HRP20000063A2 - Method for reducing nitrous oxide in gases and corresponding catalysts - Google Patents

Method for reducing nitrous oxide in gases and corresponding catalysts Download PDF

Info

Publication number
HRP20000063A2
HRP20000063A2 HR20000063A HRP20000063A HRP20000063A2 HR P20000063 A2 HRP20000063 A2 HR P20000063A2 HR 20000063 A HR20000063 A HR 20000063A HR P20000063 A HRP20000063 A HR P20000063A HR P20000063 A2 HRP20000063 A2 HR P20000063A2
Authority
HR
Croatia
Prior art keywords
zirconium
catalyst
gases
impregnated
aluminate
Prior art date
Application number
HR20000063A
Other languages
Croatian (hr)
Inventor
Christian Hamon
Bernard Neveu
Original Assignee
Grande Paroisse Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grande Paroisse Sa filed Critical Grande Paroisse Sa
Publication of HRP20000063A2 publication Critical patent/HRP20000063A2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/02Preparation of nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • C01B21/24Nitric oxide (NO)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • C01B21/24Nitric oxide (NO)
    • C01B21/26Preparation by catalytic or non-catalytic oxidation of ammonia
    • C01B21/265Preparation by catalytic or non-catalytic oxidation of ammonia characterised by the catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

Sadašnji izum se odnosi na postupke za tretiranje plinova s ciljem uklanjanja didušikovog oksida iz njih prije nego se isprazne u atmosferu. The present invention relates to processes for treating gases with the aim of removing nitrous oxide from them before they are discharged into the atmosphere.

Izum se nalazi unutar općenitog područja smanjenja razine plinova s učinkom staklenika kod otpadnih industrijskih plinova koji se prazne u atmosferi. Sada se spoznao značajan doprinos didušikovog oksida (N2O) u povećanju učinka staklenika, čije opasnosti vode klimatskim promjenama s nenadziranim učinkom, i također njegovo moguće učešće u razbijanju ozonskog sloja. Njegovo uklanjanje stoga postaje glavna briga javnih i industrijskih autoriteta. The invention is within the general field of reducing the level of greenhouse gases in waste industrial gases discharged into the atmosphere. It is now recognized the significant contribution of nitrous oxide (N2O) in increasing the greenhouse effect, the dangers of which lead to climate change with an uncontrolled effect, and also its possible participation in the destruction of the ozone layer. Its removal therefore becomes the main concern of public and industrial authorities.

Didušikov oksid, ili dinitrogen oksid, formule N2O, nastaje osobito tijekom sinteze dušične kiseline. On u načelu nastaje kod platinastih traka na kojima se amonijak oksidira s kisikom u zraku kod visoke temperature. Pored željenog nastajanja dušičnog oksida NO, koji nastaje prema reakciji Nitric oxide, or dinitrogen oxide, with the formula N2O, is formed especially during the synthesis of nitric acid. In principle, it is formed with platinum strips on which ammonia is oxidized with oxygen in the air at high temperature. In addition to the desired formation of nitrogen oxide NO, which is formed according to the reaction

4 NH3 + 5 O2 → 4 NO + 6 H2O, 4 NH3 + 5 O2 → 4 NO + 6 H2O,

didušikov oksid N2O nastaje zbog sporedne reakcije nitrous oxide N2O is formed due to a side reaction

NH3 + 3 NO → N2O + N2 + 3 H2O, NH3 + 3 NO → N2O + N2 + 3 H2O,

koji, ukoliko se ne provodi poseban tretman, prolazi kroz sustav bez pretvorbe i biva ispražnjen u atmosferu sa zaostalim plinovima. which, unless special treatment is carried out, passes through the system without conversion and is discharged into the atmosphere with residual gases.

