HRP20010797A2 - eNOS MUTATIONS USEFUL FOR GENE THERAPY AND THERAPEUTIC SCREENING - Google Patents

eNOS MUTATIONS USEFUL FOR GENE THERAPY AND THERAPEUTIC SCREENING Download PDF

Info

Publication number
HRP20010797A2
HRP20010797A2 HR20010797A HRP20010797A HRP20010797A2 HR P20010797 A2 HRP20010797 A2 HR P20010797A2 HR 20010797 A HR20010797 A HR 20010797A HR P20010797 A HRP20010797 A HR P20010797A HR P20010797 A2 HRP20010797 A2 HR P20010797A2
Authority
HR
Croatia
Prior art keywords
enos
residue
nos
akt
polypeptide
Prior art date
Application number
HR20010797A
Other languages
Croatian (hr)
Inventor
William C Sessa
Original Assignee
Univ Yale
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Yale filed Critical Univ Yale
Publication of HRP20010797A2 publication Critical patent/HRP20010797A2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0073Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
    • C12N9/0075Nitric-oxide synthase (1.14.13.39)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/10Drugs for genital or sexual disorders; Contraceptives for impotence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Wood Science & Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Diabetes (AREA)
  • Endocrinology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • Gynecology & Obstetrics (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Emergency Medicine (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Reproductive Health (AREA)
  • Plant Pathology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

Referencije koje se odnose na srodne aplikacije References related to related applications

Ovi zahtjevi iz aplikacije povezani su s U. S. aplikacijom 60/129,550 podnesenu 16. travnja 1999, a koja je ovdje ugrađena referencijom. These application claims are related to U.S. Application 60/129,550 filed Apr. 16, 1999, which is incorporated herein by reference.

Objava o javnoj podršci Announcement of public support

Ovaj izum je nastao kao dio istraživanja financiranog od sljedećih javnih sredstava: HL 57665 i HL 6137. This invention was created as part of research funded by the following public funds: HL 57665 and HL 6137.

Tehničko područje Technical area

Ovaj izum odnosi se na nove varijante ili mutante NOS koje imaju strukturnu promjenu na mjestu o Akt ovisnoj fosforilaciji. Primjenjene proteinske ili peptidne NOS, te molekule nukleinske kiseline koje ih kodiraju su korisni kao genska terapija za tretman bolesti koje uključuju post-angioplastičnu restenozu, dijabetes i bolesti defektivne angiogeneze. This invention relates to novel variants or mutants of NOS that have a structural change at the site of Akt-dependent phosphorylation. Applied protein or peptide NOS, and the nucleic acid molecules that encode them are useful as gene therapy for the treatment of diseases that include post-angioplasty restenosis, diabetes and diseases of defective angiogenesis.

Dosadašnje spoznaje Previous knowledge

Ateroskleroza i vaskularna tromboza su glavni uzroci morbiditeta i mortaliteta, a vode bolesti koronarnih arterija, infarktu miokarda i moždanom udaru. Ateroskleroza počinje promjenom endotela koji je u krvnim sudovima. Promjena endotela može konačno rezultirati razvitkom endotelnih lezija uzokovanih, djelomično ulaskom oksidiranog kolesterola male gustoće (LDL). Pucanje tih lezija može voditi trombozi i okluziji krvnog suda. U slučaju koronarne arterije, puknuće kompleksa lezija može uzrokovati infarkt miokarda, dok u slučaju kartoidne aretije može doći do moždanog udara. Atherosclerosis and vascular thrombosis are the main causes of morbidity and mortality, leading to coronary artery disease, myocardial infarction and stroke. Atherosclerosis begins with a change in the endothelium that is in the blood vessels. Alteration of the endothelium can ultimately result in the development of endothelial lesions marked, in part, by the entry of oxidized low-density cholesterol (LDL). Rupture of these lesions can lead to thrombosis and occlusion of blood vessels. In the case of a coronary artery, the rupture of the lesion complex can cause a myocardial infarction, while in the case of a carotid artery, a stroke can occur.

U koronarnoj aterosklerozi, poremećaj endotela može smanjiti produkciju vazodilatatora, kao što je dušikov(II)oksid. Miokardijalna ishemija nastaje kada je autoregulirana vazodilatacija spriječena, bilo koronarnom arterijskom stenozom koja ograničava protok bilo poremećajem endotela. U oba slučaja protok krvi kroz arteriju se ne može dalje povećavan proporcionalnim porastom potreba za kisikom. U drugim situacijama, ishemija miokarda se može desiti kada su zahtjevi za kisikom stalni ali postoji primarna bolest u koronarnom protoku krvi posredovana spazmom koronarne arterije, pa brzo nastajanje aterosklerotičnog plaka koji vodi smanjivanju kalibra lumena koronarne arterije, i/ili povremenom mikrovaskularnom začepljenju zbog agregata trombocita. In coronary atherosclerosis, endothelial disruption can reduce the production of vasodilators, such as nitric oxide. Myocardial ischemia occurs when autoregulated vasodilation is prevented, either by flow-limiting coronary artery stenosis or by endothelial disruption. In both cases, blood flow through the artery cannot be further increased by a proportional increase in oxygen demand. In other situations, myocardial ischemia can occur when oxygen demands are constant but there is a primary disease in the coronary blood flow mediated by coronary artery spasm, so the rapid formation of atherosclerotic plaque leading to a reduction in the caliber of the coronary artery lumen, and/or occasional microvascular occlusion due to platelet aggregates .

Balonska angioplastija se obično koristi za ponovno otvaranje krvnog suda koji je sužen plakom. Mada je balonska angioplastija uspješna u velikom postotku slučajeva za otvaranje suda, često se u postupku uklanja endotel i ozljeđuje sud. To oštećenje uzrokuje migraciju i prolifaraciju stanica vaskularnih glatkih mišića u krvnom sudu u dio ozljede, pri čemu se stvaraju lezije poznate kao miointimna hiperplazija ili restenoza. Nova lezija vodi vraćanju simptoma unutar šest mjeseci nakon angioplastije kod velikog dijela pacijenata. Balloon angioplasty is commonly used to reopen a blood vessel that has been narrowed by plaque. Although balloon angioplasty is successful in a large percentage of cases in opening the vessel, the procedure often removes the endothelium and injures the vessel. This damage causes vascular smooth muscle cells in the blood vessel to migrate and proliferate into the area of injury, forming lesions known as myointimal hyperplasia or restenosis. A new lesion leads to return of symptoms within six months after angioplasty in a large proportion of patients.

Pri aterosklerozi, trombozi i restenozi također dolazi do gubitka normalnim vaskularnih funkcija, pa takvi sudovi se skupljaju a ne šire. Znatna vazokonstrikcija uzrokuje daljnje sužavanje lumena krvnog suda i ograničava protok krvi. To uzrokuje simptome kao što je angina (kao je obuhvaćena srčana arterija) ili transientnu cerebralnu ishemiju (tj. "mali udar" kad je zahvaćen sud u mozgu). Ta abnormalna vaskularna funkcija (značajna vazokonstrikcija ili neadekvatna vazodilatacija) događa se također u drugim bolestima. Hipertenzija (povišeni krvni tlak) uzrokovana je značajnom vazokonstrikcijom kao i odebljanjem zida suda, posebice u manjim sudovima krvotoka. Taj proces može djelovati na sudove pluća i uzrokovati pulmoranu (plućnu) hipertenziju. Ostali poremećaji povezani sa značajnom vazokonstrukcijom ili neadekvatnom vazodilatacijom uključuju transplant na ateroklerozu, kongestivno zatajenje srca, toksemiju ili trudnoću, Raynaudov fenomen, Prinzmetalovu anginu (koronarni vazospazam), cerebralni vazospazam, hemolitični uremiju i impotenciju. With atherosclerosis, thrombosis and restenosis, there is also a loss of normal vascular functions, so such vessels shrink rather than expand. Significant vasoconstriction causes further narrowing of the blood vessel lumen and limits blood flow. This causes symptoms such as angina (such as heart artery involvement) or transient cerebral ischemia (ie a "small stroke" when a vessel in the brain is affected). This abnormal vascular function (significant vasoconstriction or inadequate vasodilation) also occurs in other diseases. Hypertension (high blood pressure) is caused by significant vasoconstriction as well as thickening of the vessel wall, especially in smaller blood vessels. This process can affect the vessels of the lungs and cause pulmonary (pulmonary) hypertension. Other disorders associated with significant vasoconstriction or inadequate vasodilation include transplant atherosclerosis, congestive heart failure, toxemia or pregnancy, Raynaud's phenomenon, Prinzmetal's angina (coronary vasospasm), cerebral vasospasm, hemolytic uremia, and impotence.

Tvar koju oslobađa endotel, prvotno nazvan "od endotela dobiven faktor relaksacije" (EDRF), igra važnu ulogu u inhibiciji tih patoloških procesa. Sada je poznato da je EDRF dušikov(II)oksid (NO). NO igra mnoge uloge u fiziologiji čovjeka, uključujući relaksaciju glatkih mišića, inhibiciju agregacije trombocita i inhibiciju mitogeneze, proliferaciju glatkih mišića i prianjanje leukocita. Zato što je NO najmoćniji endogeni vazodilatator i zato što je uvelike odgovoran za vježbom induciranu vazodilataciju u arterijama, povećanje sinteze NO može također poboljšati kapacitet pri vježbanju u normalnim pojedincima i onima s vaskularom bolesti. A substance released by the endothelium, originally called "endothelium-derived relaxing factor" (EDRF), plays an important role in inhibiting these pathological processes. EDRF is now known to be nitric oxide (NO). NO plays many roles in human physiology, including smooth muscle relaxation, inhibition of platelet aggregation and inhibition of mitogenesis, smooth muscle proliferation, and leukocyte adhesion. Because NO is the most potent endogenous vasodilator and because it is largely responsible for exercise-induced vasodilation in arteries, increasing NO synthesis may also improve exercise capacity in normal individuals and those with vascular disease.

Endotelna sintetaza dušikovog oksida (eNOS) je izoform sintetaze dušikovog oksida (NOS) koja je odgovorna za održavanje sistemskog krvnog tlaka, za vaskularno remodeliranje i angiogenezu (Shesely, at al., 1996; Huang et al., 1995; Rudic et al 1998; Murohara et al., 1998). Kako je deficit endotelne produkcije NO rana i stalna karakteristika ateroskleroze i vaskularne ozljede, dokazalo se da je eNOS atraktivan cilj za vaskularnu gensku terapiju. Dok regulacija aktivacije eNOS ostaje uvelike nedefinirana, poznato je da se eNOS fosforilira kao odgovor na različite oblike stanične stimulacije (Michel et al., 1993, Garcia-Cardena et al., 1996, Corson et al., 1996), međutim, uloga fosforilacije u regulaciji produkcije dušikovog(II)oksida (NO) i odgovorne kinaze (kinaza) nije prethodno rasvjetljena. Endothelial nitric oxide synthase (eNOS) is an isoform of nitric oxide synthase (NOS) that is responsible for the maintenance of systemic blood pressure, for vascular remodeling and angiogenesis (Shesely, at al., 1996; Huang et al., 1995; Rudic et al. 1998; Murohara et al., 1998). As a deficit in endothelial NO production is an early and persistent characteristic of atherosclerosis and vascular injury, eNOS has been proven to be an attractive target for vascular gene therapy. While the regulation of eNOS activation remains largely undefined, eNOS is known to be phosphorylated in response to various forms of cellular stimulation (Michel et al., 1993, Garcia-Cardena et al., 1996, Corson et al., 1996), however, the role of phosphorylation in the regulation of nitric oxide (NO) production and the responsible kinase (kinase) has not been previously elucidated.

Sažetak izuma Summary of the invention

Rezultazi u ovom izumu, koji djelomično proizlaze i novog otkrića da serin/treon protein-kinaza, Akt (protein kinaza B) može izravno fosforilirati eNOS ili serinski ostatak koji odgovara ostatku 1197 u goveđoj eNOS ili ostatku 1177 u humanoj eNOS i aktivira enzim koji vodi produkciji NO. Mutirana eNOS (S1179A ili S1177A) je rezistentna na Akt fosforilaciju i aktivaciju, dok je mutant eNOS (S1179D i S1177D) ili (S1179E i S1177E) aktivan. Štoviše, koristeći transfer gena posredovan adenovirusom aktivirana Akt povećava bazalno otpuštanje NO iz endotelnih stanica, te povećava stimulaciju VEGF-stimulirane produkcije NO u utišanim stanicama koje su deficijentne na Akt. Stoga, se eNOS može opisati kao supstratno-ovisna transdukcija putem Akt, koja otpušta sekundarni glasnik, NO. Ovaj izum se također zasniva na dijelu otkrića da mutirani eNOS (S1179D) pokazuje povećanu brzinu produkcije NO i povećanu aktivnost reduktaze. The results of this invention, which derive in part from the new discovery that the serine/threon protein kinase, Akt (protein kinase B) can directly phosphorylate eNOS or a serine residue corresponding to residue 1197 in bovine eNOS or residue 1177 in human eNOS and activate the enzyme leading to NO production. Mutated eNOS (S1179A or S1177A) is resistant to Akt phosphorylation and activation, while mutant eNOS (S1179D and S1177D) or (S1179E and S1177E) is active. Moreover, using adenovirus-mediated gene transfer, activated Akt increases basal NO release from endothelial cells, and increases stimulation of VEGF-stimulated NO production in Akt-deficient silenced cells. Therefore, eNOS can be described as a substrate-dependent transduction through Akt, which releases the second messenger, NO. This invention is also based in part on the discovery that mutated eNOS (S1179D) exhibits an increased rate of NO production and increased reductase activity.

Ovaj izum uključuje polipeptidne ili proteinske NOS, i izolirane nukleinske kiseline koji ih kodiraju, pri čemu polipeptidna ili proteinska NOS sadrži supstituirani aminokiselinski ostatak koji odgovara ostatku 1179 goveđe eNOS, ostatku 1177 humane eNOS, ostatku 1412 štakorske eNOS ili ostatku 1415 humane nNOS. Preferirana supstitucija uključuje aminokiselinu s negativno nabijenom R skupinom, uključujući asparaginsku i glutaminsku kiselinu. The present invention includes polypeptide or protein NOS, and isolated nucleic acids encoding them, wherein the polypeptide or protein NOS contains a substituted amino acid residue corresponding to residue 1179 of bovine eNOS, residue 1177 of human eNOS, residue 1412 of rat eNOS, or residue 1415 of human nNOS. A preferred substitution involves an amino acid with a negatively charged R group, including aspartic and glutamic acids.

Ovaj izum također uključuje polipeptidne ili proteinske NOS, i izolirane nukleinske kiseline koji ih kodiraju, pri čemu polipeptidna ili proteinska NOS sadrži supstituirani aminokiselinski ostatak koji odgovara ostatku 1179 goveđe eNOS, ostatku 1177 humane eNOS, ostatku 1412 štakorske eNOS ili ostatku 1415 humane nNOS. Preferirana supstitucija uključuje aminokiselinu kojoj R skupina nije negativno nabijena, kao što je alanin. The present invention also includes polypeptide or protein NOS, and isolated nucleic acids encoding them, wherein the polypeptide or protein NOS contains a substituted amino acid residue corresponding to residue 1179 of bovine eNOS, residue 1177 of human eNOS, residue 1412 of rat eNOS, or residue 1415 of human nNOS. A preferred substitution includes an amino acid in which the R group is not negatively charged, such as alanine.

Ovaj izum prikazuje metode stimulacije razvitka kolaterarnog suda u ishemičnoj bolesti s deficijentnom endogenom angiogenezom, specifičnoj perifernoj vaskularnoj bolesti i/ili ishemiji miokarda u pacijentima, a sadrži isporuku transgena koji kodiraju polipeptidnu NOS iz izuma ili Akt polipetid. This invention shows methods of stimulating collateral vessel development in ischemic disease with deficient endogenous angiogenesis, specific peripheral vascular disease and/or myocardial ischemia in patients, and includes the delivery of transgenes encoding polypeptide NOS from the invention or Akt polypeptide.

Izum nadalje prikazuje transgenične životinje koji nisu ljudi koji eksprimiraju polipeptidnu NOS iz izuma. The invention further provides non-human transgenic animals that express the polypeptide NOS of the invention.

Konačno, izum uključuje metode identifikacije sredstava koji moduliraju aktivnost NOS reguliranu Akt, a koje sadrži sljedeće opće korake: (a) izlaganje sredstvu pročišćene NOS, preferirano eNOS ili nNOS ili stanice koja eksprimira NOS, preferirano eNOS ili nNOS, te Akt; te (b) mjerenje aktivnosti NOS regulirane Akt, preferirano preferirano eNOS ili nNOS. Finally, the invention includes methods of identifying agents that modulate Akt-regulated NOS activity, comprising the following general steps: (a) exposing to the agent purified NOS, preferably eNOS or nNOS or a cell expressing NOS, preferably eNOS or nNOS, and Akt; and (b) measuring Akt-regulated NOS activity, preferably eNOS or nNOS.

Kratki opis slika Short description of the pictures

Slike 1A-1B. Akt divljeg tipa, ali ne kinazno neaktivni Akt povećava oslobađanje NO iz stanica koje eksprimiraju eNOS povezanu s membranom. Na Slici 1A, COS stanice su tranficirane s plazmidima koji nose gen za eNOS u odsutnosti ili prisutnosti Akt ili kinazno neaktivnog Akt (K179M) i produkcija NO (testirano kao NO2") je određena kemilumiscencijom. Na slici 1B, COS stanice su tranficirane s plazmidima koji nose gen za eNOS kao gore. Na Slici 1A i Slici 1B, vrijednosti za produkciju NO2- su odbijene od razine dobivene iz stanica transficiranih samo s cDNA za β-galaktozidazu. Umetnuti dio pokazuje ekspresiju proteina u ukupnom lizatu stanice. Podaci su srednja vrijednost±standardna devijacija, n=3-7 eksperimanata; * označuje p<0.05. Figures 1A-1B. Wild-type Akt but not kinase-inactive Akt increases NO release from cells expressing membrane-associated eNOS. In Figure 1A, COS cells were transfected with plasmids carrying the gene for eNOS in the absence or presence of Akt or kinase-inactive Akt (K179M) and NO production (tested as NO2") was determined by chemiluminescence. In Figure 1B, COS cells were transfected with plasmids carrying the eNOS gene as above. In Figure 1A and Figure 1B, values for NO2- production are subtracted from the level obtained from cells transfected with β-galactosidase cDNA alone. The inset shows protein expression in total cell lysate. Data are mean ±standard deviation, n=3-7 experiments, * indicates p<0.05.

Slike 2A-2D. Fosforilacija eNOS aktivnim Akt i n vitro i i n vivo. Nas Slici 2A, COS stanice su transficirane s HA-Akt ili Ha-Akt(K179M), lizati su imunoprecipitirani i smješteni u in vitro reakciju kinaziranja s histonom 2B (25 mg) ili rekombinantnom eNOS (3 mg) kao supstrata. Na gornjem dijelu je prikazana ugradnja 32P u supstrat, a dolje je prikazana količina supstrata po Coomassie bojanju gela. Na Slici 2B, 32P obilježena eNOS divljeg tipa ili serinski mutant (eNOS S635/1179) je afinitetno pročišćena od transficiranih COS stanica i podvrgnuta je autoradiografiji (gornji dio slike) ili Western blotiranju (donji dio slike). Grafički podaci na Slici 2B pokazuju relativnu količinu obilježenog proteina prema količini imunoreaktivne eNOS i gelu. Na Slici 2C, obilježena eNOS je razgrađena s tripsinom i peptidi su razdijeljeni pomoću RP-HPLC. Gornji kromatogram prikazuje predominantno obilježeni peptid s tripsinom koji se istovremeno kreće s neobilježenim sintetskim fosfopeptidnim standardom (donji kromatogram). Umetnuti dijelovi slike prikazuju linearnim modom MS da su obilježeni peptid (gore) i standardni fosfopeptid identične mase iona. Na Slici 2D, rekombinantna eNOS divljeg tipa ili eNOS S1179A su pročišćene i po ista količine (2.4 mg) su smještene u in vitro reakciju kinaziranja s rekombinantnom Akt kao što je opisano u Metodama. Gornji dio na Slici 2D opisuje ugradnju 32P u eNOS, a dolje je prikazana količina supstrata po Coomassie bojanju gela. Grafički podaci (n=3) pokazuju relativnu količinu obilježenog eNOS prema masi eNOS (Comassie) u in vitro reakciji kinaziranja. Figures 2A-2D. Phosphorylation of eNOS by active Akt both in vitro and in vivo. In Fig. 2A, COS cells were transfected with HA-Akt or Ha-Akt(K179M), lysates were immunoprecipitated and placed in an in vitro kinase reaction with histone 2B (25 mg) or recombinant eNOS (3 mg) as substrate. The upper part shows the incorporation of 32P into the substrate, and the lower part shows the amount of substrate by Coomassie staining of the gel. In Figure 2B, 32 P-labeled eNOS wild-type or serine mutant (eNOS S635/1179) was affinity purified from transfected COS cells and subjected to autoradiography (top image) or Western blotting (bottom image). The graphical data in Figure 2B show the relative amount of labeled protein to the amount of immunoreactive eNOS and the gel. In Figure 2C, labeled eNOS was digested with trypsin and peptides were resolved by RP-HPLC. The upper chromatogram shows the predominantly labeled peptide with trypsin co-moving with an unlabeled synthetic phosphopeptide standard (lower chromatogram). The insets show by linear mode MS that the labeled peptide (top) and the standard phosphopeptide are of identical ion mass. In Figure 2D, recombinant wild-type eNOS or eNOS S1179A were purified and equal amounts (2.4 mg) were placed in an in vitro kinase reaction with recombinant Akt as described in Methods. The upper part of Figure 2D describes the incorporation of 32P into eNOS, and the lower part shows the amount of substrate by Coomassie staining of the gel. Graphical data (n=3) show the relative amount of labeled eNOS to the mass of eNOS (Comassie) in the in vitro kinase reaction.

Slika 3. Dokaz da je serin 1179 funkcionalno važan za oslobađanje NO stimulirano s Akt. COS stanice su transficirane s plazmidom za eNOS divljeg tipa ili eNOS mutanata, u odsutnosti ili prisutnosti Akt i određena je ekspresija proteina i produkcija NO (određen kao NO2-). Interesantno, konstrukti sa S1179 mutacijom u A nisu bili inaktivirani s Akt, a mutacija S1179 do D je rezultirala u zadobivanju funkcije. U A podaci su srednja vrijednost±standardna devijacija od 4-7 eksperimenata; * označuje signifikantnu različitost (p<0.05). Figure 3. Evidence that serine 1179 is functionally important for Akt-stimulated NO release. COS cells were transfected with a plasmid for wild-type eNOS or eNOS mutants, in the absence or presence of Akt, and protein expression and NO production (defined as NO2-) were determined. Interestingly, constructs with the S1179 mutation in A were not inactivated by Akt, and the S1179 to D mutation resulted in gain of function. In A, data are mean±SD of 4–7 experiments; * indicates a significant difference (p<0.05).

Slike 4A-4C. Akt regulira bazalnu i stimuliranu produkciju NO u endotelnim stanicama. Na Slici 4A, BLMVEC je inficiran s adenovirusnim konstruktima (p-gal kao kontrola, myr Akt i AA-Akt) i količina produciranog NO2- je određena tijekom 24 sata, (n=3). Umetnuti dio prikazuje ekspresiju eNOS i Akt. Na Slici 4B je lizat iz adenovirusom inficiranog BLMVEC ispitivan na aktivnost NOS. Iste količine proteina (50 mg) su inkubirane s različitim koncentracijama slobodnog kalcija i određena je aktivnost NOS (n=3 eksperimenata). Na Slici 4C, BLMVEC je inficiran s adenovirusima kao gore, a nakon toga stimuliran s VEGF (40 ng/mL) kroz 30 min i oslobađanje NO2- je mjereno kemiluminiscencijom. Podaci prikazuju VEGF stimulirano oslobađanje NO2- nakon odbijanja bazalne razine. Podaci su srednja vrijednost±standardna devijacija od 4-7 eksperimenata; * označuje signifikantnu različitost (p<0.05). Figures 4A-4C. Akt regulates basal and stimulated production of NO in endothelial cells. In Figure 4A, BLMVEC were infected with adenoviral constructs (p-gal as control, myr Akt and AA-Akt) and the amount of NO2- produced was determined over 24 hours, (n=3). The inset shows the expression of eNOS and Akt. In Figure 4B, lysate from adenovirus-infected BLMVEC was tested for NOS activity. The same amounts of protein (50 mg) were incubated with different concentrations of free calcium and NOS activity was determined (n=3 experiments). In Figure 4C, BLMVEC were infected with adenoviruses as above, then stimulated with VEGF (40 ng/mL) for 30 min and NO2- release was measured by chemiluminescence. Data show VEGF stimulated release of NO2- after rejection of basal level. Data are mean±SD of 4–7 experiments; * indicates a significant difference (p<0.05).

Slike 5A i 5B. Čistoća i omjer dimer/monomer divljeg tipa i eNOS S1179D. U A i B je SDS-PAGE analiza izvedena na 7.5% poliakrilamidnom gelu bojanog s Coomassie Blue. Molekulska masa stadarda (linija 1) i njegova veličina u kDa je pokazana lijevo. eNOS divljeg tipa (linija 2) i eNOS S1179D (linija 3) (1μg svaki) su razdijeljene na SDS-PAGE pri 4 °C. Molekulska masa standarda je u liniji 1. Nezagrijavani uzorci divljeg tipa i eNOS S1179D su razdijeljeni u linijama 2 i 3. U liniji 4 je eNOS divljeg tipa zagrijavana do vrenja u SDS uzorku pufera. Figures 5A and 5B. Purity and dimer/monomer ratio of wild-type and eNOS S1179D. In A and B, SDS-PAGE analysis was performed on a 7.5% polyacrylamide gel stained with Coomassie Blue. The molecular mass of the standard (line 1) and its size in kDa are shown on the left. Wild-type eNOS (lane 2) and eNOS S1179D (lane 3) (1 μg each) were resolved on SDS-PAGE at 4 °C. The molecular weight of the standard is in lane 1. Unheated wild-type and eNOS S1179D samples are separated in lanes 2 and 3. In lane 4, wild-type eNOS is heated to boiling in SDS sample buffer.

Slike 6A i 6B. eNOS 1179D ima veću brzinu produkcije NO (A) i aktivnost reduktaze (B) nego eNOS divljeg tipa. U A je određena brzina generirannja NO iz divljeg tipa (•) i S1179D (o), korištenjem testa hvatanja s hemoglobinom, a kao funkcija koncentracije L-arginina, a podaci su prikazani kao dvostruka recipročna krivulja. U B je izveden test s DCIP i citokromom c u prisutnosti ili odsutnosti CaM. Vrijednosti su srednja vrijednost±standardna devijacija od 4-6 određivanja. Slični rezultati su dobiveni s najmanje tri enzimske preparacije. Značajne razlike između divljeg tipa i S1179 eNOS (p<0.05) su naznačene zvjezdicom. Figures 6A and 6B. eNOS 1179D has a higher rate of NO production (A) and reductase activity (B) than wild-type eNOS. In A, the rate of NO generation from wild-type (•) and S1179D (o) was determined, using a hemoglobin capture assay, as a function of L-arginine concentration, and the data are shown as a double reciprocal curve. In B, an assay was performed with DCIP and cytochrome c in the presence or absence of CaM. Values are mean ± standard deviation of 4-6 determinations. Similar results were obtained with at least three enzyme preparations. Significant differences between wild-type and S1179 eNOS (p<0.05) are indicated by an asterisk.

