HRP20100273A2 - Hydraulic axial piston control valve and its application - Google Patents

Hydraulic axial piston control valve and its application Download PDF

Info

Publication number
HRP20100273A2
HRP20100273A2 HR20100273A HRP20100273A HRP20100273A2 HR P20100273 A2 HRP20100273 A2 HR P20100273A2 HR 20100273 A HR20100273 A HR 20100273A HR P20100273 A HRP20100273 A HR P20100273A HR P20100273 A2 HRP20100273 A2 HR P20100273A2
Authority
HR
Croatia
Prior art keywords
valve
hydraulic
control
fluid
piston
Prior art date
Application number
HR20100273A
Other languages
Croatian (hr)
Inventor
Canjuga Slavko
Original Assignee
HYDROMAT-IN�ENJERING d.o.o.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HYDROMAT-IN�ENJERING d.o.o. filed Critical HYDROMAT-IN�ENJERING d.o.o.
Priority to HR20100273A priority Critical patent/HRP20100273A2/en
Priority to RSP20130388 priority patent/RS52958B/en
Priority to EP20100728876 priority patent/EP2433037B1/en
Priority to PCT/HR2010/000014 priority patent/WO2010133902A2/en
Priority to US13/321,181 priority patent/US8931504B2/en
Publication of HRP20100273A2 publication Critical patent/HRP20100273A2/en
Priority to HRP20130875AT priority patent/HRP20130875T1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/12Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with streamlined valve member around which the fluid flows when the valve is opened
    • F16K1/126Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with streamlined valve member around which the fluid flows when the valve is opened actuated by fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/122Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston
    • F16K31/1221Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston one side of the piston being spring-loaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0025Electrical or magnetic means
    • F16K37/0033Electrical or magnetic means using a permanent magnet, e.g. in combination with a reed relays

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Actuator (AREA)

Abstract

Predmetni izum odnosi se na hidraulički aksijalno klipni regulacijski ventil s linearnim davačem položaja koji se sastoji od tijela ventila (1) i središnjeg dijela (2) oko kojeg opstrujava fluid u otvorenom stanju ventila, hidrauličnog cilindra (3) s klipom (4) i klipnjačom (5) za koju je čvrsto vezan regulacijski klip (12) ventila. Linearni davač položaja (8) smješten je u hidraulični cilindar (3) i u električnoj verziji izuma koristi se davač sa magnetostrikcijskim valovodom (20). Predmetni izum odnosi se i na korištenje linearnog odziva takvog ventila za regulacijsku svrhu i to sa različitim sredstvima pogona; kao npr. elektro-hidraulični pogon, pneumatski pogon ili autonomni pogon koji koristi energiju fluida koji struji u cjevovodu.The present invention relates to a hydraulic axial piston control valve with a linear position transmitter consisting of a valve body (1) and a central part (2) around which the fluid flows in the open state of the valve, a hydraulic cylinder (3) with a piston (4) and a connecting rod (5) to which the regulating piston (12) of the valve is firmly attached. The linear position sensor (8) is placed in the hydraulic cylinder (3) and in the electric version of the invention, a sensor with a magnetostrictive waveguide (20) is used. The subject invention also relates to the use of the linear response of such a valve for regulation purposes and with different means of drive; such as electro-hydraulic drive, pneumatic drive or autonomous drive that uses the energy of the fluid flowing in the pipeline.

Description

Područje tehnike The field of technology

Predmetni izuma odnosi se na hidraulički aksijalno klipni regulacijski ventil. Taj izum pripada području tehnike ventila kod kojeg barem jedna komponenta gibanja dijela ventila koji sudjeluje u otvaranju ili zatvaranju ventila je okomita na površinu zatvaranja, te gdje se spomenuti dio ventila smješta u glavnu struju toka fluida na način da spomenuti fluid opstrujava rečeni regulacijski dio dok je ventil otvoren. The subject invention relates to a hydraulic axial piston control valve. This invention belongs to the field of valve technology in which at least one component of the movement of the valve part that participates in opening or closing the valve is perpendicular to the closing surface, and where said valve part is placed in the main current of the fluid flow in such a way that said fluid flows through said regulating part while valve open.

Predmetni izum odnosi se i na primjenu takvog ventila na način da se istim upravlja sa ili bez vanjskog energetskog izvora. The subject invention also relates to the application of such a valve in such a way that it is controlled with or without an external energy source.

Tehnički problem Technical problem

Hidraulički aksijalno klipni regulacijski ventili koriste se u sustavima gdje se javljaju velike razlike tlakova i veliki protoci koje treba usklađivati prema potrebama potrošača, a često se ugrađuju i na vrlo nepristupačna mjesta. Hydraulic axial piston control valves are used in systems where there are large pressure differences and large flows that need to be adjusted according to the needs of consumers, and they are often installed in very inaccessible places.

Za klipni regulacijski ventil nužno je da se cijelosti može inkorporirati u cjevovod na bilo kojem položaju i mjestu. Ovisno o mjestu ugradnje i regulacijskom zahtjevu, ventil pored pouzdanosti mora osiguravati točnost, brzinu, linearnost i ponovljivost formiranja protoka fluida kroz ventil. Od posebne je važnosti da konstrukcija ventila bude takva da se izbjegnu: oštećenja kavitacijske prirode, buka pri radu i vibracije, a sam ventil treba biti otporan na hidraulične udare u sustavu. For a piston control valve, it is necessary that it can be completely incorporated into the pipeline at any position and location. Depending on the place of installation and regulatory requirements, the valve, in addition to reliability, must ensure accuracy, speed, linearity and repeatability of the formation of fluid flow through the valve. It is of particular importance that the construction of the valve should be such as to avoid: damage of a cavitation nature, noise during operation and vibrations, and the valve itself should be resistant to hydraulic shocks in the system.

Osnovni tehnički problem koji se rješava predmetnim izumom je pouzdano detektiranje i dojavljivanje otvorenosti ventila, točnije položaja regulacijskog klipa regulacijskog ventila, na linearan način. The basic technical problem that is solved by the subject invention is the reliable detection and reporting of valve opening, more precisely the position of the control piston of the control valve, in a linear manner.

Drugi tehnički problem koji se rješava predmetnim izumom odnosi se na korištenje linearnog odziva takvog ventila za regulacijsku svrhu i to sa različitim sredstvima pogona; kao npr. elektro-hidraulični pogon, pneumatski pogon ili autonomni pogon koji koristi energiju fluida koji struji u cjevovodu. Detektiranje otvorenosti ventila mora biti pouzdano i brzo te po mogućnosti linearno. Another technical problem that is solved by the present invention relates to the use of the linear response of such a valve for regulation purposes with different means of drive; such as electro-hydraulic drive, pneumatic drive or autonomous drive that uses the energy of the fluid flowing in the pipeline. Detecting valve opening must be reliable and fast and preferably linear.

Treći tehnički problem koji se rješava predmetnim izumom odnosi se na korištenje ventila prema izumu u tzv. autonomnom pogonu i u slučaju transportu prljavih i agresivnih fluida kao što je npr. oborinska, kanalizacijska ili morska voda, a bez utjecaja takvih fluida na pouzdano upravljanje. The third technical problem that is solved by the present invention relates to the use of the valve according to the invention in the so-called autonomous drive and in the case of transport of dirty and aggressive fluids such as rain, sewage or sea water, without the influence of such fluids on reliable control.

Stanje tehnike State of the art

Stanje tehnike aksijalno-klipnih regulacijskih ventila opisanih u patentnoj literaturi vrlo je bogato. Patent objavljen kao GB532848 (R.A. Blakebourgh i F. A. Klouman) iz 1939. godine poučava o konstrukciji aksijalno-klipnog ventila koji se ugrađuje u struju protoka fluida, kod kojeg se regulacija protoka vrši klipom koji izlazi iz kućišta te koji svojim dijametrom faktično smanjuje poprečni presjek kroz koji fluid prolazi. Sam klip pomiče se mehaničkim zupčastim prijenosom. Osnovna razlika u odnosu na predmetni izum je način aktuacije klipa ventila. U predmetnom izumu aktuacija regulacijskog klipa je hidraulička, a u ovom dokumentu stanja tehnike mehanička. Također, nema naznaka o mogućnosti saznavanja točnog položaja klipa u ovom izumu iz stanja tehnike - što samo rješenje čini nepodesnim u auto-regulacijske svrhe. Brzina regulacije radi korištene mehanike je spora, a sigurnosni sustav (npr. automatsko zatvaranje/otvaranje) ne postoji. The state of the art of axial-piston control valves described in the patent literature is very rich. The patent published as GB532848 (R.A. Blakebourgh and F.A. Klouman) from 1939 teaches the construction of an axial-piston valve that is installed in the stream of fluid flow, where the flow regulation is done by a piston that comes out of the housing and that actually reduces the cross-section through its diameter which fluid passes. The piston itself is moved by a mechanical gear transmission. The basic difference compared to the present invention is the actuation method of the valve piston. In the invention in question, the actuation of the regulating piston is hydraulic, and in this state-of-the-art document it is mechanical. Also, there is no indication of the possibility of knowing the exact position of the piston in this invention from the state of the art - which makes the solution itself unsuitable for auto-regulation purposes. The regulation speed is slow due to the mechanics used, and the safety system (eg automatic closing/opening) does not exist.

Tehničko rješenje opisano u njemačkoj prijavi patenta DE3829726 (J.E.H. Waldenmaier) iz godine 1988. pokazuje upotrebu aksijalno-klipnog regulacijskog ventila u postupku mehaničke regulacije protoka fluida. Naime, regulacijom povratne veze pomoću tlaka fluida u cjevovodu pokreće se vanjski mehanizam koji pomiče položaj klipa unutar ventila na čisto mehanički način - pomoću koljenastog vratila. Spomenuti sustav iz stanja tehnike ima relativnu reproducibilnost ponašanja, a pokretanje samog klipa ventila na čisto mehanički način čini ovo rješenje, za razliku od predmetnog izuma, kompliciranijim za upotrebu i održavanje na rečenim teškim mjestima za ugradnju. The technical solution described in the German patent application DE3829726 (J.E.H. Waldenmaier) from 1988 shows the use of an axial-piston control valve in the process of mechanical fluid flow regulation. Namely, by regulating the feedback using the pressure of the fluid in the pipeline, an external mechanism is started that moves the position of the piston inside the valve in a purely mechanical way - by means of the crankshaft. The mentioned state-of-the-art system has a relative reproducibility of behavior, and the actuation of the valve piston itself in a purely mechanical way makes this solution, unlike the subject invention, more complicated for use and maintenance in said difficult places for installation.

Dokument objavljen kao patent US 4,681,130 (AR-KAL Plastic Products) iz 1986. godine poučava o konstrukciji aksijalno-klipnog ventila koji se ugrađuje u struju protoka fluida i kojem se regulacija protoka regulira klipom koji se produžuje ili skraćuje iz kućišta koje opstrujava fluid. Regulacija položaja vrši se hidrauličkim priključnim vodovima i cijeli ventil po svojim dimenzijama odgovara dimenziji cjevovoda u koji se ugrađuje. To rješenje je, prema navodima izumitelja, posebno pogodno u slučajevima kad se u sustavu javljaju hidraulični udari. Ono se razlikuje od predmetnog izuma u djelu konstrukcije hidraulične aktivacije i načina „izvlačenja“ regulacijskog klipa, kao i po odsustvu sigurnosnog sustava. Nadalje, diskutirano tehničko rješenje nema ugrađen davač pozicije klipa pa nije pogodno za korištenje u sustavu automatske regulacije toka fluida s povratnom vezom. The document published as patent US 4,681,130 (AR-KAL Plastic Products) from 1986 teaches the construction of an axial-piston valve that is installed in a stream of fluid flow and whose flow regulation is regulated by a piston that is extended or shortened from a housing that obstructs the fluid. The position is regulated by hydraulic connection lines and the entire valve's dimensions correspond to the dimensions of the pipeline in which it is installed. According to the inventor, this solution is particularly suitable in cases where hydraulic shocks occur in the system. It differs from the subject invention in terms of the construction of the hydraulic activation and the method of "pulling out" the regulating piston, as well as in the absence of a safety system. Furthermore, the discussed technical solution does not have a built-in piston position sensor, so it is not suitable for use in an automatic fluid flow control system with a feedback connection.

Međunarodna prijava patenta PCT/IL96/00109 (TAVOR, Elhanan) iz 1996. godine usvojena i objavljena kao dva EP patenta EP0854992B1 i EP1205697B1 poučava o konstrukcijskom rješenju koje je najbliže rješenju danom prema predmetnom izumu. Regulacija položaja izvlačenja klipa iz dijela kojeg opstrujava fluid vrši se hidraulički i uz pomoć opružnog mehanizma koji u slučaju gubitka tlaka u hidrauličkom dijelu djeluje na klip dovoljnom silom da ventil bude zatvoren – čime je riješen sigurnosni dio problema. U ovom tehničkom rješenju, za razliku od predmetnog izuma, ne nagovještava se mogućnost postavljanja davača pozicije klipa koji bi pouzdano javljao stanje otvorenosti ventila, odnosno poziciju regulacijskog klipa. Time rečeno tehničko rješenje nije pogodno za korištenje u sustavu automatske regulacije toka fluida s povratnom vezom tzv. inteligentni regulacijski ventili. Osim rečenog, rješenje iz PCT/IL96/00109 nije podesno za gradnju većih promjera ventila i većih radnih tlakova, osjetljivo je na strujanje prljavijih fluida zbog načina vođenja regulacijskog klipa i osjetljivosti brtvećih površina na abraziju i druga oštećenja. International patent application PCT/IL96/00109 (TAVOR, Elhanan) from 1996 adopted and published as two EP patents EP0854992B1 and EP1205697B1 teaches a construction solution that is closest to the solution given according to the subject invention. Regulation of the position of pulling the piston out of the part that is being flowed by the fluid is done hydraulically and with the help of a spring mechanism which, in case of loss of pressure in the hydraulic part, acts on the piston with sufficient force to keep the valve closed - thus solving the safety part of the problem. In this technical solution, unlike the subject invention, there is no indication of the possibility of installing a piston position sensor that would reliably indicate the state of the valve opening, i.e. the position of the regulating piston. That said, the technical solution is not suitable for use in the system of automatic regulation of fluid flow with feedback, so-called. intelligent control valves. Apart from the above, the solution from PCT/IL96/00109 is not suitable for the construction of larger valve diameters and higher working pressures, it is sensitive to the flow of dirtier fluids due to the way the regulating piston is guided and the sensitivity of the sealing surfaces to abrasion and other damages.

Primjena ventila u regulacijske svrhe prikazana je npr. u američkom patentu objevljenom kao US 6,263,905 (YOKOTA Hiroshi; YOKOTA Shingo) koji poučava o raznim autonomnim načinima upravljanja ventilom koji je po svojoj konstrukciji i svojstvima različit od ventila prema ovom izumu, a autonomni pogon nije primjenjiv u korištenju s prljavih i agresivnih fluida. The application of the valve for regulatory purposes is shown, for example, in the American patent published as US 6,263,905 (YOKOTA Hiroshi; YOKOTA Shingo) which teaches various autonomous ways of controlling the valve, which in its construction and properties is different from the valve according to this invention, and the autonomous drive is not applicable in use with dirty and aggressive fluids.

Bit izuma The essence of invention

Predmetni izum rješava ranije tehničke probleme na način da za razliku od poznatih rješenja: The subject invention solves earlier technical problems in such a way that, unlike known solutions:

- posjeduje električni ili hidraulički linearni davač položaja regulacijskog klipa koji je smješten unutar hidrauličnog cilindra središnjeg dijela ventila; - it has an electric or hydraulic linear transmitter of the position of the regulating piston, which is located inside the hydraulic cylinder of the central part of the valve;

- da je gibanje regulacijskog klipa definirano uzdužnim vodilicama klipa smještenim s unutrašnje strane središnjeg dijela tijela; i - that the movement of the regulating piston is defined by the longitudinal guides of the piston located on the inside of the central part of the body; and

- da je regulacijski klip opremljen utorima i provrtima za hidrostatičko rasterećenje regulacijskog klipa. - that the regulating piston is equipped with grooves and holes for hydrostatic relief of the regulating piston.

