HRP20150755A2 - Measuring height difference of lower extremities - Google Patents

Measuring height difference of lower extremities Download PDF

Info

Publication number
HRP20150755A2
HRP20150755A2 HRP20150755AA HRP20150755A HRP20150755A2 HR P20150755 A2 HRP20150755 A2 HR P20150755A2 HR P20150755A A HRP20150755A A HR P20150755AA HR P20150755 A HRP20150755 A HR P20150755A HR P20150755 A2 HRP20150755 A2 HR P20150755A2
Authority
HR
Croatia
Prior art keywords
foot
leg
measurement
height difference
phase
Prior art date
Application number
HRP20150755AA
Other languages
Croatian (hr)
Inventor
Stipe Latković
Original Assignee
Dr Luigi d.o.o.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Luigi d.o.o. filed Critical Dr Luigi d.o.o.
Priority to HRP20150755AA priority Critical patent/HRP20150755A2/en
Publication of HRP20150755A2 publication Critical patent/HRP20150755A2/en

Links

Landscapes

  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Mjerenje visinske razlike donjih ekstremiteta provodi se u cilju analize pravilnog držanja tijela i rasporeda opterećenja na obje noge tj. koliko je jedna noga duža ili kraća u odnosu na drugu nogu, a sve u svrhu izrade personalizirane obuće. Mjerenje visinske razlike donjih ekstremiteta se izvodi pomoću uređaja kičmeni stup (B) uz istovremenu dijagnostiku stopala korištenjem softvera i naprednog 3D skenera (A).Postupak mjerenja visinske razlike donjih ekstremiteta i 3D dijagnostike stopala provodi se kroz slijedeće faze:- prva faza: 3D skeniranje stopala;- druga faza: analiza 3D skena nogu- treća i četvrta faza: pozicioniranje i geometrija određenog implatata za konačno modeliranje i izradu đona;- peta faza: analiza visinske razlike donjih ekstremiteta korištenjem uređaja kičmeni stup (B) kojim se pacijenta postavlja u ispravan položaj za 3D skeniranje stopala;- šesta faza: analiza svih prethodnih faza, te konačno izrada personalizirane obuće po mjeri baziranoj na 3D modelu stopala.Pravilan položaj tijela i raspored opterećenja na obje noge od iznimne je važnosti kod izrade individualne obuće.Postupak omogućava dobar uvid u stanje tabaničnog dijela stopala, odnosno na ključne točke na koje se vrši najveći i najmanji pritisak. Pravilno raspoređena težina na lijevu nogu (L) i desnu nogu (R) ima važan utjecaj na koljena, kukove i ramena posebno kod izrade individualne obuće.The measurement of the height difference of the lower extremities is carried out in order to analyze the proper posture and load distribution on both legs, ie how long one leg is longer or shorter than the other leg, all for the purpose of making personalized footwear. Lower extremity height measurement is performed using the spinal column (B) with simultaneous foot diagnostics using software and an advanced 3D scanner (A). - stage two: analysis of 3D scans of the legs - stage three and fourth: positioning and geometry of the implants for final modeling and fabrication of the sole; position for 3D foot scan; - sixth phase: analysis of all previous stages, and finally the production of personalized footwear tailored to the 3D foot model. to the state of the soles of the foot, or to the key points to which it is performed the biggest and smallest pressure. Properly distributed weight on the left leg (L) and right leg (R) has an important impact on the knees, hips and shoulders, especially when making individual shoes.

Description

Područje tehnike The field of technology

Izum se odnosi na postupak mjerenja visinske razlike donjih ekstremiteta. Prema Međunarodnoj klasifikaciji patenata predmet izuma pripada području A – svakodnevne životne potrepštine – zdravlje, A61B – dijagnostika; identifikacija, odnosno području G – fizika, G01 – mjerenje; testiranje. The invention relates to the procedure for measuring the height difference of the lower extremities. According to the International Classification of Patents, the subject of the invention belongs to area A - daily necessities - health, A61B - diagnostics; identification, i.e. area G – physics, G01 – measurement; testing.

Tehnički problem Technical problem

3D rekonstrukcija stopala, tj. 3D skeniranje provodi se, između ostaloga, u cilju što vjernije izrade individualne/personalizirane obuće. 3D reconstruction of the foot, i.e. 3D scanning is carried out, among other things, with the aim of making individual/personalized footwear as faithfully as possible.

Skenira se ili stopalo direktno ili otisak stopala (zastarjelija metoda uzimanja mjera) u posebno napravljenoj pjeni. U općoj odrasloj populaciji sve je veći broj osoba s različitim bolnim stanjima ili patologijama stopala kao što je plantarni fascitis, metartarzalgije zatim deformacije kao što su planovalgus, kavus i kavovalgus stopala, hallux valgus. U populaciji djece uočena je tendencija porasta deformacija stopala kao što su planus, planovalgus stopala i hallux valgus. Either the foot is scanned directly or a footprint (an older method of taking measurements) in specially made foam is scanned. In the general adult population, there is an increasing number of people with various painful conditions or pathologies of the feet such as plantar fascitis, metatarsalgia, then deformations such as planovalgus, cavus and cavovalgus of the foot, hallux valgus. In the population of children, a tendency to increase foot deformities such as planus, planovalgus feet and hallux valgus has been observed.

