HRP20151358A2 - Reaction chamber for in-situ recording of raman spectra at mechanochemical reactions and corresponding method of recording raman spectrums - Google Patents

Reaction chamber for in-situ recording of raman spectra at mechanochemical reactions and corresponding method of recording raman spectrums Download PDF

Info

Publication number
HRP20151358A2
HRP20151358A2 HRP20151358AA HRP20151358A HRP20151358A2 HR P20151358 A2 HRP20151358 A2 HR P20151358A2 HR P20151358A A HRP20151358A A HR P20151358AA HR P20151358 A HRP20151358 A HR P20151358A HR P20151358 A2 HRP20151358 A2 HR P20151358A2
Authority
HR
Croatia
Prior art keywords
reaction vessel
reaction
raman
flat
laser beam
Prior art date
Application number
HRP20151358AA
Other languages
Croatian (hr)
Inventor
Davor GRACIN
Krunoslav UŽAREVIĆ
Ivan HALASZ
Vitomir STANIŠIĆ
Aleksandar SABLJIĆ
Original Assignee
Institut Ruđer Bošković
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Ruđer Bošković filed Critical Institut Ruđer Bošković
Priority to HRP20151358AA priority Critical patent/HRP20151358A2/en
Priority to PCT/HR2016/000026 priority patent/WO2017098287A1/en
Publication of HRP20151358A2 publication Critical patent/HRP20151358A2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/121Coherent waves, e.g. laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • B01J2219/1941Details relating to the geometry of the reactor round circular or disk-shaped
    • B01J2219/1943Details relating to the geometry of the reactor round circular or disk-shaped cylindrical
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/651Cuvettes therefore
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8411Application to online plant, process monitoring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Predmetni izum se odnosni na poboljšane reakcijske posude (1) koje se koriste za provedbu mehanokemijskih reakcija, a koje su pogodne za in-situ snimanje Ramanovih spektara uzoraka u reakcijskih posudama (1) tijekom postupka mljevenja na mlinovima. Osnovna karakteristika reakcijskih posuda (1) jest da na vanjskom plastu posjeduju ravnu prozirnu plohu (2) kroz koju se vrši pobuda uzorka u reakcijskoj posudi (1).The present invention relates to improved reaction vessels (1) used for carrying out mechanochemical reactions, which are suitable for in-situ recording of Raman spectra of samples in reaction vessels (1) during the grinding process at mills. The basic characteristic of the reaction vessels (1) is that they have a flat transparent surface (2) on the outer layer through which the sample in the reaction vessel (1) is excited.

Description

Područje na koje se izum odnosi The field to which the invention relates

Predmetni izum se odnosi na reakcijsku posudu koja se koristi za provedbu mehanokemijskih reakcija, a koja je pogodna za in-situ snimanje Ramanovih spektara uzoraka u reakcijskih posudama tijekom postupka mljevenja na mlinovima. Izum se također odnosi na metodu snimanja Ramanovih spektara koji koristi reakcijsku posudu izuma. The present invention relates to a reaction vessel used for mechanochemical reactions, which is suitable for in-situ recording of Raman spectra of samples in reaction vessels during the grinding process on mills. The invention also relates to a method of recording Raman spectra using the reaction vessel of the invention.

Tehnički problem Technical problem

Mehanokemijske reakcije se često provode pomoću mehanokemijskih mlinova koji mogu biti vibracijski (kuglični) mlinovi, planetarni kuglični mlinovi itd. Reakcijske posude za mehanokemijske reakcije za provedbu reakcije sadrže odgovarajuće reaktante i aditive te jednu ili više kuglica za mljevenje te su u potpunosti zatvorene u tijeku postupka mljevenja. Mlin je uređaj koji pokreće reakcijske posude tako da uzrokuje relativno gibanje reakcijske posude i čeličnih kuglica što za posljedicu ima miješanje reaktanata te udaranje kuglica po reaktantima. Prednosti mehanokemijskih reakcija u odnosu na reakcije koje se provode u otopinama su smanjena ili minimalna uporaba otapala, brze i energijski nezahtjevne reakcije te kvantitativni prinosi produkta. Mehanokemijske reakcije provode se tako da se reakcijske posude s reaktantima i kuglicama za mljevenje montiraju na mlin, koji potom pokreće reakcijske posude. Kod vibracijskih kugličnih mlinova reakcijske posude osciliraju frekvencijom od tipičnih 30 Hz. U jednoj izvedbi vibracijskog mlina, ruka mlina koja drži reakcijsku posudu oscilira od svoje lijeve krajnje točke to svoje desne krajnje točke u horizontalnoj ravnini. U drugoj izvedbi vibracijskog kugličnog mlina oscilacija reakcijske posude događa se u vertikalnoj ravnini tj. reakcijska posuda se kreće gore-dolje. Mechanochemical reactions are often carried out using mechanochemical mills, which can be vibrating (ball) mills, planetary ball mills, etc. Reaction vessels for mechanochemical reactions to carry out the reaction contain appropriate reactants and additives and one or more grinding balls and are completely closed during the process grinding. The mill is a device that moves the reaction vessels so that it causes relative motion of the reaction vessel and the steel balls, which results in the mixing of the reactants and the hitting of the balls on the reactants. The advantages of mechanochemical reactions compared to reactions carried out in solutions are reduced or minimal use of solvents, fast and energy-free reactions and quantitative product yields. Mechanochemical reactions are carried out by mounting reaction vessels with reactants and grinding balls on a mill, which then drives the reaction vessels. In vibrating ball mills, the reaction vessels oscillate at a frequency of typically 30 Hz. In one embodiment of the vibrating mill, the mill arm holding the reaction vessel oscillates from its left end point to its right end point in a horizontal plane. In another version of the vibrating ball mill, the oscillation of the reaction vessel occurs in the vertical plane, i.e. the reaction vessel moves up and down.

Reakcijske posude su do nedavno bile napravljene isključivo od neprozirnih materijala poput čelika, ahata, volframova karbida, cirkonijeva oksida, aluminijeva oksida i slično što je onemogućavalo in-situ praćenje fizikalnih i kemijskih promjena koje su se zbivale tijekom provedbe mehanokemijskog postupka. Primjerice, neprozirne reakcijske posude onemogućavaju prodor pobudne laserske zrake, potrebne za dobivanje Ramanovog spektra uzorka, unutar reakcijske posude gdje laserska zraka treba stupiti u interakciju s reakcijskom smjesom. Kod neprozirnih reakcijskih posuda pobudna laserska zraka nije u mogućnosti proći kroz stijenku reakcijske posude. Until recently, reaction vessels were made exclusively of opaque materials such as steel, agate, tungsten carbide, zirconium oxide, aluminum oxide, and the like, which prevented in-situ monitoring of the physical and chemical changes that occurred during the implementation of the mechanochemical process. For example, opaque reaction vessels prevent the penetration of the excitation laser beam, necessary for obtaining the Raman spectrum of the sample, inside the reaction vessel where the laser beam should interact with the reaction mixture. With opaque reaction vessels, the excitation laser beam is not able to pass through the wall of the reaction vessel.