Regulacijski klip u svojoj glavi ima smještenu oprugu koja stlačena posjeduje elastičnu energiju dovoljnu da u slučaju nestanka tlaka u hidrauličnim kanalima uvijek postavlja regulacijski klip u položaj da u cijelosti zatvara tok fluida kroz ventil. Time se pospješuju sigurnosni aspekti funkcioniranja predmetnog izuma. The regulating piston has a spring in its head which, when compressed, has enough elastic energy to always set the regulating piston in a position to completely close the flow of fluid through the valve in the event of a loss of pressure in the hydraulic channels. This improves the safety aspects of the functioning of the subject invention.

Opis crteža Description of the drawing

Jedan od mogućih načina izvedbe i primjene predmetnog izuma prikazan je na crtežima 1-29. One of the possible ways of implementation and application of the subject invention is shown in drawings 1-29.

Crtež 1 – prikazuje konstrukciju hidrauličnog aksijalnog-klipnog regulacijskog ventila u prostornom prikazu s djelomičnim unutrašnjim presjekom kako bi se mogao uočiti raspored svih bitnih funkcionalnih dijelova. Drawing 1 - shows the construction of the hydraulic axial-piston control valve in a spatial view with a partial internal section so that the arrangement of all important functional parts can be seen.

Crtež 2 – prikazuje presjek regulacijskog ventila u dijelu koji ne prolazi kroz nosiva rebra središnjeg dijela tijela. Drawing 2 – shows a section of the control valve in the part that does not pass through the load-bearing ribs of the central part of the body.

Crtež 3 – prikazuje prostorni prikaz električnog davača položaja kakav se ugrađuje u aksijalno-klipni regulacijski ventil. Drawing 3 – shows a spatial representation of the electric position transmitter as it is installed in the axial-piston control valve.

Crteži 4-29 – prikazuju način upotrebe hidrauličnog aksijalnog-klipnog regulacijskog ventila u regulacijske svrhe. Drawings 4-29 - show the method of using the hydraulic axial-piston control valve for control purposes.

Detaljan opis izvedbe izuma Detailed description of the implementation of the invention

Kao što je prije spomenuto, prvenstvena namjena hidrauličnog aksijalno-klipnog regulacijskog ventila (dalje u tekstu ventil) prema ovom izumu je da na: pouzdan, točan, brz, linearan i ponovljiv način regulira položaj regulacijskog klipa ventila unutar njegovog hoda uz minimiziranje vibracija i buke, te da se prilikom upotrebe takvog ventila izbjegnu kavitacijska oštećenja strukture samog ventila. Njegova je upotreba naročito podesna kao regulacijskog ventila za regulaciju protoka i tlakova u sustavu transporta vode, zraka, plina i nafte. Također, njegova konstrukcija čini ga idealnim za: upuštanje u pogon pumpi, brzo punjenje i pražnjenje spremnika i ispusta brana, upravljanja radom turbina; kao regulacijskog, mjernog, zapornog i sigurnosnog elementa u cjevovodima i vodoopskrbnim mrežama; za prevenciju hidrauličnih udara; kao regulacijskog ventila ispitnih stanica u transportu zemnog plina i općenito u segmentu regulacije protoka različitih fluida. As mentioned before, the primary purpose of the hydraulic axial-piston control valve (hereinafter referred to as the valve) according to this invention is to: reliably, accurately, quickly, linearly and repeatably regulate the position of the control piston of the valve within its stroke while minimizing vibration and noise , and to avoid cavitation damage to the structure of the valve itself when using such a valve. Its use is particularly suitable as a control valve for flow and pressure regulation in water, air, gas and oil transport systems. Also, its construction makes it ideal for: commissioning of pumps, quick filling and emptying of reservoirs and dam outlets, turbine operation management; as a regulatory, measuring, shut-off and safety element in pipelines and water supply networks; for the prevention of hydraulic shocks; as a control valve of test stations in the transport of natural gas and in general in the flow regulation segment of various fluids.

Ventil prema predmetnom izumu po svojim dimenzijama vanjskog tijela (1) takav je da se nesmetano može ugraditi kao element cjevovoda u kojem treba vršiti zadanu funkciju, npr. regulirati protok fluida. Rečeno tijelo ventila (1) inkorporira sve ostale elemente ventila i jedino je ono vidljivo kad se ventil ugradi kao element cjevovoda. Unutar rečenog tijela (1) nalazi se središnji dio (2) ventila (crtež 2) koji je sa tijelom (1) vezan rebrima (16). Broj rebara (16) je optimalan obzirom na hidrodinamički otpor strujanja fluida i mehanička naprezanja konstrukcije samog ventila. Tijelo ventila (1) i središnji dio (2) izrađeni su od materijala koji se standardno koriste u takvom tipu ventila i poznati su u stanju tehnike. The valve according to the subject invention, due to its dimensions of the external body (1), is such that it can be easily installed as an element of a pipeline in which it should perform a given function, for example, to regulate the flow of fluid. Said valve body (1) incorporates all other valve elements and is the only one visible when the valve is installed as a pipeline element. Inside said body (1) is the central part (2) of the valve (drawing 2), which is connected to the body (1) by ribs (16). The number of ribs (16) is optimal considering the hydrodynamic resistance of the fluid flow and the mechanical stresses of the construction of the valve itself. The valve body (1) and the central part (2) are made of materials that are standardly used in this type of valve and are known in the state of the art.

Oko središnjeg tijela (2) i rebara (16) opstrujava fluid kada je ventil u određenom stanju otvorenosti. Unutar tijela (2) nalazi se hidraulični cilindar (3). U hidraulični cilindar (3) se pod tlakom kroz provrte – hidrauličke kanale (17) - smještene unutar jednog ili više rebara (16) dovodi tlačni fluid, najčešće hidraulično mineralno ulje, koje potiskuje klip (4) a time i regulacijski klip (12) samog ventila vezan za klip (4). Hidraulični cilindar (3) zatvoren je glavom (10) hidrauličnog cilindra. Tijelo hidrauličnog cilindra (3) je izvedeno poželjno kružno po vanjskom obodu i ima utore s brtvama i radijalnim provrtima za prolaz stlačenog ulja do samog klipa (4) hidrauličnog cilindra (3). Na klipnjaču (5) hidrauličnog cilindra (3) pritegnut je vanjskom maticom (13) regulacijski klip (12). Fluid flows around the central body (2) and ribs (16) when the valve is in a certain open state. Inside the body (2) there is a hydraulic cylinder (3). Pressure fluid, usually hydraulic mineral oil, is supplied to the hydraulic cylinder (3) under pressure through bores - hydraulic channels (17) - located inside one or more ribs (16), which pushes the piston (4) and thus the regulating piston (12). of the valve itself attached to the piston (4). The hydraulic cylinder (3) is closed by the head (10) of the hydraulic cylinder. The body of the hydraulic cylinder (3) is preferably circular on the outer circumference and has grooves with seals and radial holes for the passage of compressed oil to the very piston (4) of the hydraulic cylinder (3). On the connecting rod (5) of the hydraulic cylinder (3), the regulating piston (12) is tightened with an external nut (13).

Regulacijski klip (12) na sebi ima radijalno izvedene utore ili provrte za uravnoteženje tlakova. Utori i/ili provrti omogućuju da radni fluid dođe u prostor i iza čela regulacijskog klipa (12) (na crtežu 2 to je prostor s oprugom (6)) i da time tlak ispred čela regulacijskog klipa (12) i iza čela, tj. u prostoru regulacijskog klipa (12) bude isti. Takvom konstrukcijom minimizira se sila pokretanja klipa (12). The regulating piston (12) has radial grooves or holes on it for balancing the pressures. Grooves and/or holes allow the working fluid to enter the space behind the face of the regulating piston (12) (in drawing 2, it is the space with the spring (6)) and thus the pressure in front of the face of the regulating piston (12) and behind the face, i.e. in the area of the regulating piston (12) should be the same. Such construction minimizes the force of starting the piston (12).

Za velike nazivne promjere ventila (Φ > 300 mm) nije moguće samo vanjskom maticom (13) pritegnuti regulacijski klip (12) za klipnjaču (5) već je potrebno spoj s maticom zamijeniti spojem sa zglobom, na način poznat u stanju tehnike. Takav spoj omogućava male pomake regulacijskog klipa (12) i u smjeru okomitom na gibanje klipnjače (5), a bez prenošenja sila ili momenata na klipnjaču (5). For large nominal valve diameters (Φ > 300 mm), it is not possible to tighten the regulating piston (12) to the piston rod (5) with only the external nut (13), but it is necessary to replace the connection with the nut with a joint connection, in a manner known in the state of the art. Such a connection enables small movements of the regulating piston (12) in the direction perpendicular to the movement of the connecting rod (5), without transmitting forces or moments to the connecting rod (5).

Vođenje klipa (12) riješeno je uzdužnim vodilicama (9) fiksiranim na posebnim rebrima s unutrašnje strane središnjeg dijela (2), kako je to poznato u stanju tehnike. Pored toga, dodatnom vođenju i smanjenju vibracija doprinosi vođenje klipnjače (5) samog hidrauličnog cilindra (3). Jasno je da se vođenje regulacijskog klipa (12) kroz središnji dio dijela (2) tijela ventila može riješiti na bilo koji od poznatih načina u stanju tehnike, no rješenje s vodilicama čini se najjednostavnijim za siguran i pouzdan rad. The piston (12) is guided by longitudinal guides (9) fixed on special ribs on the inside of the central part (2), as is known in the state of the art. In addition, additional guidance and reduction of vibrations is contributed by the guidance of the piston rod (5) of the hydraulic cylinder (3) itself. It is clear that the guiding of the control piston (12) through the central part of the part (2) of the valve body can be solved in any of the ways known in the state of the art, but the solution with guides seems the simplest for safe and reliable operation.

Za male nazivne promjere ventila (Φ < 300 mm) moguće je napraviti i izvedbu vođenja regulacijskog klipa (12) bez vodilica (9) jer u tom slučaju sama klipnjača (5) dimenzijski može preuzeti na sebe vođenje klipa (12) i izdržati eventualne sile okomite na smjer regulacijskog gibanja klipa (12). For small nominal valve diameters (Φ < 300 mm), it is also possible to make a version of the control piston (12) without guides (9), because in this case the piston rod (5) itself can dimensionally take over the piston (12) and withstand any forces perpendicular to the direction of the regulating movement of the piston (12).

U prvoj varijanti predmetnog izuma, s vanjske strane hidrauličnog cilindra (3) smještena je opruga (6) koja regulacijski klip (12) potiskuje uvijek u zatvoreni položaj ventila (1). Rečena opruga (6) jednom se stranom oslanja na hidraulični cilindar (3), a drugom stranom na dno regulacijskog klipa (12). Opruga (6) igra sigurnosnu ulogu brzog vraćanja klipa (12) u zatvoreni položaj u slučaju „ispada“ hidrauličnog pogona klipa. U ovoj varijanti izuma od presudne važnosti za ispravno i jednostavno funkcioniranje jesu ranije opisani utori/provrti na regulacijskom klipu (12) za uravnoteženje tlakova iza i ispred čela klipa (12). Time elastična sila opruge ne mora pri zatvaranju ventila svladavati i sile izlaznog tlaka fluida na čelo regulacijskog klipa (12). In the first variant of the present invention, a spring (6) is placed on the outside of the hydraulic cylinder (3), which always pushes the regulating piston (12) into the closed position of the valve (1). Said spring (6) rests on one side on the hydraulic cylinder (3), and on the other side on the bottom of the regulating piston (12). The spring (6) plays the safety role of quickly returning the piston (12) to the closed position in the event of a "failure" of the hydraulic piston drive. In this variant of the invention, of crucial importance for correct and simple functioning are the previously described grooves/holes on the regulating piston (12) for balancing the pressures behind and in front of the piston face (12). Thus, the elastic force of the spring does not have to overcome the force of the output pressure of the fluid on the face of the regulating piston (12) when closing the valve.

U drugoj varijanti predmetnog izuma – koja nije detaljno prikazana crtežima – djelovanje opruge (6) zamijenjeno je u cijelosti energijom koja se crpi iz nekog izvora tlačnog fluida (27) za pogon hidrauličkog cilindra (3). Takvo rješenje nužno je u konstrukcijama regulacijskog ventila velikih nazivnih promjera gdje akumulirana elastična energija opruge (6) ne bi bila dostatna da u cijelosti efikasno izvrši svoju sigurnosnu funkciju zatvaranja ventila u svim radnim režimima. U toj varijanti izuma, rečena konstrukcija umjesto opruge (6) posjeduje dodatne hidraulične kanale (17) za upravljanje tlakom i „iza“ klipa (4), u komori C2 na regulacijskim shemama. Na shematskom prikazu danom na crtežu 4, vidi se smještaj komore C2 uz već postojeću kontrolu komore C1 hidrauličkog cilindra (3) koja je prisutna i u prvoj varijanti izuma. In another variant of the subject invention - which is not shown in detail in the drawings - the action of the spring (6) is replaced entirely by the energy drawn from a source of pressure fluid (27) to drive the hydraulic cylinder (3). Such a solution is necessary in constructions of control valves with large nominal diameters, where the accumulated elastic energy of the spring (6) would not be sufficient to effectively perform its safety function of closing the valve in all operating modes. In this variant of the invention, the said construction instead of the spring (6) has additional hydraulic channels (17) for pressure control and "behind" the piston (4), in the chamber C2 on the regulation schemes. In the schematic representation given in drawing 4, the location of the chamber C2 can be seen with the already existing control of the chamber C1 of the hydraulic cylinder (3) which is also present in the first variant of the invention.

Treća varijanta predmetnog izuma – a koja također nije detaljno prikazana, predstavlja spoj prve i druge varijante predmetnog izuma. U ovoj varijanti, djelovanje opruge (6) dodatno je pojačano energijom koja se crpi iz nekog izvora tlačnog fluida (27) za pogon hidrauličkog cilindra (3), položajem klipa (4) upravlja se s jedne strane kontrolom komore C1 hidrauličkog cilindra (3) i sa druge strane upravljanjem tlakom u komori C2 potpomognuto elastičnom energijom pohranjenom u opruzi (6). The third variant of the subject invention - which is also not shown in detail, is a combination of the first and second variants of the subject invention. In this variant, the action of the spring (6) is further enhanced by the energy drawn from a source of pressure fluid (27) to drive the hydraulic cylinder (3), the position of the piston (4) is controlled on the one hand by the control of the chamber C1 of the hydraulic cylinder (3) and on the other hand by controlling the pressure in chamber C2 supported by the elastic energy stored in the spring (6).

U sve tri izvedbe predmetnog izuma, posebna pažnja posvećena je problemu brtvljenja. Brtvljenje regulacijskog klipa (12) u zatvorenom položaju vrši se pomoću brtve (11) smještene u središnjem dijelu (2) ventila i brtve (14) smještene u izlaznom dijelu (15) tijela ventila. Brtvljenje u otvorenom položaju ili u nekom međupoložaju nije potrebno jer fluid opstrujava regulacijski klip i na taj način, kao što je naprijed navedeno, hidrostatički rasterećuje regulacijski klip (12) ventila. Pored toga, ovo konstruktivno svojstvo omogućava da navedena brtva (11) u regulacijskom hodu nije izložena nikakvom trošenju, ili tek minimalnom trošenju. Ovdje nije posebno naglašeno, ali je stručnjaku područja jasno da broj i razmještaj brtvi (11) i (14) može biti proizvoljan sve dok daju željeni tehnički efekt brtvljenja u zatvorenom stanju ventila. In all three embodiments of the subject invention, special attention is paid to the problem of sealing. The sealing of the regulating piston (12) in the closed position is done by means of the seal (11) located in the central part (2) of the valve and the seal (14) located in the outlet part (15) of the valve body. Sealing in the open position or in some intermediate position is not necessary because the fluid flows through the regulating piston and thus, as stated above, hydrostatically relieves the regulating piston (12) of the valve. In addition, this constructive feature allows that said seal (11) is not exposed to any wear, or only minimal wear, during the regulating stroke. It is not particularly emphasized here, but it is clear to a person skilled in the art that the number and arrangement of seals (11) and (14) can be arbitrary as long as they provide the desired technical sealing effect in the closed state of the valve.