Slike 7A i 7B. Aktivnosti NOS (A) i o NADPH ovisne reduktaze su povećane s eNOS S1179D u usporedbi s enzimom divljeg tipa. Testovi hvatanja hemoglobina (a) i redukcije citokroma c ovisne o NADPH (B) su izvedeni s divljim tipom i S1179eNOS. U A je omjer produkcije NO određen u prisutnosti svih NOS kofaktora (divlji tip (popunjeni simboli) i S1179D (otvoreni simboli). Mjerenje brzine redukcije citokroma c je izvedeno u odsutnosti arginina i BH4 (a) za divlji tip (krugovi) i S1179D (trokuti) u prisutnosti (popunjeni simboli) ili odsutnosti (otvoreni simboli). Vrijednosti su srednja vrijednost±standardna devijacija, n=3-6 određivanja od najmanje tri enzimske preparacije. Figures 7A and 7B. NOS (A) and NADPH-dependent reductase activities were increased with eNOS S1179D compared with the wild-type enzyme. Assays of hemoglobin capture (a) and NADPH-dependent reduction of cytochrome c (B) were performed with wild-type and S1179eNOS. In A, the ratio of NO production was determined in the presence of all NOS cofactors (wild type (filled symbols) and S1179D (open symbols). Cytochrome c reduction rate measurement was performed in the absence of arginine and BH4 (a) for wild type (circles) and S1179D (triangles ) in the presence (filled symbols) or absence (open symbols).Values are mean ± standard deviation, n=3-6 determinations of at least three enzyme preparations.

Slike 8A-8D. O kalmodulinu i o kalciju ovisna aktivacija NOS je reduktazna aktivnost je blago povećana za S1179 eNOS. O kalmodulinu ovisno hvatanje hemoglobina (A) i redukcija citokroma c (B) su izvedeni s divljim tipom (popunjeni simboli) i S1179D eNOS (otvoreni simboli). Brzina produkcije NO je detektirana hvatanjem henoglobinom u prisutnosti svih NOS kofaktora, dok je redukcija citoktoma c izvedena u odsutnosti arginina i BH4. U C i D je izveden identični eksperiment u prisutnosti povećavajuće koncentracije slobodnog kalcija. Umeci na slikama C i D opisuju o kalciju ovisni razgradnji/sintezi S1179D eNOS divljeg tipa u produkciji NO i citokromnom c testu. Maksimalna brzina obrtanja je praćena za divlji tip i S11798 eNOS: A, 22 i 43 min-1; B, 620 i 1400 min-1. Vrijednosti su srednja vrijednost±standardna devijacija, n=3-6 određivanja od najmanje tri enzimske preparacije. Figures 8A-8D. Calmodulin- and calcium-dependent activation of NOS reductase activity is slightly increased by S1179 eNOS. Calmodulin-dependent hemoglobin capture (A) and cytochrome c reduction (B) were performed with wild-type (filled symbols) and S1179D eNOS (open symbols). The rate of NO production was detected by henoglobin capture in the presence of all NOS cofactors, while cytoctome c reduction was performed in the absence of arginine and BH4. In C and D, an identical experiment was performed in the presence of increasing concentrations of free calcium. The insets in Figures C and D describe the calcium-dependent degradation/synthesis of wild-type S1179D eNOS in the NO production and cytochrome c assays. Maximum turnover rate was monitored for wild type and S11798 eNOS: A, 22 and 43 min-1; B, 620 and 1400 min-1. Values are mean ± standard deviation, n=3-6 determinations of at least three enzyme preparations.

Slike 9A i 9B. EGTA inicirano inaktiviranje NOS je smanjeno u S1179D eNOS. Test hvatanja hemoglobinom (A) i test s reduktazom (B) su izvedeni kao što je ranije opisano, a sa sljedećim modifikacijama. Reakcija je praćena 1 min da se odredi početna brzina, zatim je dodan EGTA u reakcijsku smjesu i brzina je praćena dodatnih 1 min. Koncentracija slobodnog kalcija u reakciji je 200 μM, a dodana je toliko EGTA da konačna koncentracija helatora bude 0, 200, 400 i 600 μM. Specifična aktivnost je normalizirana do 100% za divlji tip i S1179D eNOS. Vrijednosti su srednja vrijednost±standardna devijacija, n=3-6 određivanja od najmanje tri enzimske preparacije, nd označuje da se ne može se detektirati za eNOS divljeg tipa. Figures 9A and 9B. EGTA-initiated NOS inactivation is reduced in S1179D eNOS. The hemoglobin capture assay (A) and the reductase assay (B) were performed as previously described, with the following modifications. The reaction was monitored for 1 min to determine the initial rate, then EGTA was added to the reaction mixture and the rate was monitored for an additional 1 min. The concentration of free calcium in the reaction is 200 μM, and enough EGTA was added to make the final chelator concentration 0, 200, 400 and 600 μM. Specific activity is normalized to 100% for wild-type and S1179D eNOS. Values are mean ± standard deviation, n=3-6 determinations from at least three enzyme preparations, nd indicates undetectable for wild-type eNOS.

Detaljni opis izuma Detailed description of the invention

A. Opći opis A. General description

Ovaj izum je djelomično zasnovan na otkriću da serin/treonin protein kinaza, Akt (protein kinaza B) može direktno fosforilirati eNOS na serinu 1179 (serinu 1177 u humanoj eNOS) i aktivirati enzim koji vodi produkciji NO, dok je mutant eNOS (S1179A) rezistentan na Akt fosforilaciju i aktivaciju. Štoviše, koristeći transfer gena posredovan adenovirusom aktivirana Akt povećava bazalno otpuštanje NO iz endotelnih stanica, te povećava stimulaciju VEGF-stimulirane produkcije NO u utišanim stanicama koje su deficijentne na Akt. Stoga, se eNOS može opisati kao supstratno-ovisna transdukcija putem Akt, koja otpušta sekundarni glasnik, NO. Ovaj izum se također zasniva na dijelu otkrića da mutirani eNOS, primjerice S1179D, pokazuje povećanu brzinu produkcije NO i povećanu aktivnost reduktaze. This invention is based in part on the discovery that the serine/threonine protein kinase, Akt (protein kinase B) can directly phosphorylate eNOS at serine 1179 (serine 1177 in human eNOS) and activate the enzyme leading to NO production, while mutant eNOS (S1179A) is resistant on Akt phosphorylation and activation. Moreover, using adenovirus-mediated gene transfer, activated Akt increases basal NO release from endothelial cells, and increases stimulation of VEGF-stimulated NO production in Akt-deficient silenced cells. Therefore, eNOS can be described as a substrate-dependent transduction through Akt, which releases the second messenger, NO. This invention is also based in part on the discovery that mutated eNOS, for example S1179D, exhibits an increased rate of NO production and increased reductase activity.

Prikaz da je produkcija NO regulirana fosforilacijom eNOS ovisnoj o Akt, donosi nove konstitutivno aktivne eNOS mutante za upotrebu u genskoj terapiji kojoj je cilj poboljšanje endotelne funkcije u kardiovaskularnim bolestima povezanih s disfunkcijom sinteze i biološke aktivnosti NO. Takve bolesti uključuju postangioplastični restenou, hipertenziju, aterosklerozo zatajenje srca uključujući infarkt miokarda, dijabetes i bolesti s defektivnom angiogenezom. Ovo otkriće također omogućuje novi terapijski cilj koristan u dizajnu lijekova korisnih za tretman bolesti povezanih s disfunkcijom sintete i biološke aktivnosti NO. The demonstration that NO production is regulated by Akt-dependent eNOS phosphorylation provides new constitutively active eNOS mutants for use in gene therapy aimed at improving endothelial function in cardiovascular diseases associated with dysfunction of NO synthesis and biological activity. Such diseases include post-angioplasty restenosis, hypertension, atherosclerosis, heart failure including myocardial infarction, diabetes and diseases with defective angiogenesis. This discovery also provides a new therapeutic target useful in the design of drugs useful for the treatment of diseases associated with dysfunction of NO synthesis and biological activity.

Ovaj izum također prikazuje nove konstitutivno aktivne nNOS mutante koji imaju supstituiranu aminokiselinu koja odgovara 1412 štakorskoj nNOS ili 1415 humanoj nNOS za upotrebu u genskoj terapiji čiji je cilj za tretman bolesti. The present invention also provides novel constitutively active nNOS mutants having a substituted amino acid corresponding to 1412 rat nNOS or 1415 human nNOS for use in gene therapy aimed at treating disease.

B. Specifične cjeline B. Specific units

Produkcija proteinskih ili polipeptidnih mutanata Production of protein or polypeptide mutants

Ovaj izum prikazuje proteinske ili polipeptidne NOS, alelne varijante proteinske NOS i konzervativnu supstituciju proteinske NOS, a sve sadrže mutaciju serinskog ostataka koji je na mjestu fosforilacije posredovane s Akt. Primjerice, proteini ili polipeptidi iz izuma uključuju ali nisu na njih ograničeni: (1) humane proteinske eNOS koje sadrže mutaciju serina na ostatku 1177 (Janssens et al. (1992), J. Biol. Chem. 267:14519-14522 koji je ovdje ugrađen citatom u cijelosti) u drugu aminokiselinu, kao što je alanin, pa su rezistentni na fosforilaciju posredovanu s Akt; (2) goveđe proteinske eNOS koje sadrže mutaciju serina na ostatku 1179 (SEQ ID NO: 2 u U.S. Patentu 5,498,539 koji je ovdje ugrađen citatom u cijelosti), u drugu aminokiselinu, kao što je alanin, pa su rezistentni na fosforilaciju posredovanu s Akt; (3) humane proteinske eNOS koje sadrže mutaciju serina na ostatku 1415 u drugu aminokiselinu, kao što je alanin, pa su rezistentni na fosforilaciju posredovanu s Akt; (4) štakorske proteinske eNOS koje sadrže mutaciju serina na ostatku 1412 u drugu aminokiselinu, kao što je alanin, pa su rezistentni na fosforilaciju posredovanu Akt; (5) humane proteinske nNOS koje sadrže mutaciju serina na ostatku 1415 u aminokiselinu koja sadrži negativno nabijenu R skupinu, kao što je asparaginska ili glutaminska kiselina, i konstitutivno su aktivni i pokazuju povećanu produkciju NO i povećanu reduktaznu aktivnost; (6) goveđe proteinske eNOS koje sadrže mutaciju serina na ostatku 1179 u aminokiselinu koja sadrži negativno nabijenu R skupinu, kao što je asparaginska ili glutaminska kiselina, i konstitutivno su aktivni i pokazuju povećanu produkciju NO i povećanu reduktaznu aktivnost; (7) humane proteinske nNOS koje sadrže mutaciju serina na ostatku 1415 u aminokiselinu koja sadrži negativno nabijenu R skupinu, kao što je asparaginska ili glutaminska kiseilna, i konstitutivno su aktivni i pokazuju povećanu produkciju NO i povećanu reduktaznu aktivnost ; (8) štakorske proteinske nNOS koje sadrže mutaciju serina na ostatku 1412 u aminokiselinu koja sadrži negativno nabijenu R skupinu, kao što je asparaginska ili glutaminska kiselina, i konstitutivno su aktivni i pokazuju povećanu produkciju NO i povećanu reduktaznu aktivnost ; (9) proteinske NOS iz vrsta koji nisu ljudi, goveđe ili štakorske koje su modificirane da sadrže aminokiselinu koja nije serin na položaju koji odgovara serinu u položaju 1177 humane eNOS ili u položaju 11797 goveđe eNOS, položaju 1412 štakorske nNOS, položaju 1415 humane nNOS, te koji su rezistentni na fosforilaciju uz Akt i konstitutivno su aktivni ili pokazuju povećanu produkciju NO i povećanu reduktaznu aktivnost. NOS mutanti mogu također nastajati mutacijom ostalih aminokiselina u fosforilacijskom motivu RXRXXS/T. The present invention features proteinaceous or polypeptide NOS, allelic variants of proteinaceous NOS, and conservative substitution of proteinaceous NOS, all containing a mutation of a serine residue that is at the site of Akt-mediated phosphorylation. For example, proteins or polypeptides of the invention include, but are not limited to: (1) human protein eNOS containing a serine mutation at residue 1177 (Janssens et al. (1992), J. Biol. Chem. 267:14519-14522 which is incorporated by reference in its entirety) to another amino acid, such as alanine, and thus are resistant to Akt-mediated phosphorylation; (2) bovine protein eNOS containing a serine mutation at residue 1179 (SEQ ID NO: 2 in U.S. Patent 5,498,539 which is incorporated herein by reference in its entirety), to another amino acid, such as alanine, and are therefore resistant to Akt-mediated phosphorylation; (3) human eNOS proteins that contain a mutation of serine at residue 1415 to another amino acid, such as alanine, and are therefore resistant to Akt-mediated phosphorylation; (4) rat eNOS proteins that contain a mutation of serine at residue 1412 to another amino acid, such as alanine, and are therefore resistant to Akt-mediated phosphorylation; (5) human protein nNOS containing a serine mutation at residue 1415 to an amino acid containing a negatively charged R group, such as aspartic or glutamic acid, and are constitutively active and exhibit increased NO production and increased reductase activity; (6) bovine protein eNOS containing a serine mutation at residue 1179 to an amino acid containing a negatively charged R group, such as aspartic or glutamic acid, are both constitutively active and exhibit increased NO production and increased reductase activity; (7) human protein nNOS containing a serine mutation at residue 1415 to an amino acid containing a negatively charged R group, such as aspartic or glutamic acid, and are constitutively active and exhibit increased NO production and increased reductase activity; (8) rat protein nNOS containing a serine mutation at residue 1412 to an amino acid containing a negatively charged R group, such as aspartic or glutamic acid, are both constitutively active and exhibit increased NO production and increased reductase activity; (9) NOS proteins from non-human, bovine or rat species that have been modified to contain an amino acid other than serine at a position corresponding to serine at position 1177 of human eNOS or at position 11797 of bovine eNOS, position 1412 of rat nNOS, position 1415 of human nNOS, and which are resistant to phosphorylation by Akt and are constitutively active or show increased NO production and increased reductase activity. NOS mutants can also be created by mutation of other amino acids in the phosphorylation motif RXRXXS/T.

Ovaj izum prikazuje konstitutivno aktivne polipeptidne NOS, preferirano eNOS ili nNOS koje povećavaju produkciju NO i aktivnost reduktaze i sadrže mutaciju serinskog ostataka na mjestu fosforilacije podredovane Akt. Također je unutar struke dobiti konzervativne varijante takvih mutanata polipeptidnih NOS dobivenih supstitucijom, delecijom i insercijom koji povećavaju produkciju NO i aktivnost reduktaze. Kako se ovdje koristi, konzervativna varijanta se odnosi na promjenu aminokiselinske sekvencije koja ne djeluje nepovoljno na mogućnost konstitutivno aktivnog NOS, preferirano eNOS ili nNOS da producira NO ili poveća reduktaznu aktivnost konstitutivno aktivne NOS, preferirano eNOS ili nNOS. Kaže se da supstitucija, delecija ili insercija nepovoljno utječu na konstitutivno aktivnu polipeptidnu NOS kada promjenjena sekvencija djeluje na mogućnost konstitutivne NOS tako da ne producira NO pri povišenoj razini i nema povećanu reduktaznu aktivnost u usporedbi s NOS divljeg tipa. Primjerice, ukupni naboj, struktura ili hidrofobno/hidrofilna svojstva konstitutivnog NOS se mogu mijenjati bez nepovoljnog djelovanja na aktivnost konstitutivne NOS. Prema tome, aminokiselinska sekvencija polipeptidnog NOS se može mijenjati tako da se primjerice uzrokuje veću hidrofobnost ili hidrofilnost polipeptida, a bez nepovoljnog djelovanja na aktivnost NOS. The present invention features constitutively active polypeptide NOS, preferably eNOS or nNOS that increase NO production and reductase activity and contain a mutation of a serine residue at the Akt downstream phosphorylation site. It is also within the art to obtain conservative variants of such polypeptide NOS mutants obtained by substitution, deletion, and insertion that increase NO production and reductase activity. As used herein, a conservative variant refers to an amino acid sequence change that does not adversely affect the ability of constitutively active NOS, preferably eNOS or nNOS to produce NO or increase the reductase activity of constitutively active NOS, preferably eNOS or nNOS. A substitution, deletion, or insertion is said to adversely affect constitutively active polypeptide NOS when the altered sequence affects the ability of constitutive NOS such that it does not produce NO at an elevated level and does not have increased reductase activity compared to wild-type NOS. For example, the overall charge, structure, or hydrophobic/hydrophilic properties of the constitutive NOS can be altered without adversely affecting the activity of the constitutive NOS. Therefore, the amino acid sequence of the polypeptide NOS can be changed so as to cause, for example, greater hydrophobicity or hydrophilicity of the polypeptide, without adversely affecting NOS activity.

Kako se ovdje koristi, "konstitutivno aktivni" mutant ili varijanta NOS, modificirana ili izolirana iz prirodnog izvora, odnosi se na proteinsku NOS, preferirano eNOS ili nNOS koja producira NO većom brzinom nego prirodna NOS koja sadrži serin u nefosforiliranom obliku na aminokiselinskom ostatku koji odgovara 1177 u humanoj NOS ili ostatak 1179 u goveđoj NOS. Preferirane konstitutivno aktivne varijante sadrže aminokiseline koje imaju negativno nabijenu R skupinu, kao što je asparagisnka ili glutaminska kiselina, na aminokiselinskom ostatku koji odgovara serinu u položaju 1177 humane eNOS ili položaju 1179 goveđe eNOS. As used herein, a "constitutively active" mutant or variant NOS, modified or isolated from a natural source, refers to a protein NOS, preferably eNOS or nNOS that produces NO at a higher rate than native NOS that contains serine in an unphosphorylated form at an amino acid residue corresponding to 1177 in human NOS or the rest of 1179 in bovine NOS. Preferred constitutively active variants contain amino acids having a negatively charged R group, such as aspartic or glutamic acid, at the amino acid residue corresponding to the serine at position 1177 of human eNOS or position 1179 of bovine eNOS.

Ovaj izum prikazuje proteinske ili polipeptidne NOS, alane varijante proteinskih NOS i konzervativne aminokiselinske supstitucije proteinskog NOS koji sadrži supstituirani aminokiselinski ostatak koji odgovara ostatku 1179 goveđe eNOS, ostatku 1177 humane eNOS, ostatku 1412 štakorske nNOS, te ostatku 1415 humane nNOS, pri čemu supstituirani aminokiselinski ostatak sadrži R skupinu koja nije negativno nabijena, kao što je alanin. The present invention features protein or polypeptide NOS, alanine variants of protein NOS, and conservative amino acid substitutions of protein NOS containing a substituted amino acid residue corresponding to residue 1179 of bovine eNOS, residue 1177 of human eNOS, residue 1412 of rat nNOS, and residue 1415 of human nNOS, wherein the substituted amino acid the remainder contains an R group that is not negatively charged, such as alanine.

Proteinske NOS, preferirano proteinske eNOS ili nNOs u ovom izumu mogu biti u izoliranom obliku. Kao što je ovdje korišteno, za protein se kaže da je izoliran kada su upotrijebljene fizičke, mehaničke ili kemijske metode da se ukloni protein od staničnih sastojaka koji su normalno povezani s proteinom. Stručnjaci mogu lako koristiti standardne metode pročišćavanja, a da bi se dobio izolirani protein. Protein NOS, preferably protein eNOS or nNOs in this invention can be in isolated form. As used herein, a protein is said to be isolated when physical, mechanical, or chemical methods are used to remove the protein from cellular constituents normally associated with the protein. Those skilled in the art can easily use standard purification methods to obtain the isolated protein.

U izum su također uključeni peptidni NOS koji premoštava mjesto fosforilacije Akt koje odgovara ostatku 1179 goveđe eNOS, 1177 humane eNOS, ostatku 1412 štakorske nNOS ili ostatku 1415 humane nNOS. Peptidi mogu sadržavati serin na mjestu fosforilacije, preferirano mogu sadržavati supstituciju serina na položaju koji odgovara ostatku 1179 goveđe eNOS, 1177 humane eNOS, ostatku 1412 štakorske nNOS ili ostatku 1415 humane nNOS. Takve supstitucije uključuju, ali nisu na njih ograničene aminokiseline s R skupinom koja oponaša serin u fosforiliranom stanju, kao što je asparaginska kiselina ili glutaminska kiselina. Takve supstitucije mogu uključiti aminokiseline s R skupinom koja nije negativna, kao što je alanin. Peptidi koji premoštavaju to mjesto mogu imati duljinu oko 3, 5, 7, 10, 15, 17, 20, 25, 30, 40, 50 ili više aminokiselina. Also included in the invention are peptide NOS that bridge the Akt phosphorylation site corresponding to residue 1179 of bovine eNOS, 1177 of human eNOS, residue 1412 of rat nNOS, or residue 1415 of human nNOS. The peptides may contain serine at the phosphorylation site, preferably containing a serine substitution at a position corresponding to residue 1179 of bovine eNOS, 1177 of human eNOS, residue 1412 of rat nNOS or residue 1415 of human nNOS. Such substitutions include, but are not limited to, amino acids with an R group that mimics serine in the phosphorylated state, such as aspartic acid or glutamic acid. Such substitutions may include amino acids with an R group that is not negative, such as alanine. Peptides that bridge this site can be about 3, 5, 7, 10, 15, 17, 20, 25, 30, 40, 50 or more amino acids in length.

Proteinske ili polipeptidne NOS iz izuma se mogu pripraviti bilo kojim pristupačnim načinom, uključujući rekombinantnu ekspresiju cDNA za NOS koja je modificirana da zamjeni ili promjeni nukleotidni triplet koji kodira serin koji odgovara serinu u položaju 1177 humane eNOS, u položaju 1179 goveđe eNOS, u ostatku 1412 štakorske nNOS ili u ostatku 1415 humane nNOS. Bilo koja pristupačna tehnika se može koristiti za mutiranje nukleotidnog tripleta koji kodira serinski ostatak, kao što je homologna rekombinacija, ciljana mutageneza ili PCR mutageneza (vidi Sambrook et al., Molecular Cloning, Cold Spring Harbor Laboratory Press, 1989). Početna cDNA može uključivati humani i goveđu cDNA za eNOS kao i cDNA koja kodira proteinski eNOS ostalih životinjskih vrsta uključujući, ali bez ograničenja na njih, od zeca, štakora, laboratorijskog glodavca, svinje, ovce, konja i vrste primata koji nisu ljudi. Protein or polypeptide NOS of the invention can be prepared by any convenient means, including recombinant expression of a cDNA for NOS that has been modified to replace or alter the nucleotide triplet encoding a serine corresponding to the serine at position 1177 of human eNOS, at position 1179 of bovine eNOS, at residue 1412 rat nNOS or in the rest 1415 human nNOS. Any available technique can be used to mutate the nucleotide triplet encoding the serine residue, such as homologous recombination, site-directed mutagenesis, or PCR mutagenesis (see Sambrook et al., Molecular Cloning, Cold Spring Harbor Laboratory Press, 1989). The starting cDNA may include human and bovine eNOS cDNA as well as cDNA encoding eNOS protein from other animal species including, but not limited to, rabbit, rat, laboratory rodent, pig, sheep, horse, and non-human primate species.

Kako je ovdje korišteno, za molekulu nukleinske kiseline koja kodira proteinsku ili polipeptidnu NOS, preferirano proteinsku ili polipeptidnu eNOS ili nNOS se u ovom izumu se kaže da je "izolirana" kada je molekula nukleinske kiseline dovoljno odijeljena od kontaminirajućih nukleinskih kiselina koje kodiraju druge polipeptide iz izvora nukleinskih kiselina. As used herein, a nucleic acid molecule encoding a proteinaceous or polypeptide NOS, preferably a proteinaceous or polypeptide eNOS or nNOS is said herein to be "isolated" when the nucleic acid molecule is sufficiently separated from contaminating nucleic acids encoding other polypeptides from sources of nucleic acids.

Ovaj izum dalje prikazuje fragmente kodirajuće molekule nukleinske kiseline. Kako je ovdje korišteno, fragment kodirajuće molekule nukleinske kiseline odnosi se na male dijelove sekvencija koji kodiraju cijeli protein. Veličina fragmenta će se odrediti prema namjeri za upotrebu. Primjerice, ako je fragment odabran da kodira aktivni dio proteina, bit će potrebno da bude dovoljno velik da kodira funkcionalnu regiju (regije) proteina, uključujući mjesto Akt fosforilacije. Ako je upotreba fragmenta kao proba ili klica zaPCR, tada je duljina fragmenta odabrana tako da se dobije relativno mali broj lažnog pozitiva tijekom probe/hibridizacije klice u regija koja okružuje NOS Akt fosforilacijsko mjesto. The present invention further provides fragments of the encoding nucleic acid molecule. As used herein, a fragment of an encoding nucleic acid molecule refers to small portions of sequences that encode an entire protein. The size of the fragment will be determined by the intended use. For example, if a fragment is chosen to encode an active part of a protein, it will need to be large enough to encode a functional region(s) of the protein, including the Akt phosphorylation site. If the fragment is to be used as a probe or primer for PCR, then the length of the fragment is chosen so that a relatively low number of false positives are obtained during probe/probe hybridization to the region surrounding the NOS Akt phosphorylation site.

Fragmenti kodirajuće molekule nukleinske kiseline u ovom izumu (tj. sintetski oligonukleotidi) koji se koriste kao probe ili specifične klice za lančanu reakciju polimerizacije (PCR), ili za sintezu genske sekvencije koja kodira proteine iz izuma se može lako sintetizirati kemijskim tehnikama, primjerice, fosfotrieterskom metodom po Matteucci et al.. 1981 J Am. Cham. Soc. 103:3185-3191) ili korištenjem automatiziranih metoda sinteze. Nadalje, veći DNA segmenti se mogu lako pripraviti dobro poznati metodama, kao što je sinteza skupine oligonukleotida koji definiraju različite modularne segmente gena, a nakon ligacije oligonukleotida da se izgradi kompletan modificirani gen. Fragments of the encoding nucleic acid molecule of the present invention (i.e., synthetic oligonucleotides) used as probes or specific primers for the polymerase chain reaction (PCR), or for the synthesis of the gene sequence encoding the proteins of the invention can be easily synthesized by chemical techniques, for example, phosphotriether by the method of Matteucci et al.. 1981 J Am. Cham. Soc. 103:3185-3191) or using automated synthesis methods. Furthermore, larger DNA segments can be easily prepared by well-known methods, such as the synthesis of groups of oligonucleotides that define different modular gene segments, and after ligation of the oligonucleotides to build a complete modified gene.

Kodirajuće molekule nukleinske kiseline iz ovog izuma mogu nadalje biti modificirane tako da sadrže oznaku koja se može detektirati za dijagnostičke svrhe. U struci je poznat veliki broj takvih obilježavanja koji se mogu lako koristiti s ovdje opisanim kodirajućim molekulama. Pogone oznake uključuju, ali nisu na njih ograničeni, biotin, radioizotopno obilježene nukleotide i slično. Stručnjak može koristiti bilo koje obilježavanje poznato u struci, a da dobije obilježenu kodirajuću molekulu nukleinske kiseline. The encoding nucleic acid molecules of the present invention may further be modified to contain a detectable label for diagnostic purposes. A number of such labels are known in the art that can be readily used with the encoding molecules described herein. Label drives include, but are not limited to, biotin, radioisotope-labeled nucleotides, and the like. One skilled in the art can use any labeling known in the art to obtain a labeled nucleic acid coding molecule.

Ovaj izum prikazuje rekombinantne molekule DNA (rDNA) koje sadrže sekvenciju koja kodira NOS, kao što je gore opisano. Kako je ovdje korišteno, rDNA molekula je molekula DNA koja je podvrgnuta molekulskoj manipulaciji. Metode da generiranje rDNA molekula su dobro poznate u struci, primjerice vidi Sambrook et al, Molecular Cloning (1989). U preferiranim rDNA molekulama, kodirajuća DNA sekvencija je operativno povezana s ekspresijskom kontrolnom sekvencijom i/ili vektorskom sekvencijom. The present invention provides recombinant DNA molecules (rDNA) containing the sequence encoding NOS, as described above. As used herein, an rDNA molecule is a DNA molecule that has undergone molecular manipulation. Methods for generating rDNA molecules are well known in the art, for example see Sambrook et al, Molecular Cloning (1989). In preferred rDNA molecules, the coding DNA sequence is operably linked to an expression control sequence and/or a vector sequence.

