HRP20050063A2 - Micro-cellular or non-cellular light-stable polyurethane material and method for the production thereof - Google Patents

Micro-cellular or non-cellular light-stable polyurethane material and method for the production thereof Download PDF

Info

Publication number
HRP20050063A2
HRP20050063A2 HR20050063A HRP20050063A HRP20050063A2 HR P20050063 A2 HRP20050063 A2 HR P20050063A2 HR 20050063 A HR20050063 A HR 20050063A HR P20050063 A HRP20050063 A HR P20050063A HR P20050063 A2 HRP20050063 A2 HR P20050063A2
Authority
HR
Croatia
Prior art keywords
catalyst
groups
alkyl
organobismuth
group
Prior art date
Application number
HR20050063A
Other languages
Croatian (hr)
Inventor
Trossaert Geert
Du Prez Eddie
Original Assignee
Recticel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Recticel filed Critical Recticel
Publication of HRP20050063A2 publication Critical patent/HRP20050063A2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/222Catalysts containing metal compounds metal compounds not provided for in groups C08G18/225 - C08G18/26
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/227Catalysts containing metal compounds of antimony, bismuth or arsenic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • C08G18/246Catalysts containing metal compounds of tin tin salts of carboxylic acids containing also tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6681Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6688Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3271
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2120/00Compositions for reaction injection moulding processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2290/00Compositions for creating anti-fogging

Description

Prikazani izum se odnosi na postupak proizvodnje mikrostaničnog ili nestaničnog fotostabilnog poliuretanskog materijala gustoće veće od 500 kg/m3, povoljno veće od 700 kg/m3, postupak u kojem se reaktivna smjesa ostavi reagirati da dobijemo poliuretanski materijal, gdje se reaktivna smjesa sastoji od komponenata koje su definirane u preambuli zahtjeva 1 i koja konkretno sadrži katalizatorsku komponentu, koja u biti ne sadrži olovo i koja sadrži organobizmut (III) kao katalizator. The presented invention relates to a process for the production of microcellular or non-cellular photostable polyurethane material with a density greater than 500 kg/m3, preferably greater than 700 kg/m3, a process in which the reactive mixture is left to react to obtain a polyurethane material, where the reactive mixture consists of components that are defined in the preamble of claim 1 and which specifically contains a catalyst component, which essentially does not contain lead and which contains organobismuth (III) as a catalyst.

Takav postupak se koristi za proizvodnju termoplastičnog poliuretanskog materijala (TPU), birajući funkcionalnost dvije različite, međusobno reaktivne komponente. TPU materijal se proizvodi, na primjer, u takozvanom postupku reaktivne ekstruzije, u obliku granulata koji je predviđen za daljnju obradu ekstruzijom ili postupkom oblikovanja maziva. Netermoplastični poliuretanski materijali se obično proizvode postupkom pomoću spreja ili postupkom oblikovanja reakcionim injektiranjem (REVI). Such a process is used for the production of thermoplastic polyurethane material (TPU), choosing the functionality of two different, mutually reactive components. TPU material is produced, for example, in the so-called reactive extrusion process, in the form of granules that are intended for further processing by extrusion or by the process of forming lubricants. Non-thermoplastic polyurethane materials are usually produced by a spray or reactive injection molding (REVI) process.

Sprej postupak za proizvodnju fotostabilnog elastomernog poliuretanskog materijala, koji je mikrostanični ili nestanični, opisan je, na primjer, u EP-B-0 379 246. U ovom europskom patentu su opisani različiti tipovi katalizatora, uključujući organoolovo, organobizmut, organokositar i alkalne katalizatore, koji se koriste u kombinaciji s aminskim inicijatorom da se postigne željeni katalitički efekt. Da se poboljša željena fotostabilnost poliuretanskog materijala, opisane su smjese antioksidanata i apsorbera UV. Opisani su brojni primjeri različitih poliuretanskih formulacija, od kojih je u svakom korištena ista kombinacija antioksidanta i apsorbera UV. A spray process for the production of a photostable elastomeric polyurethane material, which is microcellular or noncellular, is described, for example, in EP-B-0 379 246. In this European patent, various types of catalysts are described, including organolead, organobismuth, organotin and alkali catalysts, which are used in combination with an amine initiator to achieve the desired catalytic effect. To improve the desired photostability of the polyurethane material, mixtures of antioxidants and UV absorbers have been described. Numerous examples of different polyurethane formulations are described, each of which uses the same combination of antioxidants and UV absorbers.

RIM postupak za proizvodnju fotostabilnog mikrostaničnog ili nestaničnog elastomernog poliuretanskog materijala opisan je u EP-B-0 929 586.1 u postupcima opisanim u ovom patentu, različiti tipovi katalizatora su opisani uključujući organoolovo, organobizmut, organokositar i alkalne katalizatore. Ovi katalizatori se koriste u kombinaciji s aminskim inicijatorom da se postigne željeni katalitički efekt. A RIM process for the production of photostable microcellular or acellular elastomeric polyurethane material is described in EP-B-0 929 586.1 in the processes described in this patent, various types of catalysts are described including organolead, organobismuth, organotin and alkali catalysts. These catalysts are used in combination with an amine initiator to achieve the desired catalytic effect.

Poliuretanski materijali, napravljeni u skladu s gore opisanim europskim patentima, koriste se uglavnom u automobilskoj industriji, na primjer, za brtvljenje prozora, a naročito za unutarnje ukrasne dijelove, kao što su upravljačka ploča, konzole, pretinac za rukavice, obloge vrata, itd. Za ovu namjenu, postavljaju se uvijek visoki zahtjevi za poliuretanske materijale. Prije svega, bilo kakva upotreba organoolova je zabranjena ili će biti zabranjena u skoroj budućnosti. Osim toga, dok su u početku bila promatrana samo svojstva maglenja materijala (mjereno u skladu s DIN 75 201, određivanje osobina maglenja vjetrobranskog stakla od materijala za brtvljenje u motornim vozilima), sada će se određivati i sadržaj isparenih organskih spojeva (VOC). Daimler Chrvsler je, na primjer, razvio svoj postupak testiranja PB VWT 709 za mjerenje sadržaja VOC poliuretanskog uzorka, dok je Volkswagen razvio svoj vlastiti postupak testiranja PV 3341, čije je prvo izdanje bilo čak prosinca 1987. U ovoj specifikaciji, vrijednosti VOC se uvijek mjere prema postupku testiranja Daimler Chryslera, PB VWT 709. Polyurethane materials, made in accordance with the European patents described above, are used mainly in the automotive industry, for example, for sealing windows, and especially for interior decorative parts, such as dashboards, consoles, glove boxes, door trims, etc. For this purpose, always high demands are placed on polyurethane materials. First of all, any use of organools is prohibited or will be prohibited in the near future. In addition, while initially only the material's fogging properties were observed (measured in accordance with DIN 75 201, determination of windshield fogging properties of sealing materials in motor vehicles), now the content of volatile organic compounds (VOC) will also be determined. Daimler Chrvsler, for example, developed its test procedure PB VWT 709 for measuring the VOC content of a polyurethane sample, while Volkswagen developed its own test procedure PV 3341, the first edition of which was as late as December 1987. In this specification, VOC values are always measured according to the Daimler Chrysler test procedure, PB VWT 709.

Bitno ograničenje postupaka prikazanih u gore opisanim europskim patentima, naročito onim postupcima gdje nije korišten olovni katalizator, je to što se pomoću njih dobivaju poliuretanski materijali s previsokom vrijednošću VOC. Sada su izumitelji pronašli da je ovo prije svega zbog korištenja organobizmuta, organokositara i alkalnih katalizatora (naročito DBU spojeva: 1,8-diazobiciklo(5,4,0)undeken-7-fenolat). An important limitation of the processes shown in the European patents described above, especially those processes where no lead catalyst was used, is that they produce polyurethane materials with an excessively high VOC value. Now the inventors have found that this is primarily due to the use of organobismuth, organotins and alkaline catalysts (especially DBU compounds: 1,8-diazobicyclo(5,4,0)undecene-7-phenolate).

Slijedeći spoj koji ima negativno djelovanje na vrijednost VOC je BHT (bis-2,6-terc butil-4-hidroksitoluen), koje se koristi kao stabilizator (antioksidant) u komponentama koje sadrže aktivan vodik, korišten u primjerima iz EP-B-0 379 246 i EP-B-0 929 586. Od kasnijih devedesetih, proizvođači poliola počeli su proizvoditi polieterpoliole, koji ne sadrže BHT, tj., koji sadrže manje od 50 ppm BHT. Kad se koristi takav poliol bez BHT u primjerima iz EP-B-0 929 586, gdje nema spojeva od organoolova u svojstvu katalizatora, vrijednosti VOC u ovim primjerima su još uvijek previsoke, konkretno, znatno više od 250 ppm. Ove visoke vrijednosti VOC potječu od prisutnosti organokositrenog katalizatora i organobizmuta i/ili alkalnog katalizatora, koji su korišteni u ovim primjerima i za koje su sadašnji izumitelji pronašli da povećavaju vrijednosti VOC mnogostruko više nego organoolovni katalizator. The next compound that has a negative effect on the VOC value is BHT (bis-2,6-tert butyl-4-hydroxytoluene), which is used as a stabilizer (antioxidant) in components containing active hydrogen, used in the examples from EP-B-0 379 246 and EP-B-0 929 586. Since the late 1990s, polyol manufacturers have started producing BHT-free polyether polyols, i.e., containing less than 50 ppm BHT. When such BHT-free polyol is used in the examples of EP-B-0 929 586, where there are no organool compounds as catalysts, the VOC values in these examples are still too high, namely significantly more than 250 ppm. These high VOC values originate from the presence of the organotin catalyst and the organobismuth and/or alkali catalyst, which were used in these examples and which the present inventors have found to increase the VOC values many times more than the organolead catalyst.

Cilj ovog izuma je, prema tome, da osigura novi postupak proizvodnje mikrostaničnog ili nestaničnog fotostabilnog poliuretanskog materijala, koji omogućava da se dobije poliuretanski materijal sa vrijednošću VOC manjom od 250 ppm, ili čak manjom od 150 ili 100 ppm, bez upotrebe organoolovnog katalizatora. The aim of this invention is, therefore, to provide a new process for the production of microcellular or non-cellular photostable polyurethane material, which allows to obtain a polyurethane material with a VOC value of less than 250 ppm, or even less than 150 or 100 ppm, without the use of an organolead catalyst.

Da se postigne ovaj cilj, karakteristika postupka u skladu s ovim izumom je da organobizmutni katalizator sadrži barem jedan organobizmutni (III) katalizator kojem odgovara slijedeća formula (I): To achieve this goal, a characteristic of the process according to the present invention is that the organobismuth catalyst contains at least one organobismuth (III) catalyst corresponding to the following formula (I):

[image] [image]

gdje je m = 0 -2 where m = 0 -2

p = 1-3 p = 1-3

m + p = 3 m + p = 3

R1 je C1-C8 alkil grupa, a R1 is a C1-C8 alkyl group, a

R2 je ili R2 is either

linearna ili razgranata C13-C19 alkil ili alkenil grupa, ili a linear or branched C13-C19 alkyl or alkenyl group, or

linearna ili razgranata C1-C19 alkil ili alkenil grupa, povoljno, C7-C19 alkil ili alkenil grupa, supstituirana barem jednom grupom koja reagira s izocijanatom, posebno jednom ili s više OH-, NH- i/ili NH2- grupa, i/ili a linear or branched C1-C19 alkyl or alkenyl group, preferably a C7-C19 alkyl or alkenyl group, substituted by at least one isocyanate-reactive group, especially one or more OH-, NH- and/or NH2- groups, and/or

navedena katalizatorska komponenta sadrži, kao dodatak navedenom organobizmutnom katalizatoru, barem jedan organokositreni (II ili IV) katalizator, kojem odgovara slijedeća formula (II): said catalyst component contains, in addition to said organobismuth catalyst, at least one organotin (II or IV) catalyst, to which the following formula (II) corresponds:

[image] [image]

slijedeća formula (III): the following formula (III):

[image] [image]

ili slijedeća formula (IV): or the following formula (IV):

[image] [image]

gdje je where is

R1 C1-C8 alkil grupa; a R1 C1-C8 alkyl group; And

R2je ili R2 is or

linearna ili razgranata C13-C19 alkil ili alkenil grupa, ili a linear or branched C13-C19 alkyl or alkenyl group, or

linearna ili razgranata C1-C19 alkil ili alkenil grupa, povoljno C7-C19 alkil ili alkenil grupa, supstituirana barem jednom grupom koja reagira s izocijanatom, posebno jednom ili s više OH-, NH- i/ili NH2- grupa, a linear or branched C1-C19 alkyl or alkenyl group, preferably a C7-C19 alkyl or alkenyl group, substituted by at least one isocyanate-reactive group, especially one or more OH-, NH- and/or NH2- groups,

gdje su komponente reaktivne smjese nadalje izabrane na taj način da dobijen poliuretanski materijal ima vrijednost VOC, mjerenu u skladu s Daimler Chrvsler PB VWT 709 standardom, nižu od 250 ppm, povoljno nižu od 150 ppm i najpovoljnije nižu od ili jednaku 100 ppm. where the components of the reactive mixture are further selected in such a way that the obtained polyurethane material has a VOC value, measured in accordance with the Daimler Chrvsler PB VWT 709 standard, lower than 250 ppm, preferably lower than 150 ppm and most preferably lower than or equal to 100 ppm.

U skladu s ovim izumom, pronađeno je da se korištenjem takvih organobizmutnih i/ili organokositrenih katalizatora postiže bitno smanjenje vrijednosti VOC bez upotrebe organoolovnog katalizatora. Izraz "u biti ne sadrži olovo" se koristi u ovoj specifikaciji u značenju da olovo nije prisutno ili je prisutno samo u tragovima koji se naročito ne mogu detektirati konvencionalnim tehnikama, pri čemu poliuretanski materijal sadrži manje od 5 ppm, povoljno manje od 1 ppm elementa olova. In accordance with the present invention, it has been found that the use of such organobismuth and/or organotin catalysts achieves a substantial reduction in VOC values without the use of an organolead catalyst. The term "substantially free of lead" is used in this specification to mean that lead is not present or is present only in traces not particularly detectable by conventional techniques, the polyurethane material containing less than 5 ppm, preferably less than 1 ppm of the element of lead.

Za proizvodnju poliuretanskih pjena, koje imaju gustoću manju od 500 kg/m3, već se zna iz US-B-6 194 475 da se koristi cink (II) ili kositar (II) ricinoleat u kombinaciji sa stano kaprilatom kao katalizatorom da se smanji otpuštanje kaprilne kiseline. U jednom primjeru, naime, u Primjeru 19, kositar (II) ricinoleat je korišten kao jedini katalizator. Iz ovog primjera izgleda da čak i kad se koristi količina kositar ricinoleata koja je pet puta veća od količine kositar oktoata, vrijeme potpunog podizanja pjene je još uvijek 15% veće. Potreba za većom količinom kositar (II) ricinoleata kao katalizatora u proizvodnji fleksibilne poliuretanske pjene, u usporedbi s kositar (II) oktoatom, je potvrđena u US-A1-2002/0016376. For the production of polyurethane foams, which have a density of less than 500 kg/m3, it is already known from US-B-6 194 475 that zinc (II) or tin (II) ricinoleate is used in combination with stano caprylate as a catalyst to reduce the release caprylic acid. In one example, namely, Example 19, tin (II) ricinoleate was used as the sole catalyst. From this example it appears that even when using an amount of stannous ricinoleate that is five times the amount of stannous octoate, the time to complete foaming is still 15% longer. The need for a higher amount of tin (II) ricinoleate as a catalyst in the production of flexible polyurethane foam, compared to tin (II) octoate, is confirmed in US-A1-2002/0016376.

