HRP20060010A2 - Catalytic asymmetric desymmetrization of prochiral and meso cyclic anhydrides - Google Patents

Catalytic asymmetric desymmetrization of prochiral and meso cyclic anhydrides Download PDF

Info

Publication number
HRP20060010A2
HRP20060010A2 HR20060010A HRP20060010A HRP20060010A2 HR P20060010 A2 HRP20060010 A2 HR P20060010A2 HR 20060010 A HR20060010 A HR 20060010A HR P20060010 A HRP20060010 A HR P20060010A HR P20060010 A2 HRP20060010 A2 HR P20060010A2
Authority
HR
Croatia
Prior art keywords
anhydride
cyclic anhydride
substituted
chiral
dhqd
Prior art date
Application number
HR20060010A
Other languages
Croatian (hr)
Inventor
Deng Li
Liu Xiaofeng
Chen Yonggang
Tian Shikai
Original Assignee
Brandeis University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/460,051 external-priority patent/US7053236B2/en
Application filed by Brandeis University filed Critical Brandeis University
Publication of HRP20060010A2 publication Critical patent/HRP20060010A2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D453/00Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids
    • C07D453/02Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids containing not further condensed quinuclidine ring systems
    • C07D453/04Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids containing not further condensed quinuclidine ring systems having a quinolyl-4, a substituted quinolyl-4 or a alkylenedioxy-quinolyl-4 radical linked through only one carbon atom, attached in position 2, e.g. quinine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D453/00Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids
    • C07D453/02Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids containing not further condensed quinuclidine ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms

Abstract

Jedan aspekt prezentiranog izuma se odnosi na katalizatore koji se baziraju na alkaloidu cinhona. Drugi aspekt se izuma odnosi metodu proizvodnje derivata katalizatora koji se baziraju na cinhona alkaloidu. Sljedeći aspekt prezentiranog izuma se odnosi na metodu proizvodnje kiralnog, ne-racemičnog spoja od prokiralnog cikličnog anhidrida ili mezo cikličnog anhidrida, koja obuhvaća fazu: reakcije prokiralnog cikličnog anhidrida ili mezo cikličnoganhidirida s nukleofilom uz prisutnost derivata cinhona-alkaloid katalizatora. Još jedan aspekt prezentiranog izuma odnosi se na metodu kinetičke resolucije, koja obuhvaća fazu reakcije racemičnog cikličnog anhidrida s alkoholom uz prisutnost katalizatora derivata cinhona-alkaloida.One aspect of the present invention pertains to catalysts based on the cinchona alkaloid. Another aspect of the invention relates to a method of producing catalyst derivatives based on a cinchona alkaloid. Another aspect of the present invention relates to a method of producing a chiral, non-racemic compound from prochiral cyclic anhydride or meso cyclic anhydride, comprising the step of reacting prochiral cyclic anhydride or meso cyclic anhydride with a nucleophile in the presence of a cinchona alkyl derivative. Another aspect of the present invention relates to a kinetic resolution method, comprising the step of reacting racemic cyclic anhydride with an alcohol in the presence of a cinchona-alkaloid derivative catalyst.

Description

Pripadajuće aplikacije Associated applications

Zahtjevi o korisnosti ove aplikacije o prednosti Unaited States Patent Application serijskog broja 10/460,051, podnesene 12.lipanj 2003; United States Provisional Patent Application serijski broj 60/477,531, podnesena 11. lipanj 2003; i United States Provisional Patent Application serijski broj 60/484,218, podnesena 1. lipanj 2003. This application claims the benefit of United States Patent Application Serial No. 10/460,051, filed June 12, 2003; United States Provisional Patent Application Serial No. 60/477,531, filed June 11, 2003; and United States Provisional Patent Application Serial No. 60/484,218, filed Jun. 1, 2003.

Potpora vlade Government support

Izum je izrađen uz potporu po uvjetima National Institute of Health (broj dozvole GM-61591); zato jer, vlada ima određena prava na patent. The invention was made with support under the terms of the National Institute of Health (permit number GM-61591); because, the government has certain rights to the patent.

Pozadina izuma Background of the invention

Potreba za enantiomerično čistim spojevima brzo raste posljednjih godina. Značajna upotreba takvih kiralnih, ne-racemičnih spojeva je kao intermedijera za sintezu u farmaceutskoj industriji. Na primjer, postaje sve jasnije da enantiomerično čisti lijekovi imaju mnoge prednosti u odnosu na racemične smjese lijekova. Te prednosti uključuju brojne nuspojave i veću snagu često povezanu s enantiomeričnim čistim spojevima. The need for enantiomerically pure compounds has been growing rapidly in recent years. A significant use of such chiral, non-racemic compounds is as intermediates for synthesis in the pharmaceutical industry. For example, it is becoming increasingly clear that enantiomerically pure drugs have many advantages over racemic drug mixtures. These advantages include the numerous side effects and higher potency often associated with enantiomerically pure compounds.

Tradicionalne metode organske sinteze često su optimizirane za proizvodnju racemičnih materijala. Proizvodnja enentiomeričnih čistih materijala povijesno je postignuta na jedan od dva načina: upotreba enantiomerično čistih polaznih materijala deriviranih iz prirodnih izvora (takozvanih „kiralnih pulova"); i ponovnim otapanjem racemičnih smjesa s klasičnim tehnikama. Svaka od tih metoda ima ozbiljni nedostatak, međutim. Kiralni pul je ograničen na spojeve nađene u prirodi, tako samo određene strukture i konfiguracije su bez muke dostupne. Resolucija racemata, koja zahtjeva upotrebu sredstva za resoluciju, može biti neprikladna i dugo traje. Traditional methods of organic synthesis are often optimized for the production of racemic materials. The production of enantiomerically pure materials has historically been achieved in one of two ways: the use of enantiomerically pure starting materials derived from natural sources (so-called "chiral pools"); and by redissolving racemic mixtures with classical techniques. Each of these methods has a serious drawback, however. Chiral pool is limited to compounds found in nature, so only certain structures and configurations are readily available.Resolution of racemates, which requires the use of a resolution agent, can be inconvenient and time-consuming.

Jedna metoda za dobivanje enentiomerično čistih materijala je s enentioselektivnom alkoholizom mezo, prokiralnih, i racemičnih cikličnih anhidrida (EACA). Te se reakcije javljaju kao široko primjenjive i u laboratorijskom i industrijskom omjeru asimetrične sinteze širokih varijeteta značajnih kiralnih blokova za izgradnju, kao što je hemiester, α-amino kiselina i α-hidroksi kiselina. One method for obtaining enantiomerically pure materials is with enantioselective alcoholysis of meso, prochiral, and racemic cyclic anhydrides (EACA). These reactions appear to be widely applicable in both laboratory and industrial scale asymmetric synthesis of a wide variety of significant chiral building blocks, such as hemiester, α-amino acid, and α-hydroxy acid.

Sažetak izuma Summary of the invention

Jedan od aspekata prezentiranog izuma se općenito odnosi na katalizatore na osnovi cinhona-alkaloida. U određenom ostvarenju, katalizator na osnovi kvinidina sadržava keton, ester, amid, cijano, ili alkinil skupinu. U preferirano ostvarenju, katalizator je QD-IP, QD-(-)-MN, ili QD-AD. U drugom ostvarenjima, katalizator na sonovi cinhona-alkaloida je Q-AD. One of the aspects of the presented invention generally relates to catalysts based on cinchona-alkaloids. In a particular embodiment, the quinidine-based catalyst contains a ketone, ester, amide, cyano, or alkynyl group. In a preferred embodiment, the catalyst is QD-IP, QD-(-)-MN, or QD-AD. In other embodiments, the cinchona-alkaloid son catalyst is Q-AD.

Drugi aspekt izuma se odnosi na postupak proizvodnje deriviranih cinhona alkaloid katalizatora reakcijom cinhona-alkaloida s bazom i spoj tako ima odgovarajuću ostatnu skupinu. U određenim ostvarenjima, ostatna skupina je Cl, Br, I, OSO2CH3, ili OSO2CF3. U preferiranom ostvarenju, ostatna skupina je Cl. U preferirano ostvarenju, osnova je metal hidrid. U preferiranom ostvarenju, hidroksil skupina cinhona alkaloida izlaže se reakciji s alkil kloridom za formiranje katalizatora. Another aspect of the invention relates to a process for the production of cinchona-alkaloid derivative catalysts by reacting cinchona-alkaloid with a base and the compound thus has a corresponding residual group. In certain embodiments, the remaining group is Cl, Br, I, OSO2CH3, or OSO2CF3. In a preferred embodiment, the remaining group is Cl. In a preferred embodiment, the base is a metal hydride. In a preferred embodiment, the hydroxyl group of the cinchona alkaloid is reacted with an alkyl chloride to form the catalyst.

Jedan aspekt prezentiranog izuma odnosi se na postupak proizvodnje kiralnog, ne-racemičnog spoja iz prokiralnog supstituiranog kiralnog anhidrida ili mezo supstituiranog cikličnog anhidrida, koji obuhvaća fazu: reakcije proliralnog supstituiranog cikličnog anhidrida ili mezo supstituiranog cikličnog anhidrida s nukleofilom u prisutnosti kiralnog, katalizatora ne-racemičnog tercijalnog amina; gdje navedeni prokiralni supstituirani ciklični anhidrid ili navedeni mezo supstituirani ciklični anhidrid obuhvaća unutarnji stupanj simetrije ili točku simetrije ili oboje; gdje navedeni mezo supstituirani ciklični anhidrid obuhvaća najmanje dva kiralna centra; i gdje navededeni nukleofil je alkohol, tiol ili amin; i na taj način se proizvede kiralni, ne-racemični spoj. One aspect of the presented invention relates to the process of producing a chiral, non-racemic compound from a prochiral substituted chiral anhydride or a meso substituted cyclic anhydride, which includes the phase: reaction of a prolyral substituted cyclic anhydride or a meso substituted cyclic anhydride with a nucleophile in the presence of a chiral, non-racemic catalyst tertiary amine; wherein said prochiral substituted cyclic anhydride or said meso substituted cyclic anhydride comprises an internal degree of symmetry or a point of symmetry or both; wherein said meso substituted cyclic anhydride comprises at least two chiral centers; and wherein said nucleophile is an alcohol, thiol or amine; and in this way a chiral, non-racemic compound is produced.

U određenim ostvarenjima gore navedenom metodom navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid je supstituiran sukcinin anhidrid ili je supstituiran glutarični anhidrid. In certain embodiments of the above-mentioned method, the prochiral substituted cyclic anhydride or meso substituted cyclic anhydride is substituted succinic anhydride or is substituted glutaric anhydride.

U stanovitom ostvarenjima gore spomenute metode navedeni nukleofil je alkohol. In certain embodiments of the aforementioned method, said nucleophile is an alcohol.

U stanovitim ostvarenju gore spomenute metode navedeni nukleofil je primarni alkohol. In a certain embodiment of the aforementioned method, said nucleophile is a primary alcohol.

U stanovitom ostvarenju gore spomenute metode navedeni nukleofil je metanol ili CF3CH2OH. In a certain embodiment of the aforementioned method, said nucleophile is methanol or CF3CH2OH.

U stanovitom ostvarenju gore spomenute metode navedeni kiralni, katalizator ne-racemični tercijalni amin je Q-PP, Q-TB, QD-PP, QD-TB, (DHQ)2PHAL, (DHQD)2PHAL, (DHQ)2PYR, (DHQD)2PYR, (DHQ) 2AQN, (DHQD)2AQN, DHQ-CLB, DHQD-CLB, DHQ-MEQ, DHQD-MEQ, DHQ-AQN, DHQD-AQN, DHQ-PHN, ili DHQD-PHN. In a particular embodiment of the aforementioned method, said chiral catalyst non-racemic tertiary amine is Q-PP, Q-TB, QD-PP, QD-TB, (DHQ)2PHAL, (DHQD)2PHAL, (DHQ)2PYR, (DHQD) 2PYR, (DHQ)2AQN, (DHQD)2AQN, DHQ-CLB, DHQD-CLB, DHQ-MEQ, DHQD-MEQ, DHQ-AQN, DHQD-AQN, DHQ-PHN, or DHQD-PHN.

U stanovitom ostvarenju gore spomenute metode navedeni kiralni, katalizator ne-racemični tercijalni amin je DHQD-PHN ili (DHQD)2AQN. In a particular embodiment of the aforementioned method, said chiral catalyst non-racemic tertiary amine is DHQD-PHN or (DHQD)2AQN.

U stanovitom ostvarenju gore spomenute metode navedeni kiralni, katalizator ne-racemični tercijalni amin je Q-PP, Q-TB, QD-PP ili QD-TB. In a particular embodiment of the aforementioned method, said chiral, non-racemic tertiary amine catalyst is Q-PP, Q-TB, QD-PP or QD-TB.

U stanovitom ostvarenju gore spomenute metode navedeni kiralni, katalizator ne-racemični tercijalni amin je QD-PP. In a particular embodiment of the aforementioned method, said chiral, non-racemic tertiary amine catalyst is QD-PP.

U stanovitom ostvarenju gore spomenute metode navedni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid je supstituirani sukcininski anhidrid ili supstituirani glutarični anhidrid; navedeni nukleofil je alkohol; a navedeni kiralni, katalizator ne-racemični tercijalni amin je Q-PP, Q-TB, QD-PP, QD-TB, (DHQ)2PHAL, (DHQD)2PHAL, (DHQ)2PYR, (DHQD)2PYR, (DHQ)2AQN, (DHQD)2AQN, DHQ-CLB, DHQD-CLB, DHQ-MEQ, DHQD-MEQ, DHQ-AQN, DHQD-AQN, DHQ-PHN, ili DHQD-PHN. In a certain embodiment of the aforementioned method, said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride is substituted succinic anhydride or substituted glutaric anhydride; said nucleophile is an alcohol; and said chiral, non-racemic tertiary amine catalyst is Q-PP, Q-TB, QD-PP, QD-TB, (DHQ)2PHAL, (DHQD)2PHAL, (DHQ)2PYR, (DHQD)2PYR, (DHQ) 2AQN, (DHQD)2AQN, DHQ-CLB, DHQD-CLB, DHQ-MEQ, DHQD-MEQ, DHQ-AQN, DHQD-AQN, DHQ-PHN, or DHQD-PHN.

U stanovitom ostvarenju gore spomenute metode navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid je supstituirani sukcininski anhidrid ili supstituirani glutarični anhidrid; navedeni nukleofil je primarni alkohol; a navedeni kiralni, katalizator ne-racemični tercijalni amin je Q-PP, Q-TB, QD-PP, QD-TB, (DHQ)2PHAL, (DHQD)2PHAL, (DHQ)2PYR, (DHQD)2PYR, (DHQ)2AQN, (DHQD)2AQN, DHQ-CLB, DHQD-CLB, DHQ-MEQ, DHQD-MEQ, DHQ-AQN, DHQD-AQN, DHQ-PHN, ili DHQD-PHN. In a certain embodiment of the aforementioned method, said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride is substituted succinic anhydride or substituted glutaric anhydride; said nucleophile is a primary alcohol; and said chiral, non-racemic tertiary amine catalyst is Q-PP, Q-TB, QD-PP, QD-TB, (DHQ)2PHAL, (DHQD)2PHAL, (DHQ)2PYR, (DHQD)2PYR, (DHQ) 2AQN, (DHQD)2AQN, DHQ-CLB, DHQD-CLB, DHQ-MEQ, DHQD-MEQ, DHQ-AQN, DHQD-AQN, DHQ-PHN, or DHQD-PHN.

U stanovitom ostvarenju gore spomenute metode navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid je supstituirani sukcininski anhidrid ili supstituirani glutarični anhidrid; navedeni nukleofil je metanol ili CF;3CH2OH; a navedeni kiralni, katalizator ne-racemični tercijalni amin je Q-PP, Q-TB, QD-PP, QD-TB, (DHQ)2PHAL, (DHQD) 2PHAL, (DHQ)2PYR, (DHQD)2PYR, (DHQ)2AQN, (DHQD)2AQN, DHQ-CLB, DHQD-CLB, DHQ-MEQ, DHQD-MEQ, DHQ-AQN, DHQD-AQN, DHQ-PHN, ili DHQD-PHN. In a certain embodiment of the aforementioned method, said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride is substituted succinic anhydride or substituted glutaric anhydride; said nucleophile is methanol or CF;3CH2OH; and said chiral, non-racemic tertiary amine catalyst is Q-PP, Q-TB, QD-PP, QD-TB, (DHQ)2PHAL, (DHQD)2PHAL, (DHQ)2PYR, (DHQD)2PYR, (DHQ) 2AQN, (DHQD)2AQN, DHQ-CLB, DHQD-CLB, DHQ-MEQ, DHQD-MEQ, DHQ-AQN, DHQD-AQN, DHQ-PHN, or DHQD-PHN.

U stanovitom ostvarenju gore spomenute metode navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid je supstituirani sukcininski anhidrid ili supstituirani glutarični anhidrid; navedeni nukleofil je alkohol; a navedeni kiralni, katalizator ne-racemični tercijalni amin je DHQD-PHN ili (DHQD)2AQN. In a certain embodiment of the aforementioned method, said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride is substituted succinic anhydride or substituted glutaric anhydride; said nucleophile is an alcohol; and said chiral, non-racemic tertiary amine catalyst is DHQD-PHN or (DHQD)2AQN.

U stanovitom ostvarenju gore spomenute metode navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid je supstituirani sukcininski anhidrid ili supstituirani glutarični anhidrid; navedeni nukleofil je primarni alkohol; a navedeni kiralni, katalizator ne-racemični tercijalni amin je DHQD-PHN ili (DHQD)2AQN. In a certain embodiment of the aforementioned method, said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride is substituted succinic anhydride or substituted glutaric anhydride; said nucleophile is a primary alcohol; and said chiral, non-racemic tertiary amine catalyst is DHQD-PHN or (DHQD)2AQN.

U stanovitom ostvarenju gore spomenute metode navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid je supstituirani sukcininski anhidrid ili supstituirani glutarični anhidrid; navedeni nukleofil je metanol ili CF3CH2OH; a navedeni kiralni, katalizator ne-racemični tercijalni amin je DHQD-PHN ili (DHQD)2AQN. In a certain embodiment of the aforementioned method, said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride is substituted succinic anhydride or substituted glutaric anhydride; said nucleophile is methanol or CF3CH2OH; and said chiral, non-racemic tertiary amine catalyst is DHQD-PHN or (DHQD)2AQN.

U stanovitom ostvarenju gore spomenute metode navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid je supstituirani sukcininski anhidrid ili supstituirani glutarični anhidrid; navedeni nukleofil je alkohol; a navedeni kiralni, katalizator ne-racemični tercijalni amin je Q-PP, Q-TB, QD-PP ili QD-TB. In a certain embodiment of the aforementioned method, said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride is substituted succinic anhydride or substituted glutaric anhydride; said nucleophile is an alcohol; and said chiral, non-racemic tertiary amine catalyst is Q-PP, Q-TB, QD-PP or QD-TB.

U stanovitom ostvarenju gore spomenute metode navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid je supstituirani sukcininski anhidrid ili supstituirani glutarični anhidrid; navedeni nukleofil je primarni alkohol; a navedeni kiralni, katalizator ne-racemični tercijalni amin je Q-PP, Q-TB, QD-PP ili QD-TB. In a certain embodiment of the aforementioned method, said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride is substituted succinic anhydride or substituted glutaric anhydride; said nucleophile is a primary alcohol; and said chiral, non-racemic tertiary amine catalyst is Q-PP, Q-TB, QD-PP or QD-TB.

U stanovitom ostvarenju gore spomenute metode navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid je supstituirani sukcininski anhidrid ili supstituirani glutarični anhidrid; navedeni nukleofil je metanol ili CF3CH2OH; a navedeni kiralni, katalizator ne-racemični tercijalni amin je Q-PP, Q-TB, QD-PP ili QD-TB. In a certain embodiment of the aforementioned method, said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride is substituted succinic anhydride or substituted glutaric anhydride; said nucleophile is methanol or CF3CH2OH; and said chiral, non-racemic tertiary amine catalyst is Q-PP, Q-TB, QD-PP or QD-TB.

U stanovitom ostvarenju gore spomenute metode navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid je supstituirani sukcininski anhidrid ili supstituirani glutarični anhidrid; navedeni nukleofil je alkohol; a navedeni kiralni, katalizator ne-racemični tercijalni amin je QD-PP. In a certain embodiment of the aforementioned method, said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride is substituted succinic anhydride or substituted glutaric anhydride; said nucleophile is an alcohol; and said chiral, non-racemic tertiary amine catalyst is QD-PP.

U stanovitom ostvarenju gore spomenute metode navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid je supstituirani sukcininski anhidrid ili supstituirani glutarični anhidrid; navedeni nukleofil je primarni alkohol; a navedeni kiralni, katalizator ne-racemični tercijalni amin je QD-PP. In a certain embodiment of the aforementioned method, said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride is substituted succinic anhydride or substituted glutaric anhydride; said nucleophile is a primary alcohol; and said chiral, non-racemic tertiary amine catalyst is QD-PP.

U stanovitom ostvarenju gore spomenute metode navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid je supstituirani sukcininski anhidrid ili supstituirani glutarični anhidrid; navedeni nukleofil je metanol ili CF3CH2OH; a navedeni kiralni, katalizator ne-racemični tercijalni amin je QD-PP. In a certain embodiment of the aforementioned method, said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride is substituted succinic anhydride or substituted glutaric anhydride; said nucleophile is methanol or CF3CH2OH; and said chiral, non-racemic tertiary amine catalyst is QD-PP.

U stanovitom ostvarenju renjima gore spomenute metode navedeni kiralni, katalizator ne-racemični tercijalni amin je prisutan u manje od oko 30 mol% u odnosnu na navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid. In a certain embodiment of the aforementioned method, said chiral catalyst non-racemic tertiary amine is present in less than about 30 mol% relative to said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride.

U stanovitom ostvarenju gore spomenute metode navedeni kiralni, katalizator ne-racemični tercijalni amin je prisutan u manje od oko 20 mol% u odnosnu na navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid. In a particular embodiment of the aforementioned method, said chiral catalyst non-racemic tertiary amine is present in less than about 20 mol% relative to said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride.

U stanovitom ostvarenju gore spomenute metode navedeni kiralni, katalizator ne-racemični tercijalni amin je prisutan u manje od oko 10 mol% u odnosu na navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid. In a particular embodiment of the aforementioned method, said chiral catalyst non-racemic tertiary amine is present in less than about 10 mol% relative to said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride.

Sljedeći aspekt prezentiranog izuma se odnosi na postupak proizvodnje kiralnog, ne-racemičnog spoja iz prokiralnog cikličnog anhidrida ili mezo cikličnog anhidrida, koji obuhvaća fazu: reakcije prokiralnog cikličnog anhidrida ili mezo cikličnog anhidrida s nukleofilom u prisutnosti katalizatora; u čemu prokiralni ciklični anhidrid ili mezo ciklični anhidrid obuhvaća unutarnji stupanj simetrije ili točku simetrije ili oboje; gdje navedeni kiralni, ne-racemični spoj; u čemu navedeni katalizator je derivirani cinhona-alkaloid. U preferiranom ostavrenju, katalizator je QD-IP, QD-(-)-MN, ili QD-AD. U stanovitom ostvarenju, nukleofil je primarni alkohol. The next aspect of the presented invention relates to the process of producing a chiral, non-racemic compound from a prochiral cyclic anhydride or a meso cyclic anhydride, which includes the phase: reaction of a prochiral cyclic anhydride or a meso cyclic anhydride with a nucleophile in the presence of a catalyst; wherein the prochiral cyclic anhydride or meso cyclic anhydride comprises an internal degree of symmetry or a point of symmetry or both; wherein said chiral, non-racemic compound; wherein said catalyst is a cinchona-alkaloid derivative. In a preferred embodiment, the catalyst is QD-IP, QD-(-)-MN, or QD-AD. In a certain embodiment, the nucleophile is a primary alcohol.

U preferiranom ostvarenju, nukleofil je metanol ili CF3CH2OH. U stanovitom ostvarenju, prokiralni ciklični anhicirid ili mezo ciklični anhidrid je supstituirani sukcininski anhidrid ili supstituirani glutarični anhidrid. U određenom ostvarenju, katalizator je prisutan u manje od oko 70 mol% u odnosnu na prokiralni ciklični anhidrid ili mezo ciklični anhidrid. U preferiranom ostvarenju, katalizator je prisutan u manje od oko 10% u odnosu na navedeni prokiralni ciklični anhidrid ili mezo ciklični anhidrid. U stanovitom ostvarenju, kiralni, ne-racemični spoj ima enentiomerični višak veći od oko 90%. U stanovitom ostvarenju, navedeni katalizator je Q-IP, Q-PC, Q-AD, ili Q-(-)-MN. In a preferred embodiment, the nucleophile is methanol or CF3CH2OH. In a certain embodiment, the prochiral cyclic anhydride or meso cyclic anhydride is a substituted succinic anhydride or a substituted glutaric anhydride. In a particular embodiment, the catalyst is present at less than about 70 mol% relative to the prochiral cyclic anhydride or meso cyclic anhydride. In a preferred embodiment, the catalyst is present at less than about 10% relative to said prochiral cyclic anhydride or meso cyclic anhydride. In a particular embodiment, the chiral, non-racemic compound has an enantiomeric excess greater than about 90%. In a certain embodiment, said catalyst is Q-IP, Q-PC, Q-AD, or Q-(-)-MN.

Drugi aspekt prezentiranog izuma odnosi se na metodu kinetičke resolucije, koja obuhvaća fazu: reakcije racemičnog cikličnog anhidrida s alkoholom uz prisutnost katalizatora deriviranog cinhona-alkaloida. U preferiranom ostvarenju, katalizator je QD-IP, QD-(-)-MN, ili QD-AD. U preferiranom ostvarenju, alkohol je primarni alkohol. U tim ostvarenjima, katalizator je Q-IP, Q-PC, Q-AD, ili Q-(-)-MN. Another aspect of the presented invention relates to the method of kinetic resolution, which includes the phase: reaction of racemic cyclic anhydride with alcohol in the presence of a catalyst derived from cinchona-alkaloid. In a preferred embodiment, the catalyst is QD-IP, QD-(-)-MN, or QD-AD. In a preferred embodiment, the alcohol is a primary alcohol. In these embodiments, the catalyst is Q-IP, Q-PC, Q-AD, or Q-(-)-MN.

U stanovitom ostvarenju gore navedenom metodom navedeni kiralni, ne-racemični spoj ima enentiomerični višak veći od oko 50%. In a particular embodiment of the above method, said chiral, non-racemic compound has an enantiomeric excess greater than about 50%.

U stanovitom ostvarenju gore navedenom metodom navedeni kiralni, ne-racemični spoj ima enentiomerični višak veći od oko 70%. In a particular embodiment of the above method, said chiral, non-racemic compound has an enantiomeric excess greater than about 70%.

U stanovitom ostvarenju gore navedenom metodom navedeni kiralni, ne-racemični spoj ima enentiomerični višak veći od oko 90%. In a particular embodiment of the above method, said chiral, non-racemic compound has an enantiomeric excess greater than about 90%.

U stanovitom ostvarenju gore navedenom metodom navedeni kiralni, ne-racemični spoj ima enentiomerični višak veći od oko 95%. In a particular embodiment of the above method, said chiral, non-racemic compound has an enantiomeric excess greater than about 95%.

Kratki opis grafičkih prikaza Brief description of graphic displays

Slika 1 predstavlja enentiomerički višak produkta dobivenog iz asimetrične desimetrizacije cis-2,3-dimetilsukcininskog anhidrida, kao funkcija korištenog otapala i katalizatora. Figure 1 presents the enantiomeric excess of the product obtained from the asymmetric desymmetrization of cis-2,3-dimethylsuccinic anhydride, as a function of the used solvent and catalyst.

Slika 2 predstavlja enentiomerički višak produkta dobivenog iz asimetrične desimetrizacije različitih mezo cikličnih anhidrida, kao funkcija korištenih uvjeta reakcije. Apsolutna konfiguracija za svaki produkt se određuje komparacijom s autentičnim uzorkom. Enantiomerički višak se određuje upotrebom kiralne GC ili metoda iz literature. U Upisu 1-3, enentiomerički višak u zagradama pripada produktima suprotnim od apsolutne konfiguracije dobivenih upotrebom (DHO)2AON kao katalizatora. U Upisu 4, (DHQD)2PHAL se koristi kao katalizator. Figure 2 presents the enantiomeric excess of the product obtained from the asymmetric desymmetrization of various meso cyclic anhydrides, as a function of the used reaction conditions. The absolute configuration for each product is determined by comparison with an authentic sample. Enantiomeric excess is determined using chiral GC or literature methods. In Entries 1-3, the enantiomeric excess in parentheses belongs to the products opposite to the absolute configuration obtained using (DHO)2AON as catalyst. In Entry 4, (DHQD)2PHAL is used as a catalyst.

Slika 3 predstavlja enentiomerički višak produkta dobivenog iz asimetrične desimetrizacije različitih mezo cikličnih anhidrida, kao funkcija korištenih uvjeta reakcije. Apsolutna konfiguracija za svaki produkt se određuje komparacijom s autentičnim uzorkom. Enantiomerički višak se određuje upotrebom kiralne GC ili metoda iz literature. U Upisu 7 i 8, (DHQD)2PHAL se koristi kao katalizator. Figure 3 presents the enantiomeric excess of the product obtained from the asymmetric desymmetrization of various meso cyclic anhydrides, as a function of the used reaction conditions. The absolute configuration for each product is determined by comparison with an authentic sample. Enantiomeric excess is determined using chiral GC or literature methods. In Entries 7 and 8, (DHQD)2PHAL is used as a catalyst.

Slika 4 predstavlja enentiomerički višak produkta dobivenog iz asimetrične desimetrizacije različitih mezo cikličnih anhidrida, kao funkcija korištenih uvjeta reakcije. Apsolutna konfiguracija za svaki produkt se određuje komparacijom s autentičnim uzorkom. Enantiomerički višak se određuje upotrebom kiralne GC ili metoda iz literature. U Upisu 9 i 11, (DHQD)2PHAL se koristi kao katalizator. Figure 4 presents the enantiomeric excess of the product obtained from the asymmetric desymmetrization of various meso cyclic anhydrides, as a function of the used reaction conditions. The absolute configuration for each product is determined by comparison with an authentic sample. Enantiomeric excess is determined using chiral GC or literature methods. In Entries 9 and 11, (DHQD)2PHAL is used as a catalyst.

Slika 5 prikazuje strukturu određenih katalizatora korištenih u postupcima prezentiranog izuma, i kratice korištene u njemu. Figure 5 shows the structure of certain catalysts used in the processes of the present invention, and the abbreviations used therein.

Slika 6 prikazuje strukturu određenih katalizatora korištenih u postupcima prezentiranog izuma, i kratice korištene u njemu. Figure 6 shows the structure of certain catalysts used in the processes of the present invention, and the abbreviations used therein.

Slika 7 prikazuje strukturu određenih katalizatora korištenih u postupcima prezentiranog izuma, i kratice korištene u njemu. Figure 7 shows the structure of certain catalysts used in the processes of the present invention, and the abbreviations used therein.

Slika 8 prikazuje enentiomerički višak produkta dobivenog iz asimetrične desimetrizacije različitih mezo cikličnih anhidrida, kao funkcija korištenih uvjeta reakcije. Figure 8 shows the enantiomeric excess of the product obtained from the asymmetric desymmetrization of various meso cyclic anhydrides, as a function of the reaction conditions used.

Slika 9 prikazuje enentiomerički višak produkta dobivenog iz asimetrične desimetrizacije različitih mezo cikličnih anhidrida, kao funkcija korištenih uvjeta reakcije. Apsolutna konfiguracija svakog produkta se doređuje komparacijom s autentičnim uzorkom. Enantiomerički višak se određuje upotrebom kiralne GC ili metoda iz literature. Figure 9 shows the enantiomeric excess of the product obtained from the asymmetric desymmetrization of various meso cyclic anhydrides, as a function of the reaction conditions used. The absolute configuration of each product is determined by comparison with an authentic sample. Enantiomeric excess is determined using chiral GC or literature methods.

Slika 10 prikazuje rezultat desimetrizacije brojnih prokiralnih cikličnih anhidrida. U svakom primjeru: količina supstrata je 0.1 mmol; koncentracija supstrata je 0.2 M; 110 mol% koriti se katalizator u odnosu na supstrat; količina alkohola je 1.5 ekviv; otapalo je toluen; a reakcijska temperatura je –43°C. Figure 10 shows the result of the desymmetrization of a number of prochiral cyclic anhydrides. In each example: the amount of substrate is 0.1 mmol; substrate concentration is 0.2 M; 110 mol% catalyst is used in relation to the substrate; the amount of alcohol is 1.5 equiv; the solvent is toluene; and the reaction temperature is –43°C.

Slika 11 prikazuje rezultat desimetrizacije brojnih meso cikličnih anhidrida. U svakom primjeru: količina supstrata je 0.1 mmol; koncentracija supstrata je 0.02 M; a otapalo je eter. Figure 11 shows the result of desymmetrization of a number of meso cyclic anhydrides. In each example: the amount of substrate is 0.1 mmol; substrate concentration is 0.02 M; and the solvent is ether.

Slika 12 prikazuje rezultat desimetrizacije brojnih meso cikličnih anhidrida. U svakom primjeru: količina supstrata je 0.1 mmol; koncentracija supstrata je 0.02 M; a otapalo je eter. Figure 12 shows the result of desymmetrization of a number of meso cyclic anhydrides. In each example: the amount of substrate is 0.1 mmol; substrate concentration is 0.02 M; and the solvent is ether.

Slika 13 prikazuje rezultat desimetrizacije cis-2,3-dinietil sukcininskog anhidrida. U svakom primjeru: količina supstrata je 0.1 mmol; koncentracija supstrata je 0.02 M; katalizator je QD-PP; koristi se 20 mol% katalizatora u odnosu na supstrat; količina alkohola je 10 ekviv; a reakcija se izvodi na sobnoj temperaturi. Figure 13 shows the result of desymmetrization of cis-2,3-diniethyl succinic anhydride. In each example: the amount of substrate is 0.1 mmol; substrate concentration is 0.02 M; the catalyst is QD-PP; 20 mol% of the catalyst is used in relation to the substrate; the amount of alcohol is 10 equiv; and the reaction is carried out at room temperature.

Slika 14 prikazuje rezultat desimetrizacije cis-2,3-dimetil sukcininskog anhidrida. U svakom primjeru: količina supstrata je 0.1 mmol; koncentracija supstrata je 0.2 M; katalizator je QD-PP; alkohol je metanol; reakcija se izvodi na sobnoj temperaturi. Figure 14 shows the result of desymmetrization of cis-2,3-dimethyl succinic anhydride. In each example: the amount of substrate is 0.1 mmol; substrate concentration is 0.2 M; the catalyst is QD-PP; alcohol is methanol; the reaction is carried out at room temperature.

Slika 15 prikazuje rezultat desimetrizacije cis-2,3-dimetil sukcininskog anhidrida. U svakom primjeru: količina supstrata je 0.1 mmol; koncentracija supstrata je 0.2 M; katalizator je QD-PP; alkohol je metanol; reakcija se izvodi na -25 °C. Figure 15 shows the result of desymmetrization of cis-2,3-dimethyl succinic anhydride. In each example: the amount of substrate is 0.1 mmol; substrate concentration is 0.2 M; the catalyst is QD-PP; alcohol is methanol; the reaction is performed at -25 °C.

Slika 16 prikazuje rezultat desimetrizacije cis-2,3-dimetil sukcininskog anhidrida. U svakom slučaju: količina supstrata je 0.2 mmol; koncentracija supstrata je 0.4 M; katalizator je QD-PP; alkohol je metanol; reakcija se izvodi na -25 °C, a vrijeme reakcije je 6 sati. Figure 16 shows the result of desymmetrization of cis-2,3-dimethyl succinic anhydride. In any case: the amount of substrate is 0.2 mmol; substrate concentration is 0.4 M; the catalyst is QD-PP; alcohol is methanol; the reaction is carried out at -25 °C, and the reaction time is 6 hours.

Slika 17 prikazuje rezultat desimetrizacije cis-2,3-dimetil sukcininskog anhidrida. U svakom slučaju: koncentracija supstrata je 0.02 M; katalizator je 20 mol% u odnosu na supstrat; količina alkohola je 10 ekviv; reakcija se izvodi na temperaturi ambijenta. Figure 17 shows the result of desymmetrization of cis-2,3-dimethyl succinic anhydride. In any case: the substrate concentration is 0.02 M; the catalyst is 20 mol% in relation to the substrate; the amount of alcohol is 10 equiv; the reaction is carried out at ambient temperature.

Slika 18 prikazuje strukturu QD-PH, QD-AN, QD-NT, QD-AC i QD-CH. Figure 18 shows the structure of QD-PH, QD-AN, QD-NT, QD-AC and QD-CH.

Slika 19 predstavlja komparaciju učinkovitosti katalizatora u metanolizi 2,3-dimetilsukcininskog anhidrida u Et2O u 0.02 M koncentraciji. Figure 19 presents a comparison of the efficiency of the catalyst in the methanolysis of 2,3-dimethylsuccinic anhydride in Et2O at a concentration of 0.02 M.

Slika 20 predstavlja komparaciju učinkovitosti katalizatora u metanolizi 2,3-dimetilsukcininskog anhidrida u Et2O u 0.02 M koncentraciji. Figure 20 presents a comparison of the effectiveness of the catalyst in the methanolysis of 2,3-dimethylsuccinic anhydride in Et2O at a concentration of 0.02 M.

Slika 21 predstavlja komparaciju učinkovitosti katalizatora u trifluoroetanolizi 2,3-dimetilsukcininskog anhidrida u Et2O u 0.02 M koncentraciji. Figure 21 presents a comparison of the effectiveness of the catalyst in the trifluoroethanolysis of 2,3-dimethylsuccinic anhydride in Et2O at a concentration of 0.02 M.

Slika 22 predstavlja optimizaciju uvjeta reakcije u metanolizi 3-inetilglutaričnog anhidrida u Et2O u 0.02 M koncentraciji. Figure 22 represents the optimization of the reaction conditions in the methanolysis of 3-inethylglutaric anhydride in Et2O at a concentration of 0.02 M.

Slika 23 predstavlja skrining uvjeta reakcije u alkoholizi 3-metil-glutaričnog anhidrida u 0.02 M koncentraciji. Figure 23 presents the screening of reaction conditions in the alcoholysis of 3-methyl-glutaric anhydride in 0.02 M concentration.

Slika 24 predstavlja komparaciju učinkovitosti katalizatora za metanolizu 3-metil-glutaričnog anhidrida u toluenu za 0.02 M koncentraciju. Figure 24 presents a comparison of the efficiency of the catalyst for the methanolysis of 3-methyl-glutaric anhydride in toluene for a 0.02 M concentration.

Slika 25 predstavlja komparaciju učinkovitosti katalizatora u trifluoroetanolizi 3-metil-glutaričnog anhidrida u toluenu u 0.02 M koncentraciji. Figure 25 presents a comparison of the efficiency of the catalyst in trifluoroethanolysis of 3-methyl-glutaric anhydride in toluene at a concentration of 0.02 M.

Slika 26 predstavlja komparaciju učinkovitosti katalizatora u metanolizi 3-fenil-glutaričnog anhidrida u toluenu u 0.02 M koncentraciji. Figure 26 presents a comparison of the effectiveness of the catalyst in the methanolysis of 3-phenyl-glutaric anhydride in toluene at a concentration of 0.02 M.

Slika 27 predstavlja komparaciju učinkovitosti katalizatora u trifluoroetanolizi 3-fenil-glutaričnog anhidrida u toluenu u 0.02 M koncentraciju. Figure 27 presents a comparison of the effectiveness of the catalyst in trifluoroethanolysis of 3-phenyl-glutaric anhydride in toluene at a concentration of 0.02 M.

Slika 28 predstavlja komparaciju učinkovitosti katalizatora u metanolizi 3-izopropil glutaričnog anhidrida u toluenu u 0.02 M koncentraciju. Figure 28 presents a comparison of the efficiency of the catalyst in the methanolysis of 3-isopropyl glutaric anhydride in toluene at a concentration of 0.02 M.

Slika 29 predstavlja komparaciju učinkovitosti katalizatora u trifluoroetanolizi 3-izopropil glutaričnog anhidrida u toluenu u 0.02 M koncentraciji. Figure 29 presents a comparison of the effectiveness of the catalyst in the trifluoroethanolysis of 3-isopropyl glutaric anhydride in toluene at a concentration of 0.02 M.

Slika 30 predstavlja komparaciju učinkovitosti katalizatora za metanolizi 3-TBSO glutaričnog anhidrida u toluenu u 0.02 M koncentraciji. Figure 30 presents a comparison of the efficiency of the catalyst for the methanolysis of 3-TBSO glutaric anhydride in toluene at a concentration of 0.02 M.

Slika 31 predstavlja komparaciju učinkovitosti katalizatora u trifluoroetanolizi 3-TBSO glutaričnog anhidrida u toluenu za 0.02 M koncentraciji. Figure 31 presents a comparison of the efficiency of the catalyst in the trifluoroethanolysis of 3-TBSO glutaric anhydride in toluene for 0.02 M concentration.

Slika 32 predstavlja Q-AD koji katalizira metanolizu 3-supstituiranog glutaričnog anhidrida u toluenu u 0.2 M koncentraciji. Figure 32 represents Q-AD catalyzing the methanolysis of 3-substituted glutaric anhydride in toluene at 0.2 M concentration.

Slika 33 predstavlja Q-AD koji katalizira trifluorometanolizu 3-supstituiranog glutaričnog anhidrida u toluenu u 0.2 M koncentraciji. Figure 33 presents Q-AD catalyzing trifluoromethanolysis of 3-substituted glutaric anhydride in toluene at 0.2 M concentration.

Slika 34 predstavlja komparaciju učinkovitosti za alkoholizu cis 1,2,3,6-tetrahidroftaličkog anhidrida s metanolom u Et2O u 0.02 M koncentraciji. Figure 34 presents a comparison of the efficiency for the alcoholysis of cis 1,2,3,6-tetrahydrophthalic anhydride with methanol in Et2O at a concentration of 0.02 M.

Slika 35 predstavlja komparaciju učinkovitosti u alkoholizi cis 1,2,3,6-tetrahidroptaličkog anhidrida s trifluoretanolom u Et2O u 0.02 M koncentraciji. Figure 35 presents a comparison of the efficiency in the alcoholysis of cis 1,2,3,6-tetrahydrophthalic anhydride with trifluoroethanol in Et2O at a concentration of 0.02 M.

Slika 36 predstavlja s QD-AD kataliziranu alkoholizu 1,2-cikloheksandikarboksiličnog anhidrida s metanolom u Et2O u 0.02 M koncentraciji. Figure 36 represents the QD-AD catalyzed alcoholysis of 1,2-cyclohexanedicarboxylic anhydride with methanol in Et2O at 0.02 M concentration.

Slika 37 predstavlja komparaciju učinkovitosti katalizatora u alkoholizi 1,2-cikloheksandikarboksiličnog anhidrida s trifluoretanolom u Et2O u 0.02 H koncentraciji. Figure 37 presents a comparison of the effectiveness of the catalyst in the alcoholysis of 1,2-cyclohexanedicarboxylic anhydride with trifluoroethanol in Et2O at a 0.02 H concentration.

Slika 38 predstavlja komparaciju učinkovitosti katalizatora za alkoholizi cis-norbornen-endo-2,3-dikarboksiličnog anhidrida u Et2O u 0.02 M koncentraciji. Figure 38 presents a comparison of the efficiency of the catalyst for the alcoholysis of cis-norbornene-endo-2,3-dicarboxylic anhydride in Et2O at a concentration of 0.02 M.

Slika 39 predstavlja komparaciju učinkovitosti katalizatora u alkoholizi ekso-3,6-epoksi-1,2,3,6-tetrahidroftaličnog anhidrida u Et2O u 0.02 M koncentraciji. Figure 39 presents a comparison of the effectiveness of the catalyst in the alcoholysis of exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic anhydride in Et2O at a concentration of 0.02 M.

Slika 40 predstavlja optimizaciju uvjeta reakcije u akoholizi cis-1,2,3,6-tetrahidroftaličnog anhidrida u Et2O u 0.02 M koncentraciju. Figure 40 represents the optimization of reaction conditions in the ecolysis of cis-1,2,3,6-tetrahydrophthalic anhydride in Et2O in 0.02 M concentration.

Slika 41 predstavlja optimizaciju uvjeta reakcije u alkoholizi cis-1,2,3,6-tetrahidroftaličnog anhidrida u toluenu u 0.02 M koncentraciji. Figure 41 represents the optimization of the reaction conditions in the alcoholysis of cis-1,2,3,6-tetrahydrophthalic anhydride in toluene at a concentration of 0.02 M.

Slika 42 predstavlja optimizaciju uvjeta reakcije u alkoholizi cis-1,2,3,6-tetrahidroftaličnog anhidrida u toluenu u 0.5 M. Figure 42 represents the optimization of the reaction conditions in the alcoholysis of cis-1,2,3,6-tetrahydrophthalic anhydride in 0.5 M toluene.

Slika 43 predstavlja alkoholizu sukcininskih anhidrida s Q-AD. Figure 43 represents the alcoholysis of succinic anhydrides with Q-AD.

Slika 44 predstavlja komparaciju učinkovitosti katalizatora u metanolizi 2,3-dimetilsukcininskog anhidrida u Et2O u 0.02 M koncentraciji. Figure 44 presents a comparison of the efficiency of the catalyst in the methanolysis of 2,3-dimethylsuccinic anhydride in Et2O at a concentration of 0.02 M.

Slika 45 predstavlja komparaciju učinkovitosti katalizatora u trifluoroetanolizi 3-izopropil glutarnog anhidrida u toluenu u 0.02 M koncentraciji. Figure 45 presents a comparison of the efficiency of the catalyst in the trifluoroethanolysis of 3-isopropyl glutaric anhydride in toluene at a concentration of 0.02 M.

Detaljni opis izuma Detailed description of the invention

Izum koji će sada biti detaljnije opisan s referenci jama za popratne primjere, u kojima su pokazana stanovita preferirana ostvarenja izuma. Ovaj izum može, međutim, biti postignut u različitim oblicima i neće biti dalje tumačeni kao ograničenje za izbor ostvarenja, radije, ta ostvarenja su pod uvjetom da će ta otkrića biti cjelovita i kompletna, i potpuno će prenijeti cilj izuma u struku. The invention will now be described in more detail with reference to the accompanying examples, in which certain preferred embodiments of the invention are shown. This invention may, however, be achieved in various forms and shall not be further construed as limiting the choice of embodiments, rather, those embodiments are provided that such disclosures shall be whole and complete, and shall fully convey the object of the invention to those skilled in the art.

Mogućnost selektivne transformacije prokiralnog i mezo spoja na enantiomerički obogaćenom ili enentiomerički čistom kiralnom spoju ima široku aplikaciju, osobito u poljoprivredi i farmaceutskoj industriji, kao i u industriji polimera. Kao što je ovdje opisano, prezentirani izum odnosi se na metode i katalizatore za katalitičku asimetričnu desimetrizaciju prokiralnih i mezo spojeva i sličnog. Osnovni sastavni dio metoda, koje su niže detaljno prikazane; su ne-raceraični kiralni tercijalni-amin-koji sadržava katalizator; prokiralni ili mezo supstrat, u pravilu heterocikl sadržava par elektrofiličnih atoma povezanih s unutarnjim stupanjem simetrije ili točkom simetrije; i nukleofile, uobičajeno otapalo, koje u uvjetima reakcije selektivno pogađa jedan od dva gore navedena elektrofilična atoma, stvarajući enentiomerični obogaćeni kiralni produkt. Osim toga, katalizator i metode prezentiranog izuma mogu se iskoristiti za učinkovitu kinetičku resoluciju racemične smjese i slično. The possibility of selective transformation of prochiral and meso compounds on enantiomerically enriched or enantiomerically pure chiral compounds has a wide application, especially in agriculture and the pharmaceutical industry, as well as in the polymer industry. As described herein, the present invention relates to methods and catalysts for catalytic asymmetric desymmetrization of prochiral and meso compounds and the like. The basic component of the methods, which are presented in detail below; are a non-raceraic chiral tertiary-amine-containing catalyst; prochiral or meso substrate, as a rule, a heterocycle contains a pair of electrophilic atoms connected to an internal degree of symmetry or a point of symmetry; and nucleophiles, a common solvent, which under reaction conditions selectively attack one of the two electrophilic atoms listed above, producing an enantiomerically enriched chiral product. In addition, the catalyst and methods of the present invention can be used for efficient kinetic resolution of racemic mixtures and the like.