Praćenje i razumijevanje tijeka i procesa koji se zbivaju provedbom mehanokemijskih reakcija poželjno je s aspekta optimizacije mehanokemijskih reakcija. Do razvoja prvih in-situ tehnika za praćenje tijeka mehanokemijskih reakcija bez prekidanja procesa mljevenja, praćenje tijeka mehanokemijskih reakcija počivalo je na prekidanju procesa mljevenja radi otvaranja reakcijske posude i uzorkovanja reakcijske smjese. Takav pristup praćenju tijeka mehanokemijske reakcije je manjkav zato što se neke mehanokemijske reakcije ne zaustavljaju prestankom procesa mljevenja nego se nastavljaju u već tako dobivenoj reakcijskoj smjesi. Kako naknadna analiza koja slijedi nakon uzorkovanja i pripreme uzorka za odgovarajuću analizu neizbježno kasni za trenutkom uzorkovanja, tako i svaka promjena uzorka nakon uzorkovanja daje pogrešnu informaciju u tijeku mehanokemijske reakcije te može dovesti do pogrešnih zaključaka o napredovanju i tijeku mehanokemijske reakcije. Osim toga, proces mljevenja zagrijava reakcijsku smjesu što je posljedica pretvorbe kinetičke energije kuglica za mljevenje u unutrašnju energiju reakcijske smjese te također i same reakcijske posude. Prekidanje postupka mljevenja te njegovo razdvajanje u segmente radi uzorkovanja nedvojbeno uzrokuje hlađenje reakcijske smjese i reakcijske posude te njeno ponovno zagrijavanje nastavkom postupka mljevenja. Time su promjene temperature reakcijske smjese različite kod isprekidanog postupka mljevenja i kod neprekinutog mljevenja. Jasno je da za primjenu mehanokemijskih reakcija, poželjno postupak provoditi neprekinuto, jer takav zahtijeva manje vremena trajanja, ali i manje ljudskog rada. Već je samo iz ovih razloga očito da pristup praćenju mehanokemijskih reakcija mljevenja koje zahtijevaju prekidanje procesa mljevenja manjkav i ne može pružiti meritornu informaciju o procesima koji se događaju tijekom mljevenja. Monitoring and understanding the flow and processes that take place during the implementation of mechanochemical reactions is desirable from the aspect of optimizing mechanochemical reactions. Until the development of the first in-situ techniques for monitoring the course of mechanochemical reactions without interrupting the grinding process, monitoring the course of mechanochemical reactions was based on interrupting the grinding process to open the reaction vessel and sample the reaction mixture. Such an approach to monitoring the course of the mechanochemical reaction is flawed because some mechanochemical reactions are not stopped by the end of the grinding process, but continue in the reaction mixture already obtained in this way. As the subsequent analysis that follows sampling and preparation of the sample for appropriate analysis inevitably lags behind the moment of sampling, any change in the sample after sampling gives wrong information in the course of the mechanochemical reaction and can lead to wrong conclusions about the progress and course of the mechanochemical reaction. In addition, the grinding process heats the reaction mixture, which is a consequence of the conversion of the kinetic energy of the grinding balls into the internal energy of the reaction mixture and also of the reaction vessel itself. Stopping the grinding process and dividing it into segments for sampling undoubtedly causes cooling of the reaction mixture and the reaction vessel and its reheating by continuing the grinding process. Thus, the temperature changes of the reaction mixture are different during the interrupted grinding process and during continuous grinding. It is clear that for the application of mechanochemical reactions, it is preferable to carry out the procedure continuously, because it requires less time, but also less human work. For these reasons alone, it is obvious that the approach to monitoring the mechanochemical reactions of grinding that require stopping the grinding process is flawed and cannot provide meritorious information about the processes that occur during grinding.

Stoga je razvoj tehnika za praćenje mehanokemijskih reakcija koje ne zahtijevaju prekidanje procesa mljevenja poželjan za bolje razumijevanje tih procesa i kasnije za njihovu optimizaciju u svrhu dobivanja željenih produkata u najkraćem vremenu i s najmanjim utroškom ostalih resursa poput energije i početnih materijala i sirovina. Dvije tehnike koje danas postoje, a koje omogućavaju praćenje mehanokemijskih reakcija bez da ometaju proces mljevenja, počivaju ili na difrakciji rendgenskih zraka visoke energije ili na Ramanovoj spektroskopiji. Therefore, the development of techniques for monitoring mechanochemical reactions that do not require interrupting the milling process is desirable for a better understanding of these processes and later for their optimization in order to obtain the desired products in the shortest time and with the least consumption of other resources such as energy and initial materials and raw materials. Two techniques that exist today, which enable the monitoring of mechanochemical reactions without disturbing the grinding process, are based either on high-energy X-ray diffraction or on Raman spectroscopy.

Ramanova spektroskopija prepoznata je metoda karakterizacije uzoraka te se često primjenjuje u znanstvenim i primijenjenim istraživanjima koja uključuju kemijska, farmaceutska, biokemijska, biološka i fizička istraživanja. Ona je spektroskopska metoda gdje laserska zraka međudjeluje s uzorkom te se analizira neelastično raspršeno zračenje. Ramanovo raspršeno zračenje samo je mali dio zračenja koje se raspršuje na uzorku. Približno jedan od milijun fotona od početnog pobudnog laserskog snopa se na uzorku neelastično rasprši dajući Ramanov signal. Stoga je od posebne važnosti omogućiti sakupljanje što je više moguće Ramanski raspršenih fotona kad se to raspršenje događa tijekom mljevenja, a pobudna laserska zraka ulazi kroz stijenku reakcijske posude da bi međudjelovala s uzorkom te raspršeno zračenje izlazi iz reakcijske posude da bi se sakupilo i analiziralo pomoću spektrometra. Raman spectroscopy is a recognized method of characterizing samples and is often used in scientific and applied research that includes chemical, pharmaceutical, biochemical, biological and physical research. It is a spectroscopic method where the laser beam interacts with the sample and the inelastic scattered radiation is analyzed. Raman scattered radiation is only a small part of the radiation that is scattered on the sample. Approximately one photon in a million from the initial excitation laser beam is inelastically scattered by the sample giving a Raman signal. Therefore, it is of particular importance to enable the collection of as many Raman scattered photons as possible when this scattering occurs during milling, and the excitation laser beam enters through the wall of the reaction vessel to interact with the sample and the scattered radiation exits the reaction vessel to be collected and analyzed by spectrometer.

Sakupljanjem Ramanovog spektra uzorka, u principu se dobiva uvid u vibracijski spektar uzorka koji ovisi o sastavu uzorka. Različitim uzorcima stoga različiti su Ramanovi spektri, a promjene u sastavu uzorka mogu se mjeriti i pratiti u vremenu, snimanjem vremenski razlučenih Ramanovih spektara. Standardno se Ramanovi spektri uzorka snimaju tako da pobudna laserska zraka izravno pada na uzorak te se ramanski raspršeno zračenje sakuplja izravno od uzorka. Za primjenu Ramanove spektroskopije na mehanokemijske reakcije, izravni kontakt pobudne laserske zrake s uzorkom nije moguć jer je reakcijska smjesa sadržana u reakcijskoj posudi koja oscilira tijekom postupka mljevenja. By collecting the Raman spectrum of the sample, in principle, an insight into the vibrational spectrum of the sample is obtained, which depends on the composition of the sample. Different samples therefore have different Raman spectra, and changes in the composition of the sample can be measured and monitored over time, by recording time-resolved Raman spectra. By default, Raman spectra of a sample are recorded so that the excitation laser beam is directly incident on the sample and Raman scattered radiation is collected directly from the sample. For the application of Raman spectroscopy to mechanochemical reactions, direct contact of the excitation laser beam with the sample is not possible because the reaction mixture is contained in a reaction vessel that oscillates during the grinding process.

Za provedbu navedenih mehanokemijskih reakcija u mlinovima u novije vrijeme se upotrebljavaju prozirne reakcijske posude koje su omogućavale djelomično in-situ praćenje kemijskih reakcija uporabom difrakcije rendgenskog zračenja. Takve reakcijske posude su tipično napravljene od polimetilmetakrilata (stakloplastike). Takve se reakcijske posude sastoje od dva komplementarna dijela koja se spajaju tvoreći zatvorenu reakcijsku posudu te tipično izvana imaju oblik valjka dok iznutra zatvaraju komoru koja je zaobljena u potpunosti. Takve prozirne reakcijske posude mogu se koristiti za snimanje Ramanovih spektara reakcijske smjese in-situ tijekom provedbe mehanokemijskog postupka. For the implementation of the aforementioned mechanochemical reactions in mills, transparent reaction vessels have recently been used, which enabled partial in-situ monitoring of chemical reactions using X-ray diffraction. Such reaction vessels are typically made of polymethyl methacrylate (glass plastic). Such reaction vessels consist of two complementary parts that are joined to form a closed reaction vessel and typically have the shape of a cylinder on the outside, while on the inside they enclose a chamber that is completely rounded. Such transparent reaction vessels can be used to record the Raman spectra of the reaction mixture in-situ during the implementation of the mechanochemical process.