U postupku u skladu sa ovim izumom, međutim, radi se mikrostanični ili nestanični poliuretanski materijal koji ima veću gustoću i koji očvršćava u mnogo kraćem vremenu. Poliuretanski materijal se dalje zasniva na izocijanatnom spoju, gdje izocijanatne grupe nisu direktno spojene s aromatičnom grupom i koja je, prema tome, mnogo manje reaktivna nego aromatični izocijanati korišteni u US-B-6 194 475 i US-A1-2002/0016376. Drugim riječima, katalitički sustav korišten u postupku u skladu s ovim izumom je djelotvorniji da se izbjegne potreba za prevelikom količinom katalizatora. Takvu veliku količinu katalizatora treba izbjegavati ne samo s ekonomskog stanovišta. Maksimalna količina katalizatora u poliolskoj ili u izocijanatnoj mješavini je, na primjer, također ograničena kompatibilnošću različitih spojeva unutar mješavine. Kad spojevi nisu kompatibilni jedni s drugima u svojim odgovarajućim količinama, mogu se, na primjer, javiti nepovoljna razdvajanja na faze unutar mješavine. In the process according to the present invention, however, a microcellular or non-cellular polyurethane material is made which has a higher density and cures in a much shorter time. The polyurethane material is further based on an isocyanate compound, where the isocyanate groups are not directly attached to the aromatic group and which is therefore much less reactive than the aromatic isocyanates used in US-B-6 194 475 and US-A1-2002/0016376. In other words, the catalytic system used in the process according to the present invention is more efficient to avoid the need for an excessive amount of catalyst. Such a large amount of catalyst should be avoided not only from an economic point of view. The maximum amount of catalyst in a polyol or isocyanate mixture is, for example, also limited by the compatibility of the various compounds within the mixture. When the compounds are not compatible with each other in their respective amounts, unfavorable phase separations within the mixture may occur, for example.

U suprotnosti s postupcima opisanim u US-B-6 194 475 i US-A1-2002/00163 76, u postupku prema ovom izumu upotrebljen je organobizmutski katalizator, za koji je nađeno da je znatno djelotvorniji u katalizaciji "nearomatičnih" poliuretanskih formulacija nego organokositrenski ili organocinkov katalizator. In contrast to the processes described in US-B-6 194 475 and US-A1-2002/00163 76, the process of this invention uses an organobismuth catalyst, which has been found to be significantly more effective in catalyzing "non-aromatic" polyurethane formulations than organotin or an organozinc catalyst.

U odnosu na organobizmutni katalizator, sadašnji izumitelji su prilično neočekivano našli da, nasuprot upotrebi organokositarnog (II) katalizatora u proizvodnji aromatične poliuretanske pjene, isti katalitički efekt se postiže kad se zamijeni bizmut oktoat (=bizmut kaprilat), koji je uobičajen organobizmutni katalizator u proizvodnji mikrostaničnih ili nestaničnih fotostabilnih poliuretanskih materijala, sličnom količinom bizmutoleata, tj., količinom bizmutoleata koja sadrži sličnu količinu elementa bizmuta kao bizmut oktoat. In relation to the organobismuth catalyst, the present inventors rather unexpectedly found that, in contrast to the use of an organotin (II) catalyst in the production of aromatic polyurethane foam, the same catalytic effect is achieved when bismuth octoate (=bismuth caprylate) is substituted, which is a common organobismuth catalyst in the production of microcellular or non-cellular photostable polyurethane materials, with a similar amount of bismutholeate, i.e., an amount of bismutholeate containing a similar amount of the bismuth element as bismuth octoate.

Sadašnji izumitelji su dalje našli da su, i za organobizmutni i za organokositarni katalizator, karboksilati visoke molekularne težine, različiti od ricinoleata, i karboksilati niže molekularne težine, koji sadrže grupe reaktivne s izocijanatom, efektivni u smanjivanju otparavanja poliuretanskog materijala, što je u suprotnosti s nalazima u US-B-6 194 475, prema kojem cink stearat, oleat i 12-hidroksistearat ne bi imali nikakve pozitivne učinke na vrijednosti otparavanja. The present inventors have further found that, for both organobismuth and organotin catalysts, high molecular weight carboxylates, other than ricinoleate, and lower molecular weight carboxylates, containing isocyanate reactive groups, are effective in reducing volatilization of the polyurethane material, which is in contrast to findings in US-B-6 194 475, according to which zinc stearate, oleate and 12-hydroxystearate would not have any positive effects on evaporation values.

Što se tiče upotrebe organokositrenog katalizatora, nađeno je da kombinacija organobizmutskog i organokositrenog katalizatora ima prednost u svjetlu činjenice da organobizmutni katalizator izaziva brzi početni porast viskoznosti dok je organokositreni katalizator aktivniji na kraju reakcije polimerizacije. Pošto jako brzi porast viskoznosti ima negativan efekat na vrijeme do očvršćavanja (tack-free time), ovo vrijeme do očvršćavanja se smanjuje zamjenjivanjem dijela bizmutskog katalizatora kositrenim katalizatorom. Takvo smanjeno vrijeme do očvršćavanja je važno da se postigne ekonomski prihvatljivo vrijeme oblikovanja. Regarding the use of organotin catalyst, the combination of organobismuth and organotin catalyst was found to be advantageous in light of the fact that the organobismuth catalyst causes a rapid initial increase in viscosity while the organotin catalyst is more active at the end of the polymerization reaction. Since a very rapid increase in viscosity has a negative effect on the tack-free time, this tack-free time is reduced by replacing part of the bismuth catalyst with a tin catalyst. Such a reduced curing time is important to achieve an economically acceptable molding time.

U jednom povoljnom izvođenju postupka prema ovom izumu, katalizatorska komponenta nadalje sadrži organocinkov (II) katalizator kojem odgovara konkretno slijedeća formula (V): In one advantageous embodiment of the process according to the present invention, the catalyst component further contains an organozinc (II) catalyst corresponding specifically to the following formula (V):

[image] [image]

gdje je R2 C1-C19, povoljno C1-C12, alkil ili alkenil grupa, koja je linearna ili razgranata i koja je supstituirana ili nesupstituirana. Povoljno, organocinkov katalizator sadrži cink dioktoat. where R2 is a C1-C19, preferably C1-C12, alkyl or alkenyl group, which is linear or branched and which is substituted or unsubstituted. Advantageously, the organozinc catalyst comprises zinc dioctoate.

Sadašnji izumitelji su pronašli da, baš kao i organoolovni karboksilati, cink karboksilati ne izazivaju otparavanja ili samo u maloj količini. Za proizvodnju mikrostaničnih ili nestaničnih fotostabilnih poliuretanskih materijala, pronađeno je da kombinacija organobizmutnog i organocinkovog katalizatora ima prednost u svjetlu činjenice da organocinkov katalizator kompetira s ili inhibira organobizmutski katalizator, tako da se sprječava da organobizmutni katalizator izaziva prebrzi porast viskoznosti, tako da je aktivnost organobizmutnog katalizatora produžena i skraćeno je vrijeme očvršćivanja. The present inventors have found that, just like the organolead carboxylates, the zinc carboxylates cause no volatilization or only a small amount. For the production of microcellular or acellular photostable polyurethane materials, the combination of an organobismuth and an organozinc catalyst has been found to be advantageous in light of the fact that the organozinc catalyst competes with or inhibits the organobismuth catalyst, thus preventing the organobismuth catalyst from increasing too rapidly in viscosity, so that the activity of the organobismuth catalyst is extended and the curing time is shortened.

Povoljno je da katalizatorska komponenta sadrži organobizmut, organocink i organokositar kao katalizatore, naročito kad se reaktivna smjesa nanosi sprejem. Na ovaj način, aktivnost bizmutnog katalizatora se produžava kompeticijom s cinkovim katalizatorom i organokositreni katalizator osiguravaju efektivno očvršćivanje na kraju reakcije polimerizacije. Ovaj drugi efekt je naročito povoljan u primjeni spreja zbog niže temperature očvršćavanja poliuretanskog materijala na kraju reakcije polimerizacije, pa prema tome i njegove niže reaktivnosti, u usporedbi s RIM postupkom koji se odvija u zatvorenom, zagrijanom kalupu. It is advantageous for the catalyst component to contain organobismuth, organozinc and organotin as catalysts, especially when the reactive mixture is applied by spray. In this way, the activity of the bismuth catalyst is extended by competing with the zinc catalyst and the organotin catalyst ensures effective curing at the end of the polymerization reaction. This second effect is particularly favorable in the application of spray due to the lower curing temperature of the polyurethane material at the end of the polymerization reaction, and therefore its lower reactivity, compared to the RIM process that takes place in a closed, heated mold.

Ostale specifičnosti i prednosti ovog izuma postati će jasne iz slijedećeg opisa niza komponenata i formulacija koje se koriste u postupcima iz ovog izuma i iz njega dobijenih poliuretanskih materijala. Other specificities and advantages of this invention will become clear from the following description of the series of components and formulations used in the processes of this invention and polyurethane materials obtained from it.

Općenito, izum se odnosi na postupak proizvodnje mikrostaničnog ili nestaničnog fotostabilnog poliuretanskog materijala, konkretno, elastomernog poliuretanskog materijala, koji ima gustoću veću od 500 kg/m3, naročito, veću od 700 kg/m3. U praksi, gustoća poliuretanskog materijala je obično manja od 1200 kg/m3. Poliuretanski materijali su mikrostanični, po mogućnosti s integralnim omotačem, ili nestanični. Proizvode se polazeći od reaktivne smjese poliuretanskih prethodnika, koji se ostave izreagirati, naročito, takozvanim postupkom "jednog ubrizgavanja" gdje se komponente reaktivne poliuretanske smjese mješaju prije nego što se stave u kalup ili na površinu kalupa. Ovo se radi postupkom spreja, kao što je opisano u primjeru u EP-B-0 379 246 ili postupkom oblikovanja reakcionim injektiranjem (RIM), kao što je opisano u primjeru u EP-B-0 929 586. U ova dva različita postupaka, dvije mješavine se obično prvo sastave, naime, takozvana poliolska mješavina i izocijanatna mješavina, koje se mješaju prije nego što se nanesu sprejem na površinu kalupa ili injektiraju u kalup. Osim mogućih primjena u spreju ili RIM, također se radi termoplastični poliuretanski materijal, na primjer, tehnikom reaktivne ekstruzije. In general, the invention relates to a process for the production of microcellular or non-cellular photostable polyurethane material, specifically, elastomeric polyurethane material, which has a density greater than 500 kg/m3, in particular, greater than 700 kg/m3. In practice, the density of polyurethane material is usually less than 1200 kg/m3. Polyurethane materials are microcellular, preferably with an integral coating, or non-cellular. They are produced starting from a reactive mixture of polyurethane precursors, which are left to react, in particular, by the so-called "single injection" process, where the components of the reactive polyurethane mixture are mixed before being placed in the mold or on the surface of the mold. This is done by a spray process, as described in the example in EP-B-0 379 246 or by a reaction injection molding (RIM) process, as described in the example in EP-B-0 929 586. In these two different processes, two mixtures are usually made up first, namely the so-called polyol mixture and the isocyanate mixture, which are mixed together before being sprayed onto the surface of the mold or injected into the mold. In addition to possible applications in spray or RIM, thermoplastic polyurethane material is also made, for example, by the reactive extrusion technique.

U postupku iz ovog izuma, reaktivna poliuretanska smjesa se sastoji od najmanje slijedećih komponenti: In the process of this invention, the reactive polyurethane mixture consists of at least the following components:

A) izocijanatna komponenta sastavljena od barem jednog izocijanatnog spoja koje ima barem dvije NCO- grupe koje nisu direktno spojene s aromatskom grupom; A) isocyanate component composed of at least one isocyanate compound that has at least two NCO groups that are not directly connected to an aromatic group;

B) komponente koje su reaktivne s izocijanatom koje sadrže B) components that are reactive with the isocyanate they contain

b1) komponentu s aktivnim vodikom, koja ima barem jedan spoj s aktivnim vodikom i ima: b1) component with active hydrogen, which has at least one compound with active hydrogen and has:

funkcionalne grupe koje sadrže primarne i/ili sekundarne OH- grupe, NH- grupe i/ili functional groups containing primary and/or secondary OH-groups, NH-groups and/or

NH2- grupe; NH2- groups;

nominalnu funkcionalnost od 2 do 8; i nominal functionality from 2 to 8; and

ekvivalentnu težinu između 100 i 4000, povoljno između 800 i 2000; equivalent weight between 100 and 4000, preferably between 800 and 2000;

b2) od oko 0 do oko 30 dijelova, povoljno od oko 2 do oko 30 dijelova, na 100 dijelova komponenata b1, b2 i b3, komponenata koje produžuju lance i/ili ih križno povezuju, koje se sastoje od barem jedne komponente koja produžava lance i/ili barem jedne komponente koja ih križno povezuje, s ekvivalentnom težinom manjom od 100, čije su funkcionalne grupe OH- grupe, od kojih su barem 50% primarne OH- grupe i čija funkcionalnost je od 2 do 6; i b2) from about 0 to about 30 parts, preferably from about 2 to about 30 parts, per 100 parts of components b1, b2 and b3, chain-extending and/or cross-linking components, consisting of at least one chain-extending component and/or at least one component that cross-links them, with an equivalent weight of less than 100, whose functional groups are OH- groups, of which at least 50% are primary OH- groups and whose functionality is from 2 to 6; and

b3) aminsko-iniciatorsku komponentu koja formira ko-katalitički sustav s katalizatorskom komponentom C i koja se sastoji od barem jednog aminskog iniciatora s funkcionalnošću od 2 do 6 i ekvivalentne težine manje ili jednake 200 i koja sadrži barem jednu alifatičku ili alicikličku NH2- ili NH- grupu; i b3) an amine-initiator component that forms a co-catalytic system with the catalyst component C and that consists of at least one amine initiator with a functionality of 2 to 6 and an equivalent weight of less than or equal to 200 and that contains at least one aliphatic or alicyclic NH2- or NH - group; and

C) katalizatorsku komponentu koja u biti ne sadrži olovo i koja sadrži barem jedan organobizmutni (III) katalizator. C) a catalyst component that is essentially lead-free and that contains at least one organobismuth (III) catalyst.

Izocijanatna komponenta sadrži jedan izocijanatni spoj ili smjesu izocijanatnih spojeva. Povoljni izocijanatni spojevi su vrlo različiti. Bitna značajka izocijanatnih spojeva je da sadrže barem dvije NCO- grupe koje nisu direktno spojene s aromatskom grupom. Poliuretanski materijal dobijen na ovaj način radi se fotostabilan. Izocijanatna komponenta povoljno sadrži IPDI (izoforondiizocijanat) monomere ili trimere ili njihovu smjesu, gdje je povoljno da smjesa IPDI monomera/trimera ima sadržaj NCO između 24,5 i 34 težinskih %. Opciono, koristi se i izocijanatni pretpolimer, gdje je dio NCO- grupa već reagirao sa spojem koji sadrži aktivan vodik. Umjesto IPDI, koristi se drugi "nearomatski" izocijanati, kao što su TMXDI, HDI, H6XDI i H12MDI ili njihovi derivati. Ovi izocijanati su opisani u EP-B-0 379 246, čiji opis je uključen ovdje referencom. The isocyanate component contains one isocyanate compound or a mixture of isocyanate compounds. The preferred isocyanate compounds are very different. An essential feature of isocyanate compounds is that they contain at least two NCO groups that are not directly connected to an aromatic group. The polyurethane material obtained in this way is made photostable. The isocyanate component advantageously contains IPDI (isophorone diisocyanate) monomers or trimers or their mixture, where it is advantageous that the IPDI monomer/trimer mixture has an NCO content between 24.5 and 34% by weight. Optionally, an isocyanate prepolymer is also used, where a part of the NCO groups has already reacted with a compound containing active hydrogen. Instead of IPDI, other "non-aromatic" isocyanates are used, such as TMXDI, HDI, H6XDI and H12MDI or their derivatives. These isocyanates are described in EP-B-0 379 246, the disclosure of which is incorporated herein by reference.

