HRP20080101A2 - Building robot - Google Patents

Building robot Download PDF

Info

Publication number
HRP20080101A2
HRP20080101A2 HR20080101A HRP20080101A HRP20080101A2 HR P20080101 A2 HRP20080101 A2 HR P20080101A2 HR 20080101 A HR20080101 A HR 20080101A HR P20080101 A HRP20080101 A HR P20080101A HR P20080101 A2 HRP20080101 A2 HR P20080101A2
Authority
HR
Croatia
Prior art keywords
construction
robot according
fact
construction robot
manipulator
Prior art date
Application number
HR20080101A
Other languages
Croatian (hr)
Inventor
Merlić Dragan
Original Assignee
Merlić Dragan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merlić Dragan filed Critical Merlić Dragan
Priority to HR20080101A priority Critical patent/HRP20080101A2/en
Publication of HRP20080101A2 publication Critical patent/HRP20080101A2/en

Links

Abstract

Građevinski robot je jednostavno i efektivno inovativno rješenje u suvremenom građevinarstvu. Jednostavnošću konstrukcije omogućava brzu montažu na gradilištu, a svojom fleksibilnosti omogućava gradnju različitih oblika bez direktnog utjecaja ljudskog faktora na ishod. Svojom preciznošću te boljom iskoristivošću vremena dalje cijenovu prednost pred klasičnim ljudskim radom.The construction robot is a simple and effective innovative solution in modern construction. With its simplicity of construction, it allows for rapid assembly on site, and with its flexibility allows for the construction of different shapes without the direct impact of the human factor on the outcome. With its precision and better utilization of time, it further appreciates the advantage over classical human labor.

Description

Građevinski robot je izum koji se sastoji od nosive čelične konstrucije koja se po z-osi pomoću vretena podiže i spušta niz stupove, a po svojoj dužoj osi ima tračnice po kojima se kreće mačka. Konstrukcija je slična portalnoj dizalici, ali umjesto vitla, mačka ima manipulator koji selektivno bira građevinske elemente i polaže ih na beton koji prethodno sam nanese na željeno mjesto. Robot je programabilni i CNC upravljani u tri (3) osi, x-y-z te tri pomoćne osi na manipulatoru (x-z osi, te zakretanje oko vlastite osi manipulatora). The construction robot is an invention that consists of a load-bearing steel structure that is raised and lowered down columns along the z-axis by means of a spindle, and along its longer axis it has rails along which the cat moves. The construction is similar to a gantry crane, but instead of a winch, the cat has a manipulator that selectively selects building elements and places them on the concrete that it previously applied to the desired location. The robot is programmable and CNC controlled in three (3) axes, x-y-z and three auxiliary axes on the manipulator (x-z axis, and rotation around the manipulator's own axis).

Područje na koje se izum odnosi The field to which the invention relates

Izum se odnosi na područje građevinskih strojeva, točnije statičnih strojeva kao npr. dizalice različitih tipova. U osnovi se od njih razlikuje u tome da ne potrebuje stalni ljudski nadzor i intervencije pri upravljanju te u tome da je CNC upravljani, a ne krutom mehaničkom memorijom. The invention relates to the field of construction machines, more specifically static machines such as cranes of various types. Basically, it differs from them in that it does not require constant human supervision and management interventions, and in that CNC is controlled, not by rigid mechanical memory.

Tehnički problem Technical problem

Izumom se riješava vremenski, te problem preciznosti gradnje građevina raznih nivoa kompleksnosti. The invention solves the problem of time and precision in the construction of buildings of various levels of complexity.

Pri utilizaciji građevinskog robota, ljudska intervencija je potrebna pri postavljanju konstrukcije na građevinskoj lokaciji te pri pripremi materijala. Robot je moguće pretprogramirati te na lokaciji pomoću računala samo ubaciti algoritam u memoriju. Robot sam gradi, bez obzira na dobu dana, dan u tjednu ili praznik/blagdan. Neovisan je od od svih slabosti koje donosi ljudski faktor u prvom smislu (radnici) te je sposoban raditi u svim vremenskim uvjetima (u granicama za koje je projektiran, kao npr. brzina vjetra kao ograničavajući faktor). Kao zaštitu od padalina, moguće je nadgraditi krovnu konstrukciju. When using a construction robot, human intervention is required when setting up the structure on the construction site and when preparing the materials. It is possible to preprogram the robot and just insert the algorithm into the memory on location using a computer. The robot builds itself, regardless of the time of day, day of the week or holiday. It is independent from all weaknesses brought by the human factor in the first sense (workers) and is capable of working in all weather conditions (within the limits for which it was designed, such as wind speed as a limiting factor). As a protection against rainfall, it is possible to upgrade the roof structure.

