HRP20130637A2 - Motor with permanent magnets - Google Patents
Motor with permanent magnets Download PDFInfo
- Publication number
- HRP20130637A2 HRP20130637A2 HRP20130637AA HRP20130637A HRP20130637A2 HR P20130637 A2 HRP20130637 A2 HR P20130637A2 HR P20130637A A HRP20130637A A HR P20130637AA HR P20130637 A HRP20130637 A HR P20130637A HR P20130637 A2 HRP20130637 A2 HR P20130637A2
- Authority
- HR
- Croatia
- Prior art keywords
- rotor
- plates
- stator
- rocker
- permanent magnets
- Prior art date
Links
- 230000007246 mechanism Effects 0.000 claims abstract description 16
- 230000003993 interaction Effects 0.000 claims abstract description 4
- 125000006850 spacer group Chemical group 0.000 claims description 4
- 230000000694 effects Effects 0.000 abstract description 2
- 230000005284 excitation Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Landscapes
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
Izum se odnosi na elektro motor koji radi na principu pretvaranja energije magnetskog polja permanentnih magneta u korisno gibanje. Motor koristi odbojnu interakcijsku silu između dva para permanentnih magneta. Motor s permanentnim magnetima sačinjavaju: stator (A), rotor (B), klackalice (C) i mehanizam (F) za upravljanje klackalicama. Stator (A) obuhvaća: prednju ploču (2), stražnju ploču (3) i unutarnje ploče (4) koje su učvršćene na nosaču (1). Rotor (B) obuhvaća: glavno vratilo (22) na kojemu su učvršćene ploče (25) rotora s permanentnim magnetima (30). Jedan par permanentnih magneta je čvrsto spojen na vanjskom obodu ploče rotora na razmaku od 180o. Po jedan par klackalica (C) su postavljene, jedna nasuprot druge, između unutarnjih ploča statora. Na klackalicama se nalazi drugi par magneta (16) na razmaku od 180o. Okretanjem glavnog vratila okreću se i bregasta vratila (7) s bregovima (8) koji podižu klackalice pri čemu magneti na klackalicama nailaze približno okomito na magnete koji rotiraju na pločama rotora. Na ovaj način, sila kojom magnetsko polje permanentnih magneta sa klackalica djeluje na magnetsko polje permanentnih magneta na pločama rotora pretvara se u trajno kružno gibanje glavnog vratila rotora. Učinak toga je korištenje najjače moguće odbojne sile koja se može pojaviti između dva permanentna magneta. Takvu silu je moguće upotrijebiti kao izvor energije za široku primjenu. Nakon što se motor pokrene nastavlja s radom bez dodatne energije.The invention relates to an electric motor operating on the principle of converting the magnetic field energy of permanent magnets into useful motion. The motor uses a repulsive interaction force between two pairs of permanent magnets. The permanent magnet motor consists of: a stator (A), a rotor (B), a rocker (C) and a rocker control mechanism (F). The stator (A) comprises: a front panel (2), a back panel (3) and internal panels (4) that are secured to the carrier (1). The rotor (B) comprises: a main shaft (22) on which the plates (25) of the permanent magnet rotor (30) are fixed. One pair of permanent magnets is tightly coupled to the outer circumference of the rotor plate at a distance of 180o. One pair of seesaws (C) are positioned opposite each other between the inner stator plates. On the swingers there is a second pair of magnets (16) 180o apart. Turning the main shaft also rotates the camshafts (7) with the cams (8) that raise the rocker arms, whereby the magnets on the rocker arms are approximately perpendicular to the magnets rotating on the rotor plates. In this way, the force exerted by the force of the magnetic field of the permanent magnets on the rocker arms on the magnetic field of the permanent magnets on the rotor plates is transformed into a permanent circular motion of the main rotor shaft. The effect is to use the strongest repulsive force that can occur between two permanent magnets. Such force can be used as a power source for wide application. After starting the engine, it resumes operation without additional energy.
Description
Područje tehnike The field of technology
Izum se odnosi na elektro motor koji radi na principu pretvaranja energije magnetskog polja permanentnih magneta u korisno gibanje. The invention relates to an electric motor that works on the principle of converting the energy of the magnetic field of permanent magnets into useful motion.
Prema Međunarodnoj klasifikaciji patenata (MKP) izum pripada području H – elektrotehnika, potpodručje H02 – proizvodnja, pretvorba električne energije, razred H02N – električni strojevi koji nisu predviđeni na drugom mjestu, skupina 11/00 – generatori ili motori koji nisu drugdje predviđeni odnosno H02K 53/00 u koji spada navodni „perpetuum mobile“ s magnetskim sredstvima. According to the International Patent Classification (IPC), the invention belongs to area H - electrical engineering, subarea H02 - production, conversion of electrical energy, class H02N - electrical machines not provided elsewhere, group 11/00 - generators or motors not provided elsewhere, i.e. H02K 53 /00 which includes the alleged "perpetuum mobile" with magnetic means.