Izbor vektora i/ili sekvencije za ekspresijsku kontrolu za koji je u ovom izumu operativno povezan jedan iz proteinske obitelji kodirajućih sekvencija, ovisi direktno, kao što je poznato u struci, o željenim funkcionalnim svojstvima, npr. o ekspresiji proteina i o stanici domaćina koja će se transformirati. Razmatrani vektor je u ovom izumu sposoban barem usmjeravati replikaciju ili inserciju u kromosom domaćina, te preferirano također eksprimirati strukturni gen uključen u rDNA molekulu. The choice of vector and/or sequence for expression control to which one of the protein family of coding sequences is operably linked in the present invention depends directly, as is known in the art, on the desired functional properties, e.g. on protein expression and on the host cell to be transform. The considered vector in this invention is capable of at least directing replication or insertion into the host chromosome, and preferably also expressing the structural gene included in the rDNA molecule.

Element ekspresijske kontrole koji je korišten za reguliranje ekspresije operativno povezane sekvencije koja kodira protein je poznat u struci i uključuje, ali bez ograničenja: inducibilne promotore, konstitutivne promotore, sekrecijske signale i ostale regulatorne elemente. Preferirano, indukatabilni promotor se lako kontrolira tako da je odgovoran za nutrient u mediju stanice domaćina. An expression control element used to regulate the expression of an operably linked protein-coding sequence is known in the art and includes, but is not limited to: inducible promoters, constitutive promoters, secretion signals, and other regulatory elements. Preferably, the inducible promoter is easily controlled so that it is responsive to a nutrient in the medium of the host cell.

U jednoj cjelini, vektor koji sadrži kodirajuću molekulu nukleinske kiseline će uključivati prokariotski replikon, tj. sekvenciju DNA koja ima mogućnost usmjeravanja autonomne replikacije i održavanja molekule rekombinantne DNA ekstrakromosomalno u prokariotskoj stanici domaćina, kao što je bakterijska stanica domaćina, te time transformirati. Takvi replikoni su dobro poznati u struci. Nadalje, vektori koji uključuju prokariotski replikon mogu također uključivati gene čija ekspresija predstavlja marker koji se može detektirati, za npr. rezistenciju lijeka. Tipični bakterijski geni odgovorni za rezistenciju lijeka su oni koji prikazuju rezistenciju na ampicilin ili tetraciklin. In one embodiment, the vector containing the encoding nucleic acid molecule will include a prokaryotic replicon, i.e., a DNA sequence capable of directing autonomous replication and maintaining the recombinant DNA molecule extrachromosomally in a prokaryotic host cell, such as a bacterial host cell, thereby transforming it. Such replicons are well known in the art. Furthermore, vectors that include a prokaryotic replicon may also include genes whose expression is a detectable marker, eg for drug resistance. Typical bacterial genes responsible for drug resistance are those that display resistance to ampicillin or tetracycline.

Vektori koji uključuju prokariotski replikon mogu nadalje uključivati prokariotski ili bakteriofagni promotor sposoban za usmjeravanje ekspresije (transkripcija i translacija) sekvencije kodirajućeg gena u bakterijskoj stanici domaćina, kao što je E. coli. Promotor je kontrolni element ekspresije stvoren od DNA sekvencije koja dozvoljava vezanje RNA polimeraze i dolazi do transkripcije. Promotorske sekvencije koje su kompatibilne s bakterijskim domaćinima tipično imaju plazmidni vektor koji sadrži pogodno restrikcijsko mjesto za inserciju DNA segmenta u ovom izumu. Tipični takvi vektorski plazmide su pUC8, pUC9, pBR322 l pBR329 koji se mogu nabaviti od Biorad Laboratories (Rochmond, CA), pPL I pKK223, koji se mogu nabaviti od Pharmacia, Piscataway, N.J. Vectors that include a prokaryotic replicon may further include a prokaryotic or bacteriophage promoter capable of directing expression (transcription and translation) of the coding gene sequence in a bacterial host cell, such as E. coli. A promoter is an expression control element created from a DNA sequence that allows RNA polymerase to bind and transcription to occur. Promoter sequences that are compatible with bacterial hosts typically have a plasmid vector that contains a suitable restriction site for insertion of the DNA segment of the present invention. Typical such vector plasmids are pUC8, pUC9, pBR322 and pBR329 available from Biorad Laboratories (Rochmond, CA), pPL and pKK223 available from Pharmacia, Piscataway, N.J.

Ekspresijski vektor kompatibilan s eukariotskim stanicama, preferirano onaj kompatibilan sa stanicama vertebata, se također može koristiti u obliku rDNA molekula koje sadrže kodirajuću sekvenciju. Ekspresijski vektori eukariotskih stanica su dobro poznati u struci i mogu se dobaviti od nekoliko komercijalnih izvora. Tipični, takvi vektori sadrže pogodna restrikcijska mjesta za inserciju željenog DNA segmenta. Tipični takvi vektori su pSVL I pKSV-10 (Pharmacia), pBPV-1/pML2d (International Biotechnologies, Inc.), pTDT1 (ATCC, #31255) i slični eukariotski ekspresijski vektori. An expression vector compatible with eukaryotic cells, preferably one compatible with vertebrate cells, can also be used in the form of rDNA molecules containing the coding sequence. Expression vectors for eukaryotic cells are well known in the art and can be obtained from several commercial sources. Typically, such vectors contain suitable restriction sites for insertion of the desired DNA segment. Typical such vectors are pSVL and pKSV-10 (Pharmacia), pBPV-1/pML2d (International Biotechnologies, Inc.), pTDT1 (ATCC, #31255), and similar eukaryotic expression vectors.

Eukariotski ekspresijski vektori korišteni za konstrukciju rDNA molekula u ovom izumu mogu, nadalje, uključivati izborne markere koji su učinkoviti u eukariotskoj stanici, preferirano markere za rezistenciju lijeka. Preferirani marker za rezistenciju lijeka je gen čija ekspresija rezultira rezistencijom neomicina, tj. neomicin fosfotransferaze (neo) gena. (Suothern et al. (1982) J. Mol. Anal. Genet 1:327-341). Alternativno, izborni marker može biti prisutan u odvojenom plazmidu i dva vektora su uvedena istovremenom transfekcijom stanice domaćina, te su odabrani kultiviranjem u odgovarajućem lijeku za izborni marker. Eukaryotic expression vectors used to construct the rDNA molecules of the present invention may further include selectable markers that are effective in a eukaryotic cell, preferably markers for drug resistance. A preferred marker for drug resistance is a gene whose expression results in neomycin resistance, ie the neomycin phosphotransferase (neo) gene. (Suothern et al. (1982) J. Mol. Anal. Genet 1:327-341). Alternatively, the selectable marker may be present in a separate plasmid and the two vectors are introduced by simultaneous transfection of the host cell, and selected by culturing in the appropriate drug for the selectable marker.

Ovaj izum, nadalje, prikazuje transformirane ili transficirane stanice s molekulom nukleinske kiseline koja kodira proteinsku NOS, preferirano proteinsku eNOS ili nNOS iz ovog izuma. Stanica domaćina može biti prokariotska ili eukariotska. Eukariotske stanice korisne za ekspresiju proteina iz izuma nisu ograničene tako dugo dok je stanična linija kompatibilna s propagacijom ekspresijskog vektora i ekspresijom genskog produkta. Preferirano eukariotske stanice domaćina uključuju, ali bez ograničenja, stanice kvasca, insekta i sisavca, preferirano stanice vertebrata kao što su mišje, štakorske, majmunske ili humane stanične linije. Preferirane eukariotske stanice domaćina uključuju ovarij kineskog zamorca (CHO) koji su pristupačni od ATCC kao CCL61, stanice embrija NIH švicarskog miša NIH/3T# koje su pristupačne od ATCC kao CRL 1658, stanice bubrega mladunca zamorca (BKH) i slične eukariotske tkivne kulture staničnih linija. Može se koristiti bilo koji prokariotski domaćin za ekspresiju molekule rDNA koja kodira protein iz izuma. Preferirani prokariotski domaćin je e. coli, posebice iz konstitutivno aktivnih mutanata NOS. The present invention further features cells transformed or transfected with a nucleic acid molecule encoding the protein NOS, preferably the protein eNOS or nNOS of the present invention. The host cell can be prokaryotic or eukaryotic. Eukaryotic cells useful for expressing proteins of the invention are not limited as long as the cell line is compatible with propagation of the expression vector and expression of the gene product. Preferred eukaryotic host cells include, but are not limited to, yeast, insect and mammalian cells, preferably vertebrate cells such as mouse, rat, monkey or human cell lines. Preferred eukaryotic host cells include Chinese guinea pig ovary (CHO) available from ATCC as CCL61, NIH Swiss mouse NIH/3T# embryo cells available from ATCC as CRL 1658, guinea pig kidney (BKH) cells and similar eukaryotic tissue culture cells. line. Any prokaryotic host can be used to express the rDNA molecule encoding the protein of the invention. The preferred prokaryotic host is E. coli, especially from constitutively active NOS mutants.

Transformacija ili transfekcija odgovarajućih stanica domaćina s rDNA molekulom iz ovog izuma je završena dobro poznatim metodama koje tipično ovise o tipu korištenog vektora u sustavu domaćina. Prema transformaciji prokariotskih stanica domaćina, tipično se koriste metode elektroporacije i tretman kationskog lipida ili soli djelovanja sa soli, vidi, primjerice, Cohen et al. (1972) Proc. Natl. Acad Sci. USA 6 9:2100; te Maniatis et al., Molecular Cloning a Laboratory Mammal. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982). Za transformaciju stanica vertebrata tipično se koriste metode elektroporacija i djelovanjem kationskih lipida ili soli, vidi, primjerice, Graham et al. (1983) Virol. 5 2:456; Wigler et al. (1979) Proc. Natl. Acad. Sci. USA 76:1373-76. Uspješno transformirane i transficirane stanice, tj. stanice koje sadrže rDNA molekule iz ovog izuma, se mogu identificirati dobro poznatim tehnikama uključujući odabir izbornog markera. Primjerice, stanice nastale uvođenjem rDNA iz ovog izuma se mogu klonirati da produciraju jednu vrstu kolonija. Stanice iz tih kolonija se mogu sakupiti, može se provesti ligacija i sadržaj njihovog DNA istražiti da li sadrži rDNA korištenjem metode kao što je opisana od Southern (1975) J. Mol. Biol. 98:503 ili Bernet et al (1985) Biotech. 3:208 ili proteini iz stanice testiranih putem imunoloških metoda. Transformation or transfection of appropriate host cells with the rDNA molecule of the present invention is accomplished by well-known methods that typically depend on the type of vector used in the host system. For the transformation of prokaryotic host cells, electroporation methods and cationic lipid or salt treatment with salt action are typically used, see, for example, Cohen et al. (1972) Proc. Natl. Acad Sci. USA 6 9:2100; and Maniatis et al., Molecular Cloning of a Laboratory Mammal. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982). For the transformation of vertebrate cells, electroporation methods and the action of cationic lipids or salts are typically used, see, for example, Graham et al. (1983) Virol. 5 2:456; Wigler et al. (1979) Proc. Natl. Acad. Sci. USA 76:1373-76. Successfully transformed and transfected cells, i.e., cells containing rDNA molecules of the present invention, can be identified by well-known techniques including selectable marker selection. For example, cells generated by introducing the rDNA of this invention can be cloned to produce one type of colony. Cells from these colonies can be harvested, ligated and their DNA content examined for rDNA using the method described by Southern (1975) J. Mol. Biol. 98:503 or Bernet et al (1985) Biotech. 3:208 or proteins from cells tested by immunological methods.

Ovaj izum nadalje prikazuje metode produkcije proteinske NOS, preferirano proteinske eNOS ili proteinske nNOS iz izuma korištenjem ovdje opisanih molekula nukleinske kiseline. Općenito, produkcija rekombinantnog oblika proteina tipično obuhvaća sljedeće korake. Prvo je dobivena molekula nukleinske kiseline koja kodira protein iz izuma. Ako je kodirana sekvencija prekinuta intronom, direktno je pogodna za ekspresiju u bilo kojem domaćinu. Molekula nukleinske kiseline je zatim preferirano smještena u operativnu vezu s pogodnim kontrolnim sekvencijama, kao što je gore opisano, i tvori ekspresijsku jedinicu koja sadrži protein u otvorenom čitajućem okviru. Ekspresijska jedinica je korištena za transformaciju ili transfekciju pogodnog domaćina i transformirani ili transficirani domaćin je kultiviran pod uvjetima koji dozvoljavaju produkciju rekombinantnog proteina. Rekombinantni proteina se može izolirati iz medija ili iz stanica, a pročišćavanja ne mora biti neophodno u nekom slučajevima, a kada se neka onečišćenja mogu tolerirati. The present invention further provides methods of producing proteinaceous NOS, preferably proteinaceous eNOS or proteinaceous nNOS of the invention using the nucleic acid molecules described herein. In general, the production of a recombinant form of a protein typically involves the following steps. First, a nucleic acid molecule encoding the protein of the invention was obtained. If the coding sequence is interrupted by an intron, it is directly suitable for expression in any host. The nucleic acid molecule is then preferably placed in operative linkage with suitable control sequences, as described above, and forms an expression unit containing the protein in the open reading frame. The expression unit is used to transform or transfect a suitable host and the transformed or transfected host is cultured under conditions that permit production of the recombinant protein. Recombinant protein can be isolated from the medium or from cells, and purification may not be necessary in some cases, and when some impurities can be tolerated.

Svaki od prethodnih koraka se može izvesti na različite načine. Primjerice, željena kodirajuća sekvencija se može dobiti iz genomskih fragmenata i koristiti izravno u odgovarajućim domaćinima. Konstrukcija ekspresijskih vektora koja je aktivna u različitim domaćinima je izvedena korištenjem odgovarajućih replikona i kontrolnih sekvencija, kao što je gore prikazano. Kontrolne sekvencije, ekspresijski vektori i metode transformacije i transfekcije su ovisni o tipu stanice domaćina korištenih za ekspresiju gena i diskutirani su detaljno ranije. Pogodna restrikcijska smjesa mogu, ako normalno nisu na raspolaganju, biti dodana na krajeve kodirajuće sekvencije tako da se omogući insercija gena u te vektore. Stručnjak se može iako prilagoditi sustavu domaćin/ekspresija poznat u struci, a za upotrebu molekula nukleinskih kiselina iz izuma za produkciju proteina. Each of the previous steps can be performed in different ways. For example, the desired coding sequence can be obtained from genomic fragments and used directly in appropriate hosts. Construction of expression vectors active in different hosts was performed using appropriate replicons and control sequences, as shown above. Control sequences, expression vectors, and methods of transformation and transfection are dependent on the type of host cell used for gene expression and are discussed in detail earlier. Suitable restriction compounds may, if not normally available, be added to the ends of the coding sequence to allow gene insertion into these vectors. The skilled person may, however, adapt the host/expression system known in the art to use the nucleic acid molecules of the invention for protein production.

Genska terapija Gene therapy

Bilo koji pogodni sustav za isporuku gena u kombinaciji sa sustavom za ekspresiju gena koji koristi put najpogodnije isporuke je obuhvaćen u ovom izumu. Primjerice, mutant NOS ili genske varijante, preferirano mutanti ili genske varijante eNOS ili nNOS iz izuma ili Akt geni mogu biti isporučeni u srce (ili mišiće skeleta) uključujući kardijalne miocite (i skeletne miocite) in vitro ili in vivo, a da se usmjeri produkcija kodiranog proteina. Posebno su korisni humani Akt geni i mutanti NOS, preferirano humani eNOS koji sadrže aminokiseline s negativno nabijenom R skupinom, kao što je asparagisnka ili giutaminska kiselina na položaju koji odgovorara serinu 1177 u humanom eNOS. Putevi davanja mutanta NOS ili genske varijante uključuju, ali bez ograničenja, intravaskularnu, intramuskularnu, intraperitonealni, intradermalnu i intraarterijsku injekciju. Any suitable gene delivery system in combination with a gene expression system using the most convenient delivery route is encompassed by this invention. For example, mutant NOS or gene variants, preferably mutants or gene variants of eNOS or nNOS of the invention or Akt genes can be delivered to the heart (or skeletal muscle) including cardiac myocytes (and skeletal myocytes) in vitro or in vivo to direct the production of the encoded protein. Particularly useful are human Akt genes and NOS mutants, preferably human eNOS containing amino acids with a negatively charged R group, such as aspartic or glutamic acid at the position corresponding to serine 1177 in human eNOS. Routes of administration of the NOS mutant or gene variant include, but are not limited to, intravascular, intramuscular, intraperitoneal, intradermal, and intraarterial injection.

Sustav za prijenos gena adenovirusom nudi nekoliko pogodnosti: The adenovirus gene transfer system offers several advantages:

adenovirus može (i) smjestiti relativno veliki broj DNA insercija; (ii) biti povišen do visokog titra; (iii) inficirati široki raspon tipova stanica sisavaca; te (iv) biti korišten u velikom broju vektora koji sadrže različite promotore. Kako su adenovirusi stabilni u krvotoku također se mogu davati intravenskom injekcijom. Preferirani vektor za unošenje je o pomoćnoj stanici neovisan humani adenovirus 5 deficijentan u replikaciji, mada se mogu koristiti ostali načini isporuke, uključujući unošenje nukleinskih kiselina izravno u stanicu od interesa (vidi Sawa et al. (1998) Gene Ther. 5(11):1472-80; Labhasetwar et al. (1998) J. Pahram. Sci. 8(11):1347-50; Lin etal. (1997) Hypertension 30:307-313; Chen et al. (1997) Circ. Res. 80(3):327-335; Channon etal. (1996) Cardiovasc. Res. 32:962-972; HarvHeart Lett. (1999) 9(8):5-6, te Nabel etal. (1999) Nat Med. 5(2):141-2. adenovirus can (i) accommodate a relatively large number of DNA insertions; (ii) be elevated to a high titer; (iii) infect a wide range of mammalian cell types; and (iv) be used in a large number of vectors containing different promoters. As adenoviruses are stable in the bloodstream, they can also be given by intravenous injection. The preferred delivery vector is helper cell-independent replication-deficient human adenovirus 5, although other delivery methods may be used, including delivery of nucleic acids directly into the cell of interest (see Sawa et al. (1998) Gene Ther. 5(11): 1472-80; Labhasetwar et al. (1998) J. Pahram. Sci. 8(11):1347-50; Lin et al. (1997) Hypertension 30:307-313; Chen et al. (1997) Circ. Res. 80(3):327-335; Channon et al. (1996) Cardiovasc. Res. 32:962-972; HarvHeart Lett. (1999) 9(8):5-6, and Nabel et al. (1999) Nat Med. 5(2):141-2.

Pokazano je in vivo u stanicama miokarda da su jednom intrakoronarnom injekcijom, a korištenjem sustava adenovirusa 5, frekvencije transkfekcije veće od 60% (Giordano and Hammond (1994) din. Res. 42:123A). Nereplikativni rekombinantni adenovirusni vektori su također korisni u transfekciji koronarnog endotela i kardijalnih miocita što rezultira vrlo učinkovitom transfekcijom nakon intrakoronarne injekcije. Nereplikativni rekombinantni adenovirusni vektori su također korisni za transfekciju željenih stanica u perifernom vaskularnom sustavu (vidi U. S. Patent 5,792,453, koji je ovdje ugrađen citatom u cijelosti). It has been shown in vivo in myocardial cells that with a single intracoronary injection, using the adenovirus 5 system, the frequency of transfection is greater than 60% (Giordano and Hammond (1994) din. Res. 42:123A). Nonreplicative recombinant adenoviral vectors are also useful in the transfection of coronary endothelium and cardiac myocytes resulting in highly efficient transfection after intracoronary injection. Nonreplicative recombinant adenoviral vectors are also useful for transfection of desired cells in the peripheral vasculature (see U.S. Patent 5,792,453, which is incorporated herein by reference in its entirety).

Adenovirusni vektori korišteni u ovom izumu mogu biti konstruirani "spašavajućom" rekombinantnom tehnikom opisane od Graham et al. (1988) Virology 163:614-617. Ukratko, transgen koji kodira eNOS je kloniran u "shuttle" vektor koji sadrži promotor, polilinker i adenovisrusnu sekvenciju u kojoj su deletirani E1A/E1B geni. Kao primjer "shuttle" vektora može biti plazmid pAC1 (Virology 163:614-617, 1988) (ili analog) koji kodira dio lijevog kraja humanog adenovirsnog 5 genoma (Virology, 163:614-617, 1988) minus rani protein koji kodira E1A i E1B sekvencije esencijalne za virusnu replikaciju, a plazmid ACCMVPLPA (J. Biol. Chem. 267:25129-25134, 1992) koji sadrži polilinker, CMV promotor i SV40 poliadenilacijski signal okružen parcijalnom adenovirusnom sekvencijom iz kojeg su delecijum uklonjeni EA/E1B geni. Upotreba plazmida PAC1 ili ACCMVPLA olakšava postupak kloniranja. "Shuttle" vektor je zatim kotransficiran s plazmidom koji sadrži cijeli humani adenovirusni 5 genom duljine prevelike da bi se kapsulirao u 293 stanice. Istovremena transfekcija može biti izvedena taloženjem kalcijevim fosfatom ili lipofekcijom (Biotechniques 15:868-872, 1993). Plazmid JM17 kodira cijeli humani adenovirusni 5 genom plus dio vektora pBR322 uključujući gen za pojačavanje rezistancije (4.3 kb). Mada JM17 kodira sve adenovirusne proteine neophodne za pripravu zrele virusne čestice, on je prevelik za kapsuliranje (40 kb prema 36 kb za divlji tip). U maloj podgrupi istovremeno transficiranih stanica "spašavajućom" rekombinacijom između transgena koji sadrži "shuttle" vektor kao što je plazmid pAC1 i plazmida koji ima cijeli adenovirusni 5 genom kao što je plazmid pJM17 nastaje genom kojem nedostaju E1A/E1B sekvencije, te koji sadrži transgen od interesa, ali sekundarno gubi dodatnu sekvenciju kao što je pBR322 sekvencija, a tijekom rekombinacije, stoga je dovoljno mala da bi se kapsulirala. Može se koristiti adenovirus HCMVAP1/acZ koji kodira beta-galaktozidazu, a koji pokreće CMV (Clin. Res. 42:123A, 1994) da bi se procijenila učinkovitost transfera gena korištenjem testa na X-gal tretman. Adenoviral vectors used in the present invention can be constructed by the "rescue" recombinant technique described by Graham et al. (1988) Virology 163:614-617. Briefly, the transgene encoding eNOS was cloned into a "shuttle" vector containing a promoter, a polylinker and an adenoviral sequence in which the E1A/E1B genes had been deleted. An example of a "shuttle" vector may be plasmid pAC1 (Virology 163:614-617, 1988) (or analog) which encodes a portion of the left end of the human adenoviral 5 genome (Virology, 163:614-617, 1988) minus the early protein encoding E1A and E1B sequences essential for viral replication, and the plasmid ACCMVPLPA (J. Biol. Chem. 267:25129-25134, 1992) containing a polylinker, CMV promoter and SV40 polyadenylation signal surrounded by a partial adenoviral sequence from which the EA/E1B genes were deleted. The use of plasmids PAC1 or ACCMVPLA facilitates the cloning procedure. The shuttle vector was then cotransfected with a plasmid containing the entire human adenovirus 5 genome of length too large to be encapsulated in 293 cells. Simultaneous transfection can be performed by calcium phosphate precipitation or lipofection (Biotechniques 15:868-872, 1993). Plasmid JM17 encodes the entire human adenovirus 5 genome plus part of the pBR322 vector including the resistance enhancer gene (4.3 kb). Although JM17 encodes all the adenoviral proteins necessary for the preparation of a mature viral particle, it is too large for encapsulation (40 kb vs. 36 kb for the wild type). In a small subset of simultaneously transfected cells, "rescue" recombination between a transgene containing a "shuttle" vector such as plasmid pAC1 and a plasmid carrying the entire adenovirus 5 genome such as plasmid pJM17 results in a gene lacking the E1A/E1B sequences and containing a transgene of of interest, but secondarily loses additional sequence such as the pBR322 sequence, and during recombination, is therefore small enough to be encapsulated. The beta-galactosidase-encoding HCMVAP1/acZ adenovirus driven by CMV (Clin. Res. 42:123A, 1994) can be used to assess gene transfer efficiency using an X-gal treatment assay.

U drugoj cjelini, gen koji kodira NOS, preferirano eNOS ili nNOS, može biti uveden in vivo putem oslabljenog ili defektnog DNA virusa, kao što je, ali bez ograničenja, virus herpes simpleksa (HSV), papiloma virus, Epstein Barr virus (EBV), adenovirus i virus srodan adenovirusu (AAV). Također su preferirani su defektni virusi, kojima potpuno ili skoro potpuno nedostaje virusni gen. Defektni virus nije infektivan nakon unošenja u stanicu. Upotreba defektnih vitalnih vektora je dozvoljena za davanje u specifičnim lokaliziranim mjestima stanice, a bez da se brine o tome da će vektor inficirati stanicu. Stoga, određeno mjesto, npr. u mozgu ili leđnoj moždini može biti posebno ciljano vektorom. U specifičnoj cjelini se može koristiti defektni herpes virus 1 (HSV1) (Kaplitt et al. (1991) Molec. Cell. Neurosci. 2:320-330). U sljedećoj cjelini, virusni vektor je oslabljen adenovirusni vektor kao što je vektor opisan od Stratford-Perricaudet et al. (J. Clin. Invest. 90:626-630 (1992)). U sljedećoj cjelini vektor je defektni virusni vektor srodan adenovirusu (Samulski et al. (1987) J. Virol. 61:3096-3101; Samulski etal. (1989) J. Virsol. 63:3822-3828). In another embodiment, the gene encoding NOS, preferably eNOS or nNOS, can be introduced in vivo by an attenuated or defective DNA virus, such as, but not limited to, herpes simplex virus (HSV), papillomavirus, Epstein Barr virus (EBV). , adenovirus and adenovirus-related virus (AAV). Also preferred are defective viruses, which completely or almost completely lack the viral gene. The defective virus is not infectious after entering the cell. The use of defective viable vectors is allowed for administration in specific localized sites of the cell without concern that the vector will infect the cell. Therefore, a specific site, eg in the brain or spinal cord can be specifically targeted by the vector. In a specific embodiment, defective herpes virus 1 (HSV1) can be used (Kaplitt et al. (1991) Molec. Cell. Neurosci. 2:320-330). In a further embodiment, the viral vector is an attenuated adenoviral vector such as the vector described by Stratford-Perricaudet et al. (J. Clin. Invest. 90:626-630 (1992)). In another embodiment, the vector is a defective viral vector related to adenovirus (Samulski et al. (1987) J. Virol. 61:3096-3101; Samulski et al. (1989) J. Virsol. 63:3822-3828).

