HRP20150840A2 - Heat reservoir with two parts of different temperatures to use with low-temperature polymer solar collectors with high heat capacity - Google Patents

Heat reservoir with two parts of different temperatures to use with low-temperature polymer solar collectors with high heat capacity Download PDF

Info

Publication number
HRP20150840A2
HRP20150840A2 HRP20150840AA HRP20150840A HRP20150840A2 HR P20150840 A2 HRP20150840 A2 HR P20150840A2 HR P20150840A A HRP20150840A A HR P20150840AA HR P20150840 A HRP20150840 A HR P20150840A HR P20150840 A2 HRP20150840 A2 HR P20150840A2
Authority
HR
Croatia
Prior art keywords
temperature
tank
heat
solar collectors
pump
Prior art date
Application number
HRP20150840AA
Other languages
Croatian (hr)
Inventor
Krešimir Škeljo
Original Assignee
Krešimir Škeljo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krešimir Škeljo filed Critical Krešimir Škeljo
Priority to HRP20150840AA priority Critical patent/HRP20150840A2/en
Publication of HRP20150840A2 publication Critical patent/HRP20150840A2/en

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

Suština izuma je korištenje niskotemperaturnih solarnih kolektora (30) u dva režima rada upotrebom toplinskog spremnika (20) koji ima međusobno spojena (preljev) dva dijela s različitim temperaturama rada (29A i 29B) (umjesto jednog dijela spremnika može biti i izmenjivač topline (26)). Spremnik (20) s dvije toplinski izolirane komore (29A, 29B) omogućuje niskotemperaturnim solarnim kolektorima (30) rad u dva različita režima rada. U prvom režimu rada kada su solarni kolektori (30) spojeni s komorom 1 (29B) spremnika (20) voda se zagrijava vanjskom toplinom i sunčevim zračenjem do oko 45°C (kod toplog sunčanog dana) uz minimalni utrošak električne energije pumpe. U drugom režimu rada kada solarni kolektori (30) spojeni s dizalicom topline (10) voda se u komori 2 (29A) zagrijava do željene temperature 65°C ili više bez obzira na vanjsku temperaturu i osunčanje.SUMMARY OF THE INVENTION The use of low temperature solar collectors (30) in two modes of operation using a heat reservoir (20) having two parts with different operating temperatures (29A and 29B) interconnected (overflow) (instead of one part of the tank may be a heat exchanger (26 )). A container (20) with two thermally insulated chambers (29A, 29B) allows low-temperature solar collectors (30) to operate in two different modes of operation. In the first operating mode, when the solar collectors (30) are connected to the chamber 1 (29B) of the tank (20), the water is heated by external heat and solar radiation to about 45 ° C (on a warm sunny day) with minimal pump power consumption. In the second operating mode, when the solar collectors (30) connected to the heat pump (10), the water in the chamber 2 (29A) is heated to the desired temperature of 65 ° C or more regardless of the outside temperature and sunshine.

Description

Područje na koje se izum odnosi The field to which the invention relates

Ovaj izum odnosi se na hibridni sustav dizalice topline u kombinaciji s niskotemperaturnim polimernim solarnim kolektorima, a prema međunarodnoj klasifikaciji klasificiran kao F25B 25/00, F25B 27/002 i F25B 30/00. This invention relates to a hybrid heat pump system combined with low-temperature polymer solar collectors, and according to the international classification classified as F25B 25/00, F25B 27/002 and F25B 30/00.

Tehnički problem Technical problem

Ukoliko sunčeve polimerne kolektore kroz koje protječe tekućina spojimo preko izmjenjivača topline s isparivačem dizalice topline te u tako spojenom sustavu dizalica topline zagrijava potrošnu toplu vodu ukupna potrošnja električne energije za rad toplinske pumpe i pumpu za cirkulaciju 5 do 10 puta (ovisno o osunčanju) je veće od potrošnje električne energije koje bi imao klasični solarni sustav s pumpom i polimernim solarnim kolektorom. If the solar polymer collectors through which the liquid flows are connected via a heat exchanger to the evaporator of the heat pump, and in such a connected system the heat pump heats the hot water, the total consumption of electricity for the operation of the heat pump and the circulation pump is 5 to 10 times higher (depending on the insolation) from the electricity consumption that a classic solar system with a pump and a polymer solar collector would have.