Tehnički problem Technical problem
Danas u praktičnoj primjeni postoji dosta elektro motora koji koriste magnetsku energiju, ali se oni u velikoj mjeri zasnivaju na principu elektro-magnetizma. Ovakvi motori ne mogu, nakon pokretanja, raditi bez dovođenja dodatne energije izvana. Ovi uređaji koriste odbojne sile permanentnih magneta kojima se mogu postići značajne uštede energije. Problem koji je ostao neriješen je motor koji nakon inicijalnog pokretanja nastavlja raditi sam od sebe koristeći pri tome samo energiju permanentnih magneta. Iako bi takav motor radio sam od sebe, on ne bi bio perpetuum mobile, jer bi stupanj iskorištenja magnetske energije bio prilično manji od 1. Today, in practical application, there are quite a few electric motors that use magnetic energy, but they are largely based on the principle of electro-magnetism. Such motors cannot, after starting, work without supplying additional energy from the outside. These devices use the repulsive forces of permanent magnets, which can achieve significant energy savings. The problem that remained unsolved is the motor, which after the initial start-up continues to run on its own, using only the energy of the permanent magnets. Although such a motor would work by itself, it would not be a perpetuum mobile, because the degree of utilization of magnetic energy would be much lower than 1.
Tehnički problem koji se rješava ovim izumom odnosi se na konstrukciju motora koji će nakon inicijalnog pokretanja nastaviti raditi sam od sebe koristeći pri tome samo energiju permanentnih magneta. Magnetsko polje permanentnog magneta je prirodno svojstvo tog materijala koje je prisutno i bez potrebe za dovođenjem energije iz vanjskog izvora. Pretvaranjem sile ovog magnetskog polja u iskoristivo gibanje, moguće je dobiti jeftin i čist izvor energije sa širokom mogućnošću primjene. The technical problem that is solved by this invention relates to the construction of a motor that will continue to work by itself after the initial start-up, using only the energy of permanent magnets. The magnetic field of a permanent magnet is a natural property of that material that is present even without the need to supply energy from an external source. By converting the force of this magnetic field into usable motion, it is possible to obtain a cheap and clean source of energy with a wide range of applications.
Stanje tehnike State of the art
Koliko je autoru poznato, unatoč mnogobrojnim pokušajima, do sada nema tehničkih rješenja kojima bi se energija magnetskog polja permanentnog magneta ekonomično pretvarala u iskoristivo gibanje. As far as the author is aware, despite numerous attempts, there are no technical solutions that would economically convert the energy of the magnetic field of a permanent magnet into usable motion.
Danas postoje polu-permanentni magnetski motori koji nisu čisti magnetski motori nego se koriste i elektromagneti. Uobičajeno se koristi kombinacija permanentnih magneta na rotoru, a elektromagneti se koriste kao pobudni magneti na kućištu. To su tzv. motori bez četkica. Također postoje i čisti permanentni motori koji su uglavnom rotacioni kod kojih su i pobudni magneti i gonjeni magneti uglavnom fiksni na kućištu, odnosno rotoru. Međutim svi dosadašnji pokušaji nisu rezultirali komercijalnom upotrebom. Today, there are semi-permanent magnet motors that are not pure magnetic motors, but electromagnets are also used. A combination of permanent magnets on the rotor is usually used, and electromagnets are used as excitation magnets on the housing. These are the so-called brushless motors. There are also pure permanent motors that are mostly rotary, in which both the excitation magnets and the driven magnets are mostly fixed on the housing, that is, the rotor. However, all previous attempts have not resulted in commercial use.
Bit izuma The essence of invention
Bit izuma je motor s permanentnim magnetima u kojemu se energija magnetskog polja permanentnih magneta pretvara u iskoristivo gibanje rotora. Motor s permanentnim magnetima ima stator, rotor, klackalice i mehanizam za upravljanje klackalicama. Svi dijelovi su smješteni u zajedničko kućište. The essence of the invention is a motor with permanent magnets in which the energy of the magnetic field of the permanent magnets is converted into usable rotor motion. A permanent magnet motor has a stator, a rotor, rocker arms and a rocker arm control mechanism. All parts are placed in a common housing.
Motor s permanentnim magnetima je linearno-rotacioni magnetski motor koji koristi odbojnu interakcijsku silu između dva para permanentnih magneta. Na osovini rotora učvršćena je najmanje jedna ploča rotora koje se okreću između ploča statora. Po jedan par permanentnih magneta učvršćen je, pod kutom od 180o, na vanjskom obodu svake ploče rotora. Motor ima najmanje jednu ploču statora na kojima je, pod kutom od 180o, učvršćen po jedan par linearno pomičnih klackalica s permanentnim magnetima. Okretanjem rotora pobudni magneti na klackalicama nailaze približno okomito na magnete koji rotiraju na pločama rotora. Na ovaj način, sila kojom magnetsko polje permanentnih magneta sa klackalica djeluje na magnetsko polje permanentnih magneta na pločama rotora pretvara se u kružno gibanje rotora. Učinak toga je korištenje najjače moguće odbojne sile koja se može pojaviti između dva permanentna magneta. A permanent magnet motor is a linear-rotational magnetic motor that uses the repulsive interaction force between two pairs of permanent magnets. At least one rotor plate is fixed on the rotor shaft, which rotates between the stator plates. One pair of permanent magnets is fixed, at an angle of 180o, on the outer rim of each rotor plate. The motor has at least one stator plate on which, at an angle of 180o, a pair of linearly moving rockers with permanent magnets is fixed. As the rotor rotates, the excitation magnets on the rocker arms collide approximately perpendicularly with the magnets rotating on the rotor plates. In this way, the force with which the magnetic field of the permanent magnets from the rockers acts on the magnetic field of the permanent magnets on the rotor plates is converted into a circular motion of the rotor. The effect of this is to use the strongest possible repulsive force that can occur between two permanent magnets.
