HRP20020780A2 - Rotary helical pump with progressive pitch - Google Patents

Rotary helical pump with progressive pitch Download PDF

Info

Publication number
HRP20020780A2
HRP20020780A2 HRP20020780A HRP20020780A2 HR P20020780 A2 HRP20020780 A2 HR P20020780A2 HR P20020780 A HRP20020780 A HR P20020780A HR P20020780 A2 HRP20020780 A2 HR P20020780A2
Authority
HR
Croatia
Prior art keywords
pump
piston
spiral
sections
shaft
Prior art date
Application number
Other languages
Croatian (hr)
Inventor
Renata Einko
Original Assignee
Renata Einko
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renata Einko filed Critical Renata Einko
Priority to HRP20020780 priority Critical patent/HRP20020780A2/en
Priority to PCT/HR2003/000050 priority patent/WO2004061311A1/en
Priority to AU2003271992A priority patent/AU2003271992A1/en
Publication of HRP20020780A2 publication Critical patent/HRP20020780A2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/181Axial flow rotors

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Rotary Pumps (AREA)
  • Reciprocating Pumps (AREA)

Description

Područje tehnike u koju spada izum The technical field to which the invention belongs

Predmet izuma spada u pumpanja fluida, s tim da je moguća primjena u procesnim kao i transportnim sustavima za sve vrste fluida. The subject of the invention belongs to the pumping of fluids, with the fact that it can be used in process as well as transport systems for all types of fluids.

Tehnički problem Technical problem

Tehnički problem koji se rješava ovim izumom sastoji se u slijedećem; kako konstruirati rotirajuću pumpu koja bi bila neosjetljiva na krute primjese, imala mogućnost postizanja velikog tlaka uz relativno velike protoke uz male dimenzije pumpe i veliku iskoristivost energije, te imala mogućnost određivanja protoka određivanjem brzine vrtnje. Drugi problem koji se rješava predloženim tehničkim rješenjem je jednostavna montaža pumpe i laka detekcija eventualno nastalog kvara. The technical problem solved by this invention consists in the following; how to construct a rotary pump that would be insensitive to solid impurities, have the ability to achieve high pressure with relatively high flow rates with small pump dimensions and high energy utilization, and have the ability to determine the flow rate by determining the rotation speed. Another problem that is solved by the proposed technical solution is the simple installation of the pump and the easy detection of any malfunction.

Stanje tehnike State of the art

Dosada su se za pumpanja fluida koristile razne pumpe čiji se princip rada zasniva na raznim mehaničkim i hidrauličkim efektima. Dvije osnovne grupe pumpi koje koriste mehanički princip rada su pumpe kod kojih dolazi do promjena volumena prostora u kojoj se nalazi fluid i turbo pumpe, a pumpe koje koriste hidraulične principe su mlazne pumpe (jet pumpe) i uzgonske pumpe. Until now, various pumps have been used for pumping fluids, the principle of operation of which is based on various mechanical and hydraulic effects. The two basic groups of pumps that use the mechanical principle of operation are pumps that change the volume of the space in which the fluid is located and turbo pumps, and pumps that use hydraulic principles are jet pumps and lift pumps.

Pumpe koje koriste promjenu volumenskog prostora se dalje dijele na vijčane, zupčaste, propelerske, klipne i membranske. Pumps that use a change in volume space are further divided into screw, gear, propeller, piston and diaphragm pumps.

Od gore navedenih, vijčane, zupčaste i propelerske koriste kružno gibanje kao i turbo pumpe. Ostale navedene pumpe (klipne i membranske) koriste pravocrtno gibanje za promjenu volumena, dok hidraulične pumpe (mlazne i uzgonske) nemaju mehaničkih pokretnih dijelova. Of the above, screw, gear and propeller pumps use circular motion as do turbo pumps. The other listed pumps (piston and diaphragm) use rectilinear motion to change volume, while hydraulic pumps (jet and buoyant) have no mechanical moving parts.