Za snimanje Ramanovih spektara pobudna laserska zraka prolazi kroz stijenku prozirne reakcijske posude i ulazi u reakcijsku posudu gdje stupa u interakciju s uzorkom ili reakcijskom smjesom. Pobudna laserska zraka se na uzorku raspršuje te jedan dio raspršenog zračenja pripada Ramanovom raspršenom zračenju koje ima promijenjenu energiju od pobudnog zračenja. Ramanovo zračenje je od interesa za ovu patentnu prijavu jer je ono karakteristično za kemijski sastav uzorka te promjenom kemijskog sastava uzorka dobiva se i drugačiji Ramanov spektar. Promjenama u Ramanovim spektrima reakcijske smjese omogućeno je praćenje tijeka reakcije tijekom postupka mljevenja. Primjerice, dok god se spektar reakcijske smjese mijenja, reakcija se događa pod utjecajem mljevenja. Prestanak promjena u spektru reakcijske smjese ukazuje na prestanak odvijanja kemijske reakcije te na završetak reakcije. Time se in-situ Ramanova spektroskopija može uporabiti za određivanje vremena potrebnog za dovršetak neke mehanokemijske reakcije te se time može vremenski optimizirati mehanokemijski postupak. To record Raman spectra, the excitation laser beam passes through the wall of a transparent reaction vessel and enters the reaction vessel where it interacts with the sample or reaction mixture. The excitation laser beam is scattered on the sample, and one part of the scattered radiation belongs to the Raman scattered radiation, which has a changed energy from the excitation radiation. Raman radiation is of interest for this patent application because it is characteristic of the chemical composition of the sample, and by changing the chemical composition of the sample, a different Raman spectrum is obtained. Changes in the Raman spectra of the reaction mixture make it possible to monitor the course of the reaction during the grinding process. For example, as long as the spectrum of the reaction mixture changes, the reaction occurs under the influence of grinding. The cessation of changes in the spectrum of the reaction mixture indicates the cessation of the chemical reaction and the completion of the reaction. Thus, in-situ Raman spectroscopy can be used to determine the time required to complete a mechanochemical reaction, and thus the mechanochemical process can be time optimized.

Međutim, iako sama uporaba prozirnih reakcijskih posuda omogućava dobivanje spektra od uzorka in-situ tijekom mljevenja i bez prekidanja postupka mljevenja, pokazalo se da takve reakcijske posude nisu prikladne za praćenje tijeka mehanokemijskih reakcija kod reakcijskih smjesa koje daju slabi efekt Ramanovog raspršenja. Stoga je postojala potreba za poboljšanjem, odnosno za rješenjem koje će omogućiti kvalitetnije in-situ snimanje Ramanovih spektara kod mehanokemijskih reakcija. However, although the very use of transparent reaction vessels enables obtaining spectra from the sample in-situ during grinding and without interrupting the grinding process, it has been shown that such reaction vessels are not suitable for monitoring the course of mechanochemical reactions in reaction mixtures that give a weak Raman scattering effect. Therefore, there was a need for an improvement, that is, for a solution that will enable better quality in-situ recording of Raman spectra during mechanochemical reactions.

Stanje tehnike State of the art

Uporaba plastične reakcijske posude za provedbu mehanokemijskih reakcija je opisana ranije [znanstveni rad: Friščić et al. Nature Chem., 5 (2013) 66-73]. Materijal reakcijske posude koja je uporabljena u tom znanstvenom radu je polimetilmetakrilat (PMMA, također poznat pod imenima stakloplastika, Plexiglas ili Perspex). Ramanovi spektri sakupljeni in-situ i bez prekidanja postupka mljevenja također su sakupljeni korištenjem takvih prozirnih reakcijskih posuda [znanstveni radovi: Gracin et al. Angew. Chem. Int. Ed. 53 (2014) 6193-6197; Batzdorf et al. Angew. Chem. Int. Ed. 54 (2014) 1799-1802, Juribašić et al. Chem. Commun. 50 (2014) 10287-10290; Tireli et al. Chem. Commun. 51 (2015) 8058-8061]. The use of a plastic reaction vessel for mechanochemical reactions was described earlier [scientific paper: Friščić et al. Nature Chem., 5 (2013) 66-73]. The material of the reaction vessel used in this scientific work is polymethyl methacrylate (PMMA, also known as fiberglass, Plexiglas or Perspex). Raman spectra collected in-situ and without interrupting the grinding process were also collected using such transparent reaction vessels [scientific papers: Gracin et al. Angew. Chem. Int. Ed. 53 (2014) 6193-6197; Batzdorf et al. Angew. Chem. Int. Ed. 54 (2014) 1799-1802, Juribašić et al. Chem. Commun. 50 (2014) 10287-10290; Tireli et al. Chem. Commun. 51 (2015) 8058-8061].

Ramanovi spektri snimani su korištenjem neprozirnih reakcijskih posuda, ali koje imaju proziran prozor. Raman spectra were recorded using opaque reaction vessels, but with a transparent window.

Tako se Europska prijava patenta EP2784488A1 odnosi na reakcijsku posudu za Raman spektrofotometriji te metodu koja koristi takvu posudu. Na stranici 3, red 4, paragraf (0016) opisuje se reakcijska posuda iz crteža 1 do 5. Navedeno je kako kućište 10 uključuje transparentni prozor 11, kroz koji se vidi unutrašnjost reakcijske posude 12 u kojem se dobiva otopina elektrolita E. Taj prozor služi za Raman spektrofotometriju elektrokemijske reakcije koja se dešava u reakcijskoj posudi. Takva reakcijska posud nije prilagođena radu u postupku mljevenja. Thus, European patent application EP2784488A1 refers to a reaction vessel for Raman spectrophotometry and a method using such a vessel. On page 3, line 4, paragraph (0016), the reaction vessel from drawings 1 to 5 is described. It is stated that the housing 10 includes a transparent window 11, through which one can see the inside of the reaction vessel 12 in which the electrolyte solution E is obtained. This window serves for Raman spectrophotometry of the electrochemical reaction occurring in the reaction vessel. Such a reaction vessel is not adapted to work in the grinding process.

US prijava patenta US2004/0166310 se odnosi na upotrebu stabiliziranog cirkonijevog oksida za prozor kroz koji bi se pratile različite kemijske reakcije u različitim reakcijskim posudama. Izumom se dobiva transparentni opservacijski prozor na različitim reakcijskim posudama. Prema patentnom zahtjevu 10, takav prozor se koristi između ostalog i za optičke metode praćenja reakcija koje uključuju spektroskopiju. Patentne prijava ne ukazuje na mogućnost korištenja takve reakcijske posude za postupke mljevenja. US patent application US2004/0166310 relates to the use of stabilized zirconium oxide for a window through which to monitor various chemical reactions in various reaction vessels. The invention provides a transparent observation window on different reaction vessels. According to patent claim 10, such a window is used, among other things, for optical methods of monitoring reactions involving spectroscopy. The patent application does not indicate the possibility of using such a reaction vessel for grinding processes.