Kratki popis slika A short list of images
Slika 1. prikazuje motor s permanentnim magnetima iz perspektive – bočno lijevo Figure 1 shows a permanent magnet motor from a perspective - left side
Slika 2. prikazuje motor s permanentnim magnetima iz perspektive – bočno desno Figure 2 shows the motor with permanent magnets from a perspective - side right
Slika 3. prikazuje motor s permanentnim magnetima – sprijeda Figure 3 shows a motor with permanent magnets - from the front
Slika 4. prikazuje motor sa Sl.3. – bočno lijevo Figure 4 shows the engine from Figure 3. – lateral left
Slika 5. prikazuje motor sa Sl.3. – bočno desno Figure 5 shows the engine from Figure 3. – lateral right
Slika 6. prikazuje motor s permanentnim magnetima bez poklopca – sprijeda Figure 6 shows the permanent magnet motor without the cover - from the front
Slika 7. prikazuje motor sa Sl.6. – odozgo Figure 7 shows the engine from Figure 6. - from above
Slika 8. prikazuje uvećani detalj E motora sa Sl.6. Figure 8 shows an enlarged detail of the E engine from Figure 6.
Slika 9. prikazuje motor bez poklopca s pogledom na unutarnju ploču statora i mehanizam za upravljanje klackalicama – iz perspektive Figure 9 shows the engine without the cover with a view of the inner stator plate and rocker control mechanism - perspective
Slika 10. prikazuje dio motora s pogledom na unutarnju ploču statora i klackalice s permanentnim magnetima bez ploče rotora - iz perspektive Figure 10 shows part of the motor with a view of the inner stator plate and permanent magnet rockers without the rotor plate - perspective
Slika 11. prikazuje detalj D sa Sl.10. Figure 11 shows detail D from Figure 10.
Slika 12. prikazuje dio motora s pogledom na ploču statora s podignutim klackalicama s permanentnim magnetima iznad permanentnih magneta rotora - iz perspektive Figure 12 shows a section of the motor with a view of the stator plate with the permanent magnet rockers raised above the rotor permanent magnets - perspective
Slika 13. prikazuje dio motora sa Sl.12. u trenutku odbijanja permanentnih magneta statora od permanentnih magneta rotora - iz perspektive Figure 13 shows a part of the engine from Figure 12. at the moment of rejection of the permanent magnets of the stator from the permanent magnets of the rotor - from a perspective
Slika 14. prikazuje klackalicu C - iz perspektive sprijeda Figure 14 shows rocker arm C - from the front perspective
Slika 15. prikazuje klackalicu C sa Sl.14. - iz perspektive straga Figure 15 shows the rocker C from Figure 14. - from the rear perspective
Slika 16. prikazuje bregasto vratilo – iz perspektive Figure 16 shows the camshaft - from a perspective
Slika 17. prikazuje detalj G položaja polova permanentnih magneta sa Sl.13. Figure 17 shows a detail of the G position of the poles of the permanent magnets from Figure 13.
Slika 18. prikazuje ploču rotora s nosačima permanentnih magneta – iz perspektive Figure 18 shows the rotor plate with permanent magnet supports - from a perspective
Slika 19. prikazuje permanentni magnet - iz perspektive Figure 19 shows a permanent magnet - from a perspective
Slika 20. prikazuje rotor s pločama i permanentnim magnetima – iz perspektive Figure 20 shows a rotor with plates and permanent magnets - from a perspective
Slika 21.a), b), c), d), e), f) prikazuju faze rotacije rotora za vrijeme jednog okreta za 360o Figure 21.a), b), c), d), e), f) show the phases of rotor rotation during one 360o turn
Opis jednog od načina izvedbe i funkcioniranja izuma Description of one of the methods of execution and functioning of the invention
Osnova izuma je pretvaranje energije magnetskog polja permanentnih magneta u kružno gibanje glavnog vratila. Magnetsko polje permanentnih magneta na klackalicama i permanentnih magneta na pločama rotora djeluju među sobom tako da se glavno vratilo rotora giba stalno u istom smjeru. Na taj način, energija magnetskog polja pretvara se u kružno gibanje, tj. u mehaničku energiju na glavnom vratilu motora, koju je moguće upotrijebiti kao izvor energije za široku primjenu. The basis of the invention is the conversion of the energy of the magnetic field of permanent magnets into circular motion of the main shaft. The magnetic field of the permanent magnets on the rockers and the permanent magnets on the rotor plates interact with each other so that the main rotor shaft moves constantly in the same direction. In this way, the energy of the magnetic field is converted into circular motion, i.e. into mechanical energy on the main shaft of the motor, which can be used as a source of energy for a wide range of applications.
Motor s permanentnim magnetima sačinjavaju: stator A, mehanizam F za upravljanje klackalicama, klackalice C i rotor B. The permanent magnet motor consists of: stator A, rocker mechanism F, rockers C and rotor B.
Moguće su izvedbe motora s permanentnim magnetima, prema ovom izumu, s jednom ili više unutarnjih ploča statora, jednom ili više ploča rotora i jednim ili više parova klackalica, jednim ili više mehanizama za upravljanje klackalicama. Permanent magnet motor designs, according to this invention, with one or more inner stator plates, one or more rotor plates and one or more rocker pairs, one or more rocker control mechanisms are possible.