U sve tri varijante izvedbe izuma signalizacija tijekom upravljanja pozicijom klipa (4) unutar hidrauličnog cilindra (3), a time ujedno i pozicijom regulacijskog klipa (12) vrši se linearnim davačem položaja (8) centralno smještenom u hidrauličnom cilindru (3). In all three variants of the invention, signaling during control of the position of the piston (4) inside the hydraulic cylinder (3), and thus also the position of the regulating piston (12), is done by a linear position transmitter (8) centrally located in the hydraulic cylinder (3).

Prema predmetnom izumu, moguće je upotrijebiti dvije različite vrste linearnih davača položaja – hidraulični i električni – obzirom na tip i način primjene predmetnog izuma. According to the subject invention, it is possible to use two different types of linear position transmitters - hydraulic and electric - considering the type and method of application of the subject invention.

Pod pojmom „električnim davač položaja“ ovdje podrazumijevamo davač položaja koji bez obzira na fizikalni način uzorkovanja položaja regulacijskog klipa (12) isti izražava kao mjerljivu električnu veličinu. Pod pojmom „hidraulični davač položaja“ ovdje podrazumijevamo takav davač položaja kod kojeg se položaj regulacijskog klipa (12) manifestira kao promjena neke od mehanički mjerljivih veličina, npr. volumena ili tlaka fluida u hidrauličnoj liniji vezanoj za takav davač položaja. By the term "electrical position sensor" here we mean a position sensor that, regardless of the physical method of sampling the position of the regulating piston (12), expresses it as a measurable electrical quantity. By the term "hydraulic position transmitter" here we mean such a position transmitter where the position of the regulating piston (12) manifests itself as a change in some of the mechanically measurable quantities, for example the volume or pressure of the fluid in the hydraulic line connected to such a position transmitter.

Električnih linearnih davača položaja ima različitih vrsta i fizikalnih osnova načina rada no svakako jedan od boljih izbora koji se u praksi koristi je magnetostrikcijski davač položaja. U predmetnom izumu mogu se koristiti i drugi davači poznati u stanju tehnike. There are different types of electric linear position transmitters and the physical basis of the operating mode, but certainly one of the better choices that is used in practice is the magnetostrictive position transmitter. In the subject invention, other donors known in the state of the art can be used.

Magnetostrikcijski linearni davač kakav se koristi u jednom aspektu prema predmetnom izumu dobro je poznat u stanju tehnike. Princip funkcioniranja moguće je vidjeti npr. u patentu US 4,970,464 i u pripadajućem opisu prethodnog stanja tehnike istog dokumenta. Konstrukcija takvog davača položaja prikazana je na crtežu 3 i sastoji se od glave davača (8) s pripadajućom ugrađenom elektroničkom sklopovljem i magnetostrikcijskim valovodom (20), koji se ponekad naziva i sonda. A magnetostrictive linear transducer as used in one aspect of the present invention is well known in the art. The principle of operation can be seen, for example, in patent US 4,970,464 and in the associated description of the prior art of the same document. The construction of such a position transmitter is shown in drawing 3 and consists of a transmitter head (8) with associated built-in electronic circuitry and a magnetostrictive waveguide (20), which is sometimes called a probe.

Crtež 3 prikazuje takav linearni magnetostrikcijski pretvarač s magnetostrikcijskim valovodom - sondom (20) i permanentnim magnetom (21) (crtež 1) pričvršćenim za klip (4). Na mjestu pozicije klipa (4) tj. ugrađenog permanentnog magneta nastaje interakcija magnetskih polja magnetostrikcijskog valovoda i permanentnog magneta koja se vrlo precizno može detektirati. Razlikom vremena odašiljanja i primanja tj. očitanja valnog poremećaja mjeri se razmak (19) odnosno apsolutna pozicija klipa (4) u odnosu na hidraulični cilindar (3), a time i posredno položaj regulacijskog klipa (12) u središnjem dijelu tijela (2) ventila (1). Drawing 3 shows such a linear magnetostrictive transducer with a magnetostrictive waveguide - probe (20) and a permanent magnet (21) (drawing 1) attached to the piston (4). At the position of the piston (4), i.e. the built-in permanent magnet, an interaction of the magnetic fields of the magnetostrictive waveguide and the permanent magnet occurs, which can be detected very precisely. The difference between the time of sending and receiving, i.e. the reading of the wave disturbance, measures the distance (19), i.e. the absolute position of the piston (4) in relation to the hydraulic cylinder (3), and thus indirectly the position of the regulating piston (12) in the central part of the body (2) of the valve (1).

Opaženi vremenski odziv - tj. razmak (19) - konvertira se u linearnu električnu veličinu u samom davaču pozicije (8) te se kao lako mjerljiva električna signalna veličina (npr. napon ili modulirani strujni signal) može voditi žicama kroz provrt (18) dalje do procesora regulacijskog ventila (28) za analizu predmetnog signala. Za vođenje se mogu alternativno iskoristiti i već postojeći hidraulički kanali (17) no onda se javljaju dodatni problemi brtvljenja. Ovakav smještaj linearnog davača položaja (8) omogućava trenutan i neposredan nadzor nad stanjem položaja regulacijskog klipa (12), a također služi za provjeru odziva sustava tijela klipa (4) na hidraulične pobude (komande) upućene kroz hidraulične kanale (17). The observed time response - i.e. the gap (19) - is converted into a linear electrical quantity in the position transmitter (8) itself, and as an easily measurable electrical signal quantity (eg voltage or modulated current signal) can be led by wires through the hole (18) further to the control valve processor (28) for the analysis of the relevant signal. Alternatively, already existing hydraulic channels (17) can be used for guidance, but then additional sealing problems arise. This placement of the linear position transmitter (8) enables immediate and immediate monitoring of the position of the regulating piston (12), and also serves to check the response of the piston body system (4) to hydraulic impulses (commands) sent through hydraulic channels (17).

Osim linearnih električnih davača položaja (8) mogu se ugrađivati i davači položaja posebnih konstrukcija, kao i nelinearni davači položaja no njihova upotreba zahtjeva dodatno prilagođavanje stvarnog stanja ventila i faktičnog stanja takvog davača položaja putem numeričkih prilagodbi. In addition to linear electric position transmitters (8), position transmitters of special designs can be installed, as well as non-linear position transmitters, but their use requires additional adjustment of the actual state of the valve and the actual state of such a position transmitter through numerical adjustments.

Ukoliko je potrebno osobito precizno vođenje ponašanja ventila (1), odnosno regulacijskog klipa (12) prikupljeni podaci iz davača položaja (8) mogu se dodatno numerički obraditi u procesoru regulacijskog ventila (28). If it is necessary to precisely guide the behavior of the valve (1), that is, the control piston (12), the data collected from the position sensor (8) can be additionally numerically processed in the processor of the control valve (28).

U stanju tehnike poznati su i „hidraulični“ davači položaja čiji hidraulični izlaz može biti vezan ili na odgovarajuća hidraulična pojačala kako bi se istima vršilo upravljanje ventilom ili biti vezan s analognim pokazivačima pomaka koji samo pokazuju stanje otvorenosti ventila. Način funkcioniranja dobro je poznat u stanju tehnike, pri tome se koristi Pascalov zakon. Takvi davači položaja sastoje se uobičajeno od hidrauličnog klipa, hidrauličnog cilindra i hidraulične linije. Hidraulični klip može biti vezan za pomični (mjereni) dio koji u našem slučaju je klip (4) dok cilindar takvog hidrauličnog davača položaja miruje. Promjena razmaka (19) generira linearnu promjenu volumena u hidrauličnoj liniji takvog davača položaja. Prema predmetnom izumu takvi davači položaja koriste se najčešće u autonomnom režimu rada, bez vanjskog izvora energije, uglavnom za vanjsku signalizaciju stanja otvorenosti regulacijskog klipa (12) ventila. Po svojoj konstrukciji hidraulički davač položaja (8) mora biti takav da ne „opterećuje“ rad upravljačkog cilindra (3) i klipa (4) ventila i ujedno se mora moći uklopiti i dimenzijski u prostor namijenjen za postavljanje električnog davača položaja opisanog ranije. Hidraulična linija rečenog hidrauličnog davača položaja može se na odgovarajući način sprovesti kroz provrt (18) do hidrauličnog pojačala ili analognog pokazivača stanja regulacijskog klipa (12). In the state of the art, "hydraulic" position transmitters are also known, the hydraulic output of which can be connected either to appropriate hydraulic amplifiers in order to control the valve, or to be connected to analog displacement indicators that only show the open state of the valve. The way it works is well known in the state of the art, using Pascal's law. Such position transmitters usually consist of a hydraulic piston, a hydraulic cylinder and a hydraulic line. The hydraulic piston can be attached to the movable (measured) part, which in our case is the piston (4), while the cylinder of such a hydraulic position transmitter is at rest. A change in distance (19) generates a linear volume change in the hydraulic line of such a position sensor. According to the subject invention, such position transmitters are most often used in autonomous mode of operation, without an external energy source, mainly for external signaling of the open state of the regulating piston (12) of the valve. According to its construction, the hydraulic position transmitter (8) must be such that it does not "burden" the operation of the control cylinder (3) and piston (4) of the valve, and at the same time it must be able to fit dimensionally into the space intended for the installation of the electric position transmitter described earlier. The hydraulic line of the said hydraulic position transmitter can be appropriately routed through the bore (18) to the hydraulic amplifier or the analog status indicator of the regulating piston (12).

Kod manjih nazivnih promjera ventila (Φ < 300 mm) pričvršćivanje hidrauličnog cilindra (3) na središnji dio (2) tijela ventila te zatvaranje i zaštita nekog od ranije spomenutih davača položaja (8) od transportnog fluida koji opstrujava dio (2) izvodi se poklopcem (7) dizajniranim da predstavlja što manji otpor strujanju fluida i da se na što jednostavniji način u slučaju potrebe dođe do samog davača (8). Za veće nazivne promjere ventila pričvršćenje hidrauličnog cilindra (3) na središnji dio (2) izvodi se posebnom maticom, a poklopac (7) se za središnji dio (2) pričvršćuje posebnim vijcima. In the case of smaller nominal valve diameters (Φ < 300 mm), the attachment of the hydraulic cylinder (3) to the central part (2) of the valve body and the closing and protection of one of the previously mentioned position transmitters (8) from the transport fluid flowing through the part (2) is performed with a cover (7) designed to represent as little resistance as possible to fluid flow and to reach the transmitter (8) in the simplest possible way in case of need. For larger nominal valve diameters, the hydraulic cylinder (3) is attached to the central part (2) with a special nut, and the cover (7) is attached to the central part (2) with special screws.

Ovako konstruirani ventil omogućava ispunjenje svih ciljeva spomenutih kao tehnički problem. Ključne tehničke karakteristike kao što su: točnost, linearnost, ponovljivost i nivo moguće automatizacije omogućavaju električni ili hidraulični signali iz linearnog davača položaja (8) ugrađenog u tijelo hidrauličnog cilindra (3). A valve designed in this way enables the fulfillment of all the goals mentioned as a technical problem. Key technical characteristics such as: accuracy, linearity, repeatability and the level of possible automation are enabled by electrical or hydraulic signals from the linear position transmitter (8) built into the body of the hydraulic cylinder (3).

Hidrodinamičke karakteristike i osnovna vanjska konstrukcija i način opstrujavanja poznati su iz stanja tehnike i poznato je da takva konstrukcija priječi oštećenje materijala ventila zbog kavitacije, obzirom da je kavitacijsko djelovanje fokusirano na području u kojem nema materijala, negdje dalje iza matice (13) u centru cjevovoda, što istovremeno smanjuje i mehaničke vibracije (buku) pri radu. The hydrodynamic characteristics and the basic external structure and the method of flow are known from the state of the art, and it is known that such a structure prevents damage to the valve material due to cavitation, given that the cavitation effect is focused on an area where there is no material, somewhere further behind the nut (13) in the center of the pipeline , which simultaneously reduces mechanical vibrations (noise) during operation.

Značajno poboljšanje hidrodinamičkih karakteristika izuma posljedica su: minimalno potrebnog poprečnog presjeka rebara (16), dodatnog vođenja regulacijskog klipa putem klipa (4) i klipnjače (5) hidrauličnog cilindra, snažne opruge (6) ili korištenja vanjskog hidro-akumulatora koji značajno smanjuju vibracije i ostale neželjene efekte u fazi regulacije. Konstrukcijska izvedba izuma omogućava duže regulacijske hodove – određene korištenim hidrauličkim cilindrom (3) - što za posljedicu ima poboljšanje regulacijske karakteristike ventila. A significant improvement in the hydrodynamic characteristics of the invention is the result of: the minimum required cross-section of the ribs (16), additional guidance of the regulating piston via the piston (4) and connecting rod (5) of the hydraulic cylinder, a strong spring (6) or the use of an external hydro-accumulator that significantly reduces vibrations and other unwanted effects in the regulation phase. The design of the invention enables longer control strokes - determined by the used hydraulic cylinder (3) - which results in an improvement in the control characteristics of the valve.

Sigurnost aspekti automatskog zatvaranja riješeni su u cijelosti ili ugradnjom dovoljno snažne povratne opruge (6) koja djeluje samostalno, ili korištenjem energije fluida koja se crpi iz nekog izvora tlačnog fluida (27), ili kombinacijom istih kako je diskutirano ranije u tri moguće izvedbe izuma. The safety aspects of the automatic closing are completely solved either by installing a sufficiently strong return spring (6) that acts independently, or by using fluid energy drawn from a pressure fluid source (27), or by a combination of them as discussed earlier in three possible embodiments of the invention.

Buka pri radu smanjena je upravo konstrukcijskim finesama poklopca (7) koji vrši separaciju toka fluida i tjera ga na opstrujavanje oko rebara (16), a koja su konstrukcijski vrlo uska i projektirana na način da ne predstavljaju značajniju prepreku i ne uzrokuju veća vrtloženja. Daljnjem smanjenju buke u odnosu na druge vrste ventila i zapornih armatura doprinosi sama izvedba izlaznog dijela ventila (15). Izlazni dio ventila (15) ujedno je i najveći izvor buke zbog intenzivne energetske konverzije na tom mjestu radi spajanja tokova fluida koji opstrujava rebra (16) i regulacijski klip (12) u nekom međupoložaju. Izlazni dio (15) može biti različitih konstruktivnih izvedbi. Vrsta i oblik izlaznog dijela (15) ventila (1) uglavnom ovisi o razlici tlakova i brzini strujanja – kako je to također pokazano u dokumentima ranijeg stanja tehnike. Noise during operation is reduced precisely by the structural finesse of the cover (7), which separates the flow of fluid and forces it to flow around the ribs (16), which are very narrow in construction and designed in such a way that they do not represent a significant obstacle and do not cause major vortices. The design of the outlet part of the valve (15) contributes to a further reduction in noise compared to other types of valves and shut-off fittings. The outlet part of the valve (15) is also the biggest source of noise due to the intense energy conversion in that place due to the connection of the fluid flows that flow through the ribs (16) and the regulating piston (12) in some intermediate position. The output part (15) can be of different structural designs. The type and shape of the outlet part (15) of the valve (1) mainly depends on the pressure difference and the flow rate - as also shown in the prior art documents.

Kod povratnih hidrauličkih udara koji se dešavaju npr. u zatvorenom položaju ventila, sile odnosno tlakovi se ne prenose na cijeli promjer regulacijskog klipa (12) već djeluju isključivo na razliku površina ΔA: In the case of return hydraulic shocks that occur, for example, in the closed position of the valve, the forces or pressures are not transmitted to the entire diameter of the regulating piston (12), but act exclusively on the difference in surfaces ΔA:

ΔA=(D12-D22)/(π/4) ΔA=(D12-D22)/(π/4)

gdje D1 predstavlja najveći vanjski dijametar regulacijskog klipa (12), a D2 unutrašnji promjer izlaznog dijela ventila (15). where D1 represents the largest outer diameter of the regulating piston (12), and D2 the inner diameter of the outlet part of the valve (15).

Kad se ventil nalazi u nekom od mogućih međupoložaja - regulacijski klip (12) je hidrostatički potpuno rasterećen te to svojstvo doprinosi velikoj regulacijskoj i mehaničkoj pouzdanosti samog ventila. When the valve is in one of the possible intermediate positions - the regulating piston (12) is hydrostatically completely relieved, and this feature contributes to the high regulating and mechanical reliability of the valve itself.