Ovaj izum također razmatra upotrebu ciljanja stanice ne samo isporukom transgena primjerice u koronarnu arteriju ili femoralnu arteriju, nego također upotrebu promotora specifičnog tkiva. Povezivanjem primjerice, tkivno specifični transkripcijska regulacijska sekvencija lijevog ventrikularnog miozinskog lakog lanca 2 (MLC[2V]) ili miozinskog teškog lanca (MHC) u transgenu, kao što su geni koji kodiraju NOS iz izuma unutar adenovirusnog konstrukta, transgenska ekspresija je ograničena na ventrikularne kardijalne miocite. Efikasnost ekspresije gena i stupanj specifičnosti uz promotore (MLC[2V]) i MHC s lacZ je određena korištenjem rekombinantnog adenovirusnog sustava iz ovog izuma. Srčano specifična ekspresija je prikazana ranije od Lee et al. (J. Biol. Chem. 267:15875-15885 (1992)). Promotor (MLC[2V]) sadrži 250 bp i smješta se lako unutar adenovirusa 5. Promotor miozinskog teškog lanca koji je poznat kao snažni promotor transkripcije je razumno dobri alternativni srčano specifični promotor i sadrži manje od 300 bp. Također su na raspolaganju promotori stanice glatkog mišića kao što je SM22 alfa promotor (Kemp et al. (1995) Biochem. J. 310 (Pt 3):1037-43) i promotor SM alfa aktina (Shimizu et al. (1995)J. Biol. Chem. J. 270(13):7631-43). Ostali promotori kao što je promotor troponina-C, mada je vrlo učinkovit i dovoljno mali, nedostaje mu adekvatna specifičnost na tkivo. Vjeruje se da korištenjem promomotora (MLC[2V]) ili MHC i unošenjem transgena in vivo, sam kardijalni miocit (što znači bez istovremene ekspresije u endotelnim stanicama, stanicama glatkog mišića i fibroblastima unutar srca) će omogućiti adekvatnu ekspresiju proteinske NOS. The present invention also contemplates the use of cell targeting not only by delivery of the transgene to, for example, the coronary artery or femoral artery, but also the use of tissue-specific promoters. By linking, for example, a tissue-specific transcriptional regulatory sequence of left ventricular myosin light chain 2 (MLC[2V]) or myosin heavy chain (MHC) to a transgene, such as the NOS-encoding genes of the invention within an adenoviral construct, transgene expression is restricted to ventricular cardiac myocytes. The efficiency of gene expression and degree of specificity with promoters (MLC[2V]) and MHC with lacZ was determined using the recombinant adenovirus system of the present invention. Cardiac-specific expression was shown earlier by Lee et al. (J. Biol. Chem. 267:15875-15885 (1992)). The promoter (MLC[2V]) contains 250 bp and fits easily within adenovirus 5. The myosin heavy chain promoter, which is known to be a strong transcriptional promoter, is a reasonably good alternative cardiac-specific promoter and contains less than 300 bp. Also available are smooth muscle cell promoters such as the SM22 alpha promoter (Kemp et al. (1995) Biochem. J. 310 (Pt 3):1037-43) and the SM alpha actin promoter (Shimizu et al. (1995)J . Biol. Chem. J. 270(13):7631-43). Other promoters such as the troponin-C promoter, although very effective and small enough, lack adequate tissue specificity. It is believed that using the promoter (MLC[2V]) or MHC and introducing the transgene in vivo, the cardiac myocyte alone (meaning without simultaneous expression in endothelial cells, smooth muscle cells and fibroblasts within the heart) will allow adequate expression of the protein NOS.

Ograničena ekspresija kardijalnog miocita je također pogodna zbog upotrebe u transferu gena za tretman kliničke miokardialne iskemije. Ograničenom ekspresijom u srcu izbjegava se mogući štetni učinak angiogeneze u tkivima koja nisu srčana kao što je retina. Nadalje, od srčanih stanica, vjerojatno je da miociti omoguće najdulju transgensku ekspresiju jer stanice ne podliježu brzoj razgradnji/sintezi, pa se ekspresija stoga ne bi smanjila obom stanice i smrti, kao što bi se desilo s endotelnim stanicama. Primjeri specifičnih endotelnih promotora uključuju promotor Tie-2 (Schlaeger et al. (1997) Proc. Natl. Acad. Sci. 1;94(7):3058-63), promotor endotela (Lee et al. (1990) J. Biol. Chem. 265:10446-10450) te promotor eNOS (Zhang et al. (1995) J. Biol. Chem. 270(25): 15320-6). Limited cardiac myocyte expression is also suitable for use in gene transfer for the treatment of clinical myocardial ischemia. Restricted expression in the heart avoids the possible deleterious effect of angiogenesis in non-cardiac tissues such as the retina. Furthermore, of the cardiac cells, myocytes are likely to allow the longest transgene expression because the cells do not undergo rapid degradation/synthesis, and therefore expression would not decrease with both cell and death, as would happen with endothelial cells. Examples of endothelial specific promoters include the Tie-2 promoter (Schlaeger et al. (1997) Proc. Natl. Acad. Sci. 1;94(7):3058-63), the endothelial promoter (Lee et al. (1990) J. Biol . Chem. 265:10446-10450) and the eNOS promoter (Zhang et al. (1995) J. Biol. Chem. 270(25): 15320-6).

Što se tiče tretmana bolesti srca, ovaj izum uključuje, usmjeravanje u srce intrakoronarne ili intramuskularne injekcije vektora velikog titra i ovdje preferiranu transfekciju svih tipova stanica. Bolesti kao što je erektivna disfunkcija i kardiovaskularna bolest uključujući infarkt miokarda, ishemiju miokarda, zatajenje srca, restenozu i stenozu, postangioplastični stenozu i pogrešku u transplantiranoj prijenosnici se može tretirati kao što je opisano korištenjem transgena koji kodira NOS, preferirano transgena koji kodira eNOS ili nNOS. With respect to the treatment of heart disease, the present invention includes the targeting of the heart by intracoronary or intramuscular injection of a high titer vector and herein preferred transfection of all cell types. Diseases such as erectile dysfunction and cardiovascular disease including myocardial infarction, myocardial ischemia, heart failure, restenosis and stenosis, post-angioplasty stenosis and graft failure can be treated as described using a transgene encoding NOS, preferably a transgene encoding eNOS or nNOS .

Uspješni rekombinantni vektori mogu biti pročišćeni od plaka, a prema standardnim metodama. Nastali virusni vektori su propagirani na 293 stanicama što omogućuje funkcije E1A i E1B in trans u preferiranom titru od rasponu od oko 1010 do oko 1012 virusnih čestica/mL Stanice mogu biti inficirane pri 80% konfluencije i sakupljene 48 sati kasnije. Nakon 3 ciklusa smrzavanje i taljenja, stanični ostaci su taloženi centrifugiranjem i virus je proćišen gradijentnim CsCI ultracentrfugiranjem (preferirano je dvostruko ultracentrifugiranje s gradijentom CsCI). Prije in ivvo injekcije, virusni uzorak je desaliziran gel filtracijom preko kolone Sepharoze kao što je G25 Sephadex. Produkt je zatim filtriran preko filtera od 30 mikrona, i time je smanjen štetan efekt intrakoronarne injekcije nefiltriranog virusa (kardijalne aritmije opisane po život) i povećana efikasnog transfera gena. Nastali virusni uzorak ima konačni virusni titar u rasponu od 1010-1012 virusnih čestica/mL Rekombinantni adenovirus mora biti visoke čistoće, bez virusa divljeg tipa (potencijalno replikativan). Nečisti konstrukti mogu uzrokovati intenzivni imuni odgovor u životinji domaćinu. S tog stanovišta, propagacija i pročišćavanje se mogu provesti da isključe kontaminante kao što je virus divljeg tipa, primjerice, identifikacijom uspješnih rekombinanta korištenjem odgovarajuće klice za PCR, provođenjem dva kruga pročišćavanja od plaka i dvostrukog ultracentrifugiranja gradijentom CsCI. Nadalje, problemi povezani s kardijalnom artimijom inducirani injekcijom adenovirusnog vektora u pacijenta se mogu izbjeći filtracijom rekombinantnog adenovirusa preko filter-papira odgovarajuće veličine prije intrakoronarne injekcije. Ova strategija znatno poboljšava tranfer gena i ekspresiju. Successful recombinant vectors can be purified from plaque by standard methods. The resulting viral vectors were propagated on 293 cells allowing E1A and E1B functions in trans at a preferred titer ranging from about 1010 to about 1012 virus particles/mL. Cells can be infected at 80% confluence and harvested 48 hours later. After 3 freeze-thaw cycles, cell debris was pelleted by centrifugation and virus was purified by CsCl gradient ultracentrifugation (double CsCl gradient ultracentrifugation is preferred). Before in ivvo injection, the viral sample was desalted by gel filtration over a Sepharose column such as G25 Sephadex. The product was then filtered through a 30 micron filter, thus reducing the harmful effect of intracoronary injection of unfiltered virus (cardiac arrhythmias described for life) and increasing efficient gene transfer. The resulting viral sample has a final viral titer in the range of 1010-1012 viral particles/mL Recombinant adenovirus must be of high purity, free of wild-type (potentially replicative) virus. Impure constructs can cause an intense immune response in the host animal. From this point of view, propagation and purification can be performed to exclude contaminants such as wild-type virus, for example, by identifying successful recombinants using the appropriate germline for PCR, performing two rounds of plaque purification and double CsCl gradient ultracentrifugation. Furthermore, problems associated with cardiac arrhythmias induced by injection of an adenoviral vector into a patient can be avoided by filtering the recombinant adenovirus through an appropriately sized filter paper prior to intracoronary injection. This strategy greatly improves gene transfer and expression.

Virusni uzorak može biti u obliku pripravka koji se može injektirati, a koji sadrži farmaceutski prihvatljiv nosač kao što je primjerice fiziološka otopina. Konačni titar vektora i preparatu za injekciju je preferirano u rasponu od oko 107 do oko 1013 virusnih čestica, što omogućuje učinkovit tranfer gena. Ostali farmaceutski nosači, formulacije i doziranje su dolje opisani. Adenovirusni transgenski konstrukti se unose u miokardij izravnom intrakoronarnom (ili transplantirani sud) injekcijom korištenjem standardnih metoda zasnovanih na upotrebi perkutanog katetera pod fluoroskopnim vodstvom, pri količini dovoljnoj da transgen bude eksprimiran u tolikoj mjeri koja dovodi do vrlo učinkovite terapije. Injekcija može biti uvedena duboko u lumen (oko 1 cm unutar arterijskog lumena) koronarne arterije (ili transplantirani sud), a preferirano je uvedena u obje koronarne arterije jer je rast kolaretalnih krvnih sudova vrlo različita unutar pojedinog pacijenta. Injekcijom materijala izravno u lumen koronarne arterije koronarnim kateterima, moguće je gen usmjeriti vrlo učinkovito i svesti na najmanju mjeru gubitak rekombinantnih vektora u proksimalnoj aorti tijekom injekcije. Poznato je da ekspresija gena, a kada se usmjeri na taj način, ne događa u hepatocitima i ne može se naći virusni RNA u urinu u bilo koje vrijeme nakon intrakoronarne injekcije. Bilo koja vrsta koronarnog katetera ili Stackov perfuzijski kateter se primjerice mogu koristiti u ovom izumu. Nadalje, ostale tehnike poznate stručnjacima se mogu koristiti za prijenos gena koji kodiraju NOS, preferirana eNOS ili nNOS u arterijsku stjenku. The viral sample may be in the form of an injectable preparation containing a pharmaceutically acceptable carrier such as saline. The final titer of the vector and injectable preparation is preferably in the range of about 107 to about 1013 virus particles, which allows for efficient gene transfer. Other pharmaceutical carriers, formulations and dosages are described below. Adenoviral transgene constructs are introduced into the myocardium by direct intracoronary (or transplanted vessel) injection using standard methods based on the use of a percutaneous catheter under fluoroscopic guidance, at a quantity sufficient to express the transgene to such an extent that it leads to highly effective therapy. The injection can be introduced deep into the lumen (about 1 cm inside the arterial lumen) of the coronary artery (or transplanted vessel), and it is preferably introduced into both coronary arteries because the growth of the coronary blood vessels is very different within an individual patient. By injecting material directly into the lumen of the coronary artery with coronary catheters, it is possible to target the gene very efficiently and minimize the loss of recombinant vectors in the proximal aorta during injection. Gene expression, when directed in this way, is known not to occur in hepatocytes and no viral RNA can be found in urine at any time after intracoronary injection. Any type of coronary catheter or Stack perfusion catheter can be used in the present invention, for example. Furthermore, other techniques known to those skilled in the art can be used to transfer genes encoding NOS, preferably eNOS or nNOS, into the arterial wall.

Za tretman periferne vaskularne bolesti, bolesti karakterizirane nedovoljnom opskrbom krvi u noge, rekombinantni adenovirus koji eksprimira NOS, preferirano peptidnu ili proteinsku eNOS ili nNOS iz izuma, može se unijeti insertiranim kateterom u proksimalni dio femoralne arterije i arterija, pa stoga djelovati na transfer gena u stanice skeletnih mišića koje primaju krv i femoralnih arterija. For the treatment of peripheral vascular disease, a disease characterized by insufficient blood supply to the legs, a recombinant adenovirus expressing NOS, preferably the peptide or protein eNOS or nNOS of the invention, can be introduced by an inserted catheter into the proximal part of the femoral artery and arteries, and therefore act on gene transfer in skeletal muscle cells that receive blood and femoral arteries.

U slučajevima u kojima je transgen ili nukleinska kiselina koja kodira NOS, preferirano eNOS ili nNOS ili proteinski Akt iz izuma je prvo prenesena u endotelnu ili vaskularnu stanicu glatkog mišića in vitro, uključujući pacijentove vlastite stanice, DNA može biti transficirana u izravno u stanicama (vidi U. S .Patent 5,658,565). Općenito, da se transficiraju ciljane stanice, plazmidni vektor koji sadrži DNA sekvenciju koja kodira Akt ili NOS iz izuma ili odgovarajući biološki aktivni fragment se može koristiti u liposomom posredovanoj transfekciji ciljane stanice. Stabilnost liposoma, povezana s nepropusnim svojstvom tih vehikula, čini ih korisnim za unos terapijskih sekvencija DNA (za revijalni članak vidi Mannino i Gould-Forgerite (1988) BioTechniques 6(7):682-690). Poznato je da liposomi apsorbiraju mnoge tipove stanica putem fuzije. U jednoj cjelini, koriste se kationski liposomi koji sadrže kationske derivate kolesterola, kao što je SF-chol ili DC-chol. DC-chol molekula uključuje tercijarnu amino-skupinu, ručku srednje veličine i karbamoilnu skupinu za povezivanje, kao što je opisano od Gao i Huang (Biochem. Biophys. Res. Comm. 179:280-285, 1991). In cases where the transgene or nucleic acid encoding NOS, preferably eNOS or nNOS or protein Akt of the invention is first transfected into an endothelial or vascular smooth muscle cell in vitro, including the patient's own cells, the DNA can be transfected directly into the cells (see U. S. Patent 5,658,565). In general, to transfect target cells, a plasmid vector containing a DNA sequence encoding Akt or NOS of the invention or a corresponding biologically active fragment can be used in liposome-mediated transfection of the target cell. The stability of liposomes, coupled with the impermeable property of these vehicles, makes them useful for delivery of therapeutic DNA sequences (for a review article, see Mannino and Gould-Forgerite (1988) BioTechniques 6(7):682-690). Liposomes are known to be absorbed by many cell types via fusion. In one embodiment, cationic liposomes containing cationic cholesterol derivatives, such as SF-chol or DC-chol, are used. The DC-chol molecule includes a tertiary amino group, a medium-sized handle, and a carbamoyl linker, as described by Gao and Huang (Biochem. Biophys. Res. Comm. 179:280-285, 1991).

U sljedećoj cjelini, a što se tiče limposmske tehnologije, virusni ili nevirusni vektor koji sadrži sekvenciju DNA koja kodira biološki aktivni proteinski fragment NOS, preferirano se proteinski fragment eNOS ili nNOS unosi u ciljanu stanicu transfekcijom ciljane stanice s lipofektaminom (Bethesda Research Laboratory). Lipofektamin je 3:1 liposomska formulacija poliaktionskog lipida 2,3-dioleiloksi-N-[2-(sperminekarboksimido)etil]-N,N-dimetil-1-propanaminiumskog fluoracetata (DOPSA) i neutralnog lipida dioleoil-fosfatidiletanolamina (DOPE). In a further embodiment, as far as lymphosomal technology is concerned, a viral or non-viral vector containing a DNA sequence encoding a biologically active NOS protein fragment, preferably an eNOS or nNOS protein fragment, is introduced into the target cell by transfecting the target cell with Lipofectamine (Bethesda Research Laboratory). Lipofectamine is a 3:1 liposomal formulation of the polyactive lipid 2,3-dioleyloxy-N-[2-(sperminecarboximido)ethyl]-N,N-dimethyl-1-propanaminium fluoroacetate (DOPSA) and the neutral lipid dioleoyl-phosphatidylethanolamine (DOPE).

Ostali nevirusni načini dovođenja uključuju, ali bez ograničenja: (a) izravni injekciju same DNA; (b) transfekciju stanice posredovanu kalcijevim fosfatom [Ca3(PO4)2]; (c) transfekciju stanice sisavca elektroporacijom; (d) transfekciju stanice posredovanu DEAE-dekstranom; (e) isporuku posredovanu polibrenom; (f) protoplastnu fuziju; (mikroinjekcija); te (h) transforamciju posredovanu polilizinom, s tim da se stanice na kojima je proveden genetski inženjeringom vrate u stanice domaćina sisavca. Other non-viral methods of delivery include, but are not limited to: (a) direct injection of the DNA itself; (b) calcium phosphate [Ca3(PO4)2]-mediated cell transfection; (c) transfecting a mammalian cell by electroporation; (d) DEAE-dextran-mediated cell transfection; (e) polybrene-mediated delivery; (f) protoplast fusion; (microinjection); and (h) polylysine-mediated transformation, whereby the genetically engineered cells are returned to mammalian host cells.

Produkcija transgeničnih životinja Production of transgenic animals

Transgenične životinje koje sadrže mutirane gene koji kodiraju NOS, preferirano gene koji kodiraju mutirane eNOS ili nNOS, kao što je ovdje opisano, također su uključeni u izum. Transgenične životinje su genetski modificirane životinje u koje je rekombinantni, egzogeni ili klonirani genetski materijal eksperimentalno prenesen. Takav genetski materijal se često naziva "transgen". Sekvencija nukleinskih kiselina transgena u slučaju oblika za NOS može biti integrirana u mjesto genoma u kojem se inače može naći ta određena sekvencija nukleinske ili u normalno mjesto transgena. Transgen se može sastojati od sekvencije nukleinske kiseline izvedene iz genoma istih vrsta ili različitih vrsta od ciljane životinje. Transgenic animals containing mutated genes encoding NOS, preferably genes encoding mutated eNOS or nNOS, as described herein, are also included in the invention. Transgenic animals are genetically modified animals into which recombinant, exogenous or cloned genetic material has been experimentally transferred. Such genetic material is often called a "transgene". The nucleic acid sequence of the transgene in the case of the NOS form can be integrated into the genome site where that specific nucleic acid sequence can normally be found or into the normal site of the transgene. A transgene may consist of a nucleic acid sequence derived from the genome of the same or different species than the target animal.

Termin "germinalna stanična linija transgeničnih životinja" odnosi se na transgenične životinje u koje je genetska promjena ili genska informacijom uvedena u germinalnu staničnu liniju, pa je stoga transgeničnim životinja omogućen prijenos genetske informacije u potomstvo. Ako takvo potomstvu doista ima neke ili sve genetske informacije promjenjene, oni su transgenične životinje. The term "germ cell line of transgenic animals" refers to transgenic animals in which a genetic change or genetic information has been introduced into the germ cell line, and therefore transgenic animals are enabled to transmit genetic information to their offspring. If such offspring do have some or all of their genetic information altered, they are transgenic animals.

Promjena ili genska informacija može biti strana vrsti životinje kojoj recipijent pripada, stana samo određenoj pojedinom recipijentu ili može biti genetska informacija koju recipijent već ima. U zadnjem slučaju primjenjeni ili uvedeni gen se može eksprimirati različito nego prirodni gen. The change or genetic information can be foreign to the species of animal to which the recipient belongs, only to a certain individual recipient, or it can be genetic information that the recipient already has. In the latter case, the applied or introduced gene may be expressed differently than the natural gene.

Transgenične životinje se mogu producirati različitim metodama koje uključuju transfekciju, elektroporaciju, mikroinjekciju, uvođenjem gena u embrionske stanice i infekcijom rekombinantnim virusnom ili retrovirusnom (vidi U. S. Patent br. 4,736,866; U. S. Patent br. 5,602,307; Mullins et al. (1993) Hypertension 22(4):630-633; Brenin et al. (1997) Surg. Oncol. 6(2)99-110; Tuan (ed.) Recombinant Gene Expression Protocols, Methods i Molecular Biology br. 62, Humana Press (1997)). Transgenic animals can be produced by a variety of methods including transfection, electroporation, microinjection, introduction of genes into embryonic cells, and recombinant viral or retroviral infection (see U.S. Patent No. 4,736,866; U.S. Patent No. 5,602,307; Mullins et al. (1993) Hypertension 22( 4):630-633; Brenin et al. (1997) Surg. Oncol. 6(2)99-110; Tuan (ed.) Recombinant Gene Expression Protocols, Methods and Molecular Biology No. 62, Humana Press (1997)) .

Producirani su brojni rekombinantni ili transgenični miševi, uključujući one koji eksprimiraju aktiviranu onkogenu sekvenciju (U. S .Patent br. 4,736,866); eksprimiraju simian SV 40 T-antigen (U. S .Patent br. 5,728,915); ne eksprimiraju regulatorni faktor 1 interferona (IRF-1) (U. S .Patent br. 5,731,490); pokazuju dopaminergičnu disfunkciju (U. S .Patent br. 5,723,719); eksprimiraju barem jedan humani gen koji sudjeluje u kontroli krvnog tlaka (U. S .Patent br. 5,731,489); pokazuje veću sličnost uvjetima koji postoje u prirodnoj manifestaciji Alzheimerove bolesti (U. S .Patent br. 5,720,936); imaju smanjen kapacitet održavanja stanične adhezije (U. S .Patent br. 5,602,307); imaju gen goveđeg hormona rasta (Clutter et al. (1996) Geneticgs 143(4): 1753-1760) ili su sposobni generirati potpuni humani odgovor od antitijela (McCarthy (1997) The Lancer 349(9049):405). A number of recombinant or transgenic mice have been produced, including those expressing an activated oncogene sequence (U. S. Patent No. 4,736,866); express the simian SV 40 T-antigen (U. S. Patent No. 5,728,915); do not express interferon regulatory factor 1 (IRF-1) (U. S. Patent No. 5,731,490); show dopaminergic dysfunction (U. S. Patent No. 5,723,719); express at least one human gene involved in blood pressure control (U. S. Patent No. 5,731,489); shows greater similarity to the conditions that exist in the natural manifestation of Alzheimer's disease (U. S. Patent No. 5,720,936); have a reduced capacity to maintain cell adhesion (U. S. Patent No. 5,602,307); have the bovine growth hormone gene (Clutter et al. (1996) Genetics 143(4): 1753-1760) or are capable of generating a full human antibody response (McCarthy (1997) The Lancer 349(9049):405).

Dok miševi i štakori ostaju životinje od izbora za većinu tansgeničnih eksperimenata, u nekim slučajevima je preferirano ili čak neophodno korištenje alternativnih životinjskih vrsta. Transgenični postupak je uspješno korišten kod različitih životinja koji nisu glodavci, uključujući ovce, koze, svinje, pse, mačke, majmune, čimpanze, zamorce, zečeve, krave i morsko prase (vidi npr. kim et al. (1997) Mol. Reprod. Dev. 46(4) :515-526; Houdebine (1995) Reprod. Nutr. Dev. 35(6) :609-617; Petters (1994) Reprod. FertH. Dev. 6(5):643-645; Schnieke et al.(1997) Science 278(5346):2130-2133; te Amoah (1997) J. Anima Science (75(2):578-585). While mice and rats remain the animals of choice for most transgenic experiments, in some cases the use of alternative animal species is preferred or even necessary. The transgenic procedure has been used successfully in a variety of non-rodent animals, including sheep, goats, pigs, dogs, cats, monkeys, chimpanzees, guinea pigs, rabbits, cows, and guinea pigs (see, e.g., kim et al. (1997) Mol. Reprod. Dev. 46(4) :515-526; Houdebine (1995) Reprod. Nutr. Dev. 35(6) :609-617; Petters (1994) Reprod. FertH. Dev. 6(5):643-645; Schnieke et al.(1997) Science 278(5346):2130-2133, and Amoah (1997) J. Anima Science (75(2):578-585).

Može se koristiti bilo koja metoda uvođenja fragmenata nukleinskih kiselina u rekombinantno kompetentne životinjske stanice koja favorizira istovremenu transformaciju višestrukih molekula nukleinske kiseline. Detaljni postupci za produkciju transgeničnih životinja su lako pristupačni stručnjacima, uključujući one prikazane u U.S. Patentu br. 5,489,743 i U.S. Patent br. 5,602,307. Nadalje, razvijena je produkcija NOS transgeničnih životinja. Primjerice, producirani su transgenični miševi koji inducirani eksprimiraju ili prekomjerno eksprimiraju eNOS divljeg tipa (vidi Ohashi et al. (1998), J. Clin. Invest 102(12):2061-71; te Drummond et al. (1998) J. Clin, Invest. 102(12):2033-4). Ove metode se mogu koristiti za produkciju miševa koji eksprimiraju mutante NOS iz izuma. Any method of introducing nucleic acid fragments into recombinantly competent animal cells that favors simultaneous transformation of multiple nucleic acid molecules can be used. Detailed procedures for the production of transgenic animals are readily available to those skilled in the art, including those disclosed in U.S. Pat. Patent no. 5,489,743 and U.S. Pat. Patent no. 5,602,307. Furthermore, the production of NOS transgenic animals was developed. For example, transgenic mice have been produced that inducibly express or overexpress wild-type eNOS (see Ohashi et al. (1998), J. Clin. Invest 102(12):2061-71; and Drummond et al. (1998) J. Clin. , Invest. 102(12):2033-4). These methods can be used to produce mice expressing the NOS mutants of the invention.

Test terapijskog prebiranja Therapeutic sorting test

Otkriće da fosforilacija eNOS regulira njenu aktivnost ostavlja mjesto razvijanju testa prebiranja, a za identifikaciju sredstava koji moduliraju NOS reguliranu s Akt, preferirano eNOS ili nNOS. Može se koristiti bilo koji format, uključujući in vivo test s transgeničnim životinjama, in vitro test baziran na proteinu, test stanična kulture i obradom velikog broja uzoraka. The discovery that phosphorylation of eNOS regulates its activity leaves room for the development of a screening assay to identify agents that modulate Akt-regulated NOS, preferably eNOS or nNOS. Any format can be used, including in vivo transgenic animal assays, protein-based in vitro assays, cell culture assays, and processing large numbers of samples.

U mnogim programini prebiranja lijeka kojim se testira oslobađanje spojeva, test obrade velikog broja uzoraka je poželjan da bi se testirao maksimalan broj spojeva u danom vremenskom periodu. Testovi koji se provode u sustavu bez stanica, kao što su mnogi izvedeni s polupročišćenim proteinima, su obično preferirani kao "primarno" probiranje u tome što mogu biti generirani da dozvole brzi razvitak i relativno laku detekciju promjene u ciljanoj molekuli koja je posredovana testiranim spojem. Štoviše, efekt stanične toksičnosti i/ili bioraspoloživosti testiranog spoja se može općenito ignorirati u in vitro sustavu, a umjesto toga je test fokusiran primarno na efekt lijeka na molekulski cilj, a što se može manifesatirati inhibicijom, primjerice vezivanja između molekula. In many drug screening programs that test the release of compounds, a large sample processing test is desirable to test the maximum number of compounds in a given time period. Assays performed in a cell-free system, such as many performed with semipurified proteins, are usually preferred as "primary" screening in that they can be generated to allow rapid development and relatively easy detection of a change in the target molecule mediated by the test compound. Moreover, the effect of cellular toxicity and/or bioavailability of the tested compound can generally be ignored in the in vitro system, and instead the test is focused primarily on the effect of the drug on the molecular target, which can be manifested by inhibition, for example of binding between molecules.

