HRP20200097A2 - A process of preparing photopolymer material and a system of devices with application in dlp 3d printer - Google Patents

A process of preparing photopolymer material and a system of devices with application in dlp 3d printer Download PDF

Info

Publication number
HRP20200097A2
HRP20200097A2 HRP20200097AA HRP20200097A HRP20200097A2 HR P20200097 A2 HRP20200097 A2 HR P20200097A2 HR P20200097A A HRP20200097A A HR P20200097AA HR P20200097 A HRP20200097 A HR P20200097A HR P20200097 A2 HRP20200097 A2 HR P20200097A2
Authority
HR
Croatia
Prior art keywords
photopolymer
printing
roller
models
dlp
Prior art date
Application number
HRP20200097AA
Other languages
Croatian (hr)
Inventor
Ljubomir LOKIN
Luka Biondić
Original Assignee
3Dtech d.o.o.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3Dtech d.o.o. filed Critical 3Dtech d.o.o.
Priority to HRP20200097AA priority Critical patent/HRP20200097A2/en
Priority to PCT/HR2021/000001 priority patent/WO2021148827A1/en
Publication of HRP20200097A2 publication Critical patent/HRP20200097A2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/218Rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

Postupak pripreme fotopolimernog materijala i sustav uređaja s primjenom u DLP (Digital light processing) 3D printeru uključuju sustav za održavanje stalne razine tekućine (1, 11, 12 i 13), valjak (8) i zasićenu tekućinu (19) u posudi (1) u kojoj se provodi printanje 3D modela (2). Ovaj izum se odnosi na način i cjeloviti postupak pripreme fotopolimernog materijala (4) kod printanja 3D modela (2) na DLP 3D printerima. Gore navedeni elementi sustava čine cjelinu i na taj način rezultiraju najučinkovitijim utjecajem na rješavanju do sada prisutnih tehničkih problema kod 3D printanja DLP tehnologijom.<BR/> <BR/>Primjenom ovog cjelovitog postupka omogućava se veća brzina printanja 3D modela (2), postiže se veća preciznost isprintanih 3D modela (2) te u konačnici utječe na pojeftinjenje izrade 3D modela (2) printanih na DLP 3D tehnologiji. Po ovom izumu, printanje je moguće u kontinuitetu, bez prestanka rada, sa konstantnom ponovljivošću isprintanih 3D modela (2). I ono što naročito ističe prednost ovog izuma je mogućnost kvalitetnog i preciznog printanja 3D modela (2) neograničenih dimenzija.<BR/> <BR/>Primjenom ovog izuma rješavaju se postojeći tehnički problemi kod printanja 3D modela (2) sa DLP tehnologijom, a to su: taloženje pigmenta (6), potreba za miješanjem fotopolimera (4), hlađenje fotopolimera (4) te očuvanje konstantne udaljenosti između projektora (3) i površine fotopolimera (22). Konačni rezultat primjene ovog izuma, a uzevši u obzir i rješavanje prisutnih tehničkih problema, je da izum doprinosi da je printanje 3D modela (2) brže, preciznije, jeftinije i moguće u neograničenim dimenzijama printanja 3D modela (2).The process of preparing the photopolymer material and a system of devices with application in DLP (Digital light processing) 3D printer include a system for maintaining a constant liquid level (1, 11, 12 and 13), a roller (8) and a saturated liquid (19) in the vessel (1) in which 3D model printing is performed (2). The present invention relates to a method and a complete process of preparing a photopolymer material (4) when printing a 3D model (2) on DLP 3D printers. The above elements of the system form a whole unit and thus result in the most effective impact on solving the current technical problems in 3D printing by DLP technology.<BR/><BR/>The application of this complete procedure enables higher speed of printing 3D models (2), achieves higher precision of printed 3D models (2) and ultimately affects the cost of making 3D models (2) printed in DLP 3D technology. According to the present invention, printing is possible continuously, without interruption, with constant repeatability of printed 3D models (2). And what particularly emphasizes the advantage of the present invention is the possibility of quality and accurate printing of 3D models (2) of unlimited dimensions.<BR/><BR/>The application of the present invention solves the existing technical problems when printing 3D models (2) by DLP technology, namely: pigment deposition (6), the need to mix photopolymer (4), cooling the photopolymer (4) and maintaining a constant distance between the projector (3) and photopolymer surface (22). The final result of the application of the present invention, and taking into account the solution of the present technical problems, is that the invention contributes to the printing of 3D models (2) faster, more accurate, cheaper and possible in unlimited dimensions of printing 3D models (2).The process of preparing the photopolymer material and the device system with application in DLP (Digital light processing) 3D printer include a system for maintaining a constant liquid level (1, 11, 12 and 13), a roller (8) and a saturated liquid (19) in the vessel (1) in which 3D model printing is performed (2). The present invention relates to a method and a complete process for preparing a photopolymer material (4) when printing a 3D model (2) on DLP 3D printers. The above elements of the system form a whole and thus result in the most effective influence on solving the current technical problems in 3D printing with DLP technology. increases the precision of printed 3D models (2) and ultimately reduces the cost of making 3D models (2) printed on DLP 3D technology. According to the present invention, printing is possible continuously, without interruption, with constant repeatability of printed 3D models (2). And what particularly emphasizes the advantage of the present invention is the possibility of quality and accurate printing of 3D models (2) of unlimited dimensions. these are: pigment deposition (6), the need to mix photopolymers (4), cooling the photopolymers (4) and maintaining a constant distance between the projector (3) and the surface of the photopolymer (22). The final result of the application of the present invention, and taking into account the solution of the present technical problems, is that the invention contributes to the printing of 3D models (2) faster, more accurate, cheaper and possible in unlimited dimensions of printing 3D models (2). photopolymer material and a system of devices with application in DLP (Digital light processing) 3D printer include a system for maintaining a constant liquid level (1, 11, 12 and 13), a roller (8) and a saturated liquid (19) in the vessel (1) in which 3D model printing is performed (2). The present invention relates to a method and a complete process of preparing a photopolymer material (4) when printing a 3D model (2) on DLP 3D printers. The above elements of the system form a whole unit and thus result in the most effective impact on solving the current technical problems in 3D printing by DLP technology. <BR/> <BR/> The application of this complete procedure enables higher speed of printing 3D models (2), achieves higher precision of printed 3D models (2) and ultimately affects the cost of making 3D models (2) printed in DLP 3D technology. According to the present invention, printing is possible continuously, without interruption, with constant repeatability of printed 3D models (2). And what particularly emphasizes the advantage of the present invention is the possibility of quality and accurate printing of 3D models (2) of unlimited dimensions. <BR/> <BR/> The application of the present invention solves the existing technical problems when printing 3D models (2) by DLP technology, namely: pigment deposition (6), the need to mix photopolymer (4), cooling the photopolymer (4) and maintaining a constant distance between the projector (3) and photopolymer surface (22). The final result of the application of the present invention, and taking into account the solution of the present technical problems, is that the invention contributes to the printing of 3D models (2) faster, more accurate, cheaper and possible in unlimited dimensions of printing 3D models (2).

Description

Područje na koje se izum odnosi The field to which the invention relates

Ovaj izum se odnosi na način i cjeloviti postupak pripreme fotopolimernog materijala kod printanja 3D modela na DLP 3D printerima. DLP (Digital light processing) tehnologija 3D primanja radi na način da se tekuća smola (fotopolimer), koja se nalazi u spremniku, osvjetljava sa UV svjetlosnim spektrom. Osvjetljava se sloj po sloj i pod utjecajem UV svjetla u smoli se stvaraju polimerni lanci, te se smola stvrdnjava. Samim time iz tekućine nastaje tvrdi 3D model. U trenutnoj primjeni DLP tehnologije postoje dva princip printanja: tzv ’Bottom up' i 'Top down' princip printanja. U ’Bottom up’ principu rada fotopolimer se osvjetljava odozdola, a kod Top down' principa rada fotopolimer se osvjetljava odozgora , tj osvjetljava se površina fotopolimera. Trenutno u primjeni DLP tehnologije prevladava ’Bottom up’ princip rada. This invention relates to the method and complete process of preparing photopolymer material for printing 3D models on DLP 3D printers. DLP (Digital light processing) 3D reception technology works in such a way that the liquid resin (photopolymer), which is in the container, is illuminated with the UV light spectrum. It is illuminated layer by layer and under the influence of UV light, polymer chains are created in the resin, and the resin hardens. A hard 3D model is thus created from the liquid. In the current application of DLP technology, there are two printing principles: the so-called 'Bottom up' and 'Top down' printing principles. In the 'Bottom up' principle of operation, the photopolymer is illuminated from below, and in the 'Top down' principle of operation, the photopolymer is illuminated from above, i.e. the surface of the photopolymer is illuminated. Currently, the "Bottom up" working principle prevails in the application of DLP technology.

Obzirom da kod primjene ’Bottom up’ principa rada postoji čitav niz tehničkih problema i ograničenja, primjenom ovog izuma rješavaju se ti problemi. Considering that there are a whole series of technical problems and limitations when applying the 'Bottom up' working principle, these problems are solved by applying this invention.

Izum obuhvaća sustav za održavanje stalne razine tekućine u posudi, upotrebu valjka koji prelazi po samoj površini fotopolimernog materijala na kojoj se vrši polimerizacija 3D modela, upotrebu tekućine veće specifične težine koja se nalazi u posudi sa fotopolimerom u kojoj se odvija printanje 3D modela i dinamičko miješanje fotopolimera. The invention includes a system for maintaining a constant level of liquid in the container, the use of a roller that passes over the very surface of the photopolymer material on which the 3D model is polymerized, the use of a liquid with a higher specific gravity that is in the container with the photopolymer in which the 3D model is printed, and dynamic mixing photopolymer.