Izlaganje biti izuma Presentation of the essence of the invention

Predmetni izum predstavlja poboljšanu reakcijsku posudu za in-situ snimanje Ramanovih spektara kod mehanokemijskih reakcija. Izum se odnosi na reakcijske posude za in-situ snimanje Ramanovih spektara uzoraka tijekom postupka mljevenja na mlinovima gdje je vanjska površina reakcijske posude valjkastog oblika a unutarnja površin reakcijske posude u potpunosti zaobljena te gdje valjkasti dio vanjske površine reakcijske posude ima jednu ili više ravnih prozirnih ploha na plastu valjka za prolaz pobudnog laserskog snopa u unutrašnjost reakcijske posude i izlazak ramanski raspršenog zračenja. Poželjno je da su mlinovi vibracijski mlinovi. The present invention represents an improved reaction vessel for in-situ recording of Raman spectra in mechanochemical reactions. The invention relates to reaction vessels for in-situ recording of Raman spectra of samples during the grinding process on mills, where the outer surface of the reaction vessel is cylindrical and the inner surface of the reaction vessel is completely rounded, and where the cylindrical part of the outer surface of the reaction vessel has one or more flat transparent surfaces on the layer of the roller for the passage of the excitation laser beam into the interior of the reaction vessel and the exit of the Raman scattered radiation. It is preferable that the mills are vibration mills.

Reakcijske posude predmetnog izuma omogućavaju sakupljanje poboljšanih Ramanovih spektara tijekom postupka mljevenja u donosu na do sada poznate reakcijske posude za sakupljanje Ramanovih spektara i postupcima mljevenja. Poboljšanje Ramanovih spektara odnosi se na približno 2,3 puta veći omjer Ramanovog signala od uzorka i reakcijske posude kad se koriste reakcijske posude predmetnog izuma u odnosu na do sad poznate prozirne reakcijske posude (Crteži 4a, 4b i 4c te Tabela 1). Također, Ramanov signal uzorka je približno za 25 % veći kad se koristi reakcijska posuda predmetnog izuma gdje pobudna laserska zraka upada u reakcijsku posudu okomito kroz njen ravni dio u odnosu na reakcijsku posudu sa u potpunosti zaobljenom stijenkom. Također, snimanje Ramanovih spektara se može vršiti in-situ, bez potrebe da se mljevenje prekida ili da se reakcijska posuda koja sadrži uzorak otvara ili da se na bilo koj drugi način vadi uzorak izvan reakcijske posude radi snimanja njegovog Ramanovog spektra. The reaction vessels of the present invention enable the collection of improved Raman spectra during the grinding process in comparison to the hitherto known reaction vessels for the collection of Raman spectra and grinding procedures. The improvement of the Raman spectra refers to an approximately 2.3 times higher ratio of the Raman signal from the sample to the reaction vessel when the reaction vessels of the present invention are used compared to the transparent reaction vessels known so far (Figures 4a, 4b and 4c and Table 1). Also, the Raman signal of the sample is approximately 25% higher when using the reaction vessel of the subject invention where the excitation laser beam enters the reaction vessel vertically through its flat part compared to a reaction vessel with a fully rounded wall. Also, the recording of Raman spectra can be done in-situ, without the need to interrupt the grinding or to open the reaction vessel containing the sample or to remove the sample outside the reaction vessel in any other way in order to record its Raman spectrum.

Reakcijskim posudama predmetnog izuma postignut je bolji omjer Ramanovog signala reakcijske smjese šuma te također bolji omjer Ramanovog signala reakcijske smjese i Ramanovog signala reakcijske posude Naime, sam materijal prozirne reakcijske posude daje Ramanov signal koji je nemoguće izbjeći jer zraka na putu do reakcijske smjese u unutrašnjosti reakcijske posude djelomično stupa u interakciju s materijalom reakcijske posude te se djelomično raspršuje na materijalu reakcijske posude. Međutim, promijenjenim dizajnom reakcijske posude može se poboljšati omjer Ramanovog signala uzorka u odnosi na šum te na Ramanov signal reakcijske posude te je to predmet ovog izuma. With the reaction vessels of the subject invention, a better ratio of the Raman signal of the reaction mixture noise was achieved, and also a better ratio of the Raman signal of the reaction mixture and the Raman signal of the reaction vessel Namely, the material of the transparent reaction vessel gives a Raman signal that is impossible to avoid because the air on the way to the reaction mixture inside the reaction vessel vessel partially interacts with the material of the reaction vessel and is partially dispersed on the material of the reaction vessel. However, by changing the design of the reaction vessel, the Raman signal-to-noise ratio of the sample and the Raman signal of the reaction vessel can be improved, and this is the subject of the present invention.

Poželjno je da je reakcijska posuda u cijelosti napravljena od prozirnog materijala. Prozirni materijal se može odabrati između ostalih od polimetilmetakrilata, polietilena ili polikarbonata. It is preferable that the reaction vessel is entirely made of transparent material. The transparent material can be chosen from among others polymethyl methacrylate, polyethylene or polycarbonate.

Poželjno je da je površina ravne plohe na vanjskoj površini reakcijske posude takva da je ona dovoljna d pobudna laserska zraka uđe u reakcijsku posudu okomito kroz tu ravnu i prozirnu plohu/stijenku reakcijske posude. Naime, površina ravne plohe reakcijske posude predmetnog izuma treba biti dovoljno velika da laserska zraka cijelo vrijeme pada na nju dok se reakcijska posuda izuma pomiče na mlinu. It is desirable that the surface of the flat surface on the outer surface of the reaction vessel is such that it is sufficient for the excitation laser beam to enter the reaction vessel vertically through this flat and transparent surface/wall of the reaction vessel. Namely, the surface of the flat surface of the reaction vessel of the subject invention should be large enough that the laser beam falls on it all the time while the reaction vessel of the invention moves on the mill.

Prema dizajnu uobičajenih laboratorijskih mlinova i amplitudama pokreta ruke koja drži reakcijsku posudu na mlinu, ravna prozirna ploha je dugačka od 1 mm do cijele duljine valjka reakcijske posude. Poželjno je da je duljina ravne plohe valjka od 10 mm do 20 mm. Bitno je da je ravna prozirna ploha valjka najmanje u duljini koju reakcijska posuda montirana na mlin načini od desne krajnje točke do lijeve krajnje točke ruke mlina na koju je montirana reakcijska posuda. According to the design of common laboratory mills and the amplitudes of movement of the arm holding the reaction vessel on the mill, the flat transparent surface is 1 mm long to the entire length of the reaction vessel roller. It is desirable that the length of the flat surface of the roller is from 10 mm to 20 mm. It is essential that the flat transparent surface of the roller is at least the length of the reaction vessel mounted on the mill from the right end point to the left end point of the mill arm on which the reaction vessel is mounted.

Širina ravne plohe treba biti dovoljna da laserska zraka upada u reakcijsku posudu kroz ravnu plohu u svim položajima u kojima se reakcijska posuda može naći prema laserskoj zraci tijekom postupka mljevenja. Dakle u svim položajima reakcijske posude od lijeve krajnje točke ruke mlina do desne krajnje točke. Širina ravne plohe na reakcijskoj posudi može biti u rasponu od 1 mm do 20 mm. Poželjno je da je širina ravne plohe 3 mm do 10 mm. The width of the flat surface should be sufficient for the laser beam to enter the reaction vessel through the flat surface in all positions in which the reaction vessel can be found with respect to the laser beam during the grinding process. So in all positions of the reaction vessel from the left end point of the mill arm to the right end point. The width of the flat surface on the reaction vessel can range from 1 mm to 20 mm. It is preferable that the width of the flat surface is 3 mm to 10 mm.

Poželjno je da se na reakcijskoj posudi nalazi samo jedan ravni prozirni dio površine dovoljne za prolaz laserske zrake. U tom slučaju, ostatak valjkastog dijela reakcijske posude bi se lako mogao smjestiti u ruku mlina te bi se mehanokemijske reakcije koje nastaju trešenjem mlina i dalje učinkovito vršile. It is preferable that there is only one flat transparent part of the surface sufficient for the passage of the laser beam on the reaction vessel. In that case, the rest of the cylindrical part of the reaction vessel could easily be placed in the arm of the mill, and the mechanochemical reactions resulting from the shaking of the mill would continue to be carried out efficiently.