Komponente reaktivne s izocijanatom prije svega sadrže komponentu s aktivnim vodikom. Ova komponenta se sastoji od jednog ili više spojeva koji sadrže aktivan vodik, koja imaju ekvivalentnu težinu između 100 i 4000 i nominalnu funkcionalnost od 2 do 8. Povoljno je da su ovi spojevi koji sadrže aktivan vodik polieterpolioli s terminalnim OH-grupama, dobijeni poliadicijom propilen oksida i/ili etilen oksida na inicijatorima niske molekularne težine s OH-, NH- i/ili NH2- grupama i s funkcionalnošću od 2 do 8. Isocyanate-reactive components primarily contain an active hydrogen component. This component consists of one or more compounds containing active hydrogen, which have an equivalent weight between 100 and 4000 and a nominal functionality of 2 to 8. Advantageously, these compounds containing active hydrogen are polyether polyols with terminal OH-groups, obtained by polyaddition of propylene oxide and/or ethylene oxide on low molecular weight initiators with OH-, NH- and/or NH2- groups and with functionality from 2 to 8.

Ova funkcionalnost odgovara nominalnoj funkcionalnosti polieterpoliola. Povoljna nominalna funkcionalnost spojeva koji sadrže aktivan vodik je od 2 do 4. Što se tiče reaktivnosti spojeva koji sadrži aktivan vodik, povoljno je da barem 50%, a još povoljnije barem 70% OH- grupa reaktivnih s izocijanatom je primarne OH- grupe. This functionality corresponds to the nominal functionality of polyether polyols. Favorable nominal functionality of compounds containing active hydrogen is from 2 to 4. Regarding the reactivity of compounds containing active hydrogen, it is favorable that at least 50%, and even more favorable at least 70% of OH- groups reactive with isocyanate are primary OH- groups.

Umjesto, ili uz OH- grupu, spojevi koji sadrže aktivan vodik sadrže i NH- ili NH2-grupe reaktivne s izocijanatom. Primjer takvih spojeva su takozvani Jeffamines od Texaco. Instead of, or in addition to the OH- group, compounds containing active hydrogen also contain NH- or NH2-groups reactive with isocyanate. An example of such compounds are the so-called Jeffamines from Texaco.

Drugi tipovi spojeva koji sadrže aktivan vodik su poliestarpolioli koji formiraju esterske proizvode kondenzacijom dikarboksilne kiseline s polialkoholima niske molekularne težine, s funkcionalnošću od 2 do 8, povoljno od 2 do 4, koje odgovaraju nominalnoj funkcionalnosti poliesterpoliola. Other types of compounds containing active hydrogen are polyester polyols which form ester products by condensation of dicarboxylic acid with polyalcohols of low molecular weight, with functionality from 2 to 8, preferably from 2 to 4, which correspond to the nominal functionality of polyester polyols.

Drugi povoljni spojevi koji sadrže aktivan vodik su politetrametilen eter glikoli (PTMG), koji su politetrahidrofuran s 100% primarnih OH- grupa i koji imaju nominalnu funkcionalnost 2 i hidroksilni broj od 35 do 200. Other advantageous compounds containing active hydrogen are polytetramethylene ether glycols (PTMG), which are polytetrahydrofuran with 100% primary OH- groups and which have a nominal functionality of 2 and a hydroxyl number of 35 to 200.

Komponente reaktivne s izocijanatom nadalje sadrže komponentu koja križno povezuje lance i/ili ih produžava, koja se sastoji od barem jedne komponente koja produžava lance i/ili barem jedne komponente koja ih križno povezuje, čije su funkcionalne grupe OH grupe. Komponenta koja produžava lance i/ili ona koja ih križno povezuje ima ekvivalentnu težinu manju od 100. Prisutnost ove komponente koja produžava lance i/ili ove koja ih križno povezuje je obično, ali ne uvijek, potrebno. Upotrebljava se u količini od 0 do oko 30 dijelova, povoljno od oko 2 do oko 30 dijelova, na 100 dijelova komponenata b1, b2 i b3. The isocyanate-reactive components further comprise a chain-crosslinking and/or chain-extending component, consisting of at least one chain-extending component and/or at least one chain-crosslinking component, the functional groups of which are OH groups. The chain-extending and/or cross-linking component has an equivalent weight of less than 100. The presence of this chain-extending and/or cross-linking component is usually, but not always, necessary. It is used in an amount from 0 to about 30 parts, preferably from about 2 to about 30 parts, per 100 parts of components b1, b2 and b3.

Tipične povoljne komponente koje križno povezuju lance ili ih produžavaju samo s aktivnim OH grupama, s funkcionalnošću od 2 do 4, hidroksilnim brojem većim od 250 i koncentracijom primarnih OH grupa većom od 50%, su etilen glikol, propandiol, butandiol, pentandiol, heksandiol, glicerin, trimetilolpropan, trietanolamin, trimetiloletan, pentaeritrol, bisfenol A i cikloheksandimetanol, a također i mogući proizvodi adicije iz svih ovih primjera s manje od 5 ili s 5 molova etilen oksida i/ili propilen oksida po molu komponente koja križno povezuje lance ili ih produžava. Typical favorable components that crosslink or extend the chains only with active OH groups, with a functionality of 2 to 4, a hydroxyl number greater than 250 and a concentration of primary OH groups greater than 50%, are ethylene glycol, propanediol, butanediol, pentanediol, hexanediol, glycerin, trimethylolpropane, triethanolamine, trimethylolethane, pentaerythritol, bisphenol A and cyclohexanedimethanol, and also possible addition products from all these examples with less than 5 or with 5 moles of ethylene oxide and/or propylene oxide per mole of the cross-linking or chain-extending component .

Komponente reaktivne s izocijanatom konačno sadrže aminsku inicijatorsku komponentu koja formira ko-katalitički sustav s katalizatorskom komponentom C. Takvi inicijatori su opisani u US-A-4 150 206 i US-A-4 292 411, uz uvjet daje potrebna minimalna funkcionalnost 2. The isocyanate-reactive components finally contain an amine initiator component that forms a co-catalytic system with catalyst component C. Such initiators are described in US-A-4,150,206 and US-A-4,292,411, provided that the required minimum functionality of 2.

Alifatski ili aliciklički alkanolamini ili poliamini, s amino grupom koja nije direktno vezana za aromatički prsten, obično se uzimaju u obzir. Broj NH- i/ili NH2- grupa je barem 2, ako OH- grupe nisu prisutne i barem 1 ako su OH- grupe prisutne. Ukupan broj reaktivnih grupa, formiranih od -NH, -NH2 ili -OH, uglavnom varira između 2 i 5. Aliphatic or alicyclic alkanolamines or polyamines, with an amino group not directly attached to the aromatic ring, are usually considered. The number of NH- and/or NH2- groups is at least 2, if OH- groups are not present and at least 1 if OH- groups are present. The total number of reactive groups, formed by -NH, -NH2 or -OH, generally varies between 2 and 5.

Tipični povoljni spojevi, naročito alifatski spojevi s funkcionalnošću od 2 do 4, su slijedeći: monoetanol-amin, dietanolamin, diisopropanolamine, etilendiamin, isoforondiamin, N,N'-dimetil(dietil)-etilendiamin, 2-amino-2-metil (ili etil)-1-propanol, 2-amino-1-butanol, 3-amino-1,2-propandiol, 2-amino-2-metil (etil)-1,3-propandiol. Typical preferred compounds, especially aliphatic compounds with a functionality of 2 to 4, are the following: monoethanolamine, diethanolamine, diisopropanolamines, ethylenediamine, isophoronediamine, N,N'-dimethyl(diethyl)-ethylenediamine, 2-amino-2-methyl (or ethyl)-1-propanol, 2-amino-1-butanol, 3-amino-1,2-propanediol, 2-amino-2-methyl (ethyl)-1,3-propanediol.

"Jeffamines" (Texaco) (propilen oksidni proizvodi adicije koji imaju uglavnom terminalne primarne NH2 ili sekundarne NH grupe - funkcionalnost 2 do 3). Proizvodi adicije propilen oksida i/ili etilen oksida na etilendiaminski inicijator (2 do 8 mola/mol etilendiamin). "Jeffamines" (Texaco) (propylene oxide addition products having mostly terminal primary NH2 or secondary NH groups - functionality 2 to 3). Addition products of propylene oxide and/or ethylene oxide to an ethylenediamine initiator (2 to 8 mol/mol ethylenediamine).

Ranije navedene komponente fotostabilne poliuretanske formulacije su već opisane s više detalja u EP-B-0 379 246, a također u EP-B-0 929 586, čiji opisi su uključeni ovdje referencom. The aforementioned components of the photostable polyurethane formulation have already been described in more detail in EP-B-0 379 246 and also in EP-B-0 929 586, the descriptions of which are incorporated herein by reference.

Nedostatak poznatih fotostabilnih poliuretanskih formulacija je što proizvedeni poliuretanski materijali imaju vrlo visoku vrijednost VOC i što se većina njih proizvodi katalitičkim sustavom koji sadrži organoolovni katalizator. The disadvantage of known photostable polyurethane formulations is that the produced polyurethane materials have a very high VOC value and that most of them are produced by a catalytic system containing an organolead catalyst.

Da se smanji vrijednost VOC, prije svega su upotrebljene komponente s aktivnim vodikom, naročito, polietarpoliol, koji ne sadrži BHT ili koji sadrži samo malu količinu ovog stabilizatora, naročito količinu manju od 50 ppm. Poznato je da BHT zaista doprinosi otparavanju poliuretanskih materijala i zato ga treba izbjegavati da se smanji vrijednost VOC. To reduce the VOC value, components with active hydrogen are primarily used, especially polyether polyol, which does not contain BHT or which contains only a small amount of this stabilizer, especially an amount less than 50 ppm. BHT is known to actually contribute to the evaporation of polyurethane materials and should therefore be avoided to reduce the VOC value.

Bitno svojstvo ovog izuma da smanji vrijednosti otparavanja VOC je poseban izbor katalizatora. U postupku iz ovog izuma upotrebljava se organobizmutni (III) katalizator, opciono u kombinaciji s organokositarom (IV), organocinkom (II) i/ili nekim drugim katalizatorom kao što je katalizator zeolitnog tipa. Alkalni katalizatori opisani u EP-B-0 379 246 se, međutim, više ne koriste, ili samo u tako maloj količini da vrijednost VOC dobijenog poliuretanskog materijala ostane ispod gornje granice od 250,150 ili 100 ppm. An essential property of this invention to reduce VOC evaporation values is the special choice of catalyst. In the process of this invention, an organobismuth (III) catalyst is used, optionally in combination with organotin (IV), organozinc (II) and/or some other catalyst such as a zeolite type catalyst. The alkaline catalysts described in EP-B-0 379 246 are, however, no longer used, or only in such a small amount that the VOC value of the obtained polyurethane material remains below the upper limit of 250, 150 or 100 ppm.

Organobizmutni (III) katalizator Organobismuth (III) catalyst

Povoljno je da organobizmutni katalizator korišten u postupku iz ovog izuma sadrži organobizmutni katalizator koji odgovara slijedećoj općoj formuli (I): It is advantageous that the organobismuth catalyst used in the process of this invention contains an organobismuth catalyst corresponding to the following general formula (I):

[image] [image]

gdje je where is

m = 0-2 m = 0-2

p=1-3 p=1-3

m + p = 3 m + p = 3

R1 je C1-C8 alkil grupa, a R1 is a C1-C8 alkyl group, a

R2 je ili: R2 is either:

linearna ili razgranata C13-C19 alkil ili alkenil grupa, ili a linear or branched C13-C19 alkyl or alkenyl group, or

linearna ili razgranata C1-C19 alkil ili alkenil grupa, povoljno C7-C19 alkil ili alkenil grupa, supstituirana barem jednom grupom reaktivnom s izocijanatom, naročito jednom ili s više OH-, NH- i/ili NH2- grupa. a linear or branched C1-C19 alkyl or alkenyl group, preferably a C7-C19 alkyl or alkenyl group, substituted by at least one isocyanate-reactive group, especially one or more OH-, NH- and/or NH2- groups.

U usporedbi s organobizmutnim katalizatorom bizmut-(III)-2-etilheksoat (= "bizmut oktoat"), organobizmutni katalizatori formule (I) rade znatno manje volatilne spojeve u poliuretanskom materijalu. Ovo je ili zbog činjenice daje karboksilna kiselina dobijena kad je katalizator hidroliziran manje volatilna zbog toga što ima veću molekularnu težinu, ili zbog činjenice daje ova karboksilna kiselina supstituirana grupom reaktivnom s izocijanatom, tako daje kemijski vezana u poliuretansku mrežu. In comparison with the organobismuth catalyst bismuth-(III)-2-ethylhexoate (= "bismuth octoate"), the organobismuth catalysts of formula (I) produce considerably less volatile compounds in the polyurethane material. This is either due to the fact that the carboxylic acid obtained when the catalyst is hydrolyzed is less volatile because it has a higher molecular weight, or due to the fact that this carboxylic acid is substituted with a group reactive with isocyanate, so that it is chemically bound in the polyurethane network.

Kad je bizmutni katalizator mono- ili dialkilkarboksilat (m = 1 ili 2), povoljno je daje alkil grupa R1 C1-C4 alkil grupa s obzirom na veću reaktivnost i nižu točku topljenja. Niža točka topljenja je važna s obzirom na činjenicu da je povoljno da se katalizator u tekućem stanju doda poliuretanskom sustavu. Najpovoljnije je da je bizmutni katalizator bizmut karboksilat (m = 0), jer su takvi karboksilati već komercijalno dostupni i osiguravaju dobar katalitički efekat. Bizmutni katalizatori ovog tipa su, na primjer, bizmut miristat, bizmut miristoleat, bizmut palmitat, bizmut stearat, bizmut oleat, bizmut linoleat, bizmut linolenat i bizmut ricinoleat. When the bismuth catalyst is a mono- or dialkylcarboxylate (m = 1 or 2), it is advantageous if the alkyl group R1 is a C1-C4 alkyl group in view of higher reactivity and lower melting point. The lower melting point is important due to the fact that it is advantageous to add the catalyst in a liquid state to the polyurethane system. It is most favorable that the bismuth catalyst is bismuth carboxylate (m = 0), because such carboxylates are already commercially available and provide a good catalytic effect. Bismuth catalysts of this type are, for example, bismuth myristate, bismuth myristoleate, bismuth palmitate, bismuth stearate, bismuth oleate, bismuth linoleate, bismuth linolenate and bismuth ricinoleate.

Među ovim primjerima, bizmut ricinoleat sadrži karboksilnu grupu supstituiranu grupom reaktivnom s izocijanatom, konkretnije, OH- grupom. U slučaju ovako supstituiranih karboksil grupa, R2 grupa je manje molekularne težine. Povoljno je da je R2 grupa C7-C19 alkil ili alkenil grupa. Among these examples, bismuth ricinoleate contains a carboxyl group substituted with an isocyanate-reactive group, more specifically, an OH- group. In the case of such substituted carboxyl groups, the R2 group is of lower molecular weight. Preferably, the R2 group is a C7-C19 alkyl or alkenyl group.

Pošto grupe reaktivne s izocijanatom na katalizatorskom spoju izazivaju smanjenje katalitičke aktivnosti vezivanjem katalizatora za poliuretanski matriks, povoljno je da se koristi organobizmutni katalizator formule (I), gdje je R2 C13-C19 alkil ili alkenil grupa koja nije supstituirana grupom reaktivnom s izocijanatom. Nadalje je povoljno da je R2 grupa linearna. Since groups reactive with isocyanate on the catalyst compound cause a decrease in catalytic activity by binding the catalyst to the polyurethane matrix, it is advantageous to use an organobismuth catalyst of formula (I), where R2 is a C13-C19 alkyl or alkenyl group that is not substituted by a group reactive with isocyanate. It is further advantageous that the R 2 group is linear.