Definicije Definitions

Zbog pogodnosti, ovdje su sakupljeni: određeni pojmovi koji se koriste u specifikaciji, primjeri, i dodani zahtjevi. For convenience, the following are collected here: certain terms used in the specification, examples, and added requirements.

Pojam „nukleofil" je prepoznat u struci, i kao što se koristi ovdje označava kemijski dio koji ima reaktivni par elektrona. Primjeri nukleofila uključuju neopterećene spojeve kao što je voda, amini, merkaptani i alkoholi, i neopterećene dijelove kao što su alkoksidi, tiolati, karbanioni, i različiti organski i anorganski anioni. Ilustrirajući anionski nukleofili uključuju jednostavne anione kao što je hidroksid, azid, cijanid, tiocijanat, acetat, format ili kloroformat, i bisulfit, Organometalni reagensi kao što su organobakarni, organo cinkovi, organolitijevi spojevi, Gringard reagensi, enolati, acelidi, i slični mogu, pod odgovarajućim uvjetima reakcije, biti odgovarajući nukleofili. Hidridi mogu isto biti odgovarajući nukleofili kada se zahtijeva redukcija supstrata. The term "nucleophile" is recognized in the art, and as used herein refers to a chemical moiety having a reactive pair of electrons. Examples of nucleophiles include uncharged compounds such as water, amines, mercaptans, and alcohols, and uncharged moieties such as alkoxides, thiolates, carbanions, and various organic and inorganic anions Illustrative anionic nucleophiles include simple anions such as hydroxide, azide, cyanide, thiocyanate, acetate, formate or chloroformate, and bisulfite, Organometallic reagents such as organocopper, organozinc, organolithium compounds, Gringard reagents , enolates, acelides, and the like may, under appropriate reaction conditions, be suitable nucleophiles.Hydrides may also be suitable nucleophiles when substrate reduction is required.

Pojam „elektrofil" je poznat u struci i odnosi se na kemijske dijelove koji mogu prihvatiti par elektrona od nukleofila koji je gore definiran. Uobičajeno korišteni elektrofili u metodama prezentiranog izuma uključuju ciklične spojeve kao što su epoksidi, aziridini, episulfidi, ciklični sulfati, karbonati, laktoni, laktami i slično. Ne-ciklični elektrofili uključuju sulfate, sulfonate (npr. tosilate), kloride, bromide, jodide, i slično. The term "electrophile" is known in the art and refers to chemical moieties that can accept a pair of electrons from a nucleophile as defined above. Commonly used electrophiles in the methods of the present invention include cyclic compounds such as epoxides, aziridines, episulfides, cyclic sulfates, carbonates, lactones, lactams, etc. Non-cyclic electrophiles include sulfates, sulfonates (eg, tosylates), chlorides, bromides, iodides, and the like.

Pojmovi „elektrofilični atom", „elektrofilični centar" i „reaktivni centar" kao što se ovdje koriste odnosi se na atom supstrata koji je zahvaćen s, i formira novu vezu na, nukleofilu. U većini slučajeva (ali ne svima), to će isto biti atom od kojeg ostatna skupina odstupa. The terms "electrophilic atom," "electrophilic center," and "reactive center" as used herein refer to the substrate atom that is engaged with, and forms a new bond to, the nucleophile. In most (but not all) cases, this will be the atom from which the rest of the group deviates.

Pojam „elektron-skupina koja se izlučuje" je priznat u struci i kao što se ovdje koristi znači funkcionalnost koja izvlači elektrone na same sebe više od atoma vodika na istoj poziciji. Primjer elektron skupine koja se izlučuje uključuje nitro, keton, aldehid, sulfonil, trifluormetil, -CN, klorid, i slično. Pojam "elektron-skupina koja donira", kao što se ovdje koristi, znači funkcionalnost koja izvlači elektrone na same sebe manje od atoma vodika na istoj poziciji. Primjer elektron-skupine koja donira uključuje amino, metoksi, i slično. The term "electron withdrawing group" is recognized in the art and as used herein means a functionality that withdraws more electrons to itself than a hydrogen atom at the same position. An example of an electron withdrawing group includes nitro, ketone, aldehyde, sulfonyl, trifluoromethyl, -CN, chloride, and the like. The term "electron-donating group," as used herein, means a functionality that withdraws electrons to itself less than a hydrogen atom at the same position. An example of an electron-donating group includes amino, methoxy, and the like.

Pojmovi „Lewis baza" i Lewis bazični" su u struci priznati, i odnose se na kemijski dio sposoban donirati par elektrona pod određenim uvjetima reakcije. Primjeri Lewis bazičnog dijela uključuje neopterećene spojeve kao što su alkoholi, tioli, olefini, i amini, i opterećene dijelove kao što su alkoksidi, tiolati, karbanioni, i različiti drugi organski anioni. The terms "Lewis base" and Lewis basic" are recognized in the art, and refer to a chemical moiety capable of donating a pair of electrons under certain reaction conditions. Examples of Lewis basic moieties include uncharged compounds such as alcohols, thiols, olefins, and amines, and charged moieties such as alkoxides, thiolates, carbanions, and various other organic anions.

Pojmovi „Levis kiselina" i Lewis kiseli" su u struci priznati i odnose se na kemijski dio koji je sposoban prihvatiti par elektrona od Lewis baze. The terms "Lewis acid" and Lewis acid" are recognized in the art and refer to a chemical part that is capable of accepting a pair of electrons from a Lewis base.

Pojam ,,mezo spoj" je u struci priznat i znači kemijski spoj koji ima najmanje dva kiralna centra ili je akiralni zbog unutarnjeg stupnja simetrije ili točke simetrije. The term "meso compound" is recognized in the art and means a chemical compound that has at least two chiral centers or is achiral due to an internal degree of symmetry or point of symmetry.

Pojam „kiralni" odnosi se na molekule koje imaju svojstvo ne-superimposability on their mirror image partner, dok se pojam „akiralni" odnosi na molekule koje su superimposable on their mirror image partner. „Prokiralna molekula" je akiralna molekula koja ima potencijal da bude pretvorena u kiralnu molekulu u osobitom procesu. The term "chiral" refers to molecules that have the property of non-superimposability on their mirror image partner, while the term "achiral" refers to molecules that are superimposable on their mirror image partner. A "prochiral molecule" is an achiral molecule that has the potential to be converted into a chiral molecule in a particular process.

Pojam „stereoizomerizam" odnosi se na spojeve koji imaju identičnu kemijsku konstituciju, ali se razlikuje s obzirom na uređenje njihovih atoma ili skupina u prostoru. Točnije, pojam „enentiomeri" odnosi se na dva stereoizomera spoja koji su no-superimposable mirror images od jednog drugog. Pojam „diastereomeri", s druge strane, odnosi se na vezu između para stereoizomera tako da obuhvaća dva ili više asimetričnih centara i nisu mirror images od jednog drugog. The term "stereoisomerism" refers to compounds that have an identical chemical constitution, but differ in the arrangement of their atoms or groups in space. More precisely, the term "enantiomers" refers to two stereoisomers of a compound that are non-superimposable mirror images of each other. . The term "diastereomers", on the other hand, refers to a bond between a pair of stereoisomers such that they involve two or more asymmetric centers and are not mirror images of each other.

Nadalje, „stereoselektivni proces" je onaj koji proizvodi određeni stereoizomer produkta reakcije u prednosti u odnosu na druge moguće stereoizomere produkta. „Enantioselektivni proces" je onaj koji pogoduje proizvodnji jednog od dva moguća enentiomera produkta reakcije. Predmetna metoda je navedena za proizvodnju „stereoselektivnog obogaćenog" produkta (npr. enentioselektivno-obogačenog ili diastereoselektiovno-obogačenog) kada je prinos određenih stereoizomera produkta veći od statistički značajne količine u odnosu na prinos tog stereoizomera nastalog iz iste reakcije provedene u odsutnosti kiralnog katalizatora. Na primjer, enentioselektivna reakcija katalizirana s jednim od predmeta subjekta kiralnog katalizatora se dobije e.e. za određeni enentiomer tako da je veći od e.e. reakcije u kojoj nedostaje kiralni katalizator. Furthermore, a "stereoselective process" is one that produces a particular stereoisomer of a reaction product in preference to other possible stereoisomers of the product. An "enantioselective process" is one that favors the production of one of the two possible enantiomers of the reaction product. The subject method is specified for the production of a "stereoselectively enriched" product (eg enantioselectively-enriched or diastereoselectively-enriched) when the yield of certain stereoisomers of the product is greater than a statistically significant amount in relation to the yield of that stereoisomer resulting from the same reaction carried out in the absence of a chiral catalyst. For example, an enantioselective reaction catalyzed with one of the subject chiral catalysts produces an e.e. for a particular enantiomer that is greater than the e.e. of a reaction lacking the chiral catalyst.

Pojam „regioizomeri" odnosi se na spojeve koji imaju istu molekularnu formulu ali koji se razlikuju u povezanosti atoma. Sukladno tomu „regioselektivni proces" je onaj koji daje prednost proizvodnji određenih regioizomera pred drugima, npr. reakcijskih postupaka statistički signifikantnih superiornosti određenog regioizomera. The term "regioisomers" refers to compounds that have the same molecular formula but differ in the connection of atoms. Accordingly, a "regioselective process" is one that favors the production of certain regioisomers over others, e.g. reaction procedures with statistically significant superiority of a certain regioisomer.

Pojam „produkt reakcije" znači spoj koji je rezultat reakcije nukleofila i supstrata. Općenito, pojam „produkt reakcije" koji će se ovdje koristiti odnosi se na, stabilni, izolirani spoj, a ne na nestabilne intermedijere ili transmisiona stanja. The term "reaction product" means a compound resulting from the reaction of a nucleophile and a substrate. In general, the term "reaction product" as used herein refers to a stable, isolated compound and not to unstable intermediates or transition states.

Pojam „supstrat" je namijenjen da znači kemijski spoj koji može reagirati s nukleofilom, ili s kolut-ekspanzionim reagensom, u skladu s prezentiranim izumom, da se dobije najmanje produkt koji ima stereogeni centar. The term "substrate" is intended to mean a chemical compound that can react with a nucleophile, or with a ring-expansion reagent, in accordance with the present invention, to give at least a product having a stereogenic center.

Pojam „katalitička količina" je poznat u struci i znači substoihiorrietričku količinu u odnosu na reaktant. Kao što se ovdje koristi, katalitična količina znači od 0.0001 do 90 mol postotaka o odnosu na reaktant, više se preferira od 0.001 do 50 mol postotaka, još više se preferira od 0.01 do 10 mol postotaka, i čak više se preferira od 0.1 do 5 mol postotaka u odnosu na reaktant. The term "catalytic amount" is known in the art to mean a substoichiorietric amount relative to the reactant. As used herein, catalytic amount means from 0.0001 to 90 mole percent relative to the reactant, more preferably from 0.001 to 50 mole percent, more preferably from 0.01 to 10 mol percent, and even more preferably from 0.1 to 5 mol percent relative to the reactant.

Kao što se detaljnije raspravlja dalje u tekstu, reakcije razmatrane u prezentiranom izumu uključuju reakcije koje su enentioselektivne, diastereoselektivne, i/ili regioselektivne. Enantioselektivna reakcija je reakcija kojom se pretvara akiralni reaktant u kiralni produkt obogaćen u jednom enentiomeru. Enantioselektivnost je općenito kvantificirana kao „enentiomerni višak" (ee) definiran kao što slijedi: As discussed in more detail below, reactions contemplated by the present invention include reactions that are enantioselective, diastereoselective, and/or regioselective. An enantioselective reaction is a reaction that converts an achiral reactant into a chiral product enriched in one enantiomer. Enantioselectivity is generally quantified as "enantiomeric excess" (ee) defined as follows:

% enentiomeričnog viška A (ee) = (% enentiomera A) -(% enentiomera B) % enantiomeric excess A (ee) = (% enantiomer A) -(% enantiomer B)

gdje A i B su formirani enantiomeri. Dodatno pojmovi koji se koriste u spajanju s enentioselektivnosti „optička čistoća" ili „optičko djelovanje". Prinos produkta enantioselektivne reakcije s e.e. veći je od nule. Preferirani prinos produkta enentioselektivne reakcije je e.e. veći od 20%, više se preferira veći od 50%, čak više se preferira veći od 70%, i najviše se preferira od 80%. where A and B are the enantiomers formed. Additionally, the terms used in conjunction with enantioselectivity are "optical purity" or "optical action". The yield of the enantioselective reaction product with e.e. is greater than zero. The preferred yield of the enantioselective reaction product is e.e. greater than 20%, more preferably greater than 50%, even more preferably greater than 70%, and most preferably greater than 80%.

Diastereoselektivnom reakcijom pretvara se kiralni reaktant (koji može biti racemično ili enentiomerični čist) za produkt obogaćen u jednoj diastereomeri. Ako je kiralni reaktant racemičan, u prisutnosti kiralnog ne-racemičnog reagensa ili katalizatora, jedan reaktant enentiomer može reagirati mnogo sporije od drugog. Ta klasa reakcije je nazvana kinetika resolucije, gdje reaktanti enantiomeri su riješeni diferencijalnom reakcijom u odnosu na prinos oba enantiomerično-obogaćenog produkta i enentiomerično-obogaćen nereagirani supstrat. Kintička resolucija se uobičajeno postiže upotrebom suviška reagensa da reagira sa samo jednim reaktantom enantiomerom (tj,-jedna-polovica mola reagensa po molu racemičnog substrata). Primjeri katalitične reakcije koji će se koristiti za kinetičku resoluciju racemičnog reaktanta uključuje Sharpless epoksidaciju i Noyori hidrogenaciju. A diastereoselective reaction converts a chiral reactant (which can be racemic or enantiomerically pure) into a product enriched in one diastereomer. If the chiral reactant is racemic, in the presence of a chiral non-racemic reagent or catalyst, one reactant enantiomer may react much more slowly than the other. This class of reaction is called resolution kinetics, where the reactant enantiomers are resolved by a differential reaction in relation to the yield of both enantiomerically-enriched products and enantiomerically-enriched unreacted substrate. Kinetic resolution is usually achieved by using excess reagent to react with only one reactant enantiomer (ie, one-half mole of reagent per mole of racemic substrate). Examples of catalytic reactions that will be used for the kinetic resolution of a racemic reactant include Sharpless epoxidation and Noyori hydrogenation.

Regioselektivna reakcija je reakcija koja se preferirano javlja na jednom reaktivnom centru radije nego na drugom ne-identičnom reaktivnom centru. Na primjer, regioselektivna reakcija nesimetričnog supstituiranog epoksidnog supstrata uključuje prefrencijalnu reakciju na jednom od dva ugljika epoksidnog prstena. A regioselective reaction is a reaction that preferentially occurs at one reactive center rather than at another non-identical reactive center. For example, the regioselective reaction of an unsymmetrically substituted epoxy substrate involves a preferential reaction at one of the two carbons of the epoxy ring.

Pojam „ne -racemični" s obzirom na kiralni katalizator, znači pripravak koji ima više od 50% navedenog enantiomera, više se prefrira najmanje 75%. „Jako ne-racemični" odnosi se na pripravak katalizatora koji ima više od 90% ee za navedeni enantiomer katalizatora, više se preferira više od 95% ee. The term "non-racemic" with respect to a chiral catalyst means a preparation having more than 50% of the enantiomer indicated, more preferably at least 75%. "Highly non-racemic" refers to a catalyst preparation having more than 90% ee for the indicated enantiomer of the catalyst, more preferably greater than 95% ee.

Pojam „alkil" odnosi se na radikal zasićene alifatske skupine, uključujući ravni lanac alkil skupina, razgranati lanac alkil skupine, cikloalkil(alicikličnih) skupina, alkil supstituirane cikloalkil skupine, i cikloalkil supstituirane alkil skupine. U preferiranom ostvarenju, ravni lanac ili razgranati alkil lanac ima 30 ili manje atoma ugljika u njegovoj osnovi (npr. C1-C30 za ravni lanac, C3-C30 za razgranati lanac), a više se preferira 20 ili manje. Slično, preferirani cikloalkili imaju od 4-10 atoma ugljika u njihovoj strukturi prstena, a više se preferira da ima 5, 6 ili 7 ugljika u strukturi prstena. The term "alkyl" refers to the radical of saturated aliphatic groups, including straight chain alkyl groups, branched chain alkyl groups, cycloalkyl(alicyclic) groups, alkyl substituted cycloalkyl groups, and cycloalkyl substituted alkyl groups. In a preferred embodiment, straight chain or branched chain alkyl has 30 or fewer carbon atoms in its backbone (eg C1-C30 for a straight chain, C3-C30 for a branched chain), more preferably 20 or less Similarly, preferred cycloalkyls have from 4-10 carbon atoms in their ring structure , and it is more preferred to have 5, 6 or 7 carbons in the ring structure.

Osim ako nije broj ugljika drugačije specificiran, „niži alkil" kao što se ovdje koristi znači alkil skupina, kao što je gore definirano, ali ima od jednog do deset ugljika, više se preferira od jedan do šest atoma ugljika u svojoj osnovnoj strukturi. Slično, „niži alkenil" i „niži alkinil" ima jednaku dužinu lanca. Unless the number of carbons is otherwise specified, "lower alkyl" as used herein means an alkyl group, as defined above, but having from one to ten carbons, more preferably from one to six carbon atoms in its basic structure. Similarly , "lower alkenyl" and "lower alkynyl" have the same chain length.

Pojmovi „alkenil" i „alkinil" odnose se na nezasićene alifatske skupine analogne u dužini i moguća je supstitucija na alkilu opisanom gore, ali koji sadržava najmanje jednu duplu ili trostruku ugljik-ugljik vezu. The terms "alkenyl" and "alkynyl" refer to unsaturated aliphatic groups analogous in length to, and possible substitution on, the alkyl described above, but containing at least one double or triple carbon-carbon bond.

Pojmovi „alkoksil" ili „alkoksi" kao što se ovdje koristi odnosi se na alkil skupinu, kao što je gore definirano, ima na ovo dodan kisik radikal. Predstavnici alkoksil skupina uključuju metoksi, etoksi, propiloksi, tert-butoksi i slično. „Eter" je dva hidrokarbona kovalentno povezana s kisikom. Shodno tomu, supstituent alkila onaj koji čini da alkil eter je ili je nalik alkoksilu, tako da može biti predstavljen s jednim od -O-alkil, -O-alkenil, -O-alkinil, -O-(CH2)m-R8, gdje m i R8 su gore opisani. The terms "alkyl" or "alkyl" as used herein refers to an alkyl group, as defined above, having an oxygen radical attached thereto. Representatives of alkyl groups include methoxy, ethoxy, propyloxy, tert-butoxy and the like. An "ether" is two hydrocarbons covalently bonded to oxygen. Accordingly, an alkyl substituent is one that makes an alkyl ether is or resembles an alkoxyl, so it can be represented by one of -O-alkyl, -O-alkenyl, -O-alkynyl , -O-(CH 2 ) m -R 8 , where m and R 8 are as described above.

Kao što se ovdje koristi, pojam „amino" znači -NH2; pojam «nitro» znači -NO2; pojam „halogen" označava -F, -Cl, -Br ili -I; pojam „tiol" znači -SH; pojam „hidroksil" znači -OH; pojam „sulfonil" znači -SO2-; a pojam „organometalni" odnosi se na atom metala (kao što je živa, cink, olovo, magnezij ili litij) ili metaloid (kao što je silikon, arsen ili selen) koji je direktno vezan na atom ugljika, poput difenilmetilsilil skupine. As used herein, the term "amino" means -NH2; the term "nitro" means -NO2; the term "halogen" means -F, -Cl, -Br or -I; the term "thiol" means -SH; the term "hydroxyl" means -OH; the term "sulfonyl" means -SO2-; and the term "organometallic" refers to an atom of a metal (such as mercury, zinc, lead, magnesium, or lithium) or a metalloid (such as silicon, arsenic, or selenium) that is directly bonded to a carbon atom, such as a diphenylmethylsilyl group.

Pojmovi „amin" i „amino" su u struci poznati i odnose se na oba nesupstituirani i supstituirani amin, npr. dio koji se može predstaviti općom formulom: The terms "amine" and "amino" are known in the art and refer to both unsubstituted and substituted amines, e.g. a moiety that can be represented by the general formula:

[image] [image]

gdje R9, R10 i R'10 svaki nezavisno predstavlja skupinu dopuštenu po pravilu valencije. where R9, R10 and R'10 each independently represent a group allowed by the valence rule.

Pojam „acilamino" je u struci poznat i odnosi se na dio koji se može predstaviti općom formulom: The term "acylamino" is known in the art and refers to a part that can be represented by the general formula:

[image] [image]

gdje R9 je gore definiran, a R'11 predstavlja vodik, alkil, alkenil ili -(CH2)m-R8, gdje m i R8 su gore definirani. where R9 is defined above, and R'11 represents hydrogen, alkyl, alkenyl or -(CH2)m-R8, where m and R8 are defined above.

Pojam „amido" u struci je poznat za amino-supstituirani karbonil i uključuje dio koji se može predstaviti općom formulom: The term "amido" is known in the art for an amino-substituted carbonyl and includes a moiety that can be represented by the general formula:

[image] [image]

gdje R9, R11 su gore definirani. Preferirano ostvarenje amida neće uključivati imide koji mogu biti nestabilni.. where R9, R11 are as defined above. A preferred embodiment of the amide will not include imides which can be unstable.

Pojam „alkiltio" odnosi se na alkil skupinu, kao što je gore definirano, ima na to dodan sumporni radikal. U preferiranom ostvarenju, „alkiltio" dio je predstavljen s jednim od -S-alkil, -S-alkenil, -S-alkinil, i -S-(CH2)m-R8, gdje m i R8 su definirani gore. Predstavnik alkiltio skupina uključuje metiltio, etil tio, i slično. The term "alkylthio" refers to an alkyl group, as defined above, having a sulfur radical added thereto. In a preferred embodiment, the "alkylthio" moiety is represented by one of -S-alkyl, -S-alkenyl, -S-alkynyl , and -S-(CH 2 ) m -R 8 , where m and R 8 are as defined above. Representative alkylthio groups include methylthio, ethylthio, and the like.

Pojam „karbonil" u struci je poznat i uključuje tako dijelove koji se mogu predstaviti općom formulom: The term "carbonyl" is known in the art and thus includes parts that can be represented by the general formula:

[image] [image]

gdje je X veza ili predstavlja kisik ili sumpor, a R11 predstavlja vodik, alkil, alkenil, -(CH2)m-R8 ili farmaceutski prihvatljivu sol, R'11 predstavlja vodik, alkil, alkenil ili -(CH2)m-R8, gdje su m i R8 kao što je gore definirano. Kada je X kisik onda R11 ili R'11 nisu vodik, formula predstavlja „ester". Kad je X kisik, a R11 je kao što je gore definirano, dio naveden ovdje kao karboksil skupina, i osobito kada R11 je vodik, formula predstavlja „karboksilnu kiselinu". Kada X je kisik, a R'11 je vodik, formula predstavlja „formate". Općenito, kada je atom kisika iz gore navedene formule je zamijenjen sa sumporom, formula predstavlja „tiolkarbonil" skupinu. Kada je X sumpor a R11 ili R'11 nisu vodik, formula predstavlja „tiolester". Kada je X sumpor a R11 je vodik, formula predstavlja „tiolkarboksilnu kiselinu". Kada je X sumpor a R'11 vodik, formula predstavlja „tiolformat". S druge strane, kada je X veza, a R11 nije vodik, gore navedena formula predstavlja „keton" skupinu. Kada je X veza, a R11 je vodik, gore navedena formula predstavlja „aldehid" skupinu. where X is a bond or represents oxygen or sulfur, and R11 represents hydrogen, alkyl, alkenyl, -(CH2)m-R8 or a pharmaceutically acceptable salt, R'11 represents hydrogen, alkyl, alkenyl or -(CH2)m-R8, where are m and R8 as defined above. When X is oxygen then R 11 or R' 11 is not hydrogen, the formula represents "ester". When X is oxygen and R 11 is as defined above, the moiety specified herein as a carboxyl group, and especially when R 11 is hydrogen, the formula represents " carboxylic acid". When X is oxygen and R'11 is hydrogen, the formula represents a "formate." In general, when the oxygen atom of the above formula is replaced with sulfur, the formula represents a "thiolcarbonyl" group. When X is sulfur and R 11 or R' 11 is not hydrogen, the formula represents a "thiolester". When X is sulfur and R 11 is hydrogen, the formula represents a "thiolcarboxylic acid". When X is sulfur and R'11 is hydrogen, the formula represents a "thiolformate." On the other hand, when X is a bond and R11 is not hydrogen, the above formula represents a "ketone" group. When X is a bond and R11 is hydrogen, the above formula represents an "aldehyde" group.

Pojam „sulfonat" je u struci poznat i uključuje dio koji se može predstaviti općom formulom: The term "sulfonate" is known in the art and includes a part that can be represented by the general formula:

[image] [image]

u kojoj R41 je par elektrona, vodik, alkil, cikloalkil, ili aril. wherein R41 is an electron pair, hydrogen, alkyl, cycloalkyl, or aryl.

Pojam „sulfonilamino" je u struci poznat i uključuje dio koji se može predstaviti općom formulom: The term "sulfonylamino" is known in the art and includes a moiety that can be represented by the general formula:

[image] [image]

Pojam „sulfamoil" je u struci poznat i uključuje dio koji se može predstaviti općom formulom: The term "sulfamoyl" is known in the art and includes a part that can be represented by the general formula:

[image] [image]

Pojam „sulfonil", kao što se ovdje koristi, odnosi se na dio koji se može predstaviti općom formulom: The term "sulfonyl" as used herein refers to a moiety that can be represented by the general formula:

[image] [image]

u kojoj R44 je odabran iz skupine koja sadržava vodik, alkil, alkenil, alkinil, cikloalkil, heterociklil, aril, ili heteroaril. wherein R44 is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl.

Pojam „sulfoksido" kao što se ovdje koristi, odnosi se na dio koji se može predstaviti općom formulom: The term "sulfoxide" as used herein refers to a moiety that can be represented by the general formula:

[image] [image]

u kojoj R44 je odabran iz skupine koja sadržava vodik, alkil, alkenil, alkinil, cikloalkil, heterocikloalkil, aralkil, ili aril. wherein R44 is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aralkyl, or aryl.

Pojam „sulfat" kao što se ovdje koristi, znači sulfonil skupina, kao što je gore definirano, dodana na obje hidroksi i alkoksi skupine. Tako, u preferiranom ostvarenju, sulfat ima strukturu: The term "sulfate" as used herein means a sulfonyl group, as defined above, attached to both hydroxy and alkoxy groups. Thus, in a preferred embodiment, the sulfate has the structure:

[image] [image]

u kojoj R40 i R41 su nezavisno odsutni, vodik, alkil, ili aril. Nadalje, R40 i R41, daju zajedno sa sulfonil skupinom i atomima kisika na koji su dodani, mogu formirati strukturu prstena koji ima 5 do 10 članova. wherein R 40 and R 41 are independently absent, hydrogen, alkyl, or aryl. Furthermore, R40 and R41, together with the sulfonyl group and the oxygen atoms to which they are added, can form a ring structure having 5 to 10 members.

Analogni supstituenti mogu činiti na alkenil ili alkinil skupinama za proizvodnju, na primjer, alkenilamine, alkinilamine, alkenilamide, alkinilamide, alkinilimine, alkinilimine, tioalkenile, tiolalkinile, karbonil-supstituirane alkenile ili alkinile, alkenoksile, alkiniloksile, metaloalkenile ili metanolalkinile. Analogous substituents can be formed on alkenyl or alkynyl groups to produce, for example, alkenylamines, alkynylamines, alkenylamides, alkynylamides, alkynylimines, alkynylimines, thioalkenyls, thiolalkynyls, carbonyl-substituted alkenyls or alkynyls, alkenoxyls, alkynyloxyls, metalloalkenyls, or methanolalkynyls.

Pojam „aril" ovdje se koristi uključujući 4-, 5-, 6- i 7-člani jednostavni-prsten aromatskih skupina koje mogu uključivati od nula do četiri heteroatoma, na primjer, benzen, naftalen, antracen, piren, pirol, furan, tiofen, imidazol, oksazol, tiazol, triazol, pirazol, piridin, pirazin, piridazin i pirimidin, i slično. Te aril skupine koje imaju heteroatome u strukturi prstena upućuju na „aril heterocikl". Aromatski prsten može se supstituirati na jednoj ili više pozicija prstena s takvim supstituentima kao što su gore opisani, na primjer, halogeni, alkili, alkenili, alkinili, hidroksil, amino, nitro, tiol amini, imini, amidi, fosfonati, fosfini, karbonili, karboksili, silili, eteri, tioeteri, sulfonili, seleneteri, ketoni, aldehidi, esteri, ili -(CH2)m-R7, -CF3, -CN, ili slično. The term "aryl" is used herein to include 4-, 5-, 6-, and 7-membered simple-ring aromatic groups that may include from zero to four heteroatoms, for example, benzene, naphthalene, anthracene, pyrene, pyrrole, furan, thiophene , imidazole, oxazole, thiazole, triazole, pyrazole, pyridine, pyrazine, pyridazine and pyrimidine, and the like. Those aryl groups that have heteroatoms in the ring structure refer to an "aryl heterocycle". The aromatic ring may be substituted at one or more ring positions with such substituents as described above, for example, halogens, alkyls, alkenyls, alkynyls, hydroxyl, amino, nitro, thiol amines, imines, amides, phosphonates, phosphines, carbonyls, carboxyls, silyls, ethers, thioethers, sulfonyls, selenethers, ketones, aldehydes, esters, or -(CH2)m-R7, -CF3, -CN, or the like.

Pojam „heterocikl" ili „heterociklična skupina" odnosi se na 4 do 10-članu strukturu prstena, više se preferira 5 do 7 članova prstena, koja uključuje strukturu prstena jednog do četiri heteroatoma. Heterociklična skupina uključuje pirolidin, oksolan, tiolan, imidazol, oksazol, piperidin, piperazin, morfolin. Heterociklični prsten može se supstituirati na jednoj ili više pozicija sa kao što su supstituienti opisani gore, kao što su na primjer, halogeni, alkili, alkenili, alkinili, hidroksili, amino, nitro, tiol, amini, imini, amidi, fosfonati, fosfini, karbonili, karboksili, silili, eteri, tioeteri, sulfonili, seleneteri, ketoni, aldehili, esteri, ili -(CH2)m-R7, -CF3, -CN, ili slično. The term "heterocycle" or "heterocyclic group" refers to a 4- to 10-membered ring structure, more preferably a 5- to 7-membered ring structure, which includes a ring structure of one to four heteroatoms. The heterocyclic group includes pyrrolidine, oxolane, thiolane, imidazole, oxazole, piperidine, piperazine, morpholine. The heterocyclic ring may be substituted at one or more positions with the substituents described above, such as, for example, halogens, alkyls, alkenyls, alkynyls, hydroxyls, amino, nitro, thiol, amines, imines, amides, phosphonates, phosphines, carbonyls, carboxyls, silyls, ethers, thioethers, sulfonyls, selenethers, ketones, aldehydes, esters, or -(CH2)m-R7, -CF3, -CN, or the like.

Pojmovi „policikl" ili «policiklična skupina» odnosi se na dva ili više cikličnih prstena (npr., cikloalkili, cikloalkenili, cikloalkinili, arili i/ili heterocikli) u kojima dva ili više ugljika su uobičajeno na dva susjedna prstena, npr., prsteni su susjedni prsteni, npr. prsteni su „fuzionirani prsteni". Prsteni tako spojeni preko ne-susjednih atoma su nazvani „premošteni" prsteni. Svaki od prstena policikla može se supstituirati s takvim supstituentima kao što je gore opisano, kao što su na primjer, halogeni, alkili, alkenili, alkinili, hidroksil, amino, nitro, tiol, amini, imini, amidi, fosfonati, fosfini, karbonili, karboksili, silili, eteri, tioeteri, sulfonili, seleneteri, ketoni, aldehidi, esteri ili -(CH2)m-R7, -CF3, -CN, ili slično. The terms "polycycle" or "polycyclic group" refer to two or more cyclic rings (eg, cycloalkyls, cycloalkenyls, cycloalkynyls, aryls and/or heterocycles) in which two or more carbons are usually on two adjacent rings, eg, rings are adjacent rings, i.e. the rings are "fused rings". Rings so joined via non-adjacent atoms are called "bridged" rings. Each of the polycycle rings may be substituted with such substituents as described above, such as, for example, halogen, alkyl, alkenyl, alkynyl, hydroxyl, amino, nitro , thiol, amines, imines, amides, phosphonates, phosphines, carbonyls, carboxyls, silyls, ethers, thioethers, sulfonyls, selenethers, ketones, aldehydes, esters or -(CH2)m-R7, -CF3, -CN, or the like.

Pojam „heteroatom" kao što se ovdje koristi znači atom svakog elementa osim ugljika ili vodika. Preferirani heteroatomi su dušik, kisik, sumpor, fosfor ili selen. The term "heteroatom" as used herein means an atom of any element other than carbon or hydrogen. Preferred heteroatoms are nitrogen, oxygen, sulfur, phosphorus or selenium.

U svrhu ovog izuma, kemijski elementi su jednaki u skladu s Periodičnim sustavom elemenata, CAS verzijom, Hanbook of Chemistry and Physics, 67th Ed., 1986-87, iniside cover. For the purposes of this invention, chemical elements are equal according to the Periodic Table of Elements, CAS version, Hanbook of Chemistry and Physics, 67th Ed., 1986-87, inside cover.

Pojmovi orto, meta i para primijenjeni na 1,2-, 1,3- i 1,4-disupstituirane benzene. Na primjer, naziv 1,2-dimetilbenzen i orto-dimetilbenzen su sinonimi. The terms ortho, meta, and para as applied to 1,2-, 1,3-, and 1,4-disubstituted benzenes. For example, the names 1,2-dimethylbenzene and ortho-dimethylbenzene are synonyms.

Pojmovi triflil, tosil, mesil, i nonaflil su u struci poznati i odnose se na trifluormetansulfonil, p-toluensulfonil, metansulfonil, i nonafluorbutansulfonil skupine. Pojmovi triflat, tosilat, mesilat, i nonaflat su u struci poznati i odnose se na trifluormetansulfonat ester, p-toluensulfonat ester, metansulfonat ester, i nonafluorbutansulfonat ester funkcionalne skupine i molekule koje sadržavaju navedene skupine. The terms triflyl, tosyl, mesyl, and nonafyl are known in the art and refer to trifluoromethanesulfonyl, p-toluenesulfonyl, methanesulfonyl, and nonafluorobutanesulfonyl groups. The terms triflate, tosylate, mesylate, and nonaflate are known in the art and refer to trifluoromethanesulfonate ester, p-toluenesulfonate ester, methanesulfonate ester, and nonafluorobutanesulfonate ester functional groups and molecules containing said groups.

Kratice Me, Et, Ph, Tf, Nf, Ts, i Ms, predstavljaju metil, etil, fenil, trifluormetansulfonil, nonafluorbutansulfonil, p-toluensulfonil i metansulfonil. Sveobuhvatna lista kratica koju koriste organski kemičari u struci nalazi se u prvom volumenu Journal of Organic Chemistry; lista je u pravilu prezentirana u tablici pod naslovom Standardna lista kratica. Kratice koje su na navedenoj listi, i sve kratice koje koriste organski kemičari u struci su time inkorporirane s referencijama. The abbreviations Me, Et, Ph, Tf, Nf, Ts, and Ms represent methyl, ethyl, phenyl, trifluoromethanesulfonyl, nonafluorobutanesulfonyl, p-toluenesulfonyl, and methanesulfonyl. A comprehensive list of abbreviations used by organic chemists in the profession can be found in the first volume of the Journal of Organic Chemistry; as a rule, the list is presented in a table entitled Standard list of abbreviations. Abbreviations in the above list, and all abbreviations used by organic chemists in the field, are hereby incorporated by reference.

Fraza „protektivna skupina" kao što se ovdje koristi znači privremene supstituente koji štite potencijalno reaktivnu skupinu od neželjene kemijske transformacije. Primjeri kao što su protektivne skupine uključuju karboksilnu kiselinu, silil etere alkohola i acetale i ketale aldehida i ketona. Područje kemije protektivne skupine je prikazano (Greene, T.W.; Wuts, P.G.M. Protective Groups in Organic Synthesis, 2nd ed. ; Wiley: New York, 1991). The phrase "protecting group" as used herein means temporary substituents that protect a potentially reactive group from unwanted chemical transformation. Examples of such protecting groups include carboxylic acid, alcohol silyl ethers, and acetals and ketals of aldehydes and ketones. The field of protecting group chemistry is shown (Greene, T.W.; Wuts, P.G.M. Protective Groups in Organic Synthesis, 2nd ed.; Wiley: New York, 1991).

Kao što se ovdje koristi, pojam „supstituirani" je razmatran za uključivanje svih dopuštenih supstituenata organskih spojeva. U širokom spektruspojeva koji su dopušteni uključujući aciklične i ciklične, razgranate i nerazgranate, karbociklične i heterociklične, aromatske i nearomatske supstituente organskih spojeva. Primjer za supstituente uključuju, na primjer, one koji su gore opisani. Dopustivi supstituenti mogu biti jedan ili više i isti ili različiti za odgovarajuće organske spojeve. U svrhu ovog izuma, heteroatomi kao što je dušik mogu imati vodik supstituente i/ili svaki dopustivi supstituent organskih spojeva koji ovdje udovoljavaju valenciji heteroatoma. Ovaj izum nije namijenjen da bi ograničavao na bilo koji način dopustive supstituente organskih spojeva. As used herein, the term "substituted" is intended to include all permitted substituents of organic compounds. The broad spectrum of compounds permitted includes acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and non-aromatic substituents of organic compounds. Examples of substituents include , for example, those described above. The permissible substituents may be one or more and the same or different for the respective organic compounds. For the purposes of this invention, heteroatoms such as nitrogen may have hydrogen substituents and/or any permissible substituent of the organic compounds herein satisfy the valency of heteroatoms.This invention is not intended to limit in any way the permissible substituents of organic compounds.

Pojam ,,1-adamantil'' je u struci poznat i uključuje dio koji predstavlja formula: The term "1-adamantyl" is known in the art and includes the part represented by the formula:

[image] [image]

Pojam „(-)-mentil" je u struci poznat i uključuje dio koji predstavlja formula: The term "(-)-menthyl" is known in the art and includes the part represented by the formula:

[image] [image]

Pojam ,,(+)-mentil" je u struci poznat i uključuje dio koji predstavlja formula: The term "(+)-menthyl" is known in the art and includes the part represented by the formula:

[image] [image]

Pojam „izobornil" je u struci poznat i uključuje dio koji predstavlja formula: The term "isobornil" is known in the art and includes the part represented by the formula:

[image] [image]

Pojam „izopinokampil" je u struci poznat i uključuje dio koji predstavlja formula: The term "isopinocampile" is known in the art and includes the part represented by the formula:

[image] [image]

Pojam ,,(+)-fenkil" je u struci poznat i uključuje dio koji predstavlja formula: The term "(+)-fenkyl" is known in the art and includes the part represented by the formula:

[image] [image]

Pojam ,,QD" je predstavljen formulom: The term "QD" is represented by the formula:

[image] [image]

Pojam ,,Q" je predstavljen formulom: The term "Q" is represented by the formula:

[image] [image]

Katalizatori izuma Catalysts of invention

Katalizatori koji se koriste u predmetnim metodama su ne-racemični kiralni amini koji predstavljaju asimetričnu sredinu, koji uzrokuju diferencijaciju između dva ili više dijela simetrično povezana u prokiralnoj ili mezo molekuli, tj., molekula obuhvaća najmanje dva kiralna centra, i obuhvaća unutarnji stupanj simetrije ili točku simetrije ili oboje. Općenito, katalizatori namijenjeni s prezentiranim izumom mogu se okarakterizirati u pojmovima broja karakteristika. Na primjer, glavni aspekt svakog katalizatora razmatran sa sadašnjim izumom smatra upotrebu asimetričnih bicikla ili policikla pravi podij za inkorporaciju dijelova tercijalnih amina koji osiguravaju kruto ili semi-kruto okruženje u blizini amina dušika. Taj oblik, preko temeljite strukturne krutosti na amin dušiku u blizini na jednom ili više asimetričnih centara prisutnih u napravljenom podiju, pridonose određenim značajnim razlikama u energiji odgovarajućeg stanja diastereomeričke tranzicije za opću transformaciju. Nadalje, izbor supstituenta može isto utjecati na reaktivnost katalizatora. Na primjer, bulkier supstituenti na katalizatoru su općenito nađeni za osiguravanje okretanje većeg broja katalizatora. The catalysts used in the subject methods are non-racemic chiral amines representing an asymmetric environment, which cause differentiation between two or more parts symmetrically connected in a prochiral or meso molecule, i.e., the molecule comprises at least two chiral centers, and comprises an internal degree of symmetry or point of symmetry or both. In general, the catalysts intended with the present invention can be characterized in terms of a number of characteristics. For example, a major aspect of any catalyst contemplated with the present invention considers the use of asymmetric bicycles or polycycles a true platform for the incorporation of tertiary amine moieties that provide a rigid or semi-rigid environment near the amine nitrogen. This form, through the fundamental structural rigidity on the amine nitrogen in the vicinity of one or more asymmetric centers present in the created podium, contributes to certain significant differences in the energy of the corresponding diastereomeric transition state for the general transformation. Furthermore, the choice of substituent can also affect the reactivity of the catalyst. For example, bulkier substituents on the catalyst are generally found to provide more catalyst turnover.

Preferirano ostvarenje za svako od ovdje opisanih ostvarenja osigurava katalizator koji ima molekularni masu manju od 2,000 g/mol, više se preferira manji od 1,000 g/mol, i još više se preferira manji od 500 g/mol. Osim toga, supstituenti na katalizatoru mogu se odabrati da djeluju na topljivost katalizatora točnije sustav otapala. A preferred embodiment for each of the embodiments described herein provides a catalyst having a molecular weight of less than 2,000 g/mol, more preferably less than 1,000 g/mol, and even more preferably less than 500 g/mol. In addition, the substituents on the catalyst can be chosen to affect the solubility of the catalyst, more precisely the solvent system.

U određenim ostvarenjima/ kiralni, katalizator ne-racemični tercijalni amin obuhvaća 1-azabiciklo[2.2.2]oktan dio ili 1,4-diazabiciklo[2.2.2]oktan dio. U određenim ostvarenjima, kiralni, katalizator ne-racemični tercijalni amin je cinhona alkaloid, Q-PP, Q-TB, QD-TB, (DHQ)2PHAL, (DHQD)2PHAL, (DHQ)2PYR, (DHQD)2PYR, (DHQ)2AQN, (DHQD)2AQN, DHQ-CLB, DHQD-CLB, DHQ-MEO, DHQD-MEO, DHQ-AQN, DHQD-AQN, DHQ-PHN ili DHQD-PHN. U određenim ostvarenjima, kiralni, katalizator ne-racemični tercijalni amin je DHQD-PHN ili (DHQD}2AQN. U nekim ostvarenjima, kiralni, katalizator ne-racemični tercijalni amin je Q-PP, Q-TB, QD-PP ili QD-TB. U nekim ostvarenjima, kiralni, katalizator ne-racemični tercijalni amin je QD-PP. In certain embodiments, the chiral, non-racemic tertiary amine catalyst comprises a 1-azabicyclo[2.2.2]octane moiety or a 1,4-diazabicyclo[2.2.2]octane moiety. In certain embodiments, the chiral, non-racemic tertiary amine catalyst is cinchona alkaloid, Q-PP, Q-TB, QD-TB, (DHQ)2PHAL, (DHQD)2PHAL, (DHQ)2PYR, (DHQD)2PYR, (DHQ )2AQN, (DHQD)2AQN, DHQ-CLB, DHQD-CLB, DHQ-MEO, DHQD-MEO, DHQ-AQN, DHQD-AQN, DHQ-PHN or DHQD-PHN. In certain embodiments, the chiral, non-racemic tertiary amine catalyst is DHQD-PHN or (DHQD}2AQN. In some embodiments, the chiral, non-racemic tertiary amine catalyst is Q-PP, Q-TB, QD-PP, or QD-TB In some embodiments, the chiral, non-racemic tertiary amine catalyst is QD-PP.

Kao što je gore ukratko spomenuto, izbor supstituenata katalizatora može isto utjecati na elektronska svojstva katalizatora. Supstitucija katalizatora s elektronima-siromašnih (donatorima elektrona) dijelova (uključujući, na primjer, alkoksi ili amino skupine) može povećati gustoću elektrona katalizatora na tercijalnom dušiku amina, prikazujući ih jačim nukleofilim i/ili Bronstad bazom i/ili Lewis bazom. Obrnuto, supstitucija katalizatora s elektronima-siromašnih dijelova (na primjer, klor ili trifluormetil skupinama) može rezultirati nižom gustoćom elektrona katalizatora na dušiku tercijalnog amina, prikazujući ih slabijim nukleofilima i/ili Bronsted nazom i/ili Lewis bazom. Za sumiranje tog razmišljanja, gustoća elektrona katalizatora može biti značajna zbog gustoće elektrona dušika na tercijalnom aminu koja može utjecati na Lewis bazičnost dušika i njegovu nukleofilnost. Izbor odgovarajućih supstituenata tako čini mogućnost «usklađivanja» stupnja reakcije i stereoselektivnosti reakcije. As briefly mentioned above, the choice of catalyst substituents can also affect the electronic properties of the catalyst. Substitution of the catalyst with electron-poor (electron donor) moieties (including, for example, alkoxy or amino groups) can increase the electron density of the catalyst on the tertiary nitrogen of the amine, rendering them a stronger nucleophile and/or Bronstad base and/or Lewis base. Conversely, substitution of the catalyst with electron-poor moieties (for example, chlorine or trifluoromethyl groups) can result in a lower electron density of the catalyst on the tertiary amine nitrogen, rendering them weaker nucleophiles and/or Bronsted bases and/or Lewis bases. To summarize this reasoning, the electron density of the catalyst can be significant due to the electron density of the nitrogen on the tertiary amine which can affect the Lewis basicity of the nitrogen and its nucleophilicity. The choice of appropriate substituents thus makes it possible to "adjust" the degree of reaction and the stereoselectivity of the reaction.

Jedan aspekt izuma odnosi se na spojeve koji su predstavljeni formulom. I: One aspect of the invention relates to compounds represented by the formula. AND:

[image] [image]

gdje where

R predstavlja -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, (C(R3)2)nC(O)R5, -(C(R3)2)nC=CR6, -(C(R3)2)nCOPO(OR5)2, -(C(R3)2)nOR5, -(C(R3)2)nN(R5)2, -(C(R3)2)nSR5, ili –(C(R3)2)nNO2; R represents -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, (C( R3)2)nC(O)R5, -(C(R3)2)nC=CR6, -(C(R3)2)nCOPO(OR5)2, -(C(R3)2)nOR5, -(C( R3)2)nN(R5)2, -(C(R3)2)nSR5, or –(C(R3)2)nNO2;

R1 predstavlja alkil ili alkenil; R 1 represents alkyl or alkenyl;

R2 predstavlja alkil, cikloalkil ili alkenil; R 2 represents alkyl, cycloalkyl or alkenyl;

R3 predstavlja nezavisno za svaki slučaj H, alkil, alkenil, aril, cikloalkil, aralkil, heteroalkil, halogen, cijano, amino, acil, alkoksil, sililoksi, amino, nitro, tiol, amin, imin, amid, fosfonat, fosfin, karbonil, karboksil, silil, eter, tioeter, sulfonil, seleneter, keton, aldehid ili ester; R3 represents independently in each case H, alkyl, alkenyl, aryl, cycloalkyl, aralkyl, heteroalkyl, halogen, cyano, amino, acyl, alkoxyl, silyloxy, amino, nitro, thiol, amine, imine, amide, phosphonate, phosphine, carbonyl, carboxyl, silyl, ether, thioether, sulfonyl, selenether, ketone, aldehyde or ester;

R4 predstavlja cikloalkil, -CH(R3)2, alkenil, alkinil, aril ili aralkil; R 4 represents cycloalkyl, -CH(R 3 ) 2 , alkenyl, alkynyl, aryl or aralkyl;

R5 predstavlja nezavisno za svaki slučaj H, alkil, alkenil, aril, cikloalkil ili aralkil; R 5 represents independently in each case H, alkyl, alkenyl, aryl, cycloalkyl or aralkyl;

R6 predstavlja po izboru supstituiran alkil, alkenil, aril, ili aralkil; i R 6 represents optionally substituted alkyl, alkenyl, aryl, or aralkyl; and

N je 1-10. N is 1-10.