Primjena ventila Valve application

U slijedećim primjerima i pratećim crtežima strjelica označava smjer toka fluida kroz tijelo ventila (1), a dvostrana strjelica smjer gibanja regulacijskog klipa (12). In the following examples and accompanying drawings, the arrow indicates the direction of fluid flow through the valve body (1), and the double-sided arrow indicates the direction of movement of the regulating piston (12).

Primjer 1 – PID regulacija u zatvorenoj petlji Example 1 – PID regulation in a closed loop

Na crtežu 4. prikazana je principijelna shema regulacijskog ventila upravljanog u zatvorenoj petlji, tako da cijeli upravljački sustav zajedno s ventilom čini proporcionalno-integracijski–derivacijski (dalje u tekstu PID) regulator protoka i tlaka. Drawing 4 shows the principle diagram of a closed-loop control valve, so that the entire control system together with the valve forms a proportional-integration-derivative (hereinafter referred to as PID) flow and pressure regulator.

Procesor regulacijskog ventila (28) prima i izvršava naloge iz udaljenog upravljačkog mjesta (29) koji prema potrebi mijenja ulazne parametre i šalje ih u obliku naloga procesoru regulacijskog ventila (28). Udaljeno upravljačko mjesto (29) putem procesora (28) kontrolira zadanu veličinu protoka i tlaka fluida p2. U slučaju smanjenja izlaznog tlaka fluida za određenu vrijednost -Δp2 koju registrira izlazna tlačna sonda (26) procesor ventila (28) daje nalog izvoru tlačnog fluida (27) za povećanje otvorenosti ventila koje se izražava pomakom -Δx što automatski dovodi do porasta izlaznog tlaka p2. Pritom se promjeni i protok kroz ventil, što registrira mjerač protoka (24). Ako je zabilježena promjena protoka u predeterminiranim granicama – ona biva odobrena, a ako nije lokalni procesor ventila (28) prema odgovarajućem programu vrši korekciju s ciljem održavanja zadanog izlaznog tlaka, protoka ili nekog drugog parametra ili programske kombinacije. The control valve processor (28) receives and executes commands from the remote control station (29), which changes the input parameters as necessary and sends them in the form of commands to the control valve processor (28). The remote control point (29) through the processor (28) controls the set amount of fluid flow and pressure p2. In the case of a decrease in the output pressure of the fluid by a certain value -Δp2 registered by the output pressure probe (26), the valve processor (28) gives an order to the pressure fluid source (27) to increase the opening of the valve, which is expressed by the displacement -Δx, which automatically leads to an increase in the output pressure p2 . At the same time, the flow through the valve also changes, which is registered by the flow meter (24). If a change in flow is recorded within predetermined limits - it is approved, and if it is not, the local processor of the valve (28) performs a correction according to the corresponding program with the aim of maintaining the given output pressure, flow or some other parameter or program combination.

Zauzimanjem neke nove pozicije regulacijskog klipa (12), ovisno o tehničkim karakteristikama samog ventila, uspostavlja se novi režim strujanja kroz ventil gdje se parametri takvog novog režima prate putem: By taking a new position of the regulating piston (12), depending on the technical characteristics of the valve itself, a new regime of flow through the valve is established, where the parameters of such a new regime are monitored via:

- tlačne sonde (25) za mjerenje ulaznog tlaka p1, - pressure probes (25) for measuring inlet pressure p1,

- tlačne sonde (26) za mjerenje izlaznog tlaka p2, - pressure probes (26) for measuring output pressure p2,

- linearnog davača položaja (8) o položaju regulacijskog klipa (12), i - of the linear position transmitter (8) about the position of the regulating piston (12), i

- mjerača protoka (24), te - flow meter (24), and

dojavljuju u lokalni procesor ventila (28) i udaljeno upravljačko mjesto (29). they report to the local valve processor (28) and the remote control site (29).

Pomak regulacijskog klipa (12) u smjeru +Δx ostvaruje se ili djelovanjem opruge (6) ili energijom pohranjenom u dodatnom izvoru tlačnog fluida za pogon hidrauličnog cilindra (3) ili u kombinaciji oba načina kako je već ranije opisano. Tako su uspostavljeni novi uvjeti u regulacijskoj petlji i ovisno s kojim parametrima upravljamo - potpuna PID regulacija. U lokalni procesor ventila (28) mogu ulaziti i drugi parametri, kao npr. nivo vode u spremniku, temperatura vode i slično, koje procesor ventila ili računalo u udaljenom upravljačkom mjestu analizira i poduzima određene radnje za njihovo održavanje ili korekciju. The movement of the regulating piston (12) in the +Δx direction is achieved either by the action of the spring (6) or by the energy stored in the additional source of pressure fluid for driving the hydraulic cylinder (3) or by a combination of both methods as described earlier. Thus, new conditions were established in the regulation loop and depending on which parameters we manage - complete PID regulation. The local valve processor (28) can also enter other parameters, such as water level in the tank, water temperature and the like, which the valve processor or a computer in the remote control station analyzes and takes certain actions for their maintenance or correction.

Jedan od primjera važnosti kontrole pozicije regulacijskog klipa (12) je za slučaj kada lokalni procesor ventila (28) registrira odnos protoka i tlaka koji nije u skladu s tehničkim karakteristikama ventila za taj stupanj otvorenosti ventila ili pak karakteristikama prijenosne linije fluida kojom se upravlja. Takvo ponašanje će prouzročiti upozorenje i putem odgovarajućeg programa nastalo stanje će biti analizirano, korigirano ili samo na njega upozoreno, bilo u lokalnom procesoru (28) ili na udaljenom upravljačkom mjestu (29). One of the examples of the importance of controlling the position of the regulating piston (12) is for the case when the local processor of the valve (28) registers a flow and pressure relationship that is not in accordance with the technical characteristics of the valve for that degree of valve opening or the characteristics of the transmission line of the fluid being controlled. Such behavior will cause a warning and through the corresponding program the situation will be analyzed, corrected or just warned about it, either in the local processor (28) or at the remote control point (29).

Primjer 2 – korištenje vanjske energije komprimiranog zraka Example 2 – use of external compressed air energy

Na crtežu 5 prikazana je mogućnost pogona regulacijskog ventila vanjskom energijom u formi komprimiranog zraka. Putem pneumo-hidrauličnog pojačala tlaka (31) vrši se pomicanje regulacijskog klipa (12) u oba smjera. Komprimiranim zrakom upravlja se položajem klipa u komori C4 koja je mehanički (klipnjačama klipova) povezana s komorom C3 pneumo-hidrauličnog pojačala (31) čime se pretvara energija komprimiranog zraka u energiju radnog fluida. Hidraulični razvodnik (30) služi za prekretanje smjera i upravlja procesom otvaranja ili zatvaranja regulacijskog ventila (12). U hidrauličnim linijama postavljeni su prigušno nepovratni ventili (22) i (23) prema komorama C1 i C2 hidrauličnog cilindra (3) na način dobro poznat u stanju tehnike. Ovako projektirani sustav je dvoradni što znači da je regulacijski klip (12) pokretan u smjeru otvaranja i zatvaranja pneumo-hidrauličnim pojačalom (31). Eventualni gubitak ulja u hidrauličnom sustavu automatski se nadoknađuje iz spremnika ulja (32). Navedeni sustav posebno je pogodan za korištenje kod većih regulacijskih ventila. Drawing 5 shows the possibility of operating the control valve with external energy in the form of compressed air. By means of the pneumo-hydraulic pressure amplifier (31), the regulating piston (12) is moved in both directions. The compressed air is controlled by the position of the piston in the C4 chamber, which is mechanically connected (by piston rods) to the C3 chamber of the pneumo-hydraulic amplifier (31), which converts the energy of the compressed air into the energy of the working fluid. The hydraulic distributor (30) serves to change direction and controls the process of opening or closing the control valve (12). Damping non-return valves (22) and (23) are placed in the hydraulic lines towards the chambers C1 and C2 of the hydraulic cylinder (3) in a manner well known in the state of the art. The system designed in this way is two-way, which means that the regulating piston (12) is driven in the direction of opening and closing by a pneumo-hydraulic amplifier (31). Any loss of oil in the hydraulic system is automatically compensated from the oil tank (32). The mentioned system is particularly suitable for use with larger control valves.

Crtež 6 prikazuje mogućnost pogona regulacijskog ventila putem komprimiranog zraka i jednoradnog pneumo-hidrauličnog pojačala tlaka (31). Razlika u odnosu na dvoradni sistem prikazan na crtežu 5 je što se u ovom slučaju aktivacija izvodi jednostavnijim jednoradnim sustavom sa sigurnosnim zatvaranje putem opruge ventila (6) ili kod većih ventila hidro-akumulatorom komore C1 koji na crtežu 6 nije prikazan. Ovakvo rješenje daje jednostavan i pouzdan način upravljanja, posebno pogodan za tzv. „on/off“ upravljanje više ventila iz jednog izvora komprimiranog zraka. Ovakvi sustavi aktivacije komprimiranim zrakom posebno su pogodni za korištenje u lakozapaljivim i eksplozivnim radnim okolinama. Drawing 6 shows the possibility of driving the control valve by means of compressed air and a single-acting pneumo-hydraulic pressure amplifier (31). The difference compared to the two-way system shown in drawing 5 is that in this case the activation is performed by a simpler single-way system with safety closing by means of a valve spring (6) or, in the case of larger valves, by the hydro-accumulator of the chamber C1, which is not shown in drawing 6. This solution provides a simple and reliable way of management, especially suitable for the so-called "on/off" control of multiple valves from one source of compressed air. Such compressed air activation systems are particularly suitable for use in flammable and explosive working environments.

Primjer 3 – upravljanje pomoću ručne pumpe Example 3 – control using a hand pump

Crtež 7 prikazuje jednostavan i vjerojatno najpouzdaniji način dvoradnog aktiviranja i regulacije pozicije klipa (12) putem ručne pumpe (35) i ručnog hidrauličnog razvodnika (34) koji služi za prekretanje smjera hidrauličnog protoka iz ručne pumpe (35). Crtež 8 prikazuje jednoradni način aktiviranja i zauzimanja pozicije regulacijskog klipa (12) u kombinaciji ručne pumpe (35) i opruge (6). U oba slučaja se može dodatno koristiti i energija pohranjena u hidro-akumulatoru komore C1 koji nije prikazan na crtežima. Drawing 7 shows a simple and probably the most reliable way of two-way activation and regulation of the position of the piston (12) by means of a hand pump (35) and a hand hydraulic distributor (34) which serves to reverse the direction of the hydraulic flow from the hand pump (35). Drawing 8 shows a simple way of activating and taking the position of the regulating piston (12) in the combination of the hand pump (35) and the spring (6). In both cases, the energy stored in the hydro-accumulator of chamber C1, which is not shown in the drawings, can be additionally used.

Ovaj način može se koristiti kod svih izvedbi, aplikacija i kombinacija regulacijskog ventila kao dodatni sigurnosni način aktivacije u slučaju potrebe prinudnog ručnog otvaranja ili zatvaranja ventila. This mode can be used with all versions, applications and combinations of the control valve as an additional safety activation method in case of the need for forced manual opening or closing of the valve.

Primjer 4 – funkcija nepovratnog ventila direktno upravljanog u slučaju autonomnog pogona Example 4 - the function of a directly controlled non-return valve in the case of an autonomous drive

Na crtežu 9 prikazan je regulacijski ventil u funkciji nepovratnog ventila za slučaj autonomnog pogona tj. pogona bez učešća vanjske energije, gdje se ventil u sigurnosni zatvoreni položaj postavlja uz pomoć energije opruge (6). U otvoreni položaj regulacijski klip (12) dolazi uslijed djelovanja tlaka fluida p1 koji je putem prijenosnika fluida (39) i upravljačkog cilindra (57) pojačan u komori C5 u odnosu na inicijalni nastali tlak u komori C6 rečenog upravljačkog cilindra. U slučaju direktnog aktiviranja, oprugom (55) upravljačkog cilindra (57) podešava se tlak otvaranja ventila na način da je opruga (6) regulacijskog klipa (12) stlačena. U zatvorenom položaju ventila sila opruge (6) mora biti dovoljna da ostvari silu brtvljenja na pozicijama brtvi (14). Drawing 9 shows the control valve in the function of a non-return valve for the case of autonomous operation, i.e. operation without the participation of external energy, where the valve is placed in the safety closed position with the help of spring energy (6). The regulating piston (12) comes to the open position as a result of the action of the pressure of the fluid p1, which is increased in the chamber C5 by means of the fluid transmitter (39) and the control cylinder (57) in relation to the initially created pressure in the chamber C6 of said control cylinder. In the case of direct activation, the valve opening pressure is adjusted with the spring (55) of the control cylinder (57) in such a way that the spring (6) of the regulating piston (12) is compressed. In the closed position of the valve, the force of the spring (6) must be sufficient to realize the sealing force at the positions of the seals (14).

Pomoću prigušno-nepovratnog ventila (23) podešava se brzina otvaranja i zatvaranja regulacijskog klipa (12) odnosno samog regulacijskog ventila (1). U slučaju ispada električne energije ili prestanka rada pumpe, tlak fluida p1 pada i opruga (6) zatvara ventil. Kada se tlak fluida p1 vrati na radni nivo i na ranije opisan način otvara se ventil putem upravljačkog cilindra (57). Pozicija (37) predstavlja slavinu koja putem prijenosnika tlaka fluida (39) povezuje komoru C6 upravljačkog cilindra (57). The speed of opening and closing of the regulating piston (12), i.e. the regulating valve (1) itself, is adjusted using the throttle-non-return valve (23). In the event of a power outage or the pump stops working, the fluid pressure p1 drops and the spring (6) closes the valve. When the pressure of the fluid p1 returns to the working level and in the previously described manner, the valve is opened via the control cylinder (57). Position (37) represents the tap that connects the C6 chamber of the control cylinder (57) via the fluid pressure transmitter (39).

Prijenosnik fluida (39) ima zadatak odvajanja i prijenosa tlaka p1 fluida koji struji kroz ventil (1) od upravljačkog hidrauličnog ulja komore C6 upravljačkog cilindra (57). The fluid carrier (39) has the task of separating and transferring the pressure p1 of the fluid flowing through the valve (1) from the control hydraulic oil of the chamber C6 of the control cylinder (57).

Na crtežu 10 prikazan je regulacijski ventil u funkciji nepovratnog ventila u slučaju autonomnog pogona, slično kao na crtežu 9, s razlikom što regulacijski klip (12) u sigurnosni zatvoreni položaj vraća energija hidrauličkog akumulatora (33) komore C1 kroz prigušno nepovratni ventil (22). Ovim načinom se osigurava pouzdano zatvaranje ventila pogotovo kod većih nazivnih promjera i većih radnih tlakova ventila. Drawing 10 shows the control valve in the function of a non-return valve in the case of autonomous operation, similar to drawing 9, with the difference that the control piston (12) is returned to the safety closed position by the energy of the hydraulic accumulator (33) of chamber C1 through the damping check valve (22). . This method ensures reliable closing of the valve, especially with larger nominal diameters and higher operating pressures of the valve.

Primjer 5 – funkcija nepovratnog ventila predupravljanog otvaranja Example 5 – the function of a pre-controlled opening check valve

Crtež 11 prikazuje tehničko rješenje ventila s funkcijom predupravljivog nepovratnog ventila iz opisa prema crtežu 9 sa razlikom što se aktiviranje otvaranja izvodi indirektno putem upravljačkog ventila (58) aktiviranog ulaznim tlakom p1, gdje je upravljački ventil (58) tzv. NC tipa („normally closed“), odnosno koji je normalno zatvoren. Drawing 11 shows the technical solution of the valve with the function of a pre-controlled non-return valve from the description according to drawing 9 with the difference that the activation of the opening is performed indirectly through the control valve (58) activated by the input pressure p1, where the control valve (58) is the so-called NC type ("normally closed"), i.e. which is normally closed.