Debljina stijenki reakcijske posude treba biti što manja da bi Ramanov signal od reakcijske posude u Ramanovom spektru bio što manji, ali opet dovoljna da reakcijska posuda ima odgovarajuću čvrstoću. Poželjno je da je debljina stijenke reakcijske posude prilagođena svojstvima pobudne laserske zrake. Primjerice, u izvedbama kada je pobudna laserska zraka fokusirana na određenoj udaljenosti od vrha laserske sonde, poželjno je da je debljina stijenke reakcijske posude na mjestu gdje reakcijska posuda ima ravnu plohu manja od te određene udaljenosti fokusa laserske zrake od vrha laserske sonde. Time se postiže da fokus laserske zrake bude u unutrašnjosti reakcijske posude gdje se nalazi reakcijska smjesa čiji Ramanovi spektri se mjere. The thickness of the walls of the reaction vessel should be as small as possible so that the Raman signal from the reaction vessel in the Raman spectrum is as small as possible, but still sufficient for the reaction vessel to have adequate strength. It is desirable that the thickness of the wall of the reaction vessel is adapted to the properties of the excitation laser beam. For example, in designs where the excitation laser beam is focused at a certain distance from the tip of the laser probe, it is desirable that the thickness of the wall of the reaction vessel at the place where the reaction vessel has a flat surface is smaller than that certain distance of the focus of the laser beam from the tip of the laser probe. This ensures that the focus of the laser beam is in the interior of the reaction vessel where there is a reaction mixture whose Raman spectra are measured.

U slučaju da se prozirna reakcijska posuda izuma sastoji od dva komplementarna dijela koja se spajaju tako da tvore zatvorenu reakcijsku posudu oblog i glatkog unutarnjeg oblika, poželjno je da svaki od dva komplementarna dijela reakcijske posude ima ravnu plohu na vanjskoj površini reakcijske posude koje su jednakih širina tako da se zatvaranjem reakcijske posude ostvaruje jedna kontinuirana ravna prozirna ploha na vanjskoj površini zatvorene reakcijske posude. In the event that the transparent reaction vessel of the invention consists of two complementary parts that are joined to form a closed reaction vessel with a lining and a smooth internal shape, it is preferable that each of the two complementary parts of the reaction vessel has a flat surface on the outer surface of the reaction vessel that are of equal width so that by closing the reaction vessel, one continuous flat transparent surface is realized on the outer surface of the closed reaction vessel.

Moguća je izvedba u kojoj se ravni dio sklopljene i zatvorene reakcijske posude ne proteže cijelom duljinom reakcijske posude nego je reakcijska posuda u cijelosti zaobljena na svojim krajevima koji dodiruju ruku mlina kad se reakcijska posuda montira na mlin. U tom slučaju svaki od dva komplementarna dijela ima ravni dio vanjske stijenke koji se proteže od dijela gdje je svaki od dva dijela reakcijske posude otvoren. Na taj način, kada je reakcijska posuda zatvorena, ukupna duljina ravne plohe vanjske stijenke reakcijske posude je jednaka ili veća od amplitude koju ima reakcijska posuda dok je montirana na uključeni mlin. An embodiment is possible in which the flat part of the folded and closed reaction vessel does not extend the entire length of the reaction vessel, but the reaction vessel is completely rounded at its ends that touch the mill arm when the reaction vessel is mounted on the mill. In this case, each of the two complementary parts has a flat part of the outer wall extending from the part where each of the two parts of the reaction vessel is open. Thus, when the reaction vessel is closed, the total length of the flat surface of the outer wall of the reaction vessel is equal to or greater than the amplitude of the reaction vessel while mounted on the mill in operation.

Na taj se način postiže da laserska zraka upada kroz ravni dio reakcijske posude u svim položajima reakcijske posude tijekom mljevenja. In this way, it is achieved that the laser beam enters through the flat part of the reaction vessel in all positions of the reaction vessel during grinding.

Poželjno je da se reakcijska posuda s ravnom plohom tijekom pokusa sakupljanja in-situ Ramanovih spektara koristi na način da pobudna laserska zraka ulazi u reakcijsku posudu okomito kroz ravnu plohu, lako je moguće sakupiti Ramanov spektar korištenjem reakcijske posude sa u potpunosti zaobljenom vanjskom stijenkom, ukoliko laserska zraka za Ramanovu pobudu ulazi okomito u reakcijsku posudu kroz ravnu i prozirnu vanjsku stijenku, dobiva se najkvalitetniji Ramanov spektar uzorka. Usporedba Ramanovih spektara dobivenih na različite načine snimanja prikazana je na crtežima 4a, 4b i 4c. Rezultati analize jakosti signala koji su dobiveni na ova tri načina snimanja dani su u Tabeli 1. It is preferable to use a reaction vessel with a flat surface during the experiment of collecting in-situ Raman spectra in such a way that the excitation laser beam enters the reaction vessel vertically through the flat surface, it is easily possible to collect the Raman spectrum by using a reaction vessel with a completely rounded outer wall, if the laser beam for Raman excitation enters the reaction vessel vertically through the flat and transparent outer wall, the highest quality Raman spectrum of the sample is obtained. A comparison of Raman spectra obtained by different recording methods is shown in drawings 4a, 4b and 4c. The results of the signal strength analysis obtained by these three recording methods are given in Table 1.

Predmetni izum se također odnosi na metodu sakupljanja Ramanovih spektara reakcijske smjese tijekom postupka mljevenja i bez prekidanja postupka mljevenja, koja koristi reakcijsku posudu predmetnog izuma na način da se reakcijska posuda predmetnog izuma montira na vibracijski kuglični mlin tako da joj je ravna prozirna ploha u horizontalnoj ravnini i okrenuta prema dolje. Pritom se laserska sonda postavlja ispod reakcijske posude na način da pobudni laserski snop ulazi u reakcijsku posudu okomito kroz njenu ravnu plohu te se Ramanovo raspšeno zračenje sakuplja tako da izlazi iz reakcijske posude kroz istu ravnu plohu. The subject invention also relates to a method of collecting Raman spectra of the reaction mixture during the grinding process and without interrupting the grinding process, which uses the reaction vessel of the subject invention in such a way that the reaction vessel of the subject invention is mounted on a vibrating ball mill so that its transparent surface is flat in the horizontal plane and facing down. In doing so, the laser probe is placed under the reaction vessel in such a way that the excitation laser beam enters the reaction vessel vertically through its flat surface, and Raman scattered radiation is collected so that it exits the reaction vessel through the same flat surface.

Kratak opis crteža Brief description of the drawing

Crtež 1 - Tehnički crtež reakcijske posude na kojem se vidi ravni dio na površini reakcijske posude Drawing 1 - Technical drawing of the reaction vessel showing a flat part on the surface of the reaction vessel

Crteži 2a i 2b - Tehnički crteži polovice reakcijske posude, odnosno jednog komplementarnog dijela reakcijske posude na kojem se vidi ravni dio na površini reakcijske posude Drawings 2a and 2b - Technical drawings of half of the reaction vessel, i.e. one complementary part of the reaction vessel showing a flat part on the surface of the reaction vessel

Crteži 3a i 3b - Predstavljaju bočni i postranični presjek reakcijske posude Drawings 3a and 3b - Represent the side and side sections of the reaction vessel

Crteži 4a, 4b i 4c - Predstavljaju rezultate ispitivanja reakcijskih posuda s zaobljenom vanjskom površinom i ravnom vanjskom površnom Drawings 4a, 4b and 4c - Represent the test results of reaction vessels with a rounded outer surface and a flat outer surface

Detaljan opis najmanje jednog od načina ostvarivanja izuma A detailed description of at least one way of realizing the invention

U nastavku će biti opisano jedno od poželjnih uobličenja reakcijske posude predmetnog izuma. In the following, one of the preferred embodiments of the reaction vessel of the present invention will be described.