Sumirano, cjeloviti postupak se sastoji od tri pojedinačne implementacije i jednog načina pripreme fotopolimera a koji onda čine cjelinu: In summary, the complete procedure consists of three individual implementations and one method of photopolymer preparation, which then form a whole:

1. Pomične sekundarne posude za održavanje stalne razine tekućine u posudi u kojoj se printa 3D model, 1. Movable secondary containers for maintaining a constant level of liquid in the container in which the 3D model is printed,

2. Valjka koji prelazi površinom fotopolimera 2. A roller that passes over the surface of the photopolymer

3. Zasićene tekućine u posudi u kojoj se provodi printanje 3D modela 3. Saturated liquid in the container in which the 3D model is printed

4. Miješanje fotopolimera i njegovo hlađenje 4. Mixing the photopolymer and cooling it

Primjenom ovog cjelovitog postupka omogućava se veća brzina printanja 3D modela, postiže se veća preciznost isprintanih 3D modela te u konačnici utječe na pojeftinjenje izrade 3D modela primanih na DLP 3D tehnologiji. Također, primjenom ovog izuma omogućeno je kvalitetno i precizno printanje 3D modela neograničenih dimenzija. The application of this complete procedure enables a higher speed of printing 3D models, achieves greater precision of the printed 3D models, and ultimately affects the cheaper production of 3D models received on DLP 3D technology. Also, the application of this invention enables high-quality and precise printing of 3D models of unlimited dimensions.

Prema međunarodnoj klasifikaciji (MKP) ovaj izum je klasificiran kao: According to the International Classification (ICC), this invention is classified as:

B01D Odjeljivanje općenito B01D Separation in general

B01D 17/02 Odjeljivanje nemiješajućih tekućina B01D 17/02 Separation of immiscible liquids

B01D / C02F postupak s vodom B01D / C02F process with water

B05 Raspršivanje ili prskanje, općenito ; nanošenje kapljevina ili ostalog tekućeg materijala na površine, općenito B05 Spraying or spraying, in general; application of liquids or other liquid material to surfaces, in general

B29 Prerada plastičnih materijala, prerada tvari u plastičnom stanju B29 Processing of plastic materials, processing of substances in a plastic state

B29C 37/00 Sastavni dijelovi, pojedinosti, pribor ili pomoćne operacije B29C 37/00 Components, parts, accessories or auxiliary operations

B67C 3/28 Uređaji za regulaciju količine pri punjenju boca tekućinama B67C 3/28 Devices for volume regulation when filling bottles with liquids

B67D Točenje, izdavanje ili pretakanje kapljevina B67D Dispensing, dispensing or decanting liquids

F28 Izmjena topline, općenito F28 Heat exchange, general

G03 Uređaji ili procesi za pripremu ili obradu fotoosjetljivog materijala G03 Apparatus or processes for the preparation or processing of photosensitive material

G05 Upravljanje; reguliranje G05 Management; regulation

G05D 9/00 Upravljanje razine, npr. upravljanje količine materijala pohranjenog u spremniku G05D 9/00 Level control, eg control of the amount of material stored in a tank

G05D 9/02 bez pomoćnog izvora energije G05D 9/02 without auxiliary power source

Tehnički problem Technical problem

U dosadašnjoj primjeni DLP tehnologije najviše se koristi tzv. ’Bottom up' princip printanja (SL 2) gdje se fotopolimer 4 osvjetljava odozdola 3 tj. kroz posudu 1. Primjenom te tehnologije, da bi svjetlo moglo osvjetljavati fotopolimer, dno posude je izrađeno od prozirne folije 5 (tzv. FEP folije). Ova folija služi tome da na površini osvjetljavanja 22 radi idealno ravni sloj fotopolimera 4. Međutim, u toku procesa folija 5 se rasteže i samim time troši. Zbog tog rastezanja folije 5 ova tehnologija može raditi samo sa najkvalitetnijim a samim tim i najskupljim fotopolimerima 4. In the current application of DLP technology, the so-called "Bottom up" printing principle (SL 2) where the photopolymer 4 is illuminated from below 3, i.e. through the container 1. Using this technology, so that the light could illuminate the photopolymer, the bottom of the container is made of transparent foil 5 (so-called FEP foil). This film serves to ensure that an ideally flat layer of photopolymer 4 works on the illumination surface 22. However, during the process, the film 5 stretches and therefore wears out. Because of this stretching of the film 5, this technology can only work with the highest quality and therefore the most expensive photopolymers 4.

Također, zbog ove karakteristike rastezanja folije, nemoguće je napraviti 3D printer velike radne dimenzije. Also, due to this characteristic of film stretching, it is impossible to make a 3D printer with large working dimensions.

’Bottom up' (SL 2) princip je vrlo uspješan i koristi se pri poslovima 3D printanja za izrazito male i precizne modele. Međutim, za veće modele (od 10cm na više) ova tehnologija nije prikladna. The 'Bottom up' (SL 2) principle is very successful and is used in 3D printing jobs for extremely small and precise models. However, this technology is not suitable for larger models (from 10 cm or more).

Ovako primijenjena DLP tehnologija printanja donosi i nekoliko problema koji utječu na kvalitetu i brzinu printanja. Jedan od problema je taloženje pigmenta 6 na dnu posude 1 u kojoj se nalazi fotopolimer 4 za printanje. Naime, fotopolimeri su prozirne tekućine kojima se po potrebi dodaje pigment ako se želi dobiti neka posebna boja fotopolimera a u kojoj boji se onda i isprintava 3D model 2. Tijekom mirovanja i printanja dolazi do taloženja pigmenta 6 na dnu posude 1 a to onda zahtijeva povremene prekide printanja, čišćenje posude, miješanje i ponovno dodavanje fotopolimera 4. DLP printing technology applied in this way also brings several problems that affect the quality and speed of printing. One of the problems is the deposition of the pigment 6 at the bottom of the container 1 in which the photopolymer 4 for printing is located. Namely, photopolymers are transparent liquids to which, if necessary, pigment is added if a special color of photopolymer is to be obtained, and in which color the 3D model 2 is printed. printing, cleaning the container, mixing and re-adding the photopolymer 4.

Sve to ima utjecaja na brzinu i ponovljivost printanja te ujedno utječe na povišenje cijene isprintanog modela i cijelog procesa printanja. All this has an impact on the speed and repeatability of printing, and at the same time it affects the increase in the price of the printed model and the entire printing process.

Drugi problem je zagrijavanje fotopolimera 4 tokom printanja. Naime, fotopolimerizacija je egzoterman proces u kojem se oslobađa toplina koja zagrijava sam fotopolimer 4. Tako zagrijan fotopolimer nije pogodan za ponovno osvjetljavanje UV svjetlom jer povećanjem njegove temperature usporava se reakcija polimerizacije, a što rezultira nepotpunim očvršćivanjem slojeva printanih u takvim uvjetima. Idealno je da je fotopolimer 4 na sobnoj temperaturi. Da bi postojeća tehnologija to postigla, neophodno je produžiti vrijeme između dva osvjetljavanja UV svjetlom 3 a što onda produžuje vrijeme printanja 3D modela 2 i konačno, utječe na cijenu koštanja isprintanog 3D modela 2. Another problem is the heating of the photopolymer 4 during printing. Namely, photopolymerization is an exothermic process in which heat is released, which heats the photopolymer itself 4. Photopolymer heated in this way is not suitable for re-illumination with UV light, because increasing its temperature slows down the polymerization reaction, which results in incomplete hardening of the layers printed in such conditions. Ideally, photopolymer 4 is at room temperature. In order for the existing technology to achieve this, it is necessary to extend the time between two exposures with UV light 3, which then extends the printing time of the 3D model 2 and, finally, affects the cost price of the printed 3D model 2.

Treći problem je očuvanje konstantne udaljenosti između projektora UV svjetla 3 i površine polimerizacije 22. Naime, tijekom printanja 3D modela 3 dio fotopolimerne mase 4 završava u 3D modelu 2. U 'Top down' tehnologiji (SL 3) nakon što je gotov isprint 3D modela 2, on se izvlači u vis po ’Z' osi i samim tim se umanjuje količina preostalog fotopolimera 4 u posudi za printanje (SL 4A i SL 4B). Ručnim dodavanjem fotopolimerne mase 4 od strane korisnika, gotovo je sigurno da će doći do promjene u udaljenosti između projektora 3 i površine fotopolimera 22 jer ručno lijevanje ne može biti dovoljno precizno. Ovaj problem direktno utjeće na ponovljivost printanja i samu brzinu printanja. The third problem is maintaining a constant distance between the UV light projector 3 and the polymerization surface 22. Namely, during the printing of the 3D model 3, part of the photopolymer mass 4 ends up in the 3D model 2. In 'Top down' technology (SL 3) after the 3D model is printed 2, it is drawn upwards along the 'Z' axis and thus the amount of remaining photopolymer 4 in the printing container (SL 4A and SL 4B) is reduced. By manually adding the photopolymer mass 4 by the user, it is almost certain that there will be a change in the distance between the projector 3 and the photopolymer surface 22 because manual casting cannot be precise enough. This problem directly affects the reproducibility of printing and the printing speed itself.

Svi navedeni problemi imaju utjecaj na brzinu, kvalitetu i ponovljivost isprinta te nemogućnost printanja 3D modela 2 većih dimenzija, a što sve opet utječe na visoke troškove printanja. All the mentioned problems have an impact on the speed, quality and repeatability of the print, as well as the impossibility of printing 3D models 2 of larger dimensions, all of which again affect the high costs of printing.

Stanje tehnike State of the art

DLP tehnologija printanja 3D modela 2 poznata je već dugi niz godina. Osnovni princip je da se fotopolimer 4 osvjetljava sa UV svjetlošću 3 i taj se dio fotopolimera 4 stvrdnjava na površini polimerizacije 22. Osvjetljavajući sloj po sloj, ponavljanjem tog postupka, kreira se cjeloviti 3D model 2 koji je pričvršćen na platformi 7. DLP 3D model 2 printing technology has been known for many years. The basic principle is that the photopolymer 4 is illuminated with UV light 3 and that part of the photopolymer 4 hardens on the polymerization surface 22. By illuminating layer by layer, repeating this procedure, a complete 3D model 2 is created which is attached to the platform 7.

Kod DLP tehnologije 3D printanja u primjeni su dva principa rada. Jedan je tzv. ’Bottom up' (SL 2) a drugi 'Top down' (SL 3) princip rada. Osnovna razlika je u tome na koji način se vrši osvjetljavanje fotopolimera 4 koji se nalazi u posudi 1. Kod 'Top down' (SL 3) principa rada osvjetljava se površina fotopolimera 22 koji se nalazi u posudi 1 u kojoj se vrši polimerizacija i 3D printanje, a kod 'Bottom up' (SL 2) principa osvjetljava se dno posude 1 u kojoj se nalazi fotopolimer 4 i u kojoj se vrši polimerizacija na donjoj površini 22 i 3D printanje. With DLP 3D printing technology, two working principles are applied. One is the so-called 'Bottom up' (SL 2) and the other 'Top down' (SL 3) work principle. The main difference is in how the photopolymer 4 located in vessel 1 is illuminated. With the 'Top down' (SL 3) operating principle, the surface of the photopolymer 22 located in vessel 1 where polymerization and 3D printing is performed is illuminated. , and with the 'Bottom up' (SL 2) principle, the bottom of the container 1 is illuminated, in which the photopolymer 4 is located and in which the polymerization is carried out on the lower surface 22 and 3D printing.