Gubitkom ulaznog tlaka p1 ventil (1) se zatvara u prikazanom slučaju putem hidroakumulatora (33) i prigušno nepovratnog ventila komore C1 (22). Povećanjem ulaznog tlaka p1 iznad podešenog tlaka, upravljački ventil (58) postaje protočan i aktivira putem upravljačkog cilindra (57) punjenje komore C2 radnog cilindra (3) vršeći na taj način otvaranje ventila (1). Tlak na kojem se vrši aktivacija, tj. otvaranje ventila (1) podešava se oprugom (36) upravljačkog ventila. With the loss of inlet pressure p1, the valve (1) is closed in the case shown by means of the hydraulic accumulator (33) and the damping check valve of the chamber C1 (22). By increasing the inlet pressure p1 above the set pressure, the control valve (58) becomes flowable and activates through the control cylinder (57) the filling of the chamber C2 of the working cylinder (3), thereby opening the valve (1). The pressure at which the activation takes place, i.e. the opening of the valve (1) is adjusted by the spring (36) of the control valve.

Prijenosnik fluida (39) koji se nalazi vezan između slavine (37) i upravljačkog ventila (58) ima zadatak fizičkog odvajanja i prijenosa tlaka p1 fluida koji struji kroz ventil (1) od upravljačkog hidrauličnog ulja komore C6 upravljačkog cilindra (57). Spomenutim odvajanjem fluida štiti se doticaj prljavog fluida koji struji ventilom (1) s odvojenim upravljačkim hidraulični sustavom. Opisano rješenje s predupravljanjem je podesno za veliki raspon radnih tlakova i velike nazivne promjere ventila. The fluid carrier (39) which is connected between the faucet (37) and the control valve (58) has the task of physically separating and transferring the pressure p1 of the fluid flowing through the valve (1) from the control hydraulic oil of the C6 chamber of the control cylinder (57). The mentioned separation of the fluid protects the contact of the dirty fluid that flows through the valve (1) with a separate control hydraulic system. The described solution with pre-control is suitable for a wide range of operating pressures and large nominal valve diameters.

Crtež 12 prikazuje rješenje ventila s funkcijom iz opisa prema crtežu 9 sa razlikom što se aktiviranje otvaranja izvodi putem posebnog upravljačkog ventila (59) aktiviranog izlaznim tlakom p2. Drawing 12 shows the solution of the valve with the function from the description according to drawing 9 with the difference that the activation of the opening is performed through a special control valve (59) activated by the output pressure p2.

Upravljački ventil (59) je NO tipa („normally open“), u normalnom stanju pod djelovanjem opruge (36) nalazi se u položaju otvorenosti što osigurava stalnu prisutnost nekog podešenog tlaka u komori C8 upravljačkog cilindra (57). Ovakva izvedba omogućava da se ventil (1) prema izumu može nalaziti stalno u nekom stanju podešene otvorenosti osiguravajući tok fluida kroz tijelo (1) prema podešenosti opruga (36) upravljačkih ventila (58) i (59) održavajući time na izlazu ventila (15) željeni tlak p2. The control valve (59) is of the NO type ("normally open"), in its normal state under the action of the spring (36) it is in the open position, which ensures the constant presence of some adjusted pressure in the chamber C8 of the control cylinder (57). This design enables the valve (1) according to the invention to be constantly in a state of adjusted openness, ensuring the flow of fluid through the body (1) according to the adjustment of the springs (36) of the control valves (58) and (59), thus maintaining the valve outlet (15) desired pressure p2.

U slučaju povećanja ulaznog tlaka p1 iznad predodređene namještene vrijednosti dolazi do povećanja izlaznog tlaka p2 i automatski se putem pilot ventila (58) vrši dodatno otvaranje ventila na način da počinje punjenjem komore C2 radnog cilindra (3). In the case of an increase in the inlet pressure p1 above the predetermined set value, there is an increase in the outlet pressure p2 and an additional opening of the valve is automatically performed via the pilot valve (58) in such a way that it starts by filling the chamber C2 of the working cylinder (3).

Primjer 6 – postupak prinudnog zatvaranja ventila Example 6 – forced valve closing procedure

Crtež 13 prikazuje mogućnost da se putem upravljačkog ventila (58) i spremnika za prihvat fluida (43) ostvari prinudno zatvaranje regulacijskog ventila putem vanjske pobude upravljačkog ventila (58). Drawing 13 shows the possibility of the control valve (58) and fluid receiving tank (43) being forced to close the control valve by means of an external excitation of the control valve (58).

Vanjska pobuda za aktiviranje upravljačkog ventila (58) ovisno izvedbi upravljanja može biti električna „e“ ili mehanička, tj. hidraulična ili pneumatska – označavamo je slovom „h“. The external stimulus for activating the control valve (58), depending on the control design, can be electrical "e" or mechanical, i.e. hydraulic or pneumatic - we denote it with the letter "h".

Jedan od razloga za prinudno zatvaranje ventila (1) može biti npr. slučaj puknuća cjevovoda – tlačnog voda (48) ili odvoda gornjeg spremnika (50) prikazanih na crtežu 14. U slučaju puknuća dolazi do naglog povećanja brzine strujanja što se mjeri nekom od poznatih metoda mjerenja protoka. Ujedno dolazi do određenog pada izlaznog tlaka fluida. Signali mjerača protoka ili tlaka fluida pobuđuju upravljački ventil (58) koji otpušta i brzo prazni komoru C6 upravljačkog cilindra (57) i na taj način naglo smanjuje tlak u komori C2 na strani klipnjače (5). Slavina (37) je podešena tako da se na njoj ostvari dovoljan pad tlaka fluida kako bi se s druge strane omogućilo brzo pražnjenje fluida iz komore C6 upravljačkog cilindra (57). Time tlak u komori C1 postaje veći od C2 i energija pohranjena u hidrauličkom akumulatoru (33) komore C1 uzrokuje zatvaranje ventila (1). I u ovom slučaju prijenosnik fluida (39) služi za prijenos tlaka p1 i zaštitu upravljačkog cilindra (57) dok su upravljački ventil (58), preko slavine za prigušenje (41) i spremnik za prihvat fluida (43) stalno u doticaju s fluidom koji struji ventilom. Pri dimenzioniranju spremnika za prihvat fluida treba voditi računa o radnim tlakovima, broju aktiviranja u jedinici vremena ili eventualnom odvodu upravljačkog fluida na način koji je poznat u stanju tehnike. One of the reasons for the forced closing of the valve (1) can be, for example, a rupture of the pipeline - pressure line (48) or the drain of the upper tank (50) shown in drawing 14. In the event of a rupture, there is a sudden increase in the flow rate, which is measured by one of the known flow measurement method. At the same time, there is a certain drop in fluid outlet pressure. Signals from the fluid flow or pressure meter actuate the control valve (58) which releases and quickly empties the C6 chamber of the control cylinder (57) and thus sharply reduces the pressure in the C2 chamber on the piston rod (5) side. The valve (37) is adjusted so that a sufficient drop in fluid pressure is achieved on it to enable rapid discharge of the fluid from the chamber C6 of the control cylinder (57). Thus, the pressure in chamber C1 becomes higher than C2 and the energy stored in the hydraulic accumulator (33) of chamber C1 causes the valve (1) to close. In this case too, the fluid carrier (39) serves to transmit the pressure p1 and protect the control cylinder (57), while the control valve (58), through the throttle valve (41) and the fluid receiving tank (43) are constantly in contact with the fluid that flows through the valve. When dimensioning the tank for fluid reception, one should take into account the working pressures, the number of activations per unit of time or the possible drainage of the control fluid in a manner that is known in the state of the art.

Na crtežu 14 pozicija (45) označava pumpu fluida, pozicija (44) donji spremnik fluida, a pozicija (49) gornji spremnik fluida. U slučaju pada tlaka p1 automatski se zatvara ventil (1) koji ovdje ima ulogu nepovratnog ventila za zaštitu pumpe (45) ili za zatvaranje cjevovoda (50) gornjeg spremnika u slučaju njegovog puknuća. Ventilom (1) upravlja se na jedan od ranije diskutiranih načina prikazanim na crtežima 9, 10, 11, 12 i 13. In drawing 14, position (45) indicates the fluid pump, position (44) the lower fluid tank, and position (49) the upper fluid tank. In the event of a drop in pressure p1, the valve (1) is automatically closed, which here has the role of a non-return valve to protect the pump (45) or to close the pipeline (50) of the upper tank in the event of its rupture. Valve (1) is controlled in one of the previously discussed ways shown in drawings 9, 10, 11, 12 and 13.

Primjer 7 – postupak zatvaranja ventila u slučaju povratnog toka fluida Example 7 – valve closing procedure in case of fluid backflow

Na crtežu 15 prikazan je direktno upravljani regulacijski ventil (1) u autonomnom načinu funkcioniranja za slučaj sigurnosnog ispusta kod nastupa povratnog strujanja toka fluida (naznačen strjelicom) kao posljedice hidrauličnog udara koji uzrokuje nagli porast tlaka p2. Drawing 15 shows the directly operated control valve (1) in autonomous mode of operation for the case of a safety outlet in the event of backflow of the fluid flow (indicated by the arrow) as a result of hydraulic shock that causes a sudden increase in pressure p2.

U slučaju hidrauličnog udara nastupa nagli porast tlaka p2 za +Δp2 koji se putem slavine (38) i prijenosnika fluida (39) dovodi do upravljačkog cilindra (57) gdje se transformira i dolazi do naglog punjenja komore C2 radnog cilindra (3) koji otvara ventil (1), točnije uvlači regulacijski klip (12). Tlak kod kojeg se aktivira otvaranje radnog cilindra (3) neposredno se podešava oprugom (55) upravljačkog cilindra (57). Brzina otvaranja regulacijskog klipa (12) može se podešavati prigušno nepovratnim ventilom (23). U svrhu zaštite upravljačkog cilindra (57) od strujanja prljavog fluida ugrađuje se prijenosnik fluida (39). In case of a hydraulic shock, there is a sudden increase in pressure p2 by +Δp2, which is brought to the control cylinder (57) through the faucet (38) and the fluid carrier (39), where it is transformed and there is a sudden filling of the chamber C2 of the working cylinder (3), which opens the valve (1), more precisely retracts the regulating piston (12). The pressure at which the opening of the working cylinder (3) is activated is directly adjusted by the spring (55) of the control cylinder (57). The opening speed of the regulating piston (12) can be adjusted with a damping check valve (23). In order to protect the control cylinder (57) from the flow of dirty fluid, a fluid carrier (39) is installed.

Na crtežu 16 prikazan je predupravljani regulacijski ventil (1) u autonomnom načinu funkcioniranja za slučaj sigurnosnog ispusta kod nastupa povratnog strujanja toka fluida (naznačen strjelicom) kao posljedice hidrauličnog udara koji uzrokuje nagli porast tlaka p2. Osnovna razlika u odnosu na rješenje opisanu na slici 15 je što se aktiviranje otvaranja postiže predupravljanjem putem upravljačkog ventila (58) NC tipa. U neaktiviranom stanju tj. kada je pod silom opruge, upravljački ventil (58) je zatvoren. U slučaju naglog porasta tlaka za +Δp2 postaje protočan aktivirajući upravljački cilindar (57) koji potiskuje hidraulični fluid iz komore C5 upravljačkog cilindra (57) u C2 radnog cilindra (3) i na taj način pokreće klip (4) u smjeru otvaranja ventila (1). Drawing 16 shows the pre-controlled regulating valve (1) in autonomous mode of operation for the case of a safety outlet in the event of backflow of the fluid flow (indicated by the arrow) as a result of a hydraulic shock that causes a sudden increase in pressure p2. The main difference compared to the solution described in Figure 15 is that the activation of the opening is achieved by pre-control via the control valve (58) of the NC type. In the non-activated state, i.e. when under spring force, the control valve (58) is closed. In the case of a sudden increase in pressure by +Δp2, the flow activates the control cylinder (57) which pushes the hydraulic fluid from the chamber C5 of the control cylinder (57) into the C2 of the working cylinder (3) and thus moves the piston (4) in the direction of opening the valve (1) ).

Tlak na kojem upravljački ventil (58) počinje puniti komoru C6 upravljačkog cilindra (57) podešava se putem opruge (36) dok se brzina otvaranja ventila (1) može podešavati putem prigušno nepovratnog ventila (23). Odgovarajući pad tlaka fluida za upravljanje kao i brzinu punjenja komore C6 podešavamo slavinom (38). Kada se tlak p2 vrati na ranije zadanu vrijednost, opruga (36) zatvara upravljački ventil (58), ponovo se uspostavlja ravnoteža sila koja omogućava da sila opruge ventila (6) drži u zatvorenom položaju regulacijski klip (12). Nepovratni ventil (40) služi za premošćivanje upravljačkog ventila (58) sa svrhom smanjenja otpora povratnog strujanja hidrauličnog ulja iz komore C6 tj. osiguravanja pouzdanog i bez hidrauličnog otpora zatvaranja ventila (1). I u ovom slučaju prijenosnik fluida (39) vrši ranije spomenutu zaštitnu funkciju odvajanja osnovnog od regulacijskog fluida. The pressure at which the control valve (58) starts filling the chamber C6 of the control cylinder (57) is adjusted by means of the spring (36), while the opening speed of the valve (1) can be adjusted by means of the damping check valve (23). The corresponding pressure drop of the control fluid as well as the filling speed of the C6 chamber are adjusted with the tap (38). When the pressure p2 returns to the previously set value, the spring (36) closes the control valve (58), the balance of forces is re-established which allows the force of the valve spring (6) to keep the regulating piston (12) in the closed position. The non-return valve (40) is used to bridge the control valve (58) with the purpose of reducing the resistance of the return flow of hydraulic oil from the chamber C6, i.e. ensuring reliable and hydraulic closing of the valve (1). In this case too, the fluid carrier (39) performs the previously mentioned protective function of separating the basic fluid from the control fluid.

Crtež 17 prikazuje direktno upravljani regulacijski ventil (1) u autonomnom načinu funkcioniranja za slučaj sigurnosnog ispusta kod nastupa povratnog strujanja toka fluida (naznačen strjelicom) kao posljedice hidrauličnog udara koji uzrokuje nagli porast tlaka p2. Razlika u odnosu na rješenje opisano na slici 15 je što se zatvorenost ventila postiže hidro-akumulatorom (33) što je pouzdanije rješenje kod većih nazivnih promjera ventila. Drawing 17 shows the directly operated regulating valve (1) in autonomous mode of functioning for the case of safety outlet in the event of backflow of the fluid flow (indicated by the arrow) as a result of the hydraulic shock that causes a sudden increase in pressure p2. The difference compared to the solution described in Figure 15 is that the closure of the valve is achieved with a hydro-accumulator (33), which is a more reliable solution for larger nominal valve diameters.

Crtež 18 prikazuje predupravljani regulacijski ventil (1) u istoj funkciji kao na crtežu 16 za slučaj sigurnosnog brzog ispusta u slučaju nastajanja povratnog strujanja ili hidrauličnog udara. Razlika je što se ovdje za zatvaranje ventila koristi vanjski hidraulični akumulator (33) koji ostvaruje tlak u komori C1. Rješenje je pogodno za veće nazivne promjere i veće sile zatvaranja ventila upravo zbog spomenutog predupravljanja upravljačkim ventilom (58). Nepovratni ventil (40) i ovdje služi za premošćivanje upravljačkog ventila (58) sa svrhom smanjenja otpora povratnog strujanja hidrauličnog ulja iz komore C6 tj. osiguravanja pouzdanog i bez hidrauličnog otpora zatvaranja ventila (1). Drawing 18 shows the pre-operated control valve (1) in the same function as in drawing 16 for the case of safety quick discharge in case of backflow or hydraulic shock. The difference is that here an external hydraulic accumulator (33) is used to close the valve, which creates pressure in chamber C1. The solution is suitable for larger nominal diameters and higher valve closing forces precisely because of the mentioned pre-control of the control valve (58). The non-return valve (40) also serves here to bridge the control valve (58) with the purpose of reducing the resistance of the return flow of hydraulic oil from the chamber C6, i.e. ensuring reliable and hydraulic closing of the valve (1).