Nedostaci spomenutih poznatih rješenja, posebno onih pumpi koje se kružno gibaju, su u prvom redu osjetljivost na krute čestice u pumpanom fluidu, koje mogu oštetiti pumpu, zatim složenost konstrukcije ukoliko se želi postići veliki tlak, a kod onih gdje je konstrukcija jednostavna (propelerska pumpa) ne može se postići visoki tlak pumpanja. The disadvantages of the mentioned known solutions, especially those pumps that move in a circular motion, are first of all the sensitivity to solid particles in the pumped fluid, which can damage the pump, then the complexity of the construction if you want to achieve a high pressure, and in those where the construction is simple (propeller pump ) high pumping pressure cannot be achieved.

Cilj rješenja prema ovoj prijavi je da se konstruira takav uređaj-pumpa koji bi unaprijedio mogućnosti gore spomenutih rješenja na način da se smanji složenost konstrukcije, smanji osjetljivost na oštećenja od krutih čestica u pumpanom fluidu, smanje dimenzije pumpe uz istovremenu mogućnost postizanja velikih tlakova pumpanog fluida. The goal of the solution according to this application is to construct such a device-pump that would improve the possibilities of the above-mentioned solutions in such a way as to reduce the complexity of the structure, reduce the sensitivity to damage from solid particles in the pumped fluid, reduce the dimensions of the pump with the simultaneous possibility of achieving high pressures of the pumped fluid .

Opis rješenja tehničkog problema Description of the solution to the technical problem

Definirani tehnički problem riješen je predloženim uređajem-rotirajućom spiralnom pumpom. The defined technical problem was solved by the proposed device - rotating spiral pump.

Konstrukcijsko rješenje tehničkog problema zasniva se na tome da se u cilindar (1) određenog promjera postavi klip (2) posebne konstrukcije. Klip može biti u jednom komadu, sastavljen od osovine (3) i spirale (4) čiji vanjski obod (5) ima veću međusobnu udaljenost što se više udaljava od ulaza pumpe (6), ili izrađen od određenog broja sekcija (7), (8), (9), (10) koje se slažu jedna na drugu s time da imaju isti promjer a različitu visinu. Način slaganja sekcija je da je sekcija najmanje međusobne udaljenosti linije spirale prva, ulazna sekcija, druga sekcija je veće međusobne udaljenosti linije spirale od prve, treća je veće međusobne udaljenosti linije spirale od druge i tako dalje, zadnja-izlazna sekcija ima najveću međusobnu udaljenost linije spirale. Konačan broj sekcija nije određen. The structural solution to the technical problem is based on placing a piston (2) of a special design in a cylinder (1) of a certain diameter. The piston can be in one piece, composed of a shaft (3) and a spiral (4) whose outer rim (5) has a greater mutual distance as it moves away from the pump inlet (6), or made of a certain number of sections (7), ( 8), (9), (10) which are stacked on top of each other with the same diameter but different height. The way the sections are arranged is that the section with the least mutual distance of the spiral line is the first, the input section, the second section is the greater mutual distance of the spiral line than the first, the third is the greater mutual distance of the spiral line than the second and so on, the last-exit section has the largest mutual line distance spirals. The final number of sections has not been determined.

Sekcije (7), (8), (9), (10) koje se spajaju jedna s drugom, a sastoje se od osovine (3) i spirale (4), s time da je vanjski obod (5) spirale (4) istog promjera, a linija spirale ovijene oko osovine se sve više međusobno udaljava gledano sa strane, udaljenost je veća što je spirala bliža izlazu a dalja ulazu pumpe (6). Sections (7), (8), (9), (10) which connect to each other and consist of a shaft (3) and a spiral (4), with the outer rim (5) of the spiral (4) of the same diameter, and the line of the spiral wrapped around the shaft moves further and further away from each other when viewed from the side, the distance is greater the closer the spiral is to the outlet and further to the inlet of the pump (6).