Dodatno što razlikuje ova dva principa je što kod 'Top down' principa rada printani 3D model 2 tijekom printanja, pa sve do završetka, uranja u posudu 1 sa fotopolimerom 4, a kod 'Bottom up1 principa rada printani 3D model 2 tijekom printanja, pa sve do završetka, izranja iz posude 1 u kojoj se nalazi fotopolimer 4. Additionally, what differentiates these two principles is that with the 'Top down' working principle, the printed 3D model 2 during printing, until completion, is immersed in the container 1 with photopolymer 4, and with the 'Bottom up1' working principle, the printed 3D model 2 during printing, and until the end, it emerges from the container 1 in which the photopolymer 4 is located.

Danas se najviše koristi tzv. 'Bottom up' princip rada gdje UV svjetlo 3 osvjetljava donji dio posude 1 u kojoj se nalazi fotopolimer 4 koji se onda stvrdnjava. Tako kreirani sloj 3D modela 2 se izdiže po 'Z' osi za odabranu veličinu. Sljedeće osvjetljavanje fotopolimera 4 kreira novi sloj 3D modela 2 koji se ponovo izdiže po ’Z’ osi, i ovisno o veličini printanog 3D modela 2, polako se izdiže iznad površine fotopolimera 4. Ponavljanjem ovakvog postupka u konačnici se kreira željeni 3D model 2. Kad je printanje gotovo, cijeli 3D model 2 se izdiže iznad površine fotopolimera 4 kada ga je i moguće skinuti sa platforme 7 na koju je 3D model 2 pričvršćen. Today, the so-called 'Bottom up' working principle where the UV light 3 illuminates the lower part of the container 1 in which the photopolymer 4 is located, which then hardens. The 3D model layer 2 thus created is raised along the 'Z' axis by the selected size. The next illumination of the photopolymer 4 creates a new layer of the 3D model 2 that again rises along the 'Z' axis, and depending on the size of the printed 3D model 2, slowly rises above the surface of the photopolymer 4. By repeating this process, the desired 3D model 2 is ultimately created. is the printing finished, the entire 3D model 2 rises above the surface of the photopolymer 4 when it is possible to remove it from the platform 7 to which the 3D model 2 is attached.

Ovaj princip printanja je vrlo uspješan i koristi se za kreiranje izrazito malih i preciznih modela. This printing principle is very successful and is used to create extremely small and precise models.

Manjkavosti ovakvog principa rada su da nije prikladan za izradu većih modela (većih od 10cm), da se u procesu koristi folija 5 koja se često mora čistiti i mijenjati, te da se iz navedenih razloga mogu koristiti samo fotopolimeri 4 koji spadaja u najviši cjenovni rang. Ovdje opisani izum upravo rješava sve navedene nedostatke i unapređuje proces 3D printanja sa DLP tehnologijom u smislu kvalitete, brzine, niže cijene printanja te otvara mogućnost printanja modela neograničenih dimenazija. The disadvantages of this working principle are that it is not suitable for making larger models (larger than 10 cm), that the process uses foil 5, which must be cleaned and changed often, and that, for the reasons mentioned, only photopolymers 4, which belong to the highest price range, can be used . The invention described here solves all the mentioned shortcomings and improves the process of 3D printing with DLP technology in terms of quality, speed, lower cost of printing and opens up the possibility of printing models of unlimited dimensions.

Izlaganje suštine izuma Presentation of the essence of the invention

Primarni cilj izuma je unaprijediti DLP 3D print tehnologiju u smislu povećanja brzine i preciznosti isprintanih 3D modela. The primary goal of the invention is to improve DLP 3D print technology in terms of increasing the speed and precision of printed 3D models.

Sekundarni cilj izuma je omogućiti printanje 3D modela DLP tehnologijom koji će moći biti neograničenih dimenzija a da zadovoljavaju visoke kriterije preciznosti i kvalitete. The secondary goal of the invention is to enable the printing of 3D models with DLP technology, which will be able to have unlimited dimensions and meet high criteria of precision and quality.

Daljnji cilj izuma je smanjiti cijenu koštanja printanja 3D modela u DLP tehnologiji. Dodatni ciljevi i prednosti izuma dijelom će biti pokazani u opisu koji slijedi, a dijelom će se saznati kroz samu primjenu izuma. A further goal of the invention is to reduce the cost of printing 3D models in DLP technology. Additional objects and advantages of the invention will be partly demonstrated in the description that follows, and partly learned through the application of the invention itself.

Postupak pripreme fotopolimernog materijala sa primjenom u DLP 3D printeru, po ovom izumu, obuhvaća dva uređaja ijedan način pripreme fotopolimera što sve zajedno čini inovativnu tehnološku cjelinu čijom primjenom se, kod 3D DLP printera, postižu osnovni ciljevi postavljeni za ovaj izum, a to su: veća brzina printanja 3D modela, veća preciznost isprintanih 3D modela te mogućnost printanja modela neograničenih dimenzija, a što u konačnici dovodi do niže cijene koštanja printanja 3D modela. The process of preparing photopolymer material with application in a DLP 3D printer, according to this invention, includes two devices and one method of photopolymer preparation, which all together form an innovative technological unit whose application, in the case of a 3D DLP printer, achieves the basic goals set for this invention, namely: higher speed of printing 3D models, greater precision of printed 3D models and the possibility of printing models of unlimited dimensions, which ultimately leads to a lower cost of printing 3D models.

Dva uređaja koji su obuhvaćeni ovim izumom su preljevni sustav za održavanje konstantne razine tekućine (SL 4A i SL 4B) i translacijsko-rotacijski valjak koji prelazi preko površine fotopolimera na kojoj se vrši polimerizacija (SL 5). Two devices covered by this invention are an overflow system for maintaining a constant liquid level (SL 4A and SL 4B) and a translational-rotational roller that passes over the surface of the photopolymer on which polymerization takes place (SL 5).

Postupak i način pripreme fotopolimera koji je također obuhvaćen ovim izumom i sa predhodna dva uređaja čini cjelinu je i smještanje fotopolimera u zajedničku posudu sa zasićenom tekućinom (SL 5 i SL 10) te njegovo povremeno miješanje (SL 11, SL 12A i SL 12B ). The process and method of photopolymer preparation, which is also covered by this invention and is integrated with the previous two devices, is the placement of the photopolymer in a common container with a saturated liquid (SL 5 and SL 10) and its occasional mixing (SL 11, SL 12A and SL 12B).

Implementacijom gornja dva uređaja i načina pripreme fotopolimera 4, rješavaju se tehnički problemi koji su sada prisutni kod printanja DPL tehnologijom a to su: taloženje pigmenta 6 i 20 iz fotopolimera 4 i 18, zagrijavanje površine odnosno sloja fotopolimera na kojem se odvija polimerizacija 22, održavanje stalnog razmaka između projektora 3 kao izvora UV svjetla i površine fotopolimera 22 na kojoj se odvija stvrdnjavanje i ujedno se ostvaruju preduvjeti za printanje 3D modela 2 neograničenih dimenzija. By implementing the above two devices and the method of preparing photopolymer 4, the technical problems that are now present in printing with DPL technology are solved, namely: deposition of pigments 6 and 20 from photopolymers 4 and 18, heating of the surface or layer of photopolymer on which polymerization takes place 22, maintenance constant distance between the projector 3 as a source of UV light and the surface of the photopolymer 22 on which the hardening takes place and at the same time the prerequisites for printing 3D models 2 of unlimited dimensions are realized.

Ovaj izum je najučinkovitiji kod primjene u DLP printerima 'Top down' principa rada (SL 3). This invention is most effective when applied in DLP printers with the 'Top down' working principle (SL 3).

Radi boljeg razumijevanja, u nastavku je zasebno opisan postupak smještanja fotopolimera 4 i zasićene tekućine 19 u zajedničku posudu 1 u kojoj se vrši printanje: For a better understanding, the process of placing the photopolymer 4 and the saturated liquid 19 in the common vessel 1 in which printing is performed is described below:

Primjenom postupka i načina pripreme fotopolimera 4 po kojem je fotopolimer 18 smješten u zajedničku posudu sa zasićenom tekućinom 19 (SL 10) i po kojem postupku se povremeno vrši njegovo miješanje (SL 11, SL 12A i SL 12B), rješava se, prvo, tehnički problem taloženja pigmenta 6 na dnu posude 1 u kojoj se nalazi fotopolimer 4 i u kojoj se vrši printanje. Da bi se izbjeglo taloženje, ovim izumom implementirano je rješenje na način da se fotopolimer 18 pomiješa sa vodom u istoj posudi u kojoj se vrši printanje (SL 10). Fotopolimer nije topiv u vodi, a budući da su gustoće vode i fotopolimera relativno slične, efekt ulijevanja fotopolimera u vodu rezultira lebdenjem nakupina fotopolimera u vodi. Po ovom izumu, vodi se prije miješanja sa fotopolimer dodaje sol do zasićenja (ili bilo koja druga tvar koja je topiva u vodi). Na taj način se postiže povećanje gustoće vode 19, što dovodi do toga da se fotopolimerna smola koja je sada manje gustoće, izdigne iznad vode na njenu površinu (SL 10, pozivna oznaka 18). Nakon te segmentacije, u posudi postoji sloj fotopolimerne smole 18 koja je na površini novo nastale smjese (SL 10), a u preostalom dijelu posude je zasićena voda 19. Na taj način dolazi do stvaranja sučelja između fotopolimerne smole i zasićene vode. By applying the procedure and method of preparation of photopolymer 4, according to which the photopolymer 18 is placed in a common vessel with saturated liquid 19 (SL 10) and according to which procedure it is occasionally mixed (SL 11, SL 12A and SL 12B), it is solved, first, technically the problem of deposition of pigment 6 at the bottom of the container 1 in which the photopolymer 4 is located and in which printing is performed. In order to avoid precipitation, this invention implemented a solution in such a way that the photopolymer 18 is mixed with water in the same vessel in which the printing is performed (SL 10). Photopolymer is not soluble in water, and since the densities of water and photopolymer are relatively similar, the effect of pouring photopolymer into water results in clumps of photopolymer floating in water. According to this invention, salt (or any other water-soluble substance) is added to the water before mixing with the photopolymer to saturation. In this way, an increase in the density of the water 19 is achieved, which causes the photopolymer resin, which is now less dense, to rise above the water to its surface (SL 10, call sign 18). After this segmentation, there is a layer of photopolymer resin 18 on the surface of the newly formed mixture (SL 10) in the vessel, and saturated water 19 is in the remaining part of the vessel. This creates an interface between the photopolymer resin and saturated water.