Crtež 19 prikazuje predupravljani regulacijski ventil (1) s time da se u ovom slučaju javlja u dvostrukoj funkciji i to kao: zaštita od hidrauličnog udara i za osiguranje protoka fluida za neko podešeno stanje odnosa ulaznog povratnog tlaka p2 i izlaznog tlaka fluida p1 koji može predstavljati npr. nivo vode u donjem spremniku. Ovakav slučaj strujanja fluida može biti korišten kod pražnjenja gornjeg spremnika u donji. Ventil (1) je otvoren dok se u donjem spremniku ne postigne traženi tlak p1 odnosno visina vodenog stupca. Pomoću opruge (36) upravljačkog ventila (58) NC-tipa vrši se ranije spomenuto podešavanje tlaka aktiviranja upravljačkog cilindra (57). Oprugom drugog pilot ventila (59) koji je NO-tipa podešava se tlak p1 koji se treba trajno održavati tijekom regulacijskog postupka. Kada se dostigne podešeni tlak p1 upravljački ventil (59) se prebacuje u stanje zatvorenosti što ima za posljedicu prekid otvorenosti ventila (1) odnosno pomak regulacijskog klipa (12) u smjeru zatvaranja. Na taj način se odnos tlakova p1 i p2 može uvijek držati u nekom konstantno podešenom omjeru p2/p1. Drawing 19 shows the pre-controlled regulating valve (1) with the fact that in this case it appears in a double function as: protection against hydraulic shock and to ensure the fluid flow for a certain adjusted state of the relationship between the input return pressure p2 and the output fluid pressure p1 which can represent eg the water level in the lower tank. This case of fluid flow can be used when emptying the upper tank into the lower one. The valve (1) is open until the required pressure p1 or the height of the water column is reached in the lower tank. By means of the spring (36) of the control valve (58) of the NC type, the previously mentioned adjustment of the activation pressure of the control cylinder (57) is performed. The spring of the second pilot valve (59), which is NO-type, adjusts the pressure p1, which must be maintained permanently during the regulation procedure. When the set pressure p1 is reached, the control valve (59) is switched to the closed state, which results in the interruption of the opening of the valve (1), i.e. the movement of the regulating piston (12) in the closing direction. In this way, the ratio of pressures p1 and p2 can always be kept in a constant ratio p2/p1.

Na crtežu 20 prikazan je regulacijski ventil (1) u funkciji sigurnosnog otvaranja i brzog ispusta cjevovoda za slučaj naglog ispada u snabdijevanju električnom energijom pogona pumpi i sličnih kvarova kada nastaju uvjeti za povratno strujanje ili hidraulični udar. U ovoj konstrukciji koriste se upravljački ventili (58) NO-tipa i (59) NC-tipa su stalno pobuđeni bilo električki, hidraulički, pneumatski ili mehanički. Drawing 20 shows the control valve (1) in the function of safety opening and quick discharge of the pipeline in case of a sudden failure in the supply of electricity to the pump drive and similar failures when conditions for backflow or hydraulic shock arise. In this construction, control valves (58) of NO-type and (59) of NC-type are used, they are constantly energized either electrically, hydraulically, pneumatically or mechanically.

U slučaju ispada električne energije i pumpi stvoreni su uvjeti povratnog strujanja ili hidrauličnog udara. U tom slučaju automatski se prekida pobuda upravljačkog ventila (58) i njegova opruga (36) ga prebacuje u protočnu poziciju kada se putem komora C6 i C5 puni komora C2 tj. otvara ventil (1) i na taj način sprječava hidraulični udar. In the event of a failure of electricity and pumps, conditions for backflow or hydraulic shock are created. In this case, the actuation of the control valve (58) is automatically interrupted and its spring (36) switches it to the flow position when the C2 chamber is filled through the C6 and C5 chambers, i.e. the valve (1) opens, thus preventing hydraulic shock.

Kada se ponovo uspostavi neko dozvoljeno stanje, npr. snabdijevanje električnom energijom, upravljački ventil (58) dobiva pobudu i zatvara protok prema komori C6. Istovremeno ili sukladno upravljačkoj proceduri, pokreće se postupak zatvaranja ventila (1) koji se odvija putem pobuđivanja drugog pilot ventila (59) koji je NC tipa i koji je protočan u pobuđenom stanju. Sam proces zatvaranja ventila (1) odvija se na način da upravljački ventil (59) u pobuđenom stanju isprazni komoru C6 upravljačkog cilindra (57) i tako omogućava opruzi (6) ventila (1) povrat regulacijskog klipa (12) u zatvoreni položaj. When a permitted state is restored, eg power supply, the control valve (58) is energized and closes the flow to chamber C6. At the same time or in accordance with the control procedure, the process of closing the valve (1) is started, which takes place through the excitation of the second pilot valve (59), which is of the NC type and which flows in the excited state. The process of closing the valve (1) takes place in such a way that the control valve (59) in the excited state empties the chamber C6 of the control cylinder (57) and thus enables the spring (6) of the valve (1) to return the control piston (12) to the closed position.

Za ovakvo funkcioniranje sustava brzog ispusta i poslije zatvaranja ventila mora biti ispunjen uvjet da je izlazni tlak p1 u koji se npr. cjevovod putem ventila (1) prazni manji od tlaka p2. Drugim riječima rečeno, veća razlika tlakova omogućava brže zatvaranje ventila (1). For this type of functioning of the quick outlet system, even after closing the valve, the condition must be met that the outlet pressure p1, into which, for example, the pipeline is emptied via the valve (1), is lower than the pressure p2. In other words, a greater pressure difference enables faster closing of the valve (1).

Prijenosnik fluida (39) i u ovom slučaju štiti upravljački cilindar (57) dok izvedba upravljačkih ventila (58) i (59) mora uzimati u obzir svojstva fluida koji se transportira kroz ventil (1). The fluid carrier (39) also protects the control cylinder (57) in this case, while the design of the control valves (58) and (59) must take into account the properties of the fluid transported through the valve (1).

Kao i u ranije opisanim slučajevima autonomnog upravljanja nepovratni ventil (40) i ovdje služi za premošćivanje pilot ventila (59) sa svrhom smanjenja otpora povratnog strujanja hidrauličnog ulja iz komore C6 tj. osiguravanja pouzdanog i bez hidrauličnog otpora zatvaranja ventila (1). As in the previously described cases of autonomous control, the non-return valve (40) is also used here to bridge the pilot valve (59) with the purpose of reducing the resistance of the return flow of hydraulic oil from the chamber C6, i.e. ensuring reliable and hydraulic closing of the valve (1).

Na crtežu 21 sustav otvaranja za brzi ispust fluida funkcionalno je isti kao u opisu crteža 20 i zasniva se na gubitku pobude upravljačkog ventila (58). Različitost konstrukcije vidi se kod postupka ponovnog zatvaranja ventila (1) koje se odvija pražnjenjem komore C6 preko prijenosnika tlaka (39) i upravljačkog ventila (59) u poseban spremnik za prihvat fluida (43). Ovaj način upravljanja se koristi kod male razlike ulaznog i izlaznog tlaka (p2 i p1) što bi moglo utjecati na pouzdanost ponovnog zatvaranja ventila (1). Pri dimenzioniranju spremnika za prihvat fluida (43) treba uzeti u obzir vrstu fluida, volumen komore C6, tlak fluida i broj mogućih zatvaranja ventila (1) u jedinici vremena. In drawing 21, the opening system for rapid discharge of fluid is functionally the same as in the description of drawing 20 and is based on the loss of excitation of the control valve (58). The difference in construction can be seen in the process of reclosing the valve (1), which is carried out by emptying the C6 chamber through the pressure transmitter (39) and the control valve (59) into a special container for receiving the fluid (43). This control method is used with a small difference in inlet and outlet pressure (p2 and p1), which could affect the reliability of reclosing the valve (1). When dimensioning the container for fluid reception (43), the type of fluid, the volume of the chamber C6, the pressure of the fluid and the number of possible closures of the valve (1) per unit of time should be taken into account.

Crtež 22 prikazuje rješenje autonomne primjene regulacijskog ventila (1) u funkciji tzv. „by-pass“ ispusta za držanje konstantne razlike tlakova fluida p1 i p2 gornjeg (49) i donjeg (44) spremnika fluida. U konkretnom slučaju s crteža 22 - držanje konstantnog nivoa donjeg i gornjeg spremnika - regulacijski ventil (1) ima funkciju „by-pass“ ventila postojećoj zapornoj armaturi npr. u zasunima (47), putem kojeg se vrši pražnjenje gornjeg spremnika (49) kroz cjevovod (48) na brz i kvalitetan način. Pozicija (46) predstavlja leptirastu zaklopku kao zaštitu pumpe (45). Pražnjenje gornjeg spremnika (49) i automatsko punjenje donjeg spremnika (44) može se podesiti za otvaranje ventila (1) na bilo kojoj razlici tlakova fluida p1-p2 konstrukcijskim rješenjem prikazanim na crtežu 19 ili na upravljiv način opisan na crtežima 20 i 21. Drawing 22 shows the solution of the autonomous application of the control valve (1) in the function of the so-called "by-pass" outlet for maintaining a constant difference in fluid pressures p1 and p2 of the upper (49) and lower (44) fluid tanks. In the specific case from drawing 22 - maintaining a constant level of the lower and upper tank - the control valve (1) has the function of a "by-pass" valve to the existing shut-off fittings, for example in the latches (47), through which the upper tank (49) is emptied through pipeline (48) in a fast and high-quality way. Position (46) represents the butterfly valve as protection for the pump (45). The emptying of the upper tank (49) and the automatic filling of the lower tank (44) can be adjusted to open the valve (1) at any difference in fluid pressures p1-p2 by the construction solution shown in drawing 19 or in a controllable way described in drawings 20 and 21.

Primjer 8 – upotreba kao redukcijskog ventila Example 8 – use as a reduction valve

Crtež 23 prikazuje direktno upravljan regulacijski ventil (1) u autonomnom načinu funkcioniranja standardnog redukcijskog ventila sa zadatkom redukcije ulaznog tlaka p1 i „držanja“ izlaznog tlaka p2 na konstantno podešenoj vrijednosti. Oprugom (55) upravljačkog cilindra (57) vrši se podešavanje tlaka komore C1 hidrauličnog radnog cilindra (3) a time i određena otvorenost regulacijskog ventila (1) što za posljedicu ima odgovarajući podešeni izlazni tlak p2. U slučaju povećanja ulaznog tlaka fluida p1 za neki +Δp1 prenosi se transformirani hidraulični tlak putem prijenosnika fluida (39) do komore C6 upravljačkog cilindra (57), a iz njega u komoru C1 radnog cilindra (3), vezanu za komoru C5 i komoru C2 radnog cilindra vezanu za komoru C7. Podešavanje izlaznog tlaka p2 izvodi se pritezanjem/otpuštanjem opruge (55) upravljačkog cilindra (57) čime se podešava izlazni tlak p2 samim pomakom regulacijskog klipa (12) u smjeru -Δx /+Δx što dovodi do povećanja/smanjenja tlaka p2 i dalje njegovog držanja na toj podešenoj vrijednosti, tj. p2=const. Drawing 23 shows the directly controlled control valve (1) in the autonomous mode of functioning of the standard reduction valve with the task of reducing the inlet pressure p1 and "keeping" the outlet pressure p2 at a constant set value. The spring (55) of the control cylinder (57) adjusts the pressure of the chamber C1 of the hydraulic working cylinder (3) and thus the certain opening of the control valve (1), which results in a correspondingly adjusted output pressure p2. In the case of an increase in the inlet pressure of the fluid p1 by some +Δp1, the transformed hydraulic pressure is transmitted through the fluid transmitter (39) to the chamber C6 of the control cylinder (57), and from it to the chamber C1 of the working cylinder (3), connected to the chamber C5 and the chamber C2 of the working cylinder connected to the chamber C7. Adjusting the output pressure p2 is performed by tightening/unloading the spring (55) of the control cylinder (57), which adjusts the output pressure p2 by moving the control piston (12) in the -Δx /+Δx direction, which leads to an increase/decrease in the pressure p2 and its further maintenance at that set value, i.e. p2=const.

U slučaju pada ulaznog tlaka fluida p1 u odnosu na podešenu vrijednost djelovanjem opruge (55) upravljačkog cilindra (57) pada hidraulični tlak u komori C1 hidrauličnog radnog cilindra (3) što ima za posljedicu pomak regulacijskog klipa (12) za -Δx čime se vrši potrebno otvaranje regulacijskog ventila i zadržavanje namještenog izlaznog tlaka tj. p2=const. In the case of a drop in the inlet pressure of the fluid p1 in relation to the set value, due to the action of the spring (55) of the control cylinder (57), the hydraulic pressure in the chamber C1 of the hydraulic working cylinder (3) drops, which results in the displacement of the control piston (12) by -Δx, which it is necessary to open the control valve and maintain the set output pressure, i.e. p2=const.

Direktno upravljani redukcijski ventili u ovakvoj izvedbi praktični su za manje i srednje velike ventile, a što uglavnom ograničava opruga (55) upravljačkog cilindra (57). Directly controlled reduction valves in this version are practical for smaller and medium-sized valves, which is mainly limited by the spring (55) of the control cylinder (57).

Crtež 24 prikazuje predupravljani regulacijski ventil (1) s osnovnim načinom funkcioniranja opisanim prema crtežu 23. Razlika je što se upravljanje upravljačkim cilindrom (57) a time i regulacijom ulaznog i izlaznog tlaka odvija putem posebnog upravljivog ventila (60) proporcionalnog tipa. Oprugom (36) ventila (60) namješta se traženi tlak p2 koji želimo održavati na izlazu ventila. Predupravljani redukcijski ventil (1) koristi se za zahtjevnije regulacijske zadatke pogotovo kod ventila većih nazivnih promjera i većeg regulacijskog opsega tlakova. Drawing 24 shows the pre-operated control valve (1) with the basic mode of operation described according to drawing 23. The difference is that the control of the control cylinder (57) and thus the regulation of the inlet and outlet pressure takes place through a special controllable valve (60) of proportional type. The spring (36) of the valve (60) sets the desired pressure p2 that we want to maintain at the valve outlet. The pre-controlled reduction valve (1) is used for more demanding control tasks, especially for valves with larger nominal diameters and a larger pressure control range.

Crtež 25 prikazuje regulacijski ventil u funkciji redukcije ulaznog tlaka fluida p1 na neki izlazni tlak p2, ali i održavanje njihove razlike na nekoj proporcionalnoj podešenoj vrijednosti. Razlika ulaznog p1 i izlaznog p2 tlaka fluida uvjetovana je stupnjem otvorenosti ventila, a podešava se hidrauličnim upravljačkim cilindrom (57) točnije putem opruga (55) i (56). Kada dođe do povećanja ulaznog tlaka fluida p1 za neki +Δp1, putem upravljačkog cilindra (57) dolazi do povećanja hidrauličnog tlaka u komori C2 radnog cilindra (3) i nove ravnotežne vrijednosti tlakova komora C1 i C2, i do otvaranja ventila za -Δx što povećava izlazni tlak fluida p2 za +Δp2. Na taj način se održava omjer tlakova p1/p2=const., sukladno podešenim karakteristikama opruga (55) i (56) upravljačkog cilindra (57) koje upravljaju otvaranjem ili zatvaranjem ventila. Drawing 25 shows the control valve in the function of reducing the inlet pressure of the fluid p1 to some outlet pressure p2, but also maintaining their difference at some proportional adjusted value. The difference between inlet p1 and outlet p2 fluid pressure is determined by the degree of valve opening, and is adjusted by the hydraulic control cylinder (57) or more precisely by springs (55) and (56). When there is an increase in the inlet pressure of the fluid p1 by some +Δp1, through the control cylinder (57) there is an increase in the hydraulic pressure in the chamber C2 of the working cylinder (3) and a new equilibrium value of the pressures of the chambers C1 and C2, and the opening of the valve by -Δx which increases the output pressure of the fluid p2 by +Δp2. In this way, the pressure ratio p1/p2=const. is maintained, in accordance with the adjusted characteristics of the springs (55) and (56) of the control cylinder (57), which control the opening or closing of the valve.

Crtež 26 prikazuje predupravljani regulacijski ventil (1) s osnovnim načinom funkcioniranja opisanim prema crtežu 25. Razlika je što se upravljanje upravljačkim cilindrom (57) ostvaruje putem opruga (36) upravljačkih ventila (60) proporcionalnog tipa koji su hidraulički aktivirani. Oprugama (36) namješta se traženi tlak p2 koji želimo održavati stalnim. Predupravljani redukcijski ventil (1) koristi se za zahtjevnije regulacijske zadatke pogotovo kod ventila većih nazivnih promjera i većeg regulacijskog opsega tlakova. Prijenosnici fluida (39), kao i u ostalim shemama, vrše razgraničenje fluida koji se transportira ventilom (1) i hidrauličnog ulja koje se koristi u sistemu regulacije i podešavanja ventilom. Na taj način dobiva se na kvaliteti, pouzdanosti i dugotrajnosti korištenja uz smanjenje troškova održavanja. Drawing 26 shows a pre-actuated control valve (1) with the basic mode of operation described according to drawing 25. The difference is that the control of the control cylinder (57) is realized by means of the springs (36) of the control valves (60) of the proportional type which are hydraulically activated. Springs (36) set the required pressure p2, which we want to keep constant. The pre-controlled reduction valve (1) is used for more demanding control tasks, especially for valves with larger nominal diameters and a larger pressure control range. Fluid carriers (39), as in other schemes, separate the fluid that is transported by the valve (1) and the hydraulic oil that is used in the regulation and adjustment system by the valve. In this way, quality, reliability and long-term use are obtained while reducing maintenance costs.