U nekim ostvarenjima, spojevi prezentiranog izuma su predstavljeni formulom I, gdje R predstavlja -C(O)R2, (C(R')2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, -(C(R3)2)nC(O)R5, ili -(C(R3)2)nC≡CR6; In some embodiments, the compounds of the present invention are represented by formula I, where R represents -C(O)R2, (C(R')2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, -(C(R3)2)nC(O)R5, or -(C(R3)2)nC≡CR6;

U nekim ostvarenjima, spojevi prezentiranog izuma su predstavljeni formulom I, gdje R1 je etil. In some embodiments, the compounds of the present invention are represented by formula I, where R 1 is ethyl.

U nekim ostvarenjima, spojevi prezentiranog izuma su predstavljeni formulom I, gdje R1 je -CH=CH2. In some embodiments, the compounds of the present invention are represented by formula I, where R1 is -CH=CH2.

U nekim ostvarenjima, spojevi prezentiranog izuma su predstavljeni formulom I, gdje R je -C(O)R2. In some embodiments, the compounds of the present invention are represented by formula I, where R is -C(O)R 2 .

U nekim ostvarenjima, spojevi prezentiranog izuma su predstavljeni formulom I, gdje R je -C(O)R2 a R2 je alkil. In some embodiments, the compounds of the present invention are represented by formula I, where R is -C(O)R 2 and R 2 is alkyl.

U nekim ostvarenjima, spojevi prezentiranog izuma su predstavljeni formulom I, gdje R je -(C (R'3)2)nCO2R4. In some embodiments, the compounds of the present invention are represented by formula I, where R is -(C(R'3)2)nCO2R4.

U nekim ostvarenjima, spojevi prezentiranog izuma su predstavljeni formulom I, gdje R je -(C(R3)2)nCO2R4 a R4 je -CH(R3)2. In some embodiments, the compounds of the present invention are represented by formula I, where R is -(C(R3)2)nCO2R4 and R4 is -CH(R3)2.

U nekim ostvarenjima, spojevi prezentiranog izuma su predstavljeni formulom I, gdje R je -(C(R3)2)nCO2R4, R4 je -CH(R3)2, n je 1. In some embodiments, the compounds of the present invention are represented by formula I, where R is -(C(R3)2)nCO2R4, R4 is -CH(R3)2, n is 1.

U nekim ostvarenjima, spojevi prezentiranog izuma su predstavljeni formulom I, gdje R je -(C(R3)2)nCO2R4 a R4 je cikloalkil. In some embodiments, the compounds of the present invention are represented by formula I, where R is -(C(R3)2)nCO2R4 and R4 is cycloalkyl.

U nekim ostvarenjima, spojevi prezentiranog izuma su predstavljeni formulom I, gdje R je -CH2CO2R4, a R4 je cikloalkil. In some embodiments, the compounds of the present invention are represented by formula I, where R is -CH 2 CO 2 R 4 and R 4 is cycloalkyl.

U nekim ostvarenjima, spojevi prezentiranog izuma su predstavljeni formulom I, gdje R je -CH2CO2R4, a R4 je cikloheksil; a R1 je -CH=CH2. In some embodiments, the compounds of the present invention are represented by formula I, where R is -CH2CO2R4 and R4 is cyclohexyl; and R 1 is -CH=CH 2 .

U nekim ostvarenjima, spojevi prezentiranog izuma su predstavljeni formulom I, gdje R je -CH2CO2R4, a R4 je (-)-mantil, 1-adamantil, izobornil, (-)-izopinokamfil, ili (+)fenhil; a R1 je -CH=CH2. In some embodiments, the compounds of the present invention are represented by formula I, where R is -CH2CO2R4, and R4 is (-)-mantyl, 1-adamantyl, isobornyl, (-)-isopinocampyl, or (+)phenyl; and R 1 is -CH=CH 2 .

U nekim ostvarenjima, spojevi prezentiranog izuma su predstavljeni formulom I, gdje R je -(C(R3)2)nC(O)N(R5)2. In some embodiments, the compounds of the present invention are represented by formula I, where R is -(C(R3)2)nC(O)N(R5)2.

U nekim ostvarenjima, spojevi prezentiranog izuma su predstavljeni formulom I, gdje R je -CH2C(O)N(R5)2 a R1 je -CH=CH2. In some embodiments, the compounds of the present invention are represented by formula I, where R is -CH2C(O)N(R5)2 and R1 is -CH=CH2.

U nekim ostvarenjima, spojevi prezentiranog izuma su predstavljeni formulom I, gdje R je -CH2C(O)NH-1-adamantil a R1 je -CH=CH2. In some embodiments, the compounds of the present invention are represented by formula I, where R is -CH2C(O)NH-1-adamantyl and R1 is -CH=CH2.

U nekim ostvarenjima, spojevi prezentiranog izuma su predstavljeni formulom I, gdje R je –(C(R3)2)nCN. In some embodiments, the compounds of the present invention are represented by formula I, where R is –(C(R3)2)nCN.

U nekim ostvarenjima, spojevi prezentiranog izuma su predstavljeni formulom I, gdje R je -CH2CN a R1 je -CH=CH2. In some embodiments, the compounds of the present invention are represented by formula I, where R is -CH2CN and R1 is -CH=CH2.

U nekim ostvarenjima, spojevi prezentiranog izuma su predstavljeni formulom I, gdje R je -(C(R3)2)nCOR5. In some embodiments, the compounds of the present invention are represented by formula I, where R is -(C(R3)2)nCOR5.

U nekim ostvarenjima, spojevi prezentiranog izuma su predstavljeni formulom I, gdje R je -CH2C(O)R5 a R5 je alkil. In some embodiments, the compounds of the present invention are represented by formula I, where R is -CH 2 C(O)R 5 and R 5 is alkyl.

U nekim ostvarenjima, spojevi prezentiranog izuma su predstavljeni formulom I, gdje R je -CH2C(O)C(CH3)3 a R1 je -CH=CH2. In some embodiments, the compounds of the present invention are represented by formula I, where R is -CH2C(O)C(CH3)3 and R1 is -CH=CH2.

U nekim ostvarenjima navedeni spoj je QD-IP, QD-PC, QD-AD, QD-(-)-MN, QD-(+)-MN, QD-AC, QD-Piv, QD-PH, QD-AN, QD-NT, QD-CN, QD-CH, QD-IB, QD-EF, QD-AA, QD-MP, ili QD-IPC. In some embodiments, said compound is QD-IP, QD-PC, QD-AD, QD-(-)-MN, QD-(+)-MN, QD-AC, QD-Piv, QD-PH, QD-AN, QD-NT, QD-CN, QD-CH, QD-IB, QD-EF, QD-AA, QD-MP, or QD-IPC.

U navedenim ostvarenjima navedeni spoj je QD-IP, QD-(-)-MN, ili QD-AD. In said embodiments, said compound is QD-IP, QD-(-)-MN, or QD-AD.

Sljedeći aspekt prezentiranog izuma odnosi se na spoj predstavljen formulom II: The following aspect of the present invention relates to the compound represented by formula II:

[image] [image]

R predstavlja -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, -(C(R3)2)nC(O)R5, -C(C(R3)2)nOCR6, (C(R3)2)nOPO(OR5)2, -(C(R3)2)nOR5, -(C(R3)2)nN(R5)2, -(C(R3)2)nSR5, ili -(C(R3)2)nNO2; R represents -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, -(C (R3)2)nC(O)R5, -C(C(R3)2)nOCR6, (C(R3)2)nOPO(OR5)2, -(C(R3)2)nOR5, -(C(R3 )2)nN(R5)2, -(C(R3)2)nSR5, or -(C(R3)2)nNO2;

R1 predstavlja alkil ili alkenil; R 1 represents alkyl or alkenyl;

R2 predstavlja alkil, cikloalkil ili alkenil; R 2 represents alkyl, cycloalkyl or alkenyl;

R3 predstavlja nezavisno za svaki slučaj H, alkil, alkenil, aril, cikloalkil, aralkil, heteroalkil, halogen, cijano, amino, acil, alkoksil, sililoksi, amino, nitro, tiol, amin, imin, amid, fosfonat, fosfin, karbonil, karboksil, silil, eter, tioeter, sulfonil, seleneter, keton, aldehid ili ester; R3 represents independently in each case H, alkyl, alkenyl, aryl, cycloalkyl, aralkyl, heteroalkyl, halogen, cyano, amino, acyl, alkoxyl, silyloxy, amino, nitro, thiol, amine, imine, amide, phosphonate, phosphine, carbonyl, carboxyl, silyl, ether, thioether, sulfonyl, selenether, ketone, aldehyde or ester;

R4 predstavlja cikloalkil, -CH(R3)2, alkenil, alkinil, aril ili aralkil; R 4 represents cycloalkyl, -CH(R 3 ) 2 , alkenyl, alkynyl, aryl or aralkyl;

R5 predstavlja nezavisno za svaki slučaj H, alkil, alkenil, aril, cikloalkil ili aralkil; R 5 represents independently in each case H, alkyl, alkenyl, aryl, cycloalkyl or aralkyl;

R6 predstavlja po izboru supstituiran alkil, alkenil, aril, ili aralkil; i R 6 represents optionally substituted alkyl, alkenyl, aryl, or aralkyl; and

n je 1-10. n is 1-10.

U nekim ostvarenjima navedeni spoj je Q-IP, Q-PC, Q-AD, Q-(-)-MN, Q-(+)-MN, Q-AC, Q-Piv, Q-PH, Q-AN, Q-NT, Q-CN, Q-CH, Q-IB, Q-EF, Q-AA, Q-MP, ili Q-IPC. In some embodiments, said compound is Q-IP, Q-PC, Q-AD, Q-(-)-MN, Q-(+)-MN, Q-AC, Q-Piv, Q-PH, Q-AN, Q-NT, Q-CN, Q-CH, Q-IB, Q-EF, Q-AA, Q-MP, or Q-IPC.

Metode izuma - Proizvodnja katalizatora koji sadržavaju asimetrični tercijalni amin Methods of the invention - Production of catalysts containing an asymmetric tertiary amine

Određeni aspekt prezentiranog izuma odnosi se na metode za proizvodnju tercijalnih amina, tercijalnih amina koji će biti upotrebljivi u metodama desimetrizacije prezentiranog izuma. U određenim ostvarenjima, tercijalni amini su sintetizirani u skladu s općim postupkom, gdje diamin reagira s dva ekvivalenta kiralna, ne-racemična glicidil sulfonata ili halida. Na primjer, niže navedena shema pokazuje postignuće ovih metoda, gdje etilen diamin i dva ekvivalenta kiralnog, ne-racemičnog glicidil nosilata reagira da bi se dobio kiralni, ne-racemični bis-tercijalni amin. Vidi isto Primjer 2. A certain aspect of the presented invention relates to methods for the production of tertiary amines, tertiary amines that will be usable in the desymmetrization methods of the presented invention. In certain embodiments, the tertiary amines are synthesized according to the general procedure, where the diamine is reacted with two equivalents of a chiral, non-racemic glycidyl sulfonate or halide. For example, the scheme below shows the achievement of these methods, where ethylene diamine and two equivalents of a chiral, non-racemic glycidyl carrier are reacted to give a chiral, non-racemic bi-tertiary amine. See also Example 2.

[image] [image]

Jedan od aspekta izuma odnosi se na metodu proizvodnje katalizatora deriviranog alkaloida cinhona kao što je prikazana u Shemi 1: One aspect of the invention relates to a method of producing a cinchona alkaloid derivative catalyst as shown in Scheme 1:

[image] [image]

gdje, where,

X predstavlja Cl, Br, I, OS02CH3, ili OS02CF3; X represents Cl, Br, I, OSO2CH3, or OSO2CF3;

R predstavlja -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, -(C(R3)2)nC(O)R5, -C(C(R3)2)nC=CR6, (C(R3)2)nOPO(OR5)2, -(C(R3)2)nOR5, -(C(R3)2)nN(R5)2, -(C(R3)2)nSR6, ili -(C(R3)2)nNO2; R represents -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, -(C (R3)2)nC(O)R5, -C(C(R3)2)nC=CR6, (C(R3)2)nOPO(OR5)2, -(C(R3)2)nOR5, -(C (R3)2)nN(R5)2, -(C(R3)2)nSR6, or -(C(R3)2)nNO2;

R1 predstavlja alkil ili alkenil; R 1 represents alkyl or alkenyl;

R2 predstavlja alkil, cikloalkil ili alkenil; R 2 represents alkyl, cycloalkyl or alkenyl;

R3 predstavlja nezavisno za svaki slučaj H, alkil, alkenil, aril, cikloalkil, aralkil, heteroalkil, halogen, cijano, amino, acil, alkoksil, sililoksi, amino, nitro, tiol, amin, imin, amid, fosfonat, fosfin, karbonil, karboksil, silil, eter, tioeter, sulfonil, seleneter, keton, aldehid ili ester; R3 represents independently in each case H, alkyl, alkenyl, aryl, cycloalkyl, aralkyl, heteroalkyl, halogen, cyano, amino, acyl, alkoxyl, silyloxy, amino, nitro, thiol, amine, imine, amide, phosphonate, phosphine, carbonyl, carboxyl, silyl, ether, thioether, sulfonyl, selenether, ketone, aldehyde or ester;

R4 predstavlja cikloalkil, -CH(R3)2, alkenil, alkinil, aril ili aralkil; R 4 represents cycloalkyl, -CH(R 3 ) 2 , alkenyl, alkynyl, aryl or aralkyl;

R5 predstavlja nezavisno za svaki slučaj H, alkil, alkenil, aril, cikloalkil ili aralkil; R 5 represents independently in each case H, alkyl, alkenyl, aryl, cycloalkyl or aralkyl;

R6 predstavlja po izboru supstituiran alkil, alkenil, aril, ili aralkil; i R 6 represents optionally substituted alkyl, alkenyl, aryl, or aralkyl; and

N je 1-10; i N is 1-10; and

baza je Bronsted baza. the base is a Bronsted base.

U nekim ostvarenjima, prezentirani izum se odnosi na gore spomenutu metodu, gdje X je Cl ili Br. In some embodiments, the present invention relates to the aforementioned method, where X is Cl or Br.

U nekim ostvarenjima, prezentirani izum se odnosi na gore spomenutu metodu, gdje je navedena baza metal hidrid, alkoksid, ili amid, karbanion. In some embodiments, the presented invention relates to the above-mentioned method, where the specified base is a metal hydride, alkoxide, or amide, carbanion.

U nekim ostvarenjima, prezentirani izum se odnosi na gore spomenutu metodu, gdje je navedena baza NaH, CaH2, KH, ili Na. In some embodiments, the present invention relates to the aforementioned method, where the specified base is NaH, CaH2, KH, or Na.

U nekim ostvarenjima, prezentirani izum se odnosi na gore spomenutu metodu, gdje R predstavlja -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, -(C(R3)2)nC(O)R5, ili C(C(R3)2)nC≡CR6. In some embodiments, the presented invention relates to the above-mentioned method, where R represents -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2 , -(C(R3)2)nCN, -(C(R3)2)nC(O)R5, or C(C(R3)2)nC≡CR6.

U nekim ostvarenjima, prezentirani izum se odnosi na gore spomenutu metodu, gdje je R1 etil. In some embodiments, the present invention relates to the aforementioned method, where R 1 is ethyl.

U nekim ostvarenjima, prezentirani izum se odnosi na gore spomenutu metodu, gdje je R1 -CH=CH2. In some embodiments, the present invention relates to the aforementioned method, where R1 is -CH=CH2.

U nekim ostvarenjima, prezentirani izum se odnosi na gore spomenutu metodu, gdje je R je -C(O)R2. In some embodiments, the present invention relates to the aforementioned method, where R is -C(O)R 2 .

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -C(O)R2 i R2 je alkil, In some embodiments, the present invention relates to the above-mentioned method, where R is -C(O)R2 and R2 is alkyl,

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -C(O)C(CH3)3 i R1 je -CH=CH2. In some embodiments, the present invention relates to the above-mentioned method, where R is -C(O)C(CH3)3 and R1 is -CH=CH2.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -(C(R3)2)nCO2R4. In some embodiments, the present invention relates to the above-mentioned method, where R is -(C(R3)2)nCO2R4.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -(C(R3)2)nCO2R4 a R4 je -CH(R3)2. In some embodiments, the present invention relates to the above method, where R is -(C(R3)2)nCO2R4 and R4 is -CH(R3)2.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -(C(R3)2)nCO2R4 a R4 je -CH(R3)2, n je 1. In some embodiments, the presented invention relates to the above-mentioned method, where R is -(C(R3)2)nCO2R4 and R4 is -CH(R3)2, n is 1.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -CH2CO2CH(CH3)2 a R4 je -CH=CH2. In some embodiments, the presented invention relates to the above-mentioned method, where R is -CH2CO2CH(CH3)2 and R4 is -CH=CH2.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -CH2CO2CH2CH(CH3)2 a R1 je -CH=CH2. In some embodiments, the present invention relates to the above-mentioned method, where R is -CH2CO2CH2CH(CH3)2 and R1 is -CH=CH2.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -(C(R3)2)nCO2R4 a R4 je cikloalkil. In some embodiments, the present invention relates to the above-mentioned method, where R is -(C(R3)2)nCO2R4 and R4 is cycloalkyl.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -CH2CO2R4 a R4 je cikloheksil. In some embodiments, the present invention relates to the above-mentioned method, where R is -CH2CO2R4 and R4 is cyclohexyl.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -CH2CO2R4 a R4 je cikloheksil; a R1 je -CH=CH2. In some embodiments, the present invention relates to the above-mentioned method, where R is -CH2CO2R4 and R4 is cyclohexyl; and R 1 is -CH=CH 2 .

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -CH2CO2R4 a R4 je (-)-mentil, 1-adamantil, izobornil, (-)-izopinokamfil, ili (+)-fenhil; a R1 je -CH=CH2. In some embodiments, the present invention relates to the above-mentioned method, where R is -CH2CO2R4 and R4 is (-)-menthyl, 1-adamantyl, isobornyl, (-)-isopinocamphyl, or (+)-phenyl; and R 1 is -CH=CH 2 .

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -CH2CO2R4 a R4 je (-)-mentil ili 1-adamantil; a R1 je -CH=CH2. In some embodiments, the present invention relates to the above-mentioned method, where R is -CH2CO2R4 and R4 is (-)-menthyl or 1-adamantyl; and R 1 is -CH=CH 2 .

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -(C(R3)2)n)C(O)N(R5)2. In some embodiments, the present invention relates to the above-mentioned method, where R is -(C(R3)2)n)C(O)N(R5)2.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -CH2C(O)N(R5)2 a R1 je -CH=CH2. In some embodiments, the present invention relates to the above-mentioned method, where R is -CH2C(O)N(R5)2 and R1 is -CH=CH2.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -CH2CN a R1 je -CH=CH2. In some embodiments, the present invention relates to the above-mentioned method, where R is -CH2CN and R1 is -CH=CH2.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -(C(R3)2)nCN. In some embodiments, the present invention relates to the above method, where R is -(C(R3)2)nCN.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -(C(R3)2)nCN a R1 je -CH=CH2. In some embodiments, the present invention relates to the above-mentioned method, where R is -(C(R3)2)nCN and R1 is -CH=CH2.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -(C(R3)2)nC(O)R5. In some embodiments, the present invention relates to the above method, where R is -(C(R3)2)nC(O)R5.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je CH2C(O)R5 a R5 je alkil. In some embodiments, the present invention relates to the above-mentioned method, where R is CH2C(O)R5 and R5 is alkyl.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -CH2C(O)C(CH3)3 a R1 je -CH=CH2. In some embodiments, the present invention relates to the above-mentioned method, where R is -CH2C(O)C(CH3)3 and R1 is -CH=CH2.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje navedeni katalizator je QD-IP, QD-PC, QD-AD, QD-(-)-MN, QD-(+)-MN, QD-AC, QD-Piv, QD-PH, QD-AN. QD-NT, QD-CN, QD-CH, QD-IB, QD-EF, QD-AA, QD-MP, ili QD-IPC. In some embodiments, the presented invention relates to the above-mentioned method, where the mentioned catalyst is QD-IP, QD-PC, QD-AD, QD-(-)-MN, QD-(+)-MN, QD-AC, QD - Beer, QD-PH, QD-AN. QD-NT, QD-CN, QD-CH, QD-IB, QD-EF, QD-AA, QD-MP, or QD-IPC.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje navedeni katalizator je QD-IP, QD-(-)-MN ili QD-AD. In some embodiments, the present invention relates to the above-mentioned method, where said catalyst is QD-IP, QD-(-)-MN or QD-AD.

Sljedeći aspekt izuma se odnosi na metodu proizvodnje deriviranog katalizatora alkaloida cinhona kao što je prikazana u Shemi 2: The following aspect of the invention relates to a method of producing a cinchona alkaloid derivative catalyst as shown in Scheme 2:

[image] [image]

gdje, where,

X predstavlja Cl, Br, I, OSO2CH3, ili OSO2CF3; X represents Cl, Br, I, OSO2CH3, or OSO2CF3;

R predstavlja -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)riCN, -(C(R3)2)nC(O)R5, -C(C(R3)2)nC≡CR6, -(C(R3)2)nOPO(OR5)2, -(C(R3)2)nOR5, -(C(R3)2)nN(R5)2, -(C(R3)2)nSR5, ili –(C(R3)2)nNO2; R represents -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)riCN, -(C (R3)2)nC(O)R5, -C(C(R3)2)nC≡CR6, -(C(R3)2)nOPO(OR5)2, -(C(R3)2)nOR5, -( C(R3)2)nN(R5)2, -(C(R3)2)nSR5, or –(C(R3)2)nNO2;

R1 predstavlja alkil ili alkilen; R 1 represents alkyl or alkylene;

R2 predstavlja alkil, cikloalkil, ili alkenil; R 2 represents alkyl, cycloalkyl, or alkenyl;

R3 predstavlja nezavisne za svaki slučaj H, alkil, alkenil, aril, cikloalkil, aralkil, heteroalkil, halogen, cijano, amino, acil, alkoksil, sililoksi, amino, nitro, tiol, amin, imine, amide, fosfonat, fosfine, karbonil, karboksil, silil, eter, tioeter, sulfonil, seleneter, keton, aldehid, ili ester; R3 represents independently in each case H, alkyl, alkenyl, aryl, cycloalkyl, aralkyl, heteroalkyl, halogen, cyano, amino, acyl, alkoxyl, silyloxy, amino, nitro, thiol, amine, imine, amide, phosphonate, phosphine, carbonyl, carboxyl, silyl, ether, thioether, sulfonyl, selenether, ketone, aldehyde, or ester;

R4 predstavlja cikloalkil, -CH(R3)2, alkenil, alkinil, aril, ili aralkil; R 4 represents cycloalkyl, -CH(R 3 ) 2 , alkenyl, alkynyl, aryl, or aralkyl;

R5 predstavlja nezavisnom za svaki slučaj H, alkil, alkenil, aril, cikloalkil, ili aralkil; R 5 represents independently in each case H, alkyl, alkenyl, aryl, cycloalkyl, or aralkyl;

R6 predstavlja po izboru supstituiran alkil, alkenil, aril, ili aralkil; R 6 represents optionally substituted alkyl, alkenyl, aryl, or aralkyl;

n je 1-10; i n is 1-10; and

baza je Bronsted baza. the base is a Bronsted base.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje navedeni katalizator je Q-IP, Q-PC, Q-AD, Q-(-)-MN, Q-(+)-MN, Q-AC, Q-Piv, Q-PH, Q-AN, Q-NT, Q-CN, Q-CH, Q-IB, Q-EF, Q-AA, Q-MP, ili Q-IPC. In some embodiments, the present invention relates to the above-mentioned method, where said catalyst is Q-IP, Q-PC, Q-AD, Q-(-)-MN, Q-(+)-MN, Q-AC, Q -Piv, Q-PH, Q-AN, Q-NT, Q-CN, Q-CH, Q-IB, Q-EF, Q-AA, Q-MP, or Q-IPC.

Metode izuma - katalizirane reakcije Methods of the invention - catalyzed reactions

U jednom od aspekata prezentiranog izuma, osigurana je metoda stereoselektivne proizvodnje spojeva s najmanje jednini stereogenim centrom od prokiralnih ili mezo polaznih materijala. Prednost ovog izuma je da enantiomerično obogaćeni produkti se mogu sintetizirati od prokiralnih ili racemičnih reaktanata. Druga prednost je da se prinos svih gubitaka povezanih s proizvodnjom neželjenih enantiomera može jako reducirati ili eliminirati. In one of the aspects of the presented invention, a method of stereoselective production of compounds with at least a singular stereogenic center from prochiral or meso starting materials is provided. An advantage of this invention is that enantiomerically enriched products can be synthesized from prochiral or racemic reactants. Another advantage is that the yield of all losses associated with the production of undesired enantiomers can be greatly reduced or eliminated.

Općenito, svojstvo izuma otvaranja stereoselektivnog prstena koji sadržava spajanje nukleofilićnog reaktanta, prokiralnog ili kiralnog cikličnog supstrata, i na kraju katalitična količina ne-racemičnog kiralnog katalizatora određenih karakteristika (kao što je dolje opisano). Ciklični supstrat uključuje karbocikle ili heterocikle koji imaju elektrofilični atom osjetljiv na napadaj nukleofila. Kombinacija se provodi pod odgovarajućim uvjetima za kiralni katalizator za stereoselektivno otvaranje cikličnog supstrata na elektrofiličnom atomu reakcijom s nukleofiličnim reaktantom. Ta reakcija se može primjemiti na enentioselektivne procese kao i na diastereoselektivne procese. Isto se može prilagoditi i za regioselektivne reakcije. Slijede primjeri enantio-selektivnih reakcija, kinetičke resolucije, i regioselektivnih reakcija koje se mogu katalizirati u skladu s izumom. In general, a property of the invention is a stereoselective ring opening comprising the coupling of a nucleophilic reactant, a prochiral or chiral cyclic substrate, and finally a catalytic amount of a non-racemic chiral catalyst of certain characteristics (as described below). A cyclic substrate includes carbocycles or heterocycles that have an electrophilic atom susceptible to nucleophile attack. The combination is carried out under suitable conditions for a chiral catalyst for stereoselective opening of a cyclic substrate on an electrophilic atom by reaction with a nucleophilic reactant. This reaction can be applied to enantioselective processes as well as to diastereoselective processes. The same can be adapted for regioselective reactions. The following are examples of enantioselective reactions, kinetic resolution, and regioselective reactions that can be catalyzed in accordance with the invention.

U sljedećem aspektu prezentiranog izuma, kinetička resolucija enentiomera javlja se s katalizom, upotrebom predmetnog kiralnog katalizatora, transformacijom racemičnog supstrata. U procesu predmetne kinetičke resolucije za racemični supstrat, jedan enentiomer može se obnoviti kao supstrat koji nije reagirao dok se drugi transformiraju u zahtijevani produkt. Naravno, drži se da kinetička resolucija se može izvesti odstranjivanjem neželjenog enentiomera reakcijom s nukleofilom, i obnavljanjem željenog nepromijenjenog enentiomera iz reakcijske smjese. Značajna prednost ovog pristupa je mogućnost upotrebe jeftinih racemičnih polaznih materijala bolje nego skupih, enentiomeričnih čistih polaznih materijala. U nekim ostvarenjima, predmet katalize može se koristiti u kinetičnoj resoluciji ravcemičnih cikličnih supstrata gdje je nukleofil ko-otapalo. Odgovarajući nukleofili ovog tipa uključuju vodu, alkohole, i tiole. In the next aspect of the presented invention, the kinetic resolution of the enantiomer occurs with catalysis, using the subject chiral catalyst, by transforming the racemic substrate. In the subject kinetic resolution process for a racemic substrate, one enantiomer can be recovered as unreacted substrate while the others are transformed into the required product. Of course, it is held that kinetic resolution can be performed by removing the undesired enantiomer by reaction with a nucleophile, and recovering the desired unchanged enantiomer from the reaction mixture. A significant advantage of this approach is the possibility of using cheap racemic starting materials better than expensive, enantiomerically pure starting materials. In some embodiments, the subject of catalysis can be used in the kinetic resolution of chemical cyclic substrates where the nucleophile is a co-solvent. Suitable nucleophiles of this type include water, alcohols, and thiols.

Metode ovog izuma osiguravaju optički aktivne produkte s veoma visokom stereoselektivnosti (npr. enentioslektivitet ili diastereoselektivnost) ili regioselektivitetom. U preferiranim ostvarenjima predmeta reakcije desimetrizacije, mogu se dobiti produkti s enentiomeričnim suviškom većim od oko SOS, većim od oko 70%, većim od oko 90%, i više se preferira veći od oko 95%. Metode izuma mogu se izvoditi i pod uvjetima reakcije koji su odgovarajući za komercijalnu upotrebu, i, uobičajeno, nastaviti u omjerima reakcije koji su pogodni za proizvodnju u velikim omjerima. The methods of this invention provide optically active products with very high stereoselectivity (eg, enantioselectivity or diastereoselectivity) or regioselectivity. In preferred embodiments of the desymmetrization reaction, products with an enantiomeric excess greater than about SOS, greater than about 70%, greater than about 90%, and more preferably greater than about 95% can be obtained. The methods of the invention can also be carried out under reaction conditions suitable for commercial use, and, typically, proceed at reaction ratios suitable for large-scale production.

U određenim ostvarenjima, kiralni, katalizator ne-racemični tercijalni amin je prisutan u manje od 30 mol% u odnosu na prokiralni polazni materijal, U nekim ostvarenjima, kiralni, katalizator ne-racemični tercijalni amin je prisutan u manje od oko 20 mol% u odnosu na prokiralni polazni materijal. U određenim ostvarenjima, kiralni, katalizator ne-racemični tercijalni amin prisutan je u manje od 10 mol% u odnosu na prokiralni polazni materijal. U određenom ostvarenju, kiralni, katalizator ne-racemični tercijalni amin je prisutan u manje od 5 mol% u odnosu na prokiralni polazni materijal. In certain embodiments, the chiral, catalyst non-racemic tertiary amine is present in less than about 30 mol% relative to the prochiral starting material, In some embodiments, the chiral, catalyst non-racemic tertiary amine is present in less than about 20 mol% relative to to the prochiral starting material. In certain embodiments, the chiral, non-racemic tertiary amine catalyst is present in less than 10 mol% relative to the prochiral starting material. In a particular embodiment, the chiral, non-racemic tertiary amine catalyst is present in less than 5 mol% relative to the prochiral starting material.

Kao što je vidljivo iz rasprave, kiralni produkti proizvedeni metodama asimetrične sinteze ovog izuma mogu se podvrgnuti daljnjoj reakciji(ama) za dobivanje njegovih željenih derivata. Takva dopuštena reakcija derivacije može se izvesti u skladu s uobičajenim postupcima poznatim u struci. Na primjer, potencijalne reakcije derivacije uključuju esterifikaciju, N-alkilaciju amida, i slično. Izum napose promišlja proizvodnju finalnog produkta i sintetičkih intermedijera koji su iskoristivi za proizvodnju ili razvoj ili oboje kardiovaskularnih lijekova, ne-steroidnih protuupalnih lijekova, sredstva za centralni nervni sustav, i antihistaminika. As will be apparent from the discussion, the chiral products produced by the asymmetric synthesis methods of the present invention may be subjected to further reaction(s) to provide the desired derivatives thereof. Such an allowed derivatization reaction can be carried out according to conventional procedures known in the art. For example, potential derivatization reactions include esterification, N-alkylation of amides, and the like. The invention particularly contemplates the production of final product and synthetic intermediates that are useful for the production or development or both of cardiovascular drugs, non-steroidal anti-inflammatory drugs, central nervous system agents, and antihistamines.

Jedan od aspekata izuma odnosi se na metodu proizvodnje kiralnog, ne-racemičnog spoja iz prokiralnog cikličnog anhidrida ili mezo kiralnog anhidrida, obuhvaća fazu: reakcije prokiralnog cikličnog anhidrida ili mezo cikličnog anhidrida s nukleofilom u prisutnosti katalizatora, gdje navedeni prokiralni ciklični anhidrid ili mezo ciklični anhidrid obuhvaćaju unutarnji stupanj simetrije ili točku simetrije ili obje; zbog proizvodnje kiralnog, ne-racemičnog spoja; gdje navedeni katalizator je predstavljen formulom I: One of the aspects of the invention relates to the method of producing a chiral, non-racemic compound from a prochiral cyclic anhydride or a meso chiral anhydride, includes the phase: reaction of a prochiral cyclic anhydride or a meso cyclic anhydride with a nucleophile in the presence of a catalyst, where said prochiral cyclic anhydride or meso cyclic anhydride include an internal degree of symmetry or a point of symmetry or both; due to the production of a chiral, non-racemic compound; wherein said catalyst is represented by formula I:

[image] [image]

gdje where

R predstavlja -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, -(C(R3)2)nC(O)R5, -C(C(R3)2)nC≡CR6, -(C(R3)2)nOPO(OR5)2, -(C(R3)2)nOR5, -(C(R3)2)nN(R5)2, -(C(R3)2)nSR5, ili –(C(R3)2)nNO2; R represents -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, -(C (R3)2)nC(O)R5, -C(C(R3)2)nC≡CR6, -(C(R3)2)nOPO(OR5)2, -(C(R3)2)nOR5, -( C(R3)2)nN(R5)2, -(C(R3)2)nSR5, or –(C(R3)2)nNO2;

R1 predstavlja alkil ili alkilen; R 1 represents alkyl or alkylene;

R2 predstavlja alkil, cikloalkil, ili alkenil; R 2 represents alkyl, cycloalkyl, or alkenyl;

R3predstavlja nezavisne za svaki slučaj H, alkil, alkenil, aril, cikloalkil, aralkil, heteroalkil, halogen, cijano, amino, acil, alkoksil, sililoksi, amino, nitro, tiol, amin, imine, amide, fosfonat, fosfine, karbonil, karboksil, silil, eter, tioeter, sulfonil, seleneter, keton, aldehid, ili ester; R3 represents independently in each case H, alkyl, alkenyl, aryl, cycloalkyl, aralkyl, heteroalkyl, halogen, cyano, amino, acyl, alkoxyl, silyloxy, amino, nitro, thiol, amine, imine, amide, phosphonate, phosphine, carbonyl, carboxyl , silyl, ether, thioether, sulfonyl, selenether, ketone, aldehyde, or ester;

R4 predstavlja cikloalkil, -CH(R3)2, alkenil, alkinil, aril, ili aralkil; R 4 represents cycloalkyl, -CH(R 3 ) 2 , alkenyl, alkynyl, aryl, or aralkyl;

R5 predstavlja nezavisne za svaki slučaj H, alkil, alkenil, aril, cikloalkil, ili aralkil; R 5 represents independently in each case H, alkyl, alkenyl, aryl, cycloalkyl, or aralkyl;

R6 predstavlja po izboru supstituiran alkil, alkenil, aril, ili aralkil; R 6 represents optionally substituted alkyl, alkenyl, aryl, or aralkyl;

n je 1-10. n is 1-10.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R predstavlja -C(O)R2, -(C(R3)2)NCO2R4, -(C(R3)2)nC(O)N(R5)2, (C(R3)2)nCN, (C(R3)2)nC(O)R5, ili (C(R3)2)nC≡CR6. In some embodiments, the present invention relates to the above-mentioned method, where R represents -C(O)R2, -(C(R3)2)NCO2R4, -(C(R3)2)nC(O)N(R5)2 , (C(R3)2)nCN, (C(R3)2)nC(O)R5, or (C(R3)2)nC≡CR6.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R1 je etil. In some embodiments, the present invention relates to the above-mentioned method, where R 1 is ethyl.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R1 je -CH=CH2. In some embodiments, the present invention relates to the above-mentioned method, where R 1 is -CH=CH 2 .

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -C(O)R2. In some embodiments, the present invention relates to the above-mentioned method, where R is -C(O)R 2 .

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -C(O)R2 i R2 je alkil. In some embodiments, the present invention relates to the above-mentioned method, where R is -C(O)R 2 and R 2 is alkyl.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -(C(R3)2)nCO2R4. In some embodiments, the present invention relates to the above-mentioned method, where R is -(C(R3)2)nCO2R4.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -(C(R3)2)nCO2R4 a R4 je -CH(R3)2. In some embodiments, the present invention relates to the above method, where R is -(C(R3)2)nCO2R4 and R4 is -CH(R3)2.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -(C(R3)2)nCO2R4 a R4 je -CH(R3)2, n je 1. In some embodiments, the presented invention relates to the above-mentioned method, where R is -(C(R3)2)nCO2R4 and R4 is -CH(R3)2, n is 1.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -(C(R3)2)nCO2R4 a R4 je cikloalkil. In some embodiments, the present invention relates to the above-mentioned method, where R is -(C(R3)2)nCO2R4 and R4 is cycloalkyl.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je –CH2CO2R4 a R4 je cikloalkil. In some embodiments, the present invention relates to the above method, where R is –CH2CO2R4 and R4 is cycloalkyl.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -CH2CO2R4, R4 je cikloheksil; a R1 je -CH=CH2. In some embodiments, the present invention relates to the above-mentioned method, where R is -CH2CO2R4, R4 is cyclohexyl; and R 1 is -CH=CH 2 .

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -CH2CO2R4 a R4 je (-)-mentil, 1-adamantil, izobornil, (-)-izopinokampil, ili (+)-fenhil; a R1 je -CH=CH2. In some embodiments, the present invention relates to the above-mentioned method, where R is -CH2CO2R4 and R4 is (-)-menthyl, 1-adamantyl, isobornyl, (-)-isopinocampyl, or (+)-phenyl; and R 1 is -CH=CH 2 .

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -C(R3)2)nC(O)N(R5)2. In some embodiments, the present invention relates to the above method, where R is -C(R3)2)nC(O)N(R5)2.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -CH2C(O)N(R5)2 a R1 je -CH=CH2. In some embodiments, the present invention relates to the above-mentioned method, where R is -CH2C(O)N(R5)2 and R1 is -CH=CH2.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -CH2C(O)NH-1-adamantil a R1 je -CH=CH2. In some embodiments, the present invention relates to the above-mentioned method, where R is -CH2C(O)NH-1-adamantyl and R1 is -CH=CH2.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -C(R3)2)nCN. In some embodiments, the present invention relates to the above-mentioned method, where R is -C(R3)2)nCN.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -CH2CN a R1 je -CH=CH2. In some embodiments, the present invention relates to the above-mentioned method, where R is -CH2CN and R1 is -CH=CH2.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -(C(R3)2)nC(O)R5. In some embodiments, the present invention relates to the above method, where R is -(C(R3)2)nC(O)R5.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -CH2C(O)R5 a R5 je alkil. In some embodiments, the present invention relates to the above method, where R is -CH2C(O)R5 and R5 is alkyl.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -CH2C(O)C(CH3)3 a R1 -CH=CH2. In some embodiments, the present invention relates to the above-mentioned method, where R is -CH2C(O)C(CH3)3 and R1 -CH=CH2.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje navedeni katalizator je QD-IP, QD-PC, QD-AD, QD-(-)-MN, QD-(+)-MN, QD-AC, QD-Piv, QD-PH, QD-AN, QD-NT, QD-CN, QD-CH, QD-IB, QD-EF, QD-AA, QD-MP, ili QD-IPC. In some embodiments, the presented invention relates to the above-mentioned method, where the mentioned catalyst is QD-IP, QD-PC, QD-AD, QD-(-)-MN, QD-(+)-MN, QD-AC, QD -Piv, QD-PH, QD-AN, QD-NT, QD-CN, QD-CH, QD-IB, QD-EF, QD-AA, QD-MP, or QD-IPC.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje navedeni katalizator je QD-IP, QD-(-)-MN ili QD-AD. In some embodiments, the present invention relates to the above-mentioned method, where said catalyst is QD-IP, QD-(-)-MN or QD-AD.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje navedeni nukleofil je alkohol. In some embodiments, the present invention relates to the above-mentioned method, where said nucleophile is an alcohol.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje navedeni nukleofil je primarni alkohol. In some embodiments, the present invention relates to the above-mentioned method, where said nucleophile is a primary alcohol.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje navedeni nukleofil je metanol ili CF3CH2OH. In some embodiments, the present invention relates to the above-mentioned method, where said nucleophile is methanol or CF3CH2OH.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje navedeni proliralni ciklični anhidrid ili mezo ciklični anhidrid je supstituirani sukcininski anhidrid ili supstituirani glutarni anhidrid. In some embodiments, the present invention relates to the above-mentioned method, where said prolyral cyclic anhydride or meso cyclic anhydride is substituted succinic anhydride or substituted glutaric anhydride.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje je navedeni katalizator prisutan u količini manjoj od oko 70 mol% u odnosu na navedeni prokiralni ciklični anhidrid ili mezo ciklični anhidrid. In some embodiments, the present invention relates to the above-mentioned method, where said catalyst is present in an amount of less than about 70 mol% in relation to said prochiral cyclic anhydride or meso cyclic anhydride.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje je navedeni katalizator prisutan u količini manjoj od oko 40 mol% u odnosu na navedeni prokiralni ciklični anhidrid ili mezo ciklični anhidrid. In some embodiments, the present invention relates to the above-mentioned method, where said catalyst is present in an amount less than about 40 mol% in relation to said prochiral cyclic anhydride or meso cyclic anhydride.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje je navedeni katalizator prisutan u količini manjoj od oko 10 mol% u odnosu na navedeni prokiralni ciklični anhidrid ili mezo ciklični anhidrid. In some embodiments, the present invention relates to the above-mentioned method, where said catalyst is present in an amount of less than about 10 mol% in relation to said prochiral cyclic anhydride or meso cyclic anhydride.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje je navedeni kiralni, ne-racemični spoj koji ima enentiomerni višak veći od oko 50%. In some embodiments, the present invention relates to the above method, wherein said chiral, non-racemic compound having an enantiomeric excess greater than about 50%.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje je navedeni kiralni, ne-racemični spoj koji ima enentiomerni višak veći od oko 70%. In some embodiments, the present invention relates to the above method, wherein said chiral, non-racemic compound having an enantiomeric excess greater than about 70%.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje je navedeni kiralni, ne-racemični spoj koji ima enentiomerni višak veći od oko 90%. In some embodiments, the present invention relates to the above method, wherein said chiral, non-racemic compound having an enantiomeric excess greater than about 90%.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje je navedeni kiralni, ne-racemični spoj koji ima enentiomerni višak veći od oko 95%. In some embodiments, the present invention relates to the above method, wherein said chiral, non-racemic compound having an enantiomeric excess greater than about 95%.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je CH2CO2R4; R4 je (-)-mentil, 1-adamantil, izobornil, (-)-izopinokamfil, ili (+)-fenhil; R1 je -CH=CH2; a navedeni nukleofil je alkohol. In some embodiments, the present invention relates to the above-mentioned method, where R is CH2CO2R4; R 4 is (-)-menthyl, 1-adamantyl, isobornyl, (-)-isopinocampyl, or (+)-phenyl; R 1 is -CH=CH 2 ; and the specified nucleophile is an alcohol.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, R je CH2CO2R4; R4 je (-)-mentil, 1-adamantil; R1 je -CH=CH2; a navedeni nukleofil je alkohol. In some embodiments, the present invention relates to the above method, R is CH2CO2R4; R 4 is (-)-menthyl, 1-adamantyl; R 1 is -CH=CH 2 ; and the specified nucleophile is an alcohol.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, R je CH2CO2R4; R4 je (-)-mentil ili 1-adamantil; R1 je -CH=CH2; a navedeni nukleofil je metanol ili CF3CH2OH. In some embodiments, the present invention relates to the above method, R is CH2CO2R4; R 4 is (-)-menthyl or 1-adamantyl; R 1 is -CH=CH 2 ; and said nucleophile is methanol or CF3CH2OH.

Sljedeći aspekt prezentiranog izuma odnosi se na metodu proizvodnje kiralnog, ne-racemičnog spoja iz prokiralnog cikličnog anhidrida ili mezo cikličnog anhidrida, koja sadržava slijedeću fazu: The next aspect of the presented invention relates to the method of producing a chiral, non-racemic compound from a prochiral cyclic anhydride or a meso cyclic anhydride, which contains the following phase:

reakciju prokiralnog cikličnog anhidrida ili mezo cikličnog anhidrida s nukleofilom u prisutnosti katalizatora, gdje navedeni prokiralni ciklični anhidrid ili mezo ciklični anhidrid obuhvaćaju unutarnji stupanj simetrije ili točku simetrije ili oboje; zbog proizvodnje kiralnog, ne-raceraičnog spoja; gdje navedeni katalizator je predstavljen formulom II: reacting a prochiral cyclic anhydride or meso cyclic anhydride with a nucleophile in the presence of a catalyst, wherein said prochiral cyclic anhydride or meso cyclic anhydride comprises an internal degree of symmetry or a point of symmetry or both; due to the production of a chiral, non-racemic compound; wherein said catalyst is represented by formula II:

[image] [image]

gdje where

R predstavlja -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, -(C(R3)2)nC(O)R5, -C(C(R3)2)nC≡CR6, -(C(R3)2)nOPO(OR5)2, -(C(R3)2)nOR5, -(C(R3)2)nN(R5)2, -(C(R3)2)nSR5 ili -(C(R3)2)nNO2; R represents -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, -(C (R3)2)nC(O)R5, -C(C(R3)2)nC≡CR6, -(C(R3)2)nOPO(OR5)2, -(C(R3)2)nOR5, -( C(R3)2)nN(R5)2, -(C(R3)2)nSR5 or -(C(R3)2)nNO2;

R1 predstavlja alkil ili alkenil; R 1 represents alkyl or alkenyl;

R2 predstavlja alkil,, cikloalkil, ili alkenil; R 2 represents alkyl, cycloalkyl, or alkenyl;

R3 predstavlja nezavisno u pojedinom slučaju H, alkil, alkenil, aril, cikloalkil, aralkil, heteroalkil, halogen, cijano, amino, acil, alkoksil, sililoksi, amino, nitro, tiol, amin, imine, amid, fosfonat, fosfine, karbonil, karboksil, silil, eter, tioeter, sulfonil, seleneter, keton, aldehid, ili ester; R3 represents independently in each case H, alkyl, alkenyl, aryl, cycloalkyl, aralkyl, heteroalkyl, halogen, cyano, amino, acyl, alkoxyl, silyloxy, amino, nitro, thiol, amine, imine, amide, phosphonate, phosphine, carbonyl, carboxyl, silyl, ether, thioether, sulfonyl, selenether, ketone, aldehyde, or ester;

R4 predstavlja cikloalkil, -CH(R3)2, alkenil, alkinil, aril, ili aralkil; R 4 represents cycloalkyl, -CH(R 3 ) 2 , alkenyl, alkynyl, aryl, or aralkyl;

R5 predstavlja nezavisno za svaki slučaj H, alkil, alkenil, aril, cikloalkil, ili aralkil; R 5 represents independently in each case H, alkyl, alkenyl, aryl, cycloalkyl, or aralkyl;

R6 predstavlja po izboru supstituiran alkil, alkenil, aril, ili aralkil; R 6 represents optionally substituted alkyl, alkenyl, aryl, or aralkyl;

n je 1-10. n is 1-10.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje navedeni katalizator je Q-IP, Q-PC, Q-AD, Q-(-)-MN, Q-(+)-MN, Q-AC, Q-Piv, Q-PH, Q-AN. Q-NT, Q-CN, Q-CH, Q-IB, Q-EF, Q-AA, Q-MP, ili Q-IPC. In some embodiments, the present invention relates to the above-mentioned method, where said catalyst is Q-IP, Q-PC, Q-AD, Q-(-)-MN, Q-(+)-MN, Q-AC, Q - Beer, Q-PH, Q-AN. Q-NT, Q-CN, Q-CH, Q-IB, Q-EF, Q-AA, Q-MP, or Q-IPC.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje navedeni nukleofil je alkohol. In some embodiments, the present invention relates to the above-mentioned method, where said nucleophile is an alcohol.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje navedeni nukleofil je primarni alkohol. In some embodiments, the present invention relates to the above-mentioned method, where said nucleophile is a primary alcohol.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje navedeni nukleofil je metanol ili CF3CH2OH. In some embodiments, the present invention relates to the above-mentioned method, where said nucleophile is methanol or CF3CH2OH.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje je navedeni proliralni ciklični anhidrid ili mezo ciklični anhidrid supstituirani sukcininski anhidrici ili supstituirani glutarni anhidrid. In some embodiments, the present invention relates to the above-mentioned method, where said prolyral cyclic anhydride or meso cyclic anhydride is substituted succinic anhydride or substituted glutaric anhydride.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje je navedeni katalizator prisutan u količini manjoj od oko 70 mol% u odnosu na navedeni prokiralni ciklični anhidrid ili mezo ciklični anhidrid. In some embodiments, the present invention relates to the above-mentioned method, where said catalyst is present in an amount of less than about 70 mol% in relation to said prochiral cyclic anhydride or meso cyclic anhydride.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje je navedeni katalizator prisutan u količini manjoj od oko 40 mol% u odnosu na navedeni prokiralni ciklični anhidrid ili mezo ciklični anhidrid. In some embodiments, the present invention relates to the above-mentioned method, where said catalyst is present in an amount less than about 40 mol% in relation to said prochiral cyclic anhydride or meso cyclic anhydride.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje je navedeni katalizator prisutan u količini manjoj od oko 10 mol% u odnosu na navedeni prokiralni ciklični anhidrid ili mezo ciklični anhidrid. In some embodiments, the present invention relates to the above-mentioned method, where said catalyst is present in an amount of less than about 10 mol% in relation to said prochiral cyclic anhydride or meso cyclic anhydride.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje je navedeni kiralni, ne-racemični spoj koji ima enentiomerni višak veći od oko 50%. In some embodiments, the present invention relates to the above method, wherein said chiral, non-racemic compound having an enantiomeric excess greater than about 50%.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje je navedeni kiralni, ne-racemični spoj koji ima enentiomerni višak veći od oko 70%. In some embodiments, the present invention relates to the above method, wherein said chiral, non-racemic compound having an enantiomeric excess greater than about 70%.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje je navedeni kiralni, ne-racemični spoj koji ima enentiomerni višak veći od oko 90%. In some embodiments, the present invention relates to the above method, wherein said chiral, non-racemic compound having an enantiomeric excess greater than about 90%.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje je navedeni kiralni, ne-racemični spoj koji ima enentiomerni višak veći od oko 95%. In some embodiments, the present invention relates to the above method, wherein said chiral, non-racemic compound having an enantiomeric excess greater than about 95%.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je CH2CO2R4; R4 je (-)-mentil, 1-adamantil, izobornil, (-)-izopinokamfil, ili (+)-fenhil; R1 je -CH=CH2; a navedeni nukleofil je alkohol. In some embodiments, the present invention relates to the above-mentioned method, where R is CH2CO2R4; R 4 is (-)-menthyl, 1-adamantyl, isobornyl, (-)-isopinocampyl, or (+)-phenyl; R 1 is -CH=CH 2 ; and the specified nucleophile is an alcohol.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je CH2CO2R4; R4 je (-)-mentil ili 1-adamantil; R1 je -CH=CH2; a navedeni nukleofil je alkohol. In some embodiments, the present invention relates to the above-mentioned method, where R is CH2CO2R4; R 4 is (-)-menthyl or 1-adamantyl; R 1 is -CH=CH 2 ; and the specified nucleophile is an alcohol.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je CH2CO2R4; R4 je (-)-mentil ili 1-adamantil; R1 je -CH=CH2; a navedeni nukleofil je metanol ili CF3CH2OH. In some embodiments, the present invention relates to the above-mentioned method, where R is CH2CO2R4; R 4 is (-)-menthyl or 1-adamantyl; R 1 is -CH=CH 2 ; and said nucleophile is methanol or CF3CH2OH.