Stanje tehnike State of the art

Različiti zeolitski katalizatori su predloženi za smanjenje didušikovog oksida, na primjerjedan temeljen na ZSM5-Cu ili ZSM5-Rh (Y. Li i J.N. Armor, Appl. Catal. B.l, 1992, 21), ili temeljen na ferierit/željezo (prema francuskoj prijavi Br. 97 16803). Međutim, niska aktivnost dobivenog katalizatora na taj način ispod 300°C i pomanjkanje stabilnosti zeolita kod povišenih temperatura, njihovu uporabu čini mogućom samo unutar relativno uskog temperaturnog raspona (350-600°C). Pored ovih zeolitskih pripravaka spomenuti su također, na način katalizatora za uništavanje N2O koji imaju aktivnost kompatibilnu s industrijskim primjenama, spojeva temeljenih na kobaltovim i niklovim oksidima koji se talože na zrncima cirkonija (US 5,314,673) ili amorfne mješavine magnezijevih i kobaltovih oksida (R.S. Drago i ostali, Appl. Catal. B. 13, 1997, 69). Međutim, kao i katalizatori temeljeni na zeolitima koji su spomenuti gore, ovi pripravci su djelotvorni samo kod umjerenih temperatura (400-600°C). Stoga se može razmatrati, u slučaju tretiranja plinova iz postrojenja za dušičnu kiselinu, njihova uporaba nizvodno od kotla za obnovu. To je međutim virtualno nemoguće, s obzirom na prevladavajuće temperaturne uvjete između platinskih traka i kotla (800-900°C), postaviti ih uzvodno od posljednjeg. Various zeolite catalysts have been proposed for the reduction of nitrous oxide, for example based on ZSM5-Cu or ZSM5-Rh (Y. Li and J.N. Armor, Appl. Catal. B.l, 1992, 21), or based on ferrierite/iron (according to the French application No. 97 16803). However, the low activity of the catalyst thus obtained below 300°C and the lack of stability of zeolites at elevated temperatures make their use possible only within a relatively narrow temperature range (350-600°C). In addition to these zeolite preparations, compounds based on cobalt and nickel oxides deposited on zirconium grains (US 5,314,673) or amorphous mixtures of magnesium and cobalt oxides (R.S. Drago and others, Appl. Catal. B. 13, 1997, 69). However, like the zeolite-based catalysts mentioned above, these preparations are only effective at moderate temperatures (400-600°C). Therefore, in the case of treating gases from nitric acid plants, their use downstream of the recovery boiler can be considered. However, it is virtually impossible, given the prevailing temperature conditions between the platinum strips and the boiler (800-900°C), to place them upstream of the latter.

Međutim, u većini postojećih postrojenja, postavljanje katalitičkog reaktora nizvodno od kotla za obnovu, uključuje poteškoće i skupe prilagodbe. Obratno, katalizator za selektivno razbijanje N2O, djelotvoran između 800°C i 900°C, u nazočnosti visokih koncentracija NO i H2O, može se vrlo dobro postaviti u prostor općenito dostupan u stvari unutar ložišta između platinskih traka i kotla, i dozvoljavat će bitno i jeftino smanjenje NaO koji se prazni iz većine postrojenja za dušičnu kiselinu koji su trenutno u uporabi. However, in most existing plants, installing a catalytic reactor downstream of a recovery boiler involves difficulties and costly adjustments. Conversely, a catalyst for the selective cracking of N2O, effective between 800°C and 900°C, in the presence of high concentrations of NO and H2O, can very well be placed in the space generally available in fact within the combustor between the platinum strips and the boiler, and will allow substantial and inexpensive reduction of NaO discharged from most nitric acid plants currently in use.

Refraktorm oksidi su već bili korišteni za uništavanje N2O, na primjer γ-Al2O3 prah injektiran u fluidiziranu podlogu kod nekih ložišta koja rade na uljna goriva s ciljem sprječavanja spaljenim plinovima da postanu natovareni s didušikovim oksidom (JP-A-06123406). US 5.478,549 se također poziva na uporabu cirkonijevih agregata za pretvaranje N2O nastalog sagorijevanjem amonijaka na platinskim gazama. Refractory oxides have already been used to destroy N2O, for example γ-Al2O3 powder injected into the fluidized bed of some oil-fired furnaces to prevent the burnt gases from becoming laden with nitrous oxide (JP-A-06123406). US 5,478,549 also refers to the use of zirconium aggregates to convert N2O produced by the combustion of ammonia on platinum gases.

