prosječne mase 15 µg) alikvotirano je u PCR pločicu (Starlab, UK) te osušeno u vakuumskoj centrifugi. Isolation of immunoglobulin G from human plasma. Isolation of N-glycans bound to immunoglobulin G in human plasma, which precedes glycan analysis with the HILIC-UPLC-FLR system, consists of two parts: isolation of immunoglobulin G from human plasma with a protein G plate and deglycosylation, labeling and purification of N-glycans using GlycoWorks RapiFluor-MS N-glycan kit. Immunoglobulin G was isolated from human plasma samples using a protein G monolithic 96-well plate (Bia separations, Slovenia) according to the protocol described in literature references 3 and 9. After isolation of immunoglobulin G using a protein G plate, an appropriate volume of immunoglobulin G eluate (average mass 15 µg) was aliquoted into a PCR plate (Starlab, UK) and dried in a vacuum centrifuge.

Brza deglikozilacija imunoglobulina G. 5 %-tna (w/v) RapiGest SF surfaktantska otopina pripremljena je otapanjem sadržaja dvije vijale RapiGest SF (svaka viala ima masu 10 mg). Svaka viala otopljena je u 200 µL peterostruko koncentriranog GlycoWorks Rapid pufera. Obje pripremljene RapiGest SF otopine spojene su u jednu vijalu, pomiješane te alikvotirane u PCR tubice. Osušeni eluat imunoglobulina G resuspendiran je u 10,8 µL ultračiste vode te je 3 µL 5 %-tne RapiGest SF otopine dodano u svaki uzorak te promiješano pipetom. PCR pločica s uzorcima zatvorena je s 8 povezanih čepića i inkubirana 3 minute na 99 °C kako bi se imunoglobulin G denaturirao, nakon čega je pločica ohlađena 3 minute na sobnoj temperaturi. Volumen od 1,2 µL GlycoWorks Rapid PNGaze F dodan je u svaki uzorak te promiješano pipetom. PCR pločica je zatvorena spomenutim čepićima te inkubirana 5 minuta na 50 °C kako bi se provela deglikozilacija. Nakon toga pločica je ostavljena na sobnoj temperaturi 3 minute kako bi se ohladila. Rapid deglycosylation of immunoglobulin G. 5% (w/v) RapiGest SF surfactant solution was prepared by dissolving the contents of two vials of RapiGest SF (each vial has a mass of 10 mg). Each vial was dissolved in 200 µL of 5-fold concentrated GlycoWorks Rapid buffer. Both prepared RapiGest SF solutions were combined in one vial, mixed and aliquoted into PCR tubes. The dried eluate of immunoglobulin G was resuspended in 10.8 µL of ultrapure water, and 3 µL of 5% RapiGest SF solution was added to each sample and mixed with a pipette. The PCR sample plate was sealed with 8 connected caps and incubated for 3 minutes at 99 °C to denature immunoglobulin G, after which the plate was cooled for 3 minutes at room temperature. A volume of 1.2 µL of GlycoWorks Rapid PNGase F was added to each sample and mixed with a pipette. The PCR plate was closed with the aforementioned caps and incubated for 5 minutes at 50 °C to carry out deglycosylation. After that, the plate was left at room temperature for 3 minutes to cool down.

Brzo RapiFluor-MS obilježavanje N-glikana. Boja za obilježavanje glikana pripremljena je tijekom koraka deglikozilacije na način da su se četiri vijale koje sadrže 23 mg RapiFluor-MS Reagent praha otopile u 168 µL bezvodnog DMF. Sve četiri vijale spojene su u jednu, promiješane vorteksom, te alikvotirane u PCR tubice. Iz spomenutih tubica se 6 µL otopine RapiFluor-MS reagensa odmah dodano u svaki uzorak te resuspendiranjem pipete promiješano. PCR pločica s uzorcima je pokrivena i ostavljena 5 minuta na sobnoj temperaturi, kako bi se provela reakcija obilježavanja. Nakon proteklih 5 minuta, u uzorke je dodano je 179 µL acetonitrila (Honeywell, USA), te se nastala mješavina odmah translocirala na jednomililitarsku mikrotitarsku pločicu s 96 jažica. Rapid RapiFluor-MS labeling of N-glycans. The glycan labeling dye was prepared during the deglycosylation step by dissolving four vials containing 23 mg of RapiFluor-MS Reagent powder in 168 µL of anhydrous DMF. All four vials were combined into one, vortexed, and aliquoted into PCR tubes. From the mentioned tubes, 6 µL of the RapiFluor-MS reagent solution was immediately added to each sample and mixed by resuspending the pipette. The PCR plate with the samples was covered and left for 5 minutes at room temperature, in order to carry out the labeling reaction. After the past 5 minutes, 179 µL of acetonitrile (Honeywell, USA) was added to the samples, and the resulting mixture was immediately transferred to a one-milliliter microtiter plate with 96 wells.

Pročišćavanje N-glikana ekstrakcijom na čvrstoj fazi koja se temelji na hidrofilnim interakcijama. U svrhu prekondicioniranja GlycoWorks HILIC µElution pločice dodano je triput po 200 µL ultračiste vode i 200 µL mješavine ultračiste vode i acetonitrila (15:85, v/v) u svaku jažicu. Zatim je višak tekućine uklonjen pomoću vakuumskog manifolda (Pall, USA). Acetonitrilom razrijeđeni uzorci naneseni su na µElution pločicu i vakuumski uklonjeni. Svaka pločica se isprala dvaputa sa 600 µL mikrolitara mješavine metanske kiseline (Merck, USA), ultračiste vode i acetonitrila (1:9:90, v/v/v). Zatim se stalak za otpad zamijenio s čistom 0,8 mililitarskom kolekcijskom pločicom s 96 jažica okruglog dna (Waters, USA). Uzorci su eluirani u tri koraka s tri puta po 30 µL SPE Elution pufera (200 mmol/L mješavina amonijevog acetata i acetonitrila, 95:5, v/v, pH 7), te su sve tri eluirane frakcije sakupljene u istu 0,8 militarsku pločicu. U svrhu razrjeđivanja uzoraka dodano je 310 µL otopine za razrjeđivanje uzoraka (Sample Diluent; mješavina DMF i acetonitrila, 32:68, v/v) u svaki uzorak, te je resuspendirano s pipetom. Konačni volumen po jažici je iznosio 400 µL. Volumen od 40 µL svakog uzorka je prenesen u vijale za analizu tekućinske kromatografije ultra visoke djelotvornosti temeljene na hidrofilnim interakcijama s fluorescencijskom detekcijom (HILIC-UHPLC-FLR), dok je preostali volumen skladišten na -20 °C. Purification of N-glycans by solid phase extraction based on hydrophilic interactions. In order to precondition the GlycoWorks HILIC µElution plate, 200 µL of ultrapure water and 200 µL of a mixture of ultrapure water and acetonitrile (15:85, v/v) were added three times to each well. Then the excess liquid was removed using a vacuum manifold (Pall, USA). Acetonitrile-diluted samples were applied to a µElution plate and vacuum removed. Each plate was washed twice with 600 µL microliters of a mixture of methanoic acid (Merck, USA), ultrapure water and acetonitrile (1:9:90, v/v/v). The waste rack was then replaced with a clean 0.8 ml round-bottom 96-well collection plate (Waters, USA). The samples were eluted in three steps with three times 30 µL of SPE Elution buffer (200 mmol/L mixture of ammonium acetate and acetonitrile, 95:5, v/v, pH 7), and all three eluted fractions were collected in the same 0.8 military plate. For sample dilution, 310 µL of sample dilution solution (Sample Diluent; mixture of DMF and acetonitrile, 32:68, v/v) was added to each sample and resuspended with a pipette. The final volume per well was 400 µL. A volume of 40 µL of each sample was transferred to vials for ultra high performance liquid chromatography based on hydrophilic interactions with fluorescence detection (HILIC-UHPLC-FLR) analysis, while the remaining volume was stored at -20 °C.