Klip (2) ili svaka sekcija (7), (8), (9), (10) ukoliko se klip (2) formira od sekcija su izrađeni tako da se volumen prostora koji obrazuju osovina (3) i spirala (4) zajedno sa vanjskim cilindrom (1) u koji se klip (2) ili sekcije (7), (8), (9), (10) umeću, povećava od početka prema kraju klipa (2) ili sekcije (7), (8), (9), (10) tako da je gore opisani volumni prostor na početku klipa (2) ili sekcije (7), (8), (9), (10) najmanji, a što se spirala (4) više udaljava od početka klipa (2) ili sekcije, (7), (8), (9), (10) volumen je veći i veći, da bi najveći bio na kraju klipa (2) ili sekcije. Klip ili sekcija (7), (8), (9), (10) tako zajedno sa vanjskim cilindrom (1) brazuju cijev (12) čiji se poprečni presjek (11) povećava. The piston (2) or each section (7), (8), (9), (10) if the piston (2) is formed from sections are made so that the volume of the space formed by the shaft (3) and the spiral (4) together with the outer cylinder (1) into which the piston (2) or sections (7), (8), (9), (10) are inserted, increases from the beginning to the end of the piston (2) or sections (7), (8) , (9), (10) so that the volume space described above at the beginning of the piston (2) or section (7), (8), (9), (10) is the smallest, and the more the spiral (4) moves away from beginning of the piston (2) or section, (7), (8), (9), (10) the volume is larger and larger, so that the largest is at the end of the piston (2) or section. The piston or section (7), (8), (9), (10) together with the outer cylinder (1) braze the tube (12) whose cross-section (11) increases.

Ukoliko se klip (2) formira od sekcija, sekcije (7), (8), (9), (10), se spajaju jedna na drugu tako da je volumen prostora između osovine (3), spirale (4) i vanjskog cilindra (1) na kraju niže sekcije manji od volumena prostora omeđenog osovinom, spiralom i vanjskim cilindrom na početku više sekcije. If the piston (2) is formed from sections, the sections (7), (8), (9), (10) are connected to each other so that the volume of the space between the shaft (3), spiral (4) and the outer cylinder is (1) at the end of the lower section smaller than the volume of the space bounded by the shaft, spiral and outer cylinder at the beginning of the higher section.

Opis crteža Description of the drawing

Izum je detaljnije opisan na primjeru načina izvođenja na kome The invention is described in more detail on the example of the method of execution on a coma

slika 1 picture 1

prikazuje rotirajuću spiralnu pumpu sa progresivnim korakom koja se sastoji od cilindričnog kućišta (1) i klipa (2), s time da cilindrično kućište (1) miruje a klip (2) rotira u njemu. Klip se sastoji od osovine (3) i spirale (4) s tim da je spirala (4) ovijena oko osovine (3) tako da se vanjski obod (5) linije spirale (4) sve više međusobno udaljava, što je udaljeniji od početka klipa (2) odnosno ulaza u pumpu (6) shows a progressive pitch rotary volute pump consisting of a cylindrical housing (1) and a piston (2), with the cylindrical housing (1) stationary and the piston (2) rotating within it. The piston consists of a shaft (3) and a spiral (4), with the fact that the spiral (4) is wrapped around the shaft (3) so that the outer rim (5) of the line of the spiral (4) moves further and further away from each other, the farther it is from the beginning piston (2) or pump inlet (6)

slika 2 picture 2

prikazuje klip (2) spiralne pumpe, sastavljen od sekcija (7), (8), (9), (10) koje se spajaju jedna sa drugom, s time da je drugu tako da je volumen prostora između osovine (3), spirale (4) i vanjskog cilindra (1) na kraju niže sekcije jednak prostoru omeđenom osovinom, spiralom i vanjskim cilindrom početka više sekcije. shows the piston (2) of a spiral pump, composed of sections (7), (8), (9), (10) which connect to each other, with the second being such that the volume of the space between the shaft (3), the spiral (4) and the outer cylinder (1) at the end of the lower section is equal to the space bounded by the shaft, the spiral and the outer cylinder of the beginning of the higher section.

slika 3 picture 3

prikazuje cijev (11) koja se dobije ukoliko se cijev omeđena klipom (2) i cilindrom (1) spiralne pumpe razvuče u ravnini. Poprečni presjek ulaza u cijev jednak je poprečnom presjeku ulaza u spiralnu pumpu (6), i postepeno se povećava što se više ide prema kraju pumpe. shows the pipe (11) which is obtained if the pipe bounded by the piston (2) and the cylinder (1) of the spiral pump is stretched in a plane. The cross-section of the inlet to the pipe is equal to the cross-section of the inlet to the spiral pump (6), and it gradually increases as you go towards the end of the pump.