Obzirom da minimalizira ljudski faktor, robot je brz, precizan te je moguće izračunati njegovo vrijeme ciklusa što nam omogućava precizno određivanje ukupno trajanje vremena izgradnje građevine. Considering that it minimizes the human factor, the robot is fast, precise, and it is possible to calculate its cycle time, which allows us to precisely determine the total construction time of the building.

Stanje tehnike State of the art

Istraživanjem stanja tehnike došao sam do saznanja da ništa slično mojoj ideji do sada ne postoji. Pravo stanje tehnike kreće se u nekoliko pravaca. By researching the state of the art, I came to know that nothing similar to my idea exists so far. The real state of the art moves in several directions.

Tradicionalna gradnja - gradnja prema smislu ili projektu u kojoj je veliki udio ručnog rada. Vrlo niski stupanj automatizacije i standardizacije što rezultira serijskim odvijanjem procesa. Rezultati takve gradnje su visoki troškovi te nepredvidljivi ishodi po pitanju ukupnog potrebnog vremena za gradnju. Traditional construction - construction according to the meaning or project in which there is a large share of manual labor. A very low degree of automation and standardization, which results in serial processes. The results of such construction are high costs and unpredictable outcomes in terms of the total time required for construction.

Tipska gradnja prefabrikatima - gradnja koja se koristi uglavnom pri visokogradnji i u cestogradnji. Tipski, standardni elementi se prefabriciraju te dovažaju na gradilište raznim prijevoznim sredstvima. Tamo se pomoću auto-dizalica smještaju na preodređene pozicije. Pri tom tipu gradnje potrebna je predpriprema gradilišta u smislu gradnje temelja te matrice nosivih stupova među koje se ulažu prefabrikati, a koji kasnije također nose i krovnu konstrukciju. Stupovi također mogu biti prefabricirani. Automatizacija je na niskom nivou, a standardizacija na srednjem što bitno utječe na skraćenje ukupnog vremena izgradnje jer se procesi odvijaju paralelno. Typical construction with prefabs - construction that is used mainly in high-rise construction and road construction. Typical, standard elements are prefabricated and brought to the construction site by various means of transport. There, they are placed in predetermined positions with the help of truck cranes. With this type of construction, preliminary preparation of the construction site is necessary in terms of the construction of the foundation and the matrix of load-bearing columns between which the prefabs are placed, and which later also support the roof structure. Columns can also be prefabricated. Automation is at a low level, and standardization is at a medium level, which significantly affects the shortening of the total construction time because the processes take place in parallel.

Montažna gradnja - tipski projekti prema kojima su svi elementi prefabricirani te dovezeni na građevinsku lokaciju. Koristi se najčešće pri gradnji obiteljskih kuća. Potrebno je predpripremiti temelje. Niski nivo automatizacije, visoki nivo standardizacije pri izradi ali s visoki utjecajem na fleksibilnost prema krajnjem kupcu. Kupac je u mogućnosti odabrati samo između postojećih ponuđenih tipova građevina. Prefab construction - typical projects according to which all elements are prefabricated and brought to the construction site. It is used most often in the construction of family houses. It is necessary to prepare the foundations in advance. Low level of automation, high level of standardization during production but with a high impact on flexibility towards the end customer. The buyer is able to choose only from the existing types of buildings offered.

Izlaganje suštine izuma Presentation of the essence of the invention

Osnova građevinskog robota je vertikalna čelična konstrukcija koja je usidrena i uravnotežena na posebnim sidrištima, odnosno betonskim temeljima pripremljenima na lokaciji. Na temeljima je učvršćena sidrenim vijcima dok su na gornjoj strani stupovi povezani konzolama. Uzduž svakog stupa u smjeru z-osi je vreteno poganjano sinhroniziranim elektromotorima. Matica na vretenu je vezni element između stupova i portala. Portal je četvrtastog oblika iz rešetkastih nosača. Po uzdužnoj y-osi ima tračnice po kojima se kreće mačka. Mačka opet ima tračnice po x-osi po kojima se kreće manipulator. Manipulator ima svoju ruku koja ima stupanj slobode po x i z-osima, te se još može zakretati i oko vlastite osi. The basis of the construction robot is a vertical steel structure that is anchored and balanced on special anchorages, i.e. concrete foundations prepared on site. It is fixed on the foundations with anchor bolts, while on the upper side the columns are connected with consoles. Along each column in the z-axis direction is a spindle driven by synchronized electric motors. The nut on the spindle is the connecting element between the columns and the portal. The portal has a square shape made of lattice supports. Along the longitudinal y-axis there are rails along which the cat moves. The cat again has rails along the x-axis along which the manipulator moves. The manipulator has its own arm, which has a degree of freedom along the x and z axes, and can also rotate around its own axis.