HILIC-UHPLC-FLR analiza N-glikana imunoglobulina G. RapiFluor-MS-om obilježeni N-glikani analizirani su na Waters Acquity UPLC H-class uređaju koristeći Waters UPLC Glycan BEH amidne kromatografske kolone (130 Å, 1,7 µm BEH particles, 2,1x100 mm). Kao otapalo A korišten je 50 mmol/L amonijev formijat, pH 4,4, a kao otapalo B 100 %-tni acetonitril LC-MS klase prema metodi opisanoj u literaturnoj referenci 8. Metoda je bila prilagođena analizi ovih uzoraka na način da je korišten linearni gradijent od 75-61,5% acetonitrila (v/v) pri protoku od 0,4 mL/min tijekom 30 minuta. Cijela analitička vožnja jednog uzorka traje 42 minute. Kromatogrami dobiveni kao rezultat opisane analize ručno su integrirani prema pripadajućim razdvojeni glikanskim skupinama; vidjeti Sliku 1. Količina glikana u svakoj glikanskoj skupini izražena je kao postotak ukupne integrirane površine (%Area) kako bi se omogućila relativna kvantifikacija N-glikana imunoglobulina G. Kromatografski vrškovi koji sadrže glikanske skupine odgovaraju glikanskim strukturama opisanim u literaturnoj referenci 8. HILIC-UHPLC-FLR analysis of immunoglobulin G N-glycans RapiFluor-MS labeled N-glycans were analyzed on a Waters Acquity UPLC H-class instrument using Waters UPLC Glycan BEH amide chromatography columns (130 Å, 1.7 µm BEH particles, 2.1x100 mm). 50 mmol/L ammonium formate, pH 4.4 was used as solvent A, and 100% acetonitrile of LC-MS class was used as solvent B according to the method described in literature reference 8. The method was adapted to the analysis of these samples in such a way that it was used linear gradient of 75-61.5% acetonitrile (v/v) at a flow rate of 0.4 mL/min over 30 minutes. The entire analytical run of one sample takes 42 minutes. The chromatograms obtained as a result of the described analysis were manually integrated according to the associated separated glycan groups; see Figure 1. The amount of glycans in each glycan group is expressed as a percentage of the total integrated area (%Area) to allow relative quantification of immunoglobulin G N-glycans. Chromatographic peaks containing glycan groups correspond to the glycan structures described in literature reference 8.

Prikladnost UHPLC sustava za analizu N-glikana kontrolirana je tijekom svake analitičke vožnje koristeći interno pripremljen standard N-glikana imunoglobulina G obilježenih 2-aminobenzamidom (2AB) kao što je to opisano u literaturnoj referenci 9. The suitability of the UHPLC system for N-glycan analysis was controlled during each analytical run using an in-house prepared 2-aminobenzamide (2AB)-labeled immunoglobulin G N-glycan standard as described in literature reference 9.

Primjer 2. Statististička obrada rezultata dobivenih studijom varijacije IgG N-glikana GP1-GP22 u žena starosti 45-55 godina od kojih su neke ušle u fazu menopauze a neke nisu, te formiranje numeričkih modela za dijagnostiku perimenopauze i menopauze prema izumu Example 2. Statistical processing of the results obtained from the study of the variation of IgG N-glycan GP1-GP22 in women aged 45-55 years, some of whom have entered the menopause phase and some who have not, and the formation of numerical models for the diagnosis of perimenopause and menopause according to the invention

S ciljem mogućnosti usporedbe površina ispod vršaka kromatograma različitih uzoraka, izračunate su relativne površine ispod vršaka kromatograma na način da je površina ispod vrška kromatograma podijeljena sa ukupnom površinom kromatograma. Dobivene relativne površine su logit transformirane prema jednadžbi (1), čime je omogućena aproksimacija razdiobe relativnih površina normalnom razdiobom. Učinak serije na mjerenja je uklonjen primjenom ComBat metode (R paket „sva“); vidjeti literaturnu referencu 11. Tako dobiveni podaci korišteni su u svim daljnjim analizama. Pri određivanju odnosa između menopauze i N-glikoma IgG korišten je linearni mješoviti model (R paket „lme4“); vidjeti literaturnu referencu 12. In order to be able to compare the areas under the chromatogram peaks of different samples, the relative areas under the chromatogram peaks were calculated in such a way that the area under the chromatogram peak was divided by the total chromatogram area. The obtained relative areas were logit transformed according to equation (1), which enabled the approximation of the distribution of relative areas by a normal distribution. The batch effect on the measurements was removed using the ComBat method (R package "all"); see literature reference 11. The data thus obtained were used in all further analyses. When determining the relationship between menopause and N-glycoma IgG, a linear mixed model was used (R package "lme4"); see literature reference 12.

Za svaku glikansku strukturu N-glikoma prilagođen je model u kojem je zavisna varijabla logit transformirana relativna površina glikana, a fiksni faktori su bili status menopauze, te dob koja je ugniježđena u faktor statusa menopauze kako bismo za svaku skupinu žena (ovisno o statusu menopauze) procijenili efekt dobi na promjenu glikana. Zavisnost pojedinih mjerenja, kao posljedica dizajna studije u kojoj su pojedine žene uzorkovane od jedan do tri puta, te pripadaju istoj obitelji (blizanke), je kontrolirana nasumičnim efektima među kojima su jedinstvena oznaka ispitanice – ugniježđena u jedinstvenu oznaku obitelji kao nasumični odsječci, te dob kao nasumični nagib. Pomoću prilagođenog modela, procijenjena je srednja relativna površina korigirana na efekt dobi (i odgovarajući 95% interval pouzdanosti) za uzorke uzorkovane kod žena prije i poslije menopauze, te su procijenjene srednje vrijednost uspoređene post-hoc t-testom uz prilagodbu za višestruka testiranja prema Benjamini-Hochberg metodi (R paket „emmeans“); vidjeti literaturne reference 13 i 14. For each glycan structure of N-glycomes, a model was adapted in which the dependent variable was the logit transformed relative glycan area, and the fixed factors were menopause status, and age nested in the menopause status factor so that for each group of women (depending on menopause status) evaluated the effect of age on glycan change. The dependence of individual measurements, as a consequence of the design of the study in which individual women were sampled from one to three times, and belong to the same family (twins), is controlled by random effects, among which are the unique identifier of the subject - nested in the unique identifier of the family as random sections, and age as a random slope. Using the fitted model, the age-corrected mean relative area (and corresponding 95% confidence interval) was estimated for samples sampled from pre- and postmenopausal women, and the estimated means were compared by post-hoc t-test with adjustment for Benjamini multiple testing. -Hochberg methods (R package "emmeans"); see references 13 and 14.