Metode izuma - kinetička resolucija Methods of the invention - kinetic resolution

U drugom aspektu prezentiranog izuma, kinetička resolucija enantiomera javlja se s katalizom, upotrebom predmetnog kiralnog katalizatora, kod transformacije racemičnog supstrata. U predmetnom procesu kinetičke resolucije racemičnog supstrata, jedan enentiomer može se nadoknaditi kao supstrat koji nije reagirao dok se je drugi transformirao u željeni produkt. Naravno, biti će procijenjeno da se kinetička resolucija može izvesti odstranjivanjem neželjenog enantiomera reakcijom s nukleofilom, i oporavljanjem nepromijenjenog željenog enentiomera iz reakcijske smjese. Značajna prednost ovog pristupa je svojstvo upotrebe jeftinih racemičnih polaznih materijala radije nego skupih, enentiomerično čistih polaznih spojeva. U određenim ostvarenjima, predmetni katalizatori mogu se koristiti u kinetičkoj resoluciji racemičnih cikličnih supstrata kada je nukleofil co-otapalo. Odgovarajući nukleofili ovog tipa uključuju vodu, alkohole, i tiole. In another aspect of the presented invention, the kinetic resolution of enantiomers occurs with catalysis, using the subject chiral catalyst, in the transformation of the racemic substrate. In the present process of kinetic resolution of a racemic substrate, one enantiomer can be recovered as unreacted substrate while the other is transformed into the desired product. Of course, it will be appreciated that kinetic resolution can be performed by removing the undesired enantiomer by reaction with a nucleophile, and recovering the unchanged desired enantiomer from the reaction mixture. A significant advantage of this approach is the property of using inexpensive racemic starting materials rather than expensive, enantiomerically pure starting compounds. In certain embodiments, the subject catalysts can be used in the kinetic resolution of racemic cyclic substrates when the nucleophile is a co-solvent. Suitable nucleophiles of this type include water, alcohols, and thiols.

Jedan od aspekata prezentiranog izuma odnosi se na metodu kinetičke resolucije, a obuhvaća korak: One of the aspects of the presented invention relates to the kinetic resolution method, and includes the step:

reakcije racemičnog cikličnog anhidrida s alkoholom u prisutnosti katalizatora predstavljenog formulom I: reactions of racemic cyclic anhydride with alcohol in the presence of a catalyst represented by formula I:

[image] [image]

gdje where

R predstavlja -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, -(C(R3)2)nC(O)R5, -(C(R3)2)nOCR6, -(C(R3)2)nOPO(OR5)2, -(C(R3)2)nOR5, -(C(R3)2)nN(R5)2, -(C(R3)2)nSR5, ili -(C(R3)2)nNO2; R represents -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, -(C (R3)2)nC(O)R5, -(C(R3)2)nOCR6, -(C(R3)2)nOPO(OR5)2, -(C(R3)2)nOR5, -(C(R3 )2)nN(R5)2, -(C(R3)2)nSR5, or -(C(R3)2)nNO2;

R1 predstavlja alkil ili alkilen; R 1 represents alkyl or alkylene;

R2 predstavlja alkil, cikloalkil, ili alkenil; R 2 represents alkyl, cycloalkyl, or alkenyl;

R3 predstavlja nezavisno za svaki slučaj H, alkil, alkenil, aril, cikloalkil, aralkil, heteroalkil, halogen, cijano, amino, acil, alkoksil, sililoksi, amino, nitro, tiol, amin, imine, amid, fosfonat, fosfine, karbonil, karboksil, silil, eter, tioeter, sulfonil, seleneter, keton, aldehid, ili ester; R3 represents independently in each case H, alkyl, alkenyl, aryl, cycloalkyl, aralkyl, heteroalkyl, halogen, cyano, amino, acyl, alkoxyl, silyloxy, amino, nitro, thiol, amine, imine, amide, phosphonate, phosphine, carbonyl, carboxyl, silyl, ether, thioether, sulfonyl, selenether, ketone, aldehyde, or ester;

R4 predstavlja cikloalkil, -CH(R3)2, alkenil, alkinil, aril, ili aralkil; R 4 represents cycloalkyl, -CH(R 3 ) 2 , alkenyl, alkynyl, aryl, or aralkyl;

R5 predstavlja nezavisno za svaki slučaj H, alkil, alkenil, aril, cikloalkil, ili aralkil; R 5 represents independently in each case H, alkyl, alkenyl, aryl, cycloalkyl, or aralkyl;

R6 predstavlja po izboru supstituiran alkil, alkenil, aril, ili aralkil; R 6 represents optionally substituted alkyl, alkenyl, aryl, or aralkyl;

n je 1-10; i n is 1-10; and

kada navedena metoda kinetičke resolucije je završena ili prekinuta bilo kojim cikličnim anhidridom koji nije reagirao a ima enentiomerični višak veći od nula a enentiomerički višak produkta je veći od nule. when said kinetic resolution method is completed or terminated by any unreacted cyclic anhydride having an enantiomeric excess greater than zero and the enantiomeric excess of the product greater than zero.

U nekim ostvarenjima, prezentirani izum odnosi se na gore navedenu metodu, gdje R predstavlja -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, -(C(R3)2)nC(O)R5 ili -(C(R3)2)nOCR6. In some embodiments, the presented invention relates to the above-mentioned method, where R represents -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2 , -(C(R3)2)nCN, -(C(R3)2)nC(O)R5 or -(C(R3)2)nOCR6.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R1 je etil. In some embodiments, the present invention relates to the above-mentioned method, where R 1 is ethyl.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R1 je -CH=CH2. In some embodiments, the present invention relates to the above-mentioned method, where R 1 is -CH=CH 2 .

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -C(O)R2. In some embodiments, the present invention relates to the above-mentioned method, where R is -C(O)R 2 .

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -C(O)R2 i R2 je alkil. In some embodiments, the present invention relates to the above-mentioned method, where R is -C(O)R 2 and R 2 is alkyl.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -(C(R3)2)nCO2R4. In some embodiments, the present invention relates to the above-mentioned method, where R is -(C(R3)2)nCO2R4.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -(C(R3)2)nCO2R4 a R4 je -CH(R3)2. In some embodiments, the present invention relates to the above method, where R is -(C(R3)2)nCO2R4 and R4 is -CH(R3)2.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -(C(R3)2)nCO2R4 a R4 je -CH(R3)2, n je 1. In some embodiments, the presented invention relates to the above-mentioned method, where R is -(C(R3)2)nCO2R4 and R4 is -CH(R3)2, n is 1.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je –(C(R3)2)nCO2R4 a R4 je cikloalkil. In some embodiments, the present invention relates to the above-mentioned method, where R is –(C(R3)2)nCO2R4 and R4 is cycloalkyl.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -CH2CO2R4 a R4 je cikloheksil; a R1 je -CH=CH2. In some embodiments, the present invention relates to the above-mentioned method, where R is -CH2CO2R4 and R4 is cyclohexyl; and R 1 is -CH=CH 2 .

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je –CH2CO2R4 a R4 je (-)-mentil, 1-adamantil, izobornil, (-) -izopinokamf11, ili (+)-fenhil; a R1 je -CH=CH2. In some embodiments, the present invention relates to the above-mentioned method, where R is –CH2CO2R4 and R4 is (-)-menthyl, 1-adamantyl, isobornyl, (-)-isopinocampl11, or (+)-phenyl; and R 1 is -CH=CH 2 .

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je –(C(R3)2)nC(O)N(R5)2. In some embodiments, the present invention relates to the above method, where R is –(C(R3)2)nC(O)N(R5)2.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -CH2C(O)N(R5)2 a R1 je -CH=CH2. In some embodiments, the present invention relates to the above-mentioned method, where R is -CH2C(O)N(R5)2 and R1 is -CH=CH2.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -CH2C(O)NH-1-adamantil a R1 je -CH=CH2. In some embodiments, the present invention relates to the above-mentioned method, where R is -CH2C(O)NH-1-adamantyl and R1 is -CH=CH2.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -(C(R3)2)nCN. In some embodiments, the present invention relates to the above method, where R is -(C(R3)2)nCN.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -CH2CN a R1 je -CH=CH2. In some embodiments, the present invention relates to the above-mentioned method, where R is -CH2CN and R1 is -CH=CH2.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -(C(R3)2)nCOR5. In some embodiments, the present invention relates to the above method, where R is -(C(R3)2)nCOR5.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -CH2C(O)R5 a R5 je alkil. In some embodiments, the present invention relates to the above method, where R is -CH2C(O)R5 and R5 is alkyl.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje R je -CH2C(O)C(CH3)3 a R1 -CH=CH2. In some embodiments, the present invention relates to the above-mentioned method, where R is -CH2C(O)C(CH3)3 and R1 -CH=CH2.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje navedeni katalizator je QD-IP, QD-PC, QD-AD, QD-(-)-MN, QD-(+)-MN, QD-AC, QD-Piv, QD-PH, QD-AN, QD-NT, QD-CN, QD-CH, QD-IB, QD-EF, QD-AA, QD-MP, ili QD-IPC. In some embodiments, the presented invention relates to the above-mentioned method, where the mentioned catalyst is QD-IP, QD-PC, QD-AD, QD-(-)-MN, QD-(+)-MN, QD-AC, QD -Piv, QD-PH, QD-AN, QD-NT, QD-CN, QD-CH, QD-IB, QD-EF, QD-AA, QD-MP, or QD-IPC.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje navedeni katalizator je QD-IP, QD-(-)-MN ili QD-AD. In some embodiments, the present invention relates to the above-mentioned method, where said catalyst is QD-IP, QD-(-)-MN or QD-AD.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje navedeni alkohol je primarni alkohol. In some embodiments, the present invention relates to the above-mentioned method, where said alcohol is a primary alcohol.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje navedeni nukleofil je metanol ili CF3CH2OH. In some embodiments, the present invention relates to the above-mentioned method, where said nucleophile is methanol or CF3CH2OH.

Sljedeći aspekt prezentiranog izuma odnosi se na metodu kinetičke resolucije, koja obuhvaća korak: The next aspect of the presented invention relates to the kinetic resolution method, which includes the step:

reakcije racemičnog cikličnog anhidrida s alkoholom u prisutnosti katalizatora predstavljenog formulom II: reactions of racemic cyclic anhydride with alcohol in the presence of a catalyst represented by formula II:

[image] [image]

gdje where

R predstavlja -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)n-(C(R3)2)nCN, -(C(R3)2)nC(O)R5, -C(C(R3)2)nC≡CR6, -(C(R3)2)nOPO(OR3)2, -(C(R3)2)nOR5, -(C(R3)2)nN(R5)2, -(C(R3)2)nSR5, ili -(C(R3)2)nNO2; R represents -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)n-(C(R3)2)nCN, -(C( R3)2)nC(O)R5, -C(C(R3)2)nC≡CR6, -(C(R3)2)nOPO(OR3)2, -(C(R3)2)nOR5, -(C (R3)2)nN(R5)2, -(C(R3)2)nSR5, or -(C(R3)2)nNO2;

R1 predstavlja alkil ili alkenil; R 1 represents alkyl or alkenyl;

R2predstavlja alkil, cikloalkil, ili alkenil; R 2 represents alkyl, cycloalkyl, or alkenyl;

R3predstavlja nezavisno za svaki slučaj H, alkil, alkenil, aril, cikloalkil, aralkil, heteroalkil, halogen, cijano, amino, acil, alkoksil, sililoksi, amino, nitro, tiol, amin, imine, amid, fosfonat, fosfine, karbonil, karboksil, silil, eter, tioeter, sulfonil, seleneter, keton, aldehid, ili ester; R3 represents independently in each case H, alkyl, alkenyl, aryl, cycloalkyl, aralkyl, heteroalkyl, halogen, cyano, amino, acyl, alkoxyl, silyloxy, amino, nitro, thiol, amine, imine, amide, phosphonate, phosphine, carbonyl, carboxyl , silyl, ether, thioether, sulfonyl, selenether, ketone, aldehyde, or ester;

R4 predstavlja cikloalkil, -CH(R3)2, alkenil, alkinil, aril, ili aralkil; R 4 represents cycloalkyl, -CH(R 3 ) 2 , alkenyl, alkynyl, aryl, or aralkyl;

R5 predstavlja nezavisno za svaki slučaj H, alkil, alkenil, aril, cikloalkil, ili aralkil; R 5 represents independently in each case H, alkyl, alkenyl, aryl, cycloalkyl, or aralkyl;

R6 predstavlja po izboru supstituiran alkil, alkenil, aril, ili aralkil; i R 6 represents optionally substituted alkyl, alkenyl, aryl, or aralkyl; and

n je 1-10; i n is 1-10; and

kada je navedena metoda kinetičke resolucije završena ili prekinuta bilo kojim cikličnim anhidridom koji nije reagirao a ima enentioraerični višak veći od nula a enentiomerički višak produkta je veći od nule. when said kinetic resolution method is completed or terminated by any unreacted cyclic anhydride having an enantiomeric excess greater than zero and an enantiomeric excess product greater than zero.

U nekim ostvarenjima, navedeni katalizator je Q-IP, Q-PC, Q-AD, Q-(-)-MN, Q-(+)-MN, Q-AC, Q-Piv, Q-PH, Q-AN, Q-NT, Q-CN, Q-CH, Q-IB, Q-EF, Q-AA, Q-MP, ili Q-IPC. In some embodiments, said catalyst is Q-IP, Q-PC, Q-AD, Q-(-)-MN, Q-(+)-MN, Q-AC, Q-Piv, Q-PH, Q-AN , Q-NT, Q-CN, Q-CH, Q-IB, Q-EF, Q-AA, Q-MP, or Q-IPC.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje je navedeni alkohol primarni alkohol. In some embodiments, the present invention relates to the above-mentioned method, where said alcohol is a primary alcohol.

U nekim ostvarenjima, prezentirani izum se odnosi na gore navedenu metodu, gdje je navedeni nukleofil metanol ili CF3CH2OH. In some embodiments, the present invention relates to the above-mentioned method, where the specified nucleophile is methanol or CF3CH2OH.

Nukleofili Nucleophiles

Nukleofile koji su upotrebljivi u prezentiranom izumu stručnjaci mogu odrediti u skladu s nekoliko kriterija. Općenito, odgovarajući nukleofil će imati jedno ili više od svojstava koja slijede: 1} da su sposobni reagirati sa supstratom na željenom elektrofiličnom mjestu; 2) da su upotrebljiv produkt gornje reakcije sa supstratom; 3) da su sposobni reagirati sa supstratom na drugom funkcionalnom mjestu osim na zahtjevanom elektrofiličnom mjestu; 4) da reagiraju sa supstratom na najmanje djelomice pomoću mehanizma kataliziranog s kiralnim katalizatorom; 5) da neće biti podrvrgnut jakoj neželjenoj reakciji nakon reakcije sa supstratom u željenom smislu; i 6) da neće jako reagirati s ili razgraditi katalizator. Treba shvatiti da dok neželjena strana reakcija (kao što je razgradnja katalizatora) može se javiti, brzina takvih reakcija može se izvesti polako - pomoću selekcije reaktanata i uvjeta - koji se odnose odnos(e) u željenoj reakciji(ama). Nucleophiles that are usable in the presented invention can be determined by experts according to several criteria. In general, a suitable nucleophile will have one or more of the following properties: 1} that they are capable of reacting with the substrate at the desired electrophilic site; 2) that they are a usable product of the above reaction with the substrate; 3) that they are capable of reacting with the substrate at a different functional site than the required electrophilic site; 4) to react with the substrate at least partially by means of a mechanism catalyzed by a chiral catalyst; 5) that it will not be subjected to a strong unwanted reaction after reaction with the substrate in the desired sense; and 6) that it will not react strongly with or degrade the catalyst. It should be understood that while undesired side reactions (such as catalyst decomposition) may occur, the rate of such reactions can be made slowly - by selection of reactants and conditions - related to the relationship(s) in the desired reaction(s).

Nukleofili koji zadovoljavaju gore navedene kriterije mogu se odabrati za svaki pojedini supstrat i varirati u skladu sa strukturom supstrata i zahtjevanim produktom. Rutinsko eksperimentiranje može biti neophodno za određivanje preferiranog nukleofila za datu transformaciju. Ako se zahtjeva nukleofil koji sadržava dušik, na primjer, on može biti odabran između, amonijaka, ftalimida, hidrazina, amina i sličnog. Jednako, kisik nukleofili kao što su voda, hidroksid, alkoholi, alkoksidi, siloksani, karboksilati, ili perokisdi mogu se koristiti za uvođenje kisika; i merkaptani, tiolati, bisulfiti, tiocijanati i slično mogu se koristiti za uvođenje dijela koji sadržava sumpor. Dodatni nukleofili su jasni stručnjacima za organsku kemiju. Nucleophiles that meet the above criteria can be selected for each individual substrate and vary according to the structure of the substrate and the required product. Routine experimentation may be necessary to determine the preferred nucleophile for a given transformation. If a nitrogen-containing nucleophile is required, for example, it may be selected from ammonia, phthalimide, hydrazine, amine, and the like. Equally, oxygen nucleophiles such as water, hydroxide, alcohols, alkoxides, siloxanes, carboxylates, or peroxides can be used to introduce oxygen; and mercaptans, thiolates, bisulfites, thiocyanates and the like can be used to introduce the sulfur-containing moiety. Additional nucleophiles are clear to those skilled in organic chemistry.

Za nukleofile koji postoje kao anioni, counterion može biti svaki od različitih uobičajenih kationa, uključujući alkali i katione alkalnih zemljanih metala i kationa amonijaka. For nucleophiles that exist as anions, the counterion can be any of a variety of common cations, including alkali and alkaline earth metal cations and ammonium cations.

U nekim ostvarenjima, nukleofili mogu biti dio supstrata, koji rezultira intramolekularnom reakcijom. In some embodiments, the nucleophiles can be part of the substrate, which results in an intramolecular reaction.

Supstrati Substrates

Kao što je gore raspravljeno, brojni različiti supstrati su upotrebljivi u metodama prezentiranog izuma. Izbor supstrata će ovisiti o brojnim faktorima, tako i nukleofili koji se koriste i željeni produkt, i odgovarajući produkt, i odgovarajući supstrat što će biti jasno stručnjacima. Biti će razumljivo da supstrat preferirano ne sadržava bilo koju interferirajuću funkcionalnost. Općenito, odgovarajući supstrat, npr. prokiralni ili mezo spoj, koji će sadržavati najmanje par reaktivnih elektrofiličnih centara ili dijelova povezanih s unutarnjim stupnjem sinetrije koji su napadnuti uz pomoć katalizatora. Kataliziran, stereoselektivni napada nukleofila jednog od elektrofiličnih centara će proizvesti kiralni, ne-racemični produkt. As discussed above, a number of different substrates are useful in the methods of the present invention. The choice of substrate will depend on a number of factors, including the nucleophiles used and the desired product, and the appropriate product, and the appropriate substrate, which will be clear to experts. It will be understood that the substrate preferably does not contain any interfering functionality. In general, a suitable substrate, eg, a prochiral or meso compound, which will contain at least a pair of reactive electrophilic centers or moieties linked to an internal sintery degree which are attacked with the aid of a catalyst. Catalyzed, stereoselective attack of a nucleophile on one of the electrophilic centers will produce a chiral, non-racemic product.

Većina supstrata razmatranih za upotrebu u metodama prezentiranog izuma sadržava najmanje jedan prsten koji ima tri do sedam atoma. Mali prsteni su često neprirodni, izmjenom njihove reaktivnosti. Međutim, u nekim ostvarenjima ciklični supstrat može biti ne izmijenjen, tj., može sadržavati veći prsten s elektrofiličnim centrima. Primjeri odgovarajućih supstrata koji se mogu otvoriti predmetnom metodom uključuju ciklične anhidride, ciklične imide, i slično. Most of the substrates contemplated for use in the methods of the present invention contain at least one ring having three to seven atoms. Small rings are often unnatural, by changing their reactivity. However, in some embodiments, the cyclic substrate may be unaltered, i.e., may contain a larger ring with electrophilic centers. Examples of suitable substrates that can be opened by the subject method include cyclic anhydrides, cyclic imides, and the like.

U preferiranom ostvarenju, ciklični supstrat je prokiralni ili mezo spoj. U drugim ostvarenjima, na primjer, kinetička resolucija, ciklični supstrat će biti kiralni spoj. U nekim ostvarenjima, supstrat će biti racemična smjesa. U nekim ostvarenjima, supstrat će biti smjesa diastereomera. In a preferred embodiment, the cyclic substrate is a prochiral or meso compound. In other embodiments, for example, kinetic resolution, the cyclic substrate will be a chiral compound. In some embodiments, the substrate will be a racemic mixture. In some embodiments, the substrate will be a mixture of diastereomers.

U preferiranim ostvarenjima, elektrofilični atom je ugljik, npr. ugljik karbonil dijela obuhvaćen anhidridom ili imidom. Međutim, u nekim ostvarenjima, elektrofilični atom može biti heteroatom. In preferred embodiments, the electrophilic atom is carbon, eg, the carbon of the carbonyl moiety covered by an anhydride or an imide. However, in some embodiments, the electrophilic atom may be a heteroatom.

Reakcijski uvjeti Reaction conditions

Asimetrične reakcije prezentiranog izuma mogu se izvoditi u širokom rasponu uvjeta, premda je razumljiva tako da otapala i granice temperature nabrojane ovdje nisu ograničavajuće i samo korespondiraju s preferiranim načinom metoda izuma. The asymmetric reactions of the present invention can be performed under a wide range of conditions, although it is understood that the solvents and temperature limits listed herein are not limiting and merely correspond to the preferred mode of the methods of the invention.

Općenito, će biti poželjno da se reakcije izvode upotrebom umjerenih uvjeta koji neće imati neželjeni učinak na supstrat, katalizator, ili produkt. Na primjer, temperatura utječe na brzinu reakcije, kao i na stabilitet reaktanata, produkta, i katalizatora. Reakcije se uobičajeno izvode na temperaturi u granici od -78°C do 100°C, više se preferira u granici od -30°C do 30°C i još više se preferira u granici -30°C do 0°C. In general, it will be desirable to carry out the reactions using mild conditions that will not have an undesired effect on the substrate, catalyst, or product. For example, temperature affects the reaction rate, as well as the stability of reactants, products, and catalysts. The reactions are usually carried out at a temperature in the range of -78°C to 100°C, more preferably in the range of -30°C to 30°C and even more preferably in the range of -30°C to 0°C.

Općenito, reakcije asimetrične sinteze prezentiranog izuma se izvode u tekućem mediju za reakciju. Međutim, reakcije se mogu izvoditi bez dodavanja otapala. Alternativno, reakcije se mogu izvoditi u inertnom otapalu, preferirano onom u kojem reakcijski sastojci, uključujući katalizator, su u suštini topljivi. Odgovarajuća otapala uključuju etere kao što je dietil eter, 1,2-dimetoksietan, diglim, t-butil metil eter, tetrahidrofuran i slično; halogenirano otapalo kao što je kloroform, diklormetan, dikloretan, klorbenzen, i slično; alifatska ili aromatska hidrokarbon otapala kao što je benzen, toluen, heksan, pentan i slično; etere i ketone kao što je etil acetat, aceton, i 2-butanon; polarna aprotična otapala kao što je acetonitril, dimetilsulfoksid, dimetilformamid i slično; ili kombinacija dva ili više otapala. Nadalje, u nekim ostvarenjima, može biti prednost korištenje otapala koja nisu inertna za supstrate u korištenim uvjetima, npr. upotreba etanola kao otapala kada je etanol zahtijevani nukleofil. U ostvarenjima gdje voda i hidroksid nisu preferirani nukleofili, reakcije se mogu izvesti u bezvodnim uvjetima. U nekim ostvarenjima, preferiraju se eterna ili aromatska hidrokarbon otapala. U nekin prefriranim ostvarenjima, otapalo je dietil eter ili toluen. U ostvarenjima gdje su voda ili hidroksid preferirani nukleofili, reakcija se može izvesti u smjesi otapala koja obuhvaćaju odgovarajuću količinu vode i/ili hidroksida. In general, the asymmetric synthesis reactions of the present invention are carried out in a liquid reaction medium. However, the reactions can be carried out without the addition of a solvent. Alternatively, the reactions may be carried out in an inert solvent, preferably one in which the reactants, including the catalyst, are essentially soluble. Suitable solvents include ethers such as diethyl ether, 1,2-dimethoxyethane, diglyme, t-butyl methyl ether, tetrahydrofuran and the like; a halogenated solvent such as chloroform, dichloromethane, dichloroethane, chlorobenzene, and the like; aliphatic or aromatic hydrocarbon solvents such as benzene, toluene, hexane, pentane and the like; ethers and ketones such as ethyl acetate, acetone, and 2-butanone; polar aprotic solvents such as acetonitrile, dimethylsulfoxide, dimethylformamide and the like; or a combination of two or more solvents. Furthermore, in some embodiments, it may be advantageous to use solvents that are not inert to the substrates under the conditions used, eg, the use of ethanol as the solvent when ethanol is the required nucleophile. In embodiments where water and hydroxide are not preferred nucleophiles, the reactions can be carried out under anhydrous conditions. In some embodiments, ethereal or aromatic hydrocarbon solvents are preferred. In some preferred embodiments, the solvent is diethyl ether or toluene. In embodiments where water or hydroxide are the preferred nucleophiles, the reaction can be carried out in a solvent mixture comprising an appropriate amount of water and/or hydroxide.

Izum isto razmatra reakciju u bifaznoj smjesi otapala, u emulziji ili suspenziji, ili reakciji u lipidnom mjehuriću ili bilajeru. U nekim ostvarenjima, može se preferirati za izvođenje katalizirane reakcije na čvrstoj fazi. Dalje, u nekim preferiranim ostvarenjima, reakcija se može izvoditi u atmosferi reaktivnog plina. Na primjer, desimetrizacija s cijanidom kao nukleofilom može se izvesti u atmosferi HCN plina. Parcijalni tlak reaktivnog plina može biti od 0.1 do 1000 atmosfera, više se preferira od 0.5 do 100 atm, i više se preferira od oko i do oko 10 atm, S druge strane, u nekim ostvarenjima preferira se izvesti reakciju u inertnoj atmosferi plina kao što je dušik ili argon. The invention also contemplates a reaction in a biphasic solvent mixture, in an emulsion or suspension, or a reaction in a lipid bubble or bilayer. In some embodiments, it may be preferred to perform the catalyzed reaction on a solid phase. Further, in some preferred embodiments, the reaction can be carried out in a reactive gas atmosphere. For example, desymmetrization with cyanide as nucleophile can be carried out in an atmosphere of HCN gas. The partial pressure of the reactive gas can be from 0.1 to 1000 atmospheres, more preferably from 0.5 to 100 atm, and more preferably from about i to about 10 atm. On the other hand, in some embodiments it is preferred to carry out the reaction in an inert gas atmosphere such as is nitrogen or argon.

Metode asimetrične sinteze prezentiranog izuma mogu se izvesti u kontinuiranom, semi-kontinuiranom ili načinom šarže i ako se zahtjeva može biti uključena u postupak reciklaže tekućine i/ili reciklaže plina. Međutim, metode ovog izuma se preferirano izvode načinom šarži. Slično, načinom ili slijedom dodavanja reakcijskih sastojaka, katalizatora i otapala također nije kritično i može se ostvariti na svaki uobičajeni način. The asymmetric synthesis methods of the presented invention can be performed in a continuous, semi-continuous or batch mode and, if required, can be included in the process of liquid recycling and/or gas recycling. However, the methods of the present invention are preferably carried out in a batch manner. Similarly, the method or sequence of addition of reactants, catalysts and solvents is also not critical and can be accomplished in any conventional manner.

Reakcija se može izvesti u posebnoj reakcijskoj zoni ili više reakcijskih zona, u seriji ili paralelno ili se može izvesti diskontinuirano ili kontinuirano u izduženoj tubularnoj zoni ili seriji takvih zona. Materijali koji se koriste za konstrukciju trebaju biti inertni za polazne materijale tijekom reakcije i proizvodnje pribora treba biti sposoban podnijeti reakcijske temperature i tlakove. Način za uvođenje i/ili reguliranje količine polaznih materijala ili sastojaka uvedenih diskontinuirano ili kontinuirano u reakcijskoj zoni tijekom provođenja reakcije može se povoljno koristiti u prisutnosti osobito za uređivanje molarnog omjera polaznih materijala. Koraci reakcije mogu djelovati s inkrementalnim dodavanjem polaznih materijala na drugo. Također, reakcijski korak može se spojiti zajedničkim dodavanjem polaznih materijala u optički aktivan katalizator metal-ligand kompleks. Kada se završi konverzija nije poželjna ili nije dostižna, polazni materijali mogu se odvojiti od produkta i mogu se potom ponovo reciklirati u reakcijskoj zoni. The reaction can be carried out in a separate reaction zone or several reaction zones, in series or in parallel, or can be carried out discontinuously or continuously in an elongated tubular zone or a series of such zones. The materials used for the construction should be inert to the starting materials during the reaction and the production of the accessories should be able to withstand the reaction temperatures and pressures. The method for introducing and/or regulating the amount of starting materials or ingredients introduced discontinuously or continuously in the reaction zone during the reaction can be advantageously used in the presence especially for adjusting the molar ratio of starting materials. Reaction steps can operate by incrementally adding starting materials to another. Also, the reaction step can be combined by the joint addition of starting materials to the optically active catalyst metal-ligand complex. When complete conversion is not desired or not achievable, the starting materials can be separated from the product and can then be recycled again in the reaction zone.

Metode se mogu izvesti i u priboru obloženom staklom, nehrđajućem čeliku ili priborom sličnog tipa. Reakcijska zona može biti postavljena s jednim ili više unutarnjih i/ili vanjskih izmjenjivača topline na način da se kontrolira pretjerano fluktuiranje temperature, ili sprečavanjem svakog mogućeg „prelaza" reakcijske temperature. The methods can also be performed in glass, stainless steel, or similar type utensils. The reaction zone can be set up with one or more internal and/or external heat exchangers in such a way as to control excessive temperature fluctuation, or to prevent any possible reaction temperature "transition".

Nadalje, kiralni katalizator može se imobilizirati ili inkorporirati u polimer ili druge netopljive matrikse s, na primjer, kovalentnim vezanjem u polimer ili čvrste podloge pomoću jednog ili više supstituenata. Imobilizirani katalizator može se lagano obnoviti nakon reakcije, na primjer, filtracijom ili centrifugiranjem. Dalje, supstrat ili nukleofil mogu se imobilizirati ili inkorporirati u polimer ili drugi netopljivi matriks s, na primjer, kovalentnim vezivanjem u polimer ili solidnu potporu pomoću jednog ili više supstituenata. Takav pristup može iz baze za proizvodnju kombinatorne zbirke spojeva koja je ograničena na solidnu potporu. Furthermore, the chiral catalyst can be immobilized or incorporated into a polymer or other insoluble matrix with, for example, covalent bonding to the polymer or solid support by means of one or more substituents. The immobilized catalyst can be easily recovered after the reaction, for example, by filtration or centrifugation. Further, the substrate or nucleophile can be immobilized or incorporated into a polymer or other insoluble matrix with, for example, covalent attachment to the polymer or solid support by means of one or more substituents. Such an approach can from a base to produce a combinatorial collection of compounds that is limited to a solid support.

Enantioselektivna alkoholiza Enantioselective alcoholysis

Jako različiti katalizatori derivirani iz modificiranog alkaloida cinhona su ispitani supstituiranim sukcininskim anhidridima i supstituiranim glutarnim anhidridima a rezultati su sumirani u Slikama 19-45. Primjena katalizatora QD-(-)-MM za desimetrizaciju cis-1, 3-dibenzil-tetrahidro-2H-furo[3,4-d]imidazol-2,4,6-triona je isto prikazana, što može biti značajno za sintezu biotina. Katalizator također prikazuje da ga se lako može reciklirati u više od 95% prinosa koristeći postupak ekstrakcije. Very different catalysts derived from the modified cinchona alkaloid were tested with substituted succinic anhydrides and substituted glutaric anhydrides and the results are summarized in Figures 19-45. The application of the QD-(-)-MM catalyst for the desymmetrization of cis-1, 3-dibenzyl-tetrahydro-2H-furo[3,4-d]imidazole-2,4,6-trione is also shown, which can be significant for the synthesis biotin. The catalyst also shows that it can be easily recycled in more than 95% yield using an extraction process.

U Slikama 19 i 20 su sumirani rezultati studije komparacije učinkovitosti različitih katalizatora za metanolizu 2,3-dimetilsukscininskog anhidrida u Et2O u 0.02 M koncentraciji na sobnoj temperaturi. Modificirani monomerični cinhona alkaloid nosač alkilacetat strane lanca, uključuje QD-AD, QD-(+)-MN, QD-(-)-MN, QD-IP, QD-TB, QD-IB I QD-EF pokazuju cjelokupnu učinkovitost (aktivnost plus selektivnost) usporedivu ili superiornu u odnosu na (DHQD)2AQN. Međutim, značajno je za sjetiti se da OQ-AD, QD-(+)-MN, QD-(-)-MN mogu se proizvesti u razumnom prinosu i po cijeni značajno manjoj od (<0.5% bazirano na Aldrich cijeni polaznog materijala) od one za (DHQD)2AQN. Osim toga, kao što je kasnije detaljnije opisano, QD-(-)-MN katalizator pokazuje da će biti dovoljno stabilno nasuprot kiselini koju je stvarno moguće reciklirati upotrebom jednostavnog postupka ekstrakcije. S druge strane, početni eksperimenti indiciraju da QD-TB može biti previše osjetljiv na kiselinu da bi se reciklirao putem običnog postupka ekstrakcije. Figures 19 and 20 summarize the results of a study comparing the efficiency of different catalysts for the methanolysis of 2,3-dimethylsuccinic anhydride in Et2O in a 0.02 M concentration at room temperature. Modified monomeric cinchona alkaloid carrier alkylacetate side chain, including QD-AD, QD-(+)-MN, QD-(-)-MN, QD-IP, QD-TB, QD-IB and QD-EF show overall efficacy (activity plus selectivity) comparable or superior to (DHQD)2AQN. However, it is important to remember that OQ-AD, QD-(+)-MN, QD-(-)-MN can be produced in reasonable yield and at a cost significantly less than (<0.5% based on Aldrich starting material cost) than that for (DHQD)2AQN. In addition, as described in more detail later, the QD-(-)-MN catalyst is shown to be stable enough against acid that it can actually be recycled using a simple extraction procedure. On the other hand, initial experiments indicate that QD-TB may be too sensitive to acid to be recycled via a conventional extraction procedure.

Ispitana je učinkovitost različitih modificiranih monomernih cinhona alkaloida u reakcijama trifluoretanolize. U Slici 21 sumirani su rezultati komparacije učinkovitosti različitih katalizatora za trifluoretanolizu 2,3-dimetilsukciniskog anhidrida u Et2O u 0.02 M koncentraciji na sobnoj temperaturi. Podaci navode da QD-AD, QD-(+)-MN, i QD(-)-MN imaju veću učinkovitost od (DHQD)2AQN kada se trifluoroetanol koristi za asimetričnu alkoholizu. Zanimljivo je da enentioselektivnost pokazana sa ta tri katalizatora u kombinaciji s trifluoretanolom je jednaka sa ili bolja od one koja je prikazana kombinacijom (DHQD)2AQN i metanola. The effectiveness of various modified monomeric cinchona alkaloids in trifluoroethanololysis reactions was tested. Figure 21 summarizes the results of a comparison of the effectiveness of different catalysts for the trifluoroethanolysis of 2,3-dimethylsuccinic anhydride in Et2O in a 0.02 M concentration at room temperature. The data indicate that QD-AD, QD-(+)-MN, and QD(-)-MN have higher efficiency than (DHQD)2AQN when trifluoroethanol is used for asymmetric alcoholysis. Interestingly, the enantioselectivity shown with these three catalysts in combination with trifluoroethanol is equal to or better than that shown by the combination of (DHQD)2AQN and methanol.

U redoslijedu evaluacije cilja supstrata, studija je izvedena za alkoholizu 3-metil glutarnog anhidrida. Rezultati alkoholize 3-metil-glutarnog anhidrida u 0.02 i 0.2 M su sumirani u Slikama 22 i 23. 3-supstituirani glutarni anhidridi su među najčešće brzo dostupnim cikličnim anhidridima. Odgovarajući produkti otvorenog prstena, 3-supstituirani hemiesteri, su među najviše upotrebljavanim kiralnim blokovima za izgradnju u organskoj sintezi. Međutim, ta klasa anhidrida je najveći izazov za alkoholizu zbog slabe aktivnosti i snažnije inhibicije produkta inhibicije. Dok (DHQD}2AQN-katalizirana rnetanoliza prokiralnih glutaričnih anhidrida daje hemiester veći od 90% ee, reakcija će biti izvedena s većim punjenjem katalizatora (30 moli) niže koncentracije (0.02 M); međutim, transformacija ne ide okončanju, provođenju postupka koji je problematičan za primijeniti u velikom omjeru proizvodnje. I zbog toga je značajno da QD-AD može katalizirati otvoreni alkoholitični prsten glutaričnih anhidrida u relativno visokoj koncentraciji (0.2 M) osiguravajući hemiester u visokom ee. Iako je količina katalizatora 100-110 molš, ostatak tog postupka praktično daje da se QD-AD može proizvesti od jeftinog polaznog materijala i može se učinkovito reciklirati. Značajno je, da je nemodificirani kvinidin neučinkovit u transformaciji upotrebljenog 3-supstituiranog glutaričnog anhidrida. In order to evaluate the substrate target, a study was performed for the alcoholysis of 3-methyl glutaric anhydride. The results of the alcoholysis of 3-methyl-glutaric anhydride in 0.02 and 0.2 M are summarized in Figures 22 and 23. 3-substituted glutaric anhydrides are among the most frequently readily available cyclic anhydrides. The corresponding ring-opening products, 3-substituted hemiesters, are among the most widely used chiral building blocks in organic synthesis. However, this class of anhydrides is the biggest challenge for alcoholysis due to its weak activity and stronger inhibition of the inhibition product. While (DHQD}2AQN-catalyzed rnetanolysis of prochiral glutaric anhydrides yields a hemiester greater than 90% ee, the reaction will be performed with a higher catalyst loading (30 moles) at a lower concentration (0.02 M); however, the transformation does not go to completion, making the procedure problematic to be applied in a large production ratio. And that is why it is significant that QD-AD can catalyze the opening of the alcoholic ring of glutaric anhydrides in a relatively high concentration (0.2 M) providing a hemiester in a high ee. Although the amount of catalyst is 100-110 mol, the rest of the process is practically shows that QD-AD can be produced from inexpensive starting material and can be efficiently recycled.Notably, unmodified quinidine is ineffective in transforming the 3-substituted glutaric anhydride used.

Zato u evaluaciji učinka otapala, u studiji koja je provedena kao otapalo korišten je toluen. Na Slici 24 su rezultati metanolize 3-metil glutarnog anhidrida u toluenu za 0.02 M sa različitim katalizatorima. Uspoređujući s (DHQD)2AQN pod tim uvjetima, QD-AD i QD-MN pokazuju usporedivu enantioselektivnosti neznatno niži aktivitet. S druge strane, QP-PP pokazuje znatno nižu enantioselektivnost i aktivitet. QD-AD i QD-MN su jasno superiorni s obzirom na cijenu i katalitička svojstava tih katalizatora. Therefore, in the evaluation of the effect of the solvent, toluene was used as the solvent in the study. Figure 24 shows the results of methanolysis of 3-methyl glutaric anhydride in 0.02 M toluene with different catalysts. Compared to (DHQD)2AQN under these conditions, QD-AD and QD-MN show comparable enantioselectivity and slightly lower activity. On the other hand, QP-PP shows significantly lower enantioselectivity and activity. QD-AD and QD-MN are clearly superior considering the price and catalytic properties of these catalysts.

Na Slici 25 su prikazani rezultati trifluoretanolize 3-metil glutaričnog anhidrida u toluenu na 0.2 M s različitim katalizatorima. Uspoređujući i sa (DHQD)2AQN ili QD-PP u tim uvjetima, QD-AD i QD-MN pokazuju bolju enantioselektivnost i aktivitet. Učinkovitost prikazana s kombinacijom QS-(-)-MN s trifluoretanolom prilagođenim tako s kombinacijom (DHQD)2AQN s metanolom. Osim toga, uzevši u obzir i cijenu i katalitička svojstva, QD-AD i QD-MN su jasno superiorni u odnosu na dimeričke katalizatore. Figure 25 shows the results of the trifluoroethanololysis of 3-methyl glutaric anhydride in toluene at 0.2 M with different catalysts. Comparing with (DHQD)2AQN or QD-PP under these conditions, QD-AD and QD-MN show better enantioselectivity and activity. Efficacy shown with the combination of QS-(-)-MN with trifluoroethanol adjusted so with the combination of (DHQD)2AQN with methanol. In addition, considering both cost and catalytic properties, QD-AD and QD-MN are clearly superior to dimeric catalysts.

Na Slici 26 sumirani su rezultati metanolize 3-fenil glutaričnog anhidrida u toluenu u 0.2 M s različitim katalizatorima. Rezultati upućuju da QD-AD i QD-(-)-MN su učinkoviti za 3-alkil glutarični anhidrid i 3-aril glutarični anhidrid. Uspoređujući s (DHQD)2AQN u navedenim uvjetima, QD-AD i QD-MN pokazuju nešto nižu enantioselektivnost i nešto niži aktivitet. S druge strane, QD-PP pokazuje znatno nižu enantioselektivnost i aktivitet. Uzevši u obzir i cijenu i katalitička svojstva, QD-AD i QD-MN su superiorni dimerički katalizatori. Figure 26 summarizes the results of the methanolysis of 3-phenyl glutaric anhydride in 0.2 M toluene with different catalysts. The results suggest that QD-AD and QD-(-)-MN are effective for 3-alkyl glutaric anhydride and 3-aryl glutaric anhydride. Comparing with (DHQD)2AQN under the mentioned conditions, QD-AD and QD-MN show slightly lower enantioselectivity and slightly lower activity. On the other hand, QD-PP shows significantly lower enantioselectivity and activity. Considering both cost and catalytic properties, QD-AD and QD-MN are superior dimeric catalysts.

Na Slici 27 sumirani su rezultati trifluoretanolize 3-fenil glutaričnog anhidrida u toluenu za 0.2 M s različitim katalizatorima. Uspoređujući s (DHQD)2AQN ili QD-PP u navedenim uvjetima, QD-AD i QD-MN pokazuju bolju enantioselektivnost i aktivitet. Učinkovitost prikazana kombinacijom QD-(-)-MN s trifluoretanolom tako prilagođena s kombinacijom (DHQD)2AQN s metanolom. Osim toga, uzevši u obzir i cijenu i katalitička svojstva, QD-AD i QD-MN su superiorni dimerički katalizatori. Figure 27 summarizes the results of the trifluoroethanololysis of 3-phenyl glutaric anhydride in 0.2 M toluene with different catalysts. Comparing with (DHQD)2AQN or QD-PP under the mentioned conditions, QD-AD and QD-MN show better enantioselectivity and activity. The efficiency shown by the combination of QD-(-)-MN with trifluoroethanol is thus adapted to the combination of (DHQD)2AQN with methanol. In addition, considering both cost and catalytic properties, QD-AD and QD-MN are superior dimeric catalysts.

Na Slici 28 sumirani su rezultati metanolize 3-izopropill glutaričnog anhidrida u toluenu za 0.2 M s različitim katalizatorima. Prvi od svih rezultata ovdje upućuje da QD-AD i QD-(-)-MN su učinkoviti za 3-alkil glutarični anhidrid koji je nosač razgranatog supstituenta. Uspoređujući s (DHQD)2AQN u navedenim uvjetima, QD-AD i QD-MN pokazuju jednaku enantioselektivnost i aktivitet. S druge strane, QD-PP pokazuje znatno nižu enantioselektivnost i aktivitet. Uzevši u obzir i cijenu i katalitička svojstva, QD-AD i QD-MN su jasno superiorni dimerički katalizatori. Figure 28 summarizes the results of the methanolysis of 3-isopropyl glutaric anhydride in 0.2 M toluene with different catalysts. First of all the results here indicate that QD-AD and QD-(-)-MN are effective for 3-alkyl glutaric anhydride which is a branched substituent carrier. Comparing with (DHQD)2AQN under the mentioned conditions, QD-AD and QD-MN show equal enantioselectivity and activity. On the other hand, QD-PP shows significantly lower enantioselectivity and activity. Considering both cost and catalytic properties, QD-AD and QD-MN are clearly superior dimeric catalysts.