Izum Invention

Upravo je otkriveno daje uništavanje NaO vrlo bitno poboljšano kada plinovi koji ga sadržavaju prolaze preko katalizatora koji se sastoji od agregata (nakupina), koje pokazuju nezanemarivu intergranularnu poroznost, refraktornih kovinskih oksida uzetih iz skupine koja se sastoji od Al2O3 i cirkonija, kada je zadnji impregniran s cirkonijevom soli. Impregnacija aluminijeve podloge potpomognuta s cirkonijevom soli je već ranije preporučena (FR-A-2,546,769) za poboljšanje hidrotermalne otpornosti katalizatora, bez daje prepoznata mogućnost uništavanja N2O. It has just been discovered that the destruction of NaO is greatly improved when the gases containing it pass over a catalyst consisting of aggregates (clusters), which show negligible intergranular porosity, of refractory metal oxides taken from the group consisting of Al2O3 and zirconium, when the latter is impregnated with zirconium salt. Impregnation of an aluminum substrate assisted with zirconium salt has already been recommended earlier (FR-A-2,546,769) to improve the hydrothermal resistance of the catalyst, without recognizing the possibility of N2O destruction.

Način na koji ova vrsta poroznosti može biti ugrađena u refraktorno kruto tijelo je proizvoditi ga agregacijom refraktornog praha kovinskog oksida veličine čestica od nekoliko mikrometara i učvrstiti ga grijanjem kod temperatura koje ne uklanjaju ovu nakupljenu poroznost. U slučaju cirkonija, temperatura učvršćivanja treba ostati ispod temperature (1200-1500°C) koja može uzrokovati sintrovanje koje uklanja ovu poroznost. The way this type of porosity can be built into a refractory solid is to produce it by aggregating refractory metal oxide powder with a particle size of several micrometers and solidify it by heating at temperatures that do not remove this accumulated porosity. In the case of zirconia, the solidification temperature should remain below the temperature (1200-1500°C) that can cause sintering that removes this porosity.

Bitno poboljšani rezultati su dobiveni ukoliko su se koristili, kao katalizatori, refraktorni oksidi aluminija ili cirkonija s intergranularnom poroznosti, impregniranom s cirkonijevim solima. Impregnacija se može postići vrlo jednostavno s potapanjem refraktornih agregata u vodenu otopinu cirkonijeve soli, na primjer cirkonijevog oksiklorida, i sušenjem nakon cijeđenja. Količina cirkonijeve soli koja, izraženo u pojmovima cirkonija, može biti u rasponu od 0,2 do 5% težinski, je stoga stalna na neobrađenim granulama. Impregnacija refraktomih podloga bez intergranularne poroznosti, na primjer alveolarne cirkonije ili kordieritne saće, ne vode ikakvoj značajnoj aktivnosti u odnosu na N2O pod uvjetima iz izuma. Katalizatori načinjeni od impregniranih refraktornih oksida s intergranularnom poroznosti su novi proizvodi i čine predmet sadašnjeg izuma. Significantly improved results were obtained if refractory oxides of aluminum or zirconia with intergranular porosity, impregnated with zirconium salts, were used as catalysts. Impregnation can be achieved very simply by immersing the refractory aggregates in an aqueous solution of a zirconium salt, for example zirconium oxychloride, and drying after draining. The amount of zirconium salt, which, expressed in terms of zirconium, can range from 0.2 to 5% by weight, is therefore constant on untreated granules. Impregnation of refractory substrates without intergranular porosity, for example alveolar zirconia or cordierite honeycomb, does not lead to any significant activity in relation to N2O under the conditions of the invention. Catalysts made of impregnated refractory oxides with intergranular porosity are new products and form the subject of the present invention.