Kako je vidljivo iz gornjeg izlaganja, robot je u mogućnosti kretati se po svim geometrijskim osima. Moguće je njime doći u svaku točku volumena zamišljenog kvadra čije stranice su ograničene veličinom robota. U svakoj točki, robot je sposoban izvršiti operaciju nanošenja vezivne mase te polaganja osnovnog građevinskog elementa. As can be seen from the presentation above, the robot is able to move along all geometric axes. It is possible to reach every point of the volume of an imaginary cube whose sides are limited by the size of the robot. At each point, the robot is able to perform the operation of applying the binding mass and laying the basic building element.

Štoviše, ovisno o tehnološkom nivou robota, na objektu je moguće izvršiti i neke druge završne operacije. Moreover, depending on the technological level of the robot, it is possible to perform some other finishing operations on the object.

Kratak opis slika Short description of the pictures

Slika 1 je prikaz građevinskog robota u izometriji. Figure 1 is an isometric view of the construction robot.

Slika 2 je izometrijski prikaz stupa sa sidrištem te mehanizmom za uravnoteženje. Figure 2 is an isometric view of a pillar with an anchor point and a balancing mechanism.

Slika 3 je izometrijski prikaz cijelog stupa sa pripadajućom armaturom. Figure 3 is an isometric view of the entire column with the associated reinforcement.

Slika 4 je izometrijski prikaz vretena stupa sa glavom na podiznom mehanizmu portala. Figure 4 is an isometric representation of the column spindle with the head on the lifting mechanism of the portal.

Slika 5 je detalj vrha stupa u izometriji. Figure 5 is a detail of the top of the column in isometry.

Slika 6 je detalj portala sa kotačima u zahvatu sa tračnicama. Figure 6 is a detail of the gantry with wheels in engagement with the rails.

Slika 7 je izometrijski prikaz mačke na portalu. Figure 7 is an isometric view of the cat on the portal.

Slika 8 je izometrijski prikaz mačke sa pogledom na manipulator te transportnu traku kojom se kliještima ruke prinose građevni elementi. Figure 8 is an isometric view of a cat with a view of the manipulator and the conveyor belt, which is used to bring the construction elements to the hands.

Slika 9 je izometrijski prikaz mačke sa pogledom sa zadnje strane na spremnik vezivne mase te cijevnu armaturu za dopravu mase do mjesta nanošenja. Figure 9 is an isometric view of the cat with a view from the rear of the container of binding mass and the pipe fittings for transporting the mass to the place of application.

Slika 10 je izometrijski prikaz nultog (servisnog) položaja robota pri kojom se izvode popravci ili nadopunjava potrebni materijal. Figure 10 is an isometric representation of the zero (service) position of the robot, in which repairs are performed or the necessary material is replenished.

Detaljan opis izuma Detailed description of the invention

Građevinski robot, slika 1, je sustav koji se sastoji od vanjskog nosnog kostura 1, koji je statičan te unutarnjeg portalnog dijela 2 koji je pomičan u odnosu na kostur. Dijelovi robota daju se rastaviti na jednostavnije dijelove koji se lako mogu prevoziti te se njima relativno jednostavno može manipulirati uz pomoć dizala. The construction robot, Figure 1, is a system consisting of an external nasal skeleton 1, which is static, and an internal portal part 2, which is movable in relation to the skeleton. The parts of the robot can be disassembled into simpler parts that can be easily transported and relatively easily manipulated with the help of an elevator.

Nosni kostur sastoji se od minimalno četiri stupa 3, koja su na dnu 4 usidrena na temeljima te na vrhovima 5 međusobno povezana konzolama. The nose skeleton consists of a minimum of four columns 3, which are anchored to the foundations at the bottom 4 and interconnected by consoles at the tops 5.