Učinak primjene ovog izuma kod primjene u 'Top down' (SL 11) principu rada je, da će se u mirovanju ili u procesu printanja, pigment iz fotopolimera 18 taložiti u sloju 20 između fotopolimera 18 i zasićene tekućine 19 i neće se taložiti na dnu posude (SL 2 i SL 3, pozivna oznaka 6), što inače u procesu printanja predstavlja problem koji rezultira prekidom rada, čišćenjem nataloženog pigmenta 6 i zamjenom folije 5. Dakle, primjenom ovog izuma omogućeno je kontinuirano printanje 3D modela 2 bez nepotrebnih zastoja sa kontinuiranom mogućnošću ponovljivosti printanja isprintanog 3D modela 2. The effect of the application of this invention when applied in the 'Top down' (SL 11) operating principle is that, at rest or in the printing process, the pigment from the photopolymer 18 will settle in the layer 20 between the photopolymer 18 and the saturated liquid 19 and will not settle at the bottom containers (SL 2 and SL 3, call sign 6), which otherwise in the printing process represents a problem that results in interruption of work, cleaning of deposited pigment 6 and replacement of foil 5. Therefore, by applying this invention, continuous printing of 3D model 2 is possible without unnecessary stops with continuous reproducibility of the printed 3D model 2.

Na ovaj način je također olakšano i miješanje nataloženog pigmenta 20 sa fotopolimerom koji je u sloju 18, jer odgovarajućim brojem prolazaka platforme 7 na kojoj se printa 3D model, kroz sučelje fotopolimera 18 i pigmenta 20, oni se u potpunosti izmiješaju (SL 11, SL 12A i SL 12B), Upućujući na SL 12A prikazanje trenutak početka postupka 21 miješanja nataloženog pigmenta 20 i fotopolimera 18. Platforma 7, koja je pokretana vanjskom silom, vrši gibanje po ’Z' osi izranjajući u vis iznad površine fotopolimera 18, zatim ponovo uranjajući u dubinu do zasićene tekućine 19, prolazeći kroz fotopolimer 18 i nataloženi pigment 20, a nakon toga platforma 7 vrši povratno gibanje u vis, ponovo prolazeći kroz nataloženi pigment 20 i fotopolimer 18. Ovo gibanje platforme 7 se ponavlja do potpune izmiješanosti fotopolimera 18 i nataloženog pigmenta 20. Upućujući na SL 12B prikazanje trenutak kada je fotopolimer 18 pripremljen za daljnje printanje. Miješanje se može vršiti i tijekom samog printanja, što je izuzetno važno kod printanja 3D modela velikih dimenzijama, te ujedno omogućava da trajanje printanja može biti neograničeno bez da se prekida proces printanja. In this way, the mixing of the deposited pigment 20 with the photopolymer that is in the layer 18 is also facilitated, because with the corresponding number of passes of the platform 7 on which the 3D model is printed, through the interface of the photopolymer 18 and the pigment 20, they are completely mixed (SL 11, SL 12A and FIG. 12B), Referring to FIG. 12A shows the moment of the beginning of the process 21 of mixing the deposited pigment 20 and the photopolymer 18. The platform 7, which is driven by an external force, makes a movement along the 'Z' axis, emerging vertically above the surface of the photopolymer 18, then re-immersing in depth to the saturated liquid 19, passing through the photopolymer 18 and the deposited pigment 20, and after that the platform 7 makes a return movement upwards, again passing through the deposited pigment 20 and the photopolymer 18. This movement of the platform 7 is repeated until the complete mixing of the photopolymer 18 and the deposited of pigment 20. Referring to FIG. 12B, the moment when the photopolymer 18 is prepared for further printing is shown. Mixing can also be done during printing itself, which is extremely important when printing 3D models with large dimensions, and at the same time, it enables the printing duration to be unlimited without interrupting the printing process.

Prvi uređaj koji je dio ovog izuma je translacijsko-rotacijski valjak (SL 5) koji prelazi preko površine fotopolimera 4 na kojem se vrši polimerizacija 22. Valjak 8 je pokretan djelovanjem vanjske sile. Svrha valjka 8 je brzo nanošenja i ravnanje površine fotopolimernog materijala 4, kao i dinamičko hlađenja površine fotopolimera na kojoj se odvija polimerizacija 22. Nakon svakog osvjetljavanja površine fotopolimera 22 valjak 8 napravi kretnju 14 sa jedne na drugu stranu posude po samoj površini fotopolimera 4. Nakon osvjetljavanja površine 22, valjak napravi kretnju 14 sa lijeva na desno (SL 7) do ruba gdje stane, zatim se vrši ponovo osvjetljavanje, koje kad završi, valjak 8 napravi kretnju 14 sa desna na lijevo (SL 6) do ruba gdje stane, nakon čega se ponovo vrši osvjetljavanje površine. Nakon svakog osvjetljavanja, platforma 7 napravi gibanje po ’Z' osi za traženu debljinu polimerizacije novog sloja budućeg 3D modela 2. Ova dinamika osvjetljavanje / gibanje valjka l osvjetljavanje / gibanje valjka se izvodi za cijelo vrijeme printanja 3D modela 2 do konačnog završetka printanja. The first device that is part of this invention is a translational-rotational roller (SL 5) that passes over the surface of the photopolymer 4 on which polymerization 22 is performed. The roller 8 is driven by the action of an external force. The purpose of the roller 8 is to quickly apply and level the surface of the photopolymer material 4, as well as to dynamically cool the surface of the photopolymer on which polymerization 22 takes place. After each illumination of the surface of the photopolymer 22, the roller 8 makes a movement 14 from one side of the container to the other on the surface of the photopolymer 4. illumination of surface 22, the roller makes a movement 14 from left to right (SL 7) to the edge where it stops, then lighting is performed again, which, when finished, roller 8 makes a movement 14 from right to left (SL 6) to the edge where it stops, after after which the surface is illuminated again. After each illumination, the platform 7 makes a movement along the 'Z' axis for the required polymerization thickness of the new layer of the future 3D model 2. This dynamic illumination / roller movement l illumination / roller movement is performed for the entire printing time of the 3D model 2 until the final completion of printing.

Dok se translacija valjka 8 vrši u jednu stranu, rotacija valjka 15 je uvijek suprotna translacijskom kretanju 14. Kad valjak 8 ide sa lijeva na desno (SL 7) rotacija valjka 15 je suprotna kretanju kazaljke na satu. 1 obrnuto, kad valjak 8 ide sa desna na lijevo (SL 6) rotacija valjka 15 je u smjeru kretanja kazaljke na satu. Ovako realizirano translacijsko- rotacijsko gibanje valjka 8 uzrokuje ravnanje površine fotopolimera 22 i odvođenje zagrijanog fotopolimera 4 do kojeg je došlo na površini fotopolimera 22 nakon polimerizacije. Dodatni učinak gibanja i rotacije valjka je da se ujedno vrši i miješanje fotopolimera sa nataloženim pigmentom (SL 9). While the translation of the roller 8 is done in one direction, the rotation of the roller 15 is always opposite to the translation movement 14. When the roller 8 goes from left to right (SL 7), the rotation of the roller 15 is opposite to the clockwise movement. 1 vice versa, when roller 8 goes from right to left (SL 6) the rotation of roller 15 is clockwise. The translational-rotational motion of the roller 8 realized in this way causes the surface of the photopolymer 22 to be straightened and the heated photopolymer 4 removed, which occurred on the surface of the photopolymer 22 after polymerization. An additional effect of the movement and rotation of the roller is that the photopolymer is also mixed with the deposited pigment (SL 9).

Da bi se u potpunosti realizirala funkcionalnost valjka, valjak 8 na svojoj gornjoj strani ima postavljen graničnik 9 koji sprečava povrat fotopolimernog materijala 4 natrag na dio koji je valjak 8 već prešao u svom gibanju. Također, pri kraju posude 1 je postavljena pregrada 10 do koje se valjak 8 kreće u svom horizontalnom gibanju. Funkcija pregrade je da se spriječi povratno laminarno strujanje fotopolimera (SL 9). Nakon što valjak 8 dođe do pregrade 10, nakupljeni fotopolimer 4 koji je valjak 8 pokupio u svom gibanju (SL 8, pozivna oznaka 17) će biti prebačen preko pregrade 10 i biti pomiješan sa ostalim hladnijim fotopolimerom. Gibanje tako prebačenog fotopolimera 17 prikazano je strelicama 16 na SL 9. In order to fully realize the functionality of the roller, the roller 8 has a limiter 9 placed on its upper side that prevents the return of the photopolymer material 4 back to the part that the roller 8 has already passed in its movement. Also, at the end of the container 1, a partition 10 is placed, to which the roller 8 moves in its horizontal movement. The function of the baffle is to prevent reverse laminar flow of the photopolymer (SL 9). After the roller 8 reaches the partition 10, the accumulated photopolymer 4 picked up by the roller 8 in its movement (SL 8, reference number 17) will be transferred over the partition 10 and be mixed with the rest of the cooler photopolymer. The movement of the thus transferred photopolymer 17 is shown by arrows 16 in FIG. 9.

Ovdje treba naglasiti da veliku ulogu u hlađenju fotopolimera 4 ima i zasićena tekućina 19 koja je u izravnoj vezi sa fotopolimerom 4. To omogućava da zasićena tekućina 19 konstantno odvodi višak topline iz fotopolimera 4 a zbog proizvoljno velike razlike u volumenu zasićene tekućine 19 i fotopolimera 4 koji se nalaze u posudi 1 sustav je uvijek moguće baždariti da bude konstantno u stanju toplinske ravnoteže. It should be emphasized here that the saturated liquid 19, which is in direct contact with the photopolymer 4, plays a major role in cooling the photopolymer 4. This enables the saturated liquid 19 to constantly remove excess heat from the photopolymer 4, and due to the arbitrarily large difference in the volume of the saturated liquid 19 and the photopolymer 4 which are in vessel 1, the system can always be calibrated to be constantly in a state of thermal equilibrium.