Također su procijenjene i srednje godišnje promjene u relativnim površinama (i odgovarajući 95% interval pouzdanosti) za uzorke uzorkovane kod žena prije i poslije menopauze, usporedbe su također napravljene post-hoc t-testom uz prilagodbu za višestruka testiranja prema Benjamini-Hochberg metodi opisanoj u literaturnim refrencama 13 i 14. Mean annual changes in relative areas (and corresponding 95% confidence intervals) were also assessed for samples taken from pre- and postmenopausal women, comparisons were also made by post-hoc t-test with adjustment for multiple testing according to the Benjamini-Hochberg method described in literary references 13 and 14.

Dobiveni rezultati prikazani su grafički u kojima je procijenjena srednja vrijednost prikazana točkom, a odgovarajući 95% interval pouzdanosti je prikazan trakama pogreške. Na grafičkom prikazu naznačena je statistička značajnost razlike između vrijednosti dobivenih uzorkovanjem prije i nakon nastupanja menopauze kao p vrijednost (korigirana na višestruko testiranje) iznad prikazanih srednjih vrijednosti (R paket „ggplot2“); vidjeti literaturnu referencu 15. The obtained results are presented graphically in which the estimated mean value is shown as a point, and the corresponding 95% confidence interval is shown with error bars. The statistical significance of the difference between the values obtained by sampling before and after the onset of menopause is indicated on the graphic display as a p value (corrected for multiple testing) above the displayed mean values (R package "ggplot2"); see literature reference 15.

Razvoj numeričkog modela za dijagnozu menopauze Development of a numerical model for the diagnosis of menopause

Model A: model temeljen na N-glikomu jednog uzorka. S obzirom na starost žena u vrijeme nastupanja menopauze, za razvoj modela, koji omogućuje dijagnozu menopauze na temelju N-glikoma imunoglobulina G, korišteni su samo uzorci dobiveni od žena starosti između 45 i 55 godina. Podaci analiziranih uzoraka su podijeljeni u podskup za trening modela i podskup za testiranje modela. Podskup za trening modela je temeljen na nasumičnom odabiru po jednog mjerenja iz svake obitelji s ciljem uklanjanja međusobne zavisnosti između uzoraka. Podskup za testiranje modela je sadržavao sve preostale podatke. Prilagođen je L1-regularizirani logistički model, koji kao zavisnu varijablu ima status menopauze (dihotomna varijabla – „da“ ili „ne“), dok kao nezavisnu varijable uzima logit transformirane [jednadžbom (1)] relativne površine ispod svih vršaka kromatograma N-glikoma IgG; vidjeti literaturnu referencu 16. Model A: model based on the N-glycome of a single sample. Considering the age of women at the time of onset of menopause, only samples obtained from women aged between 45 and 55 were used for the development of the model, which enables the diagnosis of menopause based on the N-glycome of immunoglobulin G. The data of the analyzed samples are divided into a subset for training the model and a subset for testing the model. The subset for model training is based on the random selection of one measurement from each family with the aim of removing mutual dependence between samples. The model testing subset contained all remaining data. An L1-regularized logistic model was adapted, which has menopause status as a dependent variable (dichotomous variable – "yes" or "no"), while as an independent variable it takes the logit transformed [equation (1)] of the relative areas under all peaks of the N-glycome chromatogram IgG; see literature reference 16.

L1-regularizacija, poznata i kao Lasso regularizacija, primijenjena je s ciljem sprječavanja prenaučenosti i smanjenja složenosti konačnog modela. Metoda deseterostruke unakrsne provjere je primijenjena za izračun koeficijenata nezavisnih varijabli modela na podskupu za trening modela. Hiperparametar[image] je korišten radi smanjena broja prediktora na 4 ili manje (R paket „caret“); vidjeti literaturnu referencu 17. Formulom konačnog modela izračunata je vjerojatnost da N-glikom IgG dolazi iz populacije žena koje su u menopauzi za svaki uzorak iz podskupa za testiranje modela. Dobivene predikcije menopauze i stvarni statusi menopauze su analizirani ROC (engl. Receiver Operating Characteristic) analizom (R paket „pROC“), a dobiveni rezultati su prikazani ROC krivuljom [5,8]; vidjeti literaturne reference 15 i 18. L1-regularization, also known as Lasso regularization, was applied with the aim of preventing overlearning and reducing the complexity of the final model. The tenfold cross-validation method was applied to calculate the coefficients of the model's independent variables on the training subset of the model. Hyperparameter[image] was used to reduce the number of predictors to 4 or less (R package "caret"); see literature reference 17. The final model formula calculated the probability that N-glycome IgG came from the population of menopausal women for each sample from the model testing subset. The obtained predictions of menopause and the actual statuses of menopause were analyzed by ROC (Receiver Operating Characteristic) analysis (R package "pROC"), and the obtained results were presented with a ROC curve [5,8]; see references 15 and 18.

Interval pouzdanosti (uz razinu od 95%) površine ispod ROC krivulje određen je metodom ponovnog uzorkovanja (engl. bootstrap) uz broj uzoraka od 2000. S ciljem demonstracije da je za prediktivnost menopauze odgovoran cjelokupni N-glikom IgG, a ne razine pojedinih struktura, kompletni je postupak ovog poglavlja ponovljen još dva puta uz izbacivanje glikanskih struktura kao prediktora koje su bile odabrane u konačnom modelu ranijih iteracija. The confidence interval (with a level of 95%) of the area under the ROC curve was determined by the bootstrap method with the number of samples of 2000. With the aim of demonstrating that the overall N-glycome IgG, and not the levels of individual structures, is responsible for the predictability of menopause. the complete procedure of this chapter was repeated two more times with the elimination of glycan structures as predictors that were selected in the final model of earlier iterations.

Model B: model temeljen na prosječnoj godišnjoj promjeni u N-glikomu imunoglobulina G. Prosječna je godišnja promjena izračunana dijeljenjem razlike logit transformiranih relativnih površina ispod vršaka sa razlikom u dobi između točaka uzorkovanja izraženih u godinama prema jednadžbi (2). S obzirom na starost žena u vrijeme nastupanja menopauze, za razvoj modela, koji omogućuje utvrđivanje prolaska kroz perimenopauzu i dijagnozu menopauze na temelju prosječne godišnje promjene u N-glikomu imunoglobulina G, korištene su samo promjene u kojima je druga vremenska točka dobivena od žena starosti između 45 i 55 godina, te razlika u dobi između prve i druge vremenske točke koja je manja od 10 godina. Podaci analiziranih uzoraka su podijeljeni u podskup za trening modela i podskup za testiranje modela. Podskup za trening modela je temeljen na nasumičnom odabiru po jednog mjerenja iz svake obitelji s ciljem uklanjanja međusobne zavisnosti između uzoraka. Podskup za testiranje modela je sadržavao sve preostale podatke. Prilagođen je L1-regularizirani logistički model, koji kao zavisnu varijablu ima status menopauze (dihotomna varijabla – „da“ ili „ne“), dok kao nezavisnu varijable uzima prosječne godišnje promjene, prema jednadžbi (2), relativne površine ispod svih vršaka kromatograma N-glikoma IgG; vidjeti literaturnu referencu 16. Metoda deseterostruke unakrsne provjere je primijenjena za izračun koeficijenata nezavisnih varijabli modela na podskupu za trening modela. Hiperparametar[image] je korišten radi smanjena broja prediktora na 4 ili manje (R paket „caret“); vidjeti literaturnu referencu 17. Model B: model based on average annual change in immunoglobulin G N-glycome. Average annual change was calculated by dividing the difference of the logit-transformed relative areas under the peaks by the difference in age between sampling points expressed in years according to equation (2). Considering the age of women at the time of onset of menopause, for the development of the model, which allows determining the passage through perimenopause and the diagnosis of menopause based on the average annual change in N-glycome of immunoglobulin G, only changes were used in which the second time point was obtained from women aged between 45 and 55 years old, and the age difference between the first and second time points is less than 10 years. The data of the analyzed samples are divided into a subset for training the model and a subset for testing the model. The subset for model training is based on the random selection of one measurement from each family with the aim of removing mutual dependence between samples. The model testing subset contained all remaining data. An L1-regularized logistic model was adapted, which has menopause status as a dependent variable (dichotomous variable - "yes" or "no"), while as an independent variable it takes the average annual changes, according to equation (2), of the relative area under all peaks of the chromatogram N - glycoma IgG; see literature reference 16. The ten-fold cross-validation method was applied to calculate the coefficients of the model's independent variables on the model's training subset. Hyperparameter[image] was used to reduce the number of predictors to 4 or less (R package "caret"); see literature reference 17.