Temelj svakog stupa 3 je betonski blok sa zalivenim sidrenim vijcima. Gornje, kontaktne površine temelja moraju biti nivelirane u granicama tolerancije. Manje korekcije moguće su pomoću mehanizma za uravnoteženje 6 kojim je opremljen svaki stup, slika 2. Sa svake strane, na stopi za sidrenje nalaze se po tri rupe. Kroz rupe se provedu sidreni vijci, već zaliveni u betonskoj podlozi. Sa gornje strane se stopa pritegne maticama. U slučaju potrebe uravnoteženja, na drugim dvjema stranama sidrenih stopa nalaze se ručna vitla 7 kojima je moguće izvršiti manje visinske korekcije te korekcije nagiba. Jednom kad je korekcija izvršena, sa gornje strane se sidrena stopa pritegne šest puta dvjema maticama kako bi se spriječilo odvijanje. Naravno, cijeli proces se odvija uz pomoć auto-dizalice, koja glavu stupa 3, slika 5, zahvati kukom na preodoređenom mjestu 8, podigne do vertikalnog položaja iznad betonskog bloka te drži u poziciji sve dok didrene matice nisu zategnute. The foundation of each column 3 is a concrete block with cast anchor bolts. The upper, contact surfaces of the foundation must be leveled within tolerance limits. Minor corrections are possible using the balancing mechanism 6 equipped with each column, picture 2. There are three holes on each side of the anchoring foot. Anchor bolts, already cast in the concrete base, are inserted through the holes. From the upper side, the foot is tightened with nuts. In the case of the need for balancing, there are hand winches 7 on the other two sides of the anchor feet, which can be used to make smaller height corrections and slope corrections. Once the correction is made, the upper side of the anchor foot is tightened six times with two nuts to prevent loosening. Of course, the whole process is carried out with the help of a car crane, which grabs the head of the post 3, picture 5, with a hook at the predetermined place 8, raises it to a vertical position above the concrete block and holds it in position until the stud nuts are tightened.

Proces se dalje odvija jednako za svaki stup 3 s tim da je napredovanje serijsko. Nakon prvog stupa postavi se drugi stup 3 te se oni međusobno povežu vrhnim konzolama 9 što utječe na veću stabilnost postavljene konstrukcije. Dalje se postavi treći stup 3 te poveže konzolom sa već postojeća dva stupa 3. Nakon postavljanja četvrtog stupa 3, konzolom se poveže sa trećim stupom 3 te posljednjom konzolom sa prvim stupom 3. U tom trenutku je osnovni noseći kostur 1 kompletni te spreman za daljnju nadogradnju. The process continues in the same way for each column 3, with the progression being serial. After the first pillar, the second pillar 3 is placed and they are connected to each other by top brackets 9, which affects the greater stability of the erected structure. Next, the third pillar 3 is placed and connected with the console to the two already existing pillars 3. After placing the fourth pillar 3, it is connected to the third pillar 3 with the console and the last console to the first pillar 3. At that moment, the basic supporting frame 1 is complete and ready for further construction. upgrade.

Daljnja nadogradnja sastoji se od montaže portala 2 na konstrukciju kostura 1. Svaki stup 3, slika 3, kostura na sebi ima vreteno 10 sa pripadnim elektromotornim pogonom 11 za pomicanje portala uzduž z-osi 12. Vreteno 10 se proteže skoro cijelom visinom stupa 3, kako bi se maksimalno povećao iskoristivi radni prostor stroja. Vreteno 10 je na vrhu i dnu ograničeno graničnicima 13 dijelom kojih su i njegova uležištenja. Na dnu je to radijalno-aksijalni ležaj 14 dok je na vrhu kombinacija radijalnog ležaja sa reduktorom 15. Reduktor je potreban kako bi se smanjio broj okretaja elektromotora 11 na prihvatljivi omjer za pokretanje vretena 10 te ujedno i povećao okretni moment. The further upgrade consists of mounting the portal 2 on the structure of the skeleton 1. Each column 3, Figure 3, of the skeleton has a spindle 10 with an associated electric drive 11 for moving the portal along the z-axis 12. The spindle 10 extends almost the entire height of the column 3, in order to maximize the usable working space of the machine. The spindle 10 is limited at the top and bottom by stops 13, part of which are also its bearings. At the bottom is a radial-axial bearing 14, while at the top is a combination of a radial bearing with a reducer 15. The reducer is needed to reduce the number of revolutions of the electric motor 11 to an acceptable ratio for starting the spindle 10 and at the same time increase the torque.

Između gornjeg i donjeg ležaja vretena nalazi se prazan prostor u kojem putuje matica 16. Ona je učvršćena na glavi 17 koja putuje zajedno sa maticom 16 te čini nerazdvojnu cjelinu stupa 3, slika 4. Between the upper and lower bearing of the spindle there is an empty space in which the nut 16 travels. It is fixed on the head 17 which travels together with the nut 16 and forms an inseparable unit of the column 3, picture 4.

Možemo reći da glava ima dva sučelja: prema vretenu 10 i stupu 3 te prema portalu 2. Glava 17 se sastoji od ploče 18 na kojoj je učvršćena matica 16 te graničnika 19 sa gornje i donje strane. Na ploči 18 su također učvršćeni kotači 20 koji nasjedaju na vodeće tračnice 21 na stupu 3 te je tako osigurano vođenje po z-osi 22, a ujedno spriječeno zakretanje glave 17 oko vretena 10. U slučaju kvara tračnog sistema 21, glava 17 sa vanjskih strana ima krute mehaničke osigurače 23 koji sprečavaju njezino zakretanje te ispadanje sa staze. We can say that the head has two interfaces: to the spindle 10 and column 3 and to the portal 2. The head 17 consists of a plate 18 on which the nut 16 is fixed and the stop 19 on the upper and lower sides. Wheels 20 are also fixed on the plate 18, which rest on the guide rails 21 on the column 3, thus ensuring guidance along the z-axis 22, and at the same time preventing the rotation of the head 17 around the spindle 10. In the event of a failure of the rail system 21, the head 17 from the outside it has rigid mechanical locks 23 that prevent it from turning and falling off the track.