Izum se može primjeniti na tretiranje plinova koji nastaju oksidacijom amonijaka na platinskim trakama u postrojenjima za proizvodnju dušične kiseline. Osim N2O, nazočnog kod razina koje su općenito između 500 i 2000 ppmv, ovi plinovi sadržavaju 10 do 12% NO i više od 20% H2O. The invention can be applied to the treatment of gases produced by the oxidation of ammonia on platinum strips in plants for the production of nitric acid. Apart from N2O, present at levels generally between 500 and 2000 ppmv, these gases contain 10 to 12% NO and more than 20% H2O.

Za pretvorbu N2O koji je sadržan u smjesi plina u dušik je rečeno da se događa prema glavnoj reakciji: The conversion of N2O contained in the gas mixture into nitrogen is said to occur according to the main reaction:

2N2O → 2N2 + O2 2N2O → 2N2 + O2

Nađeno je, međutim, da je razina NO u plinu koji je tretiran malo viša nakon što je prošao preko katalizatora iz izuma. To je pokrajnji učinak. ali vrlo vrijedan, jer on unaprjeđuje ukupno iskorištenje postrojenja glede dušične kiseline. To je bilo neočekivano. It was found, however, that the level of NO in the treated gas was slightly higher after passing over the catalyst of the invention. It's a side effect. but very valuable, because it improves the overall utilization of the plant in terms of nitric acid. That was unexpected.

Ostale primjene mogu biti vidljive iz, na primjer tretiranja plinova koji nastaju iz postupaka koji uključuju dušičnu oksidaciju organskih spojeva, osobito sintezu adipinske kiseline i glioksala. U zadnjem slučaju, odnosni plinovi su kod relativno niskih temperatura. Sustav mora biti opremljen s napravom za njihovo zagrijavanje na temperaturu dovoljno visoku za početak reakcije s kojom se N2O razbija, ekzotermičnost koje čini mogućim dalji nastavak pod uvjetima iz izuma, i napravom za uklanjanje i obnavljanje topline nastale na taj način. Other applications may be seen from, for example, the treatment of gases resulting from processes involving nitrogen oxidation of organic compounds, particularly the synthesis of adipic acid and glyoxal. In the latter case, the respective gases are at relatively low temperatures. The system must be equipped with a device for heating them to a temperature high enough to start the reaction with which N2O breaks down, exothermicity that makes further continuation under the conditions of the invention possible, and a device for removing and recovering the heat generated in this way.

PRIMJERI EXAMPLES

U slijedećim primjerima je ispitivanje katalizatora provedeno u ispitnoj jedinici s nepokretnom podlogom kroz koju prolaze reaktanti (catatest) i koja je okružena s grijaćim oklopima čija se temperatura nadzire u PID načinu (što znači "Proporcionalno integralno porijeklo"), In the following examples, the catalyst was tested in a test unit with a stationary surface through which reactants pass (catatest) and which is surrounded by heating shields whose temperature is monitored in PID mode (which means "Proportional Integral Origin"),

Ukoliko nije drugačije naznačeno, uvjeti ispitivanja su slijedeći: Unless otherwise indicated, the test conditions are as follows:

Reaktor je promjera 2,54 cm. Zapremnina primjenjenog katalizatora je 25 cm, to je 50 mm visoka podloga. The reactor is 2.54 cm in diameter. The volume of the applied catalyst is 25 cm, that is a 50 mm high substrate.

Plina za reakciju je pripravljen iz stlačenog zraka, dušika i normalnog plina, N2O u N2 kod 2%, NO u N2 kod 2%. Razina isparavanja vode je podešena uporabom zasićivača prema zakonima o tlaku plinova. Njihova smjesa je podešena kod: The reaction gas is prepared from compressed air, nitrogen and normal gas, N2O in N2 at 2%, NO in N2 at 2%. The level of water evaporation is adjusted using a saturator according to the laws of gas pressure. Their mixture is adjusted at:

NO = 1400 ppm NO = 1400 ppm

N2O = 700-1000 ppm N2O = 700-1000 ppm

O2 = 3% O2 = 3%

H2O = 15% H2O = 15%

Brzina po satu (HSV)je ustaljena kod 10.000 h-1 (brzina protoka plina od 250 L/h). Hourly rate (HSV) is fixed at 10,000 h-1 (gas flow rate of 250 L/h).