Crtež 27 prikazuje višestruku upotrebljivost regulacijskog ventila (1) u autonomnom načinu pogona za klasičnu prilagodbu tlakova različitih potrošača. Tako se ventil može koristiti kao redukcijski ventil na ulazu grana cjevovoda privatnih (51), industrijskih (52) i kombiniranih (53) potrošača, a na kraju tih linija i kao ventili za sprječavanje hidrauličnog udara. Drawing 27 shows the multiple usability of the control valve (1) in the autonomous operation mode for the classic adjustment of the pressures of different consumers. Thus, the valve can be used as a reduction valve at the entrance of the pipeline branches of private (51), industrial (52) and combined (53) consumers, and at the end of these lines also as valves to prevent hydraulic shock.

Potrošači na linijama (51), (52) i (53) snabdijevaju se iz jednog pumpnog postrojenja koje se sastoji od pumpe (45) za fluid, ventila (1) u funkciji nepovratnog ventila zaštite pumpe (serijski vezanog pumpi (45)), i ventila (1) paralelno vezanog na pumpu (45) kao zaštite sustava od hidrauličnog udara i spremnika (44), kao što je prikazano npr. crtežom 15. Consumers on lines (51), (52) and (53) are supplied from one pumping plant consisting of a pump (45) for fluid, a valve (1) in the function of a pump protection check valve (connected in series with pump (45)), and the valve (1) connected in parallel to the pump (45) as protection of the system against hydraulic shock and the tank (44), as shown, for example, in drawing 15.

Primjer 9 – Proračun sila za otvoren, zatvoren i među-položaj ventila Example 9 – Calculation of forces for open, closed and intermediate valve positions

Crtež 28 predstavlja prikaz sila i tlakova na otvoren ventil (1) kao i za neki međupoložaj regulacijskog klipa (12) ventila (1). U ranije diskutiranim primjerima 1-8 prilikom podešavanja radnog područja ventila tj. odnosa sila opruge ventila (6), hidro-akumulatora (33) ili kod opisanog direktnog upravljanja sila opruga (55) upravljačkog cilindra (57) ili kod predupravljanja transformiranih sila fluida, prilikom otvaranja ili zatvaranja ventila - treba voditi računa da aksijalna sila Fx kojom fluid djeluje na regulacijski klip (12), vidjeti crtež 28, tijekom regulacijskog hoda nije konstantna veličina. Drawing 28 represents the representation of forces and pressures on the open valve (1) as well as for some intermediate position of the regulating piston (12) of the valve (1). In the previously discussed examples 1-8 when adjusting the working area of the valve, i.e. the relationship between the forces of the valve spring (6), hydraulic accumulator (33) or in the described direct control of the spring forces (55) of the control cylinder (57) or in the pre-control of the transformed fluid forces, when opening or closing the valve - it should be taken into account that the axial force Fx exerted by the fluid on the regulating piston (12), see drawing 28, is not a constant value during the regulating stroke.

Aksijalna sila se mijenja po smjeru i iznosu prema formuli: The axial force changes in direction and amount according to the formula:

Fx= CFX∙(DN²π/4)∙(p1-p2) Fx= CFX∙(DN²π/4)∙(p1-p2)

gdje parametar CFX predstavlja koeficijent aksijalne sile i proračunava se hidrodinamičkim jednadžbama, a DN je nominalni promjer ventila. where the parameter CFX represents the coefficient of axial force and is calculated by hydrodynamic equations, and DN is the nominal diameter of the valve.

Nakon provedenih numeričkih hidrodinamičkih analiza koeficijenta aksijalne sile ustanovljeno je da aksijalna sila na regulacijski klip (12) naglo mijenja smjer neposredno prije samog zatvaranja ventila. To znači da u većem radnom području fluid „povlači“ regulacijski klip (12) u smjeru strujanja, dok ga neposredno prije zatvaranja „gura“ prema nazad. Pri tome maksimalna vrijednost aksijalne sile iznosi svega 10% umnoška razlike tlakova koji djeluje na ventil i površine čela regulacijskog klipa (12). After numerical hydrodynamic analyzes of the axial force coefficient, it was established that the axial force on the regulating piston (12) suddenly changes direction immediately before the valve closes. This means that in a larger working area, the fluid "pulls" the regulating piston (12) in the direction of flow, while immediately before closing it "pushes" it backwards. At the same time, the maximum value of the axial force is only 10% of the product of the pressure difference acting on the valve and the front surface of the regulating piston (12).

Ova činjenica je izuzetno važna prilikom primjene ventila u autonomnom načinu funkcioniranja ventila tj. bez učešća vanjske energije. Pri tome mora biti zadovoljen uvjet ravnoteže sila koje djeluju na regulacijski klip u međupoložaju, a koji glasi: This fact is extremely important when applying the valve in the autonomous mode of functioning of the valve, i.e. without the participation of external energy. In doing so, the balance condition of the forces acting on the regulating piston in the intermediate position must be satisfied, which reads:

Fx = Fh1 - Fh2 + Fs Fx = Fh1 - Fh2 + Fs

odnosno prema crtežu 29 u zatvorenom položaju regulacijskog klipa: that is, according to drawing 29 in the closed position of the regulating piston:

Fx = Fp2 - Fp1 + Fh1 - Fh2 + Fs Fx = Fp2 - Fp1 + Fh1 - Fh2 + Fs

gdje korišteni simboli imaju slijedeće značenje: where the symbols used have the following meaning:

Fh1 - sila hidrauličnog tlaka u komori C1 cilindra (3) Fh1 - force of hydraulic pressure in the chamber C1 of the cylinder (3)

Fh2 - sila hidrauličnog tlaka u komori C2 cilindra (3) Fh2 - hydraulic pressure force in the C2 cylinder chamber (3)

Fp1 - sila uslijed djelovanja vanjskog tlaka p1 Fp1 - force due to external pressure p1

Fp2 - rezultanta djelovanja tlaka p2 na obje strane regulacijskog klipa (12) Fp2 - resultant effect of pressure p2 on both sides of the regulating piston (12)

Fs - sila djelovanja opruge (6) ili hidro-akumulatora (33) Fs - the force of the spring (6) or hydro-accumulator (33)

D1 i D2 predstavljaju bitne dimenzije regulacijskog klipa (12), u dijelu koji se uvlači u središnji dio tijela (2) - D1 i brtvenonog dijela koji ulazi u izlazni dio ventila (15) – D2. Numeričke analize pokazale su izuzetnu efikasnost ventila (1) prema predmetnom izumu za korištenje u regulacijskim primjerima 1-8. D1 and D2 represent the essential dimensions of the regulating piston (12), in the part that is inserted into the central part of the body (2) - D1 and the sealing part that enters the outlet part of the valve (15) - D2. Numerical analyzes showed the exceptional efficiency of the valve (1) according to the subject invention for use in regulation examples 1-8.

Treba reći da u svim aspektima primjene opisanim u primjerima 2-8 linearni davač položaja može biti ili električnog ili mehaničkog tipa, već prema potrebi za praćenjem tijeka odvijanja regulacijskog procesa koji se vrši ventilom koji je predmet ovog izuma. It should be said that in all aspects of the application described in examples 2-8, the linear position transmitter can be either of the electrical or mechanical type, but according to the need for monitoring the progress of the regulation process that is carried out by the valve that is the subject of this invention.

U primjerima 2-8 stručnjaku područja je jasno da prijenosnik tlaka fluida (39) nije potrebno ugrađivati u sustave koji transportiraju tzv. „čiste fluide“; ulje, plin, nafta, pitka voda, itd. Prema tome, umjesto rečenog prijenosnika tlaka fluida (39) - direktno se za regulaciju u autonomnom pogonu može koristiti tlak fluida koji se prijenosi osnovnom linijom kojom taj fluid protječe i čiji tok se regulira rečenim ventilom. Takav „čisti“ radni fluid koji se transportira cjevovodom ulazi u ulazne komore upravljačkog cilindra (57) direktno ili putem jednog ili više upravljačkih ventila (58), (59), (60); dok je hidraulički krug izlaznih komora upravljačkog cilindra (57) i hidrauličkog cilindra (3) potpuno odvojen od radnog fluida. In examples 2-8, it is clear to an expert in the field that the fluid pressure transmitter (39) does not need to be installed in systems that transport the so-called "pure fluids"; oil, gas, oil, drinking water, etc. Therefore, instead of said fluid pressure transmitter (39) - fluid pressure can be used directly for regulation in the autonomous drive, which is transmitted through the basic line through which that fluid flows and whose flow is regulated by said valve . Such "pure" working fluid transported through the pipeline enters the inlet chambers of the control cylinder (57) directly or through one or more control valves (58), (59), (60); while the hydraulic circuit of the output chambers of the control cylinder (57) and the hydraulic cylinder (3) is completely separated from the working fluid.

Industrijska primjenjivost Industrial applicability

Industrijska primjenjivost izuma je neupitna i očigledna kao regulacijskog i zapornog ventila za regulaciju protoka i tlakova u sustavu za transport vode, zraka, plina i nafte, posebice kada su u pitanju veliki transporti u jedinici vremena. Praktična namjena je korištenje na svim mjestima na kojima je potrebna pouzdana, linearna i ponovljiva kontrola toka fluida. The industrial applicability of the invention is unquestionable and obvious as a control and shut-off valve for flow and pressure regulation in the water, air, gas and oil transport system, especially when it comes to large transports per unit of time. The practical purpose is to use in all places where reliable, linear and repeatable fluid flow control is required.

Pozivne oznake Call signs

1 – ventil (tijelo ventila) 1 – valve (valve body)

2 – središnji dio tijela 2 – the central part of the body

3 – hidraulični cilindar 3 – hydraulic cylinder

4 – klip cilindra 4 – cylinder piston

5 – klipnjača 5 – connecting rod

6 – opruga ventila 6 – valve spring

7 – poklopac linearnog davača 7 – linear encoder cover

8 – linearni davač položaja 8 – linear position encoder

9 – uzdužne vodilice (regulacijskog klipa) 9 – longitudinal guides (of the regulating piston)

10 – glava hidrauličnog cilindra 10 – hydraulic cylinder head

11 – brtva klipa između (12) i (2) 11 – piston seal between (12) and (2)

12 – regulacijski klip 12 – regulating piston

13 – matica koja priteže (12) za (5) 13 – nut that tightens (12) for (5)

14 – brtva između (15) i (12) u zatvorenom stanju ventila 14 – seal between (15) and (12) in the closed state of the valve

15 – izlazni dio tijela ventila 15 – outlet part of the valve body

16 – rebra 16 – ribs

17 – hidraulički kanali 17 – hydraulic channels

18 – kanali za vodiče (linearnog davača položaja) 18 – channels for guides (linear position sensor)

19 – mjereni razmak 19 – measured distance

20 – magnetostrikcijski valovod (sonda) 20 – magnetostrictive waveguide (probe)

21 – permanentni magnet električnog linearnog davača položaja 21 – permanent magnet of the electric linear position transmitter

22 - prigušno nepovratni ventil komore C1 22 - damping check valve of chamber C1

23 - prigušno nepovratni ventil komore C2 23 - damping check valve of chamber C2

24 - mjerač protoka 24 - flow meter

25 - tlačna sonda 25 - pressure probe

26 - tlačna sonda 26 - pressure probe

27 - izvor tlačnog fluida 27 - source of pressure fluid

28 - procesor regulacijskog ventila 28 - control valve processor

29 - udaljeno upravljačko mjesto 29 - remote management site

30 - hidraulični razvodnik prekretanja smjera 30 - hydraulic distributor for direction reversal

31 – jednoradno ili dvoradno pneumo-hidraulično pojačalo tlaka 31 – single or double pneumo-hydraulic pressure amplifier

32 – spremnik ulja 32 – oil tank

33 – hidraulični akumulator komore C1 33 – hydraulic accumulator of chamber C1

34 - ručni hidraulični razvodnik 34 - manual hydraulic distributor

35 - ručna pumpa 35 - manual pump

36 - opruga upravljačkog ventila 36 - control valve spring

37 – slavina 37 – faucet

38 - slavina 38 - faucet

39 – prijenosnik tlaka fluida 39 – fluid pressure transmitter

40 - nepovratni ventil 40 - non-return valve

41 - slavina prigušenja pilot ventila (58) 41 - pilot valve damping valve (58)

43 - spremnik prihvata fluida 43 - fluid receiving tank

44 - donji spremnik fluida 44 - lower fluid tank

45 - pumpa 45 - pump

46 – leptirasta zaklopka 46 – butterfly valve

47 – zasun ili neki drugi tip zapornog organa 47 – latch or some other type of locking device

48 - tlačni vod 48 - pressure line

49 - gornji spremnik fluida 49 - upper fluid reservoir

50 – odvod gornjeg spremnika 50 – upper tank drain

51 - grana cjevovoda privatnih potrošača 51 - private consumer pipeline branch

52 - grana cjevovoda industrijskih potrošača 52 - branch of pipeline of industrial consumers

53 - grana cjevovoda kombiniranih potrošača 53 - branch of the pipeline of combined consumers

55 - opruga za podešavanje tlaka komore C6 55 - spring for adjusting the pressure of the chamber C6

56 - opruga za podešavanje tlaka komore C8 56 - spring for adjusting chamber pressure C8

57 - upravljački cilindar 57 - control cylinder

58 – upravljački ventil NC tipa 58 – NC type control valve

59 – upravljački ventil NO tipa 59 – NO type control valve

60 – upravljački ventil proporcionalnog tipa 60 – proportional control valve

Claims (19)