Način ostvarivanja izuma Method of realizing the invention

Na ulaz pumpe (6) koji je određene površine ulazi pumpani fluid. Promjer cilindra (1) u koji je smješten klip (2) pumpe je konstantan, kao i promjer vanjskog oboda spirale klipa (2). Motorom se pokreće klip (2) koji se počinje obrtati oko svoje osi, u cilindru (1) koji miruje. Okretanjem klipa (2) u cilindru (1), javlja se sila, koja tjera tekućinu od ulaza (6) prema izlazu pumpe. Tekućina prolazi kroz spiralnu cijev koju obrazuju klip (2), odnosno osovina (3) i spirala (4) klipa (2) i vanjski cilindar (1). Ukoliko bi se cijev stvorena promjenama koraka spirale, odnosno volumnog prostora na gore navedeni način razvukla u ravnini, dobila bi se cijev (12) oblika prikazanog na slici 3, čiji je ulaz (11) najmanje površine presjeka, jednake koraku ulaza u pumpu (6), postepeno se širi prema izlazu, a izlaz je najvećeg promjera. Ukoliko bi se gore opisana cijev još obrtala oko svoje osi, dobila bi se sila uzgona koja bi tjerala tekućinu kroz cijev od užeg prema širem kraju. The pumped fluid enters the pump inlet (6), which is of a certain surface area. The diameter of the cylinder (1) in which the piston (2) of the pump is placed is constant, as is the diameter of the outer circumference of the spiral of the piston (2). The motor drives the piston (2), which begins to rotate around its axis, in the stationary cylinder (1). By turning the piston (2) in the cylinder (1), a force appears, which forces the liquid from the inlet (6) towards the pump outlet. The liquid passes through the spiral tube formed by the piston (2), that is, the shaft (3) and spiral (4) of the piston (2) and the outer cylinder (1). If the tube created by changing the spiral pitch, i.e. the volume space, were to be stretched in a plane in the above-mentioned way, the tube (12) of the shape shown in Figure 3 would be obtained, the inlet (11) of which has the smallest cross-sectional area, equal to the pump inlet step (6 ), it gradually expands towards the outlet, and the outlet has the largest diameter. If the tube described above would still rotate around its axis, a buoyancy force would be obtained that would push the liquid through the tube from the narrower end to the wider end.

Obzirom na oblik cijevi, primjenjiva je Bernoulli-jeva jednadžba, koja pokazuje da pri porastu brzine fluida pada tlak i obratno. Considering the shape of the pipe, Bernoulli's equation is applicable, which shows that when the velocity of the fluid increases, the pressure decreases and vice versa.

��g + v2/2 +g*h = konst. ��g + v2/2 +g*h = const.

��g +( v1)2/2 +g*h1 = ��g + (v2)2/2 +g*h2 + Ws ��g +( v1)2/2 +g*h1 = ��g + (v2)2/2 +g*h2 + Ws

Iz gornje jednadžbe se vidi da brzina fluida stvorena rotacijom klipa (2) u cilindru (1) na ulazu (6) i izlazu a također i tlak na ulazu (6) i izlazu, mogu doseći vrlo velike razlike, što ovisi o razlici poprečnog presjeka na ulazu (6) i izlazu, te je napravu moguće koristiti kao pumpu posebnog tipa. From the above equation, it can be seen that the fluid velocity created by the rotation of the piston (2) in the cylinder (1) at the inlet (6) and outlet and also the pressure at the inlet (6) and outlet can reach very large differences, which depends on the difference in cross section at the inlet (6) and outlet, and the device can be used as a special type of pump.

Određivanjem broja koraka spirale (4) i omjerom ulaznog i izlaznog koraka, odnosno volumena ispunjenog fluidom, određuje se izlazni tlak pumpanog fluida, a određivanjem koraka, odnosno volumena ispunjenog fluidom ulaza pumpe (6) i broja okretaja pumpe određuje se protok fluida kroz pumpu u jedinici vremena. By determining the number of steps of the spiral (4) and the ratio of the input and output steps, that is, the volume filled with fluid, the output pressure of the pumped fluid is determined, and by determining the step, that is, the volume filled with fluid at the pump inlet (6) and the number of revolutions of the pump, the flow of fluid through the pump is determined per unit of time.