Test zasnovan na kulturi stanice ili tkiva se može izvesti, primjerice, nanošenjem na hranjivu podlogu COS-7 stanica (100 mm posuda), te transfekcijom plazmida s NOS (7.5-30 mg) i Akt (1 mg) korištenjem kalcijevog fosfata. Da bi se uravnotežile sve transfekcije, može se kotransficirati ekpresijski vektor cDNA za β-galatozidazu. Dvadeset četiri ili četrdeset osam sati nakon transfekcije, ekspresija odgovarajućeg proteina (40-80 mg) se može potvrditi Western blot analizom korištenjem eNOS mAb (9D10, Zymed), HA mAb (12CA5, Boehringer Mannheim), iNOS pAb (Zymed Laboratories) ili nNOSmAb (Zymed Laboratories). A cell or tissue culture-based assay can be performed, for example, by plating COS-7 cells (100 mm dishes) on nutrient medium, and transfecting plasmids with NOS (7.5-30 mg) and Akt (1 mg) using calcium phosphate. To balance all transfections, a cDNA expression vector for β-galatosidase can be cotransfected. Twenty-four or forty-eight hours after transfection, expression of the corresponding protein (40-80 mg) can be confirmed by Western blot analysis using eNOS mAb (9D10, Zymed), HA mAb (12CA5, Boehringer Mannheim), iNOS pAb (Zymed Laboratories), or nNOSmAb (Zymed Laboratories).

Dvadeset četiri ili četrdeset osam sati nakon transfekcije, može se provesti mjerenje nitrita (NO2-) u mediju, stabilni produkt od NO u vodenoj otopini, a NO specifičnom kemiluminiscencijom kao što je opisano (Sessa et al., 1995). Mediju su uklonjeni proteini i uzorci koji sadrže NO2- su refluksirani u ledenoj octenoj kiselini koja sadrži natrijev jodid. Pod tim uvjetima se NO2- kvntitativno reducira u NO koji je određen kemiluminiscencijskim detektorom nakon reakcije s ozonom u NO analizatoru (Sievers, Boulders, CO). U svim eksperimentima se kontrole mogu pripraviti inhibicijom oslobađanja NO2-, upotrebom NOS inhibitora. Nadalje, NO2- oslobađanje iz stanica transficiranih s cDNA za β-galatozidazu se može oduzeti od kontrole za osnovnu razinu NO2- nađene u serumu ili mediju. Akumulacija cGMP u COS može biti korištena kao biotest za produkciju NO, kao što je opisano. U alternativnom formatu, konverzija 3H-L-arginina u 3H-L-citrulin se može koristiti za određivanje aktivnosti NOS u COS stanicama ili lizatima endotelnih stanica, kao što je prethodno opisano (Garcia-Cardena etal., 1998). Twenty-four or forty-eight hours after transfection, measurement of nitrite (NO2-) in the medium, a stable product of NO in aqueous solution, and NO specific chemiluminescence can be performed as described (Sessa et al., 1995). Media was deproteinized and samples containing NO2- were refluxed in glacial acetic acid containing sodium iodide. Under these conditions, NO2- is quantitatively reduced to NO, which is determined by a chemiluminescence detector after reaction with ozone in a NO analyzer (Sievers, Boulders, CO). In all experiments, controls can be prepared by inhibiting the release of NO2-, using NOS inhibitors. Furthermore, NO2- release from cells transfected with β-galatosidase cDNA can be subtracted from a control for baseline NO2- levels found in serum or medium. Accumulation of cGMP in COS can be used as a bioassay for NO production, as described. In an alternative format, conversion of 3H-L-arginine to 3H-L-citrulline can be used to determine NOS activity in COS cells or endothelial cell lysates, as previously described (Garcia-Cardena et al., 1998).

Za ispitivanja in vivo fosforilacije, stanice COS mogu biti preko noći transficirane s cDNA za divlji tip ili S635 (kontrola), goveđom 1179A, D ili E eNOS, humano 1177D ili E eNOS, štakorskom 1412D ili E nNOS, humanom 1415 D ili E nNOS, te HA-Akt. 36 sati nakon transfekcije, stanice su smještene u dijalizirani zasićeni serum, Dulbeccov minimalni medij bez fosfata uz dodatak 80 μCi 32P ortofosforne kiseline kroz 3 sata. Staničnom alikvotu se prethodno može dodati wortmannin (500 nM) u mediju bez fosfata 1 h tijekom obilježavanja. Lizat je zatim sakupljen, NOS je solubilizirana i djelomično pročišćena ADP sefaroznom afinitetnom kromatografijom kao što je prethodno opisano, te je ugradnja 32P u NOS vizualizirana nakon SDS-PAGE (7.5%) autoradiografijom i količina proteinske NOS je verificirana Western blot za NOS. For in vivo phosphorylation assays, COS cells can be transfected overnight with cDNA for wild-type or S635 (control), bovine 1179A, D or E eNOS, human 1177D or E eNOS, rat 1412D or E nNOS, human 1415 D or E nNOS , and HA-Act. 36 hours after transfection, cells were placed in dialyzed saturated serum, phosphate-free Dulbecco's minimal medium supplemented with 80 μCi 32P orthophosphoric acid for 3 hours. Wortmannin (500 nM) in phosphate-free medium can be added to the cell aliquot beforehand for 1 h during labeling. The lysate was then collected, NOS was solubilized and partially purified by ADP Sepharose affinity chromatography as previously described, and the incorporation of 32P into NOS was visualized after SDS-PAGE (7.5%) by autoradiography and the amount of protein NOS was verified by Western blotting for NOS.

Za in vitro istraživanja fosforilacije rekombinantna NOS pročišćena iz E. coli, eNOS pročišćena iz drugog izvora ili peptidna NOS koja se proteže preko Akt fosforilacijskog mjesta, su inkubirani s divljim tipom ili s kinazno inaktivnom imunoprecipitiranim Akt iz tranficiranih COS stanica. Ukratko, proteinske ili peptidne NOS su inkubirane s 32P g-ATP (2 mL, specifična aktivnost 3000 Ci/mmol), ATP (50 m M), DTT (1 m M) u puferu koji sadrži HEPES (20 mM, pH 7.4), MnCI2 (10 mM) i imunoprecipitiranim Akt kroz 20 min pri sobnoj temperaturi. For in vitro phosphorylation studies, recombinant NOS purified from E. coli, eNOS purified from another source, or peptide NOS spanning the Akt phosphorylation site, were incubated with wild-type or with kinase-inactive immunoprecipitated Akt from transfected COS cells. Briefly, protein or peptide NOS were incubated with 32P g-ATP (2 mL, specific activity 3000 Ci/mmol), ATP (50 mM), DTT (1 mM) in buffer containing HEPES (20 mM, pH 7.4) , MnCl2 (10 mM) and immunoprecipitated Akt for 20 min at room temperature.

U eksperimentima u kojima se ispituje in vitro fosforilacija NOS divljeg tipa ili mutanta, rekombinantna Akt (1 mg) pročišćena iz bakulovirusom inficiranih SF9 stanica je inkubirana s divljim tipom, sa S1179A goveđe eNOS, S1177A humane eNOS, S1179D ili E goveđe eNOS, S1177D ili E humane eNOS, S1412D ili E štakorske nNOS ili S1215D ili E humane nNOS korištenjem suštinski istih uvjeta kao gore. Proteini se mogu razdvojiti pomoću SDS-PAGE i ugradnja 32P i količina proteina je određena bojanjem po Coomassie kao gore. In experiments examining in vitro phosphorylation of wild-type or mutant NOS, recombinant Akt (1 mg) purified from baculovirus-infected SF9 cells was incubated with wild-type, S1179A bovine eNOS, S1177A human eNOS, S1179D or E bovine eNOS, S1177D or E human eNOS, S1412D or E rat nNOS or S1215D or E human nNOS using essentially the same conditions as above. Proteins can be separated by SDS-PAGE and the incorporation of 32P and the amount of protein determined by Coomassie staining as above.

Gornji test prebiranja koji testira o Akt ovisnu fosforilaciju ili aktivaciju NOS, preferirano eNOS ili nNOS, se može koristiti za široki raspon sredstava. Primjerice, sredstva koja inhibiraju defosforilaciju NOS (inhibitori fosfataze) i aminokiseline koje odgovaraju serinu 1179 u goveđe eNOS, ostatku 1177 u human eNOS, ostatku 1412 u štakorski eNOS, ili ostatku 1415 u human nNOS mogu biti korisne molekule u terapiji. Slično, sredstva koja aktiviraju Akt ili koja oponašaju Akt fosforilacijsko mjesto na eNOS mogu biti korisne molekule u terapiji. The above screening assay that tests Akt-dependent phosphorylation or activation of NOS, preferably eNOS or nNOS, can be used for a wide variety of agents. For example, agents that inhibit NOS dephosphorylation (phosphatase inhibitors) and amino acids corresponding to serine 1179 in bovine eNOS, residue 1177 in human eNOS, residue 1412 in rat eNOS, or residue 1415 in human nNOS may be useful molecules in therapy. Similarly, agents that activate Akt or that mimic the Akt phosphorylation site on eNOS may be useful therapeutic molecules.

Sredstva koja su testirana gornjim metodama se mogu slučajno odabrati ili racionalno odabrati ili dizajnirati. Kako je ovdje korišteno, za sredstvo je rečeno da je slučajno odabrano kada je odabrano bez razmatranja specifične sekvencije proteina iz izuma samog ili povezanog sa susptratima, partnerima za vezivanje itd. Primjer slučajno odabranih sredstava su sredstva odabrana korištenjem kemijske biblioteke ili kombinacijske peptidne biblioteke ili bujon za rast organizama. The means tested by the above methods may be randomly selected or rationally selected or designed. As used herein, an agent is said to be randomly selected when it is selected without consideration of the specific sequence of a protein of the invention alone or associated with substrates, binding partners, etc. An example of randomly selected agents are agents selected using a chemical library or combinatorial peptide library or broth for the growth of organisms.

Kako je ovdje korišteno, za sredstvo se kaže da je racionalno odabrano ili dizajnirano kada je sredstvo odabrano tako da se uzme u obzir sekvnecija ciljanog mjesta i/ili njegova konformacija u vezi s djelovanjem sredstva. Primjerice, racionalno odabrano peptidno sredstvo može biti peptid čija je sekvencija aminokiselina slična Akt mjestu za fosforiliranje u NOS, posebice peptidi ili male molekule koje oponašaju fosforilirano stanje u NOS. As used herein, an agent is said to be rationally selected or designed when the agent is selected to take into account the sequence of the target site and/or its conformation in relation to the action of the agent. For example, a rationally chosen peptide agent can be a peptide whose amino acid sequence is similar to the Akt phosphorylation site in NOS, especially peptides or small molecules that mimic the phosphorylated state in NOS.

Sredstva iz ovog izuma mogu biti primjerice peptidi, male molekule, derivati vitamina kao i ugljikohidrati. Stručnjak može lako prepoznati da nema strukturnih ograničenja sredstava iz ovog izuma. The agents of this invention can be, for example, peptides, small molecules, vitamin derivatives as well as carbohydrates. One skilled in the art can readily recognize that there are no structural limitations to the means of this invention.

Peptidna sredstva iz izuma se mogu pripraviti standardno u čvrstoj fazi (ili u fazi otopine), metodom sinteze peptida, kao što je poznato u struci. Nadalje, DNA koja kodira te peptide se može sintetizirati korištenjem komercijalno pristupačne instrumentacijske oligonukleotidne sinteze i pripraviti rekombinantno korištenjem standardnih rekombinantnih produkcijskih sustava. Korištenje sinteze peptida na čvrstoj fazi je neophodno ako su uključene aminokiseline koje nisu kodirane od gena. Peptide agents of the invention can be prepared standardly in the solid phase (or in the solution phase), by the method of peptide synthesis, as is known in the art. Furthermore, the DNA encoding these peptides can be synthesized using commercially available instrumentation oligonucleotide synthesis and prepared recombinantly using standard recombinant production systems. The use of solid-phase peptide synthesis is necessary if non-gene-encoded amino acids are involved.

Sljedeća klasa sredstava u ovom izumu su antitijela imunoreaktivna s kritičnim položajem proteina iz izuma. Antitijela se dobivaju imunizacijom pogodnog sisavca peptidima koji sadrže antigensku regiju, a ti dijelovi proteina su ciljani antitijelima. The next class of agents in this invention are antibodies immunoreactive with the critical position of the protein of the invention. Antibodies are obtained by immunizing a suitable mammal with peptides containing the antigenic region, and these parts of the protein are targeted by the antibodies.

Upotreba sredstava za koje je utvrđeno da moduliraju aktivnost eNOS Use of agents found to modulate eNOS activity

Sredstva iz ovog izuma, kao što su sredstva koja inhibiraju defosforilaciju NOS (inihbitori fosfataze) u aminokiselini koja odgovara 1179 goveđe eNOS, ostatku 1177 humane eNOS, ostatku 1412 štakorske eNOS ili ostatku 1415 humane nNOS, kao i sredstva koja aktiviraju Akt ili koja oponašaju Akt mjesto fosforilacije na NOS se mogu davati parenteralnim, subkutanim, intravenoznim, intramuskularnim, intraperitonealnim, transdermalnim i bukalnim putem. Alternativno ili konkurentno, davanje može biti oralnim putem. Dana doza će ovisiti i starosti, zdravlju i težini recipijensa, vrsti konkurentnog tretmana ako postoji, frekvenciji tretmana i prirodi željenog učinka. Kao što je dolje opisano, postoje mnoge metode koje se lako prilagode za davanje ovakvih sredstava. Agents of the present invention, such as agents that inhibit the dephosphorylation of NOS (phosphatase inhibitors) at the amino acid corresponding to 1179 of bovine eNOS, residue 1177 of human eNOS, residue 1412 of rat eNOS, or residue 1415 of human nNOS, as well as agents that activate Akt or mimic Akt phosphorylation site on NOS can be administered by parenteral, subcutaneous, intravenous, intramuscular, intraperitoneal, transdermal and buccal routes. Alternatively or competitively, administration may be by oral route. The dose given will also depend on the age, health and weight of the recipient, the type of competing treatment if any, the frequency of treatment and the nature of the desired effect. As described below, there are many methods that can be easily adapted to provide these types of funds.

Ovaj izum nadalje prikazuje pripravke koji sadrže jedan ili više sredstava iz izuma. Kako individualna potreba varira, određivanje optimalnog raspona učinkovite količine svake komponente je unutar struke. Tipična doza sadrži 0.1 do 10 mg/kg tjelesne težine. Preferirana doza sadrži 0.1 do 10 mg/kg tjelesne težine. Najpreferiranija doza sadrži 0.1 do 1 mg/kg tjelesne težine. This invention further provides compositions containing one or more agents of the invention. As individual needs vary, determining the optimal range of effective amounts of each component is within the profession. A typical dose contains 0.1 to 10 mg/kg of body weight. A preferred dose contains 0.1 to 10 mg/kg of body weight. The most preferred dose contains 0.1 to 1 mg/kg of body weight.

Uz farmaceutski aktivno sredstvo, pripravci iz ovog izuma mogu sadržavati farmaceutski prihvatljive nosače koji sadrže ekscipijense i pomoćna sredstva koji olakšavaju procesuiranje aktivne tvari u pripravak koji se može koristiti farmaceutski za isporuku u mjesto djelovanja. Pogodne formulacije za parenteralno davanje uključuju vodene otopine aktivnih spojeva u obliku topljivom u vodi, primjerice u obliku soli topljivih u vodi. Nadalje, mogu se davati suspenzije aktivnih spojeva kao odgovarajuće uljne suspenzije za injekcije, primjerice sa sezamovim uljem ili sintetskim esterom masnih kiselina, primjerice etilnim oleatom ili trigliceridom. Vodene suspenzije za injekciju koje sadrže tvari koje povećavaju viskoznost suspenzije uključuju primjerice natrijevu karboksimetil-celulozu, sorbitol i/ili dekstran. Suspenzija može sadržavati stabilizator. Također se mogu koristiti liposomi kao sredstva za kapsuliranje tvari za unošenje u stanicu. In addition to the pharmaceutically active agent, the preparations of the present invention may contain pharmaceutically acceptable carriers containing excipients and auxiliaries that facilitate the processing of the active substance into a preparation that can be used pharmaceutically for delivery to the site of action. Suitable formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form, for example in the form of water-soluble salts. Furthermore, suspensions of active compounds can be given as suitable oil suspensions for injections, for example with sesame oil or a synthetic ester of fatty acids, for example ethyl oleate or triglyceride. Aqueous suspensions for injection containing substances that increase the viscosity of the suspension include, for example, sodium carboxymethyl cellulose, sorbitol and/or dextran. The suspension may contain a stabilizer. Liposomes can also be used as means for encapsulating substances for introduction into the cell.

Farmaceutske formulacije za sistemsko davanje prema izumu se mogu formulirati za enteralno, parenteralno ili topičko davanje. Doista, sva tri tipa formulacija se mogu davati istovremeno da se postigne sistemsko davanje aktivnog sastojka. Pharmaceutical formulations for systemic administration according to the invention can be formulated for enteral, parenteral or topical administration. Indeed, all three types of formulation can be administered simultaneously to achieve systemic administration of the active ingredient.

Pogodne formulacije za oralno davanje uključuju tvrde ili meke želatinske kapsule, pilule, tablete uključujući presvučene tablete, eliksire, suspenzije, sirupe ili inhalatora, te odgovarajuća sredstva s kontroliranim oslobađanjem. Suitable formulations for oral administration include hard or soft gelatin capsules, pills, tablets including coated tablets, elixirs, suspensions, syrups or inhalers, and suitable controlled release agents.

Pri prakticiranju metoda iz izuma, spojevi iz izuma se mogu koristiti sami ili u kombinaciji, ili u kombinaciji s drugim terapijskim ili dijagnostičkim sredstvima. U nekim preferiranim cjelinama, spojevi iz izuma se mogu istovremeno davati s ostalim spojevima koji se tipično propisuju za te uvjete, a prema općenito prihvaćenoj medicinskoj praksi, kao što su antikoagulacijska sredstva, trombolitička sredstva ili ostali antitrombociti, uključujući inhibitore agregacije trombocita, aktivatora plazminogena u tikvu, urokinaze, prourokinaze, streptokinaze, heparin, aspirin ili varfarin. Spojevi iz ovog izuma se mogu koristiti in vivo, obično u sisavcima, kao što su ljudi, ovce, konji, svinje, psi, mačke, štakori, miševi ili in vitro. In practicing the methods of the invention, the compounds of the invention may be used alone or in combination, or in combination with other therapeutic or diagnostic agents. In some preferred embodiments, the compounds of the invention can be administered simultaneously with other compounds that are typically prescribed for these conditions, and according to generally accepted medical practice, such as anticoagulants, thrombolytic agents or other antiplatelets, including platelet aggregation inhibitors, plasminogen activators in gourd, urokinase, prourokinase, streptokinase, heparin, aspirin or warfarin. The compounds of this invention can be used in vivo, usually in mammals, such as humans, sheep, horses, pigs, dogs, cats, rats, mice, or in vitro.

Sljedeći radni primjeri specifično pokazuju preferirane cjeline iz ovog izuma, i nisu priređeni kao ograničenja na bilo koji način ostatku izuma. Ostale generičke konfiguracije će biti očite stručnjacima. The following working examples specifically show preferred embodiments of the present invention, and are not intended to be limiting in any way to the remainder of the invention. Other generic configurations will be apparent to those skilled in the art.

PRIMJERI EXAMPLES

Sljedeći postupci su korišteni u Primjerima 1-2. The following procedures were used in Examples 1-2.

Transfekcija stanice: cDNA koja kodira goveđu eNOS, humanu iNOS, štakorsku nNOS u pcDNA3 i HA-označeni divljim tipom Akt, Akt (K179M) ili myr-Akt u CMV6 su generirani standardnom metodom kloniranja. Myr-nNOS u pcDNA3 je generiran s PCR, ugradnjom novih aminokiselinskih krajeva koji sadrže eNOS s N-miristoilnom skupinom na kosenzus mjestu (MGNLKSVG; SEQ 1 D NO: 1) fuzioniranim u okvir druge aminokiseline sekvencije koja kodira nNOS. U preliminarnim ispitivanjima COS stanica, tom konstruktu je uvedena N-miristoilna skupina ugradnjom 3H-miristiske kiseline, dok prirodnom nNOS nije i time je dobiveno približno 60% ukupnog ciljanog proteina u membranskoj frakciji stanice, dok samo 5-10% nNOS je povezano sa membranom u COS stanicama. Mutacijom potencijalniog Akt fosforilacijskog mjesta u eNOS je generirano Quick Site mutageneznim kitom usmjerenim na određeno mjesto (Stratagene) prema uputama proizvođača. Svi mutanti su verificirani DNA sekvenciranjem. COS-7 stanice su nanesene na hranjivu podlogu (199 mm posuda) i transficirane plazmidom za NOS (7.5-30 mg) i Akt (1 mg) korištenjem kalcijevog fosfata. Da bi se uravnotežile sve transfekcije, može se kotransficirati ekpresijski vektor cDNA za β-galatozidazu. Dvadeset četiri ili četrdeset osam sati nakon transfekcije, ekspresija odgovarajućeg proteina (40-80 mg) se može potvrditi Western blot analizom korištenjem eNOS mAb (9D10, Zymed), HA mAb (12CA5, Boehringer Mannheim), iNOS pAb (Zymed Laboratories) ili nNOSmAb (Zymed Laboratories). Cell transfection: cDNAs encoding bovine eNOS, human iNOS, rat nNOS in pcDNA3, and HA-tagged wild-type Akt, Akt (K179M), or myr-Akt in CMV6 were generated by standard cloning methods. Myr-nNOS in pcDNA3 was generated by PCR, incorporating new amino acid termini containing eNOS with an N-myristoyl group at the cosensus site (MGNLKSVG; SEQ 1 D NO: 1) fused in-frame to the second amino acid of the nNOS coding sequence. In preliminary tests of COS cells, an N-myristoyl group was introduced to that construct by incorporation of 3H-myristic acid, while natural nNOS was not, and this resulted in approximately 60% of the total target protein in the membrane fraction of the cell, while only 5-10% of nNOS was associated with the membrane in COS cells. Mutation of the potential Akt phosphorylation site in eNOS was generated with the Quick Site site-directed mutagenesis kit (Stratagene) according to the manufacturer's instructions. All mutants were verified by DNA sequencing. COS-7 cells were plated on nutrient media (199 mm dishes) and transfected with plasmids for NOS (7.5-30 mg) and Akt (1 mg) using calcium phosphate. To balance all transfections, a cDNA expression vector for β-galatosidase can be cotransfected. Twenty-four or forty-eight hours after transfection, expression of the corresponding protein (40-80 mg) can be confirmed by Western blot analysis using eNOS mAb (9D10, Zymed), HA mAb (12CA5, Boehringer Mannheim), iNOS pAb (Zymed Laboratories), or nNOSmAb (Zymed Laboratories).

Oslobađanje NO iz transficiranih stanica: 24-48 sati nakon transfekcije, u mediju se može provesti mjerenje nitrita (NO2-), koji je stablini produkt od NO u vodenoj otopini, a NO specifičnom kemiluminiscencijom kao što je opisano (Sessa et al., 1995). Mediju su uklonjeni proteini i uzorci koji sadrže NO2- su feluksirani u ledenoj octenoj kiselini koja sadrži natrijev jodid. Pod tim uvjetima se NO2- kvnatitativno reducira u NO koji je određen kemiluminiscencijskim detektorom nakon reakcije s ozonom u NO analizatori (Sievers, Boulders, CO). U svim eksperimentima se kontrole mogu pripraviti inhibicijom oslobađanja NO2- upotrebom inhibitora NOS. Nadalje, NO2- oslobađanje iz stanica transficiranih s cDNA za β-galatozidazu se može oduzeti od kontrole za osnovnu razinu NO2- nađene u serumu ili mediju. Akumulacija cGMP u COS može biti korištena kao biotest za produkciju NO, kao što je opisano. Release of NO from transfected cells: 24-48 hours after transfection, the measurement of nitrite (NO2-), which is the stem product of NO in aqueous solution, can be performed in the medium, and NO specific chemiluminescence as described (Sessa et al., 1995 ). Proteins were removed from the medium and samples containing NO2- were fluxed in glacial acetic acid containing sodium iodide. Under these conditions, NO2- is quantitatively reduced to NO, which is determined by a chemiluminescence detector after reaction with ozone in a NO analyzer (Sievers, Boulders, CO). In all experiments, controls can be prepared by inhibiting the release of NO2- using NOS inhibitors. Furthermore, NO2- release from cells transfected with β-galatosidase cDNA can be subtracted from a control for baseline NO2- levels found in serum or medium. Accumulation of cGMP in COS can be used as a bioassay for NO production, as described.

Test aktivnosti NOS: Konverzija 3H-L-arginina u 3H-L-citrulin je korištena za određivanje aktivnosti NOS u COS stanicama ili lizatima endotelnih stanica, kao što je prethodno opisano od Garcia-Cardena et al., (1998). NOS activity assay: Conversion of 3H-L-arginine to 3H-L-citrulline was used to determine NOS activity in COS cells or endothelial cell lysates, as previously described by Garcia-Cardena et al., (1998).

In vivo i iv vitro ispitivanja fosforilacije: Za ispitivanja in vivo fosforilacije, stanice COS su preko noći transficirane s cDNA za divlji tip ili S635, te HA-Akt preko noći. 36 sati nakon transfekcije, stanice su smještene u dijalizirani zasićeni serum, Dulbeccov minimalni medij bez fosfata uz dodatak 80 μCi 32P ortofosforne kiseline kroz 3 sata. Nekim stanicama je prethodno dodan wortmannin (500 nM) u mediju bez fosfata 1 h tijekom obilježavanja. Lizat je sakupljen, eNOS je solubilizirana i djelomično pročišćena ADP sefaroznom afinitetnom kromatografijom kao što je prethodno opisano i ugradnja 32P u NOS je vizualizirana nakon SDS-PAGE (7.5%) autoradiografijom i količina proteinskih NOS je verificirana Western blot metodom za NOS. Za in vitro istraživanja fosforilacije rekombinantna NOS je pročišćena iz E. coli je inkubirana s Akt divljeg tipa ili kinazno inaktivnom, a imunoprecipitiranim iz tranficiranih COS stanica. eNOS je inkubirana s 32P g-ATP (2 mL, specifična aktivnost 3000 Ci/mmol), ATP (50 mM), DTT (1 mM) u puferu koji sadrži HEPES (20 mM, pH 7.4), MnCl2 (10 mM) i imunoprecipitiranom Akt kroz 20 min pri sobnoj temperaturi. In vivo and iv vitro phosphorylation assays: For in vivo phosphorylation assays, COS cells were transfected overnight with cDNA for wild type or S635, and HA-Akt overnight. 36 hours after transfection, cells were placed in dialyzed saturated serum, phosphate-free Dulbecco's minimal medium supplemented with 80 μCi 32P orthophosphoric acid for 3 hours. Some cells were pre-supplemented with wortmannin (500 nM) in phosphate-free medium for 1 h during labeling. The lysate was collected, eNOS was solubilized and partially purified by ADP sepharose affinity chromatography as previously described and the incorporation of 32P into NOS was visualized after SDS-PAGE (7.5%) by autoradiography and the amount of protein NOS was verified by the Western blot method for NOS. For in vitro phosphorylation studies, recombinant NOS was purified from E. coli, incubated with wild-type or kinase-inactive Akt, and immunoprecipitated from transfected COS cells. eNOS was incubated with 32P g-ATP (2 mL, specific activity 3000 Ci/mmol), ATP (50 mM), DTT (1 mM) in a buffer containing HEPES (20 mM, pH 7.4), MnCl2 (10 mM) and with immunoprecipitated Akt for 20 min at room temperature.