Kako bi što kvalitetnije napravili dijagnostiku stopala, Dr.Luigi 3D dijagnostika u svom radu koristi nekoliko vrsta dijagnostičkih uređaja. In order to make foot diagnostics as high quality as possible, Dr. Luigi 3D diagnostics uses several types of diagnostic devices in its work.

3D SCANNER je kompletan CAD/CAM sustav, prenosiv i brzo se postavlja, za samo 20 sekundi skenira stopala. Zamjena za konvencionalni gips, pjenu i sl., koristeći 3D skener nema neugodnog osjećaja za pacijenta kao kod gipsanja. 3D SCANNER is a complete CAD/CAM system, portable and quick to set up, it scans feet in just 20 seconds. Replacement for conventional plaster, foam, etc., using a 3D scanner does not have an unpleasant feeling for the patient as with plastering.

Sustav je osmišljen za širok raspon uporabe uključujući medicinsku dijagnostiku, prevenciju, biomehaničko i ergonomsko prikazivanje statike stopala, kako kod zdravih osoba, sportaša, te osoba s invaliditetom, dijabetičara. The system is designed for a wide range of uses, including medical diagnostics, prevention, biomechanical and ergonomic display of foot statics, both in healthy people, athletes, and people with disabilities, diabetics.

Kod 3D skeniranja uzimanje mjere se svodi na manje od 1 minute. Uzimanje mjere je bezbolno, čisto te nudi pacijentu komfor. With 3D scanning, the measurement takes less than 1 minute. Taking the measurement is painless, clean and offers the patient comfort.

Dr. Luigi obuća izrađena na 3D biomehaničkoj analizi statičkih opterećenja stopala te vrhunski izbor PU materijala, koji se koriste u izradi ovih đonova, osiguravaju da đonovi budu urađeni individualno tj. prema individualnim potrebama korisnika. dr. Luigi footwear made on the basis of 3D biomechanical analysis of static foot loads and the top choice of PU materials, which are used in the production of these soles, ensure that the soles are made individually, i.e. according to the individual needs of the user.

Kombinacijom PU materijala u izradi đonova, postiže se : By combining PU materials in the production of soles, the following is achieved:

Fiziološki položaj stopala, Physiological position of the feet,

Stabilizacija stopala, Stabilization of the feet,

Rasterećenje stopala, Foot relief,

Optimalan odnos stopala i podloge po kojoj se kreće. Optimal relationship between the foot and the surface on which it moves.

Osim toga u velikom su porastu i osobe s dijabetesom u kojih su uočene značajne neuro-cirkulatorne promjene stopala koje su odgovorne za deformacije, ulceracije stopala. Sve navedene činjenice govore u prilog potrebe primjene individualne cipele u prevenciji i terapiji deformacija i različitih patologija stopala. U tom smislu je točnost skeniranja i dobiveni 3D model od najveće važnosti za izradu kvalitetnog individualnog proizvoda. In addition, there is a large increase in people with diabetes, in whom significant neuro-circulatory changes in the feet have been observed, which are responsible for foot deformations and ulcerations. All the mentioned facts speak in favor of the need to use individual shoes in the prevention and therapy of deformations and various foot pathologies. In this sense, the accuracy of the scanning and the obtained 3D model is of the utmost importance for the creation of a quality individual product.

Stanje tehnike State of the art

Opis problematike pri konvencionalnoj metodi 3D skeniranja i rješenje: Description of the problem with the conventional 3D scanning method and solution:

Tradicionalan način izrade cipela/uložaka nije uključivao primjenu računala već se iz otiska stopala u pjeni radio gipsani odljev, prema kojem se dalje gotovo ručno izrađivao uložak/cipela. The traditional way of making shoes/insoles did not include the use of a computer, but a plaster cast was made from the foot print in foam, according to which the insole/shoe was made almost by hand.

Razvoj preciznih CAD/CAM sustava otvorio je mogućnosti i njihove primjene u ortopedskoj tehnici za izradu individualnih cipela/uložaka. Izrada cipela/uložaka CAD/CAM tehnologijom temelji se na preciznom 3D modelu stopala. The development of precise CAD/CAM systems has opened up possibilities and their application in orthopedic technology for the production of individual shoes/insoles. The production of shoes/insoles using CAD/CAM technology is based on a precise 3D model of the foot.

Današnja tipična rješenja skeniranja stopala koriste specijalizirane laserske 3D skenere, koji su specijalizirani kako za skeniranje stopala tako i za skeniranje manjih modela/objekata. Zatim, napredni laserski 3D skeneri su relativno brzi i samim time zahtijevaju od subjekta skeniranja (pacijenta) mirnoću svega nekoliko desetaka sekundi, što je posebno važno kod djece i ozlijeđenih pacijenata. Today's typical foot scanning solutions use specialized laser 3D scanners, which specialize in both foot scanning and smaller model/object scanning. Then, advanced laser 3D scanners are relatively fast and thus require the subject of the scan (patient) to remain still for only a few tens of seconds, which is especially important for children and injured patients.

Povrh toga, uobičajeni laserski skeneri daju 3D oblik samo iz jednog pogleda, dok bi skeniranje iz više pogleda olakšalo obradbu rekonstruiranog 3D oblika u cilju što vjernije izrade uloška/cipele za stopalo. Nažalost skeniranje iz više pogleda zahtjeva tzv. registraciju površina. Uobičajeni komercijalni 3D sustavi za registraciju površina koriste dodatne uređaje poput robotskih ruka, rotirajućih površina (engl. turn table). In addition, conventional laser scanners provide a 3D shape from only one view, while scanning from multiple views would facilitate the processing of the reconstructed 3D shape in order to create the foot insole/shoe as faithfully as possible. Unfortunately, scanning from multiple views requires the so-called registration of areas. Common commercial 3D surface registration systems use additional devices such as robotic arms, rotating surfaces (turn tables).