Drugi uređaj koji je dio ovog izuma je 'Uređaj za održavanje konstantne zadane razine tekućine u posudi' (SL 4A i SL 4B) a koji je, kao patentna prijava, prijavljen Državnom zavodu za intelektualno vlasništvo Republike Hrvatske i dodijeljen joj je broj prijave P2019038A. Another device that is part of this invention is the 'Device for maintaining a constant set liquid level in a container' (SL 4A and SL 4B) which, as a patent application, has been registered with the State Intellectual Property Office of the Republic of Croatia and has been assigned application number P2019038A.

Uređaj za održavanje konstantne razine tekućine u posudi, po ovom izumu, obuhvaća dvije posude lili, crijevo 13 koje ih međusobno spaja i oprugu 12 na kojoj je jedna od posuda 11 obješena, tvoreći pri tom jedinstvenu cjelinu od dvije posude, spojnog crijeva i opruge. Posuda 1 u kojoj se održava razina tekućine je fiksirana, a posuda koja visi 11 na opruzi 12 je pomična u vertikalnom smjeru omogućavajući gibanje prema gore i prema dolje. Fiksirana posuda 1, po ovom izumu, je posuda u kojoj je se nalazi mješavina fotopolimera 4 i zasićene tekućine 19 (SL 5) i gdje je potrebno održavati konstantnu razinu fotopolimera 4. Pokretna posuda 11 je pomoćna posuda u uređaju, koja koristi isključivo kao spremnik zasićene tekućine 19 koji radi amortizaciju promjena razine fotopolimera 4 u fiksiranoj posudi 1. The device for maintaining a constant level of liquid in the container, according to this invention, includes two containers, a hose 13 that connects them and a spring 12 on which one of the containers 11 is suspended, forming a single unit of two containers, a connecting hose and a spring. The container 1 in which the liquid level is maintained is fixed, and the container hanging 11 on the spring 12 is movable in the vertical direction allowing upward and downward movement. The fixed container 1, according to this invention, is a container in which there is a mixture of photopolymer 4 and saturated liquid 19 (SL 5) and where it is necessary to maintain a constant level of photopolymer 4. The movable container 11 is an auxiliary container in the device, which is used exclusively as a container of saturated liquid 19, which cushions changes in the level of photopolymer 4 in the fixed vessel 1.

Svi detalji rada zajedno sa patentnim zahtjevima su opisani u spomenutoj patentnoj prijavi pod brojem P2019038A. All the details of the work together with the patent claims are described in the aforementioned patent application number P2019038A.

Implementacijom do sada opisanog izuma sa gore navedenim rješenjima, a u odnosu na postojeći DLP sustav 3D printanja, ostvaruju se sljedeće prednosti: By implementing the invention described so far with the solutions mentioned above, and in relation to the existing DLP 3D printing system, the following advantages are achieved:

Primjenom gore opisanog uređaja rješava se problem održavanja iste razine fotopolimera 4 u posudi 1 i samim tim održavanje istog razmaka između projektora 3 (izvora UV svjetlosti) i površine fotopolimera na kojoj se odvija printanje 22. Using the device described above solves the problem of maintaining the same level of photopolymer 4 in container 1 and thus maintaining the same distance between the projector 3 (source of UV light) and the photopolymer surface on which printing 22 takes place.

Riješen je problem nakupljanja topline na samoj površini fotopolimera 22 koji inače uzrokuje usporavanje reakcije polimerizacije te dovodi do narušavanja integriteta printanog objekta 2 i cjelokupnog procesa. The problem of heat accumulation on the surface of the photopolymer 22, which otherwise slows down the polymerization reaction and leads to damage to the integrity of the printed object 2 and the entire process, has been solved.

Riješen je i problem ograničene dimenzije printanog 3D modela 2. Implementacijom ovog izuma printani 3D model 2 može biti neograničenih dimenzija kako po horizontali tako i po vertikali. The problem of the limited dimensions of the printed 3D model 2 has also been solved. By implementing this invention, the printed 3D model 2 can have unlimited dimensions both horizontally and vertically.

Riješen je problem taloženja pigmenta 6 što je inače rezultiralo zastojima u radu. The problem of deposition of pigment 6, which otherwise resulted in work stoppages, was solved.

Konačno, cjelovita implementacija opisanog izuma značajno utječe na smanjenje cijene koštanja 3D printanja DLP tehnologijom. Finally, the complete implementation of the described invention significantly affects the reduction of the cost of 3D printing with DLP technology.

Kratak opis crteža Brief description of the drawing

Popratni crteži koji su uključeni u opis i koji čine dio opisa izuma, ilustriraju do sada razmatran najbolji način izvedbe izuma i pomažu kod objašnjavanja osnovnih pojmova i načina funkcioniranja izuma. The accompanying drawings, which are included in the description and form part of the description of the invention, illustrate the best mode of implementation of the invention considered so far and help to explain the basic concepts and the way the invention functions.

SL1 prostorni izgled primjene postupka pripreme fotopolimernog materijala i uređaji sa primjenom u DLP 3D printeru koji rezultiraju bržim i preciznijim printanjem 3D modela SL1 spatial view of the application of the photopolymer material preparation process and devices with application in a DLP 3D printer that result in faster and more accurate printing of 3D models

SL2 nacrt ’Bottom up' principa rada DLP printera sa prikazom FEP folije i prikazom taloženja pigmenta na dnu posude SL2 "Bottom up" drawing of the working principle of the DLP printer with the representation of the FEP film and the representation of the deposition of the pigment at the bottom of the vessel

SL3 nacrt 'Top down' principa rada DLP printera sa prikazom taloženja pigmenta na dnu posude SL3 'Top down' drawing of the working principle of a DLP printer showing the deposition of pigment at the bottom of the vessel

SL4A nacrt preljevnog sustava za održavanje konstantne razine tekućine u posudi u kojoj se vrši printanje 3D modela SL4A draft of the overflow system for maintaining a constant level of liquid in the vessel in which the 3D model is printed

SL4B prikaz smanjenja količine fotopolimera u posudi u kojoj se vrši printanje 3D modela SL4B showing the reduction of the amount of photopolymer in the container in which the 3D model is printed

SL5 nacrt translacijsko-rotacijskog valjka sa prikazom fotopolimera na površini zasićene tekućine i prikazom pregrada pri rubu posude u kojoj se vrši printanje i nacrt uređaja za održavanje konstantne razine tekućine SL5 drawing of a translational-rotational roller with a representation of photopolymer on the surface of a saturated liquid and a representation of partitions at the edge of the container in which printing takes place and a drawing of a device for maintaining a constant liquid level

SL6 nacrt kretanja translacijsko-rotacijskog valjka u lijevo sa prikazom rotacije samog valjka SL6 diagram of the movement of the translational-rotational roller to the left showing the rotation of the roller itself

SL7 nacrt kretanja translacijsko-rotacijskog valjka u desno sa prikazom rotacije samog valjka SL7 diagram of the movement of the translational-rotational roller to the right with a representation of the rotation of the roller itself

SL8 nacrt i prikaz nakupljenog fotopolimera na valjku kod kretanja valjka u desno SL8 drawing and illustration of accumulated photopolymer on the roller when the roller moves to the right

SL9 nacrt i prikaz toka nakupljenog fotopolimera kojeg valjak gura ispred sebe u trenutku kada valjak dođe do krajnje točke - pregrade SL9 diagram and representation of the flow of accumulated photopolymer that the roller pushes in front of itself at the moment when the roller reaches the end point - the partition

SL10 nacrt i prikaz fotopolimera u zajedničkoj posudi sa zasićenom tekućinom SL10 schematic and illustration of a photopolymer in a common container with a saturated liquid

SL11 nacrt i prikaz nataloženog pigmenta na sučelju fotopolimera i zasićene tekućine SL11 drawing and representation of deposited pigment at the interface of photopolymer and saturated liquid

SL12A nacrt i prikaz miješanja nataloženog pigmenta i zasićene tekućine SL12A drawing and representation of mixing of deposited pigment and saturated liquid

SL12B nacrt i prikaz izmiješanog pigmenta sa fotopolimerom gdje je printer spreman za daljnje printanje 3D modela SL12B blueprint and display of mixed pigment with photopolymer where the printer is ready for further printing of the 3D model

Detaljan opis najmanje jednog od načina ostvarivanja izuma A detailed description of at least one way of realizing the invention

Sada će se uputiti do u pojedinosti ovog pretpostavljenog ostvarenja izuma, čiji je jedan primjer ilustriran crtežima. We will now turn to the details of this supposed embodiment of the invention, one example of which is illustrated in the drawings.

Upućujući na SL 1, SL 4A, SL 4B i SL 5 može se vidjeti da se cijeli postupak pripreme fotopolimernog materijala i sustav uređaja sa primjenom u DLP 3D printeru sastoji od fiksirane posude (1) u kojoj se nalazi fotopolimer (4), pomične posude (11) koja visi na opruzi (12), spojnog crijeva (13) te od translacijsko-rotacijskog valjka (8). Referring to SL 1, SL 4A, SL 4B and SL 5, it can be seen that the entire process of preparing photopolymer material and the device system with application in a DLP 3D printer consists of a fixed vessel (1) in which the photopolymer (4) is located, a movable vessel (11) which hangs on the spring (12), the connecting hose (13) and the translation-rotation roller (8).

Na ovim crtežima je prikazano da se postupak sastoji od dva uređaja, a to su preljevni sustav na koji upućuju SL 4A i SL 4B i translacijsko-rotacijski valjak (8) na koji upućuje SL 5, a koji se sastoji od pomične posude (11) koja visi na opruzi (12), spojnog crijeva (13) od fiksirane posude (1). These drawings show that the process consists of two devices, namely the overflow system referred to by SL 4A and SL 4B and the translational-rotational roller (8) referred to by SL 5, which consists of a movable vessel (11) which hangs on the spring (12), the connecting hose (13) from the fixed container (1).