U ovoj izvedbi reakcijske posude predmetnog izuma reakcijska posuda 1 se sastoji od dva komplementarna dijela 7 koja se spajaju tako da tvore zatvorenu reakcijsku posudu oblog i glatkog unutarnjeg oblika. Svaka od komplementarnih polovica 7 ima jedan dio vanjske stijenke ravan dok je preostali dio reakcijske posude zaobljen 3. Dva komplementarna dijela 7 spajaju se tako da se u sklopljenoj i zatvorenoj reakcijskoj posudi ravni dijelovi obje polovice poravnaju tako da se dobiva ravni dio zatvorene reakcijske posude 2 po cijeloj duljini reakcijske posude 1. In this embodiment of the reaction vessel of the present invention, the reaction vessel 1 consists of two complementary parts 7 which are joined to form a closed reaction vessel with a lining and a smooth internal shape. Each of the complementary halves 7 has one part of the outer wall that is flat, while the remaining part of the reaction vessel is rounded 3. The two complementary parts 7 are joined so that in the assembled and closed reaction vessel the flat parts of both halves are aligned so that a flat part of the closed reaction vessel 2 is obtained along the entire length of reaction vessel 1.

Zatvorena reakcijska posuda 1 dugačka je 65 mm i pogodna je za prihvat na ruke većine standardnih mehanokemijskih mlinova. Radijus reakcijske posude na dijelu gdje je reakcijska posuda zaobljena iznosi 12,5 mm od osi reakcijske posude do vanjskog ruba. Ravni dio stijenke zatvorene reakcijske posude 2 širine je ,,b"=9 mm i nalazi se po cijeloj duljini reakcijske posude „/". Na dijelu gdje se nalazi ravni dio reakcijske posude 2, debljina stijenke reakcijske posude ,,d" je manja nego u dijelu reakcijske posude gdje je stijenka zaobljena. Udaljenost od središnje osi reakcijske posude do vanjske ravne stijenke reakcijske posude 2 iznosi 11,5 mm. The closed reaction vessel 1 is 65 mm long and is suitable for hand holding most standard mechanochemical mills. The radius of the reaction vessel on the part where the reaction vessel is rounded is 12.5 mm from the axis of the reaction vessel to the outer edge. The flat part of the wall of the closed reaction vessel 2 has a width of "b"=9 mm and is located along the entire length of the reaction vessel "/". In the part where the flat part of the reaction vessel 2 is located, the thickness of the wall of the reaction vessel "d" is smaller than in the part of the reaction vessel where the wall is rounded. The distance from the central axis of the reaction vessel to the outer flat wall of the reaction vessel 2 is 11.5 mm.

Unutarnja površina reakcijske posude 4 je valjkastog oblika u središnjem dijelu reakcijske posude dok su na krajevima polukugle. U središnjem valjkastom dijelu reakcijske posude, radijus reakcijske posude iznosi 9,5 mm. Time se postiže da je unutrašnja stijenka reakcijske posude 4 bez oštrih rubova ili bridova u kojima bi se mogao sakupljati materijal tijekom postupka mljevenja što bi onemogućilo ravnomjerno miješanje i mljevenje sadržaja reakcijske posude. Unutrašnji volumen reakcijske posude iznosi približno 14 cm3. The inner surface of the reaction vessel 4 is cylindrical in the central part of the reaction vessel, while the ends are hemispherical. In the central cylindrical part of the reaction vessel, the radius of the reaction vessel is 9.5 mm. This ensures that the inner wall of the reaction vessel 4 is free of sharp edges or edges where material could collect during the grinding process, which would make it impossible to evenly mix and grind the contents of the reaction vessel. The internal volume of the reaction vessel is approximately 14 cm3.

U izvedbi mehanokemijskog pokusa gdje se in-situ prati tijek mehanokemijske reakcije pomoću Ramanove spektroskopije, reakcijska posuda 1 se, za obavljanje praćenje tijeka mehanokemijske reakcije na mlinu, postavi tako da je njena ravna prozirna ploha 2 horizontalna i okrenuta prema dolje. Laserska sonda postavi se tako da pobudna laserska zraka ulazi u reakcijsku posudu okomito prema ravnoj plohi 2. Laserska sonda također je opremljena optičkim vlaknima koja sakupljaju raspršeno zračenje te ga vode do spektrometra radi analize. Spektrometar je spojen na računalo koje, uz pomoć specijaliziranog računalnog programa, bilježi spektre i omogućava njihovu obradu i pohranjivanje. Tijekom sakupljanja spektra reakcijska posuda 1 je pričvršćena na ruke mlina te oscilira frekvencijom od tipično 30 Hz u horizontalnoj ravnini tako da je ravni dio reakcijske posude 2 uvijek horizontalan i tako da je laserska zraka uvijek okomita na tu ravnu plohu 2 u svakom položaju reakcijske posude 1. Sonda s laserom je stacionarna tijekom sakupljanja spektra dok iznad nje reakcijska posuda 1 oscilira. In the performance of the mechanochemical experiment, where the course of the mechanochemical reaction is monitored in-situ using Raman spectroscopy, the reaction vessel 1, for monitoring the course of the mechanochemical reaction on the mill, is placed so that its flat transparent surface 2 is horizontal and facing downwards. The laser probe is placed so that the excitation laser beam enters the reaction vessel perpendicular to the flat surface 2. The laser probe is also equipped with optical fibers that collect the scattered radiation and lead it to the spectrometer for analysis. The spectrometer is connected to a computer which, with the help of a specialized computer program, records the spectra and enables their processing and storage. During spectrum collection, the reaction vessel 1 is attached to the arms of the mill and oscillates at a frequency of typically 30 Hz in the horizontal plane so that the flat part of the reaction vessel 2 is always horizontal and so that the laser beam is always perpendicular to this flat surface 2 in each position of the reaction vessel 1 The probe with the laser is stationary during spectrum collection, while the reaction vessel 1 oscillates above it.

Primjenom prozirnih reakcijskih posuda 1 predmetnog izuma omogućeno je snimanje kvalitetnih vremenski razlučenih Ramanovih spektara tijekom postupka mljevenja i bez prekidanja postupka mljevenja. By using the transparent reaction vessels 1 of the present invention, it is possible to record high-quality time-resolved Raman spectra during the grinding process and without interrupting the grinding process.

Vremenska rezolucija spektara koja se može postići je u rasponu od milisekunde pa do više sekundi ili minuta. Vremenska rezolucija tijekom snimanja vremenski razlučenih Ramanovih spektara karakteristična je za pojedini mehanokemijski pokus koji se želi pratiti in-situ, a određuje se tako da je svaki pojedini spektar koji se sakupi informativan o sastavu uzorka, tj. tako da se u spektru mogu uočiti doprinosi različitih spojeva koji se nalaze u reakcijskoj smjesi te tako da se mogu uočiti promjene u spektrima koji su sakupljeni s vremenskim razmakom. Ukoliko je Ramanov odziv uzorka slabiji, potrebno je povećati vrijeme sakupljanja pojedinog spektra dok se to vrijeme može smanjiti ako uzorak ili reakcijska smjesa daje jako Ramanovo raspršenje pobudne laserske zrake. U istim uvjetima snimanja, a koji su određeni snagom pobudne laserske zrake i vremena sakupljanja spektra, modifikacijom prozirnih reakcijskih posuda koja je predmet ovog izuma postiže se sakupljanje kvalitetnijeg Ramanovog spektra što se očituje time što spektar sakupljen korištenjem reakcijske posude 1 predmetnog izuma ima bolji omjer signala od uzorka i šuma te bolji omjer signala uzorka u odnosu na signal same reakcijske posude nego što je to slučaj kod korištenja nemodificiranih prozirnih reakcijskih posuda. The temporal resolution of the spectra that can be achieved ranges from milliseconds to several seconds or minutes. The time resolution during the recording of time-resolved Raman spectra is characteristic for a particular mechanochemical experiment that is to be monitored in-situ, and is determined so that each individual spectrum that is collected is informative about the composition of the sample, i.e. so that the contributions of different of the compounds found in the reaction mixture and so that changes in the spectra collected over time can be observed. If the Raman response of the sample is weaker, it is necessary to increase the time of collecting an individual spectrum, while this time can be reduced if the sample or reaction mixture gives a strong Raman scattering of the excitation laser beam. In the same recording conditions, which are determined by the power of the excitation laser beam and the spectrum collection time, by modifying the transparent reaction vessels that are the subject of this invention, the collection of a higher quality Raman spectrum is achieved, which is manifested by the fact that the spectrum collected using the reaction vessel 1 of the subject invention has a better signal ratio from the sample and noise and a better ratio of the signal of the sample in relation to the signal of the reaction vessel itself than is the case when using unmodified transparent reaction vessels.