Ukoliko bi pumpa, odnosno unutarnji klip (2) bio sastavljen od sekcija (7), (8), (9), (10), jednostavnim odabirom sekcija, odnosno njihovim slaganjem tako da razvučene čine cijev (12) kao na slici 3, može se projektirati pumpa raznih izlaznih tlakova i protoka u jedinici vremena, ne mijenjajući vanjski promjer pumpe, odnosno cilindra (1) u koji je smješten klip (2). If the pump, i.e. the inner piston (2) was composed of sections (7), (8), (9), (10), by simply selecting the sections, or stacking them so that they form a pipe (12) as in Figure 3, it is possible to design a pump with various output pressures and flow rates per unit of time, without changing the external diameter of the pump, i.e. the cylinder (1) in which the piston (2) is placed.

Obzirom da ovakva pumpa nema brtvljenja odnosno dodirnih površina a rotirajući dijelovi su u jednom komadu, otporna je na krute čestice, a može raditi u vodoravnom, okomitom i kosom položaju. Since this type of pump has no sealing or contact surfaces and the rotating parts are in one piece, it is resistant to solid particles and can work in a horizontal, vertical and inclined position.

Način industrijske primjene izuma Method of industrial application of the invention

Izum, rotirajuća spiralna pumpa sa progresivnim korakom, je namijenjena za podizanje ili transport tekućina različite gustoće i viskoziteta. Izum je moguće primijeniti u gotovo svim slučajevima gdje dolazi do potrebe transporta tekućina kao što su industrija pridobivanja i prerade nafte, u pridobivanju vode iz arteških bunara, u procesnoj industriji. The invention, a rotating spiral pump with a progressive step, is intended for lifting or transporting liquids of different density and viscosity. The invention can be applied in almost all cases where there is a need to transport liquids, such as the oil extraction and processing industry, in the extraction of water from artesian wells, in the process industry.

Za primjenu tehničkog rješenja prema ovom izumu potrebno je primijeniti uobičajene materijale, opremu i postupke, uz uvjet dodatnog obučavanja stručnog osoblja za rukovanje opremom. For the application of the technical solution according to this invention, it is necessary to apply the usual materials, equipment and procedures, with the condition of additional training of professional personnel for handling the equipment.

Mjere zaštite na radu kojih se treba pridržavati su standardne i nema predviđenih štetnih djelovanja na prirodni okoliš. The occupational safety measures that must be followed are standard and there are no anticipated adverse effects on the natural environment.

Claims (2)

1. Rotirajuća spiralna pumpa sa progresivnim korakom za pumpanje fluida različite gustoće i viskoziteta, naznačena time da se sastoji od cilindričnog kućišta (1) u kojem se nalazi klip (2) koji se sastoji od osovine (3) i spirale (4), s time da je spirala promjenjivog koraka koji se smanjuje prema ulazu u pumpu (6).1. A rotary spiral pump with a progressive step for pumping fluids of different density and viscosity, characterized by the fact that it consists of a cylindrical housing (1) in which a piston (2) is located consisting of a shaft (3) and a spiral (4), with in that the spiral is of a variable pitch that decreases towards the entrance to the pump (6). 2. Rotirajuća spiralna pumpa sa progresivnim korakom za pumpanje fluida različite gustoće i viskoziteta prema zahtjevu (1), naznačena time da klip (2) može biti jednodijelan ili sastavljen od nekoliko sekcija koje obrazuju osovina (3) i spirala (4) unutar vanjskog cilindra (1) u kojeg su ugrađeni, tako da se karakteristike pumpe određuju odabirom volumnih prostora na početku i kraju klipa (2) ili početne i završne sekcije, ukoliko se klip sastoji od sekcija (7), (8), (9), (10), čime se određuje visina dobave fluida, a odabirom veličine poprečnog presjeka ulaza u pumpu (11) određuje se protok fluida.2. Rotary spiral pump with a progressive step for pumping fluids of different density and viscosity according to claim (1), characterized by the fact that the piston (2) can be one-piece or composed of several sections formed by the shaft (3) and the spiral (4) inside the outer cylinder (1) in which they are installed, so that the characteristics of the pump are determined by selecting the volume spaces at the beginning and end of the piston (2) or the beginning and end sections, if the piston consists of sections (7), (8), (9), ( 10), which determines the height of the fluid supply, and by selecting the size of the cross-section of the inlet to the pump (11), the fluid flow is determined.
HRP20020780 2002-09-27 2002-09-27 Rotary helical pump with progressive pitch HRP20020780A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
HRP20020780 HRP20020780A2 (en) 2002-09-27 2002-09-27 Rotary helical pump with progressive pitch
PCT/HR2003/000050 WO2004061311A1 (en) 2002-09-27 2003-09-24 Rotating spyral pump with progressive thread step
AU2003271992A AU2003271992A1 (en) 2002-09-27 2003-09-24 Rotating spyral pump with progressive thread step