1. Hidraulički aksijalno klipni regulacijski ventil se sastoji od: - tijela ventila (1) i središnjeg dijela (2) oko kojeg opstrujava fluid u otvorenom stanju ventila, i gdje je središnji dio (2) povezan s jednim ili više rebara (16) s tijelom ventila (1), gdje su rečena rebra (16) opremljena hidrauličkim kanalima (17) i dodatnim kanalima za vodiče (18); - središnjeg dijela (2) s hidrauličnim cilindrom (3) u komunikaciji s rečenim hidrauličnim kanalima (17), unutar kojeg se nalazi tijelo hidrauličnog klipa (4) i klipnjača (5) za koju je vezan regulacijski klip (12); i - jedne ili više brtvi (11) koje trajno brtve između središnjeg dijela (2) i regulacijskog klipa (12), te jedne ili više brtvi (14) između regulacijskog klipa (12) i izlaznog dijela tijela ventila (15) koje brtve samo u zatvorenom položaju ventila; naznačen time: - da je linearni davač položaja (8) regulacijskog klipa (12) smješten centralno unutar hidrauličnog cilindra (3) središnjeg dijela (2) ventila; - da je gibanje regulacijskog klipa (12) definirano uzdužnim vodilicama klipa (9) smještenim s unutrašnje strane središnjeg dijela tijela (2); i - da je regulacijski klip (12) opremljen utorima i provrtima za hidrostatičko rasterećenje regulacijskog klipa (12).1. The hydraulic axial piston control valve consists of: - the valve body (1) and the central part (2) around which the fluid flows when the valve is open, and where the central part (2) is connected with one or more ribs (16) to the valve body (1), where said ribs ( 16) equipped with hydraulic channels (17) and additional channels for guides (18); - of the central part (2) with the hydraulic cylinder (3) in communication with said hydraulic channels (17), inside which is the body of the hydraulic piston (4) and the connecting rod (5) to which the regulating piston (12) is attached; and - one or more seals (11) that permanently seal between the central part (2) and the regulating piston (12), and one or more seals (14) between the regulating piston (12) and the outlet part of the valve body (15) that seal only in closed valve position; indicated by: - that the linear encoder of the position (8) of the regulating piston (12) is located centrally inside the hydraulic cylinder (3) of the central part (2) of the valve; - that the movement of the regulating piston (12) is defined by the longitudinal guides of the piston (9) located on the inside of the central part of the body (2); and - that the regulating piston (12) is equipped with slots and holes for hydrostatic relief of the regulating piston (12). 2. Hidraulički aksijalno klipni regulacijski ventil prema zahtjevu 1, naznačen time, da: - regulacijski klip (12) u svojoj glavi ima smještenu oprugu (6) koja se s jedne strane upire o vanjsku stranu hidrauličnog cilindra (3), a s druge o unutrašnje dno regulacijskog klipa (12); i - gdje ugrađena opruga (6) ima elastičnu energiju dovoljnu da u slučaju nestanka tlaka u hidrauličnim kanalima (17) sigurnosno postavlja regulacijski klip (12) u položaj da u cijelosti zatvara tok fluida kroz ventil.2. Hydraulic axial piston control valve according to claim 1, characterized in that: - the regulating piston (12) has a spring (6) located in its head, which on one side rests against the outer side of the hydraulic cylinder (3), and on the other against the inner bottom of the regulating piston (12); and - where the built-in spring (6) has enough elastic energy to safely set the regulating piston (12) in the position to completely close the flow of fluid through the valve in the event of a loss of pressure in the hydraulic channels (17). 3. Hidraulički aksijalno klipni regulacijski ventil prema zahtjevu 1, naznačen time, da se za sigurnosno vraćanje regulacijskog klipa (12) u zatvoreni položaj koristi isključivo hidraulički tlak iz vanjskog izvora tlačnog fluida (27).3. Hydraulic axial piston regulating valve according to claim 1, characterized in that only hydraulic pressure from an external source of pressure fluid (27) is used to safely return the regulating piston (12) to the closed position. 4. Hidraulički aksijalno klipni regulacijski ventil prema zahtjevu 2, naznačen time, da se za sigurnosno vraćanje regulacijskog klipa (12) u zatvoreni položaj dodatno koristi i hidraulički tlak vanjskog izvora (27) tlačnog fluida.4. Hydraulic axial piston regulating valve according to claim 2, characterized in that the hydraulic pressure of the external source (27) of the pressure fluid is additionally used to safely return the regulating piston (12) to the closed position. 5. Hidraulički aksijalno klipni regulacijski ventil prema bilo kojem od prethodnih zahtjeva, naznačen time da: - je davač položaja (8) električnog tipa koji pretvara razmak (19) u mjerljivu linearnu električnu veličinu koja se žicama provodi kroz jedan ili više provrta (18) izvedenih u rebrima (16) i izvodi iz središnjeg dijela (2) tijela ventila (1), i - gdje je davač položaja (8) zatvoren poklopcem (7) prednjeg dijela (2) ventila.5. Hydraulic axial piston control valve according to any of the preceding requirements, characterized in that: - is a position sensor (8) of an electrical type that converts the distance (19) into a measurable linear electrical quantity which is carried by wires through one or more holes (18) made in the ribs (16) and taken out from the central part (2) of the valve body (1 ), i - where the position transmitter (8) is closed by the cover (7) of the front part (2) of the valve. 6. Hidraulički aksijalno klipni regulacijski ventil prema zahtjevu 5, naznačen time, da se podaci prikupljeni iz davača položaja (8) o položaju regulacijskog klipa (12) dodatno numerički obrađuju u procesoru regulacijskog ventila (28).6. Hydraulic axial piston control valve according to claim 5, characterized in that the data collected from the position transmitter (8) about the position of the control piston (12) are additionally numerically processed in the control valve processor (28). 7. Upotreba hidrauličkog aksijalno klipnog regulacijskog ventila definiranog zahtjevima 5-6, naznačena time, da se koristi u PID regulaciji u zatvorenoj petlji gdje procesor regulacijskog ventila (28) - autonomno ili prema nalozima udaljenog upravljačkog mjesta (29) - izvršava protokol prema prikupljenim podacima iz tlačnih sonda (25) i (26), mjerača protoka (24) i linearnog davača položaja (8), i gdje se za zatvaranje ventila koristi energija opruge (6), ili energija pohranjenom u vanjski izvor tlaka fluida (27) ili kombinirano.7. The use of a hydraulic axial piston control valve defined in claims 5-6, characterized by the fact that it is used in PID regulation in a closed loop where the processor of the control valve (28) - autonomously or according to the orders of the remote control site (29) - executes the protocol according to the collected data from pressure probes (25) and (26), flow meter (24) and linear position transmitter (8), and where spring energy (6) is used to close the valve, or energy stored in an external source of fluid pressure (27) or combined . 8. Upotreba hidrauličkog aksijalno klipnog regulacijskog ventila definiranog bilo kojim od prethodnih zahtjeva 1-6, naznačena time, da se pomicanje regulacijskog klipa (12) u oba smjera vrši komprimiranim zrakom i uz pomoć pneumo-hidrauličnog pojačala tlaka (31).8. The use of a hydraulic axial piston control valve defined by any of the preceding claims 1-6, characterized by the fact that the movement of the control piston (12) in both directions is performed by compressed air and with the help of a pneumo-hydraulic pressure amplifier (31). 9. Upotreba hidrauličkog aksijalno klipnog regulacijskog ventila definiranog bilo kojim od prethodnih zahtjeva 1-6, naznačena time, da se položajem regulacijskog klipa (12) upravlja pomoću ručne pumpe (35).9. The use of a hydraulic axial piston control valve defined by any of the preceding claims 1-6, characterized in that the position of the control piston (12) is controlled by a hand pump (35). 10. Upotreba hidrauličkog aksijalno klipnog regulacijskog ventila definiranog bilo kojim od prethodnih zahtjeva 1-6, naznačena time, da se koristi kao nepovratan ventil u slučaju autonomnog pogona, gdje se energija za pogon uzima u formi radnog fluida slavinom (37) i putem prijenosnika tlaka fluida (39) vodi na upravljački cilindar (57) – direktno ili preko upravljačkih ventila – a upravljački cilindar (57) putem prigušeno nepovratnog ventila (23) upravlja radnim cilindrom (3).10. The use of a hydraulic axial piston control valve defined by any of the preceding claims 1-6, characterized in that it is used as a non-return valve in the case of an autonomous drive, where the energy for the drive is taken in the form of a working fluid by a tap (37) and via a pressure transmitter fluid (39) leads to the control cylinder (57) - directly or through the control valves - and the control cylinder (57) controls the working cylinder (3) through the damped non-return valve (23). 11. Upotreba hidrauličkog aksijalno klipnog regulacijskog ventila prema zahtjevu 10, naznačena time, da se upravljačkim cilindrom (57) predupravlja s jednim ili dva upravljačka ventila (58) i (59) vezanim preko prijenosnika tlaka fluida (39) za osnovnu liniju fluida.11. Use of a hydraulic axial piston control valve according to claim 10, characterized in that the control cylinder (57) is pre-controlled with one or two control valves (58) and (59) connected via the fluid pressure transmitter (39) to the fluid baseline. 12. Upotreba hidrauličkog aksijalno klipnog regulacijskog ventila prema zahtjevu 11, naznačena time, da se upravljačkim cilindrom (57) upravlja dodatnom pobudom na upravljačkom ventilu (58) vezanom za spremnik za prihvat fluida (43).12. The use of a hydraulic axial piston control valve according to claim 11, characterized in that the control cylinder (57) is controlled by an additional excitation on the control valve (58) connected to the fluid receiving tank (43). 13. Upotreba hidrauličkog aksijalno klipnog regulacijskog ventila definiranog bilo kojim od prethodnih zahtjeva 10-12, naznačena time, da se koristi u sigurnosnom spoju za prinudno zatvaranje u slučaju puknuća tlačnog voda (48).13. The use of a hydraulic axial piston control valve defined by any of the preceding claims 10-12, characterized in that it is used in a safety connection for forced closure in the event of a rupture of the pressure line (48). 14. Upotreba hidrauličkog aksijalno klipnog regulacijskog ventila definiranog bilo kojim od prethodnih zahtjeva 1-6, naznačena time, da se koristi u slučaju povratnog toka fluida ili hidrauličkog udara, gdje se energija za pogon uzima u formi radnog fluida slavinom (38) i putem prijenosnika tlaka fluida (39) vodi na upravljački cilindar (57) – direktno ili preko upravljačkih ventila – a upravljački cilindar (57) putem prigušeno nepovratnog ventila (23) upravlja radnim cilindrom (3).14. The use of a hydraulic axial piston control valve defined by any of the preceding claims 1-6, characterized in that it is used in the case of fluid backflow or hydraulic shock, where the drive energy is taken in the form of a working fluid by a tap (38) and via a transmission of fluid pressure (39) leads to the control cylinder (57) - directly or through the control valves - and the control cylinder (57) controls the working cylinder (3) through the damped non-return valve (23). 15. Upotreba hidrauličkog aksijalno klipnog regulacijskog ventila prema zahtjevu 14, naznačena time, da se upravljačkim cilindrom (57) predupravlja s jednim ili dva upravljačka ventila (58) i (59) vezanim preko prijenosnika tlaka fluida (39) za osnovnu liniju fluida.15. Use of a hydraulic axial piston control valve according to claim 14, characterized in that the control cylinder (57) is pre-controlled with one or two control valves (58) and (59) connected via the fluid pressure transmitter (39) to the fluid baseline. 16. Upotreba hidrauličkog aksijalno klipnog regulacijskog ventila prema zahtjevu 15, naznačena time, da se upravljačkim cilindrom (57) upravlja dodatnom pobudom na upravljačkom ventilu (58) vezanom za spremnik za prihvat fluida (43).16. The use of a hydraulic axial piston control valve according to claim 15, characterized in that the control cylinder (57) is controlled by an additional excitation on the control valve (58) connected to the fluid receiving tank (43). 17. Upotreba hidrauličkog aksijalno klipnog regulacijskog ventila definiranog bilo kojim od prethodnih zahtjeva 1-6, naznačena time, da se koristi u funkciji redukcije ulaznog tlaka fluida p1 na neki izlazni tlak p2 i održavanje njihove razlike na nekoj proporcionalnoj vrijednosti, gdje se energija za pogon uzima u formi radnog fluida iz jedne slavine (37) i ili iz obje slavine (37) i (38), i gdje se putem odgovarajućih prijenosnika tlaka fluida (39) rečeni tlakovi p1 i p2 vode na upravljački cilindar (57) – direktno ili preko upravljačkih ventila – a upravljački cilindar (57) putem prigušeno nepovratnog ventila (22) i (23) upravlja radom radnog cilindra (3) koji pokreće regulacijski klip (12).17. The use of a hydraulic axial piston control valve defined by any of the preceding claims 1-6, characterized in that it is used in the function of reducing the fluid inlet pressure p1 to some outlet pressure p2 and maintaining their difference at some proportional value, where the drive energy is taken in the form of a working fluid from one faucet (37) and or from both faucets (37) and (38), and where the said pressures p1 and p2 are led to the control cylinder (57) via the corresponding fluid pressure transmitters (39) - directly or through the control valves – and the control cylinder (57) through the damped non-return valve (22) and (23) controls the operation of the working cylinder (3) which drives the control piston (12). 18. Upotreba hidrauličkog aksijalno klipnog regulacijskog ventila prema zahtjevu 17, naznačena time, da se upravljačkim cilindrom (57) predupravlja s jednim ili dva proporcionalna upravljačka ventila (60) vezanih preko njihovih prijenosnika tlaka fluida (39) za osnovnu liniju fluida slavinama (37) i (38).18. The use of a hydraulic axial piston control valve according to claim 17, characterized in that the control cylinder (57) is pre-controlled with one or two proportional control valves (60) connected via their fluid pressure transmitters (39) to the basic fluid line by taps (37) and (38). 19. Upotreba hidrauličkog aksijalno klipnog regulacijskog ventila definiranog bilo kojim od prethodnih zahtjeva 10-18, naznačena time, da su u rečenim hidrauličnim linijama ispušteni prijenosnici tlaka fluida (39) te da radni fluid koji se transportira cjevovodom ulazi u ulazne komore upravljačkog cilindra (57) direktno ili putem jednog ili više upravljačkih ventila (58), (59), (60); dok je hidraulički krug izlaznih komora upravljačkog cilindra (57) i hidrauličkog cilindra (3) potpuno odvojen od radnog fluida.19. The use of a hydraulic axial piston control valve defined by any of the previous claims 10-18, characterized in that fluid pressure transmitters (39) are released in said hydraulic lines and that the working fluid transported through the pipeline enters the inlet chambers of the control cylinder (57 ) directly or through one or more control valves (58), (59), (60); while the hydraulic circuit of the output chambers of the control cylinder (57) and the hydraulic cylinder (3) is completely separated from the working fluid.
HR20100273A 2009-05-20 2010-05-17 Hydraulic axial piston control valve and its application HRP20100273A2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
HR20100273A HRP20100273A2 (en) 2010-05-17 2010-05-17 Hydraulic axial piston control valve and its application
RSP20130388 RS52958B (en) 2009-05-20 2010-05-19 Regulation valve with hydraulic axial piston and its use
EP20100728876 EP2433037B1 (en) 2009-05-20 2010-05-19 Regulation valve with hydraulic axial piston and its use
PCT/HR2010/000014 WO2010133902A2 (en) 2009-05-20 2010-05-19 Hydraulic axial piston regulating valve and its application
US13/321,181 US8931504B2 (en) 2009-05-20 2010-05-19 Hydraulic axial piston regulating valve and its application
HRP20130875AT HRP20130875T1 (en) 2009-05-20 2013-09-18 Regulation valve with hydraulic axial piston and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HR20100273A HRP20100273A2 (en) 2010-05-17 2010-05-17 Hydraulic axial piston control valve and its application

Publications (1)

Publication Number Publication Date
HRP20100273A2 true HRP20100273A2 (en) 2011-11-30

Family

ID=45000185

Family Applications (1)

Application Number Title Priority Date Filing Date
HR20100273A HRP20100273A2 (en) 2009-05-20 2010-05-17 Hydraulic axial piston control valve and its application

Country Status (1)

Country Link
HR (1) HRP20100273A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11598444B2 (en) 2019-03-27 2023-03-07 Ofip Limited Device for controlling fluid flow

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11598444B2 (en) 2019-03-27 2023-03-07 Ofip Limited Device for controlling fluid flow
EP3784933B1 (en) * 2019-03-27 2024-04-24 OFIP Limited Device for controlling fluid flow

Similar Documents

Publication Publication Date Title
US8931504B2 (en) Hydraulic axial piston regulating valve and its application
US11359735B2 (en) Axial valve of the modular concept of construction
CA2469838C (en) Water supply system
US20110083746A1 (en) Smart valve utilizing a force sensor
CN110023185B (en) Hydraulic mooring cable securing device, system and method
US9920852B2 (en) Subsea electric actuator
US20160245425A1 (en) Actuator for a valve
CN102788056A (en) Hydraulic control system of electro-hydraulic feedback proportion throttle cartridge valve
US9915372B2 (en) High integrity pressure protecting system (HIPPS) for a fluid line
CN108167508A (en) Electro-hydraulic valve emergent cut-out apparatus
HRP20100273A2 (en) Hydraulic axial piston control valve and its application
WO2003100303A2 (en) Flow measurement and control system for positive displacement pumps
CN201787168U (en) Hydraulic electromagnetic ball valve with valve core position monitor
US11280359B2 (en) Non-return valve system with electronic control
US3223114A (en) Automatic shut-off for pipeline
CN105805405A (en) Seawater hydraulic proportional flow control valve
US10371284B2 (en) Local position indicator for subsea isolation valve having no external position indication
CN208123141U (en) Electro-hydraulic valve emergent cut-out apparatus
CN108799256B (en) Backflushing explosion-proof flow cut-off valve group
HRPK20190875B3 (en) Modular concept of the axial valve
RU95777U1 (en) HYDRAULIC VALVE
GB2510519A (en) Valve with force sensor
CN105579385A (en) Lifting-device brake system
EP3794254A2 (en) Axial valve of the modular concept of construction
NO811257L (en) FLUIDUM PRESSURE DEVICE.

Legal Events

Date Code Title Description
A1OB Publication of a patent application
OBST Application withdrawn