Povoljno je da R2 alkil ili alkenil grupa bude C15-C19 alkil ili alkenil grupa, s obzirom na niži napon pare karboksilnih kiselina veće molekularne težine što rezultira u nižim vrijednostima VOC. Dalje je povoljno da R2 grupe budu alkenil grupe. Prisutnost jedne ili više dvogubih veza zaista snižava točku topljenja katalizatora tako da, čak i s većom molekularnom težinom, katalizator se dodaje u tekućem stanju poliuretanskom sustavu. S obzirom na činjenicu da oni kombiniraju relativno visoku molekularnu težinu s relativno niskom točkom topljenja, oleil grupe, linoleil grupe, linolenil grupe ili njihove kombinacije su najpovoljnije kao R2COO- grupe u formuli (I) organobizmutnog katalizatora. Najpovoljniji organobizmutni katalizator je bizmut (III) oleat, gdje mali dio karboksilatnih grupa čine linoleat i linolenat grupe zbog upotrebe prirodnih ulja za pripremu ovog organobizmutnog katalizatora. It is advantageous for the R2 alkyl or alkenyl group to be a C15-C19 alkyl or alkenyl group, given the lower vapor pressure of higher molecular weight carboxylic acids resulting in lower VOC values. It is further advantageous for the R 2 groups to be alkenyl groups. The presence of one or more double bonds actually lowers the melting point of the catalyst so that, even with a higher molecular weight, the catalyst is added in liquid form to the polyurethane system. In view of the fact that they combine a relatively high molecular weight with a relatively low melting point, oleyl groups, linoleyl groups, linolenyl groups or combinations thereof are most advantageous as R 2 COO- groups in the formula (I) organobismuth catalyst. The most favorable organobismuth catalyst is bismuth (III) oleate, where a small part of the carboxylate groups consists of linoleate and linolenate groups due to the use of natural oils for the preparation of this organobismuth catalyst.

Kao što je već pomenuto ranije, reaktivna smjesa se prvo sprejem nanosi na površinu kalupa. U ovom slučaju, organobizmutni katalizator se obično koristi u takvoj količini da dobijeni poliuretanski materijal sadrži 150 do 850 ppm, povoljno 150 do 600 ppm, elementa bizmuta. Reaktivna smjesa treba također biti injektirana u zatvoreni kalup, prema postupaku oblikovanja reakcionim injektiranjem (RIM). U ovom slučaju, organobizmutni katalizator se obično koristi u takvoj količini da dobijeni poliuretanski materijal sadrži 250 do 2500 ppm, povoljno 800 do 1650 ppm, elementa bizmuta. As mentioned earlier, the reactive mixture is first sprayed onto the surface of the mold. In this case, the organobismuth catalyst is usually used in such an amount that the resulting polyurethane material contains 150 to 850 ppm, preferably 150 to 600 ppm, of the element bismuth. The reactive mixture should also be injected into a closed mold, according to the reaction injection molding (RIM) process. In this case, the organobismuth catalyst is usually used in such an amount that the resulting polyurethane material contains 250 to 2500 ppm, preferably 800 to 1650 ppm, of the element bismuth.

U postupku iz ovog izuma, povoljno je da se organobizmutni katalizator doda mješavini poliola, jer kada se doda mješavini izocijanata, dobij a se sustav koji je manje stabilan u odnosu na reaktivnost. Kad se dodaju mješavini poliola, organobizmutni katalizatori formule (I), gdje je R2 C13-C19, povoljno C13-C19 alkil ili alkenil grupa, pružaju dodatnu prednost time što su manje osjetljivi na hidrolizu u poliolskoj mješavini. In the process of this invention, it is advantageous that the organobismuth catalyst is added to the polyol mixture, because when it is added to the isocyanate mixture, a system is obtained that is less stable in relation to reactivity. When added to a polyol mixture, the organobismuth catalysts of formula (I), where R 2 is C 13 -C 19 , preferably a C 13 -C 19 alkyl or alkenyl group, provide the additional advantage of being less susceptible to hydrolysis in the polyol mixture.

Osim organobizmutnih katalizatora formule (I), organobizmutni katalizator korišten u postupku iz ovog izuma sadrži druge organobizmutne (III) katalizatore, kao što je bizmut oktoat. Pošto upotreba ovih katalizatora povećava vrijednost VOC dobijenog poliuretanskog materijala, njih treba koristiti samo u dovoljno malim količinama, tj., u takvim količinama da vrijednost VOC ostane ispod propisane maksimalne vrijednosti. U nekim slučajevima, pokazalo se da upotreba organobizmutnog katalizatora formule (I) nije bitna i da zahtjevani katalitički efekt se naročito dobije kombinacijom organokositrenog katalizatora i male količine organobizmutnog katalizatora koji oslobađa isparljiva spojeva bez prelaska dozvoljene vrijednosti VOC. In addition to organobismuth catalysts of formula (I), the organobismuth catalyst used in the process of this invention contains other organobismuth (III) catalysts, such as bismuth octoate. Since the use of these catalysts increases the VOC value of the obtained polyurethane material, they should be used only in sufficiently small quantities, i.e., in such quantities that the VOC value remains below the prescribed maximum value. In some cases, it has been shown that the use of an organobismuth catalyst of formula (I) is not essential and that the required catalytic effect is particularly obtained by a combination of an organotin catalyst and a small amount of an organobismuth catalyst that releases volatile compounds without exceeding the permitted VOC value.

Organokositreni katalizator Organotin catalyst

Organokositreni katalizator korišten u povoljnom izvođenju postupka iz ovog izuma odgovara slijedećoj općoj formuli (II): The organotin catalyst used in the favorable implementation of the process of this invention corresponds to the following general formula (II):

[image] [image]

slijedećoj općoj formuli (III): to the following general formula (III):

[image] [image]

ili slijedećoj općoj formuli (IV) or the following general formula (IV)

[image] [image]

gdje je where is

R1 C1- C8 alkil grupa, a R1 C1-C8 alkyl group, a

R2 je ili: R2 is either:

linearna ili razgranata C13-C19 alkil ili alkenil grupa, ili a linear or branched C13-C19 alkyl or alkenyl group, or

linearna ili razgranata C1-C19 alkil ili alkenil grupa, povoljno C7-C19 alkil ili alkenil grupa, supstituirana barem jednom grupom reaktivnom s izocijanatom, naročito jednom ili s više OH-, NH- i/ili NH2- grupa. a linear or branched C1-C19 alkyl or alkenyl group, preferably a C7-C19 alkyl or alkenyl group, substituted by at least one isocyanate-reactive group, especially one or more OH-, NH- and/or NH2- groups.

U usporedbi s organokositrenim katalizatorom dimetilkositardineodekanoatom, gornji organokositarni katalizatori stvaraju mnogo manje isparljiva spojeva u poliuretanskom materijalu. Ovo je ili zbog činjenice da je karboksilna kiselina dobijena kad je katalizator hidroliziran manje isparljiva zbog toga što ima veću molekularnu težinu, ili zbog činjenice da je ova karboksilna kiselina supstituirana grupom reaktivnom s izocijanatom, tako da je kemijski vezana u poliuretanski matriks. U slučaju tako supstituiranih karboksilnih grupa, R2 grupa ima manju molekularnu težinu. Povoljno je da je R2 grupa C7-C19 alkil ili alkenil grupa. Compared to the organotin catalyst dimethyltin decanoate, the above organotin catalysts produce much less volatile compounds in the polyurethane material. This is either due to the fact that the carboxylic acid obtained when the catalyst is hydrolyzed is less volatile because it has a higher molecular weight, or due to the fact that this carboxylic acid is substituted with a group reactive with isocyanate, so that it is chemically bound in the polyurethane matrix. In the case of such substituted carboxyl groups, the R2 group has a lower molecular weight. Preferably, the R2 group is a C7-C19 alkyl or alkenyl group.

Pošto grupe reaktivne s izocijanatom na katalizatorskom spoju izazivaju smanjenje katalitičke aktivnosti vezivanjem katalizatora za poliuretanski matriks, povoljno je koristiti organokositreni katalizator formule (II), (III) ili (IV) gdje je R2 C13-C19 alkil ili alkenil grupa koja nije supstituirana grupom reaktivnom s izocijanatom. Nadalje je povoljno da je R2 grupa linearna. Since groups reactive with isocyanate on the catalyst compound cause a decrease in catalytic activity by binding the catalyst to the polyurethane matrix, it is advantageous to use an organotin catalyst of the formula (II), (III) or (IV) where R2 is a C13-C19 alkyl or alkenyl group that is not substituted by a reactive group with isocyanate. It is further advantageous that the R 2 group is linear.

U postupku iz izuma, povoljno je koristiti kositreni katalizator formule (II). Nađeno je da su zaista organokositreni katalizatori formule (III) osjetljiviji na hidrolizu nego organokositreni katalizatori formule (II). Osim toga, nađeno je da su organokositreni (IV) katalizatori djelotvorniji nego organokositreni (II) katalizatori korišteni, na primjer, u postupcima opisanim u US-B-6 194 475, iako takvi organokositreni katalizatori, naročito, kositar ricinoleat, se također koriste u postupku iz ovog izuma, pogotovo kad glavni katalitički efekt osigurava organobizmutni katalizator. Pošto su i organokositreni katalizatori formule (II) prilično osjetljivi na hidrolizu, povoljno je da se dodaju izocijanatnoj mješavini. Čak i u izocijanatnoj mješavini, organokositreni katalizatori formule (II) su podvrgnuti hidrolizi, konkretni] e, kao rezultat kontakta s vlagom iz zraka. Obzirom na ovaj problem s hidrolizom, organokositreni katalizatori, gdje R2 grupa ne sadrži grupe reaktivne s izocijanatom, su naročito povoljni, jer bi inače organokositreni katalizatori reagirali već u izocijanatnoj mješavini ili bi se dodavali poliolskoj mješavini, gdje su još više podvrgnuti hidrolizi. In the process of the invention, it is advantageous to use the tin catalyst of formula (II). It was found that organotin catalysts of formula (III) are indeed more sensitive to hydrolysis than organotin catalysts of formula (II). In addition, organotin (IV) catalysts have been found to be more effective than the organotin (II) catalysts used, for example, in the processes described in US-B-6,194,475, although such organotin catalysts, particularly tin ricinoleate, are also used in process from this invention, especially when the main catalytic effect is provided by an organobismuth catalyst. Since the organotin catalysts of formula (II) are also quite sensitive to hydrolysis, it is advantageous to add them to the isocyanate mixture. Even in the isocyanate mixture, the organotin catalysts of formula (II) are subjected to hydrolysis, specifically, as a result of contact with moisture from the air. Considering this problem with hydrolysis, organotin catalysts, where the R2 group does not contain groups reactive with isocyanate, are particularly advantageous, because otherwise organotin catalysts would react already in the isocyanate mixture or would be added to the polyol mixture, where they are even more subject to hydrolysis.

Povoljno je daje R2 alkil ili alkenil grupa C15-C19 alkil ili alkenil grupa s obzirom na niži tlak pare karboksilnih kiselina visoke molekularne težine, što rezultira u nižoj vrijednosti VOC. Dalje je povoljno da su R2 grupe alkenil grupe. Prisustvo jedne ili više dvogubih veza zaista snižava točku topljenja katalizatora tako da, čak i kad je veće molekularne težine, katalizator se dodaje u tekućem stanju poliuretanskom sustavu. S obzirom na činjenicu da one kombiniraju relativno visoke molekularne težine s relativno niskom točkom topljenja, oleil grupe, linoleil grupe, linolenil grupe ili njihove kombinacije su najpovoljnije kao R2COO-grupe u formulama (II) i (III) organokositrenog katalizatora. It is advantageous if R2 is a C15-C19 alkyl or alkenyl group, given the lower vapor pressure of high molecular weight carboxylic acids, which results in a lower VOC value. It is further preferred that the R 2 groups are alkenyl groups. The presence of one or more double bonds actually lowers the melting point of the catalyst so that, even with a higher molecular weight, the catalyst is added in liquid form to the polyurethane system. Considering the fact that they combine relatively high molecular weights with a relatively low melting point, oleyl groups, linoleyl groups, linolenyl groups or their combinations are most advantageous as R2COO-groups in formulas (II) and (III) of the organotin catalyst.

Povoljno je da alkil grupa R1 je C1-C4 alkil grupa, najpovoljnije metil grupa, s obzirom na višu reaktivnost takvih katalizatora. It is advantageous that the alkyl group R1 is a C1-C4 alkyl group, most advantageously a methyl group, given the higher reactivity of such catalysts.

Najpovoljniji organokositreni katalizatori su dialkilkositardioleati, naročito dimetilkositar-dioleati, gdje mali dio karboksilatnih grupa čine linoleat i linolenat grupe zbog upotrebe prirodnih ulja za proizvodnju ovog organokositrenog katalizatora. The most favorable organotin catalysts are dialkyltin dioleates, especially dimethyltin dioleates, where a small part of the carboxylate groups are linoleate and linolenate groups due to the use of natural oils for the production of this organotin catalyst.

Kad se reaktivna smjesa obrađuje za nanošenje sprejem, organokositreni katalizator se obično koristi u takvoj količini da dobijeni poliuretanski materijal sadrži 200 do 1600 ppm, povoljno 200 do 1000 ppm, elementa kositra. Kad se reaktivna smjesa obrađuje prema postupku oblikovanja reakcionim injektiranjem (RIM), organokositreni katalizator se obično koristi u takvoj količini da dobijeni poliuretanski materijal sadrži 200 do 1600 ppm, povoljno 300 do 1000 ppm, elementa kositra. When the reactive mixture is processed for spray application, the organotin catalyst is usually used in such an amount that the resulting polyurethane material contains 200 to 1600 ppm, preferably 200 to 1000 ppm, of the element tin. When the reactive mixture is processed according to the reaction injection molding (RIM) process, the organotin catalyst is usually used in such an amount that the resulting polyurethane material contains 200 to 1600 ppm, preferably 300 to 1000 ppm, of the element tin.

Prednost povoljnog izvođenja, gdje se kositreni katalizator koristi u kombinaciji s bizmutnim katalizatorom, je u tome da kositreni katalizator osigurava efektivno očvršćivanje na kraju reakcije polimerizacije, time smanjujući vrijeme do očvršćivanja. Ova prednost je izraženija u primjeni spreja, nego u primjeni RIM s obzirom na nižu temperaturu reagujućeg poliuretanskog materijala na kraju reakcije polimerizacije, kad se reaktivna smjesa nanosi sprejem na otvorenu površinu kalupa. The advantage of the advantageous embodiment, where the tin catalyst is used in combination with the bismuth catalyst, is that the tin catalyst ensures effective curing at the end of the polymerization reaction, thus reducing the time to curing. This advantage is more pronounced in the application of spray than in the application of RIM due to the lower temperature of the reactive polyurethane material at the end of the polymerization reaction, when the reactive mixture is applied by spray to the open surface of the mold.

Organocinkov (II) katalizator Organozinc (II) catalyst

U povoljnom izvođenju postupka iz ovog izuma, koristi se organocink (II) katalizator. Ovaj organocinkov katalizator konkretno odgovara slijedećoj općoj formuli (V): In a preferred embodiment of the process of this invention, an organozinc (II) catalyst is used. This organozinc catalyst specifically corresponds to the following general formula (V):

[image] [image]

gdje je R2 C1 do C19 alkil ili alkenil grupa, koja je linearna ili razgranata i koja je supstituirana ili nesupstituirana. wherein R 2 is a C 1 to C 19 alkyl or alkenyl group, which is linear or branched and which is substituted or unsubstituted.

Povoljno je da R2 je C1 do C12 alkil ili alkenil grupa, pošto su ti cinkovi katalizatori tekući, što je povoljno s obzirom na njihovu obradivost. Suprotno od organobizmutnih i organokositrenih katalizatora, organocinkov katalizator sadrži manje slobodnih karboksilnih kiselina i/ili je otporniji na hidrolizu, tako da se stvara manje slobodnih karboksilnih kiselina. Cinkov katalizator, prema tome, sadržati karboksilne grupe niže molekularne težine, tj. više isparljivu karboksilnu kiselinu. Prednost se daje upotrebi cink dioktoata. It is advantageous that R 2 is a C 1 to C 12 alkyl or alkenyl group, since these zinc catalysts are liquid, which is advantageous in view of their processability. Contrary to organobismuth and organotin catalysts, organozinc catalysts contain less free carboxylic acids and/or are more resistant to hydrolysis, so less free carboxylic acids are formed. The zinc catalyst, therefore, should contain carboxyl groups of lower molecular weight, i.e. a more volatile carboxylic acid. The use of zinc dioctoate is preferred.