Ukoliko koristimo samo sustav s pumpom i polimernim solarnim kolektorom , omjer uložene i dobivene energije 5 do 10 puta je bolji, ali temperatura dobivene tople vode može doseći oko 45°C samo za sunčanog vrućeg dana što nije dovoljno za upotrebu u hotelima i pa je potrebna upotreba sustava za dogrijavanje vode. If we only use a system with a pump and a polymer solar collector, the ratio of invested and obtained energy is 5 to 10 times better, but the temperature of the obtained hot water can reach about 45°C only on a sunny, hot day, which is not enough for use in hotels and is therefore necessary use of the water heating system.

Stanje tehnike State of the art

Postoji više rješenja korištenja polimernih ili kompozitnih niskotemperaturnih solarnih kolektora u kombinaciji s dizalicom topline, ali nije nam poznato niti jedno višefunkcionalno korištenje niskotemperaturnih solarnih kolektora na način da ih se izmjenično koristi na prvi način pomoću pumpe za zagrijavanje vode putem sunčevog zračenje i korištenjem topline okoline te na drugi način da je preko izmjenjivača spojen na isparivač dizalice topline koja zagrijava vodu na višu temperaturu. There are several solutions of using polymer or composite low-temperature solar collectors in combination with a heat pump, but we are not aware of any multi-functional use of low-temperature solar collectors in such a way that they are used alternately in the first way using a pump to heat water through solar radiation and using ambient heat and in another way, that it is connected via an exchanger to the evaporator of the heat pump that heats the water to a higher temperature.

Izlaganje suštine izuma Presentation of the essence of the invention

Suština izuma je spremnik koji omogućuje korištenje niskotemperaturnih polimernih ili kompozitnih kolektora u dva režima rada upotrebom toplinskog spremnika koji ima međusobno spojena (preljev) dva dijela s različitim temperaturama rada. Niskotemteraturni dio spremnika omogućuje nam da možemo direktno iz okoline i sunčevog zračenje prikupljati energiju (s malom uloženom energijom) s niskotemperaturnim polimernim kolektorima. U visoko temperaturnom dijelu spremnika s dizalicom topline pripremamo vodu temperature koja je korisniku potrebna (55°C, 65°C ili više) i tada je isparivač dizalice topline spojen preko toplinskog izmjenjivača s solarnim niskotemperaturnih polimernih ili kompozitnih kolektorima. The essence of the invention is a container that enables the use of low-temperature polymer or composite collectors in two operating modes by using a thermal container that has two parts connected to each other (overflow) with different operating temperatures. The low-temperature part of the tank allows us to collect energy directly from the environment and solar radiation (with little energy input) with low-temperature polymer collectors. In the high-temperature part of the tank with the heat pump, we prepare water at the temperature that the user needs (55°C, 65°C or more) and then the heat pump evaporator is connected via a heat exchanger to solar low-temperature polymer or composite collectors.

Prva prednost izuma je znatno manji utrošak električne energije od sustava s dizalicom topline koji ima direktno spojeni isparivač na nisko temperaturne polimerne solarne kolektore. Glavna ušteda energije se postiže prebacivanjem između načina rada sustava. Kada je dovoljno sunčeve energije i vanjske topline ta se energija prikuplja bez dizalice topline koji je veći potrošač električne energije za istu isporučenu toplinsku energije od obične pumpe za vodu. The first advantage of the invention is a significantly lower consumption of electricity than a system with a heat pump that has an evaporator directly connected to low-temperature polymer solar collectors. The main energy saving is achieved by switching between system modes. When there is enough solar energy and external heat, this energy is collected without a heat pump, which is a bigger consumer of electricity for the same delivered thermal energy than a regular water pump.

Druga prednost izuma je mogućnost korištenja polimernih solarnih kolektora kada nema sunca ili po noći koristeći nisko temperaturne solarne kolektore kao izmjenjivače topline s okolinom. Nisko temperaturni polimerni solarni kolektori nemaju zaštitno staklo te mogu nesmetano izmjenjivati toplinu s okolinom. Another advantage of the invention is the possibility of using polymer solar collectors when there is no sun or at night using low temperature solar collectors as heat exchangers with the environment. Low-temperature polymer solar collectors do not have protective glass and can freely exchange heat with the environment.