Prilikom ispitivanja učinkovitosti reakcijske posude 1 predmetnog izuma, isti uzorak (benzojeva kiselina) je sniman na tri različita načina: s laserom koji ulazi okomito kroz ravno dno reakcijske posude 2, kroz ravno dno reakcijske posude 2, ali ne okomito na ravnu plohu 2, kroz zaobljenu (okruglu) stijenku reakcijske posude 3. Ostali uvjeti snimanja (ukupno vrijeme mjerenja pojedinog spektra, snaga pobudnog laserskog snopa) bili su identični u svakom od tri snimanja. When testing the efficiency of the reaction vessel 1 of the subject invention, the same sample (benzoic acid) was imaged in three different ways: with the laser entering vertically through the flat bottom of the reaction vessel 2, through the flat bottom of the reaction vessel 2, but not perpendicular to the flat surface 2, through the rounded (round) wall of the reaction vessel 3. Other recording conditions (total measurement time of each spectrum, power of the excitation laser beam) were identical in each of the three recordings.

Slika 3a pokazuje da je Ramanov signal reakcijske smjese, dobiven snimanjem gdje pobudna laserska zraka ulazi u reakcijsku posudu okomito kroz ravnu plohu 2 koja se nalazi na vanjskom plastu reakcijske posude, veći od Ramanovog signala reakcijske smjese koji je dobiven kad pobudna laserska zraka ulazi u reakcijsku posudu kroz njenu zaobljenu stijenku 3. Time što je Ramanov signal reakcijske smjese veći u slučaju kad se spektar snima tako da pobudna laserska zraka ulazi u reakcijsku posudu 1 okomito na ravnu plohu 2 na vanjskom plastu bolji je i omjer Ramanovog signala reakcijske smjese i šuma te omjer Ramanovog signala reakcijske smjese i reakcijske posude. Iz navedenog slijedi da snimanje Ramanovih spektara tako da pobudna laserska zraka ulazi u reakcijsku posudu 1 okomito kroz ravnu plohu 2 omogućava dobivanje kvalitetnijih Ramanovih spektara reakcijske smjese što je poželjno u svrhu praćenja tijeka mehanokemijskih reakcija. Figure 3a shows that the Raman signal of the reaction mixture, obtained by imaging where the excitation laser beam enters the reaction vessel vertically through the flat surface 2 located on the outer layer of the reaction vessel, is greater than the Raman signal of the reaction mixture obtained when the excitation laser beam enters the reaction vessel vessel through its rounded wall 3. As the Raman signal of the reaction mixture is greater in the case when the spectrum is recorded so that the excitation laser beam enters the reaction vessel 1 perpendicular to the flat surface 2 on the outer layer, the ratio of the Raman signal of the reaction mixture to noise is better, and ratio of the Raman signal of the reaction mixture and the reaction vessel. It follows from the above that the recording of Raman spectra so that the excitation laser beam enters the reaction vessel 1 vertically through the flat surface 2 enables obtaining better quality Raman spectra of the reaction mixture, which is desirable for the purpose of monitoring the course of mechanochemical reactions.

Ramanovi spektri na crtežima 4a, 4b i 4c pokazuju da je osim po najvećem signalu od uzorka, što je suma intenziteta signala FP3, FP4 i FP5, snimanje okomito kroz ravnu plohu 2 ima najbolji omjer signala uzorka i reakcijske posude. Šum mjerenja prikazanih na crtežima 4a, 4b i 4c je u sva tri mjerenja približno isti kako pokazuju podaci navedeni u Tabeli 1. Iz toga proizlazi da se snimanjem Ramanovih spektara uporabom reakcijske posude 1 s ravnom vanjskom stijenkom postiže najbolji omjer Ramanovog signala i šuma u spektru te time najkvalitetniji Ramanov spektar. The Raman spectra in Figures 4a, 4b and 4c show that, apart from the highest signal from the sample, which is the sum of the signal intensities of FP3, FP4 and FP5, recording vertically through flat surface 2 has the best signal ratio of the sample to the reaction vessel. The noise of the measurements shown in drawings 4a, 4b and 4c is approximately the same in all three measurements, as shown by the data listed in Table 1. It follows that by recording Raman spectra using reaction vessel 1 with a flat outer wall, the best ratio of Raman signal to noise in the spectrum is achieved and thus the highest quality Raman spectrum.

Tabela 1 - Pregled razlike intenziteta i omjera signala uzorka i posude kod pobude laserom okomito kroz ravni dio posude, ne okomito kroz ravni dio posude i kroz zaobljeni dio posude Table 1 - Overview of the difference in intensity and signal ratio of the sample and the vessel when excited by laser vertically through the flat part of the vessel, not vertically through the flat part of the vessel and through the rounded part of the vessel

[image] [image]

Popis upotrebljenih pozivnih oznaka List of used call signs

1 reakcijska posuda 1 reaction vessel

2 ravna prozirna ploha 2 flat transparent surfaces

3 vanjska površina reakcijske posude 3 outer surface of the reaction vessel

4 unutarnja površina reakcijske posude 4 inner surface of the reaction vessel

7 komplementarni dijelovi reakcijske posude 7 complementary parts of the reaction vessel

Claims (9)