Formulom konačnog modela izračunata je vjerojatnost da prosječna godišnja promjena u N-glikomu IgG dolazi iz populacije žena koje su u menopauzi za svako mjerenje iz podskupa za testiranje modela. Dobivene predikcije menopauze i stvarni statusi menopauze su analizirani ROC (engl. Receiver Operating Charactristic) analizom (R paket „pROC“), a dobiveni rezultati su prikazani ROC krivuljom; vidjeti literaturne reference 15 i 18. Interval pouzdanosti (uz razinu od 95%) površine ispod ROC krivulje je određen metodom ponovnog uzorkovanja (engl. bootstrap) uz broj uzoraka od 2000. S ciljem demonstracije da je za prediktivnost menopauze odgovoran cjelokupni N-glikom IgG, a ne razine pojedinih struktura, kompletni je postupak ovog poglavlja ponovljen još dva puta uz izbacivanje glikanskih struktura kao prediktora koje su bile odabrane u konačnom modelu ranijih iteracija. The final model formula calculated the probability that the average annual change in N-glycome IgG came from a population of menopausal women for each measurement from the model testing subset. The obtained predictions of menopause and the actual statuses of menopause were analyzed by ROC (Receiver Operating Characteristic) analysis (R package "pROC"), and the obtained results were presented with a ROC curve; see literature references 15 and 18. The confidence interval (at the 95% level) of the area under the ROC curve was determined by the bootstrap method with the number of samples of 2000. With the aim of demonstrating that the entire N-glycome IgG is responsible for the predictability of menopause. , and not the levels of individual structures, the complete procedure of this chapter was repeated two more times with the elimination of glycan structures as predictors that were selected in the final model of earlier iterations.

Kombinacija modela A i modela B. Razvoj modela koji kombinira informacije o prosječnoj godišnjoj promjeni u N-glikomu imunoglobulina G i razina struktura N-glikoma IgG-a uzorkovanog u drugoj vremenskoj točki prilagođen je na istom podskupu podataka kao i model temeljen samo na prosječnoj godišnjoj promjeni u N-glikomu IgG. Podskup za testiranje modela je također bio jednak podskupu za testiranje modela temeljenog samo na prosječnoj godišnjoj promjeni u N-glikomu IgG. Prilagođen je L1-regularizirani logistički model, koji kao zavisnu varijablu ima status menopauze (dihotomna varijabla – „da“ ili „ne“), dok kao nezavisnu varijable uzima prosječne godišnje promjene, prema jednadžbi (2), relativne površine ispod svih vršaka kromatograma N-glikoma IgG i logit transformirane, prema jednadžbi (1), relativne površine ispod svih vršaka kromatograma N-glikoma IgG uzorkovanog u drugoj vremenskoj točki; vidjeti literaturnu referencu 16. Metoda deseterostruke unakrsne provjere primijenjena je za izračun koeficijenata nezavisnih varijabli modela na podskupu za trening modela. Hiperparametar[image] je korišten radi smanjena broja prediktora na 5 ili manje (R paket „caret“); vidjeti literaturnu referencu 17. Combination of Model A and Model B. The development of a model combining information on the average annual change in immunoglobulin G N-glycome and the level of IgG N-glycome structures sampled at a different time point was fitted on the same subset of data as the model based only on the average annual change in N-glycome IgG. The subset for testing the model was also equal to the subset for testing the model based only on the mean annual change in N-glycome IgG. An L1-regularized logistic model was adapted, which has menopause status as a dependent variable (dichotomous variable - "yes" or "no"), while as an independent variable it takes the average annual changes, according to equation (2), of the relative area under all peaks of the chromatogram N -glycoma IgG and logit transformed, according to equation (1), the relative area under all peaks of the chromatogram of N-glycoma IgG sampled at the second time point; see literature reference 16. The ten-fold cross-validation method was applied to calculate the coefficients of the model's independent variables on the model's training subset. Hyperparameter[image] was used to reduce the number of predictors to 5 or less (R package "caret"); see literature reference 17.

Formulom konačnog modela izračunata je vjerojatnost da izmjereni N-glikom dolazi iz populacije žena koje su u menopauzi za svako mjerenje iz podskupa za testiranje modela. Dobivene predikcije menopauze i stvarni statusi menopauze su analizirani ROC (engl. Receiver Operating Charactristic) analizom (R paket „pROC“), a rezultati su prikazani ROC krivuljom; vidjeti literaturne reference 15 i 18. Interval pouzdanosti (uz razinu od 95%) površine ispod ROC krivulje je određen metodom ponovnog uzorkovanja (engl. bootstrap) uz broj uzoraka od 2000. S ciljem demonstracije da je za prediktivnost menopauze odgovoran cjelokupni N-glikom IgG, a ne razine pojedinih struktura, kompletni je postupak ovog poglavlja ponovljen još dva puta uz izbacivanje glikanskih struktura kao prediktora koje su bile odabrane u konačnom modelu ranijih iteracija. The final model formula calculated the probability that the measured N-glycome was from the population of menopausal women for each measurement from the model testing subset. The obtained predictions of menopause and the actual statuses of menopause were analyzed by ROC (Receiver Operating Characteristic) analysis (R package "pROC"), and the results were presented with a ROC curve; see literature references 15 and 18. The confidence interval (at the 95% level) of the area under the ROC curve was determined by the bootstrap method with the number of samples of 2000. With the aim of demonstrating that the entire N-glycome IgG is responsible for the predictability of menopause. , and not the levels of individual structures, the complete procedure of this chapter was repeated two more times with the elimination of glycan structures as predictors that were selected in the final model of earlier iterations.

Rezultati statističke analize Results of statistical analysis

Od ukupno 6032 uzorka, 5080 uzoraka je dolazilo od žena s poznatim statusom menopauze u trenutku uzorkovanja: 185 žena uzorkovanih u jednoj vremenskoj točci, 370 žena uzorkovanih u dvije vremenske točke i 1385 žena uzorkovanih u tri vremenske točke. Preostali uzorci dolazili su ili od muškaraca ili od žena s nepoznatim statusom menopauze. Prosječna dob nastupanja menopauze, za žene kojima je uzorkovanjem obuhvaćena menopauza, je 48,6 godina, uz standardnu devijaciju (SD) od 6,0 godina. Uzroci od žena koje nisu bile u menopauzi uzorkovani su pri dobi od 43,1 ± 7,0 godina, dok su uzorci žena koje su bile u menopauzi uzorkovani pri prosječnoj dobi od 62,8 ± 8,2 godine. Of a total of 6032 samples, 5080 samples came from women with known menopausal status at the time of sampling: 185 women sampled at one time point, 370 women sampled at two time points, and 1385 women sampled at three time points. The remaining samples came from either men or women with unknown menopausal status. The average age of onset of menopause, for women whose menopause was included in the sampling, is 48.6 years, with a standard deviation (SD) of 6.0 years. Causes from non-menopausal women were sampled at an average age of 43.1 ± 7.0 years, while samples from postmenopausal women were sampled at an average age of 62.8 ± 8.2 years.