Ovaj opis se odnosi na izvedbu motora s permanentnim magnetima koji ima stator sa šest unutarnjih ploča, koji između unutarnjih ploča statora ima jedan par klackalica, koji ima jedan permanentni magnet na svakoj klackalici, koji ima jedan mehanizam za upravljanje klackalicama, koji ima rotor sa šest ploča, koji na svakoj ploči rotora ima dva permanentna magneta. This description relates to an embodiment of a permanent magnet motor having a stator with six inner plates, having one pair of rockers between the inner stator plates, having one permanent magnet on each rocker, having one rocker control mechanism, having a rotor with six plate, which has two permanent magnets on each rotor plate.
Stator A Stator A
Stator A, Sl.6. i 7., obuhvaća: nosač 1 motora, prednju ploču 2, stražnju ploču 3, unutarnje ploče 4, navojne šipke 5, distancere 6 i poklopac 21 motora. Na nosač 1 motora su postavljene prednja ploča 2, unutarnje ploče 4 i stražnja ploča 3. Između ploča su smještene po jedan par klackalica i ploča rotora. Vanjske i unutarnje ploče su povezane navojnim šipkama 5. Na navojne šipke, između ploča, su postavljeni distanceri 6 koji osiguravaju zadani razmak između ploča. Između stražnje ploče 3 i prve do nje unutarnje ploče 4, Sl.8. i 9., smješten je mehanizam F za upravljanje klackalicama. Između unutarnjih ploča 4, Sl.6. i 12., smještene su po jedan par klackalica C. Stator A, Fig. 6. and 7th, includes: motor support 1, front plate 2, rear plate 3, inner plates 4, threaded rods 5, spacers 6 and cover 21 of the motor. The front plate 2, inner plates 4 and rear plate 3 are placed on the motor support 1. Between the plates are placed a pair of rockers and a rotor plate. The outer and inner plates are connected by threaded rods 5. Spacers 6 are placed on the threaded rods, between the plates, which ensure the given distance between the plates. Between the back plate 3 and the first inner plate 4 next to it, Fig.8. and 9., the mechanism F for controlling the rockers is located. Between the inner plates 4, Fig.6. and 12., each has a pair of rocker arms C.
Mehanizam F za upravljanje klackalicama Mechanism F for rocker control
Mehanizam F za upravljanje klackalicama, Sl.9., obuhvaća: bregasta vratila 7, lančanike 10 bregastih vratila, lance 12, natezače 13 lanaca i ležajeve 9. Na svakom bregastom vratilu 7, Sl.16., izvedeno je po šest bregova 8. Bregasta vratila 7, Sl.9., prolaze kroz sve unutarnje ploče 4 statora i okreću se u ležajevima 9 u prednjoj ploči 2 i stražnjoj ploči 3 statora, Sl.7. Natezači 13 lanaca se okreću u stražnjoj ploči 3. Bregovi 8, na bregastom vratilu 7, su međusobno fazno zakrenuti za 60o, što je dvostruko više nego ploče rotora B. Ovo iz razloga što tijelo 15, s permanentnim magnetom 16, klackalice C, djeluje na oba permanentna magneta 30 na ploči 25 rotora. Za jedan okret ploče rotora, tijelo jedne klackalice izvrši dva podizanja i spuštanja. Mechanism F for rocker arm control, Fig. 9, includes: camshafts 7, camshaft sprockets 10, chains 12, chain tensioners 13 and bearings 9. On each camshaft 7, Fig. 16, there are six cams 8. The cam shafts 7, Fig. 9, pass through all the inner plates 4 of the stator and turn in the bearings 9 in the front plate 2 and the back plate 3 of the stator, Fig. 7. The tensioners 13 of the chains rotate in the back plate 3. The cams 8, on the camshaft 7, are mutually phase-rotated by 60o, which is twice as much as the rotor plates B. This is because the body 15, with the permanent magnet 16, of the rocker arm C, acts on both permanent magnets 30 on the plate 25 of the rotor. For one revolution of the rotor plate, the body of one rocker makes two lifts and falls.
Mehanizam F za upravljanje klackalicama, funkcionira tako da se kod pokretanja motora, okretanjem zamašnjaka 23, okreće glavno vratilo 22 rotora B na kojemu se nalazi pogonski lančanik 24. Pogonski lančanik okreće lance 12. Lanci okreću lančanike 10 na bregastim vratilima 7. Pri tome bregovi 8 podižu, preko valjčića 18, Sl.14., tijela 15 klackalica, koja rotiraju oko osovina 17, Sl.12. i 13. Opruge 14, Sl.10. i 11., nakon prolaza brijega 8, vraćaju tijelo klackalice u početni položaj. The mechanism F for controlling the rocker arms works so that when the engine is started, by turning the flywheel 23, the main shaft 22 of the rotor B, on which the drive sprocket 24 is located, turns. The drive sprocket turns the chains 12. The chains turn the sprockets 10 on the camshafts 7. At the same time, the cams 8 raise, via rollers 18, Fig. 14, rocker bodies 15, which rotate around axles 17, Fig. 12. and 13. Springs 14, Fig. 10. and 11., after passing hill 8, they return the body of the rocker to its initial position.