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HRP20020780 HRP20020780A2 (en) 2002-09-27 2002-09-27 Rotary helical pump with progressive pitch

Publications (1)

Publication Number Publication Date
HRP20020780A2 true HRP20020780A2 (en) 2004-06-30

Family

ID=32587236

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP20020780 HRP20020780A2 (en) 2002-09-27 2002-09-27 Rotary helical pump with progressive pitch

Country Status (3)

Country Link
AU (1) AU2003271992A1 (en)
HR (1) HRP20020780A2 (en)
WO (1) WO2004061311A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103032369A (en) * 2012-12-28 2013-04-10 罗士武 Stepped threaded fan blade for air compressor, liquid pump, blower, fan, turbofan and blade fan
CN110159552B (en) * 2019-06-03 2020-12-11 山东科技大学 Downward gas extraction drill hole spiral type drainage device and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1365421A (en) * 1999-07-29 2002-08-21 乔纳森·B·罗斯福斯基 Ribbon drive powder generation apparatus and method
US6527520B2 (en) * 1999-07-29 2003-03-04 Jonathan B. Rosefsky Ribbon drive pumping with centrifugal contaminant removal

Also Published As

Publication number Publication date
AU2003271992A1 (en) 2004-07-29
AU2003271992A8 (en) 2004-07-29
WO2004061311A1 (en) 2004-07-22

Similar Documents

Publication Publication Date Title
EP3464900B1 (en) Double acting positive displacement fluid pump
US3022738A (en) Pump systems
US6685451B1 (en) Valve assembly for sucker rod operated subsurface pumps
RU2733151C2 (en) Multi-position rotary drive, controlled by fluid medium
US20150118085A1 (en) Eccentric Screw Pump And Use Of An Eccentric Screw Pump
US6135723A (en) Efficient Multistage pump
CN107956688B (en) Axial end face seal rotor molded line displacement pump
MX2012009508A (en) Improved pump.
US6065944A (en) Annular pump
HRP20020780A2 (en) Rotary helical pump with progressive pitch
CN111094696A (en) Electric submersible pump arrangement
US3697199A (en) Slide valve pump
US3249054A (en) Pump
CN109538433A (en) A kind of point contact fully water lubricating axial multiple plunger volumetric water pump
US20190219048A1 (en) Double acting linear electrical submersible pump and method for its operation
US11644021B2 (en) Screw pump and method of use
RU2305191C2 (en) Rotary hydraulic machine
RU2398091C9 (en) Hollow bucket rod
CN104329244B (en) A kind of capsule combination pump
CN112832710B (en) Well head combination valve with well head liquid quantity metering and yield increasing functions
RU2450162C1 (en) Downhole pump
RU43613U1 (en) ROTARY VALVE VALVE
RU2065530C1 (en) Submersible diaphragm electric pump for lifting liquid from well
WO2012036591A1 (en) Differential rod pump
RU2175401C2 (en) Rotary pump

Legal Events

Date Code Title Description
A1OB Publication of a patent application
OBST Application withdrawn