Kratak popis slika A short list of images

Popratne slike koji su uključeni u opis i koji čini dio opisa izuma, ilustriraju dosad razmatran najbolji način za izvedbu izuma, i pomažu kod objašnjavanja osnovnih principa funkcioniranja izuma pri čemu: Slika 1 - spremnik podijeljen na dva dijela izolacijskom pregradom te spojen na kolektore i dizalicu topline; Slika 2 - spremnik fizički podijeljen na dva dijela (dva spremnika) te spojeni na kolektore i dizalicu topline; Slika 3 - spremnik opremljen s izmjenjivačem topline temperaturnim senzorom i pumpom. Pumpa se uključuje samo kada ima dotoka hladne vode u spremnik i postoji akumulirana toplinska energija u polimernim kolektorima visokog toplinskog kapaciteta. Tada se iz polimernih sunčevih kolektora visokog toplinskog kapacitet preuzima akumulirana toplinska energija. Ovom izvedbom izbjegava se potreba za dodatnim spremnikom uz mogućnost korištenja polimernih niskotemperaturnih kolektora u dva režima rada. The accompanying pictures, which are included in the description and which form part of the description of the invention, illustrate the best way to carry out the invention considered so far, and help to explain the basic principles of the functioning of the invention, whereby: Figure 1 - tank divided into two parts by an insulating partition and connected to the collectors and the crane warmth; Figure 2 - tank physically divided into two parts (two tanks) and connected to the collectors and the heat pump; Figure 3 - tank equipped with heat exchanger, temperature sensor and pump. The pump is turned on only when there is an inflow of cold water into the tank and there is accumulated thermal energy in the polymer collectors of high thermal capacity. Then the accumulated thermal energy is taken from the polymer solar collectors with high thermal capacity. This design avoids the need for an additional tank with the possibility of using polymer low-temperature collectors in two modes of operation.

Slika 4 - upotreba sustava objašnjen slikom 2 ali za zagrijavanje prostora Figure 4 - use of the system explained in Figure 2 but for space heating

Detaljan opis četiri načina ostvarivanja izuma Detailed description of four ways of realizing the invention

Prvi način The first way

Sustav služi za zagrijavanje (slika 1) potrošne tople vode (PTV) na način da se u komori 2 (29A) spremnika održava željene temperatura od 45-65T (ili više) koju mjeri temperaturni senzor (21 A). U komori 1 (29B) spremnika se održava temperatura koju mogu postići nisko temperaturni polimerni solarni kolektori (30) do oko 45°C. Umjesto da u komoru 2 (29A) dolazi hladna voda iz vodovoda 10-15°C koriste se nisko temperaturni polimerni solarni kolektori (30) koji u komori 1 (29B) predgriju vodu iz vodovoda pomoću izmjenjivača topline (19) (moguća i izvedba bez izmjenjivača (19) na način da je ista tekućina teče unutar spremnika i solarnih modula (30)), predgrijana voda prelazi u komoru 2, i tek onda ukoliko postoji potreba u komori 2 (29A) dodatno se zagrije voda na 45-65°C (ili više) pomoću dizalice topline (10) koja će koristiti nisko temperaturne polimerne solarne kolektore (30) na način da će oni biti spojeni preko izmjenjivača topline s isparivačem ,a komora 2 (29A) spojena je s kondenzatorom dizalice topline (10) direktno ili preko izmjenjivača topline. Ovisno o vremenskim uvjetima (osunčanje i temperatura) koje očitava senzor (31) na solarnom kolektoru (30) te temperaturama u komorama spremnika koje očitavaju senzori (21,22) upravljačka jedinica (40) upravlja troputnim ventilima (51,53) pumpom (52) i dizalicom topline (10) i tako odabire način rada sustava. The system is used to heat (Figure 1) domestic hot water (DHW) in such a way that the desired temperature of 45-65T (or more) is maintained in chamber 2 (29A) of the tank as measured by the temperature sensor (21A). In chamber 1 (29B) of the tank, a temperature that can be achieved by low-temperature polymer solar collectors (30) is maintained up to about 45°C. Instead of cold 10-15°C water from the water supply coming into chamber 2 (29A), low-temperature polymer solar collectors (30) are used, which in chamber 1 (29B) preheat the water from the water supply using a heat exchanger (19) (a version without exchanger (19) in such a way that the same liquid flows inside the tank and solar modules (30)), the preheated water passes into chamber 2, and only then, if there is a need in chamber 2 (29A), the water is additionally heated to 45-65°C (or more) using a heat pump (10) that will use low-temperature polymer solar collectors (30) in such a way that they will be connected via a heat exchanger to the evaporator, and chamber 2 (29A) is connected to the condenser of the heat pump (10) directly or via a heat exchanger. Depending on the weather conditions (insolation and temperature) read by the sensor (31) on the solar collector (30) and the temperatures in the tank chambers read by the sensors (21,22), the control unit (40) controls the three-way valves (51,53) and the pump (52) ) and the heat pump (10) and thus selects the system operation mode.