Klackalice C Rockers C
Klackalica C, Sl.14. i 15., obuhvaća: tijelo 15 klackalice, držač 20 permanentnog magneta 16, permanentni magnet 16, osovinu 17, valjčić 18, povratnu oprugu 14 i držač 19 opruge. Na jednom kraju tijela 15 klackalice izveden je držač 20 s permanentnim magnetom 16, a na drugom kraju tijela klackalice izveden je otvor 15a, valjčić 18 i držač 19 za oprugu 14. Tijelo 15 klackalice je u blagom luku savijeno tako da prati vanjski obod ploče 25 rotora. Tijelo klackalice se zakreće, neovisno jedna od druge, oko osovine 17, Sl.12. i 13., koja prolazi kroz otvor 15a na tijelu klackalice. Osovina 17 prolazi kroz sve unutarnje ploče 4 statora, Sl.9. Po jedan par klackalica je smješten, prema Sl.10., 12. i 13., između unutarnjih ploča 4 na statoru, tako da je jedna klackalica nasuprot druge. Podizanje klackalica obavljaju bregasta vratila 7 preko bregova 8. Povrat klackalica u početni položaj obavljaju opruge 14 koje su postavljene između tijela 15 klackalice i unutarnje ploče 4 statora, Sl.11. i detalj D sa Sl.10. Rocker C, Fig. 14. and 15., includes: rocker body 15, holder 20 of permanent magnet 16, permanent magnet 16, shaft 17, roller 18, return spring 14 and holder 19 of the spring. At one end of the rocker body 15, there is a holder 20 with a permanent magnet 16, and at the other end of the rocker body there is an opening 15a, a roller 18 and a holder 19 for the spring 14. The rocker body 15 is bent in a slight arc so that it follows the outer edge of the plate 25 rotor. The rocker body rotates, independently of each other, around axis 17, Fig. 12. and 13., which passes through the opening 15a on the body of the rocker. Shaft 17 passes through all inner plates 4 of the stator, Fig.9. One pair of rockers is placed, according to Fig. 10, 12 and 13, between the inner plates 4 on the stator, so that one rocker is opposite the other. The lifting of the rockers is performed by the camshafts 7 via the cams 8. The return of the rockers to the initial position is performed by the springs 14, which are placed between the body 15 of the rocker and the inner plate 4 of the stator, Fig. 11. and detail D from Fig. 10.
Rotor B Rotor B
Rotor B, prema Sl.20., obuhvaća: glavno vratilo 22, ležajeve 11 glavnog vratila, ploče 25 rotora, glavčine 26, konusne stezne ljuske 27, vijke 28. Sastavni dio rotora su i pogonski lančanik 24 i zamašnjak 23 s remenicom 31, Sl.1. i 6. Na jednoj strani svake ploče 25 rotora, Sl.18., učvršćeni su nosači 29 za permanentne magnete 30 rotora, Sl.19. Glavno vratilo rotora okreće se u ležajevima 11 koji su učvršćeni na vanjskim plohama prednje ploče 2 i stražnje ploče 3 statora. Nosači 29 magneta su učvršćeni bliže vanjskom obodu, jedan nasuprot drugog, pod kutom od 180o. Na glavno vratilo 22, Sl.20., montirano je šest ploča 25 rotora, međusobno fazno pomaknutih jedne u odnosu na drugu za 30o. Na taj način se, sa šest ploča rotora, sa po dva permanentna magneta, zatvorio puni krug od 360 stupnjeva. Između ploča rotora je ostavljen razmak koji omogućava nesmetan prolaz tijela 15 klackalica u toku okretanja glavnog vratila. Ploče rotora su učvršćene na glavno vratilo pomoću konusne stezne ljuske 27 i vijaka 28. Rotor B, according to Fig. 20, includes: main shaft 22, main shaft bearings 11, rotor plates 25, hubs 26, conical clamping shells 27, screws 28. The drive sprocket 24 and flywheel 23 with pulley 31 are part of the rotor. Fig. 1. and 6. On one side of each plate 25 of the rotor, Fig. 18, supports 29 for permanent magnets 30 of the rotor are fixed, Fig. 19. The main shaft of the rotor rotates in bearings 11 which are fixed on the outer surfaces of the front plate 2 and the back plate 3 of the stator. The 29 magnet supports are fixed closer to the outer rim, facing each other, at an angle of 180o. On the main shaft 22, Fig. 20., six rotor plates 25 are mounted, mutually phase-shifted relative to each other by 30o. In this way, with six rotor plates, with two permanent magnets each, a full circle of 360 degrees was closed. A space is left between the rotor plates, which enables the smooth passage of the rocker body 15 during the rotation of the main shaft. The rotor plates are fixed to the main shaft by means of a conical clamping shell 27 and screws 28.
Način funkcioniranja izuma Mode of operation of the invention
Motor s permanentnim magnetima radi na principu odbojne sile između permanentnih magneta 30, na pločama 25 rotora B, i permanentnih magneta 16, na tijelima 15 klackalica C. Istovremeno djeluju po dvije klackalice s permanentnim magnetima na jednu ploču rotora s dva permanentna magneta. Jedna klackalica djeluje s gornje strane ploče rotora, a druga s donje strane ploče rotora. Nakon djelovanja odbojne sile među permanentnim magnetima 16 i 30, jednog para klackalica i jedne ploče rotora, rotor se zakreće, a nakon toga, kada se rotor zakrene za 30 stupnjeva, ponovo dolazi do djelovanja odbojnih sila među magnetima na sljedećoj ploči rotora i sljedećem paru klackalica, i tako sve dok se ne izredaju sve klackalice i sve ploče rotora. Nakon toga ponovo dolazi u zahvat prva ploča rotora i prvi par klackalica. The motor with permanent magnets works on the principle of repulsive force between permanent magnets 30, on plates 25 of rotor B, and permanent magnets 16, on bodies 15 of rockers C. At the same time, two rockers with permanent magnets act on one rotor plate with two permanent magnets. One rocker arm acts on the upper side of the rotor plate, and the other on the lower side of the rotor plate. After the action of the repulsive force between the permanent magnets 16 and 30, one pair of rockers and one rotor plate, the rotor rotates, and after that, when the rotor rotates by 30 degrees, the action of repulsive forces occurs again between the magnets on the next rotor plate and the next pair rocker, and so on until all rockers and rotor plates are made. After that, the first rotor plate and the first pair of rockers come into play again.