Odnos između N-glikoma IgG i menopauze. Broj uspješno određenih profila N-glikana IgG u uzorcima uzorkovanim u žena s poznatim statusom menopauze opisan je u Tablici 3. Analizom linearnim mješovitim modelom pokazano je da za većinu glikanskih struktura N-glikoma IgG postoji razlika u prosječnoj relativnoj površini ispod vršaka kromatograma, ovisno o tome je li uzorak uzorkovani prije ili nakon nastupanja menopauze; vidjeti Sliku 2A (GP1-GP11) i Sliku 2B (GP12-GP22). Rezultati također ukazuju na razliku u prosječnoj godišnjoj promjeni relativne površine ispod vršaka kromatograma ovisno o tome je li drugi uzorak uzorkovan prije ili nakon nastupanja menopauze; vidjeti Sliku 3A (GP1-GP11) i Sliku 3B (GP12-GP22). Relationship between N-glycome IgG and menopause. The number of successfully determined IgG N-glycan profiles in samples sampled from women with known menopause status is described in Table 3. Linear mixed model analysis showed that for most glycan structures of IgG N-glycomes there is a difference in the average relative area under the chromatogram peaks, depending on whether the sample was taken before or after menopause; see Figure 2A (GP1-GP11) and Figure 2B (GP12-GP22). The results also indicate a difference in the average annual change in the relative area under the chromatogram peaks depending on whether the second sample was sampled before or after the onset of menopause; see Figure 3A (GP1-GP11) and Figure 3B (GP12-GP22).

Dijagnoza menopauze. Menopauzu je moguće dijagnosticirati koristeći profil IgG N-glikana. Diagnosis of menopause. Menopause can be diagnosed using the IgG N-glycan profile.

L1-regularizirani logistički model temeljen na N-glikomu jednog uzorka. Ukupni broj uzoraka primijenjen za razvoj dijagnostičkog testa temeljenog na N-glikomu IgG prikazan je u Tablici 4. Opisi podskupova korištenih za trening i testiranje modela su također dani Tablicama 5 i 6. L1-regularized logistic model based on one-sample N-glycome. The total number of samples used to develop the N-glycome IgG-based diagnostic test is shown in Table 4. Descriptions of the subsets used for model training and testing are also given in Tables 5 and 6.

Dobiveni rezultati pokazuju da je primjenom N-glikoma IgG moguće odrediti vjerojatnost da je nastupila menopauza. Jednadžbom (3) moguće je na temelju 4 vrška kromatograma IgG N-glikoma izračunati vjerojatnost da je nastupila menopauza kod testirane žene. ROC analizom (engl. Receiver Operating Characteristic analysis) vjerojatnosti dobivene jednadžbom (3) na podskupu za testiranje daju ROC krivulju koja zatvara srednju površinu od[image] ([image] ), a prikazana je na Slici 4(A). Odabrani vršci u jednadžbi (3) rezultat su L1-regularizacije s ciljem pojednostavljenja modela za izračun rezultata. Pojednostavljenje modela izbacivanjem prediktora je moguće zbog značajne korelacije između relativnih površina ispod vršaka kromatograma koje odgovaraju relativnim količinama pojedinih glikanskih struktura u N-glikomu IgG. The obtained results show that by using N-glycome IgG it is possible to determine the probability that menopause has occurred. Using equation (3), it is possible to calculate the probability that menopause has occurred in the tested woman based on the 4 peaks of the IgG N-glycome chromatogram. By ROC analysis (Receiver Operating Characteristic analysis), the probabilities obtained by equation (3) on the testing subset give a ROC curve that closes the middle surface of [image] ([image] ), and is shown in Figure 4(A). The selected peaks in equation (3) are the result of L1-regularization with the aim of simplifying the model for calculating the results. Simplifying the model by dropping predictors is possible due to the significant correlation between the relative areas under the chromatogram peaks that correspond to the relative amounts of individual glycan structures in the IgG N-glycome.

Tu činjenicu potvrđuje mogućnost definicije drugih modela, odabirom nekih drugih struktura iz N-glikoma IgG-a, koji ROC analizom daju ROC krivulje tek nešto manje površine. Na primjer, vjerojatnost dobivena jednadžbom (4) rezultira sa srednjom površinom ispod ROC krivulje[image] ([image] ), a jednadžbom (5) rezultira sa srednjom površinom ispod ROC krivulje[image] ([image] ). ROC krivulje za dane primjere su prikazane na Slici 4 (B,C). This fact is confirmed by the possibility of defining other models, by selecting some other structures from the N-glycome of IgG, which by ROC analysis give ROC curves with a slightly smaller area. For example, the probability obtained by equation (4) results in the mean area under the ROC curve[image] ([image] ), and by equation (5) results in the mean area under the ROC curve[image] ([image] ). ROC curves for the given examples are shown in Figure 4 (B,C).

L1-regularizirani logistički model temeljen na promjeni u N-glikomu između dvije vremenske točke. Ukupni broj mjerenja primijenjen za razvoj dijagnostičkog testa temeljenog na N-glikomu imunoglobulina G prikazan je Tablicom 7. Opisi podskupa korištenih za trening i testiranje modela dani su Tablicama 8 i 9. L1-regularized logistic model based on change in N-glycome between two time points. The total number of measurements used to develop the immunoglobulin G N-glycome-based diagnostic test is shown in Table 7. Descriptions of the subsets used for model training and testing are given in Tables 8 and 9.

Dobiveni rezultati pokazuju da je primjenom prosječne godišnje promjene N-glikoma IgG moguće odrediti vjerojatnost da je nastupila menopauza. Jednadžbom (6) je moguće na temelju 4 vrška kromatograma N-glikoma IgG izračunati vjerojatnost da je nastupila menopauza kod testirane žene. ROC analizom (engl. Receiver Operating Characteristic analysis) vjerojatnosti dobivene jednadžbom (6) na podskupu za testiranje daju ROC krivulju koja zatvara srednju površinu od[image] ([image] ), a prikazana je na Slici 5 (A). Odabrani vršci u jednadžbi (6) rezultat su L1-regularizacije s ciljem pojednostavljenja modela za izračun rezultata. Pojednostavljenje modela izbacivanjem prediktora je moguće zbog značajne korelacije između relativnih srednjih godišnjih promjena površina ispod vršaka kromatograma. The obtained results show that using the average annual change of N-glycome IgG, it is possible to determine the probability that menopause has occurred. Using equation (6), it is possible to calculate the probability that menopause has occurred in the tested woman based on the 4 peaks of the IgG N-glycome chromatogram. By ROC analysis (Receiver Operating Characteristic analysis), the probabilities obtained by equation (6) on the testing subset give a ROC curve that closes the middle surface of [image] ([image] ), and is shown in Figure 5 (A). The selected peaks in equation (6) are the result of L1-regularization with the aim of simplifying the model for calculating the results. Simplifying the model by dropping predictors is possible due to the significant correlation between the relative mean annual changes of the areas under the chromatogram peaks.