Prema ovom izumu, nađeno je da, suprotno od aromatskih elastomernih poliuretanskih sustava i poliuretanskih pjenastih sustava, organocinkovi katalizatori, kao takvi, ne osiguravaju efektivnu katalizu poliuretanskih polimerizacionih reakcija "nearomatskih" mikrostaničnih ili nestaničnih fotostabilnih poliuretanskih formulacija. U skladu s ovim izumom, ipak se prvenstveno koristi organobizmutni katalizator za osiguravanje potrebnog katalitičkog efekta. Nađeno je da, u kombinaciji s organobizmutnim katalizatorom, organocinkov katalizator poboljšava katalitički efekt bizmuta, tako da se, u stvari, postiže sinergijski efekt kad se koristi ova kombinacija katalizatora, naročito kad se organocinkov katalizator koristi u relativno maloj količini u odnosu na količinu bizmutnog katalizatora. According to this invention, it has been found that, contrary to aromatic elastomeric polyurethane systems and polyurethane foam systems, organozinc catalysts, as such, do not provide effective catalysis of polyurethane polymerization reactions of "non-aromatic" microcellular or acellular photostable polyurethane formulations. In accordance with the present invention, however, an organobismuth catalyst is primarily used to provide the required catalytic effect. It was found that, in combination with an organobismuth catalyst, an organozinc catalyst improves the catalytic effect of bismuth, so that, in fact, a synergistic effect is achieved when this combination of catalysts is used, especially when the organozinc catalyst is used in a relatively small amount compared to the amount of bismuth catalyst .

U postupku iz ovog izuma, organocinkov katalizator zaista nije namijenjen osiguranju katalitičkog efekta, nego je pronađeno da organocinkov katalizator kompetira u početnoj fazi reakcije s organobizmutnim katalizatorom i da se nepovoljni brzi rast viskoznosti, izazvan organobizmutnim katalizatorom, izbjegava na ovaj način ili barem smanjuje. Ovaj efekt se postiže kad katalizatorska komponenta sadrži organobizmutni i organocinkov katalizator čiji je odnos elementarni bizmut/elementarni cink veći od 8/1, povoljno veći od 9/1, kad se reaktivna smjesa nanosi sprejem. Kad se reaktivna smjesa nanosi RIM postupkom, gdje se reakcija obično odvija na višoj temperaturi, više cinkovog katalizatora je potrebno da se spriječi prebrzi rast viskoznosti. Daljnja razlika u odnosu na RIM postupak je što je u postupku sprejem brži početni rast viskoznosti poželjan da reakciona smjesa ne iscuri. U slučaju nanošenja sprejem, katalizatorska komponenta, prema tome, sadrži organobizmutni i organocinkov katalizator čiji je odnos elementarni bizmut/elementarni cink veći od 4/1, povoljno veći od 5/1 .U obje primjene, upotreba većih količina organocinkovog katalizatora nije povoljna zbog negativnog efekta koje takve veće količine imaju na brzinu očvršćivanja. In the process of this invention, the organozinc catalyst is not really intended to provide a catalytic effect, but it was found that the organozinc catalyst competes in the initial phase of the reaction with the organobismuth catalyst and that the unfavorable rapid increase in viscosity, caused by the organobismuth catalyst, is avoided in this way or at least reduced. This effect is achieved when the catalyst component contains an organobismuth and organozinc catalyst whose elemental bismuth/elemental zinc ratio is greater than 8/1, preferably greater than 9/1, when the reactive mixture is applied by spray. When the reactive mixture is applied by the RIM process, where the reaction usually takes place at a higher temperature, more zinc catalyst is needed to prevent too rapid an increase in viscosity. A further difference compared to the RIM process is that in the spray process, a faster initial increase in viscosity is desirable so that the reaction mixture does not leak out. In the case of spray application, the catalyst component therefore contains an organobismuth and organozinc catalyst whose elemental bismuth/elemental zinc ratio is greater than 4/1, preferably greater than 5/1. In both applications, the use of larger amounts of organozinc catalyst is not favorable due to the negative the effect that such larger quantities have on the rate of curing.

U jednom povoljnom izvođenju ovog izuma, povoljno je da katalizatorska komponenta sadrži kombinaciju organobizmutnog, organokositrenog i organocinkovog katalizatora. Takvom kombinacijom katalizatora postiže se optimalna kataliza bez upotrebe olovnog katalizatora, gdje organocinkov katalizator osigurava sporiji početni rast viskoznosti, dok organokositreni katalizator osigurava dobro krajnje očvršćivanje, naročito u primjenama spreja. In one advantageous embodiment of this invention, it is advantageous for the catalyst component to contain a combination of organobismuth, organotin and organozinc catalysts. Such a combination of catalysts achieves optimal catalysis without the use of a lead catalyst, where the organozinc catalyst ensures a slower initial increase in viscosity, while the organotin catalyst ensures good final curing, especially in spray applications.

Drugi katalizatori Other catalysts

U postupku iz ovog izuma, mogu se koristiti i drugi katalizatori, pod uvjetom da oni ne čine isparljiva spojeva, ili čine samo male količine isparljivih spojeva u poliuretanskom materijalu. Ovi drugi katalizatori mogu, na primjer, biti izabrani između drugih organobizmutnih ili organokositrenih spojeva navedenih u EP-B-0 379 246. Oni pogotovo uključuju zeolitni tip katalizatora, koji su opisani u ovom Europskom patentu i koji ne proizvode isparljive spojeve. Ovi katalizatori su alkalni aluminijevi silikati s ionima Na i/ili K, gdje je povoljan promjer mikro šupljina između 2 i 10 A, a tipično između 3 i 4 A i kojima odgovara slijedeća opća formula: In the process of this invention, other catalysts can be used, provided that they do not form volatile compounds, or form only small amounts of volatile compounds in the polyurethane material. These other catalysts can, for example, be chosen from other organobismuth or organotin compounds mentioned in EP-B-0 379 246. They especially include zeolite type catalysts, which are described in this European patent and which do not produce volatile compounds. These catalysts are alkaline aluminum silicates with Na and/or K ions, where the favorable diameter of the micro-cavities is between 2 and 10 A, and typically between 3 and 4 A and to which the following general formula corresponds:

(M2O)a - (Al2O3)b - (SiO2)c - (H2O)d, (M2O)a - (Al2O3)b - (SiO2)c - (H2O)d,

gdje M predstavlja kalij i/ili natrij. Uz kalij i/ili natrij, mogu biti prisutni i kalcijevi ioni. where M represents potassium and/or sodium. Along with potassium and/or sodium, calcium ions may also be present.

Ovi silikati su pomiješani, kao fini prašci ili kao paste, u tekućem disperzionom mediju s ostalim proizvodima reakcije za dobijanje poliuretanskog materijala. These silicates are mixed, as fine powders or as pastes, in a liquid dispersion medium with other reaction products to obtain polyurethane material.

Kao stoje već ranije navedeno, povoljno je da se alkalni katalizatori opisani u EP-B-0 379 246 ne koriste, ili samo u maloj količini, u postupku iz ovog izuma, jer izazivaju povećanje isparljivih spojeva u poliuretanskom materijalu. As already stated earlier, it is advantageous that the alkaline catalysts described in EP-B-0 379 246 are not used, or only in a small amount, in the process of this invention, because they cause an increase in volatile compounds in the polyurethane material.

Da se smanji vrijednost VOC dobijenog poliuretanskog materijala, povoljno je da se izocijanatna komponenta i komponente reaktivne s izocijanatom miješaju jedna s drugom u takvim količinama da je NCO-indeks (= broj NCO - grupa x 100/broj grupa reaktivnih s izocijanatom) veći od 90, povoljnije veći od 95 i najpovoljnije veći od ili jednak 100. U slučaju tako visokih NCO-indeksa, u biti ne ostane neizreagiranih grupa reaktivnih s izocijanatom, konkretno, OH- grupa, u poliuretanskom materijalu. Kad je NCO-indeks veći od 100, NCO- grupa ima u višku, koji će, međutim, reagirati s vodom prisutnom u poliolnoj komponenti ili s vlagom iz zraka, da napravi amine, koji dalje reagiraju sa slobodnim NCO-grupama da napravi ureu. Bez obzira na ove daljnje reakcije, povoljno je da je NCO-indeks niži od 120, a najpovoljnije niži od 110. Ovakvim izborom NCO-indeksa dobije se idealna poliuretanska mreža, za koju je nađeno da smanjuje stvaranje isparljivih spojeva u poliuretanskim materijalima. To reduce the VOC value of the obtained polyurethane material, it is advantageous to mix the isocyanate component and isocyanate-reactive components with each other in such amounts that the NCO-index (= number of NCO - groups x 100/number of isocyanate-reactive groups) is greater than 90 , preferably greater than 95 and most advantageously greater than or equal to 100. In the case of such high NCO-indexes, essentially no unreacted isocyanate-reactive groups, specifically, OH- groups, remain in the polyurethane material. When the NCO-index is greater than 100, there is an excess of NCO-groups, which, however, will react with water present in the polyol component or with moisture from the air, to make amines, which further react with free NCO-groups to make urea. Regardless of these further reactions, it is advantageous that the NCO-index is lower than 120, and most advantageously lower than 110. This choice of NCO-index results in an ideal polyurethane network, which has been found to reduce the formation of volatile compounds in polyurethane materials.

Osim ranije opisanih komponenti, reaktivna smjesa sadrži još komponenti, kao što je mala količina fizičkih ili kemijskih agensa za rast, pigmenata, agenasa za unutarnje oslobađanje, tiksotropnih agenasa za zgušnjavanje (za nanošenje sprejem), itd. Reaktivna smjesa pogotovo dalje sadrži antioksidante i/ili UV- apsorbere zbog povećanja fotostabilnosti poliuretanskog materijala, s time da je povoljno koristiti sinergetske kombinacije antioksidanata, UV apsorbera i HALS stabilizatora (stabilizatori svjetla na bazi zakočenih amina). In addition to the previously described components, the reactive mixture contains other components, such as a small amount of physical or chemical growth agents, pigments, internal release agents, thixotropic thickening agents (for spray application), etc. The reactive mixture especially further contains antioxidants and/ or UV absorbers due to the increase in the photostability of the polyurethane material, with the fact that it is advantageous to use synergistic combinations of antioxidants, UV absorbers and HALS stabilizers (light stabilizers based on blocked amines).

Primjeri Examples

U primjerima su korištene slijedeći polazni materijali: The following starting materials were used in the examples:

Poliol: proizvod adicije glicerina, propilen oksida i etilen oksida, koji ima hidroksilni broj 36 i sadržaj primarnih OH barem 85% (POL); Polyol: an addition product of glycerin, propylene oxide and ethylene oxide, which has a hydroxyl number of 36 and a primary OH content of at least 85% (POL);

Izocijanat: smjesa izocijanatnih trimera i izocijanatnih monomera baziranih na IPDI, sa sadržajem terminalnih NCO od 28% (u slučaju S1-S5, R4-R6) i sadržaj terminalnih NCO od 30% (u slučaju R1-R3) (ISO); Isocyanate: a mixture of isocyanate trimers and isocyanate monomers based on IPDI, with a terminal NCO content of 28% (in the case of S1-S5, R4-R6) and a terminal NCO content of 30% (in the case of R1-R3) (ISO);

Komponenta koja produžava lance: etilen glikol (EG); Chain-extending component: ethylene glycol (EG);

Komponenta koja križno povezuje lance: dietanolamin (DEOA); Cross-linking component: diethanolamine (DEOA);

Antioksidanti / UV apsorberi: sinergetska smjesa (AO/UV) jednakih težinskih dijelova: Antioxidants / UV absorbers: synergistic mixture (AO/UV) of equal parts by weight:

- etilen bis(oksietilen)bis[3-(5-terc.butil-4-hidroksi-m-tolil) propionata]; - ethylene bis(oxyethylene)bis[3-(5-tert.butyl-4-hydroxy-m-tolyl) propionate];

- 2-(2-hidroksi-3,5-di-terc.amil-fenil)-2H-benzotriazola i - 2-(2-hydroxy-3,5-di-tert.amyl-phenyl)-2H-benzotriazole and

- bis(1,2,2,6,6-pentametil-4-piperidil)sebakata - bis(1,2,2,6,6-pentamethyl-4-piperidyl)sebacate

Katalizator zeolitnog tipa: natrij aluminij silikat - 3A, dispergiran u poliolu (ZC); Zeolite-type catalyst: sodium aluminum silicate - 3A, dispersed in polyol (ZC);

Tiksotropni agensi: dimljeni silikon dioksid (TX); Thixotropic agents: fumed silicon dioxide (TX);

Pigmenti: disperzija crnog ugljena, titanijum dioksida i izoindolinona u poliolu za uzorke S1 do S5 i uzorke R1 do R3; disperzija crnog ugljena za uzorke R4-R7 (CP); Pigments: dispersion of carbon black, titanium dioxide and isoindolinone in polyol for samples S1 to S5 and samples R1 to R3; black coal dispersion for samples R4-R7 (CP);

Bi-katalizator: BC1: Bizmut oktoat s 24% Bi; Bi-catalyst: BC1: Bismuth octoate with 24% Bi;

BC2: Bizmut neodekanoat s 17% Bi; BC2: Bismuth neodecanoate with 17% Bi;

BC3: Bizmut oleat s 20% Bi; BC3: Bismuth oleate with 20% Bi;

Sn-katalizator: TC1: Dimetilkositardineodekanoat s 23% Sn; Sn-catalyst: TC1: Dimethylcositardineodecanoate with 23% Sn;

TC2 : Dimetilkositardioleat s 17% Sn; TC2 : Dimethyl tin diolate with 17% Sn;

TC3: Cotin 1707, proizvod Caschem, to jest, tekući organokositar karboksilatni katalizator s hidroksilnom funkcionalnošću u karboksilnom lancu i 12.5% Sn; TC3: Cotin 1707, a Caschem product, that is, a liquid organotin carboxylate catalyst with hydroxyl functionality in the carboxyl chain and 12.5% Sn;

Zn-katalizator: Cink oktoat (ZNC) s 23% Zn Zn-catalyst: Zinc octoate (ZNC) with 23% Zn

Gore navedene komponente su izmješane u dvije mješavine, to jest, poliolsku mješavinu koja sadrži poliol, komponentu za produženje lanaca, komponentu za križno povezivanje lanaca, smjesu AO/UV apsorbera, pigmente, katalizator zeolitnog tipa i BC1, BC2, BC3, TC3 i/ili ZNC i izocijanatnu mješavinu koja sadrži izocijanat i tiksotropni agens i, kad se koriste, TC1 i/ili TC2. The above components are mixed into two mixtures, that is, a polyol mixture containing a polyol, a chain-extending component, a chain-crosslinking component, an AO/UV absorber mixture, pigments, a zeolite-type catalyst, and BC1, BC2, BC3, TC3 and/or or ZNC and an isocyanate mixture containing an isocyanate and a thixotropic agent and, when used, TC1 and/or TC2.

1. Uzorci naneseni sprejem (S1-S5) Uvjeti tehnološke obrade u ovim uzorcima su slijedeći: 1. Samples applied by spray (S1-S5) The conditions of technological processing in these samples are as follows:

temperatura sirovina: raw material temperature:

25°C u rezervoaru 25°C in the tank

65 °C u mikseru/brizgalici 65 °C in the mixer/injector

temperatura površine nikal-galvano kalupa: 65°C izlaz nickel-galvano mold surface temperature: 65°C output

komponenata: 14 g/s components: 14 g/s

debljina sloja nanesenog sprejem: oko 1 mm thickness of the layer applied by spray: about 1 mm

agens za vanjsko oslobađanje: emulzija parafinskih voskova u vodi. external release agent: emulsion of paraffin waxes in water.

2. Uzorci RIM 2. Patterns ROME

A. Uzorci RIM R1 do R3 su obrađeni pod slijedećim uvjetima: A. Samples RIM R1 to R3 were processed under the following conditions:

temperatura sirovina: 45°C raw material temperature: 45°C

temperatura površine nikal-galvano kalupa: 80°C nickel-galvano mold surface temperature: 80°C

izlaz komponenata: 100 g/s component output: 100 g/s

debljina sloja: oko 2 mm layer thickness: about 2 mm

agens za vanjsko oslobađanje: disperzija parafinskih voskova u mineralnim alkoholima. external release agent: dispersion of paraffin waxes in mineral alcohols.