Analiza N2O je provedena uporabom infracrvenoga, a analiza NO je provedena kemijskom luminiscencijom. The analysis of N2O was carried out using infrared, and the analysis of NO was carried out by chemiluminescence.

Pojam pretvorba za didušični oksid je uporabljena za označavanje čimbenika po kojem se on uklanja iz plinova kod izlaza iz reaktora, ili sirova pretvorba, kako slijedi The term nitrous oxide conversion is used to denote the factor by which it is removed from the reactor exit gases, or crude conversion, as follows

[image] [image]

gdje N2O ulaz, odnosno N2O izlaz predstavljaju koncentracije N2O u plinu prije i nakon njegovog prolaza preko katalizatora. where N2O input and N2O output respectively represent N2O concentrations in the gas before and after its passage through the catalyst.

U slučaju NO je to obrnuto, njihov čimbenik povećanja koji je zabilježen (iz tog razloga je on pisan sa - znakom). Na isti način, promjene u razini NO, ili sirova pretvorba, se pišu kako slijedi In the case of NO it is the other way around, their increase factor that is recorded (for this reason it is written with a - sign). In the same way, changes in NO level, or crude conversion, are written as follows

[image] [image]

Ovo predstavljanje se uklapa u tumačenje nestanka N2O, u jednu ruku kroz postupak kojim on disocira u dušik i kisik, i u drugu ruku kroz njegovu pretvorbu u NO, ukoliko se rezultati tumače kao N2O → NO pretvorba s This presentation fits into the interpretation of the disappearance of N2O, on the one hand through the process by which it dissociates into nitrogen and oxygen, and on the other hand through its conversion into NO, if the results are interpreted as N2O → NO conversion with

[image] [image]

i kao N2O -> N2 pretvorba and as N2O -> N2 conversion

[image] [image]

Brojevi dani niže su oni dobiveni u svakom slučaju nakon što je sustav dostigao ravnotežno stanje (postignuto nakon oko 3 sata nakon promjena svakog parametra). The numbers given below are those obtained in each case after the system reached an equilibrium state (achieved after about 3 hours after each parameter change).

PRIMJER 1 EXAMPLE 1

Magnezij Magnesium

Uporabljeni katalizator je magnezij nazočan u obliku zrnaca od 0,5 - 1 mm dobivenih nakupljanjem praha magnezija s vezivom koje se sastoji silicijevog sola (sadržaj veziva izražen kao SiO2 == 10% težinski nakupine), stvaranje peleta, kalciniranje i potom ponovno razbijanje i ispitivanje na namjeravanu veličinu čestice. The catalyst used is magnesium present in the form of grains of 0.5 - 1 mm obtained by the accumulation of magnesium powder with a binder consisting of silicon salt (binder content expressed as SiO2 == 10% by weight of the aggregate), pellet formation, calcination and then re-breaking and testing to the intended particle size.

Dobiveno je slijedeće: The following was obtained:

[image] [image]

Brzine pretvorbe, i za N2O i NO, koje su uočene kod 800°C su virtualno stalne kroz neprekidno radno vrijeme koje traje 24 sata. The conversion rates, for both N2O and NO, observed at 800°C are virtually constant over a continuous 24-hour operating time.

Ovi pokusi se ponovljeni pod malo različitim uvjetima These experiments were repeated under slightly different conditions

NO = 1400 ppm NO = 1400 ppm

N2O = 700-1000 ppm N2O = 700-1000 ppm

O2 = 3% O2 = 3%

H2O = 15% HSV = 30.000 h-1 H2O = 15% HSV = 30,000 h-1

Dobiveno je slijedeće: The following was obtained:

[image] [image]

Ovo je ponavljano jedno za drugim kroz 24 sata kod HSV od 10.000 h-1. Početna pretvorba je 99% i još uvijek je kod 93-94% nakon 24 sata. This was repeated one after the other for 24 hours at an HSV of 10,000 h-1. Initial conversion is 99% and is still at 93-94% after 24 hours.