Na Slici 29 sumirani su rezultati trifluoretanolize 3-izopropil glutaričnog anhidrida u toluenu za 0.2 M s različitim katalizatorima. Uspoređujući s (DHQD)2AQN ili QD-PP u navedenim uvjetima, QD-AD i QD-MN pokazuju bolju enantioselektivnost i aktivitet. Učinkovitost prikazana kombinacijom QD-(-)MN s trifluoretanolom tako prilagođenoj kombinaciji (DHQD)2AQN s metanolom. Osim tog, uzevši u obzir i cijenu i katalitička svojstva, QD-AD i osobito QD-MN su jasno superiorni dimerički katalizatori. Figure 29 summarizes the results of the trifluoroethanololysis of 3-isopropyl glutaric anhydride in 0.2 M toluene with different catalysts. Comparing with (DHQD)2AQN or QD-PP under the mentioned conditions, QD-AD and QD-MN show better enantioselectivity and activity. The efficiency shown by the combination of QD-(-)MN with trifluoroethanol thus adapted to the combination of (DHQD)2AQN with methanol. In addition, considering both cost and catalytic properties, QD-AD and especially QD-MN are clearly superior dimeric catalysts.

Na Slici 30 sumirani su rezultati metanolize 3-OTBS glutaričnog anhidrida u toluenu u 0.2 M s različitim katalizatorima. Uspoređujući s (DHQD)2AQN u navedenim uvjetima, QD-AD i QD-MN pokazuju istovjetnu enantioselektivnost i nešto niži aktivitet. S druge strane, QD-PP pokazuje znatno slabija katalitička svojstva. Osim toga, uzevši u obzir i cijenu i katalitička svojstva, QD-AD i QD-MN su jasno superiorni dimerički katalizatori. Figure 30 summarizes the results of methanolysis of 3-OTBS glutaric anhydride in 0.2 M toluene with different catalysts. Comparing with (DHQD)2AQN under the mentioned conditions, QD-AD and QD-MN show the same enantioselectivity and slightly lower activity. On the other hand, QD-PP shows much weaker catalytic properties. In addition, considering both cost and catalytic properties, QD-AD and QD-MN are clearly superior dimeric catalysts.

Na Slici 31 sumirani su rezultati trifluoretanolize 3-OTBS glutaričnog anhidrida u toluenu za 0.2 M s različitim katalizatorima. Uspoređujući s (DHQD)2AQN ili QD-PP u navedenim uvjetima, QD-AD i QD-MN pokazuju bolju enantioselektivnost i aktivitet. Osim toga, uzevši u obzir i cijenu i katalitička svojstva, QD-AD i osobito QD-MN oni su jasno superiorni dimerički katalizatori. Figure 31 summarizes the results of the trifluoroethanololysis of 3-OTBS glutaric anhydride in 0.2 M toluene with different catalysts. Comparing with (DHQD)2AQN or QD-PP under the mentioned conditions, QD-AD and QD-MN show better enantioselectivity and activity. In addition, considering both cost and catalytic properties, QD-AD and especially QD-MN are clearly superior dimeric catalysts.

Na Slikama 32 i 33 sumirani su rezultati metanolize i trifluoretanolize 3-supstituiranog glutaričnog anhidrida s mononieričnim katalizatorima (Q-AD) deriviranim iz kvinina. Produkti su antipodi onih dobiveni s monomeričnim katalizatorima deriviranim iz kvinidina. Figures 32 and 33 summarize the results of methanolysis and trifluoroethanolysis of 3-substituted glutaric anhydride with mononieric catalysts (Q-AD) derived from quinine. The products are the antipodes of those obtained with monomeric catalysts derived from quinidine.

Zato za daljnju evaluaciju ispitan je asortiman supstrata koji je pogodan za ovaj postupak, alkoholize 1,2,3,6-tetrahidroftaličnih anhidrida. Rezultati metanolize i trifluoretanolize cis-1,2,3,6-tetrahidroftaličnih anhidrida, sukcininskih anhidrida, su sumirani u Slikama 34-35. S matanolom kao nukleofilom, QD-AD je usporediv s (DHQA)2AQN u pojmovima aktiviteta i selektivnosti. S trifluoretanolom kao nukleofilom, QD-AD i QD-MN pokazuju bolji aktivitet i usporedivu selektivnost za to prikazanu s (DHQD)2AQN. Međutim, selektivnost QD-PP je nešto lošija. Therefore, for further evaluation, an assortment of substrates suitable for this procedure, alcoholysis of 1,2,3,6-tetrahydrophthalic anhydrides, was examined. The results of methanolysis and trifluoroethanolysis of cis-1,2,3,6-tetrahydrophthalic anhydrides, succinic anhydrides, are summarized in Figures 34-35. With methanol as a nucleophile, QD-AD is comparable to (DHQA)2AQN in terms of activity and selectivity. With trifluoroethanol as nucleophile, QD-AD and QD-MN show better activity and comparable selectivity to that shown with (DHQD)2AQN. However, the selectivity of QD-PP is somewhat worse.

Rezultati alkoholize različitih strukturno jedinstvenih anhidrida su prikazani na Slikama 36 i 37 su rezultati metanolize i tricikličnih sukcininskih anhidrida, QD-AD i QD-MN pokazuju bolji aktivitet i selektivnost od onih prikazanih s (DHQD)2AQN i QD-PP. Na Slikama 38 i 39 sumirani su rezultati metanolize i trifluoretanolize cis-1,2-cikloheksandi-karboksilnih anhidrida, S trifluoretanololom kao nukleofilom, QD-AD i QD-MN pokazuju usporediv aktivitet i selektivitet za one prikazane s (DHQD)2AQN i bolja katalitična svojstva od onog s QD-PP. Na Slikama 40 i 41 su sumirani rezultati trifluoretanolize cis-1,2-cikloheksankarboksilnog anhidrida za 0.2M toluen i eter. U toluenu, utjecaj količine alkohola korištenog u reakciji enantioselektivnosti. U Slici 42 sumirani su rezultati trifluoretanolize 0.5 M cis-1,2-cikloheksandikarboksilnog anhidrida u toluenu. Upotreba molekularnog sita je korisna za reakciju. Na Slici 43 su sumirani rezultati alkoholize različitih sukcininskih anhidrida s Q-AD. The results of alcoholysis of different structurally unique anhydrides are shown in Figures 36 and 37 are the results of methanolysis and tricyclic succinic anhydrides, QD-AD and QD-MN show better activity and selectivity than those shown with (DHQD)2AQN and QD-PP. Figures 38 and 39 summarize the results of methanolysis and trifluoroethanolysis of cis-1,2-cyclohexanedicarboxylic anhydrides. With trifluoroethanol as a nucleophile, QD-AD and QD-MN show comparable activity and selectivity to those shown with (DHQD)2AQN and better catalytic properties than that of QD-PP. Figures 40 and 41 summarize the results of the trifluoroethanololysis of cis-1,2-cyclohexanecarboxylic anhydride for 0.2M toluene and ether. In toluene, the influence of the amount of alcohol used in the enantioselectivity reaction. Figure 42 summarizes the results of the trifluoroethanololysis of 0.5 M cis-1,2-cyclohexanedicarboxylic anhydride in toluene. The use of a molecular sieve is beneficial for the reaction. Figure 43 summarizes the results of the alcoholysis of various succinic anhydrides with Q-AD.

Dokazivanje primjerima Proving with examples

Izum će sada biti općenito opisan, biti će lako razumjeti s referencijama za primjere koji slijede koji su samo uključeni u svrhu ilustracije određenih aspekata i ostvarenja prezentiranog izuma, a nisu namijenjeni ograničavanju izuma. The invention will now be generally described, will be readily understood with reference to the following examples which are included only for the purpose of illustrating certain aspects and embodiments of the present invention and are not intended to limit the invention.

Primjer 1 Example 1

Visoko enentioselektivna katalitička desimetrizacija katalitičkih mezo anhidrida Highly enantioselective catalytic desymmetrization of catalytic meso anhydrides

Enantioselektivno otvaranje lako popustljivih mezo-cikličnih anhidriđa generira anantiomerički obogaćene kiralne hemiestere koji sadržavaju jedan ili više stereogenih centara i dvije komercijalne diferencirane karbonil funkcionalnosti (eq. 1). Ti optički aktivni bifunkcionalni hemiesteri su univerzalni kiralni blokovi za izgradnju u asimetričnoj sintezi.1,2,3,4,5,6,7,8,9 Enantioselective opening of readily yielding meso-cyclic anhydrides generates enantiomerically enriched chiral hemiesters containing one or more stereogenic centers and two commercially differentiated carbonyl functionalities (eq 1). These optically active bifunctional hemiesters are universal chiral building blocks for asymmetric synthesis.1,2,3,4,5,6,7,8,9

Zbog njihovog značenja u organskoj sintezi, razvoj visoko selektivne desimetrizacije mezo-cikličnih anhidrida će biti tema intenzivnog istraživanja.10,11,12,13,14,15 Due to their significance in organic synthesis, the development of highly selective desymmetrization of meso-cyclic anhydrides will be the subject of intensive research.10,11,12,13,14,15

Selektivnost upotrebljiva u sintezi je dobivena u desimetrizaciji pomognuta stoihiometričnom količinom kiralnih pomoćnih uređeja ili kiralnih medijatora.10,11 Unatoč značajnom trudu,11-15 razvoj općenite i učinkovite katalitičke desimetrizacije mezo-cikličnih anhidrida još nije dostignut i zato ostaje poželjan i cilj velikog izazova. The selectivity usable in the synthesis is obtained in the desymmetrization assisted by a stoichiometric amount of chiral auxiliary devices or chiral mediators.10,11 Despite considerable effort,11-15 the development of a general and efficient catalytic desymmetrization of meso-cyclic anhydrides has not yet been achieved and therefore remains desirable and the goal of a great challenge.

[image] [image]

1a: R = H; R' nije H 2a: R= H; R' nije H 1a: R = H; R' is not H 2a: R= H; R' is not H

1b: R nije H; R' = H 2b: R nije H; R' = H 1b: R is not H; R' = H 2b: R is not H; R' = H

1c: R nije H; R' nije H 2c: R nije H; R' nije H 1c: R is not H; R' is not H 2c: R is not H; R' is not H

Naš glavni cilj u asimetričnoj katalizi kiralnih Lewis baza dovodi našu pažnju do amin-katalizirane alkoholize cikličnih anhidrida. Oda prvi izvještava da cinhona alkaloidi katalizoraju asimetričnu metanolizu različitih mono i bicikličnih anhidrida.12 Atkin kasnije proširuje te reakcije na desimetrizaciju nekih tricikličnih anhidrida.13 Unatoč tomu da je prinos iz reakcije dobar, hemiesteri su dobiveni u niskom do pristojnom enentiomeričnom višku. Sumnjamo da nezadovoljavajuća enantioselektivnost može djelomično porasti zbog postojanja ne-selektivne katalize s kvinolin dušikom jer monohidroklorid kvinin je naveden od Atkina za katalizu metanolize cikličnog anhidrida s ne enantioselektivnosti.l3a Na taj način dušik kataliziranog racemičnog kvinolina postaje sve više kompetitivan kao prinos reakcije za visoku konverziju kada omjer kvinuklidin dušik-katalizirane enentioselektivne reakcije je očekivano reducirana značajno kao rezultat deaktivacije katalizatora uzrokovano protonacijom kvinuklidin dušika s kiselim hemiesterom. U principu racemični put može biti suprimiran upotrebom analoga cinhona alkaloida kao katalizatora. Implementacija ovog pristupa je, međutim, eksperimentalno problematična zbog dosta pokušaja sintetičke koji se zahtijevaju za proizvodnju takvih analoga.16 Nadalje, velika, ako nije stoihiometrična, količina kvinuklidin katalizatora može se zahtijevati za ubrzanje završetka reakcije. Zanima nas istraživanje alternativne strategije smanjenja bazičnosti u pogledu formiranja slobodnih katalizatora slobodnih amina. Takav pristup može dovesti do značajnih unapređenja i u učinkovitosti i u selektivnosti asimetričnih katalizatora pomoću umanjivanja deaktivacije slobodnih baza amin katalizatora s kiselim hemiesterom. Nadalje taj pristup može se jednostavno eksperimentalno implementirati promjenom okoliša oko kvinuclidin dušika preko jednostavne modifikacije cinhona alkaloida. Predvidjeli smo da jednostavne derivatizacije C-9 alkohola s glomaznim alkil ili aril skupinama mogu generirati eter cinhona alkaloida s umanjenom bazičnosti kvinuklidin dušika s destabilizacijom iona amonijaka x preko kreacije sterične barijere za ion solvacije. I na kraju, uvjeti koji slijede uvjete koje iznosi Oda,12 različiti komercijalno dostupni aril eteri i esteri cinhona alkaloidi su probrani na njihovu sposobnost za katalizu enentioselektivne metanolize 2,3-dimetil sukcinin anhidrida (3). Rezultati naše studije skrininga su opisani na Slici 1. Our main goal in the asymmetric catalysis of chiral Lewis bases brings our attention to the amine-catalyzed alcoholysis of cyclic anhydrides. Oda was the first to report that cinchona alkaloids catalyzed the asymmetric methanolysis of various mono- and bicyclic anhydrides.12 Atkin later extended these reactions to the desymmetrization of some tricyclic anhydrides.13 Despite the reaction yield being good, the hemiesters were obtained in low to decent enantiomeric excess. We suspect that the unsatisfactory enantioselectivity may be partly due to the existence of non-selective catalysis with the quinoline nitrogen, since quinine monohydrochloride was reported by Atkin to catalyze the methanolysis of a cyclic anhydride with non-enantioselectivity.l3a In this way, the nitrogen of the catalyzed racemic quinoline becomes increasingly competitive as a high-conversion reaction yield. when the ratio of the quinuclidine nitrogen-catalyzed enantioselective reaction was expectedly reduced significantly as a result of catalyst deactivation caused by protonation of the quinuclidine nitrogen with the acidic hemiester. In principle, the racemic pathway can be suppressed by using cinchona alkaloid analogs as catalysts. Implementation of this approach is, however, experimentally problematic due to the considerable synthetic effort required to produce such analogs.16 Furthermore, a large, if not stoichiometric, amount of quinuclidine catalyst may be required to accelerate reaction completion. We are interested in researching an alternative strategy to reduce basicity with regard to the formation of free catalysts of free amines. Such an approach can lead to significant improvements in both the efficiency and selectivity of asymmetric catalysts by reducing the free base deactivation of amine catalysts with an acid hemiester. Furthermore, this approach can be easily implemented experimentally by changing the environment around the quinuclidine nitrogen through a simple modification of the cinchona alkaloid. We predicted that simple derivatizations of C-9 alcohols with bulky alkyl or aryl groups could generate cinchona alkaloid ethers with reduced basicity of the quinuclidine nitrogen with destabilization of the ammonia ion x via the creation of a steric barrier to the solvation ion. Finally, following the conditions outlined by Oda,12 various commercially available aryl ethers and esters of cinchona alkaloids were screened for their ability to catalyze the enantioselective methanolysis of 2,3-dimethyl succinic anhydride (3). The results of our screening study are described in Figure 1.

Veseli nas da smo našli da se veoma dobra enentioselektivnost može dobiti reakcijama posredovanim s aril esterima i monocinhona (DHQD.PHN) i biscinhoa alkaloida [(DHQD)2AQN].17 Dok su oba alkaloida učinkoviti katalizatori, posljednji u principu daje višu enentioselektivnost. Kada se jedan ekvivalent anhidrida 3 tretira s 10 ekvivalenata metanola u suhom toluenu uz prisutnost 5 mol% DHQD.PHN ili (DHQD)2AQNkao katalizatora, reakcija ide prema završetku u 2-4 sata da se dobije odgovarajući hemiester u 81% i 85% ee. Struktura aril skupine modificiranog cinhona alkaloida ima dramatičan učinak na selektivnost katalizatora. Dok katalizatori koji nose glomazne aromatske skupine kao što su PHN i AQN daje visoku enantioselektivnost, dramatičnu deterioraciju u enentioselektivitetu je uočeno s katalizatorima koji nose realtivno male heterociklične prstene kao supstiuente na O-9 poziciji (Upis 2, 3, 6, 7 na Slici 1). Reakcija se dalje može optimizirati da se dobije produkt izvrsnog ee (93% ee) na sobnoj temperaturi upotrebom etera kao otapala. We are pleased to find that very good enantioselectivity can be obtained by reactions mediated by aryl esters of both monocinchone (DHQD.PHN) and biscincho alkaloid [(DHQD)2AQN].17 While both alkaloids are effective catalysts, the latter in principle gives higher enantioselectivity. When one equivalent of anhydride 3 is treated with 10 equivalents of methanol in dry toluene in the presence of 5 mol% DHQD.PHN or (DHQD)2AQN as catalyst, the reaction proceeds to completion in 2-4 hours to give the corresponding hemiester in 81% and 85% ee . The structure of the aryl group of the modified cinchona alkaloid has a dramatic effect on the selectivity of the catalyst. While catalysts bearing bulky aromatic groups such as PHN and AQN give high enantioselectivity, a dramatic deterioration in enantioselectivity is observed with catalysts bearing relatively small heterocyclic rings as substituents at the O-9 position (Entry 2, 3, 6, 7 in Figure 1 ). The reaction can be further optimized to give the product with excellent ee (93% ee) at room temperature using ether as solvent.

Ohrabreni tim obećavajućim rezultatima, istražili smo katalitičnu desimetrizaciju različitih cikličnih anhidrida. Rezultati su sumirani na Slici 2-4. Cilj reakcije je veoma općenit u davanju izvrsnih enentioselektiviteta i prinosa za desimetrizaciju velikog broja mezo-cikličnih anhidrida. Posebno visoka enentioselektivnost je uočena za anhidride 3 kao i za bilo koji od bicikličnih anhidrida korištenih u našem istraživanju (Upis 1, 5, 6 i 7 na Slici 2-4). Izvrsna enentioselektivnost se dobije s monocikličnim ili tricikličnim anhidridima (Upis 2, 3, 8, 9, 10, i 11 na Slikama 2-4) za dobivanje acikličnih i bicikličnih kiralnih hemiestera u visokom enentiomeričnom obogaćenom obliku. Supstrati koji sadržavaju heterociklične prstene svi drugi osim cikličnog anhidrida su isto pretvoreni u željeni produkt u veoma visokoj enentioselektivnosti (Upis 10 i 11 na Slici 2-4). Značajno je da čak monociklični anhidrid s p-metil supstituentom je transformiran u 89% ee unatoč zahtijeva za relativno visokim katalitičkim punjenjem. Visoka enentioselektivnost za otvaranjem prstena 1,2-ciklopentilanhidridu (Upis 5 na Slikama 2-4) je osobito značajanim smatra da je značajno viši od onog dobivenog reakcijom upotrebom stoihiometrične količine kiralnih promotora.11 Nadalje, put sinteze baziran na hidrolitičkim enzimima može osigurati samo ciklopentil ester za niski ee. Značajno je zabilježiti da kada se koristi (DHQ)2AQN za katalizu otvaranja prstena 2,3-dimetilsukcininskog anhidrida (3) nasuprot enantiomeru odgovarajućeg hemiestera dobije se u 96% ee, tako osigura da bilo koji enentiomer hemiestera mogu se proizvesti na otvoren i visoko enentioselektivan način preko ovdje opisane reakcije. Iznenađeni smo da smo našli da s (DHQ) 2AQN-posredovano otvaranje prstena 2,4-dimetilglutaričnoghidrida daje željeni hemiester u dobrom prinos ali s veoma niskim ee (30% ee). Enantioselektivnost može, međutim, značajno biti poboljšana kada je reakcija promovirana s (DHQD)2PHAL (mjesto 4 na Slici 2-4). Encouraged by these promising results, we investigated the catalytic desymmetrization of various cyclic anhydrides. The results are summarized in Figure 2-4. The goal of the reaction is very general in providing excellent enantioselectivities and yields for the desymmetrization of a large number of meso-cyclic anhydrides. Particularly high enantioselectivity was observed for anhydrides 3 as well as for any of the bicyclic anhydrides used in our research (Entries 1, 5, 6 and 7 in Figure 2-4). Excellent enantioselectivity is obtained with monocyclic or tricyclic anhydrides (Entry 2, 3, 8, 9, 10, and 11 in Figures 2-4) to provide acyclic and bicyclic chiral hemiesters in highly enantiomeric enriched form. Substrates containing heterocyclic rings, all other than the cyclic anhydride, were also converted into the desired product in a very high enantioselectivity (Entry 10 and 11 in Figure 2-4). It is significant that even a monocyclic anhydride with a p-methyl substituent was transformed in 89% ee despite the requirement for relatively high catalytic loading. The high enantioselectivity for the ring opening of 1,2-cyclopentyl anhydride (Entry 5 in Figures 2-4) is particularly significant, considering that it is significantly higher than that obtained by the reaction using a stoichiometric amount of chiral promoters.11 Furthermore, the synthesis route based on hydrolytic enzymes can provide only cyclopentyl ester for low ee. It is significant to note that when (DHQ)2AQN is used to catalyze the ring opening of 2,3-dimethylsuccinic anhydride (3) opposite the enantiomer of the corresponding hemiester is obtained in 96% ee, thus ensuring that any enantiomer of the hemiester can be produced in an open and highly enantioselective manner. way via the reaction described here. We were surprised to find that with (DHQ)2AQN-mediated ring opening of 2,4-dimethylglutaric hydride gave the desired hemiester in good yield but with a very low ee (30% ee). Enantioselectivity can, however, be significantly improved when the reaction is promoted with (DHQD)2PHAL (site 4 in Figure 2-4).

Proveli smo proizvodnom omjeru reakciju za prikazivanje praktičnosti ove katalitične desimetrizacije. Anhidrid 3 se transformira na 0.5 mmol omjeru u odnosu na odgovarajući hemiester u više od 98% ee s unosom katalizatora od 5 mol%. Kada se polazni materijal utroši (24 sata), jednostavna ekstrakcija reakcijske smjese s vodenom HCl (1N) odvaja se katalizator od produkta. Evaporacija organskog otapala osigurava željeni produkt visoke čistoće (čistoća s NMR) i izvrsnim prinosom (95%). Katalizator se može jednostavno kvantitativno obnoviti. Bazifikacija vodene faze s KOH koja slijedi ekstrakciju alkalne vodene otopine s EtOAc i odstranjivanje organskog otapala daje obnovljeni katalizator visoke čistoće (čistoća s NMR). Obnovljeni katalizator se koristi bez daljnjeg tretmana za druge reakcije u proizvodnom omjeru da se dobije nova šarža produkta bez deteriozacije u ee i prinosu. We carried out a production ratio reaction to demonstrate the practicality of this catalytic desymmetrization. Anhydride 3 is transformed at a 0.5 mmol ratio with respect to the corresponding hemiester in more than 98% ee with a catalyst input of 5 mol%. When the starting material is consumed (24 hours), a simple extraction of the reaction mixture with aqueous HCl (1N) separates the catalyst from the product. Evaporation of the organic solvent provides the desired product of high purity (purity by NMR) and excellent yield (95%). The catalyst can easily be quantitatively regenerated. Basification of the aqueous phase with KOH followed by extraction of the alkaline aqueous solution with EtOAc and removal of the organic solvent affords a recovered catalyst of high purity (purity by NMR). The recovered catalyst is used without further treatment for other reactions in production ratio to obtain a new batch of product without deterioration in ee and yield.

Prikazali smo da nova neotkrivena desimetrizacija mezo-cikličnih anhidrida posredovana s komercijalno dostupnim aril eterima cinhona alkaloida je općenito, visoko selektivna i praktično katalitička asimetrična transformacija. Ovdje opisana reakcija predstavlja prvu katalitičku reakciju koja osigurava otvoren pristup za oba enantiomera širokog stupnja vrijednih kiralnih hemiestera visoke optičke čistoće. Važno je navesti da će se mnogi od tih kiralnih hemiestera koristiti u sintezi različitih prirodnih produkata i biološki značajnih spojeva.1-8 Dostupnost katalizatora, jednostavni eksperimantalni postupak i lakoća bez obzira na kvantitativno obnavljanje katalizatora čini tu reakciju veoma atraktivnom metodom sinteze. Studije pomažu raširiti sintetička sredstva reakcije i dobitak mehaničkog uvida u porijeklo visoko selektivnih katalizatora koji su u porastu. We have shown that a novel undiscovered desymmetrization of meso-cyclic anhydrides mediated by commercially available aryl ethers of cinchona alkaloids is a general, highly selective, and practically catalytic asymmetric transformation. The reaction described here represents the first catalytic reaction that provides open access to both enantiomers of a wide range of valuable chiral hemiesters of high optical purity. It is important to state that many of these chiral hemiesters will be used in the synthesis of various natural products and biologically significant compounds.1-8 The availability of catalysts, a simple experimental procedure, and ease regardless of the quantitative recovery of the catalyst make this reaction a very attractive method of synthesis. The studies are helping to expand the synthetic means of reaction and gain mechanistic insight into the origin of the highly selective catalysts that are on the rise.

Referenci je i bilješke za Primjer l Reference is also made to the notes for Example l

1. Toyota,M.; Yokota,M.; Ihara,M. Organic Lett.1999, 1, 1627-1629. 1. Toyota, M.; Yokota, M.; Ihara, M. Organic Lett. 1999, 1, 1627-1629.

2. Couche,E.; Deschatrettes, R.; Poumellec, K.; Bortolussi,M. ; Mandvile,G.;Bloch,R. Synlett.1999, 87-88. 2. Couche, E.; Deschatrettes, R.; Poumellec, K.; Bortolussi, M. ; Mandvile, G.; Bloch, R. Synlett. 1999, 87-88.

3. Paterson,I,; Cowden,C.J.; Woodrow,M.D. Tetrahedron Lett. 1998, 39, 6037-6040. 3. Paterson, I,; Cowden, C.J.; Woodrow, M.D. Tetrahedron Lett. 1998, 39, 6037-6040.

4. a) Borzilleri,R.B. ; Weinreb,S.M. J. Am. Chem. Soc. 1994,116, 9789-9790. 4. a) Borzilleri, R.B. ; Weinreb, S.M. J. Am. Chem. Soc. 1994,116, 9789-9790.

b) Borzilleri,R.B.; Meinreb, S.M. ; Parvez,M. J. Am.Chem.Soc. 1995,117, 10905-10913. b) Borzilleri, R.B.; Meinreb, S.M. ; Parvez, M. J. Am. Chem. Soc. 1995,117, 10905-10913.

5. Marie,F.B.C.; Mackiewicz,P.; Roul,J.M.; Buendia,J. Tetrahedron Lett. 1992,33, 4889-4892. 5. Marie, F.B.C.; Mackiewicz, P.; Roul, J.M.; Buendia, J. Tetrahedron Lett. 1992,33, 4889-4892.

6. a) Ohtani,M.; Matsuura,T.; Watanabe,F., Narisada,M. J.Org.Chem. 1991, 56, 4120-4123. 6. a) Ohtani, M.; Matsuura, T.; Watanabe, F., Narisada, M. J. Org. Chem. 1991, 56, 4120-4123.

b) Ohtani,M. ; Matsuura,T.; Watanabe,F.; Narisada,M. J. Org. Chem. 1991, 56, 2122-2127. b) Ohtani, M. ; Matsuura, T.; Watanabe, F.; Narisada, M. J. Org. Chem. 1991, 56, 2122-2127.

7. Wender,P.A.; Singh,S.K. Tetrahedron Lett. 1990, 31, 2517-1520. 7. Wender, P.A.; Singh, S.K. Tetrahedron Lett. 1990, 31, 2517-1520.

8. Suzuki,T.; Tomino,A,; Matsuda,Y.; Unno,K.; Kametani,T. Heterocycles, 1980, 14, 1735-1738. 8. Suzuki, T.; Tomino, A,; Matsuda, Y.; Unno, K.; Kametani, T. Heterocycles, 1980, 14, 1735-1738.

9. a) Heathcock,C.H.; Hadley,C.R.; Rosen,T.; Theisen,P.D.; Hecker,S.J. J.Med. Chem. 1987, 30, 1858-1873. 9. a) Heathcock, C.H.; Hadley, C.R.; Rosen, T.; Theisen, P.D.; Hecker, S.J. J. Med. Chem. 1987, 30, 1858-1873.

b) Hecker,S.J.; Heathcock,C.H. J.Am.Chem. Soc. 1986, 108, 4586-4594. b) Hecker, S.J.; Heathcock, C.H. J.Am.Chem. Soc. 1986, 108, 4586-4594.

c) Rosen,T.; Heathcock,C.H. J.Am.Chem.Soc. 1985, 107, 3731-3733. c) Rosen, T.; Heathcock, C.H. J.Am.Chem.Soc. 1985, 107, 3731-3733.

10. Za reperzentativne primjere kiralnih pomoćnih-na bazi metoda vidi: 10. For representative examples of chiral auxiliary-based methods see:

a) Albers, T.; Biagini, S.C.G.; Hibbs,D.E.; Hursthouse,M.B.; Malik,K.M.A.; North,M.; Uriarte, E.; Zagotto, G. Synthesis 1996, 393-398. a) Albers, T.; Biagini, S.C.G.; Hibbs, D. E.; Hursthouse, M.B.; Malik, K.M.A.; North, M.; Uriarte, E.; Zagotto, G. Synthesis 1996, 393-398.

b) Konoike, T.; Araki,Y. J.Org.Chem. 1994, 59, 7849-7854. b) Konoike, T.; Araki, Y. J. Org. Chem. 1994, 59, 7849-7854.

c) Shimizu,M. ; Matsukawa, K.; Fujisawa,T. Bull. Chem.Soc,Jpn.1993, 66, 2128-2130. c) Shimizu, M. ; Matsukawa, K.; Fujisawa, T. Bull. Chem. Soc, Jpn. 1993, 66, 2128-2130.

d) Theisen,P.D.; Hethcock,C.H. J.Org.Chem. 1993,58,142-146. d) Theisen, P.D.; Hethcock, C.H. J. Org. Chem. 1993,58,142-146.

11. Za mnoge uspješne primjere kiralnih pomoćnih-na bazi metoda vidi: a) Seebach,D.; Jaeschke,G.; Wang,Y.M; Angew. Chem.Int.Ed.Engl. 1995, 34, 2395-2396. b) Jaeschke,G.; Seebach,D. J.Org.Chem. 1998, 63, 1190-1197. c) Bolm,C.; Gerlach,A.; Dinter,C.L. Synlett. 1999, 195-196. 11. For many successful examples of chiral auxiliary-based methods see: a) Seebach, D.; Jaeschke, G.; Wang, Y.M.; Angew. Chem.Int.Ed.Engl. 1995, 34, 2395-2396. b) Jaeschke, G.; Seebach, D. J. Org. Chem. 1998, 63, 1190-1197. c) Bolm, C.; Gerlach, A.; Dinter, C.L. Synlett. 1999, 195-196.

12. a) Hiratake,J.; Yamamoto,Y.; Oada, J. J. Chem.Soc.Chem.Commun. 1985, 1717-1719. b) Hiratake,J; Inagaki,M.; Yamamoto,Y.; Oada,J. J. Chem.Soc.Perkin, Trans. I 1987. 1053-1058. 12. a) Hiratake, J.; Yamamoto, Y.; Oada, J. J. Chem.Soc.Chem.Commun. 1985, 1717-1719. b) Hiratake, J; Inagaki, M.; Yamamoto, Y.; Oada, J. J. Chem. Soc. Perkin, Trans. I 1987. 1053-1058.

13. a) Aitken,R.A.; Gopal,J.; Hirst,J.A. J. Chem. Soc. Chem. Commun. 1988. 632-634. 13. a) Aitken, R.A.; Gopal, J.; Hirst, J.A. J. Chem. Soc. Chem. Commun. 1988. 632-634.

b) Aitken,R.A.; Gopal,J. Tetrahedron: Asymnetry 1990, 1, 517-520. b) Aitken, R.A.; Gopal, J. Tetrahedron: Asymnetry 1990, 1, 517-520.

14. Ozegowski,R.; Kunath,A.; Schick,H. Tetarhedron: Asymmetry 1995, 6, 1191-1194. 14. Ozegowski, R.; Kunath, A.; Schick, H. Tetrahedron: Asymmetry 1995, 6, 1191-1194.

15. a) Yamamoto,K.; Nishioka,T.; Oada,J. Tetrahedra Lett. 1988, 29, 1717-1720. b) Yamamoto, K.; Yamamoto,K.; Oada,J. J.Agric.Biol.Chem. 1988, 52,307-3092. 15. a) Yamamoto, K.; Nishioka, T.; Oada, J. Tetrahedra Lett. 1988, 29, 1717-1720. b) Yamamoto, K.; Yamamoto, K.; Oada, J. J. Agric. Biol. Chem. 1988, 52,307-3092.

16. Pluim,H.Ph.D.Thesis, University of Groningen, Groningen, The Nederlands,1982. 16. Pluim, H.Ph.D.Thesis, University of Groningen, Groningen, The Nederlands, 1982.

17. Ove modificirane cinhona alkaloide je prvi spomenuo Sharples i koautori kao visoko učinkovite ligande za asimetričnu dihidroksilaciju alkena. Za vodeće referencije vidi: a) Sharpless,K.B.; Amberg,W.; Bennani,Y.L.; Crispino,G.A.; Hartung,J.; Jeong,K.-S.; Kwong,H.-L; Morikawa,K.; Wang,Z.-M.; Xu,D.; Zhang,X.-L. J. Org. Chem.1992,57, 2768. b) Crispino, G.A.; Jeong,K.-S.; Hatmuth,C.K.; Wang,Z.-M.;Xu,D.; Sharpless,K.B. J.Org.Chem. 1993,58,3785. c) Becker,H.;Sharpless,K.B. Angew. Chem. ,Int. Ed.Engl. 1996,35, 451-454. d) Sharpless,K.B.;Amberg,W.; Bennani,Y,L.; Crispino,G.A.; Hartung,J.; Jeong,K.-S.; Kwong,H.-L.;Morikawa,K.; Wang,Z.-M; Xu,D,; Zhang,X.-L. J. Org.Chem.1991, 56, 4585. e) Harmuth,C.K.; VanNieuwenhze,M.S.; Sharpless,K.B. Chem.rev.1994, 94, 2483-2547. 17. These modified cinchona alkaloids were first mentioned by Sharples and co-authors as highly efficient ligands for the asymmetric dihydroxylation of alkenes. For leading references see: a) Sharpless, K.B.; Amberg, W.; Bennani, Y.L.; Crispino, G.A.; Hartung, J.; Jeong, K.-S.; Kwong, H.-L; Morikawa, K.; Wang, Z.-M.; Xu, D.; Zhang, X.-L. J. Org. Chem. 1992, 57, 2768. b) Crispino, G.A.; Jeong, K.-S.; Hatmuth, C.K.; Wang, Z.-M.; Xu, D.; Sharpless, K.B. J. Org. Chem. 1993,58,3785. c) Becker, H.; Sharpless, K.B. Angew. Chem. ,Int. Ed. Engl. 1996, 35, 451-454. d) Sharpless, K.B.; Amberg, W.; Bennani, Y, L.; Crispino, G.A.; Hartung, J.; Jeong, K.-S.; Kwong, H.-L.; Morikawa, K.; Wang, Z.-M; Xu, D,; Zhang, X.-L. J. Org. Chem. 1991, 56, 4585. e) Harmuth, C.K.; VanNieuwenhze, M.S.; Sharpless, K.B. Chem.rev.1994, 94, 2483-2547.

Primjer 2 Example 2

Opća metoda sintetiziranja katalizatora tercijarni amin General method of synthesizing tertiary amine catalysts

[image] [image]

U otopinu diamina 1 (1.40 g, 4.67 mmol) u suhom tetrahidrofuranu (93 mL) pod dušikom na sobnoj temperaturi se doda natrij hidrid (60% suspenzija u mineralnom ulju, 1.87g, 46.7 mmol). Smjesa se miješa kroz 10 min, i zatim se doda glicidol nosilat 2. Nakon što se izmiješa kroz 88 sati, smjesa se filtrira, a filtrat se koncentrira pod reduciranim tlakom. Nastali ostatak se purificira kromatografski [bazični aluminijev oksid, CH3OH:CH2Cl2 (1:100 do 1:20)] da se dobije tercijalni amin 3 (667 mg, 35%) kao bijela krutina. Sodium hydride (60% suspension in mineral oil, 1.87g, 46.7 mmol) was added to a solution of diamine 1 (1.40 g, 4.67 mmol) in dry tetrahydrofuran (93 mL) under nitrogen at room temperature. The mixture is stirred for 10 min, and then glycidol carrier 2 is added. After stirring for 88 hours, the mixture is filtered, and the filtrate is concentrated under reduced pressure. The resulting residue was purified by chromatography [basic alumina, CH3OH:CH2Cl2 (1:100 to 1:20)] to give the tertiary amine 3 (667 mg, 35%) as a white solid.

Primjer 3 Example 3

Katalitička desimetrizacija meso-bicikličnog sukcinin anhidrida koji sadržava ureu Catalytic desymmetrization of urea-containing meso-bicyclic succinic anhydride

[image] [image]

91% prinos 91% yield

93% ee 93% ee

U smjesu anhidrida (16.8 mg, 0.05 mmol) i DHQD-PHN (20 mol s, 5 mg) u Et2O (2,5 mL) na -40°C, doda se u jednom dijelu bezvodni MeOH (0.5 mmol, 20,2 μl) ohlađen na -20°C. Nastala smjesa se miješa sve dok reakcija nije završena (~30 sati) a to se kontrolira s TLC (20% MeOH u CH2Cl2). Reakcija se prekine s vodenom HCl (1N, 3 mL). Vodeni sloj se ekstrahira s EtOAc (2×10 mL). Spojeni organski sloj se osuši iznad MgSO4 i koncentrira. Ostatak se purificira flash kromatografijom (100?; CH2Cl2 na 10% MeOH u CH2Cl2) da bi se dobio hemiester (16.7 mg, 91% prinos). Ee hemiestera se odredi da bude 93% s pretvaranjem hemiestera u odgovarajući ester amid (J.Chem.Soc.Perkin. Trans I 1987, 1053) preko reakcije hemiestera s (R)-1-(1-naftil) etil aminom. Ester amid se analizira s kiralnim HPLC (Chiralpak, OD, 280 nm, 0.6 mL/min; vrijeme retencije za relevantne diastereomere su 20.030 i 25.312 minuta). Anhydrous MeOH (0.5 mmol, 20.2 μl) cooled to -20°C. The resulting mixture was stirred until the reaction was complete (~30 hours) as monitored by TLC (20% MeOH in CH2Cl2). The reaction was quenched with aqueous HCl (1N, 3 mL). The aqueous layer was extracted with EtOAc (2×10 mL). The combined organic layer was dried over MgSO4 and concentrated. The residue was purified by flash chromatography (100?; CH2Cl2 on 10% MeOH in CH2Cl2) to give the hemiester (16.7 mg, 91% yield). The ee of the hemiester was determined to be 93% with conversion of the hemiester to the corresponding ester amide (J.Chem.Soc.Perkin. Trans I 1987, 1053) via reaction of the hemiester with (R)-1-(1-naphthyl)ethyl amine. The ester amide is analyzed with chiral HPLC (Chiralpak, OD, 280 nm, 0.6 mL/min; retention times for the relevant diastereomers are 20,030 and 25,312 minutes).

Primjer 4 Example 4

Katalitička desimetrizacija mezo bicikličnog sukcinin anhidrida koji sadržava keton Catalytic desymmetrization of ketone-containing meso bicyclic succinic anhydride

[image] [image]

93% konverzija 93% conversion

84% ee 84% ee

Suhi metanol (32 mg, 1.0 mmol) se doda kap po kap u otopinu anhidrida (0.1 mol, 15,4 mg) i (DHQD)2AQN (12 %mol, 10.3 mg) u t-butil metil eteru na -16~-17°C. Reakcijska smjesa se miješa na toj temperaturi kroz 80 sati. Reakcija se potom prekine s HCl (1N, 3 mL). Vodena faza se ekstrahira s EtOAc (2×15mL). Organska faza se spoji, osuši iznad Na2SO4, a otapalo se odstrani pod reduciranim tlakom. Ee hemiestera se odredi da bude 84% pretvaranjem hemiestera u odgovarajući ester amid (J.Chem..Soc.Perkin. Trans I 1987, 1053) putem reakcije hemiestera s (R)-1-(1-naftil) etil amin. Analiziran je s HPLC (Hypersil SI 4.6×200 mm, 280 nm, 0.5 mL/min, Hexanes: i-Propanol=9:1; vrijeme retencije za relevantne diastereomere je 28.040 i 33.479 minuta). Dry methanol (32 mg, 1.0 mmol) was added dropwise to a solution of the anhydride (0.1 mol, 15.4 mg) and (DHQD)2AQN (12% mol, 10.3 mg) in t-butyl methyl ether at -16~- 17°C. The reaction mixture is stirred at this temperature for 80 hours. The reaction was then quenched with HCl (1N, 3 mL). The aqueous phase was extracted with EtOAc (2×15mL). The organic phase was combined, dried over Na2SO4, and the solvent was removed under reduced pressure. The ee of the hemiester was determined to be 84% by converting the hemiester to the corresponding ester amide (J.Chem..Soc.Perkin. Trans I 1987, 1053) by reaction of the hemiester with (R)-1-(1-naphthyl)ethyl amine. It was analyzed by HPLC (Hypersil SI 4.6×200 mm, 280 nm, 0.5 mL/min, Hexanes: i-Propanol=9:1; retention times for the relevant diastereomers are 28,040 and 33,479 minutes).

Primjer 5 Example 5

Općeniti postupak za alkoholizu 2,3-dimetil sukcinin anhidrida upotrebom QD-FP kao katalizatora General procedure for the alcoholysis of 2,3-dimethyl succinic anhydride using QD-FP as a catalyst

[image] [image]

Alkohol (0.1 -1.0 mmol) se doda u otopinu anhidrida (0.1-0.2 mmol) i QD-PP (10-100 mol%) u eteru (0.5-5.0 mL) na temperaturi reakcije navedenoj na Slikama. Reakcijska smjesa se inicijalno miješa i potom ostavi stajati na toj temperaturi sve dok se polazni materijal ne utroši kao što je navedeno za TLC analizu (43 h) ili Kiralnu GC (p-CD) analizu (0.5-101 h). Reakcijska se prekida dodavanjem HC1 (1N, 5 mL) u jednom dijelu. Vodena faza se ekstrahira s eterom (2×20 mL). Organska faza se spoji, osuši iznad Na2SO4, i koncentrira da se osigura željeni produkt bez daljnje purifikacije. Enantiomerički višak (ee) svakog produkta se odredi s HPLC analizom diastereomerične smjese odgovarajućeg amid-estera iz hemiestera u skladu s prilagođenom literaturnom procedurom, navedenom ispod ili kiralnom GC analizom. Alcohol (0.1-1.0 mmol) is added to a solution of anhydride (0.1-0.2 mmol) and QD-PP (10-100 mol%) in ether (0.5-5.0 mL) at the reaction temperature indicated in the Figures. The reaction mixture is initially stirred and then allowed to stand at this temperature until the starting material is consumed as indicated for TLC analysis (43 h) or Chiral GC (p-CD) analysis (0.5-101 h). The reaction is stopped by adding HC1 (1N, 5 mL) in one portion. The aqueous phase is extracted with ether (2×20 mL). The organic phase was combined, dried over Na 2 SO 4 , and concentrated to provide the desired product without further purification. The enantiomeric excess (ee) of each product is determined by HPLC analysis of the diastereomeric mixture of the corresponding amide-ester from the hemiester according to an adapted literature procedure, listed below, or by chiral GC analysis.

Modificirana procedura iz literature za određivanje enentiomeričnog suviška produkta (J.Hiratake, M.Inagaki, Y.Yamamoto, J.Oda, J.Chem.Soc., Perkin Trans, l 1987, 1053.) Modified literature procedure for determination of enantiomeric excess product (J.Hiratake, M.Inagaki, Y.Yamamoto, J.Oda, J.Chem.Soc., Perkin Trans, l 1987, 1053.)

[image] [image]

U otopinu hemiestera (0.1 mmol) u suhom toluenu (3 mL) na °C se doda tionil klorid (14.3 mg, 0.12 mmol). Smjesa se ostavi miješati na 0°C kroz 10 min čemu slijedi dodavanje (R)-1-(1-naftil)etilamina (18.8 mg, 0.11 mmol) i trietilamina (33.4 mg, 0.33 mmol). Nastala smjesa se ostavi miješati kroz 30 minuta na 0°C čemu slijedi drugih 30 minuta na sobnoj temperaturi. Reakcija se prekida s HCl (1N, 5 mL), razrijedi s EtOAc (20 mL), i ispere sa zasićenom NaHCO3 (5 mL) i zasićenom slanom otopinom (5 mL). Organski sloj se osuši s Na2SO4. Thionyl chloride (14.3 mg, 0.12 mmol) was added to a solution of the hemiester (0.1 mmol) in dry toluene (3 mL) at °C. The mixture was allowed to stir at 0°C for 10 min followed by the addition of (R)-1-(1-naphthyl)ethylamine (18.8 mg, 0.11 mmol) and triethylamine (33.4 mg, 0.33 mmol). The resulting mixture is left to stir for 30 minutes at 0°C, followed by another 30 minutes at room temperature. The reaction was quenched with HCl (1N, 5 mL), diluted with EtOAc (20 mL), and washed with saturated NaHCO 3 (5 mL) and brine (5 mL). The organic layer is dried with Na2SO4.

Primjer 6 Example 6

Općeniti postupak alkoholize mezo supstituiranih suksininskih anhidrida koristeći QD-PP u eteru General procedure for the alcoholysis of meso-substituted succinic anhydrides using QD-PP in ether

[image] [image]

Alkohol (1.0 mmol) se doda u otopinu anhidrida (0.1 mmol) i QD-PP (20-100% mol%) u eteru (5.0 mL) na temperaturi reakcije navedenoj na slikama. Vidi, npr. Slike 11 i 12. Reakcijska smjesa se inicijalno miješa i potom ostavi da se miješa na toj temperaturi sve dok se polazni materijal ne utroši kao što je indicirano TLC analizom (2-72 h). Reakcija se prekine dodavanjem HCl (1N, 3 mL) u jednom dijelu. Vodena faza se ekstrahira s eterom (2×10 mL). Organska faza se spoji, osuši iznad Na2SO4, i koncentrira da bi se dobio željeni produkt bez daljnje purifikacije. Produkt se odredi čistim kao što je indicirano s NMR). Enantiomerični višak (ee) za svaki produkt se određuje s HPLC analizom diastereomerične smjese odgovarajućeg amid-estera proizvedenog iz hemiestera u skaldu s modificiranom dolje navedenom literaturnom procedurom. Alcohol (1.0 mmol) was added to a solution of anhydride (0.1 mmol) and QD-PP (20-100% mol%) in ether (5.0 mL) at the reaction temperature indicated in the figures. See, eg, Figures 11 and 12. The reaction mixture is initially stirred and then allowed to stir at that temperature until the starting material is consumed as indicated by TLC analysis (2-72 h). The reaction was quenched by adding HCl (1N, 3 mL) in one portion. The aqueous phase is extracted with ether (2×10 mL). The organic phase was combined, dried over Na2SO4, and concentrated to give the desired product without further purification. The product is determined to be pure as indicated by NMR). The enantiomeric excess (ee) for each product is determined by HPLC analysis of the diastereomeric mixture of the corresponding amide-ester produced from the scald hemiester with a modified literature procedure below.

Modificirani literaturni postupak za određivanje enantiomeričnog viška produkta (J.Hiratake, M.Inagaki, Y, Yamamoto, J. Oda, J.Chem.Soc., Perkin Trans, l 1987, 1053.) A modified literature procedure for determining the enantiomeric excess of the product (J.Hiratake, M.Inagaki, Y, Yamamoto, J. Oda, J.Chem.Soc., Perkin Trans, l 1987, 1053.)