Što se tiče sučelja prema portalu, svaka glava ima po dva uležištenja 24 za portalne rešetkaste nosače. As for the interface to the gantry, each head has two slots 24 for gantry grid supports.

Portal 2 građevinskog robota se sastoji od četiri rešetkasta nosača. Po dužoj strani, pri dnu rešetkastih nosača 25 nalazi se privarena tračnica 26, slika 6. Po kraćoj strani, rešetkasti nosač 27 nema tračnicu niti ima nosno opterećenje. Služi jedino za stabilizaciju cijele konstrukcije. Krajevi nosača uležišteni su te osigurani u uležištenjima 24 na podiznoj glavi 17 svakog od četiri stupa 3. Portal 2 of the construction robot consists of four lattice supports. On the longer side, at the bottom of the lattice supports 25, there is a welded rail 26, Figure 6. On the shorter side, the lattice support 27 does not have a rail nor does it have a nose load. It serves only to stabilize the entire structure. The ends of the supports are inserted and secured in the insertions 24 on the lifting head 17 of each of the four columns 3.

Kako bi se olakšala montaža portala 2, sve četiri glave 17 dovedu se u nulti odnosno servisni položaj, slika 10, što je najniža moguća doseziva točka. Jednom kad je kostur 1 robota montirani, a komunikacijski te električni kablovi pospajani, elektromotori 11 su sinhronizirani na način da se sami dovedu u najniži položaj te si taj položaj indeksiraju kako bi ga ubuduće prepoznavali kao nulti. In order to facilitate the installation of portal 2, all four heads 17 are brought to the zero or service position, Figure 10, which is the lowest possible reachable point. Once the skeleton 1 of the robot is assembled, and the communication and electrical cables are connected, the electric motors 11 are synchronized in such a way that they bring themselves to the lowest position and index that position in order to recognize it as zero in the future.

Slijedeća po redosljedu montaže je mačka 28, slika 7. To je dio portala 2 koji se giba uzduž, po y-osi 29, po tračnicama 26 portala. Konstrukcijski je vrlo jednostavan – četverokutni okvir 30 koji se sastoji od četiri kvadratna profila zavarena zajedno. Na užim stranicama nalaze se kotači 31 poganjani elektromotorima koji omogućuju aktivno gibanje mačke po tračnicama portala, u smjeru y-osi. Na dužima stranicama mačke privarene su tračnice 32 po kojima se u smjeru x-osi giba manipulator 33. Next in order of assembly is the cat 28, picture 7. It is a part of the portal 2 that moves along the y-axis 29, along the rails 26 of the portal. It is very simple in terms of construction – a square frame 30 consisting of four square profiles welded together. On the narrow sides, there are wheels 31 driven by electric motors that enable active movement of the cat along the rails of the portal, in the direction of the y-axis. Rails 32 are welded to the longer sides of the cat along which the manipulator 33 moves in the x-axis direction.

Manipulator 33, slika 8, je jednostavno vozilo koje se sastoji od šasije 34 – četvrtastog okvira izrađenog iz čeličnog kvadratnog profila sa po tri kotača 35 sa svake duže strane 36. Kotači su pokretani elektromotorima. Nadgradnja na šasiji, slika 9, se sastoji od statičnog zadnjeg dijela 37 na kojem se nalazi spremnik vezivne mase 38 zajedno sa cijevnom armaturom 39 za razvod vezivne mase. Nad srednjim dijelom šasije nalazi se trakasti transporter 40 na koji se polažu (međuskladište) građevni elementi 41. Na prednjem dijelu nalaze se tračnice 42 po kojima se po pomoćnoj x-osi 43 kreće ruka manipulatora 44 kako bi se pozicionirala iznad trakastog transportera 40 s ciljem uzimanja građevnog elementa 41. Potom ruka ima daljnji stupanj slobode 45, u smjeru z-osi, kako bi se spustila na nivo ispod portala te mogla položiti građevni element na ciljano mjesto 46. Daljnji stupanj slobode 47, zakretanje ruke oko vlastite osi, omogućava manipulatoru 33 da mijenja orijentaciju građevnog elementa 48 bez obzira na položaj cijelog robota. The manipulator 33, Figure 8, is a simple vehicle consisting of a chassis 34 – a square frame made of steel square profile with three wheels 35 on each longer side 36. The wheels are driven by electric motors. The superstructure on the chassis, figure 9, consists of a static rear part 37 on which there is a container of binding mass 38 together with a pipe fitting 39 for distribution of binding mass. Above the middle part of the chassis there is a belt conveyor 40 on which building elements 41 are placed (intermediate storage). On the front part there are rails 42 along which the manipulator arm 44 moves along the auxiliary x-axis 43 in order to position itself above the belt conveyor 40 with the aim taking the building element 41. Then the hand has a further degree of freedom 45, in the direction of the z-axis, in order to descend to the level below the portal and be able to place the building element at the target place 46. A further degree of freedom 47, turning the hand around its own axis, allows the manipulator 33 to change the orientation of the building element 48 regardless of the position of the entire robot.