Tu činjenicu potvrđuje mogućnost definicije drugih modela, odabirom nekih drugih struktura iz N-glikoma IgG, koji ROC analizom daju ROC krivulje tek nešto manje površine. Na primjer, vjerojatnosti dobivena jednadžbom (7) rezultira sa srednjom površinom ispod ROC krivulje[image] ([image] ), a jednadžbom (8) rezultira sa srednjom površinom ispod ROC krivulje[image] ([image] ). ROC krivulje za dane primjere su prikazane na Slici 5 (B,C). This fact is confirmed by the possibility of defining other models, by selecting some other structures from the N-glycome of IgG, which, by ROC analysis, give ROC curves with a slightly smaller area. For example, probabilities obtained by equation (7) result in the mean area under the ROC curve[image] ([image] ), and equation (8) results in the mean area under the ROC curve[image] ([image] ). ROC curves for the given examples are shown in Figure 5 (B,C).

L1-regularizirani logistički model temeljen na promjeni u N-glikomu između dvije vremenske točke i N-glikomu druge vremenske točke. Ukupni broj mjerenja primijenjen za razvoj dijagnostičkog testa temeljenog na N-glikomu IgG prikazan je Tablicom 7. Opisi podskupova korištenih za trening i testiranje modela su također dani Tablicama 8 i 9. L1-regularized logistic model based on change in N-glycome between two time points and N-glycome of another time point. The total number of measurements used to develop the N-glycome IgG-based diagnostic test is shown in Table 7. Descriptions of the subsets used for model training and testing are also given in Tables 8 and 9.

Dobiveni rezultati pokazuju da je kombiniranom primjenom prosječne godišnje promjene N-glikoma IgG i samog profila N-glikoma drugog uzorka, moguće odrediti vjerojatnost da je nastupila menopauza. Jednadžbom (9) je moguće na temelju 4 vrška kromatograma N-glikoma IgG izračunati vjerojatnost da je nastupila menopauza kod testirane žene. ROC analizom (engl. Receiver Operating Characteristic analysis) vjerojatnosti dobivene jednadžbom (9) na podskupu za testiranje daju ROC krivulju koja zatvara srednju površinu od[image] ([image] ), a prikazana je na Slici 6 (A). The obtained results show that by combined application of the average annual change of N-glycome IgG and the N-glycome profile of the second sample, it is possible to determine the probability that menopause has occurred. Using equation (9), it is possible to calculate the probability that menopause has occurred in the tested woman based on the 4 peaks of the IgG N-glycome chromatogram. By ROC analysis (Receiver Operating Characteristic analysis), the probabilities obtained by equation (9) on the testing subset give a ROC curve that closes the middle surface of [image] ([image] ), and is shown in Figure 6 (A).

Odabrani vršci u jednadžbi (9) rezultat su L1-regularizacije s ciljem pojednostavljenja modela za izračun rezultata. Pojednostavljenje modela izbacivanjem prediktora moguće je zbog značajne korelacije između relativnih srednjih godišnjih promjena površina ispod vršaka kromatograma. The selected peaks in equation (9) are the result of L1-regularization with the aim of simplifying the model for calculating the results. Simplification of the model by dropping the predictor is possible due to the significant correlation between the relative mean annual changes of the areas under the chromatogram peaks.

Tu činjenicu potvrđuje mogućnost definicije drugih modela, odabirom nekih drugih struktura iz N-glikoma IgG, koji ROC analizom daju ROC krivulje tek nešto manje površine. Na primjer, vjerojatnost dobivena jednadžbom (10) rezultira srednjom površinom ispod ROC krivulje[image] ([image] ), a jednadžbom (11) rezultira sa srednjom površinom ispod ROC krivulje[image] ([image] ). ROC krivulje za dane primjere su prikazane na Slici 6 (B,C). This fact is confirmed by the possibility of defining other models, by selecting some other structures from the N-glycome of IgG, which, by ROC analysis, give ROC curves with a slightly smaller area. For example, the probability obtained by equation (10) results in the mean area under the ROC curve[image] ([image] ), and by equation (11) it results in the mean area under the ROC curve[image] ([image] ). ROC curves for the given examples are shown in Figure 6 (B,C).

Tumačenje rezultata numeričkog modela. Interpretation of numerical model results.

Predloženim modelima, na temelju N-glikoma i/ili promjeni N-glikoma IgG kao rezultat dobivamo broj između 0 i 1, koji odgovara procijenjenoj vjerojatnosti da je žena čiji je uzorak u menopauzi u trenutku uzimanja uzorka. Kao graničnu vrijednost određena je vrijednost od 0,5. Žene s procijenjenom vjerojatnosti manjom od 0,5 proglašavaju se da nisu u menopauzi, dok se žene s procijenjenom vjerojatnosti većom od 0,5 proglašavaju da jesu u menopauzi. With the proposed models, based on N-glycome and/or change of N-glycome IgG as a result, we get a number between 0 and 1, which corresponds to the estimated probability that the woman whose sample is in menopause at the time of taking the sample. A value of 0.5 was determined as the limit value. Women with an estimated probability of less than 0.5 are declared not to be in menopause, while women with an estimated probability of more than 0.5 are declared to be in menopause.

Stanje perimenopauze je općenito karakterizirano značajno blažim poremećajem normalnih koncentracija spolnih hormona koji reguliraju proces menstruacijskog ciklusa te, posljedično, blažim spektrom simptoma u odnosu na stanje pune menopauze; vidjeti literaturne reference 6 i 7. Iako numeričkim modelima prema izumu nije moguće nesumnjivo razlikovati stanje perimenopauze od stanja pune menopauze, prosječnom stručnjaku područja je razumljivo da je stupanj promjena koncentracija ključnih IgG N-glikana u fazi perimenopauze vrlo vjerojatno blaži u odnosu na stanje pune menopauze. Zbog toga, predmetna dijagnostička metoda ima određenu prediktivnu vrijednost i za određivanje stanja perimenopauze. The state of perimenopause is generally characterized by a significantly milder disturbance of the normal concentrations of sex hormones that regulate the process of the menstrual cycle and, consequently, a milder spectrum of symptoms compared to the state of full menopause; see literature references 6 and 7. Although the numerical models according to the invention are not able to unambiguously distinguish the state of perimenopause from the state of full menopause, it is understandable to the average expert in the field that the degree of changes in the concentrations of key IgG N-glycans in the perimenopause phase is very likely milder compared to the state of full menopause . Because of this, the diagnostic method in question has a certain predictive value for determining the state of perimenopause.

Zaključak Conclusion

Predmetni izum otkriva dijagnostičku metodu određivanja da li je ispitivana ženska osoba stupila u fazu perimenopauze ili menopauze na osnovi kvatitativne analize N-glikana vezanih za imunoglobulin G (IgG) iz njezine krvne plazme, odnosno, uzorka krvi. The subject invention discloses a diagnostic method for determining whether a female subject has entered the perimenopause or menopause phase based on the quantitative analysis of N-glycans bound to immunoglobulin G (IgG) from her blood plasma, i.e., a blood sample.