Drugi način Another way

Isti princip rada kao i 'Prvi način' samo što su komora 1 i komora 2 fizički odvojene (slika 2). To znači da komora 1 (29B) postaje spremnik (27), a komora 2 (29A) postaje spremnik (28) The same working principle as the 'First method', except that chamber 1 and chamber 2 are physically separated (picture 2). This means that chamber 1 (29B) becomes tank (27) and chamber 2 (29A) becomes tank (28).

Treći način The third way

Sustav služi za zagrijavanje (slika 3) PTVa na način da se u spremniku (28) održava željena temperatura od 45-65°C (ili više). Spremnik je spojen s izmjenjivačem topline (26) (koji zamjenjuje komoru 1) i temperaturnim senzorom (21A). Umjesto da u spremnik (28) dolazi hladna voda iz vodovoda 10-15°C koriste se nisko temperaturni polimerni solarni kolektori (30) koji preko izmjenjivača topline (26) predgrijavaju vodu na 15°C-45°C°. Pumpa (52) se uključuje samo kada ima dotoka hladne vode u spremnik (28) i postoji akumulirana toplinska energija u polimernim kolektorima visokog toplinskog kapaciteta (30). Tada se iz polimernih sunčevih kolektora visokog toplinskog kapacitet preuzima akumulirana toplinska energija (30) i predaje hladnoj vodi koja ulazi u spremnik. Ovom izvedbom izbjegava se potreba za dodatnim spremnikom uz mogućnost korištenja polimernih niskotemperaturnih kolektora u dva režima rada. The system serves to heat (Figure 3) PTVa in such a way that the desired temperature of 45-65°C (or more) is maintained in the tank (28). The tank is connected to a heat exchanger (26) (which replaces chamber 1) and a temperature sensor (21A). Instead of cold water coming into the tank (28) from the water supply at 10-15°C, low-temperature polymer solar collectors (30) are used, which preheat the water to 15°C-45°C° via the heat exchanger (26). The pump (52) is turned on only when there is an inflow of cold water into the tank (28) and there is accumulated thermal energy in the polymer collectors of high thermal capacity (30). Then, the accumulated thermal energy (30) is taken from the polymer solar collectors with a high thermal capacity and transferred to the cold water entering the tank. This design avoids the need for an additional tank with the possibility of using polymer low-temperature collectors in two modes of operation.

Dodatno se grije voda na 45-65°C (ili više) pomoću dizalice topline (10) koja će koristiti nisko temperaturne polimerne solarne kolektore (30) na način da će oni biti spojeni preko izmjenjivača topline s isparivačem ,a spremnik (28) spojen s kondenzatorom dizalice topline (10) direktno ili preko izmjenjivača topline. Ovisno o vremenskim uvjetima (osunčanje i temperatura) koje očitava senzor (31) na solarnom kolektoru (30) te temperaturama u komorama spremnika koje očitavaju senzori (21,22) upravljačka jedinica (40) upravlja troputnim ventilima (51,53), pumpom (52) i dizalicom topline (10) i tako odabire način rada sustava. The water is additionally heated to 45-65°C (or more) using a heat pump (10) that will use low-temperature polymer solar collectors (30) in such a way that they will be connected via a heat exchanger to the evaporator, and the tank (28) will be connected with the heat pump condenser (10) directly or via the heat exchanger. Depending on the weather conditions (insolation and temperature) read by the sensor (31) on the solar collector (30) and the temperatures in the tank chambers read by the sensors (21,22), the control unit (40) controls the three-way valves (51,53), the pump ( 52) and the heat pump (10) and thus selects the system operation mode.