Upućujući na SL10 vidljivo je da je dio postupka po ovom izumu smještanje fotopolimera (18) i zasićene tekućine (19) u zajedničku posudu (1) u kojoj se vrši printanje. Ovdje je također vidljivo da zbog razlike u gustoći fotopolimera (18) i zasićene tekućine (19) dolazi do razgraničenja ova dva medija i da se fotopolimer (18) onda nalazi na površini zasićene tekućine (19) tvoreći pri tome sučelje fotopolimera i zasićene tekućine. SL11 upućuje na to da se tada taloženje pigmenta (20) ostvaruje na donjem dijelu fotopolimera (18) a istovremeno na površini zasićene tekućine (19) tako da se pigment (20) više ne taloži na dnu posude (1) u kojoj se vrši printanje 3D modela (2). Referring to SL10, it can be seen that part of the process according to this invention is the placement of photopolymer (18) and saturated liquid (19) in a common vessel (1) in which printing is performed. Here it is also visible that due to the difference in the density of the photopolymer (18) and the saturated liquid (19) there is a demarcation of these two media and that the photopolymer (18) is then located on the surface of the saturated liquid (19) forming the interface between the photopolymer and the saturated liquid. SL11 indicates that the pigment (20) is then deposited on the lower part of the photopolymer (18) and at the same time on the surface of the saturated liquid (19) so that the pigment (20) is no longer deposited on the bottom of the container (1) in which the printing is done 3D models (2).

Upućujući na SL 2 prikazan je ’Bottom up' princip rada koji je trenutno najzastupljeniji kod DLP printera. Na crtežu je prikazano i taloženje pigmenta (6) na dnu posude (1) što predstavlja veći problem kod ove tehnologije. Kod ovog principa rada pigment (6) se taloži na posebnoj foliji (5) koja je na dnu posude (1) i koja se koristi kod ovog principa rada 3D printera. Referring to SL 2, the 'Bottom up' working principle is shown, which is currently the most common DLP printer. The drawing also shows the deposition of pigment (6) on the bottom of the container (1), which represents a bigger problem with this technology. With this principle of operation, the pigment (6) is deposited on a special foil (5) which is at the bottom of the container (1) and which is used with this principle of operation of the 3D printer.

Upućujući na SL 3 prikazan je 'Top down' princip rada DLP printera sa prikazom taloženja pigmenta (6) na dnu posude. Referring to SL 3, the 'Top down' working principle of the DLP printer is shown, showing the deposition of pigment (6) at the bottom of the container.

Upućujući na SL 11, SL 12A i SL 12B može se vidjeti da je cjeloviti postupak zaokružen postupkom miješanja fotopolimera (18) koji se nalazi na površini zasićene tekućine (19) u kojem platforma za printanje (7) vrši povremeno gibanje uranjajući i izranjajući iz zasićene tekućine (19) prolazeći kroz nataloženi pigment (20) i fotopolimer (18) te na taj način miješa nataloženi pigment (20) sa fotopolimerom (18) koji je na površini. Nakon odgovarajućeg broja prolaza platforme (7) fotopolimer (18) je ponovno izmiješan sa pigmentom i spreman ponovno za daljnje kvalitetno printanje 3D modela stoje vidljivo na SL 12B. Referring to FIG. 11, FIG. 12A, and FIG. 12B, it can be seen that the entire process is rounded off by a process of mixing the photopolymer (18) located on the surface of the saturated liquid (19) in which the printing platform (7) makes periodic motions dipping and emerging from the saturated liquid (19) passing through the deposited pigment (20) and photopolymer (18) and thus mixes the deposited pigment (20) with the photopolymer (18) that is on the surface. After the appropriate number of passes of the platform (7), the photopolymer (18) is again mixed with the pigment and ready again for further high-quality printing of the 3D model, as can be seen on SL 12B.

Upućujući na SL 4A i SL 4B prikazan je preljevni sustav za održavanje konstantne razine tekućine u posudi u kojoj se vrši printanje 3D modela (2). Namjena ovog uređaja je da održava konstantni razmak između površine fotopolimera (22) na kojem se odvija polimerizacija i izvora UV svjetla (3), što je vidljivo na SL 3. Do poremećaja potrebnog razmaka dolazi kada gotov 3D model (2) zajedno sa platformom (7) izranja iz fotopolimera (4) kako bi ga se moglo skinuti sa platforme (7) što je vidljivo na SL 4B. U tom trenutku 'Uređaj za održavanje konstantne razine tekućine u posudi' preuzima funkciju korigiranja razine tekućine u posudi (1) u kojoj se vrši printanje 3D modela (2). Osnova rada ovog uređaja se sastoji u tome da je pomična posuda (11) obješena na oprugu (12) i da je sa spojnim crijevom (13) spojena sa posudom (1) u kojoj se vrši printanje. Bilo koja promjena razine fotopolimera (4) u posudi (1) rezultirat će dotokom tekućine iz pomoćne posude (11) u posudu u kojoj se vrši printanje (1) i na taj način održavati potrebnu razinu fotopolimera u posudi (1) a time i odgovarajući razmak između površine polimerizacije (22) i izvora UV svjetla (3). Detalji rada 'Uređaja za održavanje konstantne razine tekućine u posudi' opisani su u patentnoj prijavi Državnom zavodu za intelektualno vlasništvo pod brojem P2019038A, a čiji izumitelji su isti kao izumitelji ove patentne prijave. Referring to SL 4A and SL 4B, the overflow system for maintaining a constant level of liquid in the vessel in which the 3D model is printed is shown (2). The purpose of this device is to maintain a constant distance between the surface of the photopolymer (22) where the polymerization takes place and the source of UV light (3), which is visible in SL 3. Disruption of the required distance occurs when the finished 3D model (2) together with the platform ( 7) emerges from the photopolymer (4) so that it can be removed from the platform (7) which is visible in SL 4B. At that moment, the 'Device for maintaining a constant liquid level in the container' takes over the function of correcting the liquid level in the container (1) in which the 3D model (2) is printed. The basis of the operation of this device consists in the fact that the movable container (11) is suspended on a spring (12) and is connected with the connecting hose (13) to the container (1) in which printing is performed. Any change in the level of photopolymer (4) in the container (1) will result in the flow of liquid from the auxiliary container (11) to the container in which the printing is performed (1) and thus maintain the necessary level of photopolymer in the container (1) and thus the corresponding the distance between the polymerization surface (22) and the UV light source (3). Details of the operation of the 'Device for maintaining a constant level of liquid in a container' are described in the patent application to the State Intellectual Property Office under the number P2019038A, whose inventors are the same as the inventors of this patent application.

SL5 upućuje na nacrt translacijsko-rotacijskog valjka (8) koji prelazi preko površine fotopolimera (4) pripremajući sloj fotopolimera na kojem se vrši polimerizacija (22). Valjak (8) je pokretan djelovanjem vanjske sile, a njegova svrha je brzo nanošenja i ravnanje površine fotopolimernog materijala (4) te hlađenja površine fotopolimera na kojoj se odvija polimerizacija (22). SL5 refers to the draft of the translational-rotational roller (8) that passes over the surface of the photopolymer (4) preparing the layer of photopolymer on which polymerization takes place (22). The roller (8) is driven by the action of an external force, and its purpose is to quickly apply and level the surface of the photopolymer material (4) and to cool the surface of the photopolymer on which the polymerization takes place (22).

Upućujući na SL 6, SL 7 i SL 8 vidljivo je da se valjak (8) kreće s lijeva na desno (14) i povratno s desna na lijevo (14). U posudi (1) u kojoj je platforma (7) na kojoj se odvija printanje, postavljene su pregrade (10) sa svake strane posude (1). Kretanje valjka (8) se odvija od pregrade (10) sa lijeve strane posude (1) do pregrade (10) koja je postavljena sa desen strane posude (1) i povratno. Ova dinamika gibanja valjka (8) sa jedne strane posude (1) na drugu stranu posude (1) se izvodi za cijelo vrijeme printanja 3D modela do konačnog završetka printanja. Ovaj postupak je osmišljen tako da, kad valjak (8) u svom gibanju dođe do pregrade (10), da tamo stane, a za vrijeme njegovog mirovanja se vrši osvjetljavanje površine fotopolimera (22) UV svjetlom. Nakon završene polimerizacije i stvrdnjavanja jednog sloja printanog 3D modela (2), platforma (7) se spušta u fotopolimer (4) za odabranu vrijednost debljine sloja printanja nakon čega valjak (8) ponovo prelazi na drugu stranu posude (1) do pregrade (10) gdje ponovno staje. Nakon toga se vrši osvjetljavanje površine fotopolimera (22) sa UV svjetlom kreirajući novi sloj printanog 3D modela. Nakon gotovog osvjetljavanja platforma (7) se spušta u fotopolimer (4), valjak (8) započinje svoje gibanje i cijeli postupak se ponavlja. Referring to SL 6, SL 7 and SL 8, it is visible that the roller (8) moves from left to right (14) and back from right to left (14). In the vessel (1) in which there is a platform (7) on which printing takes place, partitions (10) are placed on each side of the vessel (1). The movement of the roller (8) takes place from the partition (10) on the left side of the container (1) to the partition (10) which is placed on the right side of the container (1) and back. This dynamic of movement of the roller (8) from one side of the container (1) to the other side of the container (1) is performed for the entire time of printing the 3D model until the final completion of printing. This procedure is designed so that, when the roller (8) reaches the partition (10) in its movement, it stops there, and during its rest, the surface of the photopolymer (22) is illuminated with UV light. After the completed polymerization and hardening of one layer of the printed 3D model (2), the platform (7) is lowered into the photopolymer (4) for the selected value of the thickness of the printing layer, after which the roller (8) again moves to the other side of the container (1) to the partition (10) ) where it stops again. After that, the surface of the photopolymer (22) is illuminated with UV light, creating a new layer of the printed 3D model. After the finished illumination, the platform (7) is lowered into the photopolymer (4), the roller (8) starts its movement and the whole process is repeated.

Ova dinamika gibanje valjka / osvjetljavanje / spuštanje platforme / gibanje valjka / osvjetljavanje / spuštanje platforme i tako redom se izvodi za cijelo vrijeme printanja 3D modela 2 do konačnog završetka printanja. This dynamic of roller movement / lightening / lowering the platform / roller movement / lighting / lowering the platform and so on is performed for the entire printing time of the 3D model 2 until the final print is finished.