Osim što takvi uređaji bitno poskupljuju cijenu 3D sustava, ne daju 100% garanciju da će neki objekt uistinu biti rekonstruiran u svim točkama. Apart from the fact that such devices significantly increase the price of the 3D system, they do not provide a 100% guarantee that an object will be truly reconstructed in all points.

Bit izuma The essence of invention

Vodeći se svim navedenim činjenicama tvornica obuće Dr. Luigi je u suradnji sa Litvanskom tvrtkom razvila vlastitu 3D dijagnostiku baziranu na naprednim 3D skenerima koji, koristeći poseban softver i uređaj kičmeni stup, omogućava pored 3D skeniranja, analizu pacijenta na koji način i u kojoj mjeri raspoređuje svoju težinu na obje noge, te omogućuje pravilno-ispravno držanje tijela. Guided by all the mentioned facts, the footwear factory Dr. Luigi, in cooperation with a Lithuanian company, has developed its own 3D diagnostics based on advanced 3D scanners, which, using special software and a spinal column device, enables, in addition to 3D scanning, an analysis of the patient in which way and to what extent he distributes his weight on both legs, and enables proper- correct body posture.

Kratki opis slika Short description of the pictures

Slika 1.a prikazuje uređaj kičmeni stup B i 3D skener A s balansnim vagama – sprijeda Figure 1.a shows the spinal column device B and the 3D scanner A with balance scales - from the front

Slika 1.b prikazuje kičmeni stup i skener s balansnim vagama – straga Figure 1.b shows the spinal column and scanner with balance scales - back

Slika 1.c prikazuje kičmeni stup i skener s balansnim vagama – bočno Figure 1.c shows the spinal column and the scanner with balance scales - side-on

Slika 2. prikazuje pravilno raspoređeno opterećenje na monitoru 3D skenera Figure 2 shows a properly distributed load on the 3D scanner monitor

Slika 3. prikazuje usporedbu nepravilnog i pravilnog držanja tijela, na monitoru 3D skenera Figure 3 shows a comparison of incorrect and correct body posture, on the 3D scanner monitor

Slika 4. prikazuje pravilan položaj držanja Figure 4 shows the correct holding position

Slika 5. prikazuje skraćenje lijevog ekstremiteta Figure 5 shows the shortening of the left limb

Slika 6. prikazuje podlaganje plexi ploča ispod kraćeg ekstremiteta Figure 6 shows the placement of plexi panels under the shorter limb

Slika 7. prikazuje stvarni 3D oblik-model noge Figure 7 shows the actual 3D shape-model of the leg

Slika 8. prikazuje razliku između lijeve noge i desne noge kroz opsege prstiju, rista i pete Figure 8 shows the difference between the left leg and the right leg through the circumferences of the toes, the instep and the heel

Slika 9. prikazuje usporedbu širine nagaznog dijela lijevog i desnog stopala Figure 9 shows a comparison of the width of the tread of the left and right feet

Slika 10.a prikazuje poziciju i geometriju implatata lijeve i desne noge, pogled s unutarnje strane Figure 10.a shows the position and geometry of the left and right leg implants, view from the inside

Slika 10.b prikazuje poziciju i geometriju implatata lijeve i desne noge, pogled s vanjske strane Figure 10.b shows the position and geometry of the left and right leg implants, view from the outside

Slika 10.c. prikazuje poziciju i geometriju implatata lijeve i desne noge, pogled s donje strane Figure 10.c. shows the position and geometry of the left and right leg implants, bottom view

Slika 11. prikazuje primjer skraćenog ekstremiteta Figure 11 shows an example of a shortened limb

Slika 12. prikazuje primjer dvokomponentnih đonova s različitim visinama/debljinama Figure 12 shows an example of two-component soles with different heights/thicknesses

Slika 13. prikazuje sken kalupa za obuću i 3D prikaz preklapanja skena noge i skena kalupa Figure 13 shows a scan of the shoe mold and a 3D overlay of the leg scan and the mold scan

Opis izvedbe i funkcioniranja izuma Description of performance and functioning of the invention

Ovaj način mjerenja od iznimne je važnosti jer pravilno raspoređena težina na obje noge ima utjecaj na koljena, kukove, ramena... točnije cjelokupnu biomehaniku tijela. This method of measurement is extremely important because properly distributed weight on both legs has an impact on the knees, hips, shoulders... more precisely, the entire biomechanics of the body.

Prateći pravilan položaj tijela i raspored opterećenja, od iznimne važnosti je da prilikom individualne izrade cipela uvidimo trenutno držanje i raspored opterećenja pacijenta, kako bismo na ispravan način dobili uvid u stanje tabaničnog dijela stopala, odnosno na ključne točke - površine tabana na koje se vrši najveći i najmanji pritisak. Following the correct position of the body and the load distribution, it is extremely important that when making individual shoes, we see the patient's current posture and load distribution, in order to get a proper insight into the state of the plantar part of the foot, i.e. the key points - the surface of the sole on which the greatest pressure is applied and the slightest pressure.