U eksperimentima u kojima se ispituje in vitro fosforilacija NOS divljeg tipa ili mutanta, rekombinantna Akt (1 mg) pročišćena iz bakulovirusom inficiranih SF9 stanica je inkubirana s divljim tipom ili S1179A eNOS(2.4 mg, pročišćen iz E. coli) korištenjem suštinski istih uvjeta kao gore. Proteini se mogu razdvojiti pomoću SDS-PAGE i ugradnjom 32P, a količina proteina je određena bojanjem po Coomassie kao gore. In experiments examining in vitro phosphorylation of wild-type or mutant NOS, recombinant Akt (1 mg) purified from baculovirus-infected SF9 cells was incubated with wild-type or S1179A eNOS (2.4 mg, purified from E. coli) using essentially the same conditions as up. Proteins can be separated by SDS-PAGE and 32P incorporation, and the amount of protein determined by Coomassie staining as above.

U istraživanjima identifikacije označenih peptidnih eNOS, imunoprecipitirana Akt je inkubirana s rekombinantnom eNOS kao gore. Uzorak je nanesen na SDS-PAGE i eNOS vrpce su razgrađene u gelu, a nastali triptični fragmenti su pročišćeni pomoću RP-HPLC. Peptidna masa i ugradnja 32P je praćena i istaknut označeni signal je zatim analiziran masenom spektroskopijom. U ostalima eksprimentima su sintetizirani peptidi koji odgovaraju potencijalnom mjestu Akt fosforilacije, pročišćeni pomoću HPLC i masa je verificirana spektrometrijom (W. M. Keck Biotechnology Resource Center, Vale University School od Medicine). Peptid divljeg tipa je bio 1174RIRTQSFSLQERHLRGAVPWA1194 (SEQ. OD NO: 2) i mutirani peptid je bio identičan osim što je S1179 promjenjen u alanin. Pri in vitro reakcijama kinaze, kao one opisane gore, su peptidi inkubirani (25 mg) s rekombinantnom Akt (1 mg). Reakcije su zatim nanesene na fosfocelulozne filtere i količina ugrađenog fosfata je mjerena brojanjem po Cerenkovu. In studies identifying labeled peptide eNOS, immunoprecipitated Akt was incubated with recombinant eNOS as above. The sample was applied to SDS-PAGE and the eNOS bands were resolved in the gel, and the resulting tryptic fragments were purified by RP-HPLC. Peptide mass and 32P incorporation was monitored and the prominently labeled signal was then analyzed by mass spectroscopy. In other experiments, peptides corresponding to a potential Akt phosphorylation site were synthesized, purified by HPLC and mass verified by spectrometry (W. M. Keck Biotechnology Resource Center, Vale University School of Medicine). The wild-type peptide was 1174RIRTQSFSLQERHLRGAVPWA1194 (SEQ. NO: 2) and the mutated peptide was identical except that S1179 was changed to alanine. In in vitro kinase reactions, such as those described above, peptides were incubated (25 mg) with recombinant Akt (1 mg). The reactions were then applied to phosphocellulose filters and the amount of incorporated phosphate was measured by Cerenkov counting.

Adenovirusna infekcija i oslobađanje NO u endotelnim stanicama: Goveđe mikrovaskularne endotelne stanice pluća (BLMVEC) su kultivirane u 100 mm posudama (za bazalno oslobađanje NO i test aktivnosti NOS) ili C6 jažicama (za stimulaciju NO) kao što je prethodno opisano (Garcia-Cardena et al. 1996a). BLNVED su inficirane s 200 MOI adenovirusom koji sadrži β-galaktozidazu 29 HA-označenu, inaktivni fosforilirani mutant Akt (A-A-Akt; Alessi et al. 1996) ili terminalnu karboksi HA-obilježenu konstitutivno aktivnu Akt (myr-Akt) kroz 4 sata. Virus je uklonjen i stanice su ostavljene 18 sati u kompletnom mediju. U preliminarnim istraživanjima s (3-galaktozidaznim virusom su ti uvjeti bili optimalni za infekciju 100% kultura. Za mjerenje bazalne produkcije NO, medij je istražen na oslobađanje NO 24 sata nakon početne infekcije virusom. Za mjerenje stimuliranog oslobađanja NO, stanice su zatim prane s medijem bez seruma, a zatim stimulirane s VEGF (40 ng/mL) kroz 30 minuta. U nekim eksperimentima je ovisnost NOS o kalciju određena 24 sata nakon adenovirusne infekcije. Inficirane stanice su lizirane u puferu za NOS test koji sadrži 1% NP40 i za aktivnost je korišten u detergentu topljiv materijal. Lizati su inkuborane s EGTA puferiran kalcijem, da se dobije odgovarajuće količine slobodnog kalcija pri inkubaciji. Adenovirus infection and endothelial cell NO release: Bovine microvascular lung endothelial cells (BLMVEC) were cultured in 100 mm dishes (for basal NO release and NOS activity assay) or C6 wells (for NO stimulation) as previously described (Garcia-Cardena et al. 1996a). BLNVEDs were infected with 200 MOI adenovirus containing β-galactosidase 29 HA-tagged, inactive phosphorylated mutant Akt (A-A-Akt; Alessi et al. 1996) or terminal carboxy HA-tagged constitutively active Akt (myr-Akt) for 4 h. The virus was removed and the cells were left for 18 hours in complete medium. In preliminary studies with (3-galactosidase virus) these conditions were optimal for infection of 100% of cultures. To measure basal NO production, the medium was probed for NO release 24 hours after initial virus infection. To measure stimulated NO release, cells were then washed with with serum-free medium and then stimulated with VEGF (40 ng/mL) for 30 min. In some experiments, calcium dependence of NOS was determined 24 h after adenovirus infection. Infected cells were lysed in NOS assay buffer containing 1% NP40 and for activity, a detergent-soluble material was used.Lysates were incubated with EGTA buffered with calcium, to obtain adequate amounts of free calcium during incubation.

Statistike: Podaci su izraženi kao srednja vrijednosttstandardna devijacija. Usporedbe načinjene dvostrukim Stidentovim testom ili ANOVA s post-hoc testom su bile odgovarajuće. Razlike koje se smatraju značajnim su p<0.05. Statistics: Data are expressed as mean and standard deviation. Comparisons made by two-way Stident's test or ANOVA with post-hoc test were appropriate. Differences considered significant are p<0.05.

Primjer 1: Akt modulira produkciju NO it eNOS Example 1: Akt modulates the production of NO and eNOS

Da se ispita mogućnost da nizvodni efektor PI-3 kinaza Akt može izravno utjecati na produkciju NO, COS-7 stanice (koje ne ekprimiraju NOS) su kotransficirane s eNOS i divljim tipom Akt (HA-Akt) ili s kinazno neaktivnim Akt (HA-Akt K179M) i akumulacija nitrtira (NO2-) je mjerena NO specifičnom kemoiluminiscencijom. Transfekcija eNOS rezultira povećanjem akumulacije NO2-, efektom koji je znatno povećan kotransfekcijom divljeg tipa Akt, ali ne varijante inaktivne na kinazu (Slika 1A). Identični rezultati su dobiveni korištenjem cGMP kao biotesta za biološko aktivni NO. Pod tim eksprimentalnim uvjetima, Akt je katalitički aktivan kao što je određeno Western blot metodom s fosfo-Akt specifičnom Ab (koja prepoznaje serin 473; nije prikazano) i testom aktivnosti Akt (vidi Sliku 2A). Transfekcija konstitutivno aktivnog oblika Akt (myr-Akt) povećava cGMP akumulaciju (testirano u COS stanicama) iz 5.5±0.8 do 11.6±0.9 pmol cGMP/mg proteina (stanice transficirane s eNOS same ili eNOS s myr-Akt) dok je na kinazu neaktivan Akt ne utječe na akumulaciju cGMP (5.8±0.8 pmol cGMP, n=4 eksperimenta). Kao što se vidi iz umetnutog dijela, jednake razine eNOS i Akt su ekprimirane u lizatu COS stanica pokazujući da Akt modulira eNOS pa povećava produkciju NO pod bazalnim uvjetima. To examine the possibility that the downstream effector of PI-3 kinase Akt may directly affect NO production, COS-7 cells (which do not express NOS) were cotransfected with eNOS and wild-type Akt (HA-Akt) or with kinase-inactive Akt (HA- Akt K179M) and nitrite (NO2-) accumulation was measured by NO-specific chemiluminescence. Transfection of eNOS results in an increase in NO2- accumulation, an effect that is significantly enhanced by co-transfection of wild-type Akt, but not the kinase-inactive variant (Figure 1A). Identical results were obtained using cGMP as a bioassay for biologically active NO. Under these experimental conditions, Akt is catalytically active as determined by Western blotting with a phospho-Akt specific Ab (recognizing serine 473; not shown) and an Akt activity assay (see Figure 2A). Transfection of the constitutively active form of Akt (myr-Akt) increases cGMP accumulation (tested in COS cells) from 5.5±0.8 to 11.6±0.9 pmol cGMP/mg protein (cells transfected with eNOS alone or eNOS with myr-Akt) while it is inactive on the kinase Akt does not affect cGMP accumulation (5.8±0.8 pmol cGMP, n=4 experiments). As seen in the inset, equal levels of eNOS and Akt were expressed in COS cell lysate, demonstrating that Akt modulates eNOS and increases NO production under basal conditions.

eNOS je dvostruko acilirani protein iz periferne membrane koji uvodi u Golgijevu regiju i membranu plazme endotelnih stanica (Liu et al., 1997; Garcia-Cardena et al., 1996a; Shaal et al., 1996) i potrebna je kompartmentalizacija za efikasnu produkciju NO kao odgovor na izazov agonista (Sessa et al. 1995; Lui et al., 1996; Kantor et al. 1996). Da se ispita da li aktivacija eNOS uz Akt zahtjeva kompartmenizaciju pomoću membrane, COS-7 su istovremeno transficirane s cDNA za Akt i mjerena je količina uvedene miristilske skupine, pamitolilne skupine u defektni mutant eNOS (G2A eNOS) i osobađanje NO. Kao što se vidi na Slici 1B, Akt nije aktivirao neacilirani oblik eNOS pokazujući da je komparmenizacija pomoću membrane za oba proteina potrebna za njihovu funkcionlanu interakciju (Downward et al. 1998). Zatim je određeno da li Akt može aktivirati strukturno slične ali različite izoforme NOS, neuronsku i inducibilnu NOS (nNOS i iNOS). Istovremena transfekcija Akt s nNOS i iNOS nije dala daljnje povećavanje oslobađanja NO pokazujući specifičnosti Akt na eNOS. Međutim, adicijom N-miristolizacijskog mjesta na nNOS, a da se poveća interakcija s biološkim membranama, dovodi do stimulacije nNOS s Akt na analogan način viđen s eNOS, pokazujući da oba izooblika mogu biti odgovorna za aktivaciju Akt kinaze kada je membrana usidrena. eNOS is a doubly acylated protein from the peripheral membrane that localizes to the Golgi region and plasma membrane of endothelial cells (Liu et al., 1997; Garcia-Cardena et al., 1996a; Shaal et al., 1996) and compartmentalization is required for efficient NO production. in response to agonist challenge (Sessa et al. 1995; Lui et al., 1996; Kantor et al. 1996). To investigate whether activation of eNOS with Akt requires membrane compartmentalization, COS-7 were simultaneously transfected with cDNA for Akt and the amount of introduced myristyl group, pamitolyl group in defective mutant eNOS (G2A eNOS) and NO uptake were measured. As seen in Figure 1B, Akt did not activate the non-acylated form of eNOS demonstrating that membrane compartmentalization of both proteins is required for their functional interaction (Downward et al. 1998). It was then determined whether Akt can activate structurally similar but different NOS isoforms, neuronal and inducible NOS (nNOS and iNOS). Simultaneous transfection of Akt with nNOS and iNOS did not further increase NO release, demonstrating the specificity of Akt for eNOS. However, the addition of an N-myristoylation site to nNOS, to increase its interaction with biological membranes, leads to stimulation of nNOS with Akt in an analogous manner to that seen with eNOS, demonstrating that both isoforms may be responsible for activation of Akt kinase when membrane-anchored.

Primjer 2: Produkcija mutacija eNOS Example 2: Production of eNOS mutations

Gornji eksperimenti pokazuju da Akt, možda putem fosforilacije eNOS, može modulirati oslobađanje NO iz stanica. Doista, potencijalna forilacijska motiva (RXRXXS/T) su prisutna u eNOS (serini 635 i 1179 u goveđoj eNOS ili serini 633 i 1177 u humanoj eNOS) i jedan motiv je prisutan u nNOS (serin 1412 u štakorskoj i 1415 u humanoj nNOS), a nije nađen u iNOS. Da se ispita je li eNOS mogući supstrat s Akt fosforilaciju in vitro, COS stanice su transficirane s HA-Akt ili HA-Akt (K179M) i kinazna aktivnosti je testirana upotrebom rekombinantnog eNOS supstrata. Kao što se vidi na Slici 2A, aktivna kinaza fosforilira histon 2B i eNOS (69±2.9 i 115.4±3.8 pmol ATP/nmol supstrata, n=3), dok inaktivna Akt ne povećava značajno histon ili fosforilaciju eNOS. Da se rasvijetli da li je potencijalno Akt fosforilacijsko mjesto u eNOS odgovorno za ugradnju 32P, dva serina su mutirana s alanininskim ostatkom i sposobnost Akt da stimulira divlji tip i mutirani eNOS fosforilacijom je ispitivana u intaktnim COS stanicama. Transficirane stanice su obilježene 32P-ortofosfatom, eNOS je djelomično pročišćen ADP-sefaroznom afinitetnom kromatografijom i određeno je stanje fosforilacije i razina proteina. Kao što se vidi na Slici 2B, istovremena ekspresija Akt rezultira dvostrukim povećanjem fosforilacije eNOS relativno prema nestimuliranim stanicama. Pretretman eNOS/Akt transficiranih stanica s wortmanninom ukida AKt inducirano povećanje fosforilacije. Nadalje, mutacija serina 634 i 1179 u alaninski ostatak ukida o Akt ovisnu fosforilaciju eNOS pokazujući da ti ostaci mogu biti potencijalna mjesta fosforilacije u cijelim stanicama. The above experiments show that Akt, perhaps via phosphorylation of eNOS, can modulate the release of NO from cells. Indeed, potential phorylation motifs (RXRXXS/T) are present in eNOS (serines 635 and 1179 in bovine eNOS or serines 633 and 1177 in human eNOS) and one motif is present in nNOS (serine 1412 in rat and 1415 in human nNOS). and was not found in iNOS. To examine whether eNOS is a possible substrate for Akt phosphorylation in vitro, COS cells were transfected with HA-Akt or HA-Akt (K179M) and kinase activity was assayed using a recombinant eNOS substrate. As seen in Figure 2A, active kinase phosphorylates histone 2B and eNOS (69±2.9 and 115.4±3.8 pmol ATP/nmol substrate, n=3), whereas inactive Akt does not significantly increase histone or eNOS phosphorylation. To elucidate whether a potential Akt phosphorylation site in eNOS is responsible for 32P incorporation, two serines were mutated with an alanine residue and the ability of Akt to stimulate wild-type and mutant eNOS phosphorylation was examined in intact COS cells. Transfected cells were labeled with 32P-orthophosphate, eNOS was partially purified by ADP-sepharose affinity chromatography, and the phosphorylation state and protein level were determined. As seen in Figure 2B, co-expression of Akt results in a twofold increase in eNOS phosphorylation relative to unstimulated cells. Pretreatment of eNOS/Akt transfected cells with wortmannin abolished the AKt-induced increase in phosphorylation. Furthermore, mutation of serine 634 and 1179 to an alanine residue abolishes Akt-dependent eNOS phosphorylation, demonstrating that these residues may be potential phosphorylation sites in whole cells.

Da se izravno identificiraju ostaci fosforilirani od Akt, divlji tip eNOS je inkubiran s imunopročišćenom Akt i mjesta fosforilacije su određena HPLC a zatim MALDi-masenom spektrometrijom (MALDi-MS). Kao što se vidi na Slici 2C, primarni 32P-obilježeni triptični fosfopeptid eluiran je zajedno sa sintetskim fosfopeptidom (aminokiseline 1177-1185 s fosfoserinom u položaju 1179) i ima identični maseni ion što je određeno linearnim modom MS. Upotrebom reflektron moda MALDi-MS praćenja, obilježeni triptički peptid i standardni fosfopeptid su pokazali gubitak H3PO4 pokazujući da je triptični peptid fosforiliran. Uz to, mutacija S1179 u A značajno smanjuje o Akt ovisnu fosforilaciju eNOS u usporedbi s proteinom divlje tipa (Slika 2D). Identični rezultati su dobiveni upotrebom peptida (aminokiseine 1174-1194) izvedene iz divljeg tipa ili eNOS S1179A kao supstrata za rekombinantni Akt (peptid divljeg tipa ugradio je 24.6±3.7 mmol fosfata/mg u usporedni s alaninom mutiranim peptidom koji je ugradio 0.22±0.02 nmol fosfata/mg; n=5). Ovi podaci pokazuju da je eNOS supstrat za Akt i da je primarno mjesto fosforilacije serin 1179 (serin 1177 u humanom eNOS). To directly identify residues phosphorylated by Akt, wild-type eNOS was incubated with immunopurified Akt and phosphorylation sites were determined by HPLC followed by MALDi-mass spectrometry (MALDi-MS). As seen in Figure 2C, the primary 32 P-labeled tryptic phosphopeptide co-eluted with the synthetic phosphopeptide (amino acids 1177-1185 with phosphoserine at position 1179) and had an identical mass ion as determined by linear mode MS. Using reflectron mode MALDi-MS monitoring, the labeled tryptic peptide and standard phosphopeptide showed loss of H3PO4 indicating that the tryptic peptide was phosphorylated. In addition, mutation of S1179 in A significantly reduces Akt-dependent phosphorylation of eNOS compared to the wild-type protein (Figure 2D). Identical results were obtained using a peptide (amino acids 1174-1194) derived from wild-type or eNOS S1179A as a substrate for recombinant Akt (the wild-type peptide incorporated 24.6±3.7 mmol phosphate/mg compared to the alanine mutated peptide which incorporated 0.22±0.02 nmol phosphate/mg; n=5). These data indicate that eNOS is a substrate for Akt and that the primary phosphorylation site is serine 1179 (serine 1177 in human eNOS).

Sljedeće smo ispitali funkcionalnu signifikantnost potencijalnog Akt fosforilacijskog mjesta serina 635 i identificirali mjesto serina 1179. Transfekcijom COS stanica s dvostruko mutiranim eNOS S635/1179A prestaje o Akt ovisno oslobađanje NO. Mutacijom serina 635 u alanin se ne smanjuje oslobađanje NO, dok eNOS S1179A smanjuje o Akt ovisno aktiviranje eNOS (slika 3). Ti rezultati pokazuju da je serin 1179 funkcionalno važan za oslobađanje NO. Mutacija serina 1179 u asparaginsku kiselinu (eNOS S1179D), a da se uvede negativni naboj kojim rezultira adicijom fosfata, djelomično oponaša aktivirano stanje inducirano s Akt (S1177D u humanom eNOS). Svi mutanti su dovoljno eksprimirani (vidi umetnute Western blotove) i zadržavaju NOS katalitičku aktivnosti u staničnim lizatima (u COS stanicama transficiranih samo s eNOS, aktivnost NOS je bila 85.3±27.0, 71.9±2.9, 80.8±23.2, te131.8±36.7 pmol generiranog L-citrulina/mg proteina iz lizata COS stanica koje eksprimiraju divlji tip, S1179A, S635, 1179A i eNOS 1179D, n=3 eksperimenta). Next, we examined the functional significance of the potential Akt phosphorylation site serine 635 and identified the site serine 1179. Transfection of COS cells with double-mutated eNOS S635/1179A stops Akt-dependent NO release. Mutation of serine 635 to alanine does not reduce NO release, while eNOS S1179A reduces Akt-dependent activation of eNOS (Figure 3). These results indicate that serine 1179 is functionally important for NO release. Mutation of serine 1179 to aspartic acid (eNOS S1179D) to introduce a negative charge resulting in phosphate addition partially mimics the activated state induced by Akt (S1177D in human eNOS). All mutants are sufficiently expressed (see inset Western blots) and retain NOS catalytic activity in cell lysates (in COS cells transfected with eNOS alone, NOS activity was 85.3±27.0, 71.9±2.9, 80.8±23.2, and 131.8±36.7 pmol of generated L-citrulline/mg protein from lysates of COS cells expressing wild type, S1179A, S635, 1179A and eNOS 1179D, n=3 experiments).

Da se ispita da li Akt posreduje oslobađanju NO iz endotelnih stanica, goveđe plućne mikrovaskularne endotelne stanice (BLMVEC) su inficirane s adenovirusnima koji eksprimiraju aktiviranu Akt (myr-Akt), aktivacijom defektne Akt (AA-Akt) ili β-galaktozidaze kao kontrole za akumuaciju mjerenog NO. Kao što se vidi na Slici 4A, myr-Akt stimulira bazalnu produkciju NO iz BLMVEC, dok stanice inficirane s β-galaktozidazom ili nedovoljno aktiviranom Akt oslobađaju malu razinu NO koja je blizu granici detekcije. Ti podaci skupa sa sličnim rezultatima u COS stanicama pokazuju da je Akt fosforilacija eNOS dovoljna za regulaciju produkcije NO pri razini kalcija u odmaranju. Doista, aktivnost NOS mjerena u lizatu iz myr-Akt inficiranim BLMVEC pokazuje da je osjetljivost enzima prema aktivaciji kalcijem, a testirana pri fiksnoj koncentracijom kamodulina, povećana relativno prema aktivnosti NOS viđene u BLMVEC iniciranim virusom β-galaktozidaze (Slika 4B). Interesantno, osjetljivost NOS aktivnosti prema kalciju u inficiranim stanicama nedovoljno aktivnim Akt je uvelike prigušena u inficiranim stanicama s myr-Akt i β-galaktozidazom. To examine whether Akt mediates NO release from endothelial cells, bovine pulmonary microvascular endothelial cells (BLMVEC) were infected with adenoviruses expressing activated Akt (myr-Akt), activation-defective Akt (AA-Akt), or β-galactosidase as controls. accumulation of measured NO. As seen in Figure 4A, myr-Akt stimulates basal NO production from BLMVECs, whereas cells infected with β-galactosidase or insufficiently activated Akt release a low level of NO close to the limit of detection. These data together with similar results in COS cells indicate that Akt phosphorylation by eNOS is sufficient to regulate NO production at resting calcium levels. Indeed, NOS activity measured in lysate from myr-Akt-infected BLMVECs shows that the sensitivity of the enzyme to calcium activation, tested at a fixed concentration of calmodulin, is increased relative to NOS activity seen in BLMVECs initiated by β-galactosidase virus (Figure 4B). Interestingly, the sensitivity of NOS activity to calcium in infected cells with insufficiently active Akt is greatly attenuated in infected cells with myr-Akt and β-galactosidase.

Poznato je da tretman endotelnih stanica s VEGF (40 ng/mL) aktivira Akt23 i oslobađanje NO putem mehanizma djelomično inhibiranim inhibitorima PI-3 kinaze (Papapetrouos et al., 1997). Da se ispita funkcionalna veza između VEGF i agonista za oslobađanje NO i Akt aktivacije, BLMVEC je inficiran adenovirusima za myr-Akt, AA-Akt ili β-galaktozidazu i mjereno je oslobađanje NO stimulirano VEGF. Kao što se vidi na Slici 4C, infekcija endotelnih stanica s myr-Akt povećava VEGF uzrokovano produkciju NO dok AA-AKt smanjuje oslobađanje NO. Ovi rezultati pokazuju da Akt sudjeluje i signalnim transdukcijskim događajima potrebnim za bazalnu i stimuliranu produkciju NO u endotelnim stanicama. Treatment of endothelial cells with VEGF (40 ng/mL) is known to activate Akt23 and NO release via a mechanism partially inhibited by PI-3 kinase inhibitors (Papapetrouos et al., 1997). To examine the functional link between VEGF and agonists for NO release and Akt activation, BLMVEC were infected with adenoviruses for myr-Akt, AA-Akt, or β-galactosidase, and VEGF-stimulated NO release was measured. As seen in Figure 4C, infection of endothelial cells with myr-Akt increased VEGF-induced NO production while AA-AKt decreased NO release. These results indicate that Akt participates in both the signal transduction events required for basal and stimulated NO production in endothelial cells.

Svi ovi podaci pokazuju da Akt može fosforilirati eNOS na serinu 1179 (serin 1177 z humanom eNOS) i da fosforilacija povećava sposobnost enzima da generira NO. All these data indicate that Akt can phosphorylate eNOS at serine 1179 (serine 1177 with human eNOS) and that phosphorylation increases the ability of the enzyme to generate NO.

Primjer 3 Example 3

Materijali i metode Materials and methods

eNOS konstrukti i pročišćavanje proteina - Goveđi eNOS divljeg tipa je eksprimiran u plazmidu pCW kao što je ranije opisano s groELS u E. coli BL21 stanicama (Martasek et al. 1996). S1179D mutant eNOS za ekspresiju u E. coli je generiran na sljedeći način. eNOS S1179D i pcDNA 3 (Fulton et al. 1999) je razgrađen s Xhol/Xbal, subkloniran u identičnim mjestima eNOS u pCW i istovremeno eksprimiran s groELS. Izolacija rekombinantne eNOS je izvedena kao što je ranije prikazano (Roman et al., 1995; Martasek et al. 1999), sa sljedećim modifikacijama. eNOS je eluiran s 2'5'-ADP Sepharose s 10 mM NADPH ili 10 mM 2'-AMP. Količina eNOS je određena korištenjem apsorbancije na 409-412 nm s ekstinkcijskim koeficijentom za sadržaj hema od 0.1 μM-1cm-1. Čistoća eNOS je određena 7.5% SDS-PAGE nakon čega slijedi bojanje po Coomassie. SDS-PAGE na niskoj temperaturi je proveden identično, osim što uzorci nisu zagrijavani do vrenja i elektroforeza je izvedena na 4 °C u smjesi leda i vode (Klatt et al., 1995). U eksperimentima u kojima su titrirani NOS kofaktori (L-arginin, kalmodulin i NADPH), oni su ispušteni iz pročišćavanja i čuvanja enzima i inkubirani su kao što je dolje opisano. eNOS constructs and protein purification - Wild-type bovine eNOS was expressed in plasmid pCW as previously described with groELS in E. coli BL21 cells (Martasek et al. 1996). The S1179D mutant eNOS for expression in E. coli was generated as follows. eNOS S1179D and pcDNA 3 (Fulton et al. 1999) was digested with XhoI/XbaI, subcloned into the identical sites of eNOS in pCW and co-expressed with groELS. Isolation of recombinant eNOS was performed as previously described (Roman et al., 1995; Martasek et al., 1999), with the following modifications. eNOS was eluted from 2'5'-ADP Sepharose with 10 mM NADPH or 10 mM 2'-AMP. The amount of eNOS was determined using absorbance at 409-412 nm with an extinction coefficient for heme content of 0.1 μM-1cm-1. Purity of eNOS was determined by 7.5% SDS-PAGE followed by Coomassie staining. Low-temperature SDS-PAGE was performed identically, except that samples were not heated to boiling and electrophoresis was performed at 4 °C in a mixture of ice and water (Klatt et al., 1995). In experiments in which NOS cofactors (L-arginine, calmodulin, and NADPH) were titrated, they were omitted from enzyme purification and storage and incubated as described below.