Opis rada Job description

Pri montaži, podizne glave 17 na stupovima 3 robota po sinhronizaciji motora 11 ostaju u nultom položaju sve dok robot nije kompletno osposobljen za rad. U nultom položaju, na trakasti se transporter 40 naslažu građevni elementi 41, a spremnik 38 se napuni vezivnom masom. Jednako tako, potrebno je u memoriju CNC jedinice unijeti algoritam pomoću kojeg robot dobija instrukcije za gradnju. During assembly, the lifting heads 17 on the columns 3 of the robot remain in the zero position after the synchronization of the motor 11 until the robot is fully trained for work. In the zero position, the building elements 41 are placed on the belt conveyor 40, and the container 38 is filled with binding mass. Equally, it is necessary to enter the algorithm in the memory of the CNC unit, by means of which the robot receives construction instructions.

Kad je algoritam unesen, robot je spreman za rad. When the algorithm is entered, the robot is ready to work.

Robot se u momentu početka rada pomiče iz nultog položaja te kreće u startni položaj određeni algoritmom. Autonoman je u radu sve dok mu ne ponestane materijala. At the moment of starting work, the robot moves from the zero position and moves to the start position determined by the algorithm. It works autonomously until it runs out of material.

Kreće se jednom razinom (kotom) 49 te ne kreće u novu razinu sve dok ne ispuni materijalom sva mjesta na radnoj razini. Može se desiti da mjesta i namjenski ostavi neispunjena, jer su to mjesta na kojima je potreban otvor u zidu. It moves with one level (elevation) 49 and does not move to a new level until it has filled all the places on the working level with material. It may happen that he leaves places unfilled on purpose, because these are the places where an opening in the wall is needed.

U trenutku kad se javi manjak nekog od materijala, robot se vraća u nulti položaj kako bi mu se zalihe nadopunile. Robot se može u nulti položaj vratiti i ranije, kad mu to naredi algoritam. To može biti u slučaju kad robot izvede sve zidove sa zadanim otvorima te zadanom visinom, ali ne može nastaviti graditi jer slijedi izvedba nadvoja (grede nad otvorima za zidove, vrata,...). At the moment when there is a shortage of one of the materials, the robot returns to the zero position in order to replenish its supplies. The robot can return to the zero position earlier, when ordered by the algorithm. This can be in the case when the robot builds all the walls with the given openings and the given height, but cannot continue building because it is followed by the execution of the overhang (beams over the openings for the walls, doors,...).

Ovisno o stupnju automatizacije, te detaljnosti algoritma, i te operacije mogu se izvesti robotom. Najjednostavniji primjer je da robot stoji u nultom položaju dok radnici ručno ne izvedu nadvoje. Kad je posao gotov, robot nastavlja sa slijedećim koracima algoritma. Depending on the degree of automation and the detail of the algorithm, these operations can also be performed by a robot. The simplest example is that the robot stands in the zero position until the workers manually perform the splits. When the work is done, the robot continues with the next steps of the algorithm.

Slijedeći mogući stupanj je da se u nultom položaju robota na trakasti transporter 40 polože potrebni prefabricirani armirano-betonski nadvoji koje robot, uz pomoć algoritamskog potprograma, zna prepoznati, izabrati te ugraditi na objekt. The next possible stage is that in the zero position of the robot on the belt conveyor 40, the necessary prefabricated reinforced concrete beams are placed, which the robot, with the help of an algorithmic subprogram, knows how to recognize, select and install on the object.

Kad su prepreke uklonjene, robot nastavlja gradnju. Once the obstacles are removed, the robot continues building.