Četvrti način The fourth way

Sustav služi za zagrijavanje (slika 4) tople vode za grijanje na način da se u spremniku (28) održava željene temperatura od 45-65°C (ili više) koju mjeri temperaturni senzor (21A). U spremniku (27B) se održava temperatura koju mogu postići nisko temperaturni polimerni solarni kolektori (30) 15°C-45°C. Spremnik (27B) može s ostatkom sustava bili spojen preko izmjenjivača topline (19) ili direktno na način da je spremnik napunjen smjesom vode i glikola i ista tekućina teče spremnikom (27B) pumpama (52,54) i troputnim ventilima (51,53). The system serves to heat (Figure 4) the hot water for heating in such a way that the desired temperature of 45-65°C (or more) is maintained in the tank (28) as measured by the temperature sensor (21A). The tank (27B) maintains a temperature that can be reached by low-temperature polymer solar collectors (30) of 15°C-45°C. The tank (27B) can be connected to the rest of the system via a heat exchanger (19) or directly in such a way that the tank is filled with a mixture of water and glycol and the same liquid flows through the tank (27B) through pumps (52,54) and three-way valves (51,53). .

Voda se grije na 45-65°C (ili više) pomoću dizalice topline (10) na način da će preko izmjenjivača topline s isparivačem biti spojeni nisko temperaturni polimerni solarni kolektori (30) ili spremnik 27B ,a spremnik (28) spojen s kondenzatorom dizalice topline (10) direktno ili preko izmjenjivača topline. Ovisno o vremenskim uvjetima (osunčanje i temperatura) koje očitava senzor (31) na solarnom kolektoru (30) te temperaturama u komorama spremnika koje očitavaju senzori (21,22) upravljačka jedinica (40) upravlja troputnim ventilima (51,53) pumpama (52,54) i dizalicom topline (10) i tako odabire način rada sustava. The water is heated to 45-65°C (or more) using the heat pump (10) in such a way that the low-temperature polymer solar collectors (30) or tank 27B will be connected to the evaporator via the heat exchanger, and the tank (28) will be connected to the condenser. heat pumps (10) directly or via a heat exchanger. Depending on the weather conditions (insolation and temperature) read by the sensor (31) on the solar collector (30) and the temperatures in the tank chambers read by the sensors (21,22), the control unit (40) controls the three-way valves (51,53) and the pumps (52) ,54) and the heat pump (10) and thus selects the system operation mode.

Opis pozivnih oznaka Description of call signs

10 Dizalica topline/ toplinska pumpa s izmjenjivačem topline 10 Heat pump/ heat pump with heat exchanger

19 Izmjenjivač topline unutar spremnika (dijela spremnika) niže temperature 19 Heat exchanger inside the lower temperature tank (part of the tank).

20 Spremnik tople vode s dvije komore koji u sebi uključuje (19,21,22, 23,25,29A, 29B) 20 Hot water tank with two chambers that includes (19,21,22, 23,25,29A, 29B)

21 Temperaturni senzor za komoru spremnika više temperature (komora 2) 21 Temperature sensor for the higher temperature tank chamber (chamber 2)

21A Temperaturni senzor za spremnik više temperature 21A Temperature sensor for the higher temperature tank

22 Izmjenjivač topline unutar spremnika više temperature 22 Heat exchanger inside the higher temperature tank

23 Temperaturni senzor za komoru spremnika niže temperature (komora 1) 23 Temperature sensor for lower temperature tank chamber (chamber 1)

23A Temperaturni senzor za spremnik niže temperature 23A Temperature sensor for the lower temperature tank

24A Spremnik niže temperature 24A Lower temperature tank

25 Toplinska izolacija između komore 1 i komore 2 s otvorima za prolaz vode 25 Thermal insulation between chamber 1 and chamber 2 with openings for water passage

26 Izmjenjivač topline izvan spremnika 26 Heat exchanger outside the tank

27 Spremnik tople vode niže temperature 27 Lower temperature hot water tank

28 Spremnik tople vode više temperature 29B komora 1 28 High temperature hot water tank 29B chamber 1

29A komora 2 (voda više temperature) 29A chamber 2 (higher temperature water)