Razvoj rečene dijagnostičke metode omogućili su rezultati studije koja je bila provedena na skupini žena starosti 45-55 godina. Ta je studija pokazala da se N-glikani vezani na IgG, označeni oznakama GP1-GP22, značajno mijenjaju prilikom ulaska žena u fazu perimenopauze i menopauze. Na osnovi statističke obrade rezultata utvrđena je mogućnost formiranja više različitih numeričkih modela koji mogu poslužiti za dijagnostiku određivanja da li je neka ženska osoba ušla u fazu perimenopauze ili menopauze ili nije, i to na osnovi jednog jedinog uzorka krvi. Svi navedeni numerički modeli imaju visoki dijagnostički potencijal za detekciju stanja perimenopauze ili menopauze na osnovi rezultata kvantitativne analize IgG N-glikana iz uzorka krvi ispitivane ženske osobe. Preferirano su odabrana dva, relativno najprediktivnija numerička modela. The development of said diagnostic method was made possible by the results of a study conducted on a group of women aged 45-55. This study showed that IgG-bound N-glycans, labeled GP1-GP22, change significantly when women enter the perimenopause and menopause phases. Based on the statistical processing of the results, the possibility of forming several different numerical models that can be used for diagnostics to determine whether a woman has entered the perimenopause or menopause phase or not, based on a single blood sample, was established. All the mentioned numerical models have a high diagnostic potential for the detection of perimenopause or menopause based on the results of quantitative analysis of IgG N-glycan from the blood sample of the examined female person. The two relatively most predictive numerical models were preferentially selected.

1.8 Industrijska primjenjivost 1.8 Industrial Applicability

Predmetni izum otkriva dijagnostički postupak za utvrđivanje da li je ispitivana ženska osoba ušla u fazu perimenopauze ili menopauze na osnovi kvantitativne analize N-glikana vezanih na IgG iz krvne plazme. Zbog toga je industrijska primjenjivost predmetnog izuma neupitna. The subject invention discloses a diagnostic procedure for determining whether the examined female person has entered the perimenopause or menopause phase based on the quantitative analysis of N-glycans bound to IgG from blood plasma. Therefore, the industrial applicability of the subject invention is unquestionable.

Claims (9)

1. Postupak dijagnostike menopauze i utvrđivanja perioda perimenopauze putem analize N-glikana vezanih na imunoglobulin G <IgG> iz krvne plazme žena, označenih kraticama GP1 do GP22 opće kemijske strukture I: [image] [image] [image] [image] naznačen time, da rečeni postupak uključuje: (i) kvantitativnu analizu jednog ili više: (a) fluorescentno derivatiziranih glikana oslobođenih s IgG pomoću enzima peptid-N4-<N-acetil-beta-glukozaminil>asparagin amidaze <PNGaza F>; ili (b) slobodnih glikana ili odgovarajućih glikopeptida odnosno glikoformi; (ii) uvrštavanje dobivenih rezultata kvantitativnih udjela rečenih glikana u jedan ili više numeričkih modela koji su ranije dobiveni statističkom obradom rezultata studije varijacija kvantitativnog udjela IgG glikana u krvnoj plazmi na odabranoj skupini žena od kojih su neke bile u menopauzi a neke nisu; te (iii) izračunavanje rezultata u obliku broja koji opisuje vjerojatnost da je ispitivana ženska osoba prošla kroz perimenopauzu i ušla u fazu menopauze.1. The procedure for diagnosing menopause and determining the period of perimenopause through the analysis of N-glycans bound to immunoglobulin G <IgG> from the blood plasma of women, denoted by the abbreviations GP1 to GP22 of the general chemical structure I: [image] [image] [image] [image] characterized by the fact that said procedure includes: (i) quantitative analysis of one or more: (a) fluorescently derivatized glycans released from IgG by the enzyme peptide-N4-<N-acetyl-beta-glucosaminyl>asparagine amidase <PNGase F>; or (b) free glycans or corresponding glycopeptides or glycoforms; (ii) inclusion of the obtained results of quantitative proportions of said glycans in one or more numerical models that were previously obtained by statistical processing of the results of the study of variations in the quantitative proportion of IgG glycans in blood plasma on a selected group of women, some of whom were in menopause and some who were not; you (iii) calculating the result in the form of a number that describes the probability that the examined female person has passed through perimenopause and entered the menopause phase. 2. Postupak prema zahtjevu 1, naznačen time, da je odabrana skupina žena iz koraka (ii) bila starosti od 45 do 55 godina, te da se spomenuti postupak primjenjuje na subjektima koji pripadaju tom rasponu godina.2. The procedure according to claim 1, characterized by the fact that the selected group of women from step (ii) was between the ages of 45 and 55, and that the said procedure is applied to subjects belonging to that age range. 3. Postupak prema zahtjevu 1 ili 2, naznačen time, da se rezultat iz koraka (iii) interpretira na način: (a) ako je rezultat između 0,5 i 1,0, ispitivana ženska osoba je prošla kroz perimenopauzu i ušla u fazu menopauze; a (b) ako je rezultat između 0 i 0,5 ispitivana ženska osoba nije prošla kroz perimenopauzu i ušla u fazu menopauze.3. Procedure according to claim 1 or 2, characterized in that the result from step (iii) is interpreted in the following way: (a) if the score is between 0.5 and 1.0, the female subject has passed through perimenopause and entered the menopause phase; And (b) if the result is between 0 and 0.5, the examined female person has not gone through perimenopause and entered the menopause phase. 4. Postupak prema zahtjevima 1-3, naznačen time, da se vjerojatnost [image] 4. da je ispitivana ženska osoba prošla kroz perimenopauzu i stupila u fazu menopauze izračunava pomoću numeričkog modela: [image] gdje su: [image] , [image] , [image] i [image] logit transformirane vrijednosti relativne površine ispod vršaka istoimenih glikana GP2, GP4, GP12 i GP22 iz kromatograma izabrane kvantitativne analitičke tehnike, gdje je funkcija logit definirana kao: [image] .4. The procedure according to claims 1-3, characterized in that the probability [image] 4. that the examined female person has gone through perimenopause and entered the menopause phase is calculated using a numerical model: [image] where are they: [image] , [image] , [image] and [image] logit transformed value of the relative area under the peaks of glycans of the same name GP2, GP4, GP12 and GP22 from the chromatogram of the chosen quantitative analytical technique, where the logit function is defined as: [image] . 5. Postupak prema zahtjevima 1-3, naznačen time, da se vjerojatnost [image] 5. da je ispitivana ženska osoba prošla kroz perimenopauzu i stupila u fazu menopauze izračunava pomoću formule: [image] gdje su: - [image] logit transformirana vrijednost relativne površine ispod vrška glikana GP12 iz kromatograma odgovarajuće kvantitativne analitičke tehnike, gdje je funkcija logit definirana kao: [image] a - [image] , [image] , [image] i [image] prosječne godišnje promjene u Logit transformiranim vrijednostima relativne površine ispod vršaka istoimenih glikana G11, G12, G13 i G16 iz kromatograma odgovarajuće kvantitativne analitičke tehnike definirane kao: [image] .5. The procedure according to claims 1-3, characterized in that the probability [image] 5. that the examined female person has gone through perimenopause and entered the menopause phase is calculated using the formula: [image] where are they: - [image] logit transformed value of the relative area under the GP12 glycan peak from the chromatogram of the appropriate quantitative analytical technique, where the logit function is defined as: [image] And - [image] , [image] , [image] and [image] average annual changes in the Logit transformed values of the relative area under the peaks of glycans of the same name G11, G12, G13 and G16 from the chromatogram of the corresponding quantitative analytical technique defined as: [image] . 6. Postupak prema bilo kojem od prethodnih zahtjeva, naznačen time, da se glikani derivatiziraju reagensima izabranim iz skupine koju čine: (i) kombinacija prikladnog aromatskog amina poput 2-amino benzamida <2AB> ili prokainamida (PR) i nekog prikladog reducensa za reduktivnu aminaciju: kompleks 2-pikolin boran <BH3•NC5H4-2-CH3> ili natrijev cijanoborhidrid <NaBH3CN>; [image] ili (ii) 2,5-dioxopirolidin-1-il-<2N-<2-<N',N'-dietilamino>etil> karbamoil>-kinolin-6-il-karbamat <RF>: [image] .6. The method according to any of the preceding claims, characterized in that the glycans are derivatized with reagents selected from the group consisting of: (i) combination of a suitable aromatic amine such as 2-amino benzamide <2AB> or procainamide (PR) and some suitable reductant for reductive amination: 2-picoline borane complex <BH3•NC5H4-2-CH3> or sodium cyanoborohydride <NaBH3CN>; [image] or (ii) 2,5-dioxopyrrolidin-1-yl-<2N-<2-<N',N'-diethylamino>ethyl> carbamoyl>-quinolin-6-yl-carbamate <RF>: [image] . 7. Postupak prema bilo kojem od prethodnih zahtjeva, naznačen time, da je analitička tehnika izabrana iz skupine koju čine: tekućinska kromatografija ultravisoke učinkovitosti <UPLC>; MALDI-TOF masena spektrometrija; tekućinska kromatografija spregnuta s masenom spektrometrijom <LC-MS>; ili kapilarna elektroforeza <CE>.7. The method according to any of the preceding claims, indicated by the fact that the analytical technique is selected from the group consisting of: ultra-high efficiency liquid chromatography <UPLC>; MALDI-TOF mass spectrometry; liquid chromatography coupled with mass spectrometry <LC-MS>; or capillary electrophoresis <CE>. 8. Upotreba postupka prema bilo kojem od prethodnih zahtjeva za određivanje je li ispitivana ženska osoba prošla kroz perimenopauzu i ušla u fazu menopauze.8. Use of a method according to any one of the preceding claims for determining whether a female subject has undergone perimenopause and entered the menopausal phase. 9. Upotreba postupka prema bilo kojem od prethodnih zahtjeva za određivanje je li ispitivana ženska osoba ušla u fazu perimenopauze.9. Use of a method according to any one of the preceding claims for determining whether a female subject has entered perimenopause.
HRP20210509AA 2021-03-30 2021-03-30 PROCEDURE FOR MENOPAUSE DIAGNOSIS AND FOR PERIMENOPAUSE PERIOD DETERMINATION BASED ON BLOOD PLASMA IgG GLYCOMA COMPOSITION HRP20210509A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
HRP20210509AA HRP20210509A1 (en) 2021-03-30 2021-03-30 PROCEDURE FOR MENOPAUSE DIAGNOSIS AND FOR PERIMENOPAUSE PERIOD DETERMINATION BASED ON BLOOD PLASMA IgG GLYCOMA COMPOSITION
PCT/EP2022/058071 WO2022207537A2 (en) 2021-03-30 2022-03-28 DIAGNOSTIC PROCESS FOR THE DETERMINATION OF PERIMENOPAUSE OR MENOPAUSE STATUS VIA ANALYSIS OF THE IgG GLYCOME
EP22718675.6A EP4314816A2 (en) 2021-03-30 2022-03-28 Diagnostic process for the determination of perimenopause or menopause status via analysis of the igg glycome
US18/373,311 US20240044917A1 (en) 2021-03-30 2023-09-27 METHOD FOR THE ASSESSMENT OF PERIMENOPAUSE OR MENOPAUSE STATUS VIA ANALYSIS OF THE IgG GLYCOME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HRP20210509AA HRP20210509A1 (en) 2021-03-30 2021-03-30 PROCEDURE FOR MENOPAUSE DIAGNOSIS AND FOR PERIMENOPAUSE PERIOD DETERMINATION BASED ON BLOOD PLASMA IgG GLYCOMA COMPOSITION