Na početku je napomenuto kako je robot sposoban raditi neprekidno, bez obzira na vremenske uvjete (u slučaju da se na kostur 1 namontira krovna konstrukcija) te na dobu dana. U ovom stupnju automatizacije osjetljiv je na autonomiju po pitanju opskrbe materijalom. Pri svakom nedostatku, dolazi u nulti položaj te čeka na daljnju poslugu te start. Ako ga nitko ne posluži, on mora čekati. At the beginning, it was noted that the robot is capable of working continuously, regardless of the weather conditions (in case a roof structure is mounted on skeleton 1) and the time of day. At this level of automation, it is sensitive to autonomy in terms of material supply. In case of any deficiency, it comes to the zero position and waits for further service and start. If no one serves him, he has to wait.

Naravno, namjera ovog opisa nije da se iznesu sve moguće varijante izvedbe te upravljanja robotom, ali pojašnjenje koncepta kako bi to svim stručnjacima na danom polju tema bila razumljiva. Of course, the intention of this description is not to present all possible variants of performance and control of the robot, but to clarify the concept so that it is understandable to all experts in the given field of the topic.

Mogući smjer razvoja robota je viši stupanj automatizacije što robotu daje veću autonomiju te zahtjeva sve manji utjecaj ljudskog faktora. A possible direction of robot development is a higher degree of automation, which gives the robot greater autonomy and requires less and less influence of the human factor.

Viša stepenica automatizacije opisanog robota je u razvoju opskrbe materijala. Kada bi se materijal kontinuirano donosio na ciljano mjesto, robot bi bio u mogućnosti pri nedostatku otići na određeno mjesto i tamo se sam opskrbiti. A higher level of automation of the described robot is in the development of material supply. If the material were continuously brought to the target location, the robot would be able to go to a certain location and supply itself there in case of shortage.

Slijedeća viša stepenica automatizacije te standardizacije je da se unaprijed izračuna svaki potrebni građevni element te pripremi u tipskom kontejneru. Robotu se algoritmom naznači kada je potrebno da se koji kontejner izabere za rad. Također, sastav kontejnera moguće je prepustiti proizvođaču građevnog materijala. On ga priremi te doveze na lokaciju, te ga parkira na predodređeno mjesto. The next higher level of automation and standardization is to calculate each necessary building element in advance and prepare it in a standard container. The algorithm indicates to the robot when it is necessary to select a container for work. Also, the composition of the container can be left to the building material manufacturer. He prepares it and brings it to the location, and parks it in the predetermined place.

Daljnje sposobnosti robota ovise samo o ugrađenoj opremi te o detaljnosti algoritma. Njime je moguće raditi i zahtjevnije zadatke poput postavljanja konstrukcije krova, prekrivanja, nanošenja žbuke, vanjske fasade, te sličnih poslova. Further capabilities of the robot depend only on the installed equipment and on the detail of the algorithm. It is also possible to perform more demanding tasks such as installing the roof structure, covering, plastering, external facade, and similar jobs.

Claims (12)