U skladu s tim, Dr. Luigi 3D dijagnostika našla je rješenje u obliku kičmenog stupa B, s nosačem 2 na kotačima 4 i okomitim letvicama 3, Sl.1.a, 1.b i 1.c, pomoću kojeg pacijenta P stavljamo u pravilan položaj za 3D skeniranje te na taj način "balansiramo" odnosno ravnomjerno raspoređujemo pacijentovu težinu na obje noge. Primjenom ove metode pravilnog raspoređivanja opterećenja i specijaliziranog 3D skenera A, Sl.1.a, 1.b i 1.c, sigurni smo u kvalitetu rezultata skeniranja stopala kao i daljnju obradu pacijenta u smislu preventivnih mjera. Primjenjujući ovu metodu analize stopala, pravilno držanje i pravilan raspored opterećenja, prikaz D i prikaz C na monitoru 3D skenera A, Sl.3. i Sl.2., moguće je usporediti i visinsku razliku nogu, tj. izmjeriti koliko je jedna noga duža/kraća u odnosu na drugu. Accordingly, Dr. Luigi 3D diagnostics found a solution in the form of a spinal column B, with a support 2 on wheels 4 and vertical slats 3, Fig. 1.a, 1.b and 1.c, with which we place the patient P in the correct position for the 3D scan and on that method, we "balance" that is, we distribute the patient's weight evenly on both legs. By applying this method of proper load distribution and the specialized 3D scanner A, Fig. 1.a, 1.b and 1.c, we are sure of the quality of the results of the foot scan as well as the further treatment of the patient in terms of preventive measures. Applying this foot analysis method, proper posture and proper load distribution, view D and view C on the 3D scanner monitor A, Fig.3. and Fig. 2, it is possible to compare the height difference of the legs, i.e. measure how much longer/shorter one leg is compared to the other.

Ako postoji skraćenje jednog od donjih ekstremiteta tada će spina ilijaka anterior superior biti niže postavljena na strani skraćene noge, a spojnica između spina teći će koso, Sl.4. i 5. If there is a shortening of one of the lower extremities, then the anterior superior iliac spine will be lower on the side of the shortened leg, and the joint between the spines will run diagonally, Fig. 4. and 5.

Podlaganjem plexi ploča F, određene debljine (0.1, 0.3, 0.5, 1 ili više cm) pod kraću nogu, u primjeru iz ovog izuma kraća je desna noga R, Sl.6., ispravlja se skraćenje, a spojnica između spina dobiva horizontalan tok. By placing plexi-plates F, of a certain thickness (0.1, 0.3, 0.5, 1 or more cm) under the shorter leg, in the example from this invention the right leg R is shorter, Fig. 6, the shortening is corrected, and the joint between the spin gets a horizontal flow .

Debljina upotrijebljenih plexi ploča F ujedno je mjerilo skraćenja ekstremiteta. The thickness of the used plexi panels F is also a measure of limb shortening.

Ovaj način mjerenja - kombinacija kičmenog stupa B, pravilna raspodjela opterećenja te podlaganje plexi ploča F pod kraći ekstremitet - daje nam ujedno i podatke o lokalizaciji skraćenja. Ako u ovako popravljenom horizontalnom položaju zdjelice spojnica između velikih prohantera teče također vodoravno, dakle je s gornjom paralelna, tada uzrok skraćenja leži ispod velikog trohantera. Ako veliki trohanter na strani skraćenja, usprkos vodoravnom položaju zdjelice stoji više nego na zdravoj strani, pa stoga spojnica trohantera teče koso dolje prema zdravoj strani, tada uzrok skraćenja valja tražiti u području zgloba kuka (koksa vara, prirođeno iščašenje kuka), Sl.4. i 5. Konačno valja utvrditi da li je neko skraćenje stvarno (anatomsko) ili prividno (funkcionalno). Jedna noga može biti funkcionalno skraćena - npr. zbog fleksijske kontrakture koljena ili kuka - i bolesnik šepa, ali je ona anatomski jednako duga kao i druga noga. This method of measurement - a combination of the spinal column B, proper distribution of the load and the placing of plexi-plates F under the shorter extremity - also gives us data on the localization of the shortening. If, in this repaired horizontal position of the pelvis, the joint between the greater prochanters also runs horizontally, i.e. it is parallel to the upper one, then the cause of the shortening lies below the greater trochanter. If the greater trochanter on the side of the shortening, despite the horizontal position of the pelvis, stands higher than on the healthy side, and therefore the junction of the trochanter runs diagonally down towards the healthy side, then the cause of the shortening should be sought in the area of the hip joint (coxa vara, congenital dislocation of the hip), Fig.4 . and 5. Finally, it is necessary to determine whether a shortening is real (anatomical) or apparent (functional). One leg can be functionally shortened - for example due to flexion contracture of the knee or hip - and the patient limps, but it is anatomically as long as the other leg.