[image] [image]

U otopinu hemiestera (0.1 mmol) u suhm toluenu (3 mL) na 0°C se doda tionil klorid (14.3 mg, 0.12 mmol). Smjesa se ostavi miješati na 0°C kroz 10 min čemu slijedi dodavanje (r)-1-(1-naftil)etilamina (18.8 mg, 011 mmol) i trietilamina (33.4 mg, 0.33 mmol). Nastala smjesa se ostavi miješati 30 minuta na 0°C čemu slijedi sljedećih 30 minuta na sobnoj temperaturi. Reakcijska smjesa se potom razrijedi s EtOAc 820 mL) i postepeno ispere s HCl (1N, 10 mL), zasićenom NaHCO3 (10 mL) i zasićenom slanom otopinom (10 mL). Organski sloj se osuši s Na2SO4. To a solution of the hemiester (0.1 mmol) in dry toluene (3 mL) at 0°C was added thionyl chloride (14.3 mg, 0.12 mmol). The mixture was allowed to stir at 0°C for 10 min followed by the addition of (r)-1-(1-naphthyl)ethylamine (18.8 mg, 0.11 mmol) and triethylamine (33.4 mg, 0.33 mmol). The resulting mixture is left to stir for 30 minutes at 0°C, followed by another 30 minutes at room temperature. The reaction mixture was then diluted with EtOAc (820 mL) and washed gradually with HCl (1N, 10 mL), saturated NaHCO3 (10 mL) and saturated brine (10 mL). The organic layer is dried with Na2SO4.

Primjer 7 Example 7

Proizvodnja adamantil kloracetata (2) Production of adamantyl chloroacetate (2)

[image] [image]

Na 10°C pod N2, doda se polako kloracetil klorid (9 mL, 113 mmol) u suspenziju 1-adamantola (11.4 g, 75 mmol) i MgO (4.5 g, 113 mmol) u CHCl3 (10 mmol). Smjesa se zagrije do blagog refluksa kroz 43 sata i ohladi na sobnu temperaturu. Neotopljeni materijal se odstrani filtracijom a otapalo se evaporira. Ostatak se kristalizira da se dobije 2 kao bijela krutina (6.324 g, 37%). US 4,456,611; Helv.Chim.Acta 1988, 71,1553. At 10°C under N 2 , chloroacetyl chloride (9 mL, 113 mmol) was slowly added to a suspension of 1-adamantole (11.4 g, 75 mmol) and MgO (4.5 g, 113 mmol) in CHCl 3 (10 mmol). The mixture is heated to slight reflux for 43 hours and cooled to room temperature. The undissolved material is removed by filtration and the solvent is evaporated. The residue was crystallized to give 2 as a white solid (6.324 g, 37%). US 4,456,611; Helv.Chim.Acta 1988, 71,1553.

Primjer 8 Example 8

Proizvodnja (-)-mentil kloracetat (4a) Production of (-)-menthyl chloroacetate (4a)

[image] [image]

Otopinu kloracetil klorida (6.4 mL, 80 mmol) u 40 mL bezvodnog dietil etera doda se kap po kap unutar 2 sata u otopinu (-)-mentola (3a) (12.5 g, 80 mmol) i piridina (6.5 mL, 80 mmol) u bezvodnom dietil eteru (160 mL) na 0°C. Nakon što se zgrije na sobnu temperaturu, bijela suspenzija se miješa kroz 2 sata a nastala smjesa se filtrira. Filtrat se ispere s HCl (60 mL, 2N), zasićenim NaHCO3 (60 mL), slanom otopinom i osuši s Na2SO4. Odstrani se otapalo i osuši u vakumu da se dobije (-)-mentil kloracetat (4a) (17,64 g, 94%), koji se koristi bez daljnje purifikacije. US 4.456,611; Helv.Chim.Acta 1988, 71, 1553. A solution of chloroacetyl chloride (6.4 mL, 80 mmol) in 40 mL of anhydrous diethyl ether was added dropwise over 2 hours to a solution of (-)-menthol (3a) (12.5 g, 80 mmol) and pyridine (6.5 mL, 80 mmol). in anhydrous diethyl ether (160 mL) at 0°C. After warming to room temperature, the white suspension is stirred for 2 hours and the resulting mixture is filtered. The filtrate was washed with HCl (60 mL, 2N), saturated NaHCO3 (60 mL), brine and dried over Na2SO4. The solvent was removed and dried in vacuo to give (-)-menthyl chloroacetate (4a) (17.64 g, 94%), which was used without further purification. US 4,456,611; Helv.Chim.Acta 1988, 71, 1553.

Primjer 9 Example 9

Proizvodnja (+)-mantil kloracetata (4b) Production of (+)-manthyl chloroacetate (4b)

[image] [image]

Postupak opisan u prethodnom Primjeru izvodi se na 40 mmol omjeru za sintezu (+)-mentil klorester (4b) u 95% prinosu od (+)-mentola (3b). US 4,456,611; Helv,.Chim.Acta 1988, 71,1553. The procedure described in the previous Example is performed at a 40 mmol ratio for the synthesis of (+)-menthyl chloroester (4b) in a 95% yield of (+)-menthol (3b). US 4,456,611; Helv,.Chim.Acta 1988, 71,1553.

Primjer 10 Example 10

Sinteza kloracetat estera 5 Synthesis of chloroacetate ester 5

[image] [image]

U otopinu od izoborneola (9.255 g, 0.06 mol), piridina (4.9 mL, 0.06 mol) u bezvodnom dietil eteru (120 mL) na 0°C, kloracetil klorid (4.78 mL, 0.06 mol) u bezvodnom dietil eteru (30 mL) doda se kap po kap tijekom razdoblja od 2 sata. Potom se reakcijska smjesa ostavi da se zagrije na sobnu temperaturu i miješa kroz sljedeća 3 sata. Nastala smjesa se filtrira uz pomoć Celita, ispere s dietil eterom (30 mL). Spojeni organski sloj se ispere s vodenom HCl (2N, 45 mL), zatim slijedi zasićena vodena otopina NaHCO3 (45 mL), potom zasićena slana otopina (45 mL), osuši iznad Na2SO4, koncentrira se da se dobije žuto zelenkasto ulje (13.10 g, 95% prinos) u NMR-čistom obliku i koristi se bez daljnje purifikacije. To a solution of isoborneol (9.255 g, 0.06 mol), pyridine (4.9 mL, 0.06 mol) in anhydrous diethyl ether (120 mL) at 0°C, chloroacetyl chloride (4.78 mL, 0.06 mol) in anhydrous diethyl ether (30 mL) is added drop by drop over a period of 2 hours. The reaction mixture was then allowed to warm to room temperature and stirred for the next 3 hours. The resulting mixture is filtered using Celite, washed with diethyl ether (30 mL). The combined organic layer was washed with aqueous HCl (2N, 45 mL), followed by saturated aqueous NaHCO3 (45 mL), then saturated brine (45 mL), dried over Na2SO4, concentrated to give a yellow greenish oil (13.10 g , 95% yield) in NMR-pure form and used without further purification.

Primjer 11 Example 11

Sinteza (1R,2R,3R,53)-(-)-izopinokamfil kloracetat (6) Synthesis of (1R,2R,3R,53)-(-)-isopinocamphyl chloroacetate (6)

[image] [image]

U otopinu (1R,2R,3R,53)-(-)-izopinokamfeola (9.255 g, 0.06 mol), piridina (4.9 mL, 0.06 mol) u bezvodnom dietil eteru (120 mL) na 0°C, doda se kloracetil klorid (4.78 mL, 0.06 mol) u brezvodnom dietil eteru (30 mL) kap po kap tijekom 2h. Potom se reakcijska smjesa ostavi da se zagrije na sobnu temperaturu i miješa kroz sljedeća 3 sata. Nastala smjesa se filtrira uz pomoć Celita, ispere s dietil eterom (30 mL). Spojeni organski sloj se ispere s vodenom HCl (2N, 45 mL), zatim sa zasićenim vodenim NaHCO3 (45 mL), potom slanom otopinom (45 mL), osuši iznad Na2SO4, koncentrira da bi se dobilo žuto zelenkasto ulje (13.13 g, 95% prinos) u NMR-čistom obliku i koristi se bez daljnje purifikacije. Chloroacetyl chloride was added to a solution of (1R,2R,3R,53)-(-)-isopinocampheol (9.255 g, 0.06 mol), pyridine (4.9 mL, 0.06 mol) in anhydrous diethyl ether (120 mL) at 0°C. (4.78 mL, 0.06 mol) in anhydrous diethyl ether (30 mL) dropwise over 2h. The reaction mixture was then allowed to warm to room temperature and stirred for the next 3 hours. The resulting mixture is filtered using Celite, washed with diethyl ether (30 mL). The combined organic layer was washed with aqueous HCl (2N, 45 mL), then with saturated aqueous NaHCO3 (45 mL), then brine (45 mL), dried over Na2SO4, concentrated to give a yellow greenish oil (13.13 g, 95 % yield) in NMR-pure form and used without further purification.

Primjer 12 Example 12

Sinteza (1R)-endo-(+)-fenhil kloracetata (QD-EF,7) Synthesis of (1R)-endo-(+)-phenyl chloroacetate (QD-EF,7)

[image] [image]

U otopinu kloracetil klorida (6.4 mL, 80 mmol) u 40 mL bezvodnog dietil etera se doda kap po kap unutar 2 sata u otopinu (1R)-endo-(+)-fenhil alkohola (12.25 g, 79.5 mmol) i piridina (6.5 mL, 80 mmol) u 160 mL bezvodnog dietil etera na 0°C. Nakon zagrijavanja na sobnu temperaturu, bijela suspenzija se miješa kroz 2.5 sata. Precipitat se odstrani filtracijom i ispere s dietil eterom (30 mL). Spojena organska otopina se ispere s HCl (2N, 60 mL), slijede zasić. NaHCO3 (60 mL), zasić. NaCl (60 mL) otopine i sušenje s Na2SO4. Odstranjivanje otapala i sušenje s vakuumom daje (1R)-endo-(+)-fenhil kloracetat (17.33 g, 94.5%) koji se koristi bez daljnje purifikacije. To a solution of chloroacetyl chloride (6.4 mL, 80 mmol) in 40 mL of anhydrous diethyl ether was added dropwise over 2 hours to a solution of (1R)-endo-(+)-phenyl alcohol (12.25 g, 79.5 mmol) and pyridine (6.5 mL, 80 mmol) in 160 mL of anhydrous diethyl ether at 0°C. After warming to room temperature, the white suspension is stirred for 2.5 hours. The precipitate was removed by filtration and washed with diethyl ether (30 mL). The combined organic solution was washed with HCl (2N, 60 mL), followed by sat. NaHCO3 (60 mL), satd. NaCl (60 mL) solution and drying with Na2SO4. Removal of the solvent and drying under vacuum gave (1R)-endo-(+)-phenyl chloroacetate (17.33 g, 94.5%) which was used without further purification.

Primjer 13 Example 13

Sinteza O-[(-)-mentilacetat]kvinidina i O-[(+)-mentilacetat]kvinidina (QD-(-)-MN) Synthesis of O-[(-)-menthylacetate]quinidine and O-[(+)-menthylacetate]quinidine (QD-(-)-MN)

[image] [image]

Postupak A (koristeći kromatografsku purifikaciju) Procedure A (using chromatographic purification)

U atmosferi dušika, NaH (60 mg, 1.5 mmol, 60% u mineralnom ulju) se ispere s heksanom (2×3 mL) i suspendira u DMF (5 mL). Kvinidin (0.324 g, 1.0 mmol) se doda smjesa u malim obrocima. Reakcijska otopina se mješa sve dok otopina ne postane žute boje (oko 3 sata). Zatim se ohladi na 0°C. (-)-mentil kloracetat (4a) (0.349 g, 1.5 mmol) se doda kap po kap preko jedne minute u ohlađenu reakcijsku smjesu. Reakcijska smjesa se miješa kroz 0.5 sati na 0°C, potom se zagrije na sobnu temperaturu i čuva na toj temperaturi kroz 1.5 sati. Potom se pažljivo prekine s H2O (10 mL) smjesa se miješa s etil acetatom (15 mL). Odvoje se organski i anorganski sloj. Vodena faza se ekstrahira s etil acetatom (15 mL). Organska faze se spoje, isperu s zasić. NaHCO3 (10 mL), vodom (3×10 mL), slanom otopinom (10 mL), osuše iznad Na2SO4 i koncentriraju pod reduciranim tlakom. Smeđi ostatak se purificira flash kromatografijom (etil acetat : metanol = 10:1) da se dobije O-((-)-mentilacetat)kvinidin (0.2752 g, 53%) kao bijela pjena. 1H NMR (CDCl3): δ 0.73 (d,J=6.8 Hz,3H), 0.76-1.10 (m,9H), 1.22-1.40 (m,2H), 1.40-1.60 (m,3H), 1.60-1.72 (m,2H), 1.72-1.84 (m,2H), 1.93-2.20 (m, 1H), 2.14-3.32 (m,2H), 2.70-2.90 (m, 3H), 3.04-3.16 (m, 1H), 3.28-3.44 (br, 1H), 3.89 (d,J=16.4 Hz, 1H), 3.93(s,3H), 4.06 (d, J=16.0 Hz, 1H), 4.77 (td, J=11.2, 4.4, 1H}, 5.08-5.15 (m,2H), 5.20-5.45 (br, 1H), 6.12-6.21 (m, 1H), 7.20-7.50 (m, 3H), 8.04 (d, J=8.8 Hz, 1H), 8.76 (d, J=4.4 Hz, 1H) Under nitrogen, NaH (60 mg, 1.5 mmol, 60% in mineral oil) was washed with hexane (2×3 mL) and suspended in DMF (5 mL). Quinidine (0.324 g, 1.0 mmol) was added to the mixture in small portions. The reaction solution is stirred until the solution turns yellow (about 3 hours). It is then cooled to 0°C. (-)-Menthyl chloroacetate (4a) (0.349 g, 1.5 mmol) was added dropwise over one minute to the cooled reaction mixture. The reaction mixture is stirred for 0.5 hours at 0°C, then warmed to room temperature and kept at that temperature for 1.5 hours. It is then carefully quenched with H2O (10 mL) and the mixture is mixed with ethyl acetate (15 mL). The organic and inorganic layers are separated. The aqueous phase was extracted with ethyl acetate (15 mL). The organic phases are combined, washed with sat. NaHCO3 (10 mL), water (3×10 mL), brine (10 mL), dried over Na2SO4 and concentrated under reduced pressure. The brown residue was purified by flash chromatography (ethyl acetate : methanol = 10:1) to give O-((-)-menthylacetate)quinidine (0.2752 g, 53%) as a white foam. 1H NMR (CDCl3): δ 0.73 (d,J=6.8 Hz,3H), 0.76-1.10 (m,9H), 1.22-1.40 (m,2H), 1.40-1.60 (m,3H), 1.60-1.72 ( m,2H), 1.72-1.84 (m,2H), 1.93-2.20 (m,1H), 2.14-3.32 (m,2H), 2.70-2.90 (m,3H), 3.04-3.16 (m,1H), 3.28-3.44 (br, 1H), 3.89 (d, J=16.4 Hz, 1H), 3.93(s, 3H), 4.06 (d, J=16.0 Hz, 1H), 4.77 (td, J=11.2, 4.4, 1H}, 5.08-5.15 (m,2H), 5.20-5.45 (br, 1H), 6.12-6.21 (m, 1H), 7.20-7.50 (m, 3H), 8.04 (d, J=8.8 Hz, 1H) , 8.76 (d, J=4.4 Hz, 1H)

Sinteza O-((+) -metilacetat) kvinidin (QD-(+)-MN) Synthesis of O-((+)-methylacetate) quinidine (QD-(+)-MN)

Postupak opisan gore koristi se za proizvodnju O-[(+)-metilacetat]kvinidina kao bijele pjene u 43% prinos. 1H NMR (CDCl3): 0.75 (d,J=7.2 Hz, 3H), 0,85 (d, J= 7.6 Hz,3H) 0.90 (d,J=6.8 Hz, 3H), 078-1.12 (m, 3H), 1.20-1.40 (m, 2H), 1.42-1.94 (m,7H), 1.97-2.06 (m, 1H), 2.26-2.48 (m,2H), 2.80-3.30 (m, 4H), 3.46-3.90 (br, 1H), 3.99 (d, J=16 Hz, 1H), 4.00 (s,3H), 4.08 (d, J=16.0 Hz, 1H), 4.79 (td, J=10.8, 4.8, 1H), 5.10-5.30 (m, 2H),5.46-6.10 (br, 1H), 6.10-6.24 (m, 1H), 7.36-7.56 (m,3H), 8.04 (d, J=9.2 Hz, 1H), 8.76 (d,J=4.4 Hz, 1H). The procedure described above is used to produce O-[(+)-methylacetate]quinidine as a white foam in 43% yield. 1H NMR (CDCl3): 0.75 (d, J=7.2 Hz, 3H), 0.85 (d, J= 7.6 Hz, 3H) 0.90 (d, J=6.8 Hz, 3H), 0.78-1.12 (m, 3H ), 1.20-1.40 (m, 2H), 1.42-1.94 (m, 7H), 1.97-2.06 (m, 1H), 2.26-2.48 (m, 2H), 2.80-3.30 (m, 4H), 3.46-3.90 (br, 1H), 3.99 (d, J=16 Hz, 1H), 4.00 (s, 3H), 4.08 (d, J=16.0 Hz, 1H), 4.79 (td, J=10.8, 4.8, 1H), 5.10-5.30 (m, 2H), 5.46-6.10 (br, 1H), 6.10-6.24 (m, 1H), 7.36-7.56 (m, 3H), 8.04 (d, J=9.2 Hz, 1H), 8.76 ( d,J=4.4 Hz, 1H).

Postupak B (purifikacija bez kromatografske separacije) za proizvodnju QD-(-)-MN Procedure B (purification without chromatographic separation) for the production of QD-(-)-MN

U atmosferi dušika, NaH (0.52 g, 12.9 mmol, 60% u mineralnom ulju) se ispere s heksanom (2×9 mL) i suspendira u DMF (453 mL). Kvinidin (2.786 g, 8.6 mmol) se doda u smjesu u malim obrocima. Reakcijska smjesa se miješa sve dok otopina ne postane žute boje (oko 2.5 sata). Potom se ohladi na 0°C. (-)-mentil kloracetata (3.0 g, 12,9 mmol) se doda kap po kap preko razdoblja od l min da se ohladi reakcijska smjesa. Reakcijska smjesa se miješa 1 sat na 0°C, 1.5 sat na sobnoj temperaturi. Smjesa se ponovo ohladi na 0°C, pažljivo prekine s H2O (60 mL) i potom se doda etil acetat (60 mL). Organski i anorganski sloj se separira. Vodena faza se ekstrahira s etil acetatom (30 mL). Organske faze se spoje, isperu s zas. NaHCO3 (30 mL), vodom (3×30 mL), zas. NaCl (30 mL), i potom ekstrahira s 3×40 mL 5%w/w HCl. Spojene kisele vodene faze se ekstrahiraju 2×50 mL CH2Cl2. Spojene organske faze se isperu s 25 mL 5%w/w HCl i koncentriraju pod reduciranim tlakom. Smeđi ostatak se rastopi u 100 mL 0.1 N HCl. Vodena faza se ekstrahira s 50 mL Et2O da bi se odstranila onečišćenja u tragovima, zaluži na pH=11 s KOH i ekstrahira s 2×50 mL etera. Spojene organske faze se osuše iznad Na2SO4 i koncentriraju pod reduciranim tlakom da se dobije sirovi O-{(-)-metilacetat)kvinidin kao žućkasta pjena. Taj sirovi produkt se rastopi u 40 mL bezvodnog dietil etera i tretira kap po kap s 0.95 ekviv. od 1.0 M otopine hidrogen klorida u dietil eteru (Aldrich) da bi precipitirao O-((-)-metilacetat)kvinidin hidroklorid. Odvojeni precipitat se ispere s 2×10 mL dietil etera, osuši na zraku i suspendira u 50 mL H2O. KOH se koristi za podešavanje pH otopine na PH=11 a nastala smjesa se ekstrahira s 3x50 mL dietil etera. Spojene organske faze se osuše s Na2SO4 i koncentriraju pod reduciranim tlakom da se dobije O-((-)-mentilacetat)kvinidin (1.1783 g, 40%) kao gotovo bijela kristalna pjena. Under nitrogen, NaH (0.52 g, 12.9 mmol, 60% in mineral oil) was washed with hexane (2×9 mL) and suspended in DMF (453 mL). Quinidine (2.786 g, 8.6 mmol) was added to the mixture in small portions. The reaction mixture is stirred until the solution turns yellow (about 2.5 hours). It is then cooled to 0°C. (-)-Menthyl chloroacetate (3.0 g, 12.9 mmol) was added dropwise over a period of 1 min to cool the reaction mixture. The reaction mixture is stirred for 1 hour at 0°C, 1.5 hours at room temperature. The mixture was cooled again to 0°C, carefully quenched with H2O (60 mL) and then ethyl acetate (60 mL) was added. The organic and inorganic layers are separated. The aqueous phase is extracted with ethyl acetate (30 mL). The organic phases are combined, washed with sat. NaHCO3 (30 mL), water (3×30 mL), sat. NaCl (30 mL), and then extracted with 3×40 mL of 5%w/w HCl. The combined acidic aqueous phases are extracted with 2×50 mL of CH2Cl2. The combined organic phases are washed with 25 mL of 5%w/w HCl and concentrated under reduced pressure. The brown residue is dissolved in 100 mL of 0.1 N HCl. The aqueous phase is extracted with 50 mL Et2O to remove trace impurities, basified to pH=11 with KOH and extracted with 2×50 mL ether. The combined organic phases were dried over Na2SO4 and concentrated under reduced pressure to give crude O-{(-)-methylacetate)quinidine as a yellowish foam. This crude product is dissolved in 40 mL of anhydrous diethyl ether and treated drop by drop with 0.95 equiv. of a 1.0 M solution of hydrogen chloride in diethyl ether (Aldrich) to precipitate O-((-)-methylacetate)quinidine hydrochloride. The separated precipitate is washed with 2×10 mL of diethyl ether, dried in air and suspended in 50 mL of H2O. KOH is used to adjust the pH of the solution to PH=11 and the resulting mixture is extracted with 3x50 mL of diethyl ether. The combined organic phases were dried over Na2SO4 and concentrated under reduced pressure to give O-((-)-menthylacetate)quinidine (1.1783 g, 40%) as an off-white crystalline foam.

Primjer 14 Example 14

Sinteza O-(1-adamantilacetat)kvinidina (QD-AD) Synthesis of O-(1-adamantylacetate)quinidine (QD-AD)

[image] [image]

U atmosferi dušika, NaH (80 mg, 2 mmol, 60% u mineralnom ulju) se ispere s heksanom (2×3 mL) i suspendira u DMF (3 mL). U smjesu se u malim obrocima doda kvinidin (0.1944 g, 0.6 mmol). Reakcijska smjesa se miješa sve dok otopina ne postane žute boje (oko 2 sata). Potom se ohladi na 0°C. Doda se 1-adamantil kloracetat (0.2285 g, 1 mmol) u malim obrocima u ohlađenu reakcijsku smjesu. Reakcijska smjesa se miješa kroz 3 sata na sobnoj temperaturi, ohladi na 0°C, pažljivo prekine s H2O (5 mL) i potom se ekstrahira s toluenom (4×10 mL). Organske faze se spoje, isperu svodom (5×5 mL), osuše iznad Na2SO4, i koncentriraju pod reduciranim tlakom. Smeđi ostatak se purificira flash kromatografijom (etil acetat : metanol = 9:1) da se dobije O-(1-adamantilacetat)kvinidin (0.1640 g, 53%} kao bijela pjena. 1H NMR (CDCl3): δ 1.22-1.38 (m, 1H), 1.44-1.59 (m,2H), 1.59-1.69 (m,6H), 1.74-1.80 (m, 1H), 2.04-2.12 (m,6H), 2.12-2.18 (m,3H), 2.18-2.31 (m,2H), 2.70-3.15 (m,4H), 2.30-3,48 (m, 1H), 3.78 (d,J=16 Hz, 1H), 3.94 (s,3H), 3.95 {d,J=16.0 Hz, IH), 5.08-5.15 (m,2H), 5.20-5.50 (br, 1H), 6.11-6.22 (m, IH), 7.27-7.50 (m,3H), 8.04 (d,J=9.2 Hz, 1H), 8.76 (d,J=4 Hz,IH}. Under nitrogen, NaH (80 mg, 2 mmol, 60% in mineral oil) was washed with hexane (2×3 mL) and suspended in DMF (3 mL). Quinidine (0.1944 g, 0.6 mmol) is added to the mixture in small portions. The reaction mixture is stirred until the solution turns yellow (about 2 hours). It is then cooled to 0°C. Add 1-adamantyl chloroacetate (0.2285 g, 1 mmol) in small portions to the cooled reaction mixture. The reaction mixture was stirred for 3 hours at room temperature, cooled to 0°C, carefully quenched with H2O (5 mL) and then extracted with toluene (4×10 mL). The organic phases are combined, washed with brine (5×5 mL), dried over Na2SO4, and concentrated under reduced pressure. The brown residue was purified by flash chromatography (ethyl acetate : methanol = 9:1) to give O-(1-adamantyl acetate)quinidine (0.1640 g, 53%} as a white foam. 1H NMR (CDCl3): δ 1.22-1.38 (m , 1H), 1.44-1.59 (m,2H), 1.59-1.69 (m,6H), 1.74-1.80 (m,1H), 2.04-2.12 (m,6H), 2.12-2.18 (m,3H), 2.18 -2.31 (m,2H), 2.70-3.15 (m,4H), 2.30-3.48 (m,1H), 3.78 (d,J=16 Hz, 1H), 3.94 (s,3H), 3.95 {d ,J=16.0 Hz, IH), 5.08-5.15 (m,2H), 5.20-5.50 (br,1H), 6.11-6.22 (m,IH), 7.27-7.50 (m,3H), 8.04 (d,J =9.2 Hz, 1H), 8.76 (d, J=4 Hz, IH}).

Primjer 15 Example 15

Sinteza O-(izopropilacetat)kvinidina (QD-IP) Synthesis of O-(isopropylacetate)quinidine (QD-IP)

[image] [image]

U atmosferi dušika, NaH (160 mg, 4 mino l, 60% u mineralnom ulju) se ispere s heksanom (2x5 mL) i suspendira u DMF (15 mL). Kvinidin (0.972 g, 3 mmol) se doda u smjesu u malim obrocima. Reakcijska smjesa se miješa sve dok otopina postane žute boje (oko 2 sata). Izopropil kloracetat (0.683 g, 5 mmol) se doda odjedamput u ohlađenu reakcijsku smjesu. Reakcijska smjesa se miješa kroz 3 sata na 0°C, 25 sati na sobnoj temperaturi. Potom se drugi dio izopropil kloracetata (0.342 g, 2.5 mmol) doda odjedanput. Smjesa se miješa na sobnoj temperaturi kroz 13 sati i pažljivo prekine s H2O (20 mL) i potom se doda toluen (20 mL). Organski i vodeni slojevi se separiraju. Vodena faza se ekstrahira s toluenom (3×10 mL). Organske faze se spoje, isperu s vodom (5×10 mL), osuše iznad Na2SO4 i koncentrira pod reduciranim tlakom. Smeđi ostatak se purificira flash kromatografijom (etil acetat : metanol =10:1) da se dobije O-(izopropilacetat)kvinidin (0.1884 g, 15%) kao svijetlo žuto ulje. 1H NMR (CDCl3) : δ 1.23 (d,J=6.0 Hz,6H), 1.20-1.38 (m, 1H), 1.42-1.60 (m,2H), 1.75-1.84 (m, 1H), 2.16-2.32 (m,2H), 2.71-3.02 (m,3H), 3.05-3.18 (m, 1H), 3.30-3.50 (m, 1H), 3.86 (d,J=16.8 Hz, 1H), 3.94 (s,3H), 4.04 (d,J=16.4 Hz, IH}, 5.02-5.20 (m,3H), 5.26-5.44 (br, 1H), 6.11-6.24 (m, 1H), 7.24-7.54 (m,3H), 8.04 (d,J=9.2 Hz, 1H), 8.76 (d,J=4.4 Hz, 1H). Under nitrogen, NaH (160 mg, 4 min L, 60% in mineral oil) was washed with hexane (2x5 mL) and suspended in DMF (15 mL). Quinidine (0.972 g, 3 mmol) was added to the mixture in small portions. The reaction mixture is stirred until the solution turns yellow (about 2 hours). Isopropyl chloroacetate (0.683 g, 5 mmol) was added all at once to the cooled reaction mixture. The reaction mixture was stirred for 3 hours at 0°C, 25 hours at room temperature. Then the second portion of isopropyl chloroacetate (0.342 g, 2.5 mmol) is added all at once. The mixture was stirred at room temperature for 13 hours and carefully quenched with H2O (20 mL) and then toluene (20 mL) was added. The organic and aqueous layers are separated. The aqueous phase is extracted with toluene (3×10 mL). The organic phases are combined, washed with water (5×10 mL), dried over Na2SO4 and concentrated under reduced pressure. The brown residue was purified by flash chromatography (ethyl acetate : methanol =10:1) to give O-(isopropylacetate)quinidine (0.1884 g, 15%) as a light yellow oil. 1H NMR (CDCl3) : δ 1.23 (d, J=6.0 Hz, 6H), 1.20-1.38 (m, 1H), 1.42-1.60 (m, 2H), 1.75-1.84 (m, 1H), 2.16-2.32 ( m,2H), 2.71-3.02 (m,3H), 3.05-3.18 (m,1H), 3.30-3.50 (m,1H), 3.86 (d,J=16.8 Hz, 1H), 3.94 (s,3H) . (d,J=9.2 Hz, 1H), 8.76 (d,J=4.4 Hz, 1H).

Primjer 16 Example 16

Sinteza izobornil kvinidina i (1R,2R,3R,5S)-(-)-izopinokamf il kvinidina (QD-IB) Synthesis of isobornyl quinidine and (1R,2R,3R,5S)-(-)-isopinocampyl quinidine (QD-IB)

[image] [image]

U atmosferi dušika, NaH (300 mg, 7.5 mmol), 60% u mineralnom ulju se ispere s heksanom (2×5 mL) i suspendira u DMF (25 mL). U smjesu se doda u malim obrocima kvinidin (1.62 g, 5.o mmol). Reakcijska smjesa se miješa sve dok otopina ne postane žute boje (oko 2 sata). Potom se ohladi na 0°C. Izobornil kloracetat (1.728 g, 7.5 mmol) se doda kap po kap u razdoblju iznad 2 minute u ohlađenu reakcijsku smjesu. Reakcijska smjesa se miješa kroz 1 sat na 0°C, 1 sat na sobnoj temperaturi, i pažljivo prekine dodavanjem H2O (35 mL) i zatim etil acetat (35 mL). Organski i anorganski slojevi se separiraju. Vodena faza se ekstrahira s etil acetatom (35mL). Organske faze se spoje, isperu s NaHCO3 (17mL), vodom (3×17 mL), zasić. NaCl (17mL), osši iznad Na2SO4 i koncentrira pod reduciranim tlakom. Smeđi ostatak se purificira flash kromatografijom (etil acetat : metanol - 20:1) da se dobije izobornilacetat kvinidin (1.218 g, 47%} kao bijela pjena. Under nitrogen, NaH (300 mg, 7.5 mmol), 60% in mineral oil was washed with hexane (2×5 mL) and suspended in DMF (25 mL). Quinidine (1.62 g, 5.0 mmol) is added to the mixture in small portions. The reaction mixture is stirred until the solution turns yellow (about 2 hours). It is then cooled to 0°C. Isobornyl chloroacetate (1.728 g, 7.5 mmol) was added dropwise over a period of over 2 minutes to the cooled reaction mixture. The reaction mixture was stirred for 1 hour at 0°C, 1 hour at room temperature, and carefully quenched by addition of H 2 O (35 mL) followed by ethyl acetate (35 mL). The organic and inorganic layers are separated. The aqueous phase was extracted with ethyl acetate (35 mL). Combine the organic phases, wash with NaHCO3 (17 mL), water (3×17 mL), sat. NaCl (17mL), dried over Na2SO4 and concentrated under reduced pressure. The brown residue was purified by flash chromatography (ethyl acetate : methanol - 20:1) to give quinidine isobornyl acetate (1.218 g, 47%} as a white foam.

Primjer 17 Example 17

Sinteza (1R, 2R, 3R,5S)-(-)-izopinokamfil kvinidina [QD-(-)-IPC] Synthesis of (1R, 2R, 3R,5S)-(-)-isopinocamphil quinidine [QD-(-)-IPC]

CH2COO-(1R,2R,3R,5S)-(-)-iz pinokamfil CH2COO-(1R,2R,3R,5S)-(-)-from pinocamfil

[image] [image]

Postupak opisan u prije opisanom primjeru daje (1R,2R,3R,5S)-(-)-izopinokamfil kloracetat)kvinidin (QD-(-)-IPC) kao bijelu pjenu u prinosu od 45%. The procedure described in the above-described example gives (1R,2R,3R,5S)-(-)-isopinocamphyl chloroacetate)quinidine (QD-(-)-IPC) as a white foam in 45% yield.

Primjer 18 Example 18

Sinteza O-((1R)-endo-(+)-fenhilacetat)kvinidin Synthesis of O-((1R)-endo-(+)-phenylacetate)quinidine

[image] [image]

U atmosferi dušika, NaH (0.3 g, 7.5 mmol, 60% u mineralnom ulju) se ispere s heksanom (2×5 mL) i suspendira u DMF (25 mL). U malim obrocima u smjesu se doda kvinidin (1.620 g, 5 mmol). Reakcijska smjesa se miješa sve dok otopina ne postane žute boje (oko 2.5 sata). Potom se ohladi na 0°C. (1R) -endo-(+)-fenhil kloracetat (1.728 g, 7.5 mmol) se doda kap po kap u razdoblju iznad l minute u ohlađenu reakcijsku smjesu. Reakcijska smjesa se miješa kroz 1 sat na 0°C, 1.5 sat na sobnoj temperaturi, i pažljivo ugasi dodavanjem H2O (35 mL) i potom se doda etil acetat (35 mL). Organski i anorganski slojevi se separiraju. Vodena faza se ekstrahira s etil acetatom (35 mL). Organske faze se spoje, isperu s NaHCO3 (17 mL), vodom (3×17 mL), zasić. NaCl (17 mL),osuši iznad Na2SO4 i koncentrira pod reduciranim tlakom. Smeđi ostatak se purificira flash kromatografijom (etil acetat : metanol = 9:1) da se dobije O-((1R)-endo-(+)-fenhilacetat)kvinidin (1.0119 g, 39%) kao svijetlo žućkasta pjena. Under nitrogen, NaH (0.3 g, 7.5 mmol, 60% in mineral oil) was washed with hexane (2×5 mL) and suspended in DMF (25 mL). Quinidine (1,620 g, 5 mmol) is added to the mixture in small portions. The reaction mixture is stirred until the solution turns yellow (about 2.5 hours). It is then cooled to 0°C. (1R)-endo-(+)-phenyl chloroacetate (1.728 g, 7.5 mmol) was added dropwise over a period of over 1 minute to the cooled reaction mixture. The reaction mixture was stirred for 1 hour at 0°C, 1.5 hour at room temperature, and carefully quenched by addition of H2O (35 mL) and then ethyl acetate (35 mL) was added. The organic and inorganic layers are separated. The aqueous phase was extracted with ethyl acetate (35 mL). Combine the organic phases, wash with NaHCO3 (17 mL), water (3×17 mL), sat. NaCl (17 mL), dried over Na2SO4 and concentrated under reduced pressure. The brown residue was purified by flash chromatography (ethyl acetate : methanol = 9:1) to give O-((1R)-endo-(+)-phenylacetate)quinidine (1.0119 g, 39%) as a light yellowish foam.

Primjer 19 Example 19

Sinteza O-cijanometilkvinidina (QD-CN) Synthesis of O-cyanomethylquinidine (QD-CN)

[image] [image]

U atmosferi dušika, NaH (0.266 mg, 6.66 mmol, 60% u mineralnom ulju) se ispere s heksanom (2×10 mL) i suspendira u DMF (10 mL). U smjesu u malim obrocima doda se kvinidin (0.648 g, 2.0 mmol). Reakcijska smjesa se miješa sve dok otopina ne postane žute boje (oko 2 sata). Potom se ohladi na 0°C. Kloracetonitril (0.227 g, 3 mmol) se doda kap po kap u razdoblju iznad 5 minute u ohlađenu reakcijsku smjesu. Reakcijska smjesa se miješa kroz 1.5 sat na 0°C, 1.5 sat na sobnoj temperaturi (kontrola s TLC, konverzija 40%, etil acetat : metanol=5:2). Smjesa se ponovo ohladi na 0°C, doda se kloracetonitril (0.227 g, 3 mmol) i doda kap po kap u razdoblju iznad 5 minuta i reakcijska smjesa se ostavi preko noći miješati na sobnoj temperaturi (kontrola TLC, poboljšanje konverzije, etil acetat : metanol= 5:2), Smjesa se ohladi na 0°C, i pažljivo ugasi dodavanjem H2O (13 mL) i potom se doda toluen (13 mL). Organski i anorganski slojevi se separiraju. Vodena faza se ekstrahira s toluenom (3×7 mL). Organske faze se spoje, isperu s NaHC03 (7 mL), zasić. NaCl (7 mL), vodom (5x7 mL), osuši iznad Na2SO4 i koncentrira pod reduciranim tlakom. Crni ostatak se purificira flash kromatografijom (etil acetat : metanol = 5:2) da se dobije O-cijanometilkvinidin (85.4 mg, 12%) kao svijetlo smeđe viskozno ulje. 1H NMR (CDCl3) : δ 1.32-1.88 (m,4H), 1.95-2.10 (m, 1H), 2.25-2.36 (m, 1H), 2.70-2.89 (m,2H), 2.91-3.03 (m, 1H), 3.05-3.22 (m,2H), 3,97 (s,3H), 4.03 (d,J=16.0 Hz, 1H), 4.31 (d,J=16.0 Hz, 1H), 5.09-5.18 (m,2H), 5.33-5.56 (br, 1H), 5.99-6.11 (m, 1H), 7.30-7.46 (m,3H), 8.05 (d,J=9.2 Hz, 1H), 8.77 (d,J=4.8 Hz, 1H). Under nitrogen, NaH (0.266 mg, 6.66 mmol, 60% in mineral oil) was washed with hexane (2×10 mL) and suspended in DMF (10 mL). Quinidine (0.648 g, 2.0 mmol) was added to the mixture in small portions. The reaction mixture is stirred until the solution turns yellow (about 2 hours). It is then cooled to 0°C. Chloroacetonitrile (0.227 g, 3 mmol) was added dropwise over 5 minutes to the cooled reaction mixture. The reaction mixture is stirred for 1.5 hours at 0°C, 1.5 hours at room temperature (control with TLC, conversion 40%, ethyl acetate:methanol=5:2). The mixture was cooled again to 0°C, chloroacetonitrile (0.227 g, 3 mmol) was added dropwise over a period of over 5 minutes and the reaction mixture was left to stir overnight at room temperature (TLC control, conversion improvement, ethyl acetate: methanol= 5:2), The mixture was cooled to 0°C, and carefully quenched by addition of H2O (13 mL) and then toluene (13 mL) was added. The organic and inorganic layers are separated. The aqueous phase is extracted with toluene (3×7 mL). The organic phases were combined, washed with NaHCO 3 (7 mL), satd. NaCl (7 mL), water (5x7 mL), dried over Na2SO4 and concentrated under reduced pressure. The black residue was purified by flash chromatography (ethyl acetate : methanol = 5:2) to give O-cyanomethylquinidine (85.4 mg, 12%) as a light brown viscous oil. 1H NMR (CDCl3) : δ 1.32-1.88 (m, 4H), 1.95-2.10 (m, 1H), 2.25-2.36 (m, 1H), 2.70-2.89 (m, 2H), 2.91-3.03 (m, 1H) ), 3.05-3.22 (m,2H), 3.97 (s,3H), 4.03 (d,J=16.0 Hz, 1H), 4.31 (d,J=16.0 Hz, 1H), 5.09-5.18 (m, 2H), 5.33-5.56 (br, 1H), 5.99-6.11 (m, 1H), 7.30-7.46 (m, 3H), 8.05 (d,J=9.2 Hz, 1H), 8.77 (d,J=4.8 Hz , 1H).

Primjer 20 Example 20

Sinteza O-(1-pinakolon)kvinidin (QD-PC) Synthesis of O-(1-pinacolone)quinidine (QD-PC)

[image] [image]

U atmosferi dušika, NaH (160 mg, 4 mmol, 60% u mineralnom ulju) se ispere s heksanom (2×5 mL) i suspendira u DMF (15 mL). U smjesu u malim obrocima doda se kvinidin (0.972 g, 3 mmol). Reakcijska smjesa se miješa sve dok otopina ne postane žute boje (oko 2 sata). Potom se ohladi na 0°C. 1-klorpinakolon (0.670 g, 5 mmol) se doda odjednom u ohlađenu reakcijsku smjesu. Reakcijska smjesa se miješa kroz 0.5 sat na 0°C, 3.5 sata na sobnoj temperaturi. Potom se doda drugi dio smjese 1-klorpinaklona (0.670 g, 5 mmol) u jednom obroku. Smjesa se miješa na sobnoj temperaturi kroz 36 sati i pažljivo prekine dodavanjem H2O (20 mL) i potom se doda toluen (20 mL). Organski i anorganski slojevi se separiraju. Vodena faza se ekstrahira s toluenom (2×20 mL). Organske faze se spoje, isperu s vodom (5×10 mL), osuše iznad Na2SO4 i koncentriraju pod reduciranim tlakom. Smeđi ostatak se purificira flash kromatografijom (etil acetat : metanol = 5:1) da se dobije O-(1-pinakolone)kvinidin (0.3296 g, 26%) kao bezbojno ulje. 1H MMR (CDCl3) : δ 1.06 (s,9H), 1.23-1.38 (m, 1H), 1.45-1.63 (m,2H), 1.76-1.84 (m, 1H), 2.22-2.38 (m,2H), 2.72-3.20 (m,4H), 3.32-3.54 (m, 1H), 3.95 (s,3H), 4.20 (d,J=18.0 Hz, 1H), 4.29 (d,J=17.2 Hz, 1H), 5.10-5.20 (m,2H), 5.26-5.48 (m, 1H), 6.16-6.26 (m, 1H), 7.30-7.48 (m,3H), 8.04 (d,J=9.2 Hz, 1H), 8.75 (d,J=4.4 Hz, 1H). Under nitrogen, NaH (160 mg, 4 mmol, 60% in mineral oil) was washed with hexane (2×5 mL) and suspended in DMF (15 mL). Quinidine (0.972 g, 3 mmol) was added to the mixture in small portions. The reaction mixture is stirred until the solution turns yellow (about 2 hours). It is then cooled to 0°C. 1-Chloropinacolone (0.670 g, 5 mmol) was added all at once to the cooled reaction mixture. The reaction mixture is stirred for 0.5 hours at 0°C, 3.5 hours at room temperature. Then the second part of the mixture of 1-chlorpinaclone (0.670 g, 5 mmol) was added in one portion. The mixture was stirred at room temperature for 36 hours and carefully quenched by addition of H 2 O (20 mL) and then toluene (20 mL) was added. The organic and inorganic layers are separated. The aqueous phase is extracted with toluene (2×20 mL). The organic phases are combined, washed with water (5×10 mL), dried over Na2SO4 and concentrated under reduced pressure. The brown residue was purified by flash chromatography (ethyl acetate : methanol = 5:1) to give O-(1-pinacolone)quinidine (0.3296 g, 26%) as a colorless oil. 1H MMR (CDCl3) : δ 1.06 (s,9H), 1.23-1.38 (m,1H), 1.45-1.63 (m,2H), 1.76-1.84 (m,1H), 2.22-2.38 (m,2H), 2.72-3.20 (m,4H), 3.32-3.54 (m,1H), 3.95 (s,3H), 4.20 (d,J=18.0 Hz, 1H), 4.29 (d,J=17.2 Hz, 1H), 5.10 -5.20 (m,2H), 5.26-5.48 (m,1H), 6.16-6.26 (m,1H), 7.30-7.48 (m,3H), 8.04 (d,J=9.2 Hz, 1H), 8.75 (d ,J=4.4 Hz, 1H).

Primjer 21 Example 21

Sinteza O-pivaloilkvinidin (QD-Piv) Synthesis of O-pivaloylquinidine (QD-Piv)

[image] [image]

U suspenziju kvinidina (0.972 g, 3 mmol) u toluenu koja se miješa na O °C , doda se kap po kap pivaloil klorid (0.362 g, mmol), slijedi dodavanje trietil amina (1 mL). Reakcijska smjesa se miješa na sobnoj temperaturi kroz 9.5 sati. Potom se odjednom doda drugi dio pivaloil klorida (0.362 g, 3 mmol). Smjesa se miješa na sobnoj temperaturi kroz 13 sati i pažljivo ugasi dodavanjem H2O (20 mL) i potom se doda toluen (20 mL). Organski i anorganski slojevi se separiraju. Vodena faza se ekstrahira s toluenom (20 mL). Organske faze se spoje, isperu s zasić.NaHCO3 (10 mL), zasić NaCl (2×10 mL), osuši iznad Na2SO4 i koncentrira pod reduciranim tlakom. Smeđi ostatak se purificira flash kromatografijom (etil acetat : metanol = 10:1) da se dobije O-pivaloilkvinidin (0.5582 g, 46%) kao bezbojno ulje. 1H NMR (CDCl3) : δ 1.22 (s,9H), 1.48-1.66 (m, 3H), 1.74-1.86 (m,2H), 2.30-2.52 (m, 1H), 2.65-2.82 (m,2H), 2.92 (d,J=8.8 Hz,2H), 3.26-3.38 (m, 1H), 3.96 (s,3H), 5.06-5.15 (m,2H), 5.97-6.08 (m, 1H), 6.44 (d,J=8.0 Hz, 1H), 7.31-7.45 (m,3H), 8.00 (d,J=9.2 Hz, 1H), 8.73 (d,J=4.4 Hz, 1H). Pivaloyl chloride (0.362 g, mmol) was added dropwise to a suspension of quinidine (0.972 g, 3 mmol) in toluene, which was stirred at 0 °C, followed by the addition of triethyl amine (1 mL). The reaction mixture is stirred at room temperature for 9.5 hours. Then the second part of pivaloyl chloride (0.362 g, 3 mmol) is added all at once. The mixture was stirred at room temperature for 13 hours and carefully quenched by addition of H2O (20 mL) and then toluene (20 mL) was added. The organic and inorganic layers are separated. The aqueous phase is extracted with toluene (20 mL). The organic phases are combined, washed with saturated NaHCO3 (10 mL), saturated NaCl (2×10 mL), dried over Na2SO4 and concentrated under reduced pressure. The brown residue was purified by flash chromatography (ethyl acetate : methanol = 10:1) to give O-pivaloylquinidine (0.5582 g, 46%) as a colorless oil. 1H NMR (CDCl3): δ 1.22 (s,9H), 1.48-1.66 (m,3H), 1.74-1.86 (m,2H), 2.30-2.52 (m,1H), 2.65-2.82 (m,2H), 2.92 (d, J=8.8 Hz, 2H), 3.26-3.38 (m, 1H), 3.96 (s, 3H), 5.06-5.15 (m, 2H), 5.97-6.08 (m, 1H), 6.44 (d, J=8.0 Hz, 1H), 7.31-7.45 (m,3H), 8.00 (d,J=9.2 Hz, 1H), 8.73 (d,J=4.4 Hz, 1H).