SL 6 i SL 7 upućuju i na to da je rotacija valjka (15) uvijek suprotna translacijskom kretanju (14) valjka (8). Kad valjak (8) ide sa lijeva na desno (SL 7) rotacija valjka (15) je suprotna kretanju kazaljke na satu i obrnuto, kad valjak (8) ide sa desna na lijevo (SL 6) rotacija valjka (15) je u smjeru kretanja kazaljke na satu. Ovako realizirano translacijsko-rotacijsko gibanje valjka (8) uzrokuje ravnanje površine fotopolimera (22) i odvođenje zagrijanog fotopolimera (4) do kojeg je došlo na površini fotopolimera (22) za vrijeme polimerizacije. Dodatni učinak gibanja i rotacije valjka je da se ujedno vrši i miješanje fotopolimera sa nataloženim pigmentom (SL 9). SL 6 and SL 7 indicate that the rotation of the roller (15) is always opposite to the translational movement (14) of the roller (8). When the roller (8) goes from left to right (SL 7) the rotation of the roller (15) is counter clockwise and vice versa, when the roller (8) goes from the right to the left (SL 6) the rotation of the roller (15) is in the direction clockwise movement. The translational-rotational motion of the roller (8) realized in this way causes the surface of the photopolymer (22) to be straightened and the heated photopolymer (4) that has occurred on the surface of the photopolymer (22) during polymerization is removed. An additional effect of the movement and rotation of the roller is that the photopolymer is also mixed with the deposited pigment (SL 9).

Upućujući na SL 8, vidljivo je da valjak (8) u svom gibanju i rotaciji gura, sa površine fotopolimera (4), dio tog materijala (17) ispred sebe. Upravo tim postupkom ostvaruje se ravnanje i priprema fotopolimera (4) i odvođenje topline sa površine fotopolimera (4). Na SL 9 je vidljivo da, kad valjak (8) dođe do pregrade (10), da se nakupljeni (dogurani) fotopolimer (4) prebaci preko pregrade (10), da uroni u zasićenu tekućinu (19) sa smjerom kretanja koji je prikazan pozivnom oznakom 16. U tom trenutku se dio topline prenese sa fotopolimera (4) u zasićenu tekućinu (19). Referring to FIG. 8, it can be seen that the roller (8) in its movement and rotation pushes, from the surface of the photopolymer (4), a part of that material (17) in front of it. This procedure is used to straighten and prepare the photopolymer (4) and to remove heat from the surface of the photopolymer (4). On SL 9 it is visible that, when the roller (8) reaches the partition (10), the accumulated (pushed) photopolymer (4) is transferred over the partition (10), to be immersed in the saturated liquid (19) with the direction of movement shown call sign 16. At that moment, part of the heat is transferred from the photopolymer (4) to the saturated liquid (19).

Cijeli postupak je ovdje zaokružen na način da se u tom trenutku odvija i miješanje fotopolimera (4) i nataloženog pigmenta (20) koji se kao sloj oformio na sučelju između fotopolimera u posudi sa zasićenom tekućinom (18) i zasićene tekućine (19) a koji je kao specifična karakteristika zasebno iskazan na SL 10 i SL 11. The whole process is rounded off here in such a way that at that moment the mixing of the photopolymer (4) and the deposited pigment (20) which has formed as a layer at the interface between the photopolymer in the vessel with the saturated liquid (18) and the saturated liquid (19) and which is shown separately on SL 10 and SL 11 as a specific characteristic.

Da bi se u potpunosti realizirala funkcionalnost valjka (8), na SL 5, SL 6, SL 7 i SL 8 se ukazuje na to da valjak (8) na svojoj gornjoj strani ima postavljen graničnik (9) koji sprečava povrat fotopolimernog materijala (4) natrag na dio koji je valjak (8) već prešao u svom gibanju. Na taj načinje osigurano da se najtopliji fotopolimer (4) miče sa površine polimerizacije (22) i da površina, koju je valjak (8) već prešao, ostaje pripremljena za novo osvjetljavanje. In order to fully realize the functionality of the roller (8), on SL 5, SL 6, SL 7 and SL 8 it is indicated that the roller (8) has a stopper (9) on its upper side that prevents the return of the photopolymer material (4 ) back to the part that the roller (8) has already passed in its movement. In this way, it is ensured that the hottest photopolymer (4) moves from the polymerization surface (22) and that the surface, which the roller (8) has already crossed, remains prepared for new illumination.

Način primjene izuma Method of application of the invention

Na taj način izum omogućuje praktičan i koristan postupak i uređaj koji se može ekonomično implementirati i proizvoditi i koji uključuje bitna poboljšanja u odnosu na ranije poznate postupke i uređaje ovog tipa. In this way, the invention enables a practical and useful process and device that can be economically implemented and produced and that includes significant improvements compared to previously known processes and devices of this type.

U realizaciji, ovaj bi izum mogao doživjeti brojne preinake i promjene bez napuštanja opsega i duha izuma. In practice, this invention could undergo numerous modifications and changes without departing from the scope and spirit of the invention.

Popis pozivnih oznaka List of callsigns

Radi boljeg razumijevanja crteža i opisa procesa, u nastavku je dan pregled korištenih pozivnih oznaka na crtežima: For a better understanding of the drawings and description of the process, below is an overview of the call signs used in the drawings:

1 Posuda u kojoj se nalazi fotopolimer 1 Container containing photopolymer

2 Printani 3D model 2 Printed 3D model

3 Izvor UV svjetla 3 UV light source

4 Fotopolimer 4 Photopolymer

5 FEP folija 5 FEP foils

6 Nataloženi pigment 6 Deposited pigment

7 Platforma na kojoj se vrši printanje 7 Platform on which printing takes place

8 Translacijsko-rotacijski valjak 8 Translational-rotational roller

9 Graničnik viška materijala 9 Excess material limiter

10 Pregrada 10 Partition

11 Pomična posuda za održavanje konstantne razine fotopolimera 11 Movable container for maintaining a constant level of photopolymer

12 Opruga na kojoj je obješena pomična posuda 12 The spring on which the movable container is suspended

13 Spojno crijevo 13 Connecting hose

14 Smjer kretanja valjka 14 Direction of movement of the roller

15 Smjer rotacije valjka 15 Direction of rotation of the roller

16 Kretanje fotopolimera koji je prebačen preko pregrade 16 Movement of the photopolymer transferred over the barrier

17 Nakupina fotopolimera koju valjak gura sa površine fotopolimera 17 Accumulation of photopolymer pushed by the roller from the surface of the photopolymer

18 Sloj fotopolimera u posudi sa zasićenom tekućinom 18 Photopolymer layer in a vessel with saturated liquid

19 Zasićena tekućina 19 Saturated liquid

20 Sloj nataloženog pigmenta između fotopolimera i zasićene tekućine 20 A layer of deposited pigment between the photopolymer and the saturated liquid

21 Postupak miješanja fotopolimera 21 Photopolymer mixing process

22 Površina polimerizacije 22 Polymerization surface

Claims (17)