Tehničko tehnološki opis mjerenja Technical description of the measurement

Dr.Luigi 3D dijagnostika svoje rješenje mjerenja skraćenja donjih ekstremiteta provela je kroz nekoliko faza bitnih za što kvalitetniji rezultat konačnog proizvoda i zdravlja pacijenta P: Dr. Luigi 3D diagnostics has implemented its solution for measuring the shortening of the lower extremities through several stages that are essential for the best possible result of the final product and the health of the patient P:

prva faza bazira se na 3D skeniranju stopala, prilikom kojeg pacijentu P, na bezbolan i kratkotrajan način, skeniramo izgled noge(u), te na osnovi triangulacije i poligonizacije dobivamo stvarni 3D oblik-model noge 8, prikaz E na monitoru 3D skenera, Sl.7.; the first phase is based on a 3D scan of the foot, during which patient P, in a painless and short-term way, we scan the appearance of the leg(s), and based on triangulation and polygonization, we get the actual 3D shape-model of the leg 8, view E on the 3D scanner monitor, Fig. .7.;

druga faza provodi se na osnovi dobivenog 3D skena noge 8, odnosno kontroliramo ključne opsege 3D modela stopala u karakterističnim pozicijama. Na bilo kojem području površine 3D modela stopala moguće je izvršiti kontrolu opsega prstiju 5, opsega rista 6 i opsega pete 7, prikazanih u presjeku na Sl.8., u svim smjerovima koordinatnog sustava, tj. zakretanje presjecišnih ploha sa modelom stopala. the second phase is carried out on the basis of the obtained 3D scan of the leg 8, i.e. we control the key ranges of the 3D model of the foot in characteristic positions. On any area of the surface of the 3D foot model, it is possible to control the circumference of the toes 5, the circumference of the instep 6 and the circumference of the heel 7, shown in cross-section in Fig. 8, in all directions of the coordinate system, i.e. rotation of the intersecting surfaces with the foot model.

Također u ovoj fazi izvršava se i usporedba odstupanja dva ekstremiteta L i R (dva modela stopala) u odnosu jedan prema drugome, te se traži razlika u odstupanjima ukoliko je ima. Also in this phase, a comparison of the deviations of the two extremities L and R (two foot models) is performed in relation to each other, and the difference in deviations, if any, is sought.

Software automatski, na osnovu 3D skena proračunava razliku u dužini nogu (lijeva/desna – L/R) te opseg, i na osnovu izlaznih rezultata daje procjenu broja obuće koja je u potpunosti točna kao i razlike za sve karakteristične točke, Sl.8. i podaci u tablici 1. The software automatically, based on the 3D scan, calculates the difference in leg length (left/right - L/R) and circumference, and based on the output results provides an estimate of the number of shoes that is completely accurate as well as the differences for all characteristic points, Fig. 8. and data in Table 1.

[image] [image]

Tablica 1. Table 1.

Također moguće je odrediti i usporediti širinu nagaznog djela stopala te veličinu plohe kojom se gazi na čvrstu podlogu, Sl.9. It is also possible to determine and compare the width of the tread part of the foot and the size of the surface used to step on a solid surface, Fig. 9.

U trećoj i četvrtoj fazi mjerenja i analize rezultata dolazimo do pozicioniranja i geometrije određenog implatata G, Sl.10.a, 10.b i 10.c, koji je ujedno i jedan od utjecajnijih faktora vezan za modeliranje i izradu đona H u konačnici. Rezultat ove faze mjerenja u konačnici je stvarni čovjekov otisak + implatat (ukoliko je on potreban), ali i taj implatat je u konačnici ne zaseban, nego ukomponiran u cijelu strukturu poliuretanskog đona H. In the third and fourth phase of measuring and analyzing the results, we arrive at the positioning and geometry of a specific implant G, Fig. 10.a, 10.b and 10.c, which is also one of the more influential factors related to the modeling and making of sole H in the end. The result of this measurement phase is ultimately the actual human footprint + implant (if needed), but this implant is ultimately not separate, but integrated into the entire structure of the polyurethane sole H.

peta faza dijagnostike je nosilac cijelog ovog projekta, a to je analiza visinske razlike ekstremiteta (nogu), Sl.6. U ovoj fazi prilikom skeniranja koristi se dodatni uređaj kičmeni stup B koji nam pomaže pacijenta P postaviti u ispravan položaj za skeniranje. Prilikom skeniranja pacijent mora biti postavljen u "balans", odnosno raspored težine mora biti takav da balansne vage 1, na 3D skeneru A, očitavaju jednako opterećenje na lijevoj L i desnoj R nozi, Sl.2. Ukoliko postoji skraćenje jednog od donjih ekstremiteta, Sl.11., tada podlaganjem plexi ploča F određenih debljina, pod kraći ekstremitet (R), dovodimo pacijenta P u ispravan položaj za skeniranje i postavljamo ga u "balans" odnosno ispravljamo skraćenje, a debljina upotrijebljenih plexi ploča ujedno je mjerilo skraćenja ekstremiteta. the fifth phase of diagnostics is the basis of this entire project, which is the analysis of the height difference of the extremities (legs), Fig. 6. In this phase during the scan, an additional device, the spinal column B, is used to help us position the patient P in the correct position for the scan. During the scan, the patient must be placed in "balance", that is, the weight distribution must be such that balance scales 1, on the 3D scanner A, read the same load on the left L and right R leg, Fig. 2. If there is a shortening of one of the lower extremities, Fig. 11., then by placing plexiglass plates F of certain thickness under the shorter limb (R), we bring the patient P into the correct position for scanning and place him in "balance", i.e. we correct the shortening, and the thickness of the used the plexi sheet is also a measure of limb shortening.

Prilikom podlaganja plexi ploča F moramo uzeti u obzir i njihovu težinu kako bismo u konačnici dobili ispravno raspoređeno opterećenje na obje noge. When laying plexi panels F, we must also take their weight into account in order to ultimately get a correctly distributed load on both legs.