Primjer 22 Example 22

Sinteza O-(1-adamantilacetata)kvinidina (Q-AD) Synthesis of O-(1-adamantylacetate)quinidine (Q-AD)

[image] [image]

U atmosferi dušika, NaH (180 mg, 4.5 mmol, 60% u mineralnom ulju) se ispere s heksanom (2×5 mL) i suspendira u DMF (15 mL). U smjesu u malim obrocima doda se kvinidin (0.972 g, 3 mmol). Reakcijska smjesa se miješa sve dok otopina ne postane žute boje (oko 4.5 sata). Potom se ohladi na 0°C. 1-adamantil kloracetat (1.028 g, 4.5 mmol) se doda u malim obrocima u ohlađenu reakcijsku smjesu. Reakcijska smjesa se miješa kroz 1 sat na 0°C, 1 sat na sobnoj temperaturi, ohladi na 0°C, pažljivo prekine dodavanjem H2O (20 mL) i potom se ekstrahira s etil acetatom (20 mL, 10 mL). Organske faze se spoje, isperu s zasić.NaHCO3 (10 mL), vodom (3×10 mL), zasić. NaCl (10 mL), osuši iznad Na2SO4 i koncentrira pod reduciranim tlakom. Smeđi ostatak se purificira flash kromatografijom (etil acetat : metanol = 10:1} da se dobije O-(1-adamantilacetat)kvinidin (0.4222 g, 27%) kao bijela pjena, 1H NMR (CDCl3): 1H NMR (CDCl3) : δ 1.48-1.76 (m,8H), 1.78-2.01 (m,3H), 2.04-2.12 (m,6H), 2.12-2.20 (m, 3H), 2.24-2.39 (m, 1H), 2.56-2.80 (m,2H), 3.03-3.27(m,2H), 3.44-3.72 (m, 1H), 3.76 (d,J=16 Hz, 1H), 3.96(s,3H), 3.97 (d,J=16 Hz, 1H), 4.90-5.01(m,2H), 5.20-5.56 (br, 1H9, 5.70-5.80 (m, 1H), 7.30-7.50 (m, 3H), 8.04 (d,J=9.2 Hz, 1H), 8.76 (d,J=4.4 Hz, 1H). Under nitrogen, NaH (180 mg, 4.5 mmol, 60% in mineral oil) was washed with hexane (2×5 mL) and suspended in DMF (15 mL). Quinidine (0.972 g, 3 mmol) was added to the mixture in small portions. The reaction mixture is stirred until the solution turns yellow (about 4.5 hours). It is then cooled to 0°C. 1-adamantyl chloroacetate (1.028 g, 4.5 mmol) was added in small portions to the cooled reaction mixture. The reaction mixture was stirred for 1 hour at 0°C, 1 hour at room temperature, cooled to 0°C, carefully quenched by addition of H2O (20 mL) and then extracted with ethyl acetate (20 mL, 10 mL). The organic phases are combined, washed with sat. NaHCO3 (10 mL), water (3×10 mL), sat. NaCl (10 mL), dried over Na2SO4 and concentrated under reduced pressure. The brown residue was purified by flash chromatography (ethyl acetate : methanol = 10:1) to give O-(1-adamantylacetate)quinidine (0.4222 g, 27%) as a white foam, 1H NMR (CDCl3): 1H NMR (CDCl3) : δ 1.48-1.76 (m,8H), 1.78-2.01 (m,3H), 2.04-2.12 (m,6H), 2.12-2.20 (m,3H), 2.24-2.39 (m,1H), 2.56-2.80 ( m,2H), 3.03-3.27(m,2H), 3.44-3.72 (m,1H), 3.76 (d,J=16 Hz, 1H), 3.96(s,3H), 3.97 (d,J=16 Hz , 1H), 4.90-5.01(m,2H), 5.20-5.56 (br, 1H9, 5.70-5.80 (m, 1H), 7.30-7.50 (m, 3H), 8.04 (d,J=9.2 Hz, 1H) , 8.76 (d,J=4.4 Hz, 1H).

Primjer 23 Example 23

Općeniti postupak za alkoholizu 2,3-dimetil sukcinin anhidrida General procedure for the alcoholysis of 2,3-dimethyl succinic anhydride

[image] [image]

U otopinu anhidrida (0.05-0.2 mmol) doda se alkohol (0.1-1.0 mmol) i katalizator (5-110 mola) u otapalu (0,5-5.0 mL) na temperaturi reakcije navedenoj u tablici. Reakcijska smjesa se inicijalno miješa i potom ostavi da se sjedne na onu temperaturu na kojoj je polazni materijal potrošen kao što je navedeno s TLC analizom* ili kiralnom GC ((3-CG, 130°C/20 min) ** analizom (0.5 sati-37 dana). Reakcija se prekine dodavanjem HCl (1N, 5 mL) u jednom obroku. Vodena faza se ekstrahira s eterom (2×20 mL). Organska faza se spoji, osuši iznad Na2SO4 i koncentrira da se dobije željeni produkt. Enantiomerni višak (ee) produkta se odredi s HPLC analizom diastereoizomerične smjese odgovarajućeg amid-estera proizvedenog iz produkta u skladu s modificiranim literaturnim postupkom (za trifluoretil ester) ili kiralnom GC analizom (p-CD, 130°C/20 min)(za metil ester). Alcohol (0.1-1.0 mmol) and catalyst (5-110 mol) in solvent (0.5-5.0 mL) are added to the anhydride solution (0.05-0.2 mmol) at the reaction temperature specified in the table. The reaction mixture is initially stirred and then allowed to settle to the temperature at which the starting material is consumed as indicated by TLC analysis* or chiral GC ((3-CG, 130°C/20 min) ** analysis (0.5 hours -37 days). The reaction was quenched by adding HCl (1N, 5 mL) in one portion. The aqueous phase was extracted with ether (2×20 mL). The organic phase was combined, dried over Na2SO4 and concentrated to give the desired product. Enantiomeric the excess (ee) of the product is determined by HPLC analysis of the diastereoisomeric mixture of the corresponding amide-ester produced from the product according to a modified literature procedure (for the trifluoroethyl ester) or chiral GC analysis (p-CD, 130°C/20 min) (for the methyl ester ).

Primjer 24 Example 24

Opći postupak alkoholize prokiralnih cikličnih anhidrida General process of alcoholysis of prochiral cyclic anhydrides

[image] [image]

Alkohol (0.15-1.0 mmol) se doda u otopinu anhidrida (0.1 mmol) i katalizatora (20-110 mol%) u otapalu (0.5-5.0 mL) na temperaturi reakcije navedenoj u tablici. Reakcijska smjesa se miješa na toj temperaturi sve dok se ne potroši polazni materijal kao što je naznačeno s GC (β-CD) analizom (19-141 sat). Reakcija se prekida dodavanjem HCl (1N, 4 mL) u jednom obroku (kada je substrat acido-senzitivan, poput 3-tert-butildimetilsilil glutaričnog anhidrida koji se koristi, H3PO4 (1.0 M) se koristi za prekidanje reakcije). Vodena faza se ekstrahira s eterom (40 mL). Organska faza se ispere s drugim obrokom HCl (1N, 4 mL)*, osuši iznad Na2SO4, i koncentrira da se dobije željeni produkt sa ili bez daljnje purifikacije s flash kromatografijom. Enantiomerični višak (ee) svakog produkta se određuje s HPLC analizom diastereoizomerične smjese odgovarajućeg amid-estara proizvedenog iz hemiestera u skladu s modificiranim postupkom iz literature ili kiralnom GC analizom. Alcohol (0.15-1.0 mmol) is added to a solution of anhydride (0.1 mmol) and catalyst (20-110 mol%) in solvent (0.5-5.0 mL) at the reaction temperature indicated in the table. The reaction mixture was stirred at this temperature until the starting material was consumed as indicated by GC (β-CD) analysis (19-141 hours). The reaction is quenched by addition of HCl (1N, 4 mL) in one portion (when the substrate is acid-sensitive, such as 3-tert-butyldimethylsilyl glutaric anhydride used, H 3 PO 4 (1.0 M) is used to quench the reaction). The aqueous phase is extracted with ether (40 mL). The organic phase was washed with another portion of HCl (1N, 4 mL)*, dried over Na 2 SO 4 , and concentrated to give the desired product with or without further purification by flash chromatography. The enantiomeric excess (ee) of each product is determined by HPLC analysis of the diastereoisomeric mixture of the corresponding amide-ester produced from the hemiester according to a modified literature procedure or by chiral GC analysis.

Primjer 25 Example 25

Proizvodnja amid-estera za ee analizu Production of amide esters for ee analysis

(Vidi J.Hiratake, M.Inagaki, Y.Yamamoto, J.Oda, J.Chem.Soc., Perkin Trans, l, 1987, 1053) (See J.Hiratake, M.Inagaki, Y.Yamamoto, J.Oda, J.Chem.Soc., Perkin Trans, l, 1987, 1053)

[image] [image]

Smjesu od hemiestera (0.1 mmol) i SOCl2 (14.3 mg, 0.12 mmol) u toluenu (3 mmol) se ostavi da se ohladi na 0°C i čuva na toj temperaturi kroz 10 minuta. U nastalu otopinu, potom se doda (R)-1-(1-naftil)etil-amin (18.8 mg, 0.11 mmol) i trietil amin (33.4 mg, 0.33 mmol). Nastala smjesa se ostavi miješati kroz 30 minuta na 0°C a zatim slijedi drugih 30 minuta na sobnoj temperaturi. Reakcija se potom prekine s HCl (1N, 5 mL), razrijedi s EtOAc (20 mL), ispere sa zasićenom NaHCO3 (5 mL) i slanom otopinom (5 mL). Organski sloj se osuši s Na2SO4. A mixture of hemiester (0.1 mmol) and SOCl2 (14.3 mg, 0.12 mmol) in toluene (3 mmol) was allowed to cool to 0°C and kept at that temperature for 10 minutes. (R)-1-(1-naphthyl)ethylamine (18.8 mg, 0.11 mmol) and triethyl amine (33.4 mg, 0.33 mmol) were then added to the resulting solution. The resulting mixture is left to stir for 30 minutes at 0°C, followed by another 30 minutes at room temperature. The reaction was then quenched with HCl (1N, 5 mL), diluted with EtOAc (20 mL), washed with saturated NaHCO3 (5 mL) and brine (5 mL). The organic layer is dried with Na2SO4.

Primjer 26 Example 26

Opći postupak alkoholize prokiralnih cikličnih anhidrida General process of alcoholysis of prochiral cyclic anhydrides

[image] [image]

Alkohol (0.15-1.0 mmol) se doda u otopinu anhidrida (0.1 mmol) i katalizatora (20-110 mol%) u odgovarajućem otapalu (0.5-5.0 mL) na temperaturi reakcije navedenoj u tablici. Reakcijska smjesa se u početku miješa na toj temperaturi i potom ostavi na toj temperaturi sve dok se ne potroši polazni materijal kao što je naznačeno s TLC analizom (2-186 sat). Reakcija se prekine dodavanjem HCl (1N, 3 mL) u jednom obroku. Vodena faza se ekstrahira s eterom (2×10 mL). Organska faza se spoji, ispere s HCl (1N, 2×3 mL), osuši iznad Na2SO4, i koncentrira da se dobije željeni produkt bez daljnje purifikacije. Čistoća produkta se određuje s NMR. Enantiomerični višak (ee) svakog produkta se određuje s HPLC analizom diastereoizomerične smjese odgovarajućeg amid-estara proizvedenog iz hemiestera u skladu s modificiranim postupkom iz literature. Alcohol (0.15-1.0 mmol) is added to a solution of anhydride (0.1 mmol) and catalyst (20-110 mol%) in a suitable solvent (0.5-5.0 mL) at the reaction temperature specified in the table. The reaction mixture is initially stirred at that temperature and then left at that temperature until the starting material is consumed as indicated by TLC analysis (2-186 hours). The reaction was quenched by adding HCl (1N, 3 mL) in one portion. The aqueous phase is extracted with ether (2×10 mL). The organic phase was combined, washed with HCl (1N, 2×3 mL), dried over Na2SO4, and concentrated to give the desired product without further purification. Product purity is determined by NMR. The enantiomeric excess (ee) of each product is determined by HPLC analysis of the diastereoisomeric mixture of the corresponding amide-ester produced from the hemiester according to a modified literature procedure.

Primjer 27 Example 27

Postupak trifluoretanolize cis-1,3-dibenzil-tetrahidro-2H-furo[3,4-d]imidazol-2,4,6-triona Process of trifluoroethanolysis of cis-1,3-dibenzyl-tetrahydro-2H-furo[3,4-d]imidazole-2,4,6-trione

[image] [image]

Smjesa od QD-(-)-MN (57.2 mg, 0.11 mmol) i 4A molekularno sito (22 mg) u bezvodnom toluenu se miješa na sobnoj temperaturi kroz 5 min, potom se doda cis-1,3-dibenzil-tetrahidro-2H-furo-[3,4-d]imidazol-2,4,6-trion (33.6 mg, 0.10 mmol), nakon čega se smjesa ohladi na -43°C i miješa sljedećih 10 min. CF3CH2OH se doda u jednom obroku. Smjesa se miješa na toj temperaturi sve dok se ne potroši polazni materijal kao što je naznačeno s TLC (20% metanol u metilen kloridu) analizom (9 sati). Aq. HCl (1.0 N, 4.0 mL) se doda da se prekine reakcija. Vodena faza se ekstrahira s 40 mL dietiletara. Spojena organska faza se ispere s drugim obrokom aq. HCl (1N, 4 mL),osuši s NaSO4 i koncentrira da se dobije hemiester kao bijela krutina (38.8 mg, 89%,94%ee) koji se čisti s NMR. Enantiomerički višak (ee) produkta se određuje s HPLC analizom diastereoizomeričke smjese odgovarajućeg amid-estera proizvedenog iz hemiestera u skladu s modificiranim postupkom iz literature. A mixture of QD-(-)-MN (57.2 mg, 0.11 mmol) and 4A molecular sieve (22 mg) in anhydrous toluene was stirred at room temperature for 5 min, then cis-1,3-dibenzyl-tetrahydro-2H was added -furo-[3,4-d]imidazole-2,4,6-trione (33.6 mg, 0.10 mmol), after which the mixture was cooled to -43°C and stirred for the next 10 min. CF3CH2OH is added in one portion. The mixture was stirred at this temperature until the starting material was consumed as indicated by TLC (20% methanol in methylene chloride) analysis (9 hours). Aq. HCl (1.0 N, 4.0 mL) was added to quench the reaction. The aqueous phase is extracted with 40 mL of diethyl ether. The combined organic phase is washed with a second portion of aq. HCl (1N, 4 mL), dried over NaSO4 and concentrated to give the hemiester as a white solid (38.8 mg, 89%, 94%ee) which was purified by NMR. The enantiomeric excess (ee) of the product is determined by HPLC analysis of the diastereoisomeric mixture of the corresponding amide-ester produced from the hemiester according to a modified procedure from the literature.

Primjer 28 Example 28

Postupak analize ee Analysis procedure ee

(Vidi J.Hiratake, M.Inagaki, Y.Yamamoto, J.Oda, J. Chem. Soc., Perkin Trans, 1, 1987, 1053) (See J. Hiratake, M. Inagaki, Y. Yamamoto, J. Oda, J. Chem. Soc., Perkin Trans, 1, 1987, 1053)

[image] [image]

U otopinu hemiestera (0.1 mmol) u suhom toluenu (6 mmol) i metilen kloridu (6 mL) na 0°C doda se tionil klorid (14.3 mg, 0.12 mmol). Smjesa se ostavi da se miješa na 0°C kroz 15 min zatim slijedi dodavanje (R)-1-(1-naftil)etilamina (18.8 mg, 0.11 mmol) i trietilamina (33.4 mg, 0.33 mmol). Nastala smjesa se ostavi miješati kroz 1 sat na 0°C čemu slijedi 1 sat na sobnoj temperaturi. Reakcija se potom prekine s HCl (1N, 5 mL), razrijedi s EtOAc (40 mL), ispere sa zasićenom NaHCO3 (5 mL) i slanom otopinom (5 mL). Organski sloj se osuši s Na2SO4, i koncentrira na polovicu početnog volumena. Thionyl chloride (14.3 mg, 0.12 mmol) was added to a solution of the hemiester (0.1 mmol) in dry toluene (6 mmol) and methylene chloride (6 mL) at 0°C. The mixture was allowed to stir at 0°C for 15 min followed by the addition of (R)-1-(1-naphthyl)ethylamine (18.8 mg, 0.11 mmol) and triethylamine (33.4 mg, 0.33 mmol). The resulting mixture is left to stir for 1 hour at 0°C, followed by 1 hour at room temperature. The reaction was then quenched with HCl (1N, 5 mL), diluted with EtOAc (40 mL), washed with saturated NaHCO3 (5 mL) and brine (5 mL). The organic layer is dried with Na2SO4, and concentrated to half the initial volume.

Primjer 29 Example 29

Postupak alkoholize cis-1,2,3,6-tetrahidroftaličnog anhidrida u 1.0 mmol omjeru i obnavljanje katalizatora Process of alcoholysis of cis-1,2,3,6-tetrahydrophthalic anhydride in 1.0 mmol ratio and recovery of the catalyst

[image] [image]

Smjesa od QD-(-)-MN (purificiran s hidroklorid soli) (572 mg, 1.1 mmol) i 4A molekularna sita (220 mg) u bezvodnom toluenu se miješa na sobnoj temperaturi kroz 10 min, potom se doda cis-1,2,3,6-tetrahidroftalični anhidrid (152 mg, 1.0 mmol), nakon čega se smjesa ohladi na -27°C i miješa sljedećih 15 min. Trifluoretanol se doda kap po kap unutar 1 minute. Smjesa se miješa na toj temperaturi sve dok se ne potroši sav polazni materijal kao što je naznačeno TLC (etil acetat : heksan = 1:1) analizom (4 sata). Aq.HCl (1N, 10 mL) se doda da bi se ugasila reakcija. Vodena faza se ekstrahira s 50 mL dietiletera. Organska faza se ispere s aq. HCl (1N, 2×10 mL), osuši s NaSO4 i koncentrira da se dobije hemiester kao bezbojno ulje (239.7 mg, 95%, 98%ee) bez daljnje purifikacije. A mixture of QD-(-)-MN (purified with hydrochloride salt) (572 mg, 1.1 mmol) and 4A molecular sieves (220 mg) in anhydrous toluene was stirred at room temperature for 10 min, then cis-1,2 was added ,3,6-tetrahydrophthalic anhydride (152 mg, 1.0 mmol), after which the mixture was cooled to -27°C and stirred for the next 15 min. Trifluoroethanol is added dropwise within 1 minute. The mixture was stirred at this temperature until all the starting material was consumed as indicated by TLC (ethyl acetate : hexane = 1:1) analysis (4 hours). Aq.HCl (1N, 10 mL) was added to quench the reaction. The aqueous phase is extracted with 50 mL of diethyl ether. The organic phase is washed with aq. HCl (1N, 2×10 mL), dried with NaSO4 and concentrated to give the hemiester as a colorless oil (239.7 mg, 95%, 98%ee) without further purification.

Obnavljanje katalizatora Catalyst recovery

Za obnavljanje katalizatora QD-(-)-MN, KOH se doda u vodeni sloj za podešavanje pH vrijednosti otopine na 11. Nastala smjesa se ekstrahira s etil acetatom (3×15 mL). Spojeni organski sloj se osuši iznad Na2SO4 i koncentrira da se dobije katalizator (količina, obnovljivost >95%). Obnovljeni katalizator se koristi za novu seriju alkoholize cis-1,2,3,6-tetrahidroftalični anhidrid (1.0 mmol) da se dobije hemiester u 99%ee i 95% prinosa, To recover the QD-(-)-MN catalyst, KOH was added to the aqueous layer to adjust the pH value of the solution to 11. The resulting mixture was extracted with ethyl acetate (3×15 mL). The combined organic layer is dried over Na2SO4 and concentrated to give the catalyst (amount, recovery >95%). The recovered catalyst is used for a new series of alcoholyses of cis-1,2,3,6-tetrahydrophthalic anhydride (1.0 mmol) to give the hemiester in 99%ee and 95% yield,

Primjer 30 Example 30

Sinteza M-(1-adamantil)kloracetamid upotrebom postupka koji je jednak s opisanim u Helv.Chim.Acta 1988, 71, 1553 Synthesis of M-(1-adamantyl)chloroacetamide using a procedure equivalent to that described in Helv.Chim.Acta 1988, 71, 1553

[image] [image]

Otopina kloracetil klorida (1.6 mL, 20 mmol) u bezvodnom dietil eteru (10 mL) se doda kap po kap unutar 5 min u otopinu od 1-adamantanamina (3.0 g, 20 mmol) i piridina (1.63 mL, 20 mmol) u bezvodnom dietil eteru (40 mL) na 0°C. Žuta suspenzija se miješa kroz l sat na toj temperaturi. Precipitat se odstrani filtracijom i ispere s dietil eterom (10 mL). Spojena organska otopina se ispere s HCl (2N, 2×15 mL), slijedi s zasić.NaHCO3 (15 mL), zasić. NaCl (15 mL) otopinom i osuši s Na2SO4. Otapalo se odstrani na reduciranim tlakom a ostatak se rekristalizira iz dietil eter-heksani da se dobije N-(1-adamantil)kloracetamid (1.551 g, 34%) kao žuta krutina. A solution of chloroacetyl chloride (1.6 mL, 20 mmol) in anhydrous diethyl ether (10 mL) was added dropwise over 5 min to a solution of 1-adamantanamine (3.0 g, 20 mmol) and pyridine (1.63 mL, 20 mmol) in anhydrous diethyl ether (40 mL) at 0°C. The yellow suspension is stirred for 1 hour at this temperature. The precipitate was removed by filtration and washed with diethyl ether (10 mL). The combined organic solution was washed with HCl (2N, 2×15 mL), followed by sat. NaHCO3 (15 mL), sat. NaCl (15 mL) solution and dried with Na2SO4. The solvent was removed under reduced pressure and the residue was recrystallized from diethyl ether-hexanes to give N-(1-adamantyl)chloroacetamide (1.551 g, 34%) as a yellow solid.

Primjer 31 Example 31

Sinteza O-(1-adamantilacetamid)kvinidin (kromatografski purificran) Synthesis of O-(1-adamantylacetamide) quinidine (chromatographically purified)

[image] [image]

U atmosferi dušika, NaH {0.12 g, 3.0 mmol, 60% u mineralnom ulju) se ispere s heksanom (2×3 mL) i suspendira u DMF (10 mL). Kvinidin (0.652 g, 2.0 mmol) se doda u malim obrocima u smjesu. Reakcijska smjesa se miješa sve dok otopina ne postane žute boje (oko 2 sata). Potom se ohladi na 0°C. U ohlađenu reakcijsku smjesu u malim obrocima doda se N-(1-adamantil)kloracetamid (0,683 g, 3.0 mmol). Reakcijska smjesa se miješa 2 sata na 0°C i pažljivo ugasi s H2O (14 mL) i potom se doda etil acetat (14 mL). Organski i vodeni slojevi se separiraju. Vodena faza se ekstrahira s etil acetatom (2×14 mL). Organska faza se spoji, ispere zasić.NaHCO3 (14 mL), vodom (3×14 mL), zasić. NaCl (14 mL), osuši iznad Na2SO4, i koncentrira pod reduciranim tlakom. Smeđi ostatak se purificira flash kormatografijom (etil acetat: metanol=9:1) da se dobije O-(1-adamantilacetamid)kvinidin (0.8383 g, 81%) kao bijela kristalna pjena. 1H NMR(CDCl3) : 6 1.27-1.39 (m, 1H), 1.48-1.64 (m,2H), 1.65-1.76 (br,6H), 1.85 (s, 1H), 1.91-2.07 (m, 1H), 2.02 (s,6H), 2.07-2.14 (br,3H), 2.26-2.38 (m, 1H)), 2.71-3.27 (m, 5H), 3.81 (s,2H), 3.96 (s,3H), 5.05-5.20 (m,2H), 5.20-5.50 (br, 1H), 5.96-6.07 (m, 1H), 6.30-6.50 (br, 1H), 7.20-7.43 (m,3H), 8..05 (s,J=9.2 Hz, 1H), 8.77 (d,J=4.8 Hz, 1H). Under nitrogen, NaH (0.12 g, 3.0 mmol, 60% in mineral oil) was washed with hexane (2×3 mL) and suspended in DMF (10 mL). Quinidine (0.652 g, 2.0 mmol) was added in small portions to the mixture. The reaction mixture is stirred until the solution turns yellow (about 2 hours). It is then cooled to 0°C. N-(1-adamantyl)chloroacetamide (0.683 g, 3.0 mmol) was added to the cooled reaction mixture in small portions. The reaction mixture was stirred for 2 hours at 0°C and carefully quenched with H2O (14 mL) and then ethyl acetate (14 mL) was added. The organic and aqueous layers are separated. The aqueous phase is extracted with ethyl acetate (2×14 mL). The organic phase was combined, washed with sat. NaHCO3 (14 mL), water (3×14 mL), sat. NaCl (14 mL), dried over Na2SO4, and concentrated under reduced pressure. The brown residue was purified by flash chromatography (ethyl acetate:methanol=9:1) to give O-(1-adamantylacetamide)quinidine (0.8383 g, 81%) as a white crystalline foam. 1H NMR(CDCl3) : δ 1.27-1.39 (m, 1H), 1.48-1.64 (m, 2H), 1.65-1.76 (br, 6H), 1.85 (s, 1H), 1.91-2.07 (m, 1H), 2.02 (s,6H), 2.07-2.14 (br,3H), 2.26-2.38 (m,1H)), 2.71-3.27 (m,5H), 3.81 (s,2H), 3.96 (s,3H), 5.05 -5.20 (m,2H), 5.20-5.50 (br, 1H), 5.96-6.07 (m, 1H), 6.30-6.50 (br, 1H), 7.20-7.43 (m,3H), 8..05 (s ,J=9.2 Hz, 1H), 8.77 (d,J=4.8 Hz, 1H).

Primjer 32 Example 32

Sinteza 2-metilpropil kloracetata (Vidi Hev.Chim.Acta 1988, 71,1553) Synthesis of 2-methylpropyl chloroacetate (See Hev.Chim.Acta 1988, 71,1553)

[image] [image]

Otopina kloracetil klorida (3.2 mL, 40 mmol) u bezvodnom dietil eteru (20 mL) se doda kap po kap unutar 1 h u otopinu 2-metilpropanola (2.96 g, 40 mmol) ipiridina (3.25 mL, 40 mmol) i bezvodni dietil eter (80 mL) na 0°C. Nakon zagrijavanja na sobnu temperaturu, bijela suspenzija se miješa kroz 3 sata. Precipitat se odstrani filtracijom i ispere s dietil eterom (15 mL). Spojena organska otopina se ispere s HCl (2N, 30 mL), slijedi zasić.NaHCO3 (30 mL), zasić. NaCl (30 mL) otopine i osuši s Na2SO4. Otapalo se odstranjuje na oko 60 mmHg/30°C da se dobije 2-metilpropil kloracetat (5.65 g,94%) koji se koristi bez daljnje purifikacije. A solution of chloroacetyl chloride (3.2 mL, 40 mmol) in anhydrous diethyl ether (20 mL) was added dropwise over 1 h to a solution of 2-methylpropanol (2.96 g, 40 mmol), pyridine (3.25 mL, 40 mmol) and anhydrous diethyl ether ( 80 mL) at 0°C. After warming to room temperature, the white suspension is stirred for 3 hours. The precipitate was removed by filtration and washed with diethyl ether (15 mL). The combined organic solution was washed with HCl (2N, 30 mL), followed by sat. NaHCO3 (30 mL), sat. NaCl (30 mL) solution and dried with Na2SO4. The solvent is removed at about 60 mmHg/30°C to give 2-methylpropyl chloroacetate (5.65 g, 94%) which is used without further purification.

Primjer 33 Example 33

Sinteza O-(2-metilpropilacetat)kvinidina (kromatografska purifikacija) Synthesis of O-(2-methylpropylacetate)quinidine (chromatographic purification)

[image] [image]

kvinidin O-(2-metilpropilacetat)kvinidin QD-MP quinidine O-(2-methylpropylacetate)quinidine QD-MP

U atmosferi dušika, NaH (0.12 g, 3 mmol, 60% u mineralnom ulju) se ispere s heksanom (2×3 mL) i suspendira u DMF (10 mL). Kvinidin (0.648 g, 2 mmol) se doda u smjesu u malim obrocima. Reakcijska smjesa se miješa sve dok otopina ne dobije žutu boju (oko 2 sata). Potom se ohladi na 0°C. 2-metilpropil kloracetat (0.452 g, 3 mmol) se doda kap po kap tijekom razdoblja preko 1 min u ohlađenu reakcijsku smjesu. Reakcijska smjesa se miješa kroz 4 h na 0°C i pažljivo ugasi s H2O (14 mL) i potom se doda etil acetat (14 mL). Organski i vodeni slojevi se odvoje. Vodena faza se ekstrahira s etil acetatom (2×14 mL). Organske faze se spoje, isperu sa zasić. NaHCO3 (14 mL), vodom (3×14 mL), zasić. NaCl (14 mL), osuši iznad Na2SO4, i koncentrira pod reduciranim tlakom. Smeđi ostatak se purificra flash kromatografijom (etil acetat:metanol=9:1) da se dobije O-(2-metilpropilacetat)kvinidin (0.278 g, 32%) kao svijetlo smeđe ulje. 1H NMR(CDCl3): δ 0.90 (d,J=6.8 Hz, 6H), 1.22-1.39 (m, 1H), 1.48-1.69 (m,2H), 1.79-1.86 (br, 1H), 1.86-1.98 (m, 1H), 2.21-2.39 (m,2H), 2.75-3.22 (m,4H), 3.44-3.67 (br, 1H), 3.88-4.04 (m, 6H), 4.12 (d,J=16.4 Hz, 1H), 5.08-5.23 (m, 2H), 5.44-5.60(br, 1H), 6.10-6.24(m, 1H), 7. 32-7.54(m, 3H), 8.04 (d,J=9.2 Hz, 1H), 8.76 (d, J=4.4Hz, 1H). Under nitrogen, NaH (0.12 g, 3 mmol, 60% in mineral oil) was washed with hexane (2×3 mL) and suspended in DMF (10 mL). Quinidine (0.648 g, 2 mmol) was added to the mixture in small portions. The reaction mixture is stirred until the solution turns yellow (about 2 hours). It is then cooled to 0°C. 2-Methylpropyl chloroacetate (0.452 g, 3 mmol) was added dropwise over 1 min to the cooled reaction mixture. The reaction mixture was stirred for 4 h at 0°C and carefully quenched with H2O (14 mL) and then ethyl acetate (14 mL) was added. The organic and aqueous layers are separated. The aqueous phase is extracted with ethyl acetate (2×14 mL). The organic phases are combined, washed with sat. NaHCO3 (14 mL), water (3×14 mL), sat. NaCl (14 mL), dried over Na2SO4, and concentrated under reduced pressure. The brown residue was purified by flash chromatography (ethyl acetate:methanol=9:1) to give O-(2-methylpropylacetate)quinidine (0.278 g, 32%) as a light brown oil. 1H NMR(CDCl3): δ 0.90 (d,J=6.8 Hz, 6H), 1.22-1.39 (m, 1H), 1.48-1.69 (m,2H), 1.79-1.86 (br, 1H), 1.86-1.98 ( m, 1H), 2.21-2.39 (m,2H), 2.75-3.22 (m,4H), 3.44-3.67 (br, 1H), 3.88-4.04 (m, 6H), 4.12 (d,J=16.4 Hz, 1H), 5.08-5.23 (m, 2H), 5.44-5.60(br, 1H), 6.10-6.24(m, 1H), 7.32-7.54(m, 3H), 8.04 (d,J=9.2 Hz, 1H), 8.76 (d, J=4.4Hz, 1H).

Inkorporacija referencija Incorporation of references

Svi U.S. patenti i U.S. objavljene patentne aplikacije citirani ovdje su ovim inkorporirane s referencijama. All U.S. patents and U.S. published patent applications cited herein are hereby incorporated by reference.

Ekvivalenti Equivalents

Stručnjaci će to prepoznati, ili će ih biti moguće utvrditi koristeći ne više od rutinskog eksperimentiranja, mnoge ekvivalencije za specifična ostvarenja izuma opisanog ovdje. Takvi ekvivalenti su namijenjeni da budu obuhvaćeni sa zahtjevima koji slijede. Those skilled in the art will recognize, or be able to determine using no more than routine experimentation, the many equivalences for specific embodiments of the invention described herein. Such equivalents are intended to be covered by the claims that follow.

Claims (135)