Djelovanjem bregastog vratila 7 tijela klackalice C se zakreću oko osovina 17, odnosno tijelo 15 klackalice se podiže i spušta za nekoliko stupnjeva. Podizanje i spuštanje tijela klackalice je izvedeno zbog toga što permanentni magnet 16 na tijelu klackalice, prilazi s čela permanentnom magnetu 30 na ploči rotora 25. Zbog toga je potrebno podignuti tijelo klackalice prilikom ponovnog nailaska permanentnog magneta na ploči rotora koji sada prilazi sa suprotne strane permanentnog magneta na klackalici. Odmah, nakon što permanentni magnet na ploči rotora prođe ispod magneta na tijelu klackalice, započinje spuštanje tijela klackalice. Spuštanje se odvija skoro trenutno tako da permanentni magnet koji se nalazi na tijelu klackalice može doći vrlo blizu permanentnog magneta na ploči rotora, i to čeonom površinom. Istovremeno dolazi do odbojnih sila između permanentnih magneta istog polariteta. Podizanje i spuštanje tijela klackalica odvija se u točno određenom trenutku čime upravljaju bregovi 8 na bregastim vratilima. Due to the action of the camshaft 7, the rocker body C is rotated around the axis 17, that is, the rocker body 15 is raised and lowered by several degrees. The raising and lowering of the rocker body is performed because the permanent magnet 16 on the rocker body approaches the permanent magnet 30 on the rotor plate 25 from the front. For this reason, it is necessary to raise the rocker body when the permanent magnet on the rotor plate approaches again from the opposite side of the permanent magnet on the seesaw. Immediately after the permanent magnet on the rotor plate passes under the magnet on the rocker body, the lowering of the rocker body begins. The lowering takes place almost instantaneously so that the permanent magnet located on the rocker body can come very close to the permanent magnet on the rotor plate, with the frontal surface. At the same time, repulsive forces occur between permanent magnets of the same polarity. The raising and lowering of the rocker body takes place at a precise moment, which is controlled by the cams 8 on the camshafts.
Motor s permanentnim magnetima ima dva bregasta vratila 7 sa po šest bregova 8. Svaki brijeg upravlja s podizanjem i spuštanjem jedne klackalice C. Bregovi na bregastim vratilima su raspoređeni tako da omogućuju točnu interakciju između klackalica i ploča rotora. The permanent magnet engine has two camshafts 7 with six cams 8 each. Each cam controls the raising and lowering of one rocker arm C. The cams on the camshafts are arranged to allow for accurate interaction between the rocker arms and the rotor plates.
Za pokretanje bregastih vratila koristi se mehanička energija samog motora, odnosno koristi se okretni moment glavnog vratila 22 rotora B koji se prenosi na bregasta vratila preko pogonskog lančanika 24 i lanaca 12. To start the camshafts, the mechanical energy of the engine itself is used, that is, the torque of the main shaft 22 of the rotor B is used, which is transmitted to the camshafts via the drive sprocket 24 and the chains 12.
Na Sl.21.a), b), c), d), e), f), prikazane su, u presjeku, faze rotacije rotora B za vrijeme jednog okreta za 360o. Fig. 21.a), b), c), d), e), f) show, in section, the phases of rotation of rotor B during one 360o turn.
Sl.21.a) prikazuje fazu na kojoj su tijela klackalica C u spuštenom položaju kod kojeg dolazi do odbojne sile između dva para permanentnih magneta 16 na tijelu klackalice i permanentnih magneta 30 na pločama rotora B, što uzrokuje pokretanje rotora u smjeru strelice r. Na Sl.17. prikazan je djelomični presjek G sa Sl.13. na kojem je prikazan jedan par permanentnih magneta 16 s tijela klackalice i permanentnih magneta 30 ploče rotora koji su istoimenim polovima S okrenuti jedan prema drugom uslijed čega između njih dolazi do odbojne sile. Fig. 21.a) shows the phase in which the rocker bodies C are in a lowered position, where a repulsive force occurs between two pairs of permanent magnets 16 on the rocker body and permanent magnets 30 on the rotor plates B, which causes the rotor to move in the direction of the arrow r. On Fig. 17. partial section G from Fig. 13 is shown. which shows a pair of permanent magnets 16 from the body of the rocker and permanent magnets 30 of the rotor plate, whose poles S of the same name are facing each other, as a result of which there is a repulsive force between them.
Sl.21.b) prikazuje fazu na kojoj je ploča rotora B pomaknuta u odnosu na onu iz prethodne slike za 30o i giba se u označenom smjeru r. Tijela klackalica C ostaju u spuštenom položaju. Fig. 21.b) shows the phase in which the rotor plate B is moved in relation to the one from the previous picture by 30o and moves in the indicated direction r. The rocker bodies C remain in the lowered position.