B. Uzorci RIM R4 - R7 su obrađeni pod slijedećim uvjetima: B. Samples RIM R4 - R7 were processed under the following conditions:

temperatura sirovina: 45°C raw material temperature: 45°C

temperatura čeličnog kalupa: 105°C steel mold temperature: 105°C

izlaz komponenata: 200g/s output of components: 200g/s

debljina sloja: oko 3 mm layer thickness: about 3 mm

agens za vanjsko oslobađanje: disperzija parafinskih voskova u mineralnim alkoholima. external release agent: dispersion of paraffin waxes in mineral alcohols.

Rukovanje uzorcima za mjerenje otparavanja Handling of evaporation measurement samples

Mjerenja otparavanja su izvršena na uzorcima koji su očvršćivani 72 sata na 23°C/ 50% RH. Dobijeni uzorci su umotani u aluminijsku foliju (2 sloja), a zatim upakirani u sintetičku foliju ili vreću koja malo propušta (kao polietilen, vreća za zamrzivač). Folija ili vreća je zatvorena Tesafilmom. Evaporation measurements were performed on samples that were cured for 72 hours at 23°C/50% RH. The obtained samples are wrapped in aluminum foil (2 layers) and then packed in a synthetic foil or a slightly leaky bag (such as polyethylene, a freezer bag). The foil or bag is closed with Tesafilm.

Upakirani uzorci su zamrznuti na -18°C, do dana analiziranja. Upakirani uzorci su zatim ugrijani do sobne temperature, otpakirani i analizirani prema Daimler Chrysler-ovom postupku testiranja PB VWT 709. The packed samples were frozen at -18°C until the day of analysis. The packaged samples were then warmed to room temperature, unpacked and analyzed according to Daimler Chrysler test procedure PB VWT 709.

Tabela 1: Formulacije iz primjera i vrijednosti otparavania dobijenih poliuretanskih materijala. Table 1: Formulations from examples and evaporation values of obtained polyurethane materials.

[image] [image]

U gornjoj tabeli, konkretnije, kad se usporede S1 i S2, prije svega se vidi da je katalitički efekt, postignut bizmutoleatom, u biti isti kao katalitički efekt bizmut oktoata (za istu količinu elementa Bi), usprkos mogućoj steričnoj smetnji karboksilne grupe veće molekularne težine. Ovo je vjerojatno zbog smanjene podložnosti bizmutoleata hidrolizi. In the above table, more specifically, when S1 and S2 are compared, first of all it can be seen that the catalytic effect achieved by bismutholeate is essentially the same as the catalytic effect of bismuth octoate (for the same amount of element Bi), despite the possible steric hindrance of the higher molecular weight carboxyl group . This is probably due to the reduced susceptibility of bismutoleate to hydrolysis.

Kad se usporede SI i S2, dalje se vidi da kad se zamjeni bizmut oktoat bizmutoleatom, dobije se bitno smanjenje vrijednosti VOC. Daljnje smanjenje se dobije zamjenom kositrenog katalizatora dimetilkositardineodekanoata (TC1) s kositrenim katalizatorom dimetilkositardioleatom ili Cotin-om 1707 (vidi S2-S4), konkretnije, smanjenje vrijednosti VOC daleko ispod granice od 100 ppm. When SI and S2 are compared, it is further seen that when bismuth octoate is replaced by bismutholeate, a significant reduction in VOC value is obtained. Further reductions are obtained by replacing the tin catalyst dimethyltinideodecanoate (TC1) with tin catalyst dimethyltindioleate or Cotin 1707 (see S2-S4), more specifically, reducing VOC values well below the 100 ppm limit.

Kad se usporede S5 i S3, vidi se da, korištenjem male količine organocinkovog katalizatora u kombinaciji s organobizmutnim katalizatorom (odnos elementarni bizmut/elementarni cink = 9,6/1), vrijeme do očvršćivanja se smanjuje. When S5 and S3 are compared, it can be seen that, by using a small amount of organozinc catalyst in combination with an organobismuth catalyst (elemental bismuth/elemental zinc ratio = 9.6/1), the time to cure is reduced.

Uzorci RIM R1 i R2 pokazuju da se isti katalitički efekt dobije kad se kositreni katalizator dimetildinodekanoat zamjeni dimetilkositardioleatom, iako je potrebna oko 5 puta veća količina katalizatora. Uzorci RIM R2 i R3, s druge strane, ponovo pokazuju da zamjena bizmut oktoata bizmut oleatom ne zahtjeva dodatnu količinu katalizatora. Samples RIM R1 and R2 show that the same catalytic effect is obtained when the tin catalyst dimethyldinodecanoate is replaced by dimethyltin diolate, although about 5 times the amount of catalyst is required. Samples RIM R2 and R3, on the other hand, show again that the replacement of bismuth octoate with bismuth oleate does not require an additional amount of catalyst.

Iz uzorka RIM R2, čini se da, kad se koristi dovoljno velika količina organokositrenog katalizatora, količina organobizmutnog katalizatora se smanji do takve vrijednosti da se koristi, na primjer, uobičajen katalizator bizmut oktoat, a da vrijednosti otparavanja nije previsoka. Nadalje bitno smanjenje vrijednosti otparavanja dobije se zamjenom bizmut oktoata bizmut oleatom, kao stoje prikazano na primjeru R3. From the RIM R2 sample, it appears that when a sufficiently large amount of organotin catalyst is used, the amount of organobismuth catalyst is reduced to such a value that, for example, the common bismuth octoate catalyst is used without the evaporation values being too high. A further significant reduction in evaporation value is obtained by replacing bismuth octoate with bismuth oleate, as shown in example R3.

Uzorci RIM R5 i R6 pokazuju da se za primjene RIM, kratko vrijeme do očvršćivanja postiže korištenjem bizmutnog katalizatora bilo u kombinaciji s organokositrenim, bilo s organocinkovim katalizatorom, gdje se organocinkov katalizator koristi samo u maloj količini od 0,25 težinskih dijelova elementa Zn po težinskom dijelu elementa Bi (tj. odnos elementarni bizmut/elementarni cink = 4/1). Kad se R6 usporedi s R7, vidi se da se, uz relativno malu količinu organocinkovog katalizatora, vrijeme do očvršćivanja smanji značajno u usporedbi s formulacijom u kojoj se kao katalizator koristi samo bizmut. Kad se radi na dovoljno visokoj temperaturi oblikovanja, u primjenama RIM se postiže kratko vrijeme do očvršćivanja kombiniranjem organobizmutnog i organocinkovog katalizatora, bez upotrebe kositrenog katalizatora. Samples RIM R5 and R6 show that for RIM applications, a short time to solidification is achieved by using a bismuth catalyst either in combination with an organotin or an organozinc catalyst, where the organozinc catalyst is used only in a small amount of 0.25 parts by weight of the element Zn part of the element Bi (i.e. ratio elemental bismuth/elemental zinc = 4/1). When R6 is compared to R7, it can be seen that, with a relatively small amount of organozinc catalyst, the time to cure is significantly reduced compared to the formulation where only bismuth is used as a catalyst. When operating at a sufficiently high molding temperature, short time to solidification is achieved in RIM applications by combining an organobismuth and organozinc catalyst, without the use of a tin catalyst.

Claims (29)