1. Spoj predstavljen formulom I [image] naznačen time, da R predstavlja -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, -(C(R3)2)nC(O)R5, -(C(R3)2)nOCR6, (C(R3)2)nOPO(OR5)2, -(C(R3)2)nOR5, -(C(R3)2)nN(R5)2, -(C(R3)2)nSR5 ili -(C(R3)2)nNO2; R1 predstavlja alkil ili alkenil; R2 predstavlja alkil, cikloalkil ili alkenil; R3 predstavlja nezavisno za pojedini slučaj H, alkil, alkenil, aril, cikloalkil, aralkil, heteroalkil, halogen, cijano, amino, acil, alkoksil, sililoksi, amino, nitro, tiol, amin, imin, amid, fosfonat, fosfin, karbonil, karboksil, silil, eter, tioeter, sulfonil, selenoeter, keton, aldehid ili ester; R4 predstavlja cikloalkil, -CH(R3)2, alkenil, alkinil, aril ili aralkil; R5 predstavlja nezavisno od pojedinog slučaja H, alkil, alkenil, aril, cikloalkil, ili aralkil; R6 predstavlja po izboru supstituirani alkil, alkenil, aril, ili aralkil; i n je 1-10.1. A compound represented by formula I [image] indicated by that R represents -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, -(C (R3)2)nC(O)R5, -(C(R3)2)nOCR6, (C(R3)2)nOPO(OR5)2, -(C(R3)2)nOR5, -(C(R3) 2) nN(R5)2, -(C(R3)2)nSR5 or -(C(R3)2)nNO2; R 1 represents alkyl or alkenyl; R 2 represents alkyl, cycloalkyl or alkenyl; R3 independently represents H, alkyl, alkenyl, aryl, cycloalkyl, aralkyl, heteroalkyl, halogen, cyano, amino, acyl, alkoxyl, silyloxy, amino, nitro, thiol, amine, imine, amide, phosphonate, phosphine, carbonyl, carboxyl, silyl, ether, thioether, sulfonyl, selenoether, ketone, aldehyde or ester; R 4 represents cycloalkyl, -CH(R 3 ) 2 , alkenyl, alkynyl, aryl or aralkyl; R5 represents, independently of each case, H, alkyl, alkenyl, aryl, cycloalkyl, or aralkyl; R 6 represents optionally substituted alkyl, alkenyl, aryl, or aralkyl; and n is 1-10. 2. Spoj iz zahtjeva 1 naznačen time, da R predstavlja -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, (C(R3)2)nC(O)R5, ili -(C(R3)2)nC≡CR6.2. The compound of claim 1 characterized in that R represents -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C (R3)2)nCN, (C(R3)2)nC(O)R5, or -(C(R3)2)nC≡CR6. 3. Spoj iz zahtjeva 1 naznačen time, da R1 je etil.3. The compound of claim 1 characterized in that R1 is ethyl. 4. Spoj iz zahtjeva 1 naznačen time, da R1 je -CH=CH2.4. The compound of claim 1 characterized in that R1 is -CH=CH2. 5. Spoj iz zahtjeva 1 naznačen time, da R je -C(O)R2.5. The compound of claim 1 characterized in that R is -C(O)R2. 6. Spoj iz zahtjeva 1 naznačen time, da R je -C(O)R2 a R2 je alkil.6. The compound of claim 1 characterized in that R is -C(O)R 2 and R 2 is alkyl. 7. Spoj iz zahtjeva 1 naznačen time, da R je -(C(R3)2)nCO2R4.7. The compound of claim 1 characterized in that R is -(C(R3)2)nCO2R4. 8. Spoj iz zahtjeva 1 naznačen time, da R je -(C(R3)2)nCO2R4 a R4 je -CH(R3)2.8. The compound of claim 1 characterized in that R is -(C(R3)2)nCO2R4 and R4 is -CH(R3)2. 9. Spoj iz zahtjeva 1 naznačen time, da R je -(C(R3)2)nCO2R4 a R4 je -CH(R3)2, n je 1.9. The compound of claim 1 characterized in that R is -(C(R3)2)nCO2R4 and R4 is -CH(R3)2, n is 1. 10. Spoj iz zahtjeva 1 naznačen time, da R je –(C(R3)2)nCO2R4 a R4 je cikloalkil.10. The compound of claim 1 characterized in that R is –(C(R3)2)nCO2R4 and R4 is cycloalkyl. 11. Spoj iz zahtjeva 1 naznačen time, da R je -CH2CO2R4 a R4 je cikloalkil,11. The compound from claim 1 characterized in that R is -CH2CO2R4 and R4 is cycloalkyl, 12. Spoj iz zahtjeva 1 naznačen time, da R je -CE2CO2R4, R4 je cikloheksil; a R1 je -CH=CH2.12. The compound of claim 1 characterized in that R is -CE2CO2R4, R4 is cyclohexyl; and R 1 is -CH=CH 2 . 13. Spoj iz zahtjeva 1 naznačen time, da R je -CH2CO2R4, R4 je (-)-mentil, 1-adamantil, izobornil, (-)-izopinokamfil, ili (+)-fenhil; a R1 je -CH-CH2.13. The compound of claim 1 characterized in that R is -CH2CO2R4, R4 is (-)-menthyl, 1-adamantyl, isobornyl, (-)-isopinocamphyl, or (+)-phenyl; and R 1 is -CH-CH 2 . 14. Spoj iz zahtjeva 1 naznačen time, da R je (C(R3)2)nC(O)N(R5)2.14. The compound of claim 1 characterized in that R is (C(R3)2)nC(O)N(R5)2. 15. Spoj iz zahtjeva 1 naznačen time, da R je -CH2C(O)N(R5)2 a R1 je -CH=CH2.15. The compound of claim 1 characterized in that R is -CH2C(O)N(R5)2 and R1 is -CH=CH2. 16. Spoj iz zahtjeva 1 naznačen time, da R je -CH2C(O)NH-1-adamantil a R1 je -CH=CH2.16. The compound of claim 1 characterized in that R is -CH2C(O)NH-1-adamantyl and R1 is -CH=CH2. 17. Spoj iz zahtjeva 1 naznačen time, da R je -(C(R3)2)nCN.17. The compound of claim 1 characterized in that R is -(C(R3)2)nCN. 18. Spoj iz zahtjeva 1 naznačen time, da R je -CH2CN a R1 je -CH=CH2.18. The compound of claim 1 characterized in that R is -CH2CN and R1 is -CH=CH2. 19. Spoj iz zahtjeva 1 naznačen time, da R je -(C(R3)2)nCOR5.19. The compound of claim 1 characterized in that R is -(C(R3)2)nCOR5. 20. Spoj iz zahtjeva 1 naznačen time, da R je -CH2C(O)R5 a R5 je alkil.20. The compound of claim 1 characterized in that R is -CH2C(O)R5 and R5 is alkyl. 21. Spoj iz zahtjeva 1 naznačen time, da R je -CH2C(O)C(CH3)3 a R1 je -CH-CH2.21. The compound of claim 1 characterized in that R is -CH2C(O)C(CH3)3 and R1 is -CH-CH2. 22. Spoj iz zahtjeva 1 naznačen time, da je spoj QD-IP, QD-PC, QD-AD, QS-(-)-MN, QD-(+)-MN, QD-AC, QD-Piv, QD-PH, QD-AN, QD-NT, QDS-NT, QD-CN, QD-CH, QD-IB, QD-EF, QD-AA, QD-MP ili QD-IPC.22. The compound of claim 1 characterized in that the compound is QD-IP, QD-PC, QD-AD, QS-(-)-MN, QD-(+)-MN, QD-AC, QD-Piv, QD- PH, QD-AN, QD-NT, QDS-NT, QD-CN, QD-CH, QD-IB, QD-EF, QD-AA, QD-MP or QD-IPC. 23. Spoj iz zahtjeva 1 naznačen time, da je spoj QD-IP, QD-(-)-MN ili QD-AD.23. The compound of claim 1 characterized in that the compound is QD-IP, QD-(-)-MN or QD-AD. 24. Spoj predstavljen formulom II: [image] naznačen time, da R predstavlja -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, -(C(R3)2)nC(O)R5, -C(C(R3)2)nOCR6, (C(R3)2)nOPO(OR5)2, -(C(R3)2)nOR5, -(C(R3)2)nN(R5)2, -(C(R3)2)nSR5 ili -(C(R3)2)nNO2; R1predstavlja alkil ili alkenil; R2 predstavlja alkil, cikloalkil ili alkenil; R3 predstavlja nezavisno za pojedini slučaj H, alkil, alkenil, aril, cikloalkil, aralkil, heteroalkil, halogen, cijano, amino, acil, alkoksil, sililoksi, amino, nitro, tiol, amin, imin, amid, fosfonat, fosfin, karbonil, karboksil, silil, eter, tioeter, sulfonil, selenoeter, keton, aldehid ili ester; R4 predstavlja cikloalkil, -CH(R3)2, alkenil, alkinil, aril ili aralkil; R5 predstavlja nezavisno za pojedini slučaj H, alkil, alkenil, aril, cikloalkil, ili aralkil; R6 predstavlja po izboru supstituirani alkil, alkenil, aril, ili aralkil; i n je 1-10.24. The compound represented by formula II: [image] indicated by that R represents -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, -(C (R3)2)nC(O)R5, -C(C(R3)2)nOCR6, (C(R3)2)nOPO(OR5)2, -(C(R3)2)nOR5, -(C(R3 )2)nN(R5)2, -(C(R3)2)nSR5 or -(C(R3)2)nNO2; R1 represents alkyl or alkenyl; R 2 represents alkyl, cycloalkyl or alkenyl; R3 independently represents H, alkyl, alkenyl, aryl, cycloalkyl, aralkyl, heteroalkyl, halogen, cyano, amino, acyl, alkoxyl, silyloxy, amino, nitro, thiol, amine, imine, amide, phosphonate, phosphine, carbonyl, carboxyl, silyl, ether, thioether, sulfonyl, selenoether, ketone, aldehyde or ester; R 4 represents cycloalkyl, -CH(R 3 ) 2 , alkenyl, alkynyl, aryl or aralkyl; R 5 represents independently for each case H, alkyl, alkenyl, aryl, cycloalkyl, or aralkyl; R 6 represents optionally substituted alkyl, alkenyl, aryl, or aralkyl; and n is 1-10. 25. Spoj iz zahtjeva 24 naznačen time, da spoj predstavljen s formulom II je Q-IP, Q-PC, Q-AD, Q-(-)-MN, QD-(+)-MN, Q-AC, Q-Piv, Q-PH, Q-AN, Q-NT, Q-NT, Q-CN, Q-CH, Q-IB, Q-EF, Q-AA, Q-MP ili Q-IPC.25. The compound of claim 24 characterized in that the compound represented by formula II is Q-IP, Q-PC, Q-AD, Q-(-)-MN, QD-(+)-MN, Q-AC, Q- Piv, Q-PH, Q-AN, Q-NT, Q-NT, Q-CN, Q-CH, Q-IB, Q-EF, Q-AA, Q-MP or Q-IPC. 26. Metoda za proizvodnju kiralnog, ne-racemičnog spoja od prokiralnog supstituiranog cikličnog anhidrida ili mezo supstituiranog cikličnog anhidrida, naznačena time, da obuhvaća korak: reakciju prokiralnog supstituiranog cikličnog anhidrida ili mezo supstituiranog anhidrida s nukleofilom uz prisutnost kiralnog, ne-racemičnog tercijalnog amin katalizatora, gdje navedeni prokiralni supstituirani ciklični anhidrid ili navedeni mezo supstituirani ciklični anhidrid obuhvaća unutarnji stupanj simetrije ili točku simetrije ili oboje; gdje navedeni mezo supstituirani ciklični anhidrid obuhvaća najmanje dva kiralna centra; i gdje navedeni nukleofil je alkohol, tiol ili amin; pomoću toga se proizvodi kiralni, ne-racemični spoj.26. A method for the production of a chiral, non-racemic compound from a prochiral substituted cyclic anhydride or a meso substituted cyclic anhydride, characterized in that it comprises the step of: reaction of a prochiral substituted cyclic anhydride or a meso substituted anhydride with a nucleophile in the presence of a chiral, non-racemic tertiary amine catalyst, wherein said prochiral substituted cyclic anhydride or said meso substituted cyclic anhydride comprises an internal degree of symmetry or a point of symmetry or both; wherein said meso substituted cyclic anhydride comprises at least two chiral centers; and wherein said nucleophile is an alcohol, thiol or amine; thereby producing a chiral, non-racemic compound. 27. Metoda iz zahtjeva 26, naznačena time, da navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid je supstituiran sukcinin anhidridom ili supstiuirani glutarni anhidrid.27. The method of claim 26, characterized in that said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride is substituted by succinic anhydride or substituted glutaric anhydride. 28. Metoda iz zahtjeva 26, naznačena time, da navedeni nukleofil je alkohol.28. The method of claim 26, characterized in that said nucleophile is an alcohol. 29. Metoda iz zahtjeva 26, naznačena time, da navedeni nukleofil je primarni alkohol.29. The method of claim 26, characterized in that said nucleophile is a primary alcohol. 30. Metoda iz zahtjeva 26, naznačena time, da navedeni nukleofil je metanol ili CF3CH2OH.30. The method of claim 26, characterized in that said nucleophile is methanol or CF3CH2OH. 31. Metoda iz zahtjeva 26, naznačena time, da navedeni kiralni, ne-racemični tercijalni amin katalizator je Q-PP, Q-TB, QD-PP, QD-TB, (DHQ)2PHAL, (DHQD)2PHAL, (DHQ)2PYR, (DHQD)2PYR, (DHQ)2AQN, (DHQD)2AQN, DHQ-CLB, DHQD-CLB, DHQ-MEQ, DHQD-MEQ, DHQ-AQN, DHQD-AQN, DHQ-PHN ili DHQD-PHN.31. The method of claim 26, wherein said chiral, non-racemic tertiary amine catalyst is Q-PP, Q-TB, QD-PP, QD-TB, (DHQ)2PHAL, (DHQD)2PHAL, (DHQ) 2PYR, (DHQD)2PYR, (DHQ)2AQN, (DHQD)2AQN, DHQ-CLB, DHQD-CLB, DHQ-MEQ, DHQD-MEQ, DHQ-AQN, DHQD-AQN, DHQ-PHN or DHQD-PHN. 32. Metoda iz zahtjeva 26, naznačena time, da navedeni kiralni, ne-racemični tercijalni amin katalizator je DHQD-PHN ili (DHQD)2AQN.32. The method of claim 26, wherein said chiral, non-racemic tertiary amine catalyst is DHQD-PHN or (DHQD)2AQN. 33. Metoda iz zahtjeva 26, naznačena time, da navedeni kiralni, ne-racemični tercijalni amin katalizator je Q-PP, Q-TB, QD-PP ili QD-TB.33. The method of claim 26, characterized in that said chiral, non-racemic tertiary amine catalyst is Q-PP, Q-TB, QD-PP or QD-TB. 34. Metoda iz zahtjeva 26, naznačena time, da navedeni kiralni, ne-racemični tercijalni amin katalizator je QD-PP.34. The method of claim 26, characterized in that said chiral, non-racemic tertiary amine catalyst is QD-PP. 35. Metoda iz zahtjeva 26, naznačena time, da navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid je supstituirani cukcinin anhidrid ili supstituirani glutarni anhidrid, navedeni nukleofil je alkohol; a navedeni kiralni, ne-racemični tercijalni amin katalizator je Q-PP, Q-TB, QD-PP, QD-TB, (DHQ)2PHAL, (DHQD)2PHAL, (DHQ)2PYR, (DHQD)2PYR, (DHQ)2AQN, (DHQD)2AQN, DHQ-CLB, DHQD-CLB, DHQ-MEQ, DHQD-MEQ, DHQ-AQN, DHQD-AQN, DHQ-PHN ili DHQD-PHN.35. The method of claim 26, characterized in that said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride is substituted succinic anhydride or substituted glutaric anhydride, said nucleophile is an alcohol; and said chiral, non-racemic tertiary amine catalyst is Q-PP, Q-TB, QD-PP, QD-TB, (DHQ)2PHAL, (DHQD)2PHAL, (DHQ)2PYR, (DHQD)2PYR, (DHQ) 2AQN, (DHQD)2AQN, DHQ-CLB, DHQD-CLB, DHQ-MEQ, DHQD-MEQ, DHQ-AQN, DHQD-AQN, DHQ-PHN or DHQD-PHN. 36. Metoda iz zahtjeva 26, naznačena time, da navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid je supstituirani sukcinin anhidrid ili supstituirani glutarni anhidrid, navedeni nukleofil je primarni alkohol; a navedeni kiralni, ne-racemični tercijalni amin katalizator je Q-PP, Q-TB, QD-PP, QD-TB, (DHQ)2PHAL, (DHQD)2PHAL, (DHQ)2PYR, (DHQD)2PYR, (DHQ)2AQN, (DHQD)2AQN, DHQ-CLB, DHQD-CLB, DHQ-MEQ, DHQD-MEQ, DHQ-AQN, DHQD-AQN, DHQ-PHN ili DHQD-PHN.36. The method of claim 26, characterized in that said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride is substituted succinic anhydride or substituted glutaric anhydride, said nucleophile is a primary alcohol; and said chiral, non-racemic tertiary amine catalyst is Q-PP, Q-TB, QD-PP, QD-TB, (DHQ)2PHAL, (DHQD)2PHAL, (DHQ)2PYR, (DHQD)2PYR, (DHQ) 2AQN, (DHQD)2AQN, DHQ-CLB, DHQD-CLB, DHQ-MEQ, DHQD-MEQ, DHQ-AQN, DHQD-AQN, DHQ-PHN or DHQD-PHN. 37. Metoda iz zahtjeva 26, naznačena time, da navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid je supstituirani sukcinin anhidrid ili supstituirani glutarni anhidrid, navedeni nukleofil je metanol ili CF3CH2OH; a navedeni kiralni, ne-racemični tercijalni amin katalizator je Q-PP, Q-TB, QD-PP, QD-TB, (DHQ)2PHAL, (DHQD)2PHAL, (DHQ)2PYR, (DHQD)2PYR, (DHQ)2AQN, (DHQD)2AQN, DHQ-CLB, DHQD-CLB, DHQ-MEQ, DHQD-MEQ, DHQ-AQN, DHQD-AQN, DHQ-PHN ili DHQD-PHN.37. The method of claim 26, characterized in that said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride is substituted succinic anhydride or substituted glutaric anhydride, said nucleophile is methanol or CF3CH2OH; and said chiral, non-racemic tertiary amine catalyst is Q-PP, Q-TB, QD-PP, QD-TB, (DHQ)2PHAL, (DHQD)2PHAL, (DHQ)2PYR, (DHQD)2PYR, (DHQ) 2AQN, (DHQD)2AQN, DHQ-CLB, DHQD-CLB, DHQ-MEQ, DHQD-MEQ, DHQ-AQN, DHQD-AQN, DHQ-PHN or DHQD-PHN. 38. Metoda iz zahtjeva 26, naznačena time, da navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid je supstituirani sukcinin anhidrid ili supstituirani glutarni anhidrid, navedeni nukleofil je alkohol; a navedeni kiralni, ne-racemični tercijalni amin katalizator je DHQD-PHN ili (DHQD)2AQN.38. The method of claim 26, characterized in that said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride is substituted succinic anhydride or substituted glutaric anhydride, said nucleophile is an alcohol; and said chiral, non-racemic tertiary amine catalyst is DHQD-PHN or (DHQD)2AQN. 39. Metoda iz zahtjeva 26, naznačena time, da navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid je supstituirani sukcinin anhidrid ili supstituirani glutarni anhidrid, navedeni nukleofil je primatni alkohol; a navedeni kiralni, ne-racemični tercijalni amin katalizator je DHQD-PHN ili (DHQD)2AQN.39. The method of claim 26, characterized in that said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride is substituted succinic anhydride or substituted glutaric anhydride, said nucleophile is a primate alcohol; and said chiral, non-racemic tertiary amine catalyst is DHQD-PHN or (DHQD)2AQN. 40. Metoda iz zahtjeva 26, naznačena time, da navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid je supstituirani sukcinin anhidrid ili supstituirani glutarni anhidrid, navedeni nukleofil je metanol ili CF:3CH2OH; a navedeni kiralni, ne-racemični tercijalni amin katalizator je DHQD-PHN ili (DHQD)2AQN.40. The method of claim 26, characterized in that said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride is substituted succinic anhydride or substituted glutaric anhydride, said nucleophile is methanol or CF:3CH2OH; and said chiral, non-racemic tertiary amine catalyst is DHQD-PHN or (DHQD)2AQN. 41. Metoda iz zahtjeva 26, naznačena time, da navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid je supstituirani sukcinin anhidrid ili supstituirani glutarni anhidrid, navedeni nukleofil je alkohol; a navedeni kiralni, ne-racemični tercijalni amin katalizator je Q-PP, Q-TB, QD-PP ili QD-TB.41. The method of claim 26, characterized in that said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride is substituted succinic anhydride or substituted glutaric anhydride, said nucleophile is an alcohol; and said chiral, non-racemic tertiary amine catalyst is Q-PP, Q-TB, QD-PP or QD-TB. 42. Metoda iz zahtjeva 26, naznačena time, da navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid je supstituirani sukcinin anhidrid ili supstituirani glutarni anhidrid, navedeni nukleofil je primarni alkohol; a navedeni kiralni, ne-racemični tercijalni amin katalizator je Q-PP, Q-TB, QD-PP ili QD-TB.42. The method of claim 26, characterized in that said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride is substituted succinic anhydride or substituted glutaric anhydride, said nucleophile is a primary alcohol; and said chiral, non-racemic tertiary amine catalyst is Q-PP, Q-TB, QD-PP or QD-TB. 43. Metoda iz zahtjeva 26, naznačena time, da navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid je supstituirani sukcinin anhidrid ili supstituirani glutarni anhidrid, navedeni nukleofil je metanol ili CF3CH2OH; a navedeni kiralni, ne-racemični tercijalni amin katalizator je Q-PP, Q-TB, QD-PP ili QD-TB.43. The method of claim 26, characterized in that said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride is substituted succinic anhydride or substituted glutaric anhydride, said nucleophile is methanol or CF3CH2OH; and said chiral, non-racemic tertiary amine catalyst is Q-PP, Q-TB, QD-PP or QD-TB. 44. Metoda iz zahtjeva 26, naznačena time, da navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid je supstituirani sukcinin anhidrid ili supstituirani glutarni anhidrid, navedeni nukleofil je alkohol; a navedeni kiralni, ne-racemični tercijalni amin katalizator je Q-PP.44. The method of claim 26, characterized in that said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride is substituted succinic anhydride or substituted glutaric anhydride, said nucleophile is an alcohol; and said chiral, non-racemic tertiary amine catalyst is Q-PP. 45. Metoda iz zahtjeva 26, naznačena time, da navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid je supstituirani sukcinin anhidrid ili supstituirani glutarni anhidrid, navedeni nukleofil je primarni alkohol; a navedeni kiralni, ne-racemični tercijalni amin katalizator je Q-PP.45. The method of claim 26, characterized in that said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride is substituted succinic anhydride or substituted glutaric anhydride, said nucleophile is a primary alcohol; and said chiral, non-racemic tertiary amine catalyst is Q-PP. 46. Metoda iz zahtjeva 26, naznačena time, da navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid je supstituirani sukcinin anhidrid ili supstituirani glutarni anhidrid, navedeni nukleofil je metanol ili CF3CH2OH; a navedeni kiralni, ne-racemični tercijalni amin katalizator je Q-PP.46. The method of claim 26, characterized in that said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride is substituted succinic anhydride or substituted glutaric anhydride, said nucleophile is methanol or CF3CH2OH; and said chiral, non-racemic tertiary amine catalyst is Q-PP. 47. Metoda iz zahtjeva 26, naznačena time, da navedeni kiralni, ne-racemični tercijalni amin katalizator je prisutan u manje od 30 mol% u odnosu na navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid.47. The method of claim 26, characterized in that said chiral, non-racemic tertiary amine catalyst is present in less than 30 mol% relative to said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride. 48. Metoda iz zahtjeva 26, naznačena time, da navedeni kiralni, ne-racemični tercijalni amin katalizator je prisutan u manje od 20 mol% u odnosu na navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid.48. The method of claim 26, characterized in that said chiral, non-racemic tertiary amine catalyst is present in less than 20 mol% relative to said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride. 49. Metoda iz zahtjeva 26, naznačena time, da navedeni kiralni, ne-racemični tercijalni amin katalizator je prisutan u manje od 10 mol% u odnosu na navedeni prokiralni supstituirani ciklični anhidrid ili mezo supstituirani ciklični anhidrid.49. The method of claim 26, characterized in that said chiral, non-racemic tertiary amine catalyst is present in less than 10 mol% relative to said prochiral substituted cyclic anhydride or meso substituted cyclic anhydride. 50. Metoda iz zahtjeva 26, naznačena time, da navedeni kiralni, ne-racemični spoj ima enentiomerični višak veći od 50%.50. The method of claim 26, characterized in that said chiral, non-racemic compound has an enantiomeric excess greater than 50%. 51. Metoda iz zahtjeva 26, naznačena time, da navedeni kiralni, ne-racemični spoj ima enentiomerični višak veći od 70%.51. The method of claim 26, characterized in that said chiral, non-racemic compound has an enantiomeric excess greater than 70%. 52. Metoda iz zahtjeva 26, naznačena time, da navedeni kiralni, ne-racemični spoj ima enentiomerični višak veći od 90%.52. The method of claim 26, characterized in that said chiral, non-racemic compound has an enantiomeric excess greater than 90%. 53. Metoda iz zahtjeva 26, naznačena time, da navedeni kiralni, ne-racemični spoj ima enentiomerični višak veći od 95%.53. The method of claim 26, characterized in that said chiral, non-racemic compound has an enantiomeric excess greater than 95%. 54. Metoda za proizvodnju kiralnog, ne-racemičnog spoja od prokiralnog cikličnog anhidrida ili mezo cikličnog anhidrida, naznačena time, da obuhvaća korak: reakciju prokiralnog cikličnog anhidrida ili mezo cikličnog anhidrida s nukleofilom uz prisutnost katalizatora, gdje navedeni prokiralni ciklični anhidrid ili navedeni mezo ciklični anhidrid obuhvaća unutarnji stupanj simetrije ili točku simetrije ili oboje; pomoću toga se proizvodi kiralni, ne-racemični spoj; gdje navedeni katalizator je predstavljen formulom I: [image] gdje R predstavlja -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, -(C(R3)2)nC(O)R5, -C(C(R3)2)nC≡CR6, -(C(R3)2)nOPO(CR5)2, -(C(R5)2)nOR5, -(C(R3)2)nN(R5)2, -(C(R3)2)nSR6 ili –(C(R3)2)nN02; R1 predstavlja alkil ili alkenil; R2predstavlja alkil, cikloalkil ili alkenil; R3 predstavlja nezavisno za pojedini slučaj H, alkil, alkenil, aril, cikloalkil, aralkil, heteroalkil, halogen, cijano, amino, acil, alkoksil, sililoksi, amino, nitro, tiol, amin, imin, amid, fosfonat, fosfin, karbonil, karboksil, silil, eter, tioeter, sulfonil, selenoeter, keton, aldehid ili ester; R4 predstavlja cikloalkil, -CH(R3)2, alkenil, alkinil, aril ili aralkil; R5 predstavlja nezavisno od pojedinog slučaja H, alkil, alkenil, aril, cikloalkil, ili aralkil; R6 predstavlja po izboru supstituirani alkil, alkenil, aril, ili aralkil; i n je 1-10.54. A method for the production of a chiral, non-racemic compound from a prochiral cyclic anhydride or a meso cyclic anhydride, characterized in that it comprises the step of: reacting a prochiral cyclic anhydride or a meso cyclic anhydride with a nucleophile in the presence of a catalyst, wherein said prochiral cyclic anhydride or said meso cyclic anhydride comprises an internal degree of symmetry or a point of symmetry or both; thereby producing a chiral, non-racemic compound; wherein said catalyst is represented by formula I: [image] where R represents -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, -(C (R3)2)nC(O)R5, -C(C(R3)2)nC≡CR6, -(C(R3)2)nOPO(CR5)2, -(C(R5)2)nOR5, -( C(R3)2)nN(R5)2, -(C(R3)2)nSR6 or –(C(R3)2)nNO2; R 1 represents alkyl or alkenyl; R 2 represents alkyl, cycloalkyl or alkenyl; R3 independently represents H, alkyl, alkenyl, aryl, cycloalkyl, aralkyl, heteroalkyl, halogen, cyano, amino, acyl, alkoxyl, silyloxy, amino, nitro, thiol, amine, imine, amide, phosphonate, phosphine, carbonyl, carboxyl, silyl, ether, thioether, sulfonyl, selenoether, ketone, aldehyde or ester; R 4 represents cycloalkyl, -CH(R 3 ) 2 , alkenyl, alkynyl, aryl or aralkyl; R5 represents, independently of each case, H, alkyl, alkenyl, aryl, cycloalkyl, or aralkyl; R 6 represents optionally substituted alkyl, alkenyl, aryl, or aralkyl; and n is 1-10. 55. Metoda iz zahtjeva 54, naznačena time, da R predstavlja -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, -(C(R3)2)nC(O)R5, ili -(C(R3)2)nC≡CR6.55. The method of claim 54, characterized in that R represents -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -( C(R3)2)nCN, -(C(R3)2)nC(O)R5, or -(C(R3)2)nC≡CR6. 56. Metoda iz zahtjeva 54, naznačena time, da R1 je etil.56. The method of claim 54, characterized in that R1 is ethyl. 57. Metoda iz zahtjeva 54 naznačena time, da R1 je -CH=CH2.57. The method of claim 54 characterized in that R1 is -CH=CH2. 58. Metoda iz zahtjeva 54 naznačena time, da R je -C(O)R2.58. The method of claim 54 characterized in that R is -C(O)R2. 59. Metoda iz zahtjeva 54 naznačena time, da R je -C(O)R2 a R2 je alkil.59. The method of claim 54 characterized in that R is -C(O)R 2 and R 2 is alkyl. 60. Metoda iz zahtjeva 54 naznačena time, da R je (C(R3)2)nCO2R4.60. The method of claim 54 characterized in that R is (C(R3)2)nCO2R4. 61. Metoda iz zahtjeva 54 naznačena time, da R je -(C(R3)2)nCO2R4 a R4 je -CH(R3)2.61. The method of claim 54 characterized in that R is -(C(R3)2)nCO2R4 and R4 is -CH(R3)2. 62. Metoda iz zahtjeva 54 naznačena time, da R je -(C(R3)2)nCO2R4 a R4 je -CH(R3)2, n je 1.62. The method of claim 54 characterized in that R is -(C(R3)2)nCO2R4 and R4 is -CH(R3)2, n is 1. 63. Metoda iz zahtjeva 54 naznačena time, da R je (C(R3)2)nCO2R4 a R4 je cikloalkil.63. The method of claim 54 characterized in that R is (C(R3)2)nCO2R4 and R4 is cycloalkyl. 64. Metoda iz zahtjeva 54 naznačena time, da R je –CH2CO2R4 a R4 je cikloalkil.64. The method of claim 54 characterized in that R is –CH2CO2R4 and R4 is cycloalkyl. 65. Metoda iz zahtjeva 54 naznačena time, da R je -CH2CO2R4, R4 je cikloheksil, a R1 je -CH=CH2.65. The method of claim 54 characterized in that R is -CH2CO2R4, R4 is cyclohexyl, and R1 is -CH=CH2. 66. Metoda iz zahtjeva 54 naznačena time, da R je -CH2CO2R4, R4 je (-)-mentil, 1-adamantil, izobornil, (-)-izopinokamfil, ili (+)-fenhil; a R1 je -CH=CH2.66. The method of claim 54 characterized in that R is -CH2CO2R4, R4 is (-)-menthyl, 1-adamantyl, isobornyl, (-)-isopinocamphyl, or (+)-phenyl; and R 1 is -CH=CH 2 . 67. Metoda iz zahtjeva 54 naznačena time, da R je (C(R3)2)nC(O)N(R5)2.67. The method of claim 54 characterized in that R is (C(R3)2)nC(O)N(R5)2. 68. Metoda iz zahtjeva 54 naznačena time, da R je -CH2C(O)N(R3)2 a R1 je -CH=CH2.68. The method of claim 54 characterized in that R is -CH2C(O)N(R3)2 and R1 is -CH=CH2. 69. Metoda iz zahtjeva 54 naznačena time, da R je -CH2C(O)NH-1-adamantil a R1 je -CH=CH2.69. The method of claim 54 characterized in that R is -CH2C(O)NH-1-adamantyl and R1 is -CH=CH2. 70. Metoda iz zahtjeva 54 naznačena time, da R je -(C(R3)2)nCN.70. The method of claim 54 characterized in that R is -(C(R3)2)nCN. 71. Metoda iz zahtjeva 54 naznačena time, da R je -CH2CN a R1 je -CH=CH2.71. The method of claim 54 characterized in that R is -CH2CN and R1 is -CH=CH2. 72. Metoda iz zahtjeva 54 naznačena time, da R je (C(R3)2)nC(O)R5.72. The method of claim 54 characterized in that R is (C(R3)2)nC(O)R5. 73. Metoda iz zahtjeva 54 naznačena time, da R je -CH2C(O)R5 a R5 je alkil.73. The method of claim 54 characterized in that R is -CH2C(O)R5 and R5 is alkyl. 74. Metoda iz zahtjeva 54 naznačena time, da R je CH2C(O)C(CH3)3 a R1 je -CH=CH2.74. The method of claim 54 characterized in that R is CH2C(O)C(CH3)3 and R1 is -CH=CH2. 75. Metoda iz zahtjeva 54 naznačena time, da je navedeni katalizator QD-IP, QD-PC, QD-AD, QD-(-)-MN, QD-(+)-MN, QD-AC, QD-Piv, QD-PH, QD-AN, QD-NT, QD-NT, QD-CN, QD-CH, QD-IB, QD-EF, QD-AA, QD-MP ili QD-IPC.75. The method of claim 54 characterized in that said catalyst is QD-IP, QD-PC, QD-AD, QD-(-)-MN, QD-(+)-MN, QD-AC, QD-Piv, QD -PH, QD-AN, QD-NT, QD-NT, QD-CN, QD-CH, QD-IB, QD-EF, QD-AA, QD-MP or QD-IPC. 76. Metoda iz zahtjeva 54 naznačena time, da je spoj QD-IP, QD-(-)-MN ili QD-AD.76. The method of claim 54 characterized in that the compound is QD-IP, QD-(-)-MN or QD-AD. 77. Metoda iz zahtjeva 54 naznačena time, da navedeni nukleofil je alkohol.77. The method of claim 54 characterized in that said nucleophile is an alcohol. 78. Metoda iz zahtjeva 54 naznačena time, da navedeni nukleofil je primarni alkohol.78. The method of claim 54 characterized in that said nucleophile is a primary alcohol. 79. Metoda iz zahtjeva 54 naznačena time, da navedeni nukleofil je metanol ili CF3CH3OH.79. The method of claim 54 characterized in that said nucleophile is methanol or CF3CH3OH. 80. Metoda iz zahtjeva 54 naznačena time, da navedeni prokiralni ciklični anhidrid ili mezo ciklični anhidrid je supstituirani sukcinin anhidrid ili supstituirani glutarni anhidrid.80. The method of claim 54 characterized in that said prochiral cyclic anhydride or meso cyclic anhydride is substituted succinic anhydride or substituted glutaric anhydride. 81. Metoda iz zahtjeva 54 naznačena time, da je navedeni katalizator prisutan u manje od 70 mol% u odnosu na navedeni prokiralni ciklični anhidrid ili mezo ciklični anhidrid.81. The method of claim 54 characterized in that said catalyst is present in less than 70 mol% relative to said prochiral cyclic anhydride or meso cyclic anhydride. 82. Metoda iz zahtjeva 54 naznačena time, da je navedeni katalizator prisutan u manje od 40 mol% u odnosu na navedeni prokiralni ciklični anhidrid ili mezo ciklični anhidrid.82. The method of claim 54 characterized in that said catalyst is present in less than 40 mol% relative to said prochiral cyclic anhydride or meso cyclic anhydride. 83. Metoda iz zahtjeva 54 naznačena time, da je navedeni katalizator prisutan u ne manje od 10 mol% u odnosu na navedeni prokiralni ciklični anhidrid ili mezo ciklični anhidrid.83. The method of claim 54 characterized in that said catalyst is present in not less than 10 mol% in relation to said prochiral cyclic anhydride or meso cyclic anhydride. 84. Metoda iz zahtjeva 54 naznačena time, da navedeni kiralni, ne-racemični spoj ima enentiomerni višak veći od oko 50%.84. The method of claim 54 wherein said chiral, non-racemic compound has an enantiomeric excess greater than about 50%. 85. Metoda iz zahtjeva 54 naznačena time, da navedeni kiralni, ne-racemični spoj ima enentiomerni višak veći od oko 70%.85. The method of claim 54 wherein said chiral, non-racemic compound has an enantiomeric excess greater than about 70%. 86. Metoda iz zahtjeva 54 naznačena time, da navedeni kiralni, ne-racemični spoj ima enentiomerni višak veći od oko 90%.86. The method of claim 54 wherein said chiral, non-racemic compound has an enantiomeric excess greater than about 90%. 87. Metoda iz zahtjeva 54 naznačena time, da navedeni kiralni, ne-racemični spoj ima enentiomerni višak veći od oko 951.87. The method of claim 54 wherein said chiral, non-racemic compound has an enantiomeric excess greater than about 951. 88. Metoda iz zahtjeva 54 naznačena time, da R je -CH2CO2R4; R4 je (-)mentil, 1-adamantil, izobornil, (-)izopinokamfil, ili (+)-fenhil; R1 je -CH=CH2; a navedeni nukleofil je alkohol.88. The method of claim 54 characterized in that R is -CH2CO2R4; R 4 is (-)menthyl, 1-adamantyl, isobornyl, (-)isopinocampyl, or (+)-phenyl; R 1 is -CH=CH 2 ; and the specified nucleophile is an alcohol. 89. Metoda iz zahtjeva 54 naznačena time, da R je -CH2CO2R4; R4 je (-)mentil ili 1-adamantil; R1 je -CH-CH2; a navedeni nukleofil je alkohol.89. The method of claim 54 characterized in that R is -CH2CO2R4; R4 is (-)mentyl or 1-adamantyl; R 1 is -CH-CH 2 ; and the specified nucleophile is an alcohol. 90. Metoda iz zahtjeva 54 naznačena time, da R je -CH2CO2R4; R4 je (-)mentil ili 1-adamantil; R1 je -CH=CH2; a navedeni nukleofil je metanol ili CF3CH2OH.90. The method of claim 54 characterized in that R is -CH2CO2R4; R4 is (-)mentyl or 1-adamantyl; R 1 is -CH=CH 2 ; and said nucleophile is methanol or CF3CH2OH. 91. Metoda za proizvodnju kiralnog, ne-racemičnog spoja iz prokiralnog cikličnog anhidrida ili mezo cikličnog anhidrida naznačena time, da obuhvaća korak: reakcije prokiralnog cikličnog anhidrida ili mezo cikličnog anhidrida s nukleofilom uz prisutnost katalizatora; gdje navedeni prokiralni ciklični anhidrid ili mezo ciklični anhidrid obuhvaća unutarnji stupanj simetrije ili točku simetrije ili oboje; pomoću toga se proizvodi kiralni, ne-racemični spoj; gdje navedeni katalizator je predstavljen formulom II: [image] R predstavlja -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2),CN, -(C(R3)2)nC(O)R5, -C(C(R3)2)nOCR6, -(C(R3)2)nOPO(OR5)n-(C(R3)2)nOR5, -(C(R3)2)nN(R5)2, -(C(R3)2)nSR5 ili -(C(R3)2)nNO2; R1 predstavlja alkil ili alkenil; R2 predstavlja alkil, cikloalkil ili alkenil; R3 predstavlja nezavisno za pojedini slučaj H, alkil, alkenil, aril, cikloalkil, aralkil, heteroalkil, halogen, cijano, amino, acil, alkoksil, sililoksi, amino, nitro, tiol, arain, imin, amid, fosfonat, fosfin, karbonil, karboksil, silil, eter, tioeter, sulfonil, selenoeter, keton, aldehid ili ester; R4 predstavlja cikloalkil, -CH(R:3)2, alkenil, alkinil, aril ili aralkil; R5 predstavlja nezavisno od pojedinog slučaja H, alkil, alkenil, aril, cikloalkil, ili aralkil; R6 predstavlja po izboru supstituirani alkil, alkenil, aril, ili aralkil; i n je 1-10.91. A method for producing a chiral, non-racemic compound from a prochiral cyclic anhydride or meso cyclic anhydride, comprising the step of: reactions of prochiral cyclic anhydride or meso cyclic anhydride with a nucleophile in the presence of a catalyst; wherein said prochiral cyclic anhydride or meso cyclic anhydride comprises an internal degree of symmetry or a point of symmetry or both; thereby producing a chiral, non-racemic compound; wherein said catalyst is represented by formula II: [image] R represents -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2),CN, -( C(R3)2)nC(O)R5, -C(C(R3)2)nOCR6, -(C(R3)2)nOPO(OR5)n-(C(R3)2)nOR5, -(C( R3)2)nN(R5)2, -(C(R3)2)nSR5 or -(C(R3)2)nNO2; R 1 represents alkyl or alkenyl; R 2 represents alkyl, cycloalkyl or alkenyl; R3 independently represents H, alkyl, alkenyl, aryl, cycloalkyl, aralkyl, heteroalkyl, halogen, cyano, amino, acyl, alkoxyl, silyloxy, amino, nitro, thiol, arain, imine, amide, phosphonate, phosphine, carbonyl, carboxyl, silyl, ether, thioether, sulfonyl, selenoether, ketone, aldehyde or ester; R4 represents cycloalkyl, -CH(R:3)2, alkenyl, alkynyl, aryl or aralkyl; R5 represents, independently of each case, H, alkyl, alkenyl, aryl, cycloalkyl, or aralkyl; R 6 represents optionally substituted alkyl, alkenyl, aryl, or aralkyl; and n is 1-10. 92. Metoda iz zahtjeva 91, naznačena time da je navedeni katalizator Q-IP, Q-FC, Q-AD, Q-(-)-MN, Q-(+)-MN, Q-AC, Q-Piv, Q-PH, Q-AN, Q-NT, Q-CN, Q-CH, Q-IB, Q-EF, Q-AA, Q-MP, ili Q-IPC.92. The method of claim 91, characterized in that said catalyst is Q-IP, Q-FC, Q-AD, Q-(-)-MN, Q-(+)-MN, Q-AC, Q-Piv, Q -PH, Q-AN, Q-NT, Q-CN, Q-CH, Q-IB, Q-EF, Q-AA, Q-MP, or Q-IPC. 93. Metoda iz zahtjeva 91, naznačena time, da nukleofil je alkohol.93. The method of claim 91, characterized in that the nucleophile is an alcohol. 94. Metoda iz zahtjeva 91 naznačena time, da je nukleofil primarni alkohol.94. The method of claim 91 characterized in that the nucleophile is a primary alcohol. 95. Metoda iz zahtjeva 91 naznačena time, da je nukleofil metanol ili CF3CH2OH.95. The method of claim 91 characterized in that the nucleophile is methanol or CF3CH2OH. 96. Metoda iz zahtjeva 91 naznačena time, da navedeni prokiralni ciklični anhidrid ili mezo ciklični anhidrid koji je supstituirani sukcinin anhidrid ili supstituirani glutarni anhidrid.96. The method of claim 91 characterized in that said prochiral cyclic anhydride or meso cyclic anhydride which is substituted succinic anhydride or substituted glutaric anhydride. 97. Metoda iz zahtjeva 91 naznačena time, da je navedeni katalizator prisutan u manje od oko 70 mol% u odnosu na navedeni prokiralni ciklični anhidrid ili mezociklični anhidrid.97. The method of claim 91 wherein said catalyst is present in less than about 70 mol% relative to said prochiral cyclic anhydride or mesocyclic anhydride. 98. Metoda iz zahtjeva 91 naznačena time, da je navedeni katalizator prisutan u manje od oko 40 mol% u odnosu na navedeni prokiralni ciklični anhidrid ili mezociklični anhidrid.98. The method of claim 91 wherein said catalyst is present in less than about 40 mol% relative to said prochiral cyclic anhydride or mesocyclic anhydride. 99. Metoda iz zahtjeva 91 naznačena time, da je navedeni katalizator prisutan u manje od oko 10 mol% u odnosu na navedeni prokiralni ciklični anhidrid ili mezociklični anhidrid.99. The method of claim 91 wherein said catalyst is present in less than about 10 mol% relative to said prochiral cyclic anhydride or mesocyclic anhydride. 100. Metoda iz zahtjeva 91 naznačena time, da navedeni kiralni, ne-racemični spoj ima enentiomerni višak veći od oko 50%.100. The method of claim 91 wherein said chiral, non-racemic compound has an enantiomeric excess greater than about 50%. 101. Metoda iz zahtjeva 91 naznačena time, da navedeni kiralni, ne-racemični spoj ima enentiomerni višak veći od oko 70%.101. The method of claim 91 wherein said chiral, non-racemic compound has an enantiomeric excess greater than about 70%. 102. Metoda iz zahtjeva 91 naznačena time, da navedeni kiralni, ne-racemični spoj ima enentiomerni višak veći od oko 90%.102. The method of claim 91 wherein said chiral, non-racemic compound has an enantiomeric excess greater than about 90%. 103. Metoda iz zahtjeva 91 naznačena time, da navedeni kiralni, ne-racemični spoj ima enentiomerni višak veći od oko 95%.103. The method of claim 91 wherein said chiral, non-racemic compound has an enantiomeric excess greater than about 95%. 104. Metoda iz zahtjeva 91 naznačena time, da R je -CH2CO2R4, R4 je (-) mentil, 1-adamantil, izobornil, (-)-izopinokamfil, (+)-fenhil; R1 je -CH=CH2; a navedeni nukleofil je alkohol.104. The method of claim 91 characterized in that R is -CH2CO2R4, R4 is (-) menthyl, 1-adamantyl, isobornyl, (-)-isopinocamphyl, (+)-phenyl; R 1 is -CH=CH 2 ; and the specified nucleophile is an alcohol. 105. Metoda iz zahtjeva 91 naznačena time, da R je -CH2CO2R4, R4 je (-) mentil ili 1-adamantil; R1 je -CH-CH2; a navedeni nukleofil je alkohol.105. The method of claim 91 characterized in that R is -CH2CO2R4, R4 is (-) menthyl or 1-adamantyl; R 1 is -CH-CH 2 ; and the specified nucleophile is an alcohol. 106. Metoda iz zahtjeva 91 naznačena time, da R je -CH2CO2R4, R4 je (-) mentil ili 1-adamantil; R1 je -CH=CH2; a navedeni nukleofil je metanol ili CF3CH2OH.106. The method of claim 91 characterized in that R is -CH2CO2R4, R4 is (-) menthyl or 1-adamantyl; R 1 is -CH=CH 2 ; and said nucleophile is methanol or CF3CH2OH. 107. Metoda kinetičke resolucije, naznačena time, da obuhvaća korak: reakcije racemičnog cikličnog anhidrida s alkoholom uz prisutnost katalizatora kojeg predstavlja formula I: [image] R predstavlja -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, -(C(R3)2)nC(O)R5, -C(C(R3)2)nC≡CR6, (C(R3)2)nOPO(OR5)2, -(C(R3)2)nOR5, -(C(R3)2)nN(R5)2, -(C(R3)2)nSR5 ili -(C(R3)2)nNO2; R1 predstavlja alkil ili alkenil; R2predstavlja alkil, cikloalkil ili alkenil; R3 predstavlja nezavisno za pojedini slučaj H, alkil, alkenil, aril, cikloalkil, aralkil, heteroalkil, halogen, cijano, amino, acil, alkoksil, sililoksi, amino, nitro, tiol, amin, imin, amid, fosfonat, fosfin, karbonil, karboksil, silil, eter, tioeter, sulfonil, seleneter, keton, aldehid ili ester; R4 predstavlja cikloalkil, -CH(R3)2, alkenil, alkinil, aril ili aralkil; R5 predstavlja nezavisno od pojedinog slučaja H, alkil, alkenil, aril, cikloalkil, ili aralkil; R6 predstavlja po izboru supstituirani alkil, alkenil, aril, ili aralkil; i n je 1-10; i kada je navedena metoda kinetičke resolucije završena ili prekinuta svaki ciklički anhidrid koji nije reagirao ima enentiomerni višak veći od nule i enentiorcierni višak produkta je veći od nule.107. Kinetic resolution method, characterized in that it includes the step: reactions of racemic cyclic anhydride with alcohol in the presence of a catalyst represented by formula I: [image] R represents -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, -(C (R3)2)nC(O)R5, -C(C(R3)2)nC≡CR6, (C(R3)2)nOPO(OR5)2, -(C(R3)2)nOR5, -(C (R3)2)nN(R5)2, -(C(R3)2)nSR5 or -(C(R3)2)nNO2; R 1 represents alkyl or alkenyl; R 2 represents alkyl, cycloalkyl or alkenyl; R3 independently represents H, alkyl, alkenyl, aryl, cycloalkyl, aralkyl, heteroalkyl, halogen, cyano, amino, acyl, alkoxyl, silyloxy, amino, nitro, thiol, amine, imine, amide, phosphonate, phosphine, carbonyl, carboxyl, silyl, ether, thioether, sulfonyl, selenether, ketone, aldehyde or ester; R 4 represents cycloalkyl, -CH(R 3 ) 2 , alkenyl, alkynyl, aryl or aralkyl; R5 represents, independently of each case, H, alkyl, alkenyl, aryl, cycloalkyl, or aralkyl; R 6 represents optionally substituted alkyl, alkenyl, aryl, or aralkyl; and n is 1-10; and when the above kinetic resolution method is completed or terminated, each unreacted cyclic anhydride has an enantiomeric excess greater than zero and an enantiomeric excess of the product is greater than zero. 108. Metoda iz zahtjeva 107 naznačena time, da R predstavlja -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, -(C(R3)2)nC(O)R5 ili -(C(R3)2)nC≡CR6.108. The method of claim 107 characterized in that R represents -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C (R3)2)nCN, -(C(R3)2)nC(O)R5 or -(C(R3)2)nC≡CR6. 109. Metoda iz zahtjeva 107 naznačena time, da R1 je etil.109. The method of claim 107 characterized in that R1 is ethyl. 110. Metoda iz zahtjeva 107 naznačena time, da R1 je -CH=CH2.110. The method of claim 107 characterized in that R1 is -CH=CH2. 111. Metoda iz zahtjeva 107 naznačena time, da R1 je -C(O)R2.111. The method of claim 107 characterized in that R1 is -C(O)R2. 112. Metoda iz zahtjeva 107 naznačena time, da R je -C(O)R2 a R2 je alkil.112. The method of claim 107 characterized in that R is -C(O)R 2 and R 2 is alkyl. 113. Metoda iz zahtjeva 107 naznačena time, da R je -(C(R3)2)nCO2R4.113. The method of claim 107 characterized in that R is -(C(R3)2)nCO2R4. 114. Metoda iz zahtjeva 107 naznačena time, da R je -(C(R3)2)nCO2R4 a R4 je -CH(R3)2.114. The method of claim 107 characterized in that R is -(C(R3)2)nCO2R4 and R4 is -CH(R3)2. 115. Metoda iz zahtjeva 107 naznačena time, da R je {C(R3)2)nCO2R4 a R4 je -CH(R3)2, n je 1.115. The method of claim 107 characterized in that R is {C(R3)2)nCO2R4 and R4 is -CH(R3)2, n is 1. 116. Metoda iz zahtjeva 107 naznačena time, da R je -(C(R3)2)nCO2R4 a R4 je cikloalkil.116. The method of claim 107 characterized in that R is -(C(R3)2)nCO2R4 and R4 is cycloalkyl. 117. Metoda iz zahtjeva 107 naznačena time, da R je -CH2CO2R4 a R4 je cikloalkil.117. The method of claim 107 characterized in that R is -CH2CO2R4 and R4 is cycloalkyl. 118. Metoda iz zahtjeva 107 naznačena time, da R je -CH2CO2R4 a R4 je cikloalkil; a R1 -CH=CH2.118. The method of claim 107 characterized in that R is -CH2CO2R4 and R4 is cycloalkyl; and R 1 -CH=CH 2 . 119. Metoda iz zahtjeva 107 naznačena time, da R je -CH2CO2R4 a R4 je (-)-mentil, 1-adamantil, izobornil, (-)-izopinokamfil, ili (-)-fenhil; a R1 je -CH=CH2.119. The method of claim 107 characterized in that R is -CH2CO2R4 and R4 is (-)-menthyl, 1-adamantyl, isobornyl, (-)-isopinocamphyl, or (-)-phenyl; and R 1 is -CH=CH 2 . 120. Metoda iz zahtjeva 107 naznačena time, da R je (C(R3)2)nC(O)N(R5)2.120. The method of claim 107 characterized in that R is (C(R3)2)nC(O)N(R5)2. 121. Metoda iz zahtjeva 107 naznačena time, da R je CH2C(O)N(R5)2 a R1 je -CH=CH2.121. The method of claim 107 characterized in that R is CH2C(O)N(R5)2 and R1 is -CH=CH2. 122. Metoda iz zahtjeva 107 naznačena time, da R je -CH2C(O)NH-1-adamantil a R1 je -CH=CH2.122. The method of claim 107 characterized in that R is -CH2C(O)NH-1-adamantyl and R1 is -CH=CH2. 123. Metoda iz zahtjeva 107 naznačena time, da R je -C(R3)2)nCN.123. The method of claim 107 characterized in that R is -C(R3)2)nCN. 124. Metoda iz zahtjeva 107 naznačena time, da R je -CH2CN a R1 je -CH=CH2.124. The method of claim 107 characterized in that R is -CH2CN and R1 is -CH=CH2. 125. Metoda iz zahtjeva 107 naznačena time, da R je -(C(R3)2)nCOR5.125. The method of claim 107 characterized in that R is -(C(R3)2)nCOR5. 126. Metoda iz zahtjeva 107 naznačena time, da R je CH2C(O)R5 a R5 je alkil.126. The method of claim 107 characterized in that R is CH2C(O)R5 and R5 is alkyl. 127. Metoda iz zahtjeva 107 naznačena time, da R je CH2C(O)C(CH3)3 a R1 je -CH=CH2.127. The method of claim 107 characterized in that R is CH2C(O)C(CH3)3 and R1 is -CH=CH2. 128. Metoda iz zahtjeva 107 naznačena time, da navedeni katalizator je QD-IP, QD-PC, QD-AD, QD-(-)-MN, QD-(+)-MN, QD-AC, QD-Piv, QD-PH, QD-AN, QD-NT, QD-CN, QD-CH, QD-IB, QD-EF, QD-AA, QD-MP ILI QD-IPC.128. The method of claim 107 characterized in that said catalyst is QD-IP, QD-PC, QD-AD, QD-(-)-MN, QD-(+)-MN, QD-AC, QD-Piv, QD -PH, QD-AN, QD-NT, QD-CN, QD-CH, QD-IB, QD-EF, QD-AA, QD-MP OR QD-IPC. 129. Metoda iz zahtjeva 107 naznačena time, da navedeni katalizator je QD-IP, QD-(-)-MN ili QD-AD.129. The method of claim 107 characterized in that said catalyst is QD-IP, QD-(-)-MN or QD-AD. 130. Metoda iz zahtjeva 107 naznačena time, da navedeni alkohol je primarni alkohol.130. The method of claim 107 characterized in that said alcohol is a primary alcohol. 131. Metoda iz zahtjeva 107 naznačena time, da navedeni nukleofil je metanol ili CF3CH2OH.131. The method of claim 107 characterized in that said nucleophile is methanol or CF3CH2OH. 132. Metoda kinetičke resolucije, naznačena time, da obuhvaća korak: reakcije racemičnog cikličnog anhidrida s alkoholom uz prisutnost katalizatora kojeg predstavlja formula II: [image] R predstavlja -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, -(C(R3)2)nC(O)R5, -C(C(R3)nC≡CR6, (C(R3)2)nOPO(OR5)2, -(C(R3)2)nOR5, -(C(R3)2)nN(R5)2, -(C(R3)2)nR5 ili –((R3)2)nNO2; R1 predstavlja alkil ili alkenil; R2predstavlja alkil, cikloalkil ili alkenil; R3predstavlja nezavisno za pojedini slučaj H, alkil, alkenil, aril, cikloalkil, aralkil, heteroalkil, halogen, cijano, amino, acil, alkoksil, sililoksi, amino, nitro, tiol, amin, imin, amid, fosfonat, fosfin, karbonil, karboksil, silil, eter, tioeter, sulfonil, selenoeter, keton, aldehid ili ester; R4 predstavlja cikloalkil, -CH(R3)2, alkenil, alkinil, aril ili aralkil; R5 predstavlja nezavisno za pojedini slučaj H, alkil, alkenil, aril, cikloalkil, ili aralkil; R6 predstavlja po izboru supstituirani alkil, alkenil, aril, ili aralkil; i n je 1-10; i kada je navedena metoda kinetičke resolucije završena ili prekinuta svaki ciklički anhidrid koji nije reagirao ima enentiomerni višak veći od nule i enentiomerni višak produkta je veći od nule.132. Kinetic resolution method, characterized in that it includes the step: reactions of racemic cyclic anhydride with alcohol in the presence of a catalyst represented by formula II: [image] R represents -C(O)R2, -(C(R3)2)nCO2R4, -(C(R3)2)nC(O)N(R5)2, -(C(R3)2)nCN, -(C (R3)2)nC(O)R5, -C(C(R3)nC≡CR6, (C(R3)2)nOPO(OR5)2, -(C(R3)2)nOR5, -(C(R3 )2)nN(R5)2, -(C(R3)2)nR5 or –((R3)2)nNO2; R 1 represents alkyl or alkenyl; R 2 represents alkyl, cycloalkyl or alkenyl; R3 represents independently for each case H, alkyl, alkenyl, aryl, cycloalkyl, aralkyl, heteroalkyl, halogen, cyano, amino, acyl, alkoxyl, silyloxy, amino, nitro, thiol, amine, imine, amide, phosphonate, phosphine, carbonyl, carboxyl , silyl, ether, thioether, sulfonyl, selenoether, ketone, aldehyde or ester; R 4 represents cycloalkyl, -CH(R 3 ) 2 , alkenyl, alkynyl, aryl or aralkyl; R 5 represents independently for each case H, alkyl, alkenyl, aryl, cycloalkyl, or aralkyl; R 6 represents optionally substituted alkyl, alkenyl, aryl, or aralkyl; and n is 1-10; and when said kinetic resolution method is completed or terminated, each unreacted cyclic anhydride has an enantiomeric excess greater than zero and the enantiomeric excess of the product is greater than zero. 133. Metoda iz zahtjeva 132 naznačena time, da navedeni katalizator je Q-IP, Q-PC, Q-AD, Q-(-)-MN, Q-(+)-MN, Q-AC, Q-Piv, Q-PH, Q-AN, Q-NT, Q-CN, Q-CH, Q-IB, Q-EF, Q-AA, Q-MP ili Q-IPC.133. The method of claim 132 characterized in that said catalyst is Q-IP, Q-PC, Q-AD, Q-(-)-MN, Q-(+)-MN, Q-AC, Q-Piv, Q -PH, Q-AN, Q-NT, Q-CN, Q-CH, Q-IB, Q-EF, Q-AA, Q-MP or Q-IPC. 134. Metoda iz zahtjeva 132 naznačena time, da navedeni alkohol je primarni alkohol.134. The method of claim 132 characterized in that said alcohol is a primary alcohol. 135. Metoda iz zahtjeva 132 naznačena time, da navedeni nukleofil je metanol ili CF3CH2OH.135. The method of claim 132 characterized in that said nucleophile is methanol or CF3CH2OH.
HR20060010A 2003-06-11 2006-01-10 Catalytic asymmetric desymmetrization of prochiral and meso cyclic anhydrides HRP20060010A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US47753103P 2003-06-11 2003-06-11
US10/460,051 US7053236B2 (en) 2000-04-04 2003-06-12 Catalytic asymmetric desymmetrization of prochiral and meso compounds
US48421803P 2003-07-01 2003-07-01
PCT/US2004/018690 WO2004110609A2 (en) 2003-06-11 2004-06-11 Catalytic asymmetric desymmetrization of prochiral and meso cyclic anhydrides

Publications (1)

Publication Number Publication Date
HRP20060010A2 true HRP20060010A2 (en) 2006-06-30

Family

ID=33556345

Family Applications (1)

Application Number Title Priority Date Filing Date
HR20060010A HRP20060010A2 (en) 2003-06-11 2006-01-10 Catalytic asymmetric desymmetrization of prochiral and meso cyclic anhydrides

Country Status (7)

Country Link
EP (1) EP1638677A4 (en)
JP (1) JP4948172B2 (en)
KR (1) KR20060070485A (en)
CN (1) CN1956943A (en)
CA (1) CA2529071A1 (en)
HR (1) HRP20060010A2 (en)
WO (1) WO2004110609A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101284837B (en) * 2008-06-05 2011-07-20 复旦大学 Stereoselective total synthesis method of (+)-biotin
CN101157655A (en) * 2007-09-20 2008-04-09 复旦大学 Method for synthesizing (4S,5R)- half-ester
CN102325779A (en) * 2009-02-18 2012-01-18 帝斯曼知识产权资产管理有限公司 (4S, 5R)-preparation method of half ester
WO2011078172A1 (en) 2009-12-25 2011-06-30 株式会社カネカ Process for production of optically active 3-substituted glutaric acid monoamide
JP5879228B2 (en) * 2012-08-13 2016-03-08 大阪有機化学工業株式会社 Adamantane derivatives
JP6090621B2 (en) * 2012-12-05 2017-03-08 三菱レイヨン株式会社 Method for producing polymerizable monomer
CN105566248B (en) * 2015-12-30 2019-03-26 苏州开元民生科技股份有限公司 The method for selective synthesis of diltiazem chiral intermediate
CN110754474B (en) * 2019-10-21 2021-10-26 河南科技大学 Application of quinidine or quinidine derivatives, botanical pesticide, quinidine derivatives and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5260461A (en) * 1988-01-11 1993-11-09 Massachusetts Institute Of Technology Ligands for ADH: cinchona alkaloids and moderately sized organic substituents linked through a planar aromatic spacer group
US7053236B2 (en) * 2000-04-04 2006-05-30 Brandeis University Catalytic asymmetric desymmetrization of prochiral and meso compounds
CA2405535A1 (en) * 2000-04-04 2001-10-11 Brandeis University Catalytic asymmetric desymmetrization of meso compounds
TWI298067B (en) * 2002-01-31 2008-06-21 Daiso Co Ltd New optically active compound, method for kinetic resolution of carbonic acid derivatives and catalyst thereof

Also Published As

Publication number Publication date
CA2529071A1 (en) 2004-12-23
JP4948172B2 (en) 2012-06-06
EP1638677A2 (en) 2006-03-29
CN1956943A (en) 2007-05-02
WO2004110609A3 (en) 2007-01-04
WO2004110609A2 (en) 2004-12-23
JP2007531704A (en) 2007-11-08
EP1638677A4 (en) 2007-10-10
KR20060070485A (en) 2006-06-23

Similar Documents

Publication Publication Date Title
US6580003B2 (en) Catalytic asymmetric desymmetrization of meso compounds
HRP20060010A2 (en) Catalytic asymmetric desymmetrization of prochiral and meso cyclic anhydrides
JP6147769B2 (en) Asymmetric synthesis method for the preparation of aminosulfone compounds
CN102203097B (en) Three ring chipal compounds and the purposes in asymmetry catalysis thereof
EP2321310B1 (en) Cinchona-based bifunctional organocatalysts and method for preparing chiral hemiesters using the same
DE60102825T2 (en) KINETIC RACEMATING OF CHIRALER 2 AND 3 SUBSTITUTED CARBOXYLIC ACIDS
KR101130818B1 (en) Method for preparing chiral amino acid from azlactones using bifunctional bis-cinchona alkaloid thiourea organo catalysts
JP2016164143A (en) Processes and intermediates for preparing macrocyclic protease inhibitor of hcv
US20060287549A1 (en) Catalytic asymmetric desymmetrization of prochiral and meso compounds
JP2007531704A5 (en)
US7531662B2 (en) Cinchona-alkaloid-based catalysts, and asymmetric alcoholysis of cyclic anhydrides using them
KR101073679B1 (en) Polymer supported bifunctional organocatalyst and Method for preparing chiral hemiesters by using the same
US7078547B2 (en) Catalytic asymmetric cyanosilylation of ketones, aldehydes, thioketones, thioaldehydes, imines and hydrazones
SK13592001A3 (en) Synthesis of 3-amino-3-aryl propanoates
JP2013543841A5 (en)
US8722891B2 (en) Conjugate addition reactions using bifunctional Cinchona-alkaloid-based catalysts
Lau et al. Synthesis of penicillin N and isopenicillin N
Fernandes Development of an Organocatalytic Method for the Enantioselective Synthesis of Rivastigmine
TW201329074A (en) Processes and intermediates for preparing a macrocyclic protease inhibitor of HCV
US20130296564A1 (en) Synthesis of [2.2.2]-diazabicyclic ring systems

Legal Events

Date Code Title Description
ODRP Renewal fee for the maintenance of a patent

Payment date: 20060628

Year of fee payment: 3

A1OB Publication of a patent application
OBST Application withdrawn