Test za aktivnost NOS: Produkcija NO je mjerena hvatanjem hemoglobinom kao što je opisano (Kelm et al., 1988). Ukratko, reakcijska smjesa sadrži eNOS (0.5-2.5 μg), oksihemoglobin (8 μM), L-arginin (10 μM), BH4 (5 μM), CaCl2 (120 μM), kalmodulin (120-200 nM) i NADPH (100 μM) u HEPES puferu (50 mM), pH 7.4. Pri određivanju EC50 vrijednosti kalcija za eNOS, gornja smjesa je modificirana na sljedeći način: dodani su MOPS pufer (10 mM, pH 7.6). KCl (100 mM) i CaM (250 nM). Pod tim uvjetima je izračunat slobodni kalcij WinMAXC verzijom programa 1.8 (Stanford University) s Kd od 2.2x10-8. Točna koncentracija slobodnog kalcija je određena miješanjem odgovarajućeg omjera 10 mM K2EGTA i 10 mM CaEGTA standardne otopine (Molecular Probes). Linearna aktivnost NOS je praćena kroz 2 minute pri 401 nm i produkcija NO je izračunata na osnovu promjene apsorbancije korištenjem ekstinkcijskog koeficijenta od 60 mM-1cm-1. Sve reakcije su izvedene pri 23 °C i svaka točka predstavlja 3-8 mjerenja. Ekstinkcijski koeficijent od 0.0033 μM-1cm-1 pri 276 nm je korišten za određivanje koncentracije kalmodulina. Produkcija NO korištenjem ove metode je potpuno blokirana dodatkom nitro-L-arginina (1 mM). Kada je određena inaktivnacija eNOS dodatkom EGTA (200-800 μM) u reakcijsku smjesu je dodan kelator 1 min nakon započinjanja reakcije s NADPH. Identični uvjeti su korišteni kada je ispitivana aktivnost NADPH-citokrom c reduktaze. Ove reakcije sadrže CaM (120 nM) i CaCl2 (200 μM) u volumenu od 0.5 mL s eNOOS (5 μg). Assay for NOS activity: NO production was measured by hemoglobin capture as described (Kelm et al., 1988). Briefly, the reaction mixture contains eNOS (0.5-2.5 μg), oxyhemoglobin (8 μM), L-arginine (10 μM), BH4 (5 μM), CaCl2 (120 μM), calmodulin (120-200 nM) and NADPH (100 μM) in HEPES buffer (50 mM), pH 7.4. When determining the EC50 value of calcium for eNOS, the above mixture was modified as follows: MOPS buffer (10 mM, pH 7.6) was added. KCl (100 mM) and CaM (250 nM). Under these conditions, free calcium was calculated using WinMAXC program version 1.8 (Stanford University) with a Kd of 2.2x10-8. The exact concentration of free calcium was determined by mixing the appropriate ratio of 10 mM K2EGTA and 10 mM CaEGTA standard solution (Molecular Probes). Linear NOS activity was monitored for 2 minutes at 401 nm and NO production was calculated based on the change in absorbance using an extinction coefficient of 60 mM-1cm-1. All reactions were performed at 23 °C and each point represents 3-8 measurements. The extinction coefficient of 0.0033 μM-1cm-1 at 276 nm was used to determine the calmodulin concentration. NO production using this method was completely blocked by the addition of nitro-L-arginine (1 mM). When eNOS inactivation was determined by the addition of EGTA (200-800 μM), a chelator was added to the reaction mixture 1 min after the start of the reaction with NADPH. Identical conditions were used when NADPH-cytochrome c reductase activity was examined. These reactions contain CaM (120 nM) and CaCl2 (200 μM) in a volume of 0.5 mL with eNOOS (5 μg).

Pretvorba L-arginina u L-citrulin je testirana kao što je ranije opisano od Bredt et al (1990). Ukratko, eNOS (0.25-2 μg) je inkubirana kroz 3-10 minuta pri 23 °C u sljedećoj reakcijskoj smjesi: 3 pmol L-[3H]arginina (55 Ci/mmol), 10-300 μM arginina, 1 mM NADPH, 120-200 nM kalmodulina, 2 mM CaCl2 i 30 μM BH4 u konačnom volumenu od 50-100 μL Reakcija je zaustavljena dodatkom 0.5 mL 20 mM HEPES, pH 5.5 koji sadrži 2 mM EGTA i EDTA. Reakcijska smjesa je smještena na Dowex AG50WX8 i protok je brojan na Packard 1500 tekućinksom scintilacijskom analizatoru. Conversion of L-arginine to L-citrulline was assayed as previously described by Bredt et al (1990). Briefly, eNOS (0.25-2 μg) was incubated for 3-10 minutes at 23 °C in the following reaction mixture: 3 pmol L-[3H]arginine (55 Ci/mmol), 10-300 μM arginine, 1 mM NADPH, 120-200 nM calmodulin, 2 mM CaCl2 and 30 μM BH4 in a final volume of 50-100 μL. The reaction was stopped by the addition of 0.5 mL of 20 mM HEPES, pH 5.5 containing 2 mM EGTA and EDTA. The reaction mixture was placed on a Dowex AG50WX8 and the flow was counted on a Packard 1500 liquid scintillation analyzer.

Test aktivnosti reduktaze - Aktivnost NADPH-citokrom c reduktaze i redukcija 2,6-diklorfenolindofenola (DCIP) je mjerena kao promjena u apsorbanciji pri 550 nm kao što je opisano prethodno od Martasek et al (1999) i Masters et al (1967), korištenjem istog ekstinkcijskog koeficijenta od 0.021 μM-1 za citokrom c i DCIP. Ukratko, reakcijska smjesa (1 mL) sadrži citokrom c (90 μM); DCIP (36 μM), HEPES pufer (50 mM) pri pH 7.6, NaCl (250 mM), NADPH (100 μM), kalmodulin (120 nM) i CaCl2 (100 μM)ili ostale tvari, kao što je prikazano. Reakcija je praćena 60 s (pri 23 °C) nakon dodatka eNOS. Kada je inaktivacija redukcijske aktivnosti određena dodatkom EGTA (200-800 μM), dodan je kelator 1 minutu nakon započinjanja reakcije i praćeno je još 1 min. Reakcija je sadržavala HEPES pufer (50 mM) pri pH 7.6, CaM (120 nM) i CaCl2 (200 μM) i inicirana je s NADPH (100 μM). U eksperimentima u kojima je istraživana inaktivacija eNOS s EGTA nije dodan NaCl, a da bi se oponašali uvjeti korišteni u eksperimentima hvatanja hemoglobinom. Dodatak inhibitora NOS nije utjecao na omjer redukcije citokromoma c (nije pokazano). Određivanje EC50 kalcija za eNOS je izvedeno kao što je opisano gore za test hvatanja hemoglobinom. Reductase Activity Assay - NADPH-cytochrome c reductase activity and reduction of 2,6-dichlorophenolindophenol (DCIP) was measured as change in absorbance at 550 nm as described previously by Martasek et al (1999) and Masters et al (1967), using of the same extinction coefficient of 0.021 μM-1 for cytochrome c and DCIP. Briefly, the reaction mixture (1 mL) contains cytochrome c (90 μM); DCIP (36 μM), HEPES buffer (50 mM) at pH 7.6, NaCl (250 mM), NADPH (100 μM), calmodulin (120 nM), and CaCl2 (100 μM) or other substances, as indicated. The reaction was monitored for 60 s (at 23 °C) after the addition of eNOS. When the inactivation of the reducing activity was determined by the addition of EGTA (200-800 μM), the chelator was added 1 min after the initiation of the reaction and was monitored for another 1 min. The reaction contained HEPES buffer (50 mM) at pH 7.6, CaM (120 nM) and CaCl2 (200 μM) and was initiated with NADPH (100 μM). In experiments investigating eNOS inactivation with EGTA, NaCl was not added to mimic the conditions used in hemoglobin capture experiments. The addition of NOS inhibitors did not affect the reduction ratio of cytochrome c (not shown). Determination of EC50 calcium for eNOS was performed as described above for the hemoglobin capture assay.

Analiza podataka i statistika - Svi podaci su israženi kao srednja vrijednost standardna devijacija. Izvedeno je najmanje tri određivanja s najmanje tri različite serije enzima za svaki skup podataka. Enzimi divljeg tipa i mutanti su pročišćeni istovremeno s kontrolom zbog promjene aktivnosti između preparacija. Statistički značaj je određen korištenjem Studentovog t testa, a p<0.05 se smatra statistički signifikantnim. Data analysis and statistics - All data are expressed as mean and standard deviation. At least three determinations were performed with at least three different batches of enzymes for each data set. Wild-type and mutant enzymes were purified simultaneously with the control due to variation in activity between preparations. Statistical significance was determined using the Student's t test, and p<0.05 is considered statistically significant.

REZULTATI THE RESULTS

Ekspresija i pročišćavanje eNOS - eNOS divljeg tipa i S1179D su eksprimirane i pročišćene iz E coli Iz 1.6 litrene kulture je tipično izolirano približno 2.5-4.0 mg eNOS upotrebom 2'5’-ADP Sepharose 4B kromatografije. Kao što se vidi na Slici 5A, oba enzima su >90% čista na osnovu Coomassie bojanja. Ti rezultati su tipični, kao što se vidi iz sedam neovisnih paralelno pripravljanja eNOS divljeg tipa i S1179D. Oba enzima su primarno u njihovom dimernom obliku, kao što je pokazano niskotemperaturnom SDS-PAGE (Slika 5B). Expression and Purification of eNOS - Wild-type and S1179D eNOS were expressed and purified from E coli. From a 1.6 liter culture, approximately 2.5-4.0 mg of eNOS was typically isolated using 2'5'-ADP Sepharose 4B chromatography. As seen in Figure 5A, both enzymes are >90% pure based on Coomassie staining. These results are typical, as seen from seven independent parallel preparations of eNOS wild type and S1179D. Both enzymes are primarily in their dimeric form, as shown by low-temperature SDS-PAGE (Figure 5B).

eNOS S1179D ima veću NO sintetaznu aktivnost i reduktaznu aktivnosti od eNOS divljeg tipa - Sljedeće, aktivnosti divljeg tipa i S1179D eNOS su uspoređene mjerenjem brzine produkcije NO. S1179D eNOS pokazuje veći obrtni broj (pod optimalnim uvjetima) u usporedbi s enzimom divljeg tipa (84±6 prema 27±1 min-1, n=6 odvojenih sparenih pripravljanja enzima). Km vrijednosti s L-argininom su bile slične za eNOS 1179D i za divlji tipa (Slika 6A, 1.8 prema 2.5 μM; vidi Tablica 1). eNOS S1179D has higher NO synthase activity and reductase activity than wild-type eNOS - Next, the activities of wild-type and S1179D eNOS were compared by measuring the rate of NO production. S1179D eNOS shows a higher turnover rate (under optimal conditions) compared to the wild-type enzyme (84±6 vs. 27±1 min-1, n=6 separate paired enzyme preparations). Km values with L-arginine were similar for eNOS 1179D and wild-type (Figure 6A, 1.8 vs. 2.5 μM; see Table 1).

[image] [image]

Kako je brzina protoka elektrona iz domene reduktaze u domenu oksigenaze kritična za katalizu NOS, povećanje S1179D eNOS aktivnosti je ispitana da se utvrdi može li doprinijeti povećanju aktivnosti reduktaze. Kada je ispitivana reducija DCIP i citokroma c, opaženo je značajno povećanje aktivnosti za S1179D u usporedni s eNOS divljeg tipa (Slika 6B). Nadalje, povećanje je naglašeno prisutnošću CaM, što povećava ukupnu aktivnost obaju enzima. Bazalna redukcija citokroma c u odsutnosti CaM je bila 4 puta viša sa S1179D u usporedbi s divljim tipom eNOS. Redukcija citokroma c stimulirane CaM je bila veća (749±35 prema 1272±55 min-1 za divlji tip i S1179D eNOS, n=3-5), međutim, razina stimulacije s CaM je 8 puta veća za divlji tip eNOS a samo 3 puta veća za S1179D eNOS. As the rate of electron flow from the reductase domain to the oxygenase domain is critical for NOS catalysis, the increase in S1179D eNOS activity was examined to determine whether it could contribute to the increase in reductase activity. When the reduction of DCIP and cytochrome c was examined, a significant increase in activity was observed for S1179D compared to wild-type eNOS (Figure 6B). Furthermore, the increase is accentuated by the presence of CaM, which increases the total activity of both enzymes. Basal reduction of cytochrome c in the absence of CaM was 4-fold higher with S1179D compared to wild-type eNOS. CaM-stimulated cytochrome c reduction was higher (749±35 vs. 1272±55 min-1 for wild-type and S1179D eNOS, n=3-5), however, the level of stimulation with CaM was 8-fold higher for wild-type eNOS and only 3 times higher for S1179D eNOS.

Sljedeće je određeno da li S1179D eNOS producira više superoksida od eNOS divljeg tipa, koji može reducirati citokrom c. Kao što se očekivalo, nije zamjećena redukcija citokroma c superoksid dismutazom koja se može inhibirati (kao indeks superoksidnog anionskog generiranja) u odsutnosti CaM, kao što je pokazano ranije za divlji tip eNOS (278±9 prema 288±7 min-1, n=3-5). Međutim, u prisutnosti CaM, superoksid dismutaza reducira brzinu redukcije citokroma c za divlji tip (610±51 prema 866±8 min-1) i S1179D (1179±43 prema 1518±19 min-1) eNOS. Relativno smanjivanje aktivnosti citokroma c u prisutnosti superoksid dismutaze je bilo slično za oba enzima (30% za divlji tip i 22% za S1179D eNOS), pokazujući da je povećana aktivnost reduktaze S1179D u usporedbi s divljim tipom eNOS (testirano redukcijom citokroma c) nije potjecala od nevezanja enzima. We next determined whether S1179D eNOS produces more superoxide than wild-type eNOS, which can reduce cytochrome c. As expected, no inhibitable reduction of cytochrome c by superoxide dismutase (as an index of superoxide anion generation) was observed in the absence of CaM, as previously shown for wild-type eNOS (278±9 vs. 288±7 min-1, n= 3-5). However, in the presence of CaM, superoxide dismutase reduces the rate of cytochrome c reduction for wild-type (610±51 vs. 866±8 min-1) and S1179D (1179±43 vs. 1518±19 min-1) eNOS. The relative reduction in cytochrome c activity in the presence of superoxide dismutase was similar for both enzymes (30% for wild-type and 22% for S1179D eNOS), indicating that the increased reductase activity of S1179D compared to wild-type eNOS (as tested by cytochrome c reduction) did not originate from enzyme unbinding.

Tvorba NO ovisna o NADPH i reduktazna aktivnost nisu različite za eNOS divljeg tipa i S1179D - Ovisnost NADPH o produkciji NO i redukciji citokroma c je istraživana jer mjesto vezivanja NADPH leži blizu Ser-1179 u eNOS. S1179D eNOS ima veći maksimalni obrtni broj (kcat) od divljeg tipa zasnovano na NO produkciji, testirano u prisutnosti CaM (slika 7A). Povećani kcat je povezan s četverostrukim povećanjem Km za NADPH za S1179D eNOS u usporedbi s divljim tipom eNOS (36 prema 8 μM). Kcat za o NADPH ovisnoj redukciji citokroma c u odsutnosti CaM je veća je za eNOS S1179D nego za divlji tip eNOS (290 prema 70 min-1, Slika 7B). U prisutnosti CaM je kcat za redukciju citokroma c značajno veći za S1179D nego za divlji tip eNOS (840 prema 460 min-1). Km vrijednosti za NADPH su nepromjenjene u odsutnosti i prisutnosti CaM (0.40 i 0.75 μM za divlji tip eNPOS i 2.0 i 1.9 μM za S1179D eNOS u odsutnosti i prisutnosti CaM). NADPH-dependent NO formation and reductase activity are not different for wild-type eNOS and S1179D - NADPH dependence on NO production and cytochrome c reduction was investigated because the NADPH binding site lies close to Ser-1179 in eNOS. S1179D eNOS has a higher maximal turnover number (kcat) than wild type based on NO production, tested in the presence of CaM (Figure 7A). The increased kcat is associated with a fourfold increase in the Km for NADPH for S1179D eNOS compared to wild-type eNOS (36 vs. 8 μM). The Kcat for the NADPH-dependent reduction of cytochrome c in the absence of CaM is higher for eNOS S1179D than for wild-type eNOS (290 vs. 70 min-1, Figure 7B). In the presence of CaM, the kcat for cytochrome c reduction is significantly higher for S1179D than for wild-type eNOS (840 vs. 460 min-1). Km values for NADPH were unchanged in the absence and presence of CaM (0.40 and 0.75 μM for wild-type eNPOS and 2.0 and 1.9 μM for S1179D eNOS in the absence and presence of CaM).

EC50 vrijednosti za CaM su nepromjenjene za divlji tip i S1179D eNOS -Da se ispita je li povećana aktivnost S1179D eNOS potječe od promjene afiniteta enzima za CaM, ispitana je kinetika aktivnosti NOS i redukcije citokroma c testirane u prisutnosti svih kofaktora NOS u suvišku kao funkcija koncentracije CaM. Kcat za CaM aktivaciju NOS aktivnosti je 22 min-1 za divlji tip i 43 min-1 za S1179D eNOS. Transformacijom podataka, normalizacija razičitih Kcat je pokazala mali pomak krivulje u lijevo za S1179D eNOS a malu razliku u EC50 vrijednostima za CaM, što je u skladu s prikazanim podacima na fosfono-eNOS (Mitchell et al. 1999). EC50 vrijednosti su 8 nM za divlji tip i 7 nM za S1179D eNOS (Slika 8A). Mjerena je NADPH posredovana redukcija citokroma c. Kcat za CaM aktivaciju redukcije citokroma c je oko 2 puta viša od S1179D eNOS u usporedbi s divljim tipom enzima (1140 i 620 min-1 za S1179D i divlji tip eNOS). Transformacija podataka, koji su normalizirani zbog razlika u kcat, je pokazala da razlike u EC50 vrijednostima za CaM između divljeg tipa i S1179D eNOS (21 prema 13 nM, Slika 8B). EC50 values for CaM are unchanged for wild type and S1179D eNOS - To test whether the increased activity of S1179D eNOS originates from a change in the affinity of the enzyme for CaM, the kinetics of NOS activity and cytochrome c reduction were tested in the presence of all NOS cofactors in excess as a function of concentration CaM. Kcat for CaM activation of NOS activity is 22 min-1 for wild type and 43 min-1 for S1179D eNOS. By data transformation, normalization of different Kcat showed a small shift of the curve to the left for S1179D eNOS and a small difference in EC50 values for CaM, which is consistent with the data presented for phosphono-eNOS (Mitchell et al. 1999). EC50 values are 8 nM for wild type and 7 nM for S1179D eNOS (Figure 8A). NADPH-mediated reduction of cytochrome c was measured. The Kcat for CaM activation of cytochrome c reduction is about 2-fold higher for S1179D eNOS compared to the wild-type enzyme (1140 and 620 min-1 for S1179D and wild-type eNOS). Transformation of the data, which were normalized for differences in kcat, showed differences in EC50 values for CaM between wild-type and S1179D eNOS (21 vs. 13 nM, Figure 8B).

Usporedba aktivacije i inaktivacije eNOS kalcijem - U prethodnim eksperimentima je pokazano da "prividna osjetljivost na kalcij" eNOS je povećana u stanicama koje eksprimiraju glavninu fosfono-eNOS ili S1179D eNOS, pokazujući da je fosforilacija promjenila afinitet kalcij/CaM aktivacije (Dimmeler et al., 1999; Futon et al. 1999). Kao što se vidi na Slici 8C, nakon normalizacije razlika u maksimalnoj aktivnosti, ovisnost o kalciju je blago povećana za S1179D eNOS (p<0.05, dvostruka analiza varijante). EC50 vrijednosti za kalcij s divljim tipom i S1179D eNOS su također malo drugačije (310 i 250 nM kalcija), kao što je određeno za produkciju NO (u prisutnosti 250 nM CaM). Kao što je vidljivo na umetku u Slici 8C, povećanje koncentracija slobodnog kalcija doista povećava S1179D eNOS obtni broj više nego je viđeno s divljim tipom enzima. Nadalje, EC50 vrijednosti za kalcij testiranjem redukcije citokroma c su bile slične onima dobivenih mjerenjem produkcije NO (Slika 8D; 290 i 220 n M za divlji tip, odnosno S1179D eNOS). Ponovo, Vmax za aktivaciju kalcijem i obrtni broj za S1179D eNOS je veći od ono za divlji tip (Slika 4D, umetnuti dio). Comparison of eNOS activation and inactivation by calcium - Previous experiments have shown that the "apparent calcium sensitivity" of eNOS is increased in cells expressing bulk phosphono-eNOS or S1179D eNOS, indicating that phosphorylation altered the affinity of calcium/CaM activation (Dimmeler et al., 1999; Futon et al. 1999). As seen in Figure 8C, after normalization for differences in maximal activity, calcium dependence was slightly increased for S1179D eNOS (p<0.05, two-way analysis of variance). The EC50 values for calcium with wild-type and S1179D eNOS are also slightly different (310 and 250 nM calcium), as determined for NO production (in the presence of 250 nM CaM). As seen in the inset of Figure 8C, increasing free calcium concentrations indeed increased the S1179D eNOS abundance more than was seen with the wild-type enzyme. Furthermore, EC50 values for calcium assayed for cytochrome c reduction were similar to those obtained by measuring NO production (Figure 8D; 290 and 220 nM for wild-type and S1179D eNOS, respectively). Again, Vmax for calcium activation and turnover number for S1179D eNOS is greater than that for wild type (Figure 4D, inset).

Da se ispita je li inaktivacija S1179D eNOS različita od one za divlji tip enzima, mjereno je smanjivanje aktivnosti eNOS nakon kelatiranja kalcija s EGTA. U tim eksperimentima su svi kofaktori NOS dodani u prisutnosti kalcija (200 μM) i produkcija NO je praćena 1 min, nakon čega slijedi dodatak različitih koncentracija EGTA i praćenje je nastavljeno dodanu 1 min. Kao što se vidi na Slici 9A, dodatak EGTA divljem tipu i S1179D eNOS smanjuje produkciju NO na način koji ovisi o koncentraciji. Međutim, produkcija NO iz S1179D eNOS je manje osjetljiva na dodatak EGTA, tj. aktivnost eNOS divlje tipa opada brže pri nižim koncentracijama EGTA nego aktivnost S1179D eNOS. Najveća razlika u aktivnosti između enzima je viđena pri 400 μM EGTA. Nadalje, pri 600 μM EGTA nije detektirana aktivnosti za divlji tip eNOS, dok je zaostala aktivnost još uvijek detektirana za S1179D eNOS. Slični rezultati su dobiveni korištenjem redukcije citokroma c (Slika 9B) sa značajnim razlikama aktivnosti viđene s 400 i 600 μM kelatorom dodanim u reakciju. Međutim, pri najvišim koncentracijama ETA zaostala aktivnost reduktaze je nađena za divlji tip i za S1179D eNOS. To examine whether the inactivation of S1179D eNOS is different from that of the wild-type enzyme, the reduction of eNOS activity after calcium chelation with EGTA was measured. In these experiments, all NOS cofactors were added in the presence of calcium (200 μM) and NO production was monitored for 1 min, followed by the addition of various concentrations of EGTA and monitoring continued for an additional 1 min. As seen in Figure 9A, addition of EGTA to wild-type and S1179D eNOS reduced NO production in a concentration-dependent manner. However, NO production from S1179D eNOS is less sensitive to the addition of EGTA, i.e., wild-type eNOS activity declines more rapidly at lower EGTA concentrations than S1179D eNOS activity. The greatest difference in activity between the enzymes was seen at 400 μM EGTA. Furthermore, at 600 μM EGTA no activity was detected for wild-type eNOS, while residual activity was still detected for S1179D eNOS. Similar results were obtained using cytochrome c reduction (Figure 9B) with significant differences in activity seen with 400 and 600 μM chelator added to the reaction. However, at the highest concentrations of ETA, residual reductase activity was found for both wild-type and S1179D eNOS.

U zaključku, goveđa endotelna sintetaza dušikovog(II)oksida (eNOS) je fosforilirana izravno protein kinaznom Akt na serinu 1179 (Fulton et al. 1999) i humana endotelna sintetaza dušikovo(II)oksida (eNOS) je fosforilirana izravno protein kinaznom Akt na serinu 1177 (Dimmeer et al. 1999). Mutacija ostatak 1179 u goveđem eNOS u negativno nabijeni aspartat konstitutivno povećava produkciju dušikovog(II)oksida (NO), a u odsutnosti agonista. In conclusion, bovine endothelial nitric oxide synthase (eNOS) is phosphorylated directly by protein kinase Akt at serine 1179 (Fulton et al. 1999) and human endothelial nitric oxide synthase (eNOS) is phosphorylated directly by protein kinase Akt at serine 1179 (Fulton et al. 1999). 1177 (Dimmer et al. 1999). Mutation of residue 1179 in bovine eNOS to negatively charged aspartate constitutively increases nitric oxide (NO) production in the absence of agonists.

Valja razumjeti da prethodna diskusija i primjeri samo predstavljaju detaljni opis nekih preferiranih cjelina. Stoga treba biti očito stručnjacima da se mogu izvesti različite modifikacije i ekvivalenti bez odstupanja od duha i obujma izuma. Sve gore ili niže navedene referencije, članci i patenti su ovdje urađeni u cijelosti. It should be understood that the foregoing discussion and examples only represent a detailed description of some preferred entities. Therefore, it should be apparent to those skilled in the art that various modifications and equivalents can be made without departing from the spirit and scope of the invention. All references, articles and patents listed above or below are reproduced here in their entirety.

Referencije References

Dodatne referencije za koje kompletni navod nije dan u tekstu su ovdje urađeni u cijelosti. Additional references for which the complete reference is not given in the text are made here in their entirety.

Alesse et al. Embo J 15, 6541-6551 (1996). Alesse et al. Embo J 15, 6541-6551 (1996).

Bredt et al. Proc. Natl. Acad. Sci. U. S. A. 87, 682-685 (1990). Bredt et al. Proc. Natl. Acad. Sci. U.S.A. 87, 682-685 (1990).

Corson et al. Circuation Research 79, 984-991 (1996). Corson et al. Circulation Research 79, 984-991 (1996).

Dimmeler et al. Nature399, 601-605 (1999). Dimmeler et al. Nature 399, 601-605 (1999).

Downward et al. Curr Opin Cell iBiol 10, 262-267 (1998). Downward et al. Curr Opin Cell iBiol 10, 262-267 (1998).

Fulton et al. Nature399, 597-601 (1999). Fulton et al. Nature 399, 597-601 (1999).

Garcia-Caradena et al. Nature392, 821-824 (1998). Garcia-Caradena et al. Nature 392, 821-824 (1998).

Garcia-Caradena et al. J Bio Chem 271, 27237-27240 (1996). Garcia-Caradena et al. J Bio Chem 271, 27237-27240 (1996).

Garcia-Caradena et al. Proc. Natl. Acad. Sci. USA 93, 6448-6453 (1996a). Garcia-Caradena et al. Proc. Natl. Acad. Sci. USA 93, 6448-6453 (1996a).

Huan e tal. Nature377, 239-242 (1995). Juan e tal. Nature 377, 239-242 (1995).

Kantor et al. Science 274, 1744-1748 (1996). Kantor et al. Science 274, 1744-1748 (1996).

Kelm et al. Biochem. Biophys. Res. Commun. 154, 236-244 (1988). Kelm et al. Biochem. Biophys. Crisp. Commun. 154, 236-244 (1988).

Klan et al. EMBOJ. 14, 3687-3695 (1995). Klan et al. EMBOY. 14, 3687-3695 (1995).

Liu et al. Biochemistry35, 13277-13281 (1996). Liu et al. Biochemistry 35, 13277-13281 (1996).

Liu e tal. J. Cell Biol. 137, 1525-1535 (1997). Liu e tal. J. Cell Biol. 137, 1525-1535 (1997).