Sl.21.c) prikazuje fazu na kojoj je ploča rotora B pomaknuta u odnosu na onu iz prethodne slike za 30o i giba se u označenom smjeru r. Tijela klackalica C ostaju u spuštenom položaju. Fig. 21.c) shows the phase in which the rotor plate B is moved in relation to the one from the previous picture by 30o and moves in the indicated direction r. The rocker bodies C remain in the lowered position.
Sl.21.d) prikazuje fazu u kojoj je ploča rotora B pomaknuta u odnosu na onu iz prethodne slike za 30o i giba se u označenom smjeru r. Tijela klackalica C ostaju u spuštenom položaju, ali u tom trenutku na valjčić 18 na tijelu klackalica C nailazi brijeg 8 bregastog vratila 7 i započinje podizanje tijela klackalica u smjeru y. Fig. 21.d) shows the phase in which the rotor plate B is moved in relation to the one from the previous picture by 30o and moves in the indicated direction r. The rocker bodies C remain in the lowered position, but at that moment on the roller 18 on the rocker body C meets the cam 8 of the camshaft 7 and starts lifting the rocker body in the y direction.
Sl.21.e) prikazuje fazu u kojoj je ploča rotora B pomaknuta u odnosu na onu iz prethodne slike za 30o i giba se u označenom smjeru r. Tijela klackalica C su podignuta na pola svoje konačne visine u smjeru y. Fig. 21.e) shows the phase in which the rotor plate B is moved in relation to the one from the previous picture by 30o and moves in the indicated direction r. The rocker bodies C are raised to half their final height in the y direction.
Sl.21.f) prikazuje fazu u kojoj je ploča rotora B pomaknuta u odnosu na onu iz prethodne slike za 30o i giba se u označenom smjeru r. Tijela klackalica C su maksimalno podignuta u smjeru y i omogućavaju nesmetan prolaz ploče 25 rotora s magnetima 30 ispod magneta 16 na tijelima klackalica. Nakon toga ponovno počinje postupak rotacije kao na Sl.21.a). Fig. 21.f) shows the phase in which the rotor plate B is moved in relation to the one from the previous picture by 30o and moves in the indicated direction r. The rocker bodies C are maximally raised in the y direction and enable the smooth passage of the rotor plate 25 with magnets 30 under the magnet 16 on the rocker bodies. After that, the rotation procedure starts again as in Fig. 21.a).
Za pokretanje motora s permanentnim magnetima potreban je početni zamah koji se dobiva putem zamašnjaka 23. Zamašnjak je montiran na glavnom vratilu 22 rotora i na sebi ima jednu remenicu 31 s utorom za uže. Nakon inicijalnog potezanja užeta, koje se namota na remenicu, motor se pokreće. Jednom kada se motor pokrene on nastavlja sa radom koristeći samo energiju permanentnih magneta. To start the motor with permanent magnets, an initial momentum is required, which is obtained through the flywheel 23. The flywheel is mounted on the main shaft 22 of the rotor and has one pulley 31 with a slot for the rope. After the initial pulling of the rope, which is wound on the pulley, the engine starts. Once the motor is started, it continues to run using only the energy of the permanent magnets.
Još jedna velika prednost ovog izuma je i ta što je mehanizam koji upravlja pobudnim magnetima samo-pobudan, što znači da koristi vlastitu energiju, dakle nema dodatnih izvora energije jednom kada se ovaj motor pokrene. Another great advantage of this invention is that the mechanism that controls the excitation magnets is self-excited, which means that it uses its own energy, so there are no additional sources of energy once this motor is started.
POPIS SLOVNIH I BROJČANIH REFERENTNIH OZNAKA U OPISU I SLIKAMA LIST OF LETTER AND NUMERICAL REFERENCES IN THE DESCRIPTION AND PICTURES
A – stator A – stator
1 – nosač motora 1 – engine mount
2 – prednja ploča statora 2 – stator front panel
3 – stražnja ploča statora 3 – back plate of the stator
4 – unutarnje ploče statora 4 – internal plates of the stator
5 – navojna šipka 5 – threaded rod
6 – distanceri 6 – spacers
21 – poklopac motora 21 – engine cover
F – mehanizam za upravljanje klackalicama F – rocker control mechanism
7 – bregasta vratila 7 – camshafts
8 – bregovi 8 – hills
9 – ležajevi bregastih vratila 9 – camshaft bearings
10 – lančanici bregastih vratila 10 – camshaft sprockets
12 – lanci 12 – chains
13 – natezači lanaca 13 – chain tensioners
C – klackalice C – rockers
14 – povratne opruge 14 – return springs
15 – tijelo klackalice 15 – rocker body
15a – otvor na tijelu klackalice 15a – opening on the body of the rocker
16 – permanentni magneti klackalica 16 – permanent magnets of rockers
17 – osovine klackalica 17 – rocker shafts
18 – valjčići 18 – rollers
19 – držači povratnih opruga na klackalicama 19 – holders of return springs on rockers
20 – držači permanentnih magneta na klackalicama 20 – holders of permanent magnets on rockers
B – rotor B – rotor
22 – glavno vratilo 22 – main shaft
11 – ležajevi glavnog vratila 11 – main shaft bearings
23 – zamašnjak 23 – flywheel
24 – pogonski lančanik 24 – drive sprocket
25 – ploče rotora 25 – rotor plates
26 – glavčina ploče rotora 26 – rotor plate hub
27 – konusna stezna ljuska 27 – conical clamping shell
28 – vijci za stezanje ljuski 28 – screws for clamping the shells
29 – nosači magneta na ploči rotora 29 – magnet supports on the rotor plate
30 – permanentni magneti rotora 30 – permanent magnets of the rotor
31 – remenica 31 – pulley
D – uvećani detalj sa Sl.10. D – enlarged detail from Fig. 10.