1. Reakcijska posuda (1) za in-situ snimanje Ramanovih spektara uzoraka tijekom postupka mljevenja na mlinovima, naznačena time da je vanjska površina reakcijske posude valjkastog oblika (3) a unutarnja površina reakcijske posude (4) u potpunosti zaobljena te gdje valjkasti dio vanjske površine reakcijske posude ima jednu ili više ravnih prozirnih ploha (2) na plastu valjka za prolaz pobudnog laserskog snopa.1. Reaction vessel (1) for in-situ recording of Raman spectra of samples during the grinding process on mills, indicated by the fact that the outer surface of the reaction vessel is cylindrical (3) and the inner surface of the reaction vessel (4) is completely rounded, and where the cylindrical part of the outer surface of the reaction vessel has one or more flat transparent surfaces (2) on the layer of the roller for the passage of the excitation laser beam. 2. Reakcijska posuda (1) prema zahtjevu 1, naznačena time da je u potpunosti napravljena od prozirnog materijala.2. Reaction vessel (1) according to claim 1, characterized in that it is completely made of transparent material. 3. Reakcijska posuda (1) prema zahtjevu 1, naznačena time da je prozirni dio reakcijske posude napravljen od plastike, kao što su polimetilakrilate, polietilena ili polikarbonata.3. Reaction vessel (1) according to claim 1, characterized in that the transparent part of the reaction vessel is made of plastic, such as polymethylacrylate, polyethylene or polycarbonate. 4. Reakcijska posuda (1) prema zahtjevu 1, naznačena time da je ravna prozirna ploha (2) takve površine koja je dovoljna da pobudna laserska zraka uđe kroz istu okomito u reakcijsku posudu te da je duljina prozirne ravne plohe I jednaka ili veća od amplitude koju ima reakcijska posuda dok je montirana na uključeni mlin tijekom postupka mljevenja.4. The reaction vessel (1) according to claim 1, indicated by the fact that the flat transparent surface (2) is of such a surface that is sufficient for the excitation laser beam to enter through it vertically into the reaction vessel and that the length of the transparent flat surface I is equal to or greater than the amplitude that the reaction vessel has while mounted on the on mill during the grinding process. 5. Reakcijska posuda (1) prema zahtjevu 4, naznačena time da je duljina ravne plohe / valjka od 10 mm do 20 mm.5. Reaction vessel (1) according to claim 4, characterized in that the length of the flat surface / roller is from 10 mm to 20 mm. 6. Reakcijska posuda (1) prema zahtjevu 4, naznačena time da je širina b ravne prozirne plohe od 3 do 10 mm.6. Reaction vessel (1) according to claim 4, characterized in that the width b of the flat transparent surface is from 3 to 10 mm. 7. Reakcijska posuda (1) prema zahtjevu 1, naznačena time da je u izvedbama kada je pobudna laserska zraka fokusirana na određenoj udaljenosti od vrha laserske sonde, debljina stijenke d reakcijske posude na mjestu gdje reakcijska posuda ima ravnu plohu (2) manja od te određene udaljenosti fokusa laserske zrake od vrha laserske sonde.7. The reaction vessel (1) according to claim 1, characterized by the fact that in the embodiments when the excitation laser beam is focused at a certain distance from the top of the laser probe, the wall thickness d of the reaction vessel at the point where the reaction vessel has a flat surface (2) is smaller than that certain distances of the focus of the laser beam from the tip of the laser probe. 8. Reakcijska posuda (1) prema bilo kojem patentom zahtjevu od 1 do 4, naznačena time da je za in-situ snimanje Ramanovih spektara uzoraka tijekom postupka mljevenja na vibracijskim kugličnim mlinovima.8. Reaction vessel (1) according to any patent claim from 1 to 4, characterized in that it is for in-situ recording of Raman spectra of samples during the grinding process on vibrating ball mills. 9. Metoda sakupljanja Ramanovih spektara reakcijske smjese tijekom postupka mljevenja i bez prekidanja postupka mljevenja koja koristi reakcijsku posudu (1) prema zahtjevu 1, naznačena time da se reakcijska posuda (1) montira na vibracijski kuglični mlin tako da je ravna prozirna ploha (2) reakcijske posude u horizontalnoj ravnini i okrenuta prema dolje te gdje se laserska sonda postavlja ispod reakcijske posude na način da pobudni laserski snop ulazi u reakcijsku posudu okomito kroz njenu ravnu plohu (2) te se Ramanovo raspršeno zračenje sakuplja tako da izlazi iz reakcijske posude kroz istu ravnu plohu (2).9. A method of collecting Raman spectra of the reaction mixture during the grinding process and without interrupting the grinding process using a reaction vessel (1) according to claim 1, characterized in that the reaction vessel (1) is mounted on a vibrating ball mill so that it is a flat transparent surface (2) of the reaction vessel in the horizontal plane and facing downwards and where the laser probe is placed under the reaction vessel in such a way that the excitation laser beam enters the reaction vessel vertically through its flat surface (2) and the Raman scattered radiation is collected so that it exits the reaction vessel through the same flat surface (2).
HRP20151358AA 2015-12-09 2015-12-09 Reaction chamber for in-situ recording of raman spectra at mechanochemical reactions and corresponding method of recording raman spectrums HRP20151358A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
HRP20151358AA HRP20151358A2 (en) 2015-12-09 2015-12-09 Reaction chamber for in-situ recording of raman spectra at mechanochemical reactions and corresponding method of recording raman spectrums
PCT/HR2016/000026 WO2017098287A1 (en) 2015-12-09 2016-12-02 Reaction vessel for in-situ recording of raman spectra in mechanochemical reactions and associated method of recording of raman spectra

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HRP20151358AA HRP20151358A2 (en) 2015-12-09 2015-12-09 Reaction chamber for in-situ recording of raman spectra at mechanochemical reactions and corresponding method of recording raman spectrums

Publications (1)

Publication Number Publication Date
HRP20151358A2 true HRP20151358A2 (en) 2017-06-16

Family

ID=57799734

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP20151358AA HRP20151358A2 (en) 2015-12-09 2015-12-09 Reaction chamber for in-situ recording of raman spectra at mechanochemical reactions and corresponding method of recording raman spectrums

Country Status (2)

Country Link
HR (1) HRP20151358A2 (en)
WO (1) WO2017098287A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000185276A (en) * 1998-10-13 2000-07-04 Katayama Chem Works Co Ltd Water monitoring member and water monitor apparatus using the same and filter device of water monitoring member
ATE355895T1 (en) 2001-04-03 2007-03-15 Scherrer Inst Paul USE OF STABILIZED ZIRCONIUM OXIDE MONOCRYSTAL FOR VIEWING WINDOWS
US9086379B2 (en) * 2004-05-24 2015-07-21 OptoTrace (SuZhou) Technologies, Inc. System for chemical separation and identification
JP5731960B2 (en) 2011-11-25 2015-06-10 国立大学法人群馬大学 Reaction vessel for Raman spectroscopy measurement and Raman spectroscopy measurement method using the same

Also Published As

Publication number Publication date
WO2017098287A1 (en) 2017-06-15

Similar Documents

Publication Publication Date Title
Ember et al. Raman spectroscopy and regenerative medicine: a review
Zhang et al. Perspective: Coherent Raman scattering microscopy, the future is bright
Panneerselvam et al. Surface-enhanced Raman spectroscopy: bottlenecks and future directions
Vašková A powerful tool for material identification: Raman spectroscopy
Viehrig et al. Quantitative SERS assay on a single chip enabled by electrochemically assisted regeneration: a method for detection of melamine in milk
Yang et al. A dynamic surface enhanced Raman spectroscopy method for ultra-sensitive detection: from the wet state to the dry state
Das et al. Raman spectroscopy: Recent advancements, techniques and applications
Marcelli et al. Biological applications of synchrotron radiation infrared spectromicroscopy
Meyer et al. Expanding multimodal microscopy by high spectral resolution coherent anti-Stokes Raman scattering imaging for clinical disease diagnostics
US20130164861A1 (en) Biological molecule detecting apparatus and biological molecule detecting method
Baker et al. Fundamental developments in clinical infrared and Raman spectroscopy
Chen et al. Detection of chlorpyrifos in apples using gold nanoparticles based on surface enhanced Raman spectroscopy
CN108489962B (en) Biological tissue detection device based on spatial migration Raman spectroscopy
Mazumder et al. Mueller matrix signature in advanced fluorescence microscopy imaging
Motto-Ros et al. LIBS imaging applications
Odularu Worthwhile relevance of infrared spectroscopy in characterization of samples and concept of infrared spectroscopy-based synchrotron radiation
Nafie Recent advances in linear and nonlinear Raman spectroscopy. Part XIV
Zhang et al. Delay-spectral focusing dual-comb coherent Raman spectroscopy for rapid detection in the high-wavenumber region
Dixit et al. Identification and quantification of industrial grade glycerol adulteration in red wine with Fourier transform infrared spectroscopy using chemometrics and artificial neural networks
EP2623959A1 (en) Biomolecule detection device and biomolecule detection method
HRP20151358A2 (en) Reaction chamber for in-situ recording of raman spectra at mechanochemical reactions and corresponding method of recording raman spectrums
JP2018013453A (en) Method and device for measuring sensibility of anticancer drug
CN205120573U (en) Optoacoustic allies oneself with food medicine component and quick detection device of content who uses up spectrometry
JP2006343133A (en) Time resolution analyzing apparatus
Saade et al. Glicemical analysis of human blood serum using FT-Raman: a new approach

Legal Events

Date Code Title Description
A1OB Publication of a patent application
OBST Application withdrawn