Martasek et al. Methods Enzymol. 301, 70-78 (1999). Martasek et al. Methods Enzymol. 301, 70-78 (1999).

Martasek et al. Biochem. Biophys. Res. Commun. 219, 359-365 (1996). Martasek et al. Biochem. Biophys. Crisp. Commun. 219, 359-365 (1996).

Masters et al. Methods Enzymol. 10, 565-573 (1967). Masters et al. Methods Enzymol. 10, 565-573 (1967).

Michell et al. Proc. Natl. Acad. Sci. 90, 6252-6256 (1993). Mitchell et al. Proc. Natl. Acad. Sci. 90, 6252-6256 (1993).

Michell et al. Curr. Biol. 9, 845-848 (1999). Mitchell et al. Curr. Biol. 9, 845-848 (1999).

Murohara et al. J. Clin. Invest. 101, 12567-2578 (1998). Murohara et al. J. Clin. Invest. 101, 12567-2578 (1998).

Papapetropoulos et al. J. Clin. Invest. 100, 3131-3139 (1997). Papapetropoulos et al. J. Clin. Invest. 100, 3131-3139 (1997).

Roman et al. Proc. Natl. Acad. Sci. U. S. A. 92, 8428-8432 (1995). Roman et al. Proc. Natl. Acad. Sci. U.S.A. 92, 8428-8432 (1995).

Rudic et al. J. Clin. Invest. 101, 731-736 (1998). Rudic et al. J. Clin. Invest. 101, 731-736 (1998).

Sessa et al. J. Biol. Chem. 270, 17641-17644 (1995). Sessa et al. J. Biol. Chem. 270, 17641-17644 (1995).

Shaul et al. J. Biol. Chem. 271, 6518-6522 (1996). Shaul et al. J. Biol. Chem. 271, 6518-6522 (1996).

Shesely et al. Proc. Natl. Acad. Sci. U. S. A. 93, 13176-13181 (1996). Shesely et al. Proc. Natl. Acad. Sci. U. S. A. 93, 13176-13181 (1996).

Yano et al. Nature396, 584-587 (1998). Yano et al. Nature 396, 584-587 (1998).

Claims (43)

1. Izolirana molekula nukleinske kiselina naznačeno time da kodira polipeptidnu NOS odabranu od skupine koji čine konstitutivno aktivne polipeptidne NOS, polipeptidne NOS koje imaju povećanu brzinu produkcije NO i polipeptidne NOS koje imaju povećanu reduktaznu aktivnost.1. An isolated nucleic acid molecule characterized by encoding a polypeptide NOS selected from the group consisting of constitutively active polypeptide NOS, polypeptide NOS having an increased rate of NO production and polypeptide NOS having an increased reductase activity. 2. Izolirana molekula nukleinske kiseline iz patentnog zahtjeva 1, naznačeno time da polipeptidna NOS sadrži supstituirani aminokiselinski ostatak koji odgovara ostatku NOS ostatku 1179 goveđe eNOS, ostatku 1177 humane eNOS, ostatku 1412 štakorske eNOS ili ostatku 1415 humane nNOS.2. The isolated nucleic acid molecule of claim 1, characterized in that the polypeptide NOS contains a substituted amino acid residue corresponding to NOS residue 1179 of bovine eNOS, residue 1177 of human eNOS, residue 1412 of rat eNOS or residue 1415 of human nNOS. 3. Izolirana molekula nukleinske kiseline iz patentnog zahtjeva 2, naznačeno time da supstituirani aminokiselinski ostatak 1179 goveđe eNOS, ostatak 1177 humane eNOS, ostatak 1412 štakorske eNOS ili ostatak 1415 humane nNOS oponaša fosfoserin.3. The isolated nucleic acid molecule of claim 2, characterized in that the substituted amino acid residue 1179 of bovine eNOS, residue 1177 of human eNOS, residue 1412 of rat eNOS or residue 1415 of human nNOS mimics phosphoserine. 4. Izolirana molekula nukleinske kiseline iz patentnog zahtjeva 2, naznačeno time da je serin koji odgovara ostatku 1179 goveđe eNOS, ostatku 1177 humane eNOS, ostatku 1412 štakorske eNOS ili ostatku 1415 humane nNOS supstituiran asparaginskom ili glutaminskom kiselinom.4. The isolated nucleic acid molecule of claim 2, characterized in that the serine corresponding to residue 1179 of bovine eNOS, residue 1177 of human eNOS, residue 1412 of rat eNOS or residue 1415 of human nNOS is substituted with aspartic or glutamic acid. 5. Izolirana molekula nukleinske kiseline iz patentnog zahtjeva 2, naznačeno time da supstituirana aminokiselina sadrži R skupinu koja oponaša fosfatnu skupinu.5. The isolated nucleic acid molecule from claim 2, characterized in that the substituted amino acid contains an R group that mimics a phosphate group. 6. Polipeptid, naznačeno time da je kodiran izoliranom molekulom nukleinske kiseline iz bilo kojeg od patentnih zahtjeva 1-5.6. Polypeptide, characterized in that it is encoded by an isolated nucleic acid molecule from any of claims 1-5. 7. Izolirana polipeptidna NOS, naznačeno time da je odabrana iz skupine koju čine polipeptidna NOS, polipeptidna NOS s povećanom produkcijom NO, te polipeptidna NOS s povećanom reduktaznom aktivnosti.7. Isolated polypeptide NOS, indicated by the fact that it is selected from the group consisting of polypeptide NOS, polypeptide NOS with increased production of NO, and polypeptide NOS with increased reductase activity. 8. Polipeptidna NOS iz patentnog zahtjeva 7, naznačeno time da sadrži supstituirani aminokiselinski ostatak koji odgovara ostatku 1179 goveđe eNOS, ostatku 1177 humane eNOS, ostatku 1412 štakorske eNOS ili ostatku 1415 humane eNOS.8. The polypeptide NOS of claim 7, characterized in that it contains a substituted amino acid residue corresponding to residue 1179 of bovine eNOS, residue 1177 of human eNOS, residue 1412 of rat eNOS or residue 1415 of human eNOS. 9. Konstitutivno aktivna eNOS iz patentnog zahtjeva 8, naznačeno time da je supstituirana aminokiselina supstituirana s ostatkom asparaginske ili glutaminske kiseline.9. Constitutively active eNOS from claim 8, characterized in that the substituted amino acid is substituted with an aspartic or glutamic acid residue. 10. Metoda za stimulaciju razvitka koronarnog kolateranog krvnog suda u pacijentu, naznačeno time da sadrži korak isporuku transgena koji kodira polipeptid iz patentnog zahtjeva 7 ili polipeptidni Akt na način koji je učinkovit u promociji razvitka kolateralno krvnog suda.10. A method for stimulating the development of a coronary collateral blood vessel in a patient, characterized in that it contains the step of delivering a transgene encoding a polypeptide from claim 7 or an Akt polypeptide in a manner that is effective in promoting the development of a collateral blood vessel. 11. Metoda iz patentnog zahtjeva 10, naznačeno time da je transgen eksprimiran iz promotora specifičnog za ventrikularni miocit, promotora specifičnog za stanicu glatkih mišića ili iz promotor specifičnog za endotelnu stanicu.11. The method of claim 10, characterized in that the transgene is expressed from a promoter specific for a ventricular myocyte, a promoter specific for a smooth muscle cell or from a promoter specific for an endothelial cell. 12. Metoda iz patentnog zahtjeva 11, naznačeno time da promotor specifičan za ventrikularni miocit ima sekvenciju promotora ventrikularnog miozina lakog lanca-2 ili miozina teškog lanca.12. The method of claim 11, characterized in that the ventricular myocyte-specific promoter has the promoter sequence of ventricular myosin light chain-2 or myosin heavy chain. 13. Metoda za stimulaciju razvitka krvnog suda u pacijentu koji ima perifernu deficijentnu vaskularnu bolest, naznačeno time da sadrži korak isporuke transgena koji kodira polipeptid iz patentnog zahtjeva 7 ili Akt polipeptid na način koji je učinkovit u promociji razvitka perifernog vaskularnog krvnog suda.13. A method for stimulating the development of a blood vessel in a patient who has peripheral vascular deficiency disease, characterized in that it contains the step of delivering a transgene encoding a polypeptide from patent claim 7 or an Akt polypeptide in a manner that is effective in promoting the development of a peripheral vascular blood vessel. 14. Metoda tretmana ishemije miokarda, naznačeno time da sadrži korak isporuke transgena koji kodira polipeptid iz patentnog zahtjeva 7 ili Akt polipeptid na način koji je učinkovit u tretmanu ishemije miokarda.14. A method of treating myocardial ischemia, characterized in that it contains the step of delivering a transgene encoding a polypeptide from claim 7 or an Akt polypeptide in a manner that is effective in the treatment of myocardial ischemia. 15. Metoda iz patentnog zahtjeva 14, naznačeno time da je ekspresija transgena ograničena na kardijalne miocite.15. The method from claim 14, characterized in that the expression of the transgene is limited to cardiac myocytes. 16. Metoda iz patentnog zahtjeva 15, naznačeno time da je ekspresija transgena ograničena na ventrikularne kardijalne miocite.16. The method from claim 15, characterized in that the expression of the transgene is limited to ventricular cardiac myocytes. 17. Metoda iz bilo kojeg patentnog zahtjeva 10-16, naznačeno time da je transgen kodiran vektorom defektne replikacije.17. The method of any one of claims 10-16, characterized in that the transgene is encoded by a replication defective vector. 18. Metoda iz patentnog zahtjeva 17, naznačeno time da je vektor defektne replikacije adenovirus.18. The method from claim 17, characterized in that the vector of defective replication is an adenovirus. 19. Metoda iz bilo kojeg patentnog zahtjeva 10-16, naznačeno time da je transgen in vitro transficiran u stanicu.19. The method of any one of claims 10-16, characterized in that the transgene is transfected into a cell in vitro. 20. Metoda iz patentnog zahtjeva 18, naznačeno time da su tranficirane stanice isporučene u pacijenta.20. The method of claim 18, characterized in that the transfected cells are delivered to the patient. 21. Nehumana transgeničkna životinja, naznačeno time da eksprimira polipeptid iz patentnog zahtjeva 7.21. A non-human transgenic animal, characterized in that it expresses the polypeptide of claim 7. 22. Metoda za identifikaciju sredstva koji modulira aktivnost NOS reguliranu s Akt, naznačeno time da sadrži korake: (a) izlaganje sredstvu stanice koja kodira NOS; te (b) mjerenje aktivnosti NOS regulirane s Akt, te time identifikaciju sredstva koje modulira aktivnost NOs reguliranu s Akt..22. A method for identifying an agent that modulates Akt-regulated NOS activity, comprising the steps of: (a) exposure to the agent of the NOS-encoding cell; you (b) measurement of NOS activity regulated by Akt, and thus identification of an agent that modulates NOs activity regulated by Akt.. 23. Metoda iz patentnog zahtjeva 22, naznačeno time da korak (b) sadrži određivanje stanja fosforilacije NOS na aminokiselinskom ostatku koji odgovara ostatku 1179 goveđe eNOS, ostatku 1177 humane eNOS, ostatku 1412 štakorske eNOS ili ostatku 1415 humane nNOS.23. The method of claim 22, characterized in that step (b) comprises determining the state of phosphorylation of NOS on an amino acid residue corresponding to residue 1179 of bovine eNOS, residue 1177 of human eNOS, residue 1412 of rat eNOS or residue 1415 of human nNOS. 24. Metoda iz patentnog zahtjeva 23, naznačeno time da je NOS aktiviran sredstvom.24. The method of claim 23, characterized in that the NOS is activated by an agent. 25. Metoda iz patentnog zahtjeva 24, naznačeno time da sredstvo oponaša fosforilaciju eNOS posredovau s Akt.25. The method of claim 24, characterized in that the agent mimics eNOS phosphorylation mediated by Akt. 26. Metoda iz patentnog zahtjeva 25, naznačeno time da sredstvo inhibira defosforilaciju aminokiselinskog ostataka koji odgovara ostatku 1179 goveđe eNOS, ostatku 1177 humane eNOS, ostatku 1412 štakorske eNOS ili ostatku 1415 humane nNOS.26. The method of claim 25, characterized in that the agent inhibits dephosphorylation of the amino acid residue corresponding to residue 1179 of bovine eNOS, residue 1177 of human eNOS, residue 1412 of rat eNOS or residue 1415 of human nNOS. 27. Metoda iz patentnog zahtjeva 22, naznačeno time da korak (b) sadrži mjerenje produkcije NO.27. The method of claim 22, characterized in that step (b) contains the measurement of NO production. 28. Metoda iz patentnog zahtjeva 27, naznačeno time da je NO detektiran mjerenjem koncentracije nitrira ili prevođenjem 3H-L arginina u 3H-L-citrulin.28. The method from claim 27, characterized in that NO is detected by measuring the nitrite concentration or by converting 3H-L-arginine to 3H-L-citrulline. 29. In vitro metoda za identifikaciju sredstva koji modulira aktivnost NOS reguliranu s Akt, naznačeno time da sadrži sljedeće korake: (a) izlaganje sredstvu Akt i proteinske ili peptidne NOS; te (b) mjerenje aktivnosti NOS.29. An in vitro method for identifying an agent that modulates NOS activity regulated by Akt, characterized in that it contains the following steps: (a) exposure to an agent of Akt and protein or peptide NOS; you (b) measurement of NOS activity. 30. Metoda iz patentnog zahtjeva 29, naznačeno time da je aktivnost NOS mjerena određivanjem fosforilacijskog stanja NOS ovisnog o Akt.30. The method from claim 29, characterized in that NOS activity is measured by determining the Akt-dependent NOS phosphorylation state. 31. Metoda iz patentnog zahtjeva 30, naznačeno time da peptidni NOS sadrži SEQ ID NO:2.31. The method of claim 30, characterized in that the peptide NOS contains SEQ ID NO:2. 32. Metoda iz patentnog zahtjeva 30, naznačeno time da je u koraku (b) aktivnost NOS reduktazna aktivnost.32. The method from claim 30, characterized in that in step (b) the NOS activity is reductase activity. 33. Metoda iz patentnog zahtjeva 30, naznačeno time da je u koraku (b) aktivnost NOS produkcija NO od NOS.33. The method from patent claim 30, characterized in that in step (b) the NOS activity is the production of NO from NOS. 34. Izolirana molekula nukleinske kiseline, naznačeno time da kodira polipeptidnu NOS odabrana od skupine koju čine goveđa eNOS koja ima supstituirani kiselinski ostatak koji odgovara ostatku 1179, humana eNOS koja ima supstituirani kiselinski ostatak koji odgovara ostatku 1177, štakorska eNOS koja ima supstituirani kiselinski ostatak koji odgovara ostatku 1412, te humana nNOS koja ima supstituirani kiselinski ostatak koji odgovara ostatku 1415, a supstituirani aminokiselinski ostatak sadrži R skupinu koja nije negativno nabijena.34. An isolated nucleic acid molecule, characterized in that it encodes a polypeptide NOS selected from the group consisting of bovine eNOS having a substituted acid residue corresponding to residue 1179, human eNOS having a substituted acid residue corresponding to residue 1177, rat eNOS having a substituted acid residue corresponding to residue 1177 corresponds to residue 1412, and human nNOS which has a substituted acid residue corresponding to residue 1415, and the substituted amino acid residue contains an R group that is not negatively charged. 35. Izolirana molekula nukleinske kiseline iz patentnog zahtjeva 34, naznačeno time da je supstituirani aminokiselinski ostatak alaninski ostatak.35. The isolated nucleic acid molecule of claim 34, characterized in that the substituted amino acid residue is an alanine residue. 36. Izolirana polipeptidna NOS, naznačeno time je odabrana iz skupine koju čine goveđa eNOS koja ima supstituirani kiselinski ostatak koji odgovara ostatku 1179, humana eNOS koja ima supstituirani kiselinski ostatak koji odgovara ostatku 1177, štakorska eNOS koja ima supstituirani kiselinski ostatak koji odgovara ostatku1412, te humana nNOS koja ima supstituirani kiselinski ostatak koji odgovara ostatku 1415, a supstituirani aminokiselinski ostatak sadrži R skupinu koja nije negativno nabijena.36. Isolated polypeptide NOS, indicated by this being selected from the group consisting of bovine eNOS having a substituted acid residue corresponding to residue 1179, human eNOS having a substituted acid residue corresponding to residue 1177, rat eNOS having a substituted acid residue corresponding to residue 1412, and human nNOS having a substituted acid residue corresponding to residue 1415, and the substituted amino acid residue contains an R group that is not negatively charged. 37. Polipeptidna NOS iz patentnog zahtjeva 36, naznačeno time da je supstituirani aminokiselinski ostatak alaninski ostatak.37. Polypeptide NOS from claim 36, characterized in that the substituted amino acid residue is an alanine residue. 38. Metoda iz patentnog zahtjeva 11, naznačeno time da je specifični promotor endotelne stanice Tie-2 promotor, endotelni promotor ili promotor eNOS.38. The method of claim 11, characterized in that the specific endothelial cell promoter is Tie-2 promoter, endothelial promoter or eNOS promoter. 39. Metoda iz patentnog zahtjeva 11, naznačeno time da je promotor stanica glatkih mišića SM22 promotor ili SM alfa aktinski promotor.39. The method of claim 11, characterized in that the smooth muscle cell promoter is SM22 promoter or SM alpha actin promoter. 40. Metoda tretmana kardiovaskularne bolesti u pacijentu, naznačeno time da sadrži korak isporuke u pacijentu transgena koji kodira polipeptid iz patentnog zahtjeva 7 ili Akt polipeptid.40. A method of treating cardiovascular disease in a patient, characterized in that it contains the step of delivering to the patient a transgene encoding a polypeptide from claim 7 or an Akt polypeptide. 41. Metoda iz patentnog zahtjeva 40, naznačeno time da ja kardiovaskularna bolest odabrana od skupine koji čine: zatajenje srca, infarkt miokarda, restenoza, postangioplastična stenoza, stent stenoza i popuštanje transplantirane prijenosnice.41. The method from claim 40, characterized in that the cardiovascular disease is selected from the group consisting of: heart failure, myocardial infarction, restenosis, post-angioplasty stenosis, stent stenosis and loosening of the transplanted stent. 42. Metoda tretmana erektivne disfunkcije u pacijenta, naznačeno time da sadrži korak isporuke u pacijentu transgena koji kodira polipeptid iz patentnog zahtjeva 7 ili Akt polipeptid.42. A method of treating erectile dysfunction in a patient, characterized in that it contains the step of delivering to the patient a transgene encoding a polypeptide from claim 7 or an Akt polypeptide. 43. Metoda iz bilo kojeg zahtjeva 10,13, 14, 40 ili 42, naznačeno time da je transgen isporučen intravaskularno, intramuskularno, intradermalno, intraperitonalno ili intraarterijalno.43. The method of any one of claims 10, 13, 14, 40 or 42, characterized in that the transgene is delivered intravascularly, intramuscularly, intradermally, intraperitoneally or intraarterially.
HR20010797A 1999-04-16 2001-10-29 eNOS MUTATIONS USEFUL FOR GENE THERAPY AND THERAPEUTIC SCREENING HRP20010797A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12955099P 1999-04-16 1999-04-16
PCT/US2000/009913 WO2000062605A1 (en) 1999-04-16 2000-04-14 eNOS MUTATIONS USEFUL FOR GENE THERAPY AND THERAPEUTIC SCREENING

Publications (1)

Publication Number Publication Date
HRP20010797A2 true HRP20010797A2 (en) 2003-02-28

Family

ID=22440541

Family Applications (1)

Application Number Title Priority Date Filing Date
HR20010797A HRP20010797A2 (en) 1999-04-16 2001-10-29 eNOS MUTATIONS USEFUL FOR GENE THERAPY AND THERAPEUTIC SCREENING

Country Status (25)

Country Link
US (4) US6900038B2 (en)
EP (1) EP1178722A4 (en)
JP (1) JP2002541829A (en)
KR (1) KR100737945B1 (en)
CN (1) CN100357433C (en)
AU (2) AU774010B2 (en)
BG (1) BG106051A (en)
BR (1) BR0009805A (en)
CA (1) CA2369764A1 (en)
CZ (1) CZ20013427A3 (en)
EE (1) EE200100538A (en)
HK (1) HK1046081B (en)
HR (1) HRP20010797A2 (en)
HU (1) HUP0200799A3 (en)
IL (1) IL145760A0 (en)
MX (1) MXPA01010459A (en)
NO (1) NO20015008L (en)
NZ (1) NZ514305A (en)
PL (1) PL351087A1 (en)
RU (1) RU2257226C2 (en)
SK (1) SK14692001A3 (en)
UA (1) UA76939C2 (en)
WO (1) WO2000062605A1 (en)
YU (1) YU73301A (en)
ZA (1) ZA200108463B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100357433C (en) * 1999-04-16 2007-12-26 耶鲁大学 eNOS mutations useful for gene therapy and therapeutic screening
US7098016B2 (en) 2002-06-14 2006-08-29 Wisconsin Alumni Research Foundation Ribonuclease zymogen design
AU2003263844A1 (en) * 2002-08-16 2004-03-03 Cardium Therapeutics Inc. Gene therapy for critical limb ischemia with wild type or mutant enos
KR20050042788A (en) * 2002-08-16 2005-05-10 쉐링 악티엔게젤샤프트 Enos mutants useful for gene therapy
GB0226463D0 (en) * 2002-11-13 2002-12-18 Isis Innovation Mimicking the athletic heart
JP4623719B2 (en) * 2002-12-02 2011-02-02 アンジェスMg株式会社 Methods for treating or preventing angiogenesis-dependent symptoms
US7531318B2 (en) 2004-08-20 2009-05-12 Board Of Regents, The University Of Texas System Screening of agents for activity against ischemic myocardial insults
DE602005024850D1 (en) * 2004-09-24 2010-12-30 Beth Israel Hospital METHOD FOR DIAGNOSIS AND TREATMENT OF PREGNANCY COMPLICATIONS
US7740849B2 (en) * 2004-09-24 2010-06-22 Beth Israel Deaconess Medical Center Use of compounds that bind soluble endoglin and SFLT-1 for the treatment of pregnancy related hypertensive disorders
JP2009538915A (en) * 2006-05-31 2009-11-12 ベス イスラエル ディーコネス メディカル センター How to diagnose and treat pregnancy complications
US20090286271A1 (en) * 2006-05-31 2009-11-19 Karumanchi Ananth S Methods of Diagnosing and Treating Complications of Pregnancy
WO2010011607A1 (en) 2008-07-22 2010-01-28 Promega Corporation Adp detection based luminescent phosphotransferase or atp hydrolase assay
US8652785B2 (en) * 2008-12-04 2014-02-18 Sanofi Method of screening a modulator of endothelial NO synthase comprising the use of heme binding protein 1
RU2526575C2 (en) * 2012-11-02 2014-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Method for improving immunosuppressive properties of mesenchymal stromal cells of fatty tissue
EP3204509B1 (en) 2014-10-08 2019-07-10 Promega Corporation Bioluminescent succinate detection assay
CN107802826B (en) * 2017-10-26 2020-02-18 首都医科大学宣武医院 Use of eNOS mutants to promote angiogenesis
CN116790603B (en) * 2023-08-18 2023-10-31 成都中科奥格生物科技有限公司 sgRNA and CRISPR/Cas9 vector as well as construction method and application thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498539A (en) * 1992-07-02 1996-03-12 Daiichi Pharmaceutical Co., Ltd. Bovine endothelial nitric oxide synthase nucleic acids
US5658565A (en) * 1994-06-24 1997-08-19 University Of Pittsburgh Of The Commonwealth System Of Higher Education Inducible nitric oxide synthase gene for treatment of disease
DE4411402A1 (en) * 1994-03-31 1995-10-05 Juergen Schrader DNA expression vectors for use in gene therapy treatment of vascular diseases
FR2722507B1 (en) * 1994-07-12 1996-08-14 Rhone Poulenc Rorer Sa ADENOVIRUS COMPRISING A GENE ENCODING NO SYNTHASE
US5968983A (en) * 1994-10-05 1999-10-19 Nitrosystems, Inc Method and formulation for treating vascular disease
US5837534A (en) * 1995-11-14 1998-11-17 The Board Of Regents Of The University Of Texas System Smooth muscle 22α promoter, gene transfer vectors containing the same, and method of use of the same to target gene expression in arterial smooth muscle cells
JP2002528390A (en) * 1998-10-02 2002-09-03 セント エリザベス メディカル センター, インコーポレイテッド AKT composition for enhancing cell survival
DE60039677D1 (en) * 1999-03-19 2008-09-11 Aventis Pharma Inc AKT-3 NUCLEIC ACID, POLYPEPTIDES, AND ITS USE
CN100357433C (en) * 1999-04-16 2007-12-26 耶鲁大学 eNOS mutations useful for gene therapy and therapeutic screening
CZ20014444A3 (en) * 1999-06-11 2002-05-15 Aventis Pharmaceuticals Products Inc. Akt protein used for induction of VEGF expression

Also Published As

Publication number Publication date
NZ514305A (en) 2004-01-30
AU2004210533A1 (en) 2004-11-04
US7888089B2 (en) 2011-02-15
MXPA01010459A (en) 2003-08-20
CN100357433C (en) 2007-12-26
AU4237800A (en) 2000-11-02
NO20015008L (en) 2001-12-07
EP1178722A1 (en) 2002-02-13
WO2000062605A1 (en) 2000-10-26
UA76939C2 (en) 2006-10-16
AU774010B2 (en) 2004-06-10
EP1178722A4 (en) 2003-03-05
US20090246183A1 (en) 2009-10-01
EE200100538A (en) 2002-12-16
KR100737945B1 (en) 2007-07-13
US20040253685A1 (en) 2004-12-16
ZA200108463B (en) 2003-01-15
US20110173711A1 (en) 2011-07-14
CZ20013427A3 (en) 2002-03-13
NO20015008D0 (en) 2001-10-15
JP2002541829A (en) 2002-12-10
US6900038B2 (en) 2005-05-31
CN1347283A (en) 2002-05-01
BR0009805A (en) 2002-01-15
CA2369764A1 (en) 2000-10-26
SK14692001A3 (en) 2002-09-10
BG106051A (en) 2002-06-28
HK1046081A1 (en) 2002-12-27
HUP0200799A2 (en) 2002-06-29
RU2257226C2 (en) 2005-07-27
HK1046081B (en) 2008-09-05
IL145760A0 (en) 2002-07-25
HUP0200799A3 (en) 2004-11-29
YU73301A (en) 2004-07-15
PL351087A1 (en) 2003-03-24
KR20010110770A (en) 2001-12-13
US20030049823A1 (en) 2003-03-13

Similar Documents

Publication Publication Date Title
US7888089B2 (en) eNOS mutations useful for gene therapy and therapeutic screening
SI9620059A (en) Viral vectors and their use for treating hyperproliferative disorders, in particular restenosis
US6605274B1 (en) Method for in vivo regulation of cardiac muscle contractility
US20060142193A1 (en) Selective inhibition of rock1 in cardiac therapy
JP2005535345A (en) ENOS mutants useful for gene therapy
US6335010B1 (en) Gene therapy in coronary angioplasty and bypass
KR100737947B1 (en) eNOS MUTATIONS USEFUL FOR GENE THERAPY AND THERAPEUTIC SCREENING
WO1998019686A9 (en) Therapeutic methods for vascular injury
US6284464B1 (en) Inhibition of binding of Hox and homeodomain-containing proteins and uses thereof
AU2008201816A1 (en) eNOS mutations useful for gene therapy and therapeutic screening
US20040120930A1 (en) Gene therapy for critical limb ischemia with wild type or mutant eNOS
CA2293733A1 (en) Mycardium-and skeletal muscle-specific nucleic acid, its preparation and use

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
ODBI Application refused