E – uvećani detalj sa Sl.6. E – enlarged detail from Fig. 6.
G – uvećani detalj sa Sl.13. G – enlarged detail from Fig. 13.
S i N – magnetski polovi S and N – magnetic poles
r – smjer okretanja rotora r – direction of rotation of the rotor
y – smjer podizanja klackalica y – direction of rocker lift
Primjena izuma Application of the invention
Moguća primjena ovog izuma je vrlo široka u svim granama industrije. Mehaničku energiju koju stvara motor s permanentnim magnetima moguće je direktno koristiti za pogon raznih strojeva, vozila i plovila. Motor s permanentnim magnetima je prvenstveno namijenjen kao pokretač generatora istosmjerne ili izmjenične struje, te se kao takav može koristiti i kao pokretač generatora za pogon električnog automobila ili bilo kojeg drugog stroja koji koristi elektro motor kao glavni pogon. The possible application of this invention is very wide in all branches of industry. The mechanical energy generated by the motor with permanent magnets can be directly used to drive various machines, vehicles and vessels. The motor with permanent magnets is primarily intended as a driver of a direct current or alternating current generator, and as such it can also be used as a driver of a generator to drive an electric car or any other machine that uses an electric motor as the main drive.
Za izradu pojedinih dijelova motora s permanentnim magnetima treba koristiti lagane nemagnetične materijale. Zbog što veće iskoristivosti permanentnih magneta potrebno je maksimalno reducirati mase svih pokretnih dijelova motora, što podrazumijeva lake nemagnetične metale kao aluminij i titan, ali i plastične mase kao poliamid, polietilen i druge. Light non-magnetic materials should be used for the manufacture of individual parts of motors with permanent magnets. Due to the maximum utilization of permanent magnets, it is necessary to reduce the mass of all moving parts of the engine as much as possible, which includes light non-magnetic metals such as aluminum and titanium, but also plastics such as polyamide, polyethylene and others.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
HRP20130637AA HRPK20130637B3 (en) | 2013-07-05 | 2013-07-05 | Motor with permanent magnets |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
HRP20130637AA HRPK20130637B3 (en) | 2013-07-05 | 2013-07-05 | Motor with permanent magnets |
Publications (2)
Publication Number | Publication Date |
---|---|
HRP20130637A2 true HRP20130637A2 (en) | 2015-01-16 |
HRPK20130637B3 HRPK20130637B3 (en) | 2016-04-08 |
Family
ID=52275015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
HRP20130637AA HRPK20130637B3 (en) | 2013-07-05 | 2013-07-05 | Motor with permanent magnets |
Country Status (1)
Country | Link |
---|---|
HR (1) | HRPK20130637B3 (en) |
-
2013
- 2013-07-05 HR HRP20130637AA patent/HRPK20130637B3/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
HRPK20130637B3 (en) | 2016-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10340768B2 (en) | Flywheel energy storage device with induction torque transfer | |
KR100940693B1 (en) | Flywheel generator | |
KR100816421B1 (en) | Magnetic force rotating device | |
KR101606829B1 (en) | Electric motor, applying permanent magnet | |
CN109923758B (en) | Magnet motor with electromagnetic drive | |
US20070222309A1 (en) | High efficiency magnet motor | |
US20120280588A1 (en) | Magnetic rotational device | |
US20100270885A1 (en) | Magnetic driven motor for generating torque and producing energy | |
US9577500B2 (en) | Rotary continuous permanent magnet motor | |
RU2688203C1 (en) | Electromagnetic motor with self-exciting by windings of anchors | |
HRP20130637A2 (en) | Motor with permanent magnets | |
WO2011071000A1 (en) | Magnetic engine | |
JP4397417B2 (en) | Rotating mechanism | |
JP5847777B2 (en) | Power rotating device and generator | |
KR20100019270A (en) | Rotational apparatus using the magnet and generator using the same | |
WO2013021439A1 (en) | Magnetically driven blower or electricity generator | |
RajaRajeswari et al. | Zero point energy conversion for self-sustained generation | |
JP2004336880A (en) | Magnetic flux amount variable magnet-type rotor | |
JP2011097815A (en) | Magnetic driving engine | |
KR20230154635A (en) | Power generating device | |
KR20230155235A (en) | Power generating device | |
CN106849613A (en) | Permanent magnetic power machine | |
JP2014003775A (en) | Magnetic force power unit | |
TW202046603A (en) | Ring-typed kinetic energy generating device using cogging energy being characterized by effectively improving output power, achieving energy conversion efficiency and realizing economic benefit of energy saving | |
KR100594884B1 (en) | Srm motor of inner rotor form |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A1OB | Publication of a patent application | ||
PKB1 | Consensual patent granted | ||
ODRP | Renewal fee for the maintenance of a patent |
Payment date: 20190703 Year of fee payment: 7 |
|
ODRP | Renewal fee for the maintenance of a patent |
Payment date: 20200617 Year of fee payment: 8 |
|
ODRP | Renewal fee for the maintenance of a patent |
Payment date: 20210617 Year of fee payment: 9 |
|
ODRP | Renewal fee for the maintenance of a patent |
Payment date: 20220614 Year of fee payment: 10 |
|
PK10 | Patent expired after termination of 10 years for consensual patent |
Effective date: 20230705 |