To su vrlo prednosni rezultati. Industrijska korist od magnezija je međutim smanjena s činjenicom da je nemoguće održavati sastav zrnastog tijela podvrgnutog ovoj temperaturi. Svi eksperimentalno istraženi uzorci su smanjeni na prašinu nakon ispitivanja. These are very favorable results. The industrial utility of magnesium is however reduced by the fact that it is impossible to maintain the composition of the granular body subjected to this temperature. All experimentally investigated samples were reduced to dust after testing.

PRIMJER 2 i 2A EXAMPLE 2 and 2A

Cirkonij Zirconium

Ovi primjeri čine mogućim procijeniti utjecaj čimbenika intergranularne poroznosti na djelotvornost katalizatora. These examples make it possible to evaluate the influence of the intergranular porosity factor on the effectiveness of the catalyst.

PRIMJER 2 EXAMPLE 2

Zrnca Grains

Katalizator je trgovački cirkonij (ZR-0404T 1/8 od Engelharda) u obliku peleta približno 3 cm (1/8 inča) u promjeru, specifična površina koja je između 30 i 40 m2/g i zapremnina pore je između 0,19 i 0,22 cm3/g. Uporabljen je, pod općenitim uvjetima primjera, s plinovima čije je sastav stoga podešen: The catalyst is commercial zirconia (ZR-0404T 1/8 from Engelhard) in the form of pellets approximately 3 cm (1/8 inch) in diameter, a specific surface area between 30 and 40 m 2 /g and a pore volume between 0.19 and 0, 22 cm3/year. It is used, under the general conditions of the example, with gases whose composition is therefore adjusted:

NO = 1000 ppm NO = 1000 ppm

N2O = 1000 ppm N2O = 1000 ppm

O2 = 3% O2 = 3%

H2O = 15% H2O = 15%

Slijedeće je dobiveno s HSV 10.000 h-1: The following was obtained with HSV 10,000 h-1:

[image] [image]

Slijedeće je dobiveno s HSV 30.000 h-1: The following was obtained with HSV 30,000 h-1:

[image] [image]

Ovi rezultati pokazuju potvrđenu djelotvornost granularnog cirkonija. These results demonstrate the confirmed effectiveness of granular zirconia.

Primjer 2A Example 2A

Alveolarni cirkonij Alveolar zirconium

Katalizator uporabljen ovdje je alveolarni cirkonij koji sadržava 94,2% ZrO2, 2,9% CaO i 0.425% MgO. Ovaj oblik je dobiven impregniranjem poliuretanske pjene s cirkonijem, kalciniranjem polueretanske potpore i sintrovanjem cirkonijeve strukture. Uporabljenje u obliku od 1 cm promjera i 2 cm visine. The catalyst used here is alveolar zirconium containing 94.2% ZrO2, 2.9% CaO and 0.425% MgO. This form was obtained by impregnating polyurethane foam with zirconium, calcining the semi-erethane support and sintering the zirconium structure. Use in the form of 1 cm in diameter and 2 cm in height.

Slijedeće je dobiveno s HSV 10.000 h-1 : The following was obtained with HSV 10,000 h-1 :

[image] [image]

Ova alveolarna tvar, bez mikropora, ima prednost u selektivnosti, ali s vrlo malom razinom aktivnosti za smanjenje didušičnog oksida, i stoga bez praktičke koristi. This alveolar substance, without micropores, has the advantage of selectivity, but with a very low level of nitric oxide-reducing activity, and therefore of no practical use.

PRIMJER 3 EXAMPLE 3

Aluminat Aluminate

Katalizator uporabljen u ovom slučaju je aluminat s 93,5% Al2O3, u zrnima 2-5 mm promjera, čija poroznost je oko 0,42 cm3/g za pore manje od 8 μm, i specifične površine od 280-360 m2/g (Procatalyse A.A. 2-5 Grade P alumina). The catalyst used in this case is aluminate with 93.5% Al2O3, in grains 2-5 mm in diameter, whose porosity is about 0.42 cm3/g for pores less than 8 μm, and specific surface area of 280-360 m2/g ( Procatalyse AA 2-5 Grade P alumina).