1. Postupak, naznačen time, da sadrži postupak proizvodnje mikrostaničnog ili nestaničnog fotostabilnog poliuretanskog materijala gustoće veće od 500 kg/m3, naročito veće od 700 kg/m3, u kojem se reaktivna smjesa poliuretanskih prekursora ostavi izreagirati da dobijemo poliuretanski materijal, gdje je reaktivna smjesa sastavljena od komponenata koje sadrže barem: A) izocijanatnu komponentu koja se sastoji od barem jednog izocijanatnog spojeva, koje ima barem dvije NCO- grupe koje nisu direktno vezane za aromatsku grupu; B) komponente reaktivne s izocijanatom koje sadrže b1) komponentu koja sadrži aktivan vodik sastavljenu od barem jednog spoja koji sadrži aktivan vodik i koje ima: funkcionalne grupe koje sadrže primarne i/ili sekundarne OH- grupe, NH- grupe i/ili NH2- grupe; nominalnu funkcionalnost od 2 do 8 i ekvivalentnu težinu od između 100 i 4000, povoljno od između 800 i 2000; b2) od oko 0 do oko 30 dijelova, povoljno od oko 2 do oko 30 dijelova, na 100 dijelova komponenata b1, b2 i b3, komponente koja produžava lance i/ili komponente koja ih križno povezuje, koja se sastoji od barem jednog spoja koje produžava lance i/ili barem jednog spoja koje ih križno povezuje i koja ima ekvivalentnu težinu manju od 100, čije su funkcionalne grupe OH- grupe, od kojih barem 50% čine primarne OH-grupe i čija funkcionalnost je od 2 do 6; te b3) aminsko-inicijatorsku komponentu koja formira ko-katalitički sustav s katalizatorskom komponentom C i koji je sastavljen od barem jednog aminskog inicijatora čija je funkcionalnost od 2 do 6 i ekvivalentna težina manja od ili jednaka 200 i koja sadrži barem jednu alifatsku ili alicikličku NH2- ili NH- grupu; te C) katalizatorsku komponentu koja je u biti bez olova i koja sadrži barem jedan organobizmutni (III) katalizator, te navedeni organobizmutni katalizator sadrži bar jedan organobizmutni (III) katalizator kome odgovara slijedeća formula (I): [image] gdje je m = 0-2 p = 1-3 m + p = 3 R1 je C1-C8 alkil grupa, a R2 je ili linearna ili razgranata C13-C19 alkil ili alkenil grupa, ili linearna ili razgranata C1-C19 alkil ili alkenil grupa, povoljno, C7-C19 alkil ili alkenil grupa, supstituirana barem jednom grupom reaktivnom s izocijanatom, naročito jednom ili s više OH-, NH- i/ili NH2- grupa, i/ili navedena katalizatorska komponenta sadrži uz navedeni organobizmutni katalizator, barem jedan organokositreni (II ili IV) katalizator, kojem odgovara slijedeća formula (II): [image] slijedeća formula (III): [image] ili slijedeća formula (IV): [image] gdje je R1 C1-Cg alkil grupa, a R2 je ili linearna ili razgranata C13-C19 alkil ili alkenil grupa, ili linearna ili razgranata C1-C19 alkil ili alkenil grupa, povoljno C7-C19 alkil ili alkenil grupa, supstituirana barem jednom grupom reaktivnom s izocijanatom, naročito jednom ili s više OH-, NH- i/ili NH2- grupa, gdje su komponente reaktivne smjese nadalje izabrane na način da dobijeni poliuretanski materijal ima vrijednost VOC, mjerenu u skladu s Daimler Chrysler PB VWT 709 standardom, nižu od 250 ppm, povoljno nižu od 150 ppm i najpovoljnije nižu od ili jednaku 100 ppm.1. The process, characterized by the fact that it contains the process of producing a microcellular or non-cellular photostable polyurethane material with a density greater than 500 kg/m3, especially greater than 700 kg/m3, in which the reactive mixture of polyurethane precursors is left to react to obtain a polyurethane material, where it is reactive a mixture composed of components containing at least: A) an isocyanate component consisting of at least one isocyanate compound, which has at least two NCO groups that are not directly attached to an aromatic group; B) isocyanate-reactive components they contain b1) a component containing active hydrogen composed of at least one compound containing active hydrogen and having: functional groups containing primary and/or secondary OH- groups, NH- groups and/or NH2- groups; a nominal functionality of 2 to 8 and an equivalent weight of between 100 and 4000, preferably between 800 and 2000; b2) from about 0 to about 30 parts, preferably from about 2 to about 30 parts, per 100 parts of components b1, b2 and b3, a component that extends the chains and/or a component that crosslinks them, consisting of at least one compound that lengthens the chains and/or at least one compound that cross-links them and which has an equivalent weight of less than 100, whose functional groups are OH-groups, of which at least 50% are primary OH-groups and whose functionality is from 2 to 6; you b3) amine-initiator component that forms a co-catalytic system with catalyst component C and which is composed of at least one amine initiator whose functionality is from 2 to 6 and equivalent weight is less than or equal to 200 and which contains at least one aliphatic or alicyclic NH2- or NH- group; you C) a catalyst component that is essentially lead-free and that contains at least one organobismuth (III) catalyst, and said organobismuth catalyst contains at least one organobismuth (III) catalyst corresponding to the following formula (I): [image] where is m = 0-2 p = 1-3 m + p = 3 R1 is a C1-C8 alkyl group, a R2 is either a linear or branched C13-C19 alkyl or alkenyl group, or a linear or branched C1-C19 alkyl or alkenyl group, preferably a C7-C19 alkyl or alkenyl group, substituted by at least one isocyanate-reactive group, especially one or more OH-, NH- and/or NH2- groups, and/or the said catalyst component contains, in addition to the said organobismuth catalyst, at least one organotin (II or IV) catalyst, to which the following formula (II) corresponds: [image] the following formula (III): [image] or the following formula (IV): [image] where R1 is a C1-C8 alkyl group and R2 is either a linear or branched C13-C19 alkyl or alkenyl group, or linear or branched C1-C19 alkyl or alkenyl group, preferably C7-C19 alkyl or alkenyl group, substituted by at least one group reactive with isocyanate, especially one or more OH-, NH- and/or NH2- groups, where the components of the reactive mixture are further selected in such a way that the resulting polyurethane material has a VOC value, measured in accordance with the Daimler Chrysler PB VWT 709 standard, lower than 250 ppm, preferably lower than 150 ppm and most preferably lower than or equal to 100 ppm. 2. Postupak prema zahtjevu 1,naznačen time, da koristi organobizmutni katalizator formule (I).2. The process according to claim 1, characterized by the fact that it uses an organobismuth catalyst of the formula (I). 3. Postupak prema zahtjevu 1 ili 2, naznačen time, da koristi organobizmutni katalizator formule (I), gdje je m = 1 ili 2 i gdje je R1 je C1-C4 alkil grupa.3. The method according to claim 1 or 2, characterized in that it uses an organobismuth catalyst of the formula (I), where m = 1 or 2 and where R1 is a C1-C4 alkyl group. 4. Postupak prema bilo kojem od zahtjeva 1 do 3, naznačen time, da koristi organobizmutni katalizator formule (I), gdje je m = 0.4. The process according to any one of claims 1 to 3, characterized in that it uses an organobismuth catalyst of formula (I), where m = 0. 5. Postupak prema bilo kojem od zahtjeva 1 do 4, naznačen time, da koristi organobizmutni katalizator formule (I), gdje je R2 C15-C19 alkenil grupa.5. The process according to any one of claims 1 to 4, characterized in that it uses an organobismuth catalyst of formula (I), where R2 is a C15-C19 alkenyl group. 6. Postupak prema bilo kojem od zahtjeva 1 do 5, naznačen time, da koristi organobizmutni katalizator formule (I), gdje je R2 C13-C19 alkenil grupa.6. The process according to any one of claims 1 to 5, characterized in that it uses an organobismuth catalyst of formula (I), where R2 is a C13-C19 alkenyl group. 7. Postupak prema zahtjevu 6, naznačen time, da koristi organobizmutni katalizator formule (I), gdje su R2COO- grupe oleil grupe, linoleil grupe i/ili linolenil grupe.7. The method according to claim 6, characterized in that it uses an organobismuth catalyst of the formula (I), where the R2COO- groups are oleyl groups, linoleyl groups and/or linolenyl groups. 8. Postupak prema bilo kojem od zahtjeva 1 do 6, naznačen time, da koristi organobizmutni katalizator formule (I), gdje je R2 C13-C19 alkil ili alkenil grupa koja nije supstituirana grupom reaktivnom s izocijanatom i koja je povoljno linearna.8. The process according to any one of claims 1 to 6, characterized in that it uses an organobismuth catalyst of the formula (I), where R2 is a C13-C19 alkyl or alkenyl group which is not substituted by an isocyanate-reactive group and which is preferably linear. 9. Postupak prema bilo kojem od zahtjeva 1 do 8, naznačen time, da je navedena reaktivna smjesa bilo nanesena sprejem na površinu kalupa, u kojem slučaju se organobizmutni katalizator koristi u količini od između 150 i 850 ppm, povoljno od između 150 i 600 ppm elementa bizmuta u dobijenom poliuretanskom materijalu, bilo injektirana u zatvoren kalup, prema postupaku oblikovanja reakcionim injektiranjem (RIM), u kojem slučaju se organobizmutni katalizator koristi u količini od između 250 i 2500 ppm, povoljno od između 800 i 1650 ppm elementa bizmuta u dobijenom poliuretanskom materijalu.9. The method according to any one of claims 1 to 8, indicated by the fact that said reactive mixture was applied by spray on the surface of the mold, in which case the organobismuth catalyst is used in an amount of between 150 and 850 ppm, preferably between 150 and 600 ppm of the bismuth element in the obtained polyurethane material, either injected into a closed mold, according to the reaction injection molding (RIM) process, in which case the organobismuth catalyst is used in an amount of between 250 and 2500 ppm, preferably between 800 and 1650 ppm of the bismuth element in the obtained polyurethane the material. 10. Postupak prema bilo kojem od zahtjeva 1 do 9, naznačen time, da koristi organokositreni katalizator formule (II), (III) ili (IV), povoljno organokositreni katalizator formule (II).10. The method according to any one of claims 1 to 9, characterized in that it uses an organotin catalyst of the formula (II), (III) or (IV), preferably an organotin catalyst of the formula (II). 11. Postupak prema zahtjevu 10, naznačen time, da koristi organokositreni katalizator formule (II) ili (111), gdje je R1 C1-C4 alkil grupa, povoljno metil grupa.11. The method according to claim 10, characterized in that it uses an organotin catalyst of the formula (II) or (111), where R1 is a C1-C4 alkyl group, preferably a methyl group. 12. Postupak prema zahtjevu 10 ili 11, naznačen time, da koristi organokositreni katalizator formule (II), (III) ili (IV), gdje je R2 C15-C19 alkil ili alkenil grupa.12. The process according to claim 10 or 11, characterized in that it uses an organotin catalyst of the formula (II), (III) or (IV), where R2 is a C15-C19 alkyl or alkenyl group. 13. Postupak prema bilo kojem od zahtjeva 10 do 12, naznačen time, da koristi organokositreni katalizator formule (II), (III) ili (IV), gdje je R2 C13-C19 alkenil grupa.13. The process according to any one of claims 10 to 12, characterized in that it uses an organotin catalyst of formula (II), (III) or (IV), where R2 is a C13-C19 alkenyl group. 14. Postupak prema zahtjevu 13, naznačen time, da koristi organokositreni katalizator formule (II), (III) ili (IV), gdje su R2COO- grupe oleil grupe, linoleil grupe i/ili linolenil grupe.14. The method according to claim 13, characterized in that it uses an organotin catalyst of the formula (II), (III) or (IV), where the R2COO- groups are oleyl groups, linoleyl groups and/or linolenyl groups. 15. Postupak prema bilo kojem od zahtjeva 10 do 13, naznačen time, da koristi organokositreni katalizator formule (II), (III) ili (IV), gdje je R2 C13-C19 alkil ili alkenil grupa koja nije supstituirana grupom reaktivnom s izocijanatom i koja je povoljno linearna.15. The process according to any one of claims 10 to 13, characterized in that it uses an organotin catalyst of the formula (II), (III) or (IV), where R2 is a C13-C19 alkyl or alkenyl group that is not substituted with an isocyanate-reactive group and which is preferably linear. 16. Postupak prema bilo kojem od zahtjeva 10 do 15, naznačen time, da je navedena reaktivna smjesa bilo nanesena sprejem na površinu kalupa, u kojem slučaju se organokositreni katalizator koristi u količini od između 200 i 1600 ppm, povoljno od između 200 i 1000 ppm elementa kositra u dobijenom poliuretanskom materijalu, bilo injektirana u zatvoren kalup, prema postupaku oblikovanja reakcionim injektiranjem (RIM), u kojem slučaju se organokositarni katalizator koristi u količini od između 200 i 1600 ppm, povoljno između 300 i 1000 ppm elementa kositra u dobijenom poliuretanskom materijalu.16. The method according to any one of claims 10 to 15, characterized in that the said reactive mixture was applied by spray to the surface of the mold, in which case the organotin catalyst is used in an amount of between 200 and 1600 ppm, preferably between 200 and 1000 ppm of the tin element in the obtained polyurethane material, either injected into a closed mold, according to the process of reaction injection molding (RIM), in which case the organotin catalyst is used in an amount of between 200 and 1600 ppm, preferably between 300 and 1000 ppm of the tin element in the obtained polyurethane material . 17. Postupak prema bilo kojem od zahtjeva 1 do 16, naznačen time, da navedena katalizatorska komponenta nadalje sadrži organocinkov (II) katalizator.17. The method according to any one of claims 1 to 16, characterized in that said catalyst component further contains an organozinc (II) catalyst. 18. Postupak prema zahtjevu 17, naznačen time, da koristi organocinkov katalizator kojem odgovara slijedeća formula (V): [image] gdje je R2 C1 do C19, povoljno C1 do C12 alkil ili alkenil grupa, koja je linearna ili razgranata i koja je supstituirana ili nesupstituirana.18. The method according to claim 17, characterized in that it uses an organozinc catalyst corresponding to the following formula (V): [image] where R 2 is a C 1 to C 19 , preferably a C 1 to C 12 alkyl or alkenyl group, which is linear or branched and which is substituted or unsubstituted. 19. Postupak prema zahtjevu 18, naznačen time, da koristi cink dioktoat kao navedeni organocinkov katalizator.19. The method according to claim 18, characterized in that it uses zinc dioctoate as said organozinc catalyst. 20. Postupak prema bilo kojem od zahtjeva 17 do 19, naznačen time, da katalizatorska komponenta sadrži organobizmutni i organocinkov katalizator gdje je odnos elementarni bizmut/elementarni cink veći od 8/1, povoljno veći od 9/1, kada se reaktivna smjesa nanosi sprejem ili veća od 4/1, povoljno veća od 5/1, kada se reaktivna smjesa nanosi RIM postupkom.20. The method according to any one of claims 17 to 19, characterized in that the catalyst component contains an organobismuth and organozinc catalyst where the ratio elemental bismuth/elemental zinc is greater than 8/1, preferably greater than 9/1, when the reactive mixture is applied by spray or greater than 4/1, preferably greater than 5/1, when the reactive mixture is applied by the RIM process. 21. Postupak prema bilo kojem od zahtjeva 17 do 20, naznačen time, da katalizatorska komponenta nadalje sadrži organokositreni katalizator kao što je definirano u bilo kojem od zahtjeva 9 do 16, naročito kad se reaktivna smjesa nanosi sprejem.21. The method according to any of claims 17 to 20, characterized in that the catalyst component further contains an organotin catalyst as defined in any of claims 9 to 16, especially when the reactive mixture is applied by spray. 22. Postupak prema bilo kojem od zahtjeva 1 do 21,naznačen time, da je komponenta koja sadrži aktivan vodik u biti bez BHT ili sadrži najviše 50 ppm BHT.22. The method according to any one of claims 1 to 21, characterized in that the active hydrogen-containing component is essentially BHT-free or contains at most 50 ppm BHT. 23. Postupak prema bilo kojem od zahtjeva 1 do 22, naznačen time, da se navedena izocijanatna komponenta i navedene komponente reaktivne s izocijanatom ostave izreagirati do NCO-indeksa većeg od 90, povoljno većeg od 95 i, najpovoljnije, većeg od ili jednakog 100, gdje je povoljno da NCO-indeks bude manji od 120 i, najpovoljnije, manji od 110.23. The process according to any one of claims 1 to 22, characterized in that said isocyanate component and said isocyanate-reactive components are allowed to react to an NCO-index greater than 90, preferably greater than 95 and, most advantageously, greater than or equal to 100, where it is advantageous for the NCO-index to be less than 120 and, most advantageously, less than 110. 24. Mikrostanični ili nestanični fotostabilni poliuretanski materijal, naznačen time, da ima gustoću veću od 500 kg/m3, naročito veću od 700 kg/m3, koji se dobije tako da se reaktivna smjesa poliuretanskih prekursora ostavi izreagirati dajući poliuretanski materijal, gdje se reaktivna smjesa sastoji od komponenata koje sadrže barem: A) izocijanatnu komponentu koja se sastoji od barem jednog izocijanatnog spojeva, koje ima barem dvije NCO- grupe koje nisu direktno vezane za aromatsku grupu; B) komponente reaktivne s izocijanatom koje sadrže b1) komponentu koja sadrži aktivan vodik sastavljenu od barem jednog spoja koji sadrži aktivan vodik i koje ima: funkcionalne grupe koje sadrže primarne i/ili sekundarne OH- grupe, NH- grupe i/ili NH2- grupe; nominalnu funkcionalnost od 2 do 8 i ekvivalentnu težinu od između 100 i 4000, povoljno od između 800 i 2000; b2) od oko 0 do oko 30 dijelova, povoljno od oko 2 do oko 30 dijelova, na 100 dijelova komponenata b1, b2 i b3, komponente koja produžava lance i/ili komponente koja ih križno povezuje, koja se sastoji od barem jednog spoja koje produžava lance i/ili barem jednog spoja koje ih križno povezuje i koja ima ekvivalentnu težinu manju od 100, čije su funkcionalne grupe OH- grupe, od kojih barem 50% čine primarne OH-grupe i čija funkcionalnost je od 2 do 6; te b3) amino-inicijatorsku komponentu koja formira ko-katalitički sustav s katalizatorskom komponentom C i koji je sastavljen od barem jednog aminskog inicijatora čija je funkcionalnost od 2 do 6 i ekvivalentna težina manja od ili jednaka 200 i koja sadrži barem jednu alifatsku ili alicikličku NH2- ili NH- grupu; te C) katalizatorsku komponentu koja je u biti bez olova i koja sadrži barem jedan organobizmutni (III) katalizator, te da poliuretanski materijal ima vrijednost VOC, mjerenu u skladu s Daimler Chrysler PB VWT 709 standardom, nižu od 250 ppm, povoljno nižu od 150 ppm i najpovoljnije nižu od ili jednaku 100 ppm., kod čega navedeni organobizmutni katalizator sadrži barem jedan organobizmutni (III) katalizator kojem odgovara slijedeća formula (I): [image] gdje je m = 0-2 p=1-3 m + p = 3 R1 je C1-C8 alkil grupa, a R2 je ili linearna ili razgranata C13-C19 alkil ili alkenil grupa, ili linearna ili razgranata C1-C19 alkil ili alkenil grupa, povoljno, C7-C19 alkil ili alkenil grupa, supstituirana barem jednom grupom reaktivnom s izocijanatom, naročito jednom ili s više OH-, NH- i/ili NH2- grupa, i/ili navedena katalizatorska komponenta sadrži uz navedeni organobizmutni katalizator, barem jedan organokositreni (II ili IV) katalizator, kojem odgovara slijedeća formula (II): [image] slijedeća formula (III): [image] ili slijedeća formula (IV): [image] gdje je R1 C1-C8 alkil grupa, a R2 je ili linearna ili razgranata C13-C19 alkil ili alkenil grupa, ili linearna ili razgranata C1-C19 alkil ili alkenil grupa, povoljno C7-C19 alkil ili alkenil grupa, supstituirana barem jednom grupom reaktivnom s izocijanatom, naročito jednom ili s više OH-, NH- i/ili NH2- grupa.24. Microcellular or non-cellular photostable polyurethane material, indicated by the fact that it has a density greater than 500 kg/m3, in particular greater than 700 kg/m3, which is obtained by allowing a reactive mixture of polyurethane precursors to react to give a polyurethane material, where the reactive mixture consists of components containing at least: A) an isocyanate component consisting of at least one isocyanate compound, which has at least two NCO groups that are not directly attached to an aromatic group; B) isocyanate-reactive components they contain b1) a component containing active hydrogen composed of at least one compound containing active hydrogen and having: functional groups containing primary and/or secondary OH- groups, NH- groups and/or NH2- groups; nominal functionality from 2 to 8 i an equivalent weight of between 100 and 4000, preferably between 800 and 2000; b2) from about 0 to about 30 parts, preferably from about 2 to about 30 parts, per 100 parts of components b1, b2 and b3, a component that extends the chains and/or a component that crosslinks them, consisting of at least one compound that lengthens the chains and/or at least one compound that cross-links them and which has an equivalent weight of less than 100, whose functional groups are OH-groups, of which at least 50% are primary OH-groups and whose functionality is from 2 to 6; you b3) amino-initiator component that forms a co-catalytic system with catalyst component C and which is composed of at least one amine initiator whose functionality is from 2 to 6 and equivalent weight is less than or equal to 200 and which contains at least one aliphatic or alicyclic NH2- or NH- group; you C) a catalyst component that is essentially lead-free and that contains at least one organobismuth (III) catalyst, and that the polyurethane material has a VOC value, measured in accordance with the Daimler Chrysler PB VWT 709 standard, lower than 250 ppm, preferably lower than 150 ppm and most preferably lower than or equal to 100 ppm, in which said organobismuth catalyst contains at least one organobismuth (III) catalyst corresponding to the following formula (I): [image] where is m = 0-2 p=1-3 m + p = 3 R1 is a C1-C8 alkyl group, a R2 is either a linear or branched C13-C19 alkyl or alkenyl group, or a linear or branched C1-C19 alkyl or alkenyl group, preferably a C7-C19 alkyl or alkenyl group, substituted by at least one isocyanate-reactive group, especially one or more OH-, NH- and/or NH2- groups, and/or the catalyst component contains, in addition to the mentioned organobismuth catalyst, at least one organotin (II or IV) catalyst, to which the following formula (II) corresponds: [image] the following formula (III): [image] or the following formula (IV): [image] where is R1 C1-C8 alkyl group, a R2 is either a linear or branched C13-C19 alkyl or alkenyl group, or a linear or branched C1-C19 alkyl or alkenyl group, preferably a C7-C19 alkyl or alkenyl group, substituted by at least one isocyanate-reactive group, especially one or more OH-, NH- and/or NH2- groups. 25. Poliuretanski materijal prema zahtjevu 24, naznačen time, da je proizveden prema postupku kao stoje definirano u bilo kojem od zahtjeva 1 do 23.25. Polyurethane material according to claim 24, characterized in that it is produced according to the process as defined in any of claims 1 to 23. 26. Upotreba organobizmutnog (III) katalizatora, naznačena time, da mu odgovara slijedeća formula (I): [image] gdje je m = 0-2 p=1-3 m + p = 3 R1 je C1-Cg alkil grupa, a R2 je ili linearna ili razgranata C13-C19 alkil ili alkenil grupa, ili linearna ili razgranata C1-C19 alkil ili alkenil grupa, povoljno, C7-C19 alkil ili alkenil grupa, supstituirana barem jednom grupom reaktivnom s izocijanatom, naročito jednom ili s više OH-, NH- i/ili NH2- grupa, i/ili organokositrenog (II ili IV) katalizatora, kojem odgovara slijedeća formula (II): [image] slijedeća formula (III): [image] ili slijedeća formula (IV): [image] gdje je R1 je C1-C8 alkil grupa, a R2 je ili linearna ili razgranata C13-C19 alkil ili alkenil grupa, ili linearna ili razgranata C1-C19 alkil ili alkenil grupa, povoljno, C7-C19 alkil ili alkenil grupa, supstituirana barem jednom grupom reaktivnom s izocijanatom, naročito jednom ili s više OH-, NH- i/ili NH2- grupa u proizvodnji mikrostaničnog ili nestaničnog fotostabilnog poliuretanskog materijala koji ima gustoću veću od 500 kg/m3, naročito veću od 700 kg/m3, da se očuva vrijednost VOC dobijenog poliuretanskog materijala, mjerena u skladu s Daimler Chrysler-ovim PB VWT 709 standardom, ispod 250 ppm, povoljno ispod 150 ppm, a najpovoljnije ispod ili jednaku 100 ppm, u biti bez upotrebe organoolovnog katalizatora.26. Use of an organobismuth (III) catalyst, indicated by the following formula (I): [image] where is m = 0-2 p=1-3 m + p = 3 R1 is a C1-C8 alkyl group, a R2 is either a linear or branched C13-C19 alkyl or alkenyl group, or linear or branched C1-C19 alkyl or alkenyl group, preferably C7-C19 alkyl or alkenyl group, substituted by at least one group reactive with isocyanate, especially one or more OH-, NH- and/or NH2- groups, and/or organotin (II or IV) catalyst, to which the following formula (II) corresponds: [image] the following formula (III): [image] or the following formula (IV): [image] where is R1 is a C1-C8 alkyl group, a R2 is either a linear or branched C13-C19 alkyl or alkenyl group, or linear or branched C1-C19 alkyl or alkenyl group, preferably C7-C19 alkyl or alkenyl group, substituted by at least one isocyanate-reactive group, especially one or more OH-, NH- and/or NH2- groups in the production of microcellular or non-cellular photostable polyurethane material having a density greater than 500 kg/m3, especially greater than 700 kg/m3, to preserve the VOC value of the obtained polyurethane material, measured in accordance with Daimler Chrysler's PB VWT 709 standard, below 250 ppm, preferably below 150 ppm, and most preferably below or equal to 100 ppm, essentially without the use of an organolead catalyst. 27. Upotreba prema zahtjevu 26, naznačena time, da koristi organobizmutni katalizator koji ima svojstva definirana u bilo kojem od zahtjeva 2 do 9.27. Use according to claim 26, characterized in that it uses an organobismuth catalyst having the properties defined in any of claims 2 to 9. 28. Upotreba prema zahtjevu 26 ili 27, naznačena time, da koristi organokositarni katalizator koji ima svojstva definirana u bilo kojem od zahtjeva 10 do 16.28. Use according to claim 26 or 27, characterized in that it uses an organotin catalyst having the properties defined in any of claims 10 to 16. 29. Upotreba prema bilo kojem od zahtjeva 26 do 28, naznačena time, da dalje koristi organocinkov (II) katalizator koji naročito ima svojstva definirana u bilo kojem od zahtjeva 18 do 20.29. Use according to any one of claims 26 to 28, characterized in that it further uses an organozinc (II) catalyst which in particular has the properties defined in any one of claims 18 to 20.
HR20050063A 2002-06-21 2005-01-20 Micro-cellular or non-cellular light-stable polyurethane material and method for the production thereof HRP20050063A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE0200104 2002-06-21
PCT/BE2003/000107 WO2004000905A1 (en) 2002-06-21 2003-06-17 Micro-cellular or non-cellular light-stable polyurethane material and method for the production thereof