30 Termodinamički polimerni solarni kolektori velikog toplinskog kapaciteta (nemaju staklo i slobodno izmjenjuju toplinu s okolinom) 30 Thermodynamic polymer solar collectors of high thermal capacity (they do not have glass and freely exchange heat with the environment)

31 Temperaturni senzor i senzor osunčanja 31 Temperature sensor and sunlight sensor

40 Centralni kompjutor za regulaciju rada troputnih ventila i pumpi 40 Central computer for regulating the operation of three-way valves and pumps

51 Troputni ventil elektronički upravljiv 51 Electronically controllable three-way valve

52 Pumpa za smjesu glikola i vode 52 Pump for a mixture of glycol and water

53 Troputni ventil elektronički upravljiv 53 Electronically controllable three-way valve

54 Pumpa za smjesu glikola i vode PTV- potrošna topla voda 54 Pump for a mixture of glycol and water PTV - domestic hot water

Claims (2)

1. Toplinski spremnik s dva različita temperaturna dijela sastoji se od toplinske pumpe (10), niskotemperaturnih solarnih kolektora (30), spremnika (20) s dvije komore različitih temperatura (29A, 29B) i dva izmjenjivača topline (19, 22), temperaturnih senzora (21, 23, 31), upravljačke jedinice (40) koje upravljaju radom toplinske pumpe (10), vodene pumpe (52) i troputnih ventila (51,53) naznačen time da spremnik (20) s dvije toplinski izolirane međusobno spojene komore (29A, 29B) omogućuje niskotemperaturnim solarnim kolektorima (30) rad u dva režima rada, u prvom režimu rada kada su solarni kolektori (30) spojeni s komorom 1 (29B) spremnika (20) voda se zagrijava preko izmjenjivača (19) vanjskom toplinom i sunčevim zračenjem do oko 45°C uz minimalni utrošak električne energije pumpe (52), te ukoliko u prvom režimu nije postignuta željena temperatura sustav može raditi i u drugom režimu rada kada su solarni kolektori (30) spojeni s dizalicom topline (10) voda se u komori 2 (29A) preko izmjenjivača (22) zagrijava do željene temperature 65°C ili više bez obzira na vanjsku temperaturu i osunčanje.1. A heat tank with two different temperature parts consists of a heat pump (10), low-temperature solar collectors (30), a tank (20) with two chambers of different temperatures (29A, 29B) and two heat exchangers (19, 22), temperature sensors (21, 23, 31), control unit (40) that controls the operation of the heat pump (10), water pump (52) and three-way valves (51,53), characterized in that the tank (20) with two thermally insulated interconnected chambers (29A, 29B) enables the low-temperature solar collectors (30) to work in two operating modes, in the first operating mode, when the solar collectors (30) are connected to chamber 1 (29B) of the tank (20), the water is heated via the exchanger (19) by external heat and solar radiation up to about 45°C with minimal consumption of electric energy of the pump (52), and if the desired temperature is not reached in the first mode, the system can also work in the second mode of operation when the solar collectors (30) are connected to the heat pump (10), the water is in chamber 2 (29A) over heats the exchanger (22) to the desired temperature of 65°C or more, regardless of the outside temperature and sunlight. 2. Toplinski spremnik s dva različita temperaturna dijela sastoji se od toplinske pumpe (10), niskotemperaturnih solarnih kolektora (30), spremnika (28) s izmjenjivačem topline (22), izmjenjivača topline (26), temperaturnih senzora (31,21 A) i upravljačke jedinice (40) koja upravljaju radom toplinske pumpe (10) , pumpe (52) i troputnih ventila (51, 53) naznačen time da spremnik (28) s izmjenjivačem topline (26) omogućuje niskotemperaturnim solarnim kolektorima (30) rad u dva režima rada, u prvom režimu rada kada su solarni kolektori (30) spojeni direktno s izmjenjivačem topline (26) i voda se prolaskom kroz izmjenjivač topline (26) zagrijava vanjskom toplinom i sunčevim zračenjem do oko 45°C uz minimalni utrošak energije pumpe (52) te ukoliko u prvom režimu nije postignuta željena temperatura sustav može raditi i u drugom režimu rada kada su solarni kolektori (30) spojeni s dizalicom topline (10) voda se u spremniku (28) preko izmjenjivača (22) zagrijava do željene temperature 65°C ili više bez obzira na vanjsku temperaturu i osunčanje.2. A heat tank with two different temperature parts consists of a heat pump (10), low-temperature solar collectors (30), a tank (28) with a heat exchanger (22), a heat exchanger (26), temperature sensors (31.21 A) and control units (40) that control the operation of the heat pump (10), the pump (52) and the three-way valves (51, 53), characterized by the fact that the tank (28) with the heat exchanger (26) enables the low-temperature solar collectors (30) to work in two mode of operation, in the first mode of operation when the solar collectors (30) are connected directly to the heat exchanger (26) and the water passing through the heat exchanger (26) is heated by external heat and solar radiation to about 45°C with minimal pump energy consumption (52 ) and if the desired temperature is not reached in the first regime, the system can also work in the second regime when the solar collectors (30) are connected to the heat pump (10), the water in the tank (28) is heated to the desired temperature of 65°C via the exchanger (22) or more regardless of the outside temperature and sun exposure.
HRP20150840AA 2015-08-07 2015-08-07 Heat reservoir with two parts of different temperatures to use with low-temperature polymer solar collectors with high heat capacity HRP20150840A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HRP20150840AA HRP20150840A2 (en) 2015-08-07 2015-08-07 Heat reservoir with two parts of different temperatures to use with low-temperature polymer solar collectors with high heat capacity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HRP20150840AA HRP20150840A2 (en) 2015-08-07 2015-08-07 Heat reservoir with two parts of different temperatures to use with low-temperature polymer solar collectors with high heat capacity