Dobiveni rezultati su dani niže: The obtained results are given below:

[image] [image]

Brzine pretvorbe za N2O i NO su stabilne, ali umjerene u radnom vremenu. The conversion rates for N2O and NO are stable but moderate over time.

PRIMJER 4 prema izumu EXAMPLE 4 according to the invention

cirkonijem obrađen aluminat zirconium treated aluminate

Katalizator uporabljen u ovom slučaju je aluminat P stupnja kao u Primjeru 3, ali promijenjen na slijedeći način: 100 cm3 zrnaca je prekriveno s vodenom otopinom cirkonijevog oksiklorida ZrOCl2. 8H2O kod gustoće 0,2 mola/litri. Sustav je ostavljen bez miješanja kod 60°C kroz 3 sata. Nakon hlađenja, zrnca su povraćena filtriranjem na lijevku za filtriranje, isprana vrlo nježno s demineraliziranom vodom i sušeni u sobnoj peći kod 100°C. Sadržaj cirkonija u zrncima tretiranim na ovaj načinje 0,61%, izmjereno s ICP (plazmina lampa). The catalyst used in this case is P grade aluminate as in Example 3, but changed as follows: 100 cm3 of grains are covered with an aqueous solution of zirconium oxychloride ZrOCl2. 8H2O at a density of 0.2 mol/liter. The system was left without stirring at 60°C for 3 hours. After cooling, the beads were recovered by filtration on a filter funnel, washed very gently with demineralized water and dried in a room oven at 100°C. The zirconium content in grains treated in this way is 0.61%, measured with ICP (plasma lamp).

Pod općenitim uvjetima ispitivanja opisanih gore, dobiveno je slijedeće: Under the general test conditions described above, the following was obtained:

[image] [image]

Brzine sirove pretvorbe za N2O i NO koje su opažene kod 800°C su zapaženo stabilne. U slučaju N2O se one stabiliziraju kod brzina blizu 100% i održavaju tu brzinu najmanje kroz 24 sata neprekidnog rada. The crude conversion rates for N2O and NO observed at 800°C are remarkably stable. In the case of N2O, they stabilize at speeds close to 100% and maintain that speed for at least 24 hours of continuous operation.

Povećanje koncentracije NO u dostavljenim plinovima ne utječe bitno na ukupnu pretvorbu N2O. Stoga je dobiveno slijedeće kada se NO promijenio od 1400 na 5000 ppm: An increase in the concentration of NO in the delivered gases does not significantly affect the total conversion of N2O. Therefore, the following was obtained when NO changed from 1400 to 5000 ppm:

[image] [image]

i kada je dostavljeno 8.000 ppm NO, and when 8,000 ppm NO was delivered,

[image] [image]

Radi osjetljivosti na HSV čimbenik, postupak je također proveden pod slijedećim uvjetima: Due to sensitivity to the HSV factor, the procedure was also carried out under the following conditions:

NO = 1440 ppm NO = 1440 ppm

N2O = 700-1000 ppm N2O = 700-1000 ppm

O2 = 3% O2 = 3%

H2O = 15% H2O = 15%

s ustaljenim HSV kod 50.000 h-1. with established HSV at 50,000 h-1.

Dobiveno je slijedeće: The following was obtained:

[image] [image]

PRIMJER 5 EXAMPLE 5

Kordierit prekriven s cirkonijevom soli (primjer koji se računa) Cordierite covered with zirconium salt (an example that counts)

Katalizator uporabljen u ovom slučaju je kordierit u saćastoj strukturi s 620.000 stanica na četvorni metar (proizvedeno u Comingu), prekriven s cirkonijevim oksidom vezanim na silikagel. Naslaga (ZrO2 u obliku praha od 2 μm + 