1. Građevinski robot, naznačen time, što se sastoji od kostura, portala te mačke i manipulatora.1. A construction robot, characterized by the fact that it consists of a skeleton, a portal, a cat and a manipulator. 2. Građevinski robot prema zahtijevu 1, naznačen time, što se kostur sastoji od stupova, usidrenih u beton a na vrhu spojenih konzolama.2. Construction robot according to claim 1, characterized by the fact that the skeleton consists of columns, anchored in concrete and connected at the top by consoles. 3. Građevinski robot prema zahtijevima 1 i 2, naznačen time, što se kostur sastoji od minimalno četiri stupa.3. A construction robot according to claims 1 and 2, characterized in that the skeleton consists of at least four columns. 4. Građevinski robot prema zahtijevima 1 - 3, naznačen time, što svaki stup kostura ima podizno vreteno za posmak podizne glave.4. A construction robot according to claims 1 - 3, characterized in that each column of the skeleton has a lifting spindle for moving the lifting head. 5. Građevinski robot prema zahtijevima 1 - 4, naznačen time, što se svako vreteno na pojedinom stupu pokreće po jednu podiznu glavu.5. Construction robot according to claims 1 - 4, indicated by the fact that each spindle on an individual column is driven by one lifting head. 6. Građevinski robot prema zahtijevima 1 - 5, naznačen time, što podizne glave na četiri stupa nose portalnu konstukciju koja se sastoji od četiri rešetkasta nosača.6. A construction robot according to claims 1 - 5, characterized by the fact that the lifting heads on four columns carry a portal construction consisting of four lattice supports. 7. Građevinski robot prema zahtijevima 1 - 6, naznačen time, što dva duža rešetkasta nosača portala imaju zavarene tračnice po kojima se kreće mačka.7. A construction robot according to claims 1 - 6, characterized by the fact that the two longer lattice supports of the portal have welded rails on which the cat moves. 8. Građevinski robot prema zahtijevima 1 - 7, naznačen time, što ima mačku koja se kreće po portalnim tračnicama, a sastoji se od četverokutnog profila te kotača sa pripadajućim prigonom te tračnicama za vođenje manipulatora.8. A construction robot according to claims 1 - 7, indicated by the fact that it has a cat that moves along gantry rails, and consists of a quadrangular profile and wheels with an associated attachment and rails for guiding the manipulator. 9. Građevinski robot prema zahtijevima 1 - 8, naznačen time, što na portalu ima pokretni manipulator.9. Construction robot according to claims 1 - 8, indicated by the fact that it has a mobile manipulator on the portal. 10. Građevinski robot prema zahtijevima 1 - 9, naznačen time, što manipulator ima vlastiti prigon te je opremljeni modulom za opskrbu vezivnim sredstvom sa pripadajućom armaturom za nanos vezivnog sredstva, pokretnom trakom za opskrbu građevnim elementima te manipulacijskom rukom opremljenom kliještima.10. A construction robot according to claims 1 - 9, characterized by the fact that the manipulator has its own grip and is equipped with a module for supplying a binding agent with an associated armature for applying the binding agent, a conveyor belt for supplying building elements and a manipulation arm equipped with pliers. 11. Građevinski robot prema zahtijevima 1 - 10, naznačen time, što manipulator ima manipulacijsku ruku koja ima stupanj slobode po x i z-osi te se može okretati oko vlastite osi.11. A construction robot according to claims 1 - 10, characterized in that the manipulator has a manipulation arm that has a degree of freedom along the x and z axes and can rotate around its own axis. 12. Građevinski robot prema zahtijevima 1 - 11, naznačen time, što je CNC programabilni te je sposoban izvršiti zadane radnje opisane algoritmom s ciljem zadovoljavanja građevinske norme pri izgradnji željenog objekta.12. A construction robot according to requirements 1 - 11, characterized by the fact that it is CNC programmable and is capable of performing the given actions described by the algorithm with the aim of meeting the construction standard during the construction of the desired object.
HR20080101A 2008-03-06 2008-03-06 Building robot HRP20080101A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HR20080101A HRP20080101A2 (en) 2008-03-06 2008-03-06 Building robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HR20080101A HRP20080101A2 (en) 2008-03-06 2008-03-06 Building robot

Publications (1)

Publication Number Publication Date
HRP20080101A2 true HRP20080101A2 (en) 2009-09-30

Family

ID=41112735

Family Applications (1)

Application Number Title Priority Date Filing Date
HR20080101A HRP20080101A2 (en) 2008-03-06 2008-03-06 Building robot

Country Status (1)

Country Link
HR (1) HRP20080101A2 (en)

Similar Documents

Publication Publication Date Title
CA2226873C (en) Method of production of standard size dwellings using a movable manufacturing facility
KR20090031604A (en) Facility used for the production and/or assembly of goods
EP3684988B1 (en) Device for the construction of high rising building structures
US20160032601A1 (en) Portable robotic casting of volumetric modular building components
CA2919373C (en) Portable robotic casting of volumetric modular building components
WO2020155600A1 (en) Building construction system and construction method therefor
US3210903A (en) Method of erecting building constructions and means for carrying out the method
EP2726261B1 (en) Method of erecting a building with wooden panels
JP6712501B2 (en) High-rise building demolition system and demolition method
HRP20080101A2 (en) Building robot
CN104164974B (en) Building casting method and use thereof pour mold system
AU2020350997B2 (en) Printing system for creating a concrete support structure for a passenger transport system
US20220372777A1 (en) Printer apparatus for creating a concrete support structure for a passenger transport system
EP2692965B1 (en) Module structure and module construction method
CN110561604B (en) Maintenance bin construction method for PC component assembly line
RU2759467C1 (en) Method for automated installation of the power structure of a gravitational energy storage device and a set of devices for its implementation
RU2803337C1 (en) Robotic complex for laying aerated concrete
CN210263966U (en) Building construction system
WO2008000054A1 (en) Autoliftable bridge crane system for building and tower construction
CN210282272U (en) Robot carrying system for building
CN108100913B (en) Hoisting device applied to indoor construction
RU2761783C1 (en) Method for automated construction of structures
WO2022231456A1 (en) Method for installing an external enclosure and system for the implementation thereof
Pylarinos Tilebot. Development of a lightweight modular robotic system for on-site component installation and facade fabrication
JPS62244941A (en) Push-up system construction method

Legal Events

Date Code Title Description
A1OB Publication of a patent application
ODRP Renewal fee for the maintenance of a patent

Payment date: 20100330

Year of fee payment: 3

OBST Application withdrawn