Završna, šesta faza je ujedno analiza svih prethodnih faza te konačno izrada obuće po mjeri, odnosno izrada personaliziranog đona H obuće, Sl.12., baziranog na 3D modelu stopala 8. Cilj je bio da se izradi đon H, odnosno cijela cipela, koja će kako za skraćeni ekstremitet tako i za onaj "normalni" vizualno biti ista, tj. da se vanjske konture dizajna neće razlikovati, dok će unutarnji dio obuće biti prilagođen svakom stopalu. The final, sixth phase is also the analysis of all the previous phases and finally the creation of custom-made footwear, i.e. the creation of a personalized H shoe sole, Fig. 12., based on a 3D model of the foot 8. The goal was to create an H sole, i.e. the entire shoe, which will be visually the same for both the shortened extremity and the "normal" one, i.e. the outer contours of the design will not differ, while the inner part of the footwear will be adapted to each foot.

Na Sl.13. prikazan je sken kalupa za obuću i 3D prikaz preklapanja skena noge 8 i skena kalupa 9. On Fig. 13. a scan of the shoe mold and a 3D overlay of the scan of the leg 8 and the scan of the mold 9 are shown.

POPIS SLOVNIH I BROJČANIH OZNAKA U OPISU I SLIKAMA: LIST OF LETTER AND NUMERICAL MARKS IN THE DESCRIPTION AND PICTURES:

A – 3D skener donjih ekstremiteta i stopala A – 3D scanner of the lower extremities and feet

1 – balansne vage 3D skenera 1 – 3D scanner balance scales

B – kičmeni stup – uređaj za postavljanje pacijenta u položaj za skeniranje B - spinal column - a device for placing the patient in the scanning position

2 – nosač okomitih letvica 2 – support of vertical slats

3 – okomite letvice za kontrolu pravilnog držanja kičmenog stupa pacijenta 3 – vertical slats to control the proper posture of the patient's spinal column

4 – kotači kičmenog stupa 4 – wheels of the spinal column

C – prikaz opterećenja na monitoru 3D skenera C – load display on the 3D scanner monitor

D – prikaz usporedbe nepravilnog i pravilnog držanja tijela na monitoru 3D skenera D – display of a comparison of incorrect and correct body posture on the 3D scanner monitor

E – prikaz modela noge na monitoru 3D skenera E – display of the leg model on the 3D scanner monitor

5 – opseg prstiju na lijevom L i desnom R stopalu 5 – the circumference of the toes on the left L and right R foot

6 – opseg rista na L i R stopalu 6 – circumference of the inseam on the L and R feet

7 – opseg pete na L i R stopalu 7 – heel circumference on L and R foot

F – pleksi ploče F – plexiglass panels

G – implatat G – implant

8 – sken noge-stopala/3D model noge-stopala 8 – leg-foot scan/3D leg-foot model

9 – sken kalupa/3D model kalupa 9 – scan of the mold/3D model of the mold

H – đon H – sole

P – pacijent P – the patient

K – kostur pacijenta K – skeleton of the patient

L – lijeva noga L – left leg

R – desna noga R – right leg

Primjena izuma Application of the invention

Dr.Luigi 3D dijagnostika ima vjeran prikaz koncepcija računalnog CAD/CAM sustava namijenjenog 3D modeliranju obuće, temeljenog na primjeni inovativne tehnologije i sofisticiranih programskih paketa. Naša koncepcija podrazumijeva uporabu jedne ili nekoliko vrsta 3D skenera, namijenjenih skeniranju stopala ili kalupa za obuću. Dr.Luigi 3D diagnostics has a faithful representation of the concept of a computer CAD/CAM system intended for 3D modeling of footwear, based on the application of innovative technology and sophisticated software packages. Our concept involves the use of one or several types of 3D scanners, intended for scanning feet or shoe molds.

Skeniranje kalupa za obuću, omogućuje implementaciju računalnog 3D modela kalupa u programske pakete namijenjene računalnom dizajnu, 3D modeliranju, transformaciji dijelova gornjišta u 2D krojne dijelove i gradiranju dijelova. Scanning of shoe molds enables the implementation of a computer 3D model of the mold in software packages intended for computer design, 3D modeling, transformation of upper parts into 2D tailoring parts and grading of parts.

Prateći računalni programski paket 3D skenera za skeniranje stopala, omogućuje također određivanje karakterističnih antropometrijskih mjera na stopalu, potrebnih za modeliranje i proizvodnju obuće specijalnih namjena, prema utvrđenim mjerama i obliku stopala. Uvođenje prikazanog CAD/CAM sustava u realne uvjete, utječe na skraćivanje vremena potrebnog za razvoj novog proizvoda, uz istovremenu uštedu materijala i postizanje visoke kvalitete finalnog proizvoda. The accompanying computer program package of the 3D scanner for scanning the feet also enables the determination of characteristic anthropometric measurements on the foot, necessary for the modeling and production of special purpose footwear, according to the determined measurements and shape of the foot. The introduction of the presented CAD/CAM system into real conditions has the effect of shortening the time required for the development of a new product, while simultaneously saving materials and achieving high quality of the final product.