Publications (1)

Publication Number Publication Date
HRP20050063A2 true HRP20050063A2 (en) 2005-04-30

Family

ID=29783670

Family Applications (1)

Application Number Title Priority Date Filing Date
HR20050063A HRP20050063A2 (en) 2002-06-21 2005-01-20 Micro-cellular or non-cellular light-stable polyurethane material and method for the production thereof

Country Status (16)

Country Link
US (1) US20040019175A1 (en)
EP (1) EP1519974B1 (en)
JP (1) JP4538317B2 (en)
KR (1) KR101071099B1 (en)
CN (1) CN1295263C (en)
AU (1) AU2003238574A1 (en)
BR (1) BR0311962A (en)
CA (1) CA2489547C (en)
HR (1) HRP20050063A2 (en)
IN (1) IN2004CH03182A (en)
MX (1) MXPA05000007A (en)
PL (1) PL374319A1 (en)
RS (1) RS111604A (en)
RU (1) RU2315780C2 (en)
WO (1) WO2004000905A1 (en)
ZA (1) ZA200410091B (en)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10052856A1 (en) * 2000-10-24 2002-04-25 Linde Ag Storage container for cryogenic media has inner and outer containers and a further storage space connected to emptying pipe of storage container through active connection e.g. heat exchanger
EP1375546A1 (en) * 2002-06-21 2004-01-02 Crompton GmbH Low emission tin catalysts
DE102004009740A1 (en) * 2004-02-25 2005-09-15 Basf Ag Tin and transition metal-free polyurethane foams
US7021498B2 (en) 2004-04-06 2006-04-04 Advanced Controls And Engineering Urethane spray gun assembly
US20070185223A1 (en) * 2005-02-18 2007-08-09 Basf Aktiengesellschaft Tin and transition metal free polyurethane foams
US7615177B2 (en) 2005-02-23 2009-11-10 Calsonickansei North America, Inc. Trim articles with invisible tear seams and methods of making the same
DE102005028785A1 (en) * 2005-06-22 2006-12-28 Bayer Materialscience Ag Polyurethane elastomers, process for their preparation and their use
US7772353B2 (en) * 2005-12-15 2010-08-10 Bayer Materialscience Llc Fast curing aliphatic RIM elastomers
RU2565080C2 (en) * 2006-05-30 2015-10-20 Ректисел Аутомобилзюстем Гмбх Production of elastic composite elastomer polyurethane leather
BR122017003892B1 (en) 2006-05-30 2017-09-12 Recticel Automobilsysteme Gmbh METHOD FOR PRODUCING A FLEXIBLE ELASTOMERIC POLYURETHANE FILM LAYER
CN102558477B (en) * 2006-05-30 2014-09-10 雷克蒂塞尔汽车配件有限公司 Method for preparing flexible composite elastic polyurethane stratum epidermis
GB0705685D0 (en) * 2007-03-24 2007-05-02 Nauer Fritz Ag Polyurethane foam
GB0903717D0 (en) * 2009-03-04 2009-04-15 Innochem Ltd Flexible polyurethane foam
MX2010005069A (en) * 2009-05-27 2010-11-26 Bayer Materialscience Ag Method for manufacturing polyurethane soft foam material with low emissions.
DE102009033710A1 (en) * 2009-07-18 2011-01-20 Evonik Goldschmidt Gmbh Use of metal salts of a carboxylic acid in the production of polyurethane systems
DE102009046074A1 (en) * 2009-10-28 2011-05-12 Henkel Ag & Co. Kgaa Use of salts of branched fatty acids as catalyst for the reaction of star-shaped alcohols with isocyanates
DE102009051445A1 (en) * 2009-10-30 2011-05-05 Bayer Materialscience Ag Use of special catalysts for the production of polyurethane coatings
US20110135934A1 (en) 2009-12-08 2011-06-09 Bayer Materialscience Ag Process For The Production Of Polyurethane Composite Components
TWI507294B (en) 2009-12-08 2015-11-11 Bayer Materialscience Ag Composite components with improved adhesion of polycarbonate/polyester compositions and polyurethane
DE102009058182A1 (en) 2009-12-15 2011-06-30 Bayer MaterialScience AG, 51373 Composite component, useful as e.g. an interior component of track, comprises a substrate from thermoplastic containing a polymer e.g. aromatic polyesters, a rubber-modified vinyl(co)polymer and a polymer additive and polyurethane layer
DE102009058180A1 (en) 2009-12-15 2011-06-16 Bayer Materialscience Ag Forming composite component having thermoplastic composition support and polyurethane layer, used in e.g. tracks involves injecting composition melt into mold cavity/enlarging to form gap/injecting reactive polyurethane raw material mixture
EP2365012A1 (en) 2010-03-05 2011-09-14 RECTICEL Automobilsysteme GmbH Method for producing a skin layer of a flexible, elastomeric, thermoset, phase-separated polyurethane material
US9156935B2 (en) * 2010-07-08 2015-10-13 Dow Global Technologies Llc Polyurethanes made using zinc catalysts
JP2013535559A (en) 2010-08-12 2013-09-12 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Light-resistant polyurethane and its use
PL2736935T3 (en) * 2011-07-26 2019-06-28 Huntsman International Llc Process for making a flexible polyurethane foam
EP2604615A1 (en) * 2011-12-12 2013-06-19 Sika Technology AG Bismuth containing catalyst for polyurethane compositions
CN104066792B (en) 2011-12-29 2016-05-11 拜耳知识产权有限责任公司 There is the adhering polymer composition of improvement
EP2679380A1 (en) 2012-06-28 2014-01-01 RECTICEL Automobilsysteme GmbH Method for manufacturing a flexible skin having at least one insert adhered thereto.
ITMI20131026A1 (en) * 2013-06-20 2014-12-20 Dow Global Technologies Llc PROCESS FOR THE PRODUCTION OF A POLYURETHANE EXPAND THAT USES A CATALYST TETRAALCHILSTANNOSSI
EP2816066A1 (en) * 2013-06-19 2014-12-24 Basf Se Low emission, stabilised polyurethane
US20150034148A1 (en) * 2013-08-02 2015-02-05 E I Du Pont De Nemours And Company Liquid fluoropolymer coating composition, fluoropolymer coated film, and process for forming the same
MX2016004932A (en) 2013-10-18 2016-12-20 Covestro Deutschland Ag Polycarbonate compositions having improved adhesion to polyurethane layers.
EP2899008B1 (en) 2014-01-27 2016-08-31 Covestro Deutschland AG Injection moulding method for the manufacture of a composite product with a structured surface in the contact area of the layers in order to improve adhesion
EP3009248A1 (en) 2014-10-13 2016-04-20 RECTICEL Automobilsysteme GmbH Method for producing an elastomeric skin having a grained surface
PL3292162T3 (en) * 2015-05-05 2021-06-14 Evonik Operations Gmbh Delayed action gelling catalyst compositions and methods for making polyurethane polymers
EP3562869A1 (en) 2016-12-28 2019-11-06 Covestro Deutschland AG Composite component
JP7364469B2 (en) * 2017-04-28 2023-10-18 アスコリウム ゲーエムベーハー Elastomeric composite polyurethane skin
US11046850B2 (en) * 2017-09-27 2021-06-29 Evonik Operations Gmbh Mixed metal catalyst compositions and methods for making polyurethane foam
EP3549990A1 (en) 2018-04-04 2019-10-09 Covestro Deutschland AG Bicomponent system with improved adhesion
EP3556527A1 (en) 2018-04-19 2019-10-23 Covestro Deutschland AG Thermoplastic composite article and manufacturing method and use thereof
EP3560675A1 (en) 2018-04-24 2019-10-30 Covestro Deutschland AG Thermoplastic composite article and manufacturing method and use thereof
EP4021977B1 (en) 2019-08-28 2023-05-24 Covestro Intellectual Property GmbH & Co. KG Flame-retardant polycarbonate composition and molded parts as well as articles made therefrom
SI3883806T1 (en) 2020-01-16 2022-08-31 Ascorium Gmbh Skin for a vehicle interior trim part comprising a light source
JP2023510098A (en) 2020-01-16 2023-03-13 アスコリウム ゲーエムベーハー Skins for vehicle interior trim parts, including operating elements
WO2024017706A1 (en) 2022-07-18 2024-01-25 Covestro Deutschland Ag Method for producing a composite component with a support comprising polycarbonate of a specific oh content
EP4309865A1 (en) 2022-07-18 2024-01-24 Covestro Deutschland AG Method for producing a composite article comprising a support comprising a hydroxyl component
EP4309864A1 (en) 2022-07-18 2024-01-24 Covestro Deutschland AG Method for producing a composite article comprising a support comprising polycarbonate with specific oh content

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4223098A (en) * 1978-10-30 1980-09-16 M&T Chemicals Inc. Blowing catalyst composition for low density flexible polyurethane foams
US4284751A (en) * 1980-05-14 1981-08-18 Products Research & Chemical Corp. Polyurethane sealant system
US4547478A (en) * 1984-03-09 1985-10-15 American Cyanamid Company Catalyst systems for polyurethane compositions
BE1002762A7 (en) * 1989-01-20 1991-05-28 Recticel METHOD FOR PRODUCING AND APPLYING sprayable, light stable polyurethane.
US5156915A (en) * 1991-11-26 1992-10-20 Eastman Kodak Company Moisture stable polyurethane biasable members
US5159012A (en) * 1991-11-29 1992-10-27 Textile Rubber & Chemical Co., Inc. Process for the manufacture of polyurethane elastomers
US5514723A (en) * 1995-09-26 1996-05-07 Bayer Corporation Water-blown integral skin polyurethane foams and catalysts useful therein
JP3829401B2 (en) * 1996-03-28 2006-10-04 豊田合成株式会社 In-mold coatless RIM polyurethane two-color molded product and two-color molding method
IN1997CH00157A (en) * 1996-10-01 2006-06-09 Recticel
ES2193654T3 (en) * 1998-12-21 2003-11-01 Goldschmidt Ag Th USE OF METAL SALTS OF RICHINOLIC ACID IN THE PRODUCTION OF POLYURETHANE FOAMS.
US6458861B1 (en) * 2001-01-18 2002-10-01 Bayer Antwerp N.V. Carbon dioxide blown low density, flexible microcellular elastomers suitable for preparing shoe components
JP4045107B2 (en) * 2002-03-07 2008-02-13 三井化学ポリウレタン株式会社 Non-yellowing flexible polyurethane foam and method for producing the same

Also Published As

Publication number Publication date
KR101071099B1 (en) 2011-10-10
CN1295263C (en) 2007-01-17
AU2003238574A1 (en) 2004-01-06
BR0311962A (en) 2005-03-22
CN1662574A (en) 2005-08-31
KR20050013228A (en) 2005-02-03
RU2005101616A (en) 2005-08-10
JP4538317B2 (en) 2010-09-08
RU2315780C2 (en) 2008-01-27
MXPA05000007A (en) 2005-04-08
RS111604A (en) 2007-02-05
CA2489547A1 (en) 2003-12-31
CA2489547C (en) 2011-08-02
EP1519974B1 (en) 2017-08-09
JP2005530011A (en) 2005-10-06
WO2004000905A1 (en) 2003-12-31
PL374319A1 (en) 2005-10-17
ZA200410091B (en) 2006-08-30
IN2004CH03182A (en) 2006-03-03
EP1519974A1 (en) 2005-04-06
US20040019175A1 (en) 2004-01-29

Similar Documents

Publication Publication Date Title
HRP20050063A2 (en) Micro-cellular or non-cellular light-stable polyurethane material and method for the production thereof
EP0379246B1 (en) A method for preparing and applying a sprayable, light stable polyurethane
EP0929586B1 (en) Light-stable elastomeric polyurethane mouldings and process for the production thereof
CN101273074B (en) Preparation of amino-silane terminated polymer by using organic bismuth catalyst and cured polymer therefrom by using non-tin catalyst
US5656677A (en) Method for preparing and applying a sprayable, light stable polyurethane
US20060293486A1 (en) Polyurethane elastomers, a process for the preparation thereof and the use thereof
CA2205252C (en) High modulus, high impact polyurethane/polyurea rim
MX2008015277A (en) Method for producing a flexible composite elastomeric polyurethane skin.
CA2143882A1 (en) Heat curable, one-component polyurethane reactive compositions
KR20080112272A (en) Polyurethane molding, process for its production and its use
WO2019068083A1 (en) Isocyanate functional adhesive wihich bonds primerless to silanated acrylic polyol based coating
RU2666430C2 (en) Hydrophobic polyhydric alcohols for use in sealant composition
US5420186A (en) Internal mold release agents comprising metallic soaps compatibilized with liquid quaternary ammonium salts
KR20070016626A (en) Moisture Curable Polyurethane Composition Having Storage Stability and Preparing Method Thereof
US5358985A (en) Ionic siloxane as internal mold release agent for polyurethane, polyurethaneurea and polyurea elastomers
US5308880A (en) Tin catalysts for use in rim polyol blends containing acidic internal mold release agents and diethyltoluenediamine chain extender
US5312845A (en) Rim polyol blends containing acidic siloxane internal mold release agents and tin catalysts
CN112384545A (en) Elastomeric polyurethane foams and process for producing the same
US5736587A (en) Process for the production of molded polyurethane products
US5710230A (en) Cycloaliphatic diisocyanate based rim elastomers
US5324759A (en) RIM polyol blends containing acidic siloxane internal mold release agents and quaternary ammonium phenoxides
EP3176196A1 (en) One-component solvent-free polyurethane lamination adhesives
CA2154622A1 (en) Process for the production of molded polyurethane products
JPH0447702B2 (en)

Legal Events

Date Code Title Description
A1OB Publication of a patent application
ARAI Request for the grant of a patent on the basis of the submitted results of a substantive examination of a patent application
ODRP Renewal fee for the maintenance of a patent

Payment date: 20070706

Year of fee payment: 5

OBST Application withdrawn