1. Postupak pripreme fotopolimernog materijala sa primjenom u DLP 3D printeru, naznačen time da obuhvaća sljedeće korake : - Smještanje fotopolimera (4) u istu posudu (1) sa zasićenom tekućinom (19) - Miješanje fotopolimera (4) kako bi se ravnomjerno raspodijelio pigment (6) koji se nalazi u fotopolimeru (4) - Gibanje translacijsko-rotacijskog valjka (8) po površini fotopolimera (4) - Održavanje stalne razine površine fotopolimera (4) u posudi (1) u kojoj se vrši printanje.1. The process of preparing photopolymer material for use in a DLP 3D printer, characterized by the fact that it includes the following steps: - Placing photopolymer (4) in the same container (1) with saturated liquid (19) - Mixing the photopolymer (4) in order to evenly distribute the pigment (6) contained in the photopolymer (4) - Movement of the translational-rotational roller (8) on the surface of the photopolymer (4) - Maintaining a constant surface level of the photopolymer (4) in the container (1) in which printing is performed. 2. Postupak pripreme fotopolimernog materijala sa primjenom u DLP 3D printeru prema zahtjevu 1, naznačen time da se fotopolimer (4) koji se osvjetljava sa UV svjetlosnim spektrom i na čijoj površini se vrši polimerizacija (22), nalazi u posudi (1) zajedno sa zasićenom tekućinom (19) čija je gustoća veća od gustoće fotopolimera (4), te se uslijed razlike u gustoći fotopolimer (4) izdiže iznad tekućine (19).2. The process of preparing a photopolymer material with application in a DLP 3D printer according to claim 1, characterized in that the photopolymer (4), which is illuminated with the UV light spectrum and on the surface of which polymerization (22) is performed, is located in the container (1) together with saturated liquid (19) whose density is higher than the density of photopolymer (4), and due to the difference in density, photopolymer (4) rises above the liquid (19). 3. Postupak pripreme fotopolimernog materijala sa primjenom u DLP 3D printeru prema zahtjevu 1 i 2, naznačen time da se zasićena tekućina (19) sastoji od vode i soli (NaCl) ili neke druge tvari topive u vođi, pri čemu se povećava gustoća nastale tekućine (19) ili neke druge tekućine koja ima veću gustoću od fotopolimera (4).3. The process of preparing a photopolymer material with application in a DLP 3D printer according to claims 1 and 2, characterized in that the saturated liquid (19) consists of water and salt (NaCl) or some other water-soluble substance, whereby the density of the resulting liquid increases (19) or some other liquid that has a higher density than photopolymer (4). 4. Postupak prema zahtjevu 1 i 2, naznačen time da translacijsko-rotacijski valjak (8) ima horizontalno kretanje po samoj površini fotopolimera (22) i da se kreće s lijeva na desno i povratno s desna na lijevo u posudi (1) u kojoj se nalazi fotopolimer (4) i na taj način se vrši odvođenje topline i ravna nje površine (22) na kojoj se vrši polimerizacija.4. The method according to claims 1 and 2, characterized by the fact that the translational-rotational roller (8) has a horizontal movement on the very surface of the photopolymer (22) and that it moves from left to right and back from right to left in the vessel (1) in which the photopolymer (4) is located and in this way the heat is removed and the surface (22) on which the polymerization is performed is leveled. 5. Postupak prema zahtjevu 1,2 i 4, naznačen time da translacijsko-rotacijski valjak (8) u svom horizontalnom kretanje po površini fotopolimera (22) dolazi do pregrade (10) sa lijeve strane posude (1) gdje staje i vraća se istim putem do pregrade (10) sa desne strane posude (1) gdje staje.5. The procedure according to claim 1, 2 and 4, characterized by the fact that the translation-rotation roller (8) in its horizontal movement on the surface of the photopolymer (22) reaches the partition (10) on the left side of the container (1) where it stops and returns to the same on the way to the partition (10) on the right side of the vessel (1) where it stops. 6. Postupak prema zahtjevu 1,2,4 i 5, naznačen time da kada se valjak (8) kreće s lijeva na desno (14) da je rotacija (15) samog valjka (8) suprotna smjeru kretanja kazaljki na satu.6. The procedure according to claim 1,2,4 and 5, characterized in that when the roller (8) moves from left to right (14) the rotation (15) of the roller (8) itself is opposite to the direction of movement of the hands on the clock. 7. Postupak prema zahtjevu 1,2,4 i 5, naznačen time da kada se valjak (8) kreće s desna na lijevo (14) da je rotacija (15) samog valjka (8) u smjeru kretanja kazaljki na satu.7. The procedure according to claims 1, 2, 4 and 5, characterized by the fact that when the roller (8) moves from right to left (14) the rotation (15) of the roller (8) itself is in the clockwise direction. 8. Postupak prema zahtjevu 4,5,6 i 7, naznačen time da se kretanje valjka (8) ponavlja za cijelo vrijeme printanja 3D modela (2).8. The procedure according to claims 4, 5, 6 and 7, characterized in that the movement of the roller (8) is repeated for the entire time of printing the 3D model (2). 9. Postupak prema zahtjevu 1,2 i 5, naznačen time da se za vrijeme stajanja valjka (8) vrši UV osvjetljavanje radne površine fotopolimera (22).9. The method according to claims 1, 2 and 5, characterized in that, while the roller (8) is standing, UV illumination of the working surface of the photopolymer (22) is performed. 10. Postupak prema zahtjevu 1,2,4,5,6,7 i 8, naznačen time da translacijsko-rotacijski valjak (8) u svom gibanju po površini fotopolimera (4) gura nakupinu fotopolimera (17) prema pregradi (10) i pri tom vrši izravnavanje površine fotopolimera (4) i ujedno odvodi dio zagrijane površine fotopolimera (4).10. The method according to claims 1, 2, 4, 5, 6, 7 and 8, characterized in that the translational-rotational roller (8) in its movement on the surface of the photopolymer (4) pushes the photopolymer cluster (17) towards the partition (10) and in doing so, it flattens the surface of the photopolymer (4) and at the same time drains part of the heated surface of the photopolymer (4). 11. Postupak prema zahtjevu 5 i 10, naznačen time da translacijsko-rotacijski valjak (8) prilikom dolaska do pregrade (10) prebacuje doguranu nakupinu fotopolimera (17) preko pregrade (10) i na taj način se vrši hlađenje fotopolimera (4) i dodatno miješanje sa nataloženim pigmentom (20).11. The method according to claims 5 and 10, characterized by the fact that the translational-rotational roller (8) when reaching the partition (10) transfers the pushed-in mass of photopolymer (17) over the partition (10) and in this way the photopolymer (4) is cooled and additional mixing with deposited pigment (20). 12. Postupak prema zahtjevu 1 i 2, naznačen time da se miješanje nataloženog pigmenta (20) i fotopolimera (18) vrši opetovanim prolaskom platforme (7) kroz slojeve fotopolimera (18), nataloženog pigmenta (20) i zasićene tekućine (19).12. The method according to claim 1 and 2, characterized in that the mixing of deposited pigment (20) and photopolymer (18) is performed by repeatedly passing the platform (7) through layers of photopolymer (18), deposited pigment (20) and saturated liquid (19). 13. Sustav uređaja kojim se izvodi postupak pripreme fotopolimernog materijala sa primjenom u DLP 3D printeru, naznačen time što sadrži: - Translacijsko-rotacijski valjak (8) pokretan vanjskom silom kojom se ostvaruje translacijsko i rotacijsko gibanje po površini fotopolimera (4) - Pregrade (10) koje su postavljene u posudi (1) u kojoj se nalazi fotopolimer (4) a koje su postavljene sa lijeve i sa desne strane posude (1) - Preljevni sustav (1,11,12 i 13) za održavanje konstantne razine tekućine.13. Device system that performs the process of preparing photopolymer material for use in a DLP 3D printer, characterized by the fact that it contains: - Translational-rotational roller (8) driven by an external force which realizes translational and rotational motion on the surface of the photopolymer (4) - Partitions (10) which are placed in the container (1) in which the photopolymer (4) is located, and which are placed on the left and on the right side of the container (1) - Overflow system (1,11,12 and 13) to maintain a constant liquid level. 14. Sustav uređaja prema zahtjevu 13, naznačen time da je na gornjem dijelu valjka (8) smješten graničnik (9) u obliku obrnutog slova 'V' i na taj način 'jaši' na valjku (8).14. Device system according to claim 13, characterized in that a stop (9) in the shape of an inverted letter 'V' is placed on the upper part of the roller (8) and thus 'rides' on the roller (8). 15. Sustav uređaja prema zahtjevu 13 i 14, naznačen time da je graničnik (9) koji 'jaši' na valjku (8) smješten na način da istovremeno dozvoljava slobodno rotiranje valjka (8).15. Device system according to claims 13 and 14, characterized in that the limiter (9) that 'rides' on the roller (8) is located in such a way as to simultaneously allow the roller (8) to rotate freely. 16. Sustav uređaja prema zahtjevu 13, naznačen time da je translacijsko-rotacijski valjak (8) svojom uzdužnom dimenzijom jednak ili veći radnoj površini-platformi (7) DLP printera na kojoj je pričvršćen 3D model (2) i na kojem se odvija njegova polimerizacija u slojevima.16. Device system according to claim 13, characterized in that the translational-rotational roller (8) is equal to or larger in its longitudinal dimension than the working surface-platform (7) of the DLP printer on which the 3D model (2) is attached and on which its polymerization takes place in layers. 17. Sustav uređaja prema zahtjevu 13, naznačen time da pregrade (10) koje su postavljene u posudi (1) u kojoj se nalazi fotopolimer (4) izviruju iznad površine fotopolimera (4) ili su u razini sa površinom fotopolimera te se protežu cijelom uzdužnom dužinom sa lijeve i sa desne strane posude (1) i da su u blizini lijevog i desnog ruba posude (1).17. Device system according to claim 13, characterized in that the partitions (10) placed in the container (1) in which the photopolymer (4) is located protrude above the surface of the photopolymer (4) or are level with the surface of the photopolymer and extend along the entire longitudinal along the left and right sides of the container (1) and that they are near the left and right edges of the container (1).
HRP20200097AA 2020-01-21 2020-01-21 A process of preparing photopolymer material and a system of devices with application in dlp 3d printer HRP20200097A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
HRP20200097AA HRP20200097A2 (en) 2020-01-21 2020-01-21 A process of preparing photopolymer material and a system of devices with application in dlp 3d printer
PCT/HR2021/000001 WO2021148827A1 (en) 2020-01-21 2021-01-19 Photopolymer material preparation process and the devices system with application in dlp 3d printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HRP20200097AA HRP20200097A2 (en) 2020-01-21 2020-01-21 A process of preparing photopolymer material and a system of devices with application in dlp 3d printer

Publications (1)

Publication Number Publication Date
HRP20200097A2 true HRP20200097A2 (en) 2021-07-23

Family

ID=75339998

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP20200097AA HRP20200097A2 (en) 2020-01-21 2020-01-21 A process of preparing photopolymer material and a system of devices with application in dlp 3d printer

Country Status (2)

Country Link
HR (1) HRP20200097A2 (en)
WO (1) WO2021148827A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3451108B2 (en) * 1993-04-21 2003-09-29 帝人製機株式会社 Photocurable resin supply device
DE69621001T2 (en) * 1995-02-01 2003-04-03 3D Systems Inc FAST SMOOTHING PROCESS FOR THREE-DIMENSIONAL OBJECTS PRODUCED IN LAYERS
US20190111616A1 (en) * 2016-03-31 2019-04-18 Nagase Chemtex Corporation Patterning method and patterning apparatus
US20200324466A1 (en) * 2018-01-12 2020-10-15 University Of Florida Research Foundation, Incorporated Three-dimensional fabrication at inert immiscible liquid interface

Also Published As

Publication number Publication date
WO2021148827A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
CN101918199B (en) Process and freeform fabrication system for producing a three-dimensional object
US20220317567A1 (en) Method for texturing discrete substrates
US7758799B2 (en) Edge smoothness with low resolution projected images for use in solid imaging
US6547552B1 (en) Fabrication of three-dimensional objects by irradiation of radiation-curable materials
CN109640873B (en) Device and method for gradually building objects from photohardenable material
US11253828B2 (en) Additive manufacturing device
JP2007296853A (en) Material feeding tension tracking device to be used in solid imaging
JP2023508153A (en) Systems and methods for additive manufacturing of three-dimensional (3D) structures based on lithography
WO2012140658A2 (en) System and method for layer by layer printing of an object with support
CN102156316A (en) Colorful light filter and manufacturing method thereof
US20170197361A1 (en) System for Forming a Dimensionally Stable Object by Selective Solidification Section by Section of a Dimensionally Unstable Mass
HRP20200097A2 (en) A process of preparing photopolymer material and a system of devices with application in dlp 3d printer
CN108668521A (en) Use the additivity manufacturing method of the dynamic optical projection for flexographic printing mother matrix
JP2021530384A (en) How to build up objects layer by layer and 3D printing equipment to perform such methods
TW397709B (en) The method and apparatus used to coat substrate or lacquering
CN205958923U (en) Silk screen version laser platemaking device
CN108170007A (en) High-precision 3D printing device and Method of printing
CN110936607A (en) Formula of sinking liquid crystal 3D printing system
HRP20221101A1 (en) A device for sequential application, in arbitrary high layers, of liquid characterized by an arbitrary viscosity
CN211390151U (en) Formula of sinking liquid crystal 3D printing system
US20240116243A1 (en) Device and method for simultaneous additive manufacturing of components composed of different materials
CN218366519U (en) Double-projection printer
CN106827517A (en) Projection 3D printer and its method of work
RU220761U1 (en) Multiple exposure photopolymer 3D printer
US20210339480A1 (en) Support and Infill Materials and Processes for the Production of a Three-Dimensional Object

Legal Events

Date Code Title Description
A1OB Publication of a patent application
OBST Application withdrawn