Claims (6)

1. Mjerenje visinske razlike donjih ekstremiteta, pri čemu se, u cilju što vjernije izrade individualne obuće, za skeniranje stopala, koristi 3D skener, naznačeno time, da obuhvaća slijedeće faze: - prva faza: 3D skeniranje stopala; - druga faza: analiza 3D skena nogu; - treća i četvrta faza: pozicioniranje i geometrija određenog implatata za konačno modeliranje i izradu đona; - peta faza: analiza visinske razlike donjih ekstremiteta korištenjem uređaja kičmeni stup (B) kojim se pacijenta (P) postavlja u ispravan položaj za 3D skeniranje stopala; - šesta faza: analiza svih prethodnih faza, te konačno izrada personalizirane obuće po mjeri baziranoj na 3D modelu stopala. 1. Measurement of the height difference of the lower extremities, whereby, in order to create individual footwear as faithfully as possible, a 3D scanner is used to scan the feet, indicating that it includes the following stages: - first stage: 3D scan of the feet; - second stage: analysis of 3D leg scans; - the third and fourth stages: positioning and geometry of a specific implant for final modeling and sole making; - fifth stage: analysis of the height difference of the lower extremities using the spinal column device (B) which places the patient (P) in the correct position for the 3D scan of the feet; - sixth phase: analysis of all previous phases, and finally creation of personalized footwear based on a 3D model of the foot. 2. Mjerenje visinske razlike donjih ekstremiteta, prema zahtjevu 1., naznačeno time, da se prva faza bazira na 3D skeniranju stopala, prilikom kojeg se pacijentu (P), na bezbolan i kratkotrajan način, skenira izgled noge, te se na osnovu triangulacije i poligonizacije dobiva stvarni 3D oblik-model noge (8). 2. Measurement of the height difference of the lower extremities, according to claim 1, indicated that the first phase is based on a 3D scan of the foot, during which the patient (P) is scanned in a painless and short-term way, and based on triangulation and Polygonization gives the actual 3D shape-model of the leg (8). 3. Mjerenje visinske razlike donjih ekstremiteta, prema zahtjevu 1. i 2., naznačeno time, da se druga faza provodi na osnovu dobivenog 3D skena noge (8), odnosno kontroliraju se ključni opsezi 3D modela stopala u karakterističnim pozicijama tako da je na bilo kojem području površine 3D modela stopala (8) moguće izvršiti kontrolu opsega prstiju (5), opsega rista (6) i opsega pete (7) u svim smjerovima koordinatnog sustava, tj. zakretanje presjecišnih ploha sa modelom stopala (8); da se u drugoj fazi vrši i usporedba odstupanja dva ekstremiteta - dva modela stopala u odnosu jedan prema drugome, te ukoliko postoji razlika u odstupanjima, software automatski, na osnovu 3D skena, proračuna razliku u dužini i opsegu nogu (L) i (R), i na osnovu izlaznih rezultata daje procjenu broja obuće i razlike za sve karakteristične točke stopala; da se u drugoj fazi odredi i usporedi širina nagaznog dijela stopala te veličina plohe kojom se gazi na čvrstu podlogu. 3. Measurement of the height difference of the lower extremities, according to requirements 1 and 2, indicated that the second phase is carried out on the basis of the obtained 3D scan of the leg (8), i.e. the key ranges of the 3D model of the foot are controlled in characteristic positions so that on any in which area of the surface of the 3D foot model (8) is it possible to control the circumference of the toes (5), the circumference of the instep (6) and the circumference of the heel (7) in all directions of the coordinate system, i.e. the rotation of the intersecting surfaces with the foot model (8); that in the second phase, a comparison of the deviations of the two extremities - two foot models in relation to each other is made, and if there is a difference in the deviations, the software automatically, based on the 3D scan, calculates the difference in the length and girth of the legs (L) and (R) , and based on the output results gives an estimate of the number of shoes and the difference for all characteristic points of the foot; that in the second phase, the width of the stepping part of the foot and the size of the surface used for stepping on a solid surface are determined and compared. 4. Mjerenje visinske razlike donjih ekstremiteta, prema zahtjevu 1., 2. i 3., naznačeno time, da se u trećoj i četvrtoj fazi mjerenja i analize rezultata dolazi do pozicioniranja i geometrije određenog implatata (G) koji je ujedno i jedan od utjecajnijih faktora vezan za konačno modeliranje i izradu đona (H); da je rezultat treće i četvrte faze mjerenja stvarni čovjekov otisak s implatatom, implatat (G) nije zaseban, nego je ukomponiran u cijelu strukturu poliuretanskog đona (H).4. Measurement of the height difference of the lower extremities, according to requirements 1, 2 and 3, indicated by the fact that in the third and fourth stages of measurement and analysis of the results, the positioning and geometry of a specific implant (G) is reached, which is also one of the most influential factors related to the final modeling and making of soles (H); that the result of the third and fourth phase of measurement is a real human impression with an implant, the implant (G) is not separate, but is integrated into the entire structure of the polyurethane sole (H). 5. Mjerenje visinske razlike donjih ekstremiteta, prema zahtjevu 1., 2., 3. i 4., naznačeno time, da se peta faza odnosi na analizu visinske razlike ekstremiteta nogu (L) i (R) pri čemu se koristi dodatni uređaj kičmeni stup (B) koji pomaže pacijenta (P) postaviti u ispravan položaj za skeniranje, da se prilikom skeniranja pacijent postavlja u balans kako bi se težina rasporedila tako da balansne vage (1) na skeneru (A) očitaju jednako opterećenje na lijevoj (L) i desnoj (R) nozi; da se ukoliko postoji skraćenje jednog od donjih ekstremiteta, pod kraći ekstremitet postavlja plexi ploča (F) određenih debljina čime se ispravlja skraćenje noge, a pacijent se dovodi u balans i ispravan položaj za skeniranje, da je debljina upotrijebljenih plexi ploča (F) ujedno mjerilo skraćenja ekstremiteta, da se pri postavljanju plexi ploča uzima u obzir i težina plexi ploča kako bi se u konačnici dobilo ispravno raspoređeno opterećenje na obje noge.5. Measurement of the height difference of the lower extremities, according to claim 1, 2, 3 and 4, indicated by the fact that the fifth phase refers to the analysis of the height difference of the legs (L) and (R) using an additional spinal device pillar (B) which helps to place the patient (P) in the correct position for scanning, so that during scanning the patient is balanced so that the weight is distributed so that the balance scales (1) on the scanner (A) read an equal load on the left (L) and right (R) leg; that if there is a shortening of one of the lower limbs, a plexi-plate (F) of certain thickness is placed under the shorter limb, which corrects the shortening of the leg, and the patient is brought into balance and in the correct position for scanning, that the thickness of the used plexi-plates (F) is also a measure shortening of the limbs, that the weight of the plexi panels is also taken into account when placing the plexi panels in order to ultimately obtain a correctly distributed load on both legs. 6. Mjerenje visinske razlike donjih ekstremiteta, prema zahtjevu 1., 2., 3., 4., i 5., naznačeno time, da je šesta faza analiza svih prethodnih faza i konačno izrada obuće po mjeri, da se izrada personaliziranog đona (H) obuće bazira na 3D modelu stopala (8); da je izrađeni đon (H) odnosno cijela cipela, kako za skraćeni ekstremitet tako i za onaj normalne dužine, vizualno isti, da se vanjske konture dizajna obuće ne razlikuju, a unutarnji dio obuće je prilagođen svakom stopalu. 6. Measurement of the height difference of the lower extremities, according to requirements 1., 2., 3., 4., and 5., indicating that the sixth phase is the analysis of all previous phases and finally the production of custom-made footwear, that the production of a personalized sole ( H) footwear is based on a 3D foot model (8); that the manufactured sole (H) or the entire shoe, both for the shortened extremity and the normal-length one, is visually the same, that the outer contours of the footwear design do not differ, and the inner part of the footwear is adapted to each foot.
HRP20150755AA 2015-07-07 2015-07-07 Measuring height difference of lower extremities HRP20150755A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HRP20150755AA HRP20150755A2 (en) 2015-07-07 2015-07-07 Measuring height difference of lower extremities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HRP20150755AA HRP20150755A2 (en) 2015-07-07 2015-07-07 Measuring height difference of lower extremities