Publications (1)

Publication Number Publication Date
HRP20150840A2 true HRP20150840A2 (en) 2017-02-24

Family

ID=58094082

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP20150840AA HRP20150840A2 (en) 2015-08-07 2015-08-07 Heat reservoir with two parts of different temperatures to use with low-temperature polymer solar collectors with high heat capacity

Country Status (1)

Country Link
HR (1) HRP20150840A2 (en)

Similar Documents

Publication Publication Date Title
DK177468B1 (en) Fully integrated solar absorber
US7827814B2 (en) Geothermal water heater
Helm et al. Solar heating and cooling system with absorption chiller and low temperature latent heat storage: Energetic performance and operational experience
Garg Advances in Solar Energy Technology: Volume 2: Industrial Applications of Solar Energy
CN101793421B (en) Liquid circulation heating system
ES2835700T3 (en) Energy storage systems
US9175865B2 (en) Heat storage system
JP7009363B2 (en) Heat pump network
US20110314856A1 (en) Low-pressure high-efficiency aqua ammonia absorption heat pump system for BCHP residential use
RU2011140250A (en) HEATING SYSTEM
JP2014035152A (en) Solar system
US20120037150A1 (en) Convex Lens Solar Water Heating System
NO146881B (en) INSTALLATION FOR RECOVERY OF RADIATION AND COVECTION HEAT
CN207379092U (en) Multi-source multi-generation system
Ibrahim et al. Experimental performance evaluation of a combined solar system to produce cooling and potable water
RU2016107027A (en) TEMPERATURE CONTROL SYSTEM
RU109277U1 (en) HOT WATER SUPPLY
US20140014090A1 (en) Solar energy system
HRP20150840A2 (en) Heat reservoir with two parts of different temperatures to use with low-temperature polymer solar collectors with high heat capacity
JP2008220217A (en) Greenhouse warming system
WO2011133058A2 (en) Auxiliary circuit for heating heat storage tanks
KR102210405B1 (en) Seasonal Heat-storage System with Heat Storage And Heat-dissipation Funtion, And Method for Operating the Same
Pathak et al. Energy and exergy analysis of heat pipe based SWH system integrated with phase change material for clear and cloudy days: An experimental approach
Pause New textile-based hybrid photovoltaic/thermal (PV/T) system
Samo et al. Analysis of an active and passive solar water heating system

Legal Events

Date Code Title Description
A1OB Publication of a patent application
OBST Application withdrawn