Publications (1)

Publication Number Publication Date
HRP20210509A1 true HRP20210509A1 (en) 2022-10-14

Family

ID=88069651

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP20210509AA HRP20210509A1 (en) 2021-03-30 2021-03-30 PROCEDURE FOR MENOPAUSE DIAGNOSIS AND FOR PERIMENOPAUSE PERIOD DETERMINATION BASED ON BLOOD PLASMA IgG GLYCOMA COMPOSITION

Country Status (1)

Country Link
HR (1) HRP20210509A1 (en)

Similar Documents

Publication Publication Date Title
Nelson et al. Liquid chromatography–tandem mass spectrometry assay for simultaneous measurement of estradiol and estrone in human plasma
EP1996923B1 (en) Methods for distinguishing isomers using mass spectrometry
Cho et al. Biomarker Characterization by MALDI–TOF/MS
Keser et al. High-throughput and site-specific N-glycosylation analysis of human alpha-1-acid glycoprotein offers a great potential for new biomarker discovery
Rathkolb et al. Clinical chemistry and other laboratory tests on mouse plasma or serum
Jonklaas et al. Total and free thyroxine and triiodothyronine: measurement discrepancies, particularly in inpatients
Wijeyesekera et al. Quantitative UPLC-MS/MS analysis of the gut microbial co-metabolites phenylacetylglutamine, 4-cresyl sulphate and hippurate in human urine: INTERMAP Study
Zhou et al. Simultaneous measurement of total estradiol and testosterone in human serum by isotope dilution liquid chromatography tandem mass spectrometry
HRP20130568A2 (en) Procedure for analysis of n-glycans attached to immunoglobulin g from human blood serum and the use thereof
Hogeling et al. Quantification of proteins in whole blood, plasma and DBS, with element-labelled antibody detection by ICP-MS
Ozcan et al. Evaluation of the analytical performance of Unicel DXI 800 for the Total 25 (OH) Vitamin D measurements
Chiu et al. Development of an efficient mAb quantification assay by LC-MS/MS using rapid on-bead digestion
JP2013502584A (en) Identification and quantification of biomarkers for risk assessment of preterm birth
Kim et al. Development and validation of a highly sensitive LC–MS/MS method for in vitro measurement of histamine concentration
EP3265828B1 (en) Methods and systems for measuring serotonin in a sample
Shi et al. Quantitative characterization of glycoproteins in neurodegenerative disorders using iTRAQ
EP1835290B1 (en) Assay for catecholamines
Tuchtenhagen et al. A novel approach for the determination of exchangeable copper in serum using protein precipitation
van der Gugten et al. An automated mass spectrometric blood test for therapeutic drug monitoring of infliximab
Rezeli et al. MRM assay for quantitation of complement components in human blood plasma—a feasibility study on multiple sclerosis
HRP20210509A1 (en) PROCEDURE FOR MENOPAUSE DIAGNOSIS AND FOR PERIMENOPAUSE PERIOD DETERMINATION BASED ON BLOOD PLASMA IgG GLYCOMA COMPOSITION
Yu et al. A modified LC-MS/MS method for the detection of whole blood tacrolimus and its clinical value in Chinese kidney transplant patients
KR20200132530A (en) Protein markers for predicting of preterm birth and diagnostic methods thereof
Han et al. Development and validation of a decision tree classification model for the essential hypertension based on serum protein biomarkers
Deng et al. Effects of pretreatment protocols on human amniotic fluid protein profiling with SELDI-TOF MS using protein chips and magnetic beads

Legal Events

Date Code Title Description
A1OB Publication of a patent application
OBST Application withdrawn