Publications (1)

Publication Number Publication Date
HRP20150755A2 true HRP20150755A2 (en) 2017-01-13

Family

ID=57754865

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP20150755AA HRP20150755A2 (en) 2015-07-07 2015-07-07 Measuring height difference of lower extremities

Country Status (1)

Country Link
HR (1) HRP20150755A2 (en)

Similar Documents

Publication Publication Date Title
CN104699908B (en) The preparation method of 3D orthopedic insoles
Telfer et al. Computer-aided design of customized foot orthoses: reproducibility and effect of method used to obtain foot shape
US8538570B2 (en) Process and system for manufacturing a customized orthosis
KR20230147772A (en) Custom orthotics and personalized footwear
ES2949433T3 (en) A method and system for obtaining foot analysis data
EP1211978B1 (en) Apparatus and method for prescribing and manufacturing orthotic foot devices
US10813573B2 (en) Biomechanical analysis and validation system and method
Barbier et al. The reliability of the anterior pelvic plane for computer navigated acetabular component placement during total hip arthroplasty: prospective study with the EOS imaging system
US10702022B2 (en) Method for producing an individual patient-data-based modular-structure foot sole last and for determining the materials and the structure of an individual patient-data-based insole
Wan et al. Validation of a 3D foot scanning system for evaluation of forefoot shape with elevated heels
Lochner et al. Parametric design of custom foot orthotic model
Sun et al. Classification and mass production technique for three-quarter shoe insoles using non-weight-bearing plantar shapes
KR101441615B1 (en) Foot Arch Scanner
KR100786120B1 (en) Manufacturing method of shoes insole ordered by user
RU2596517C2 (en) Configuration of special anatomic stock for ankle digital measurement
McCahill et al. Reliability testing of the heel marker in three-dimensional gait analysis
HRP20150755A2 (en) Measuring height difference of lower extremities
Qaiser et al. Feasibility study of a rapid evaluate and adjust device (READ) for custom foot orthoses prescription
US20180271680A1 (en) Method and system for aligning a prosthetic device
Wallmann Introduction to observational gait analysis
Cuppens et al. Using a texture analyser to objectively quantify foot orthoses
RU2651701C1 (en) Method for manufacturing individual orthopedic insole for persons with flat-valgus non-fixed deformation of the feet
Yarwindran et al. The feasibility study on fabrication customized orthotic insole using fused deposition modelling (FDM)
CN110840645A (en) Printing method and device of customized 3D arch pad forming machine
Kumar Mishra et al. Insole customized Part 2: 2D/3D graphical process

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
ODRP Renewal fee for the maintenance of a patent

Payment date: 20170705

Year of fee payment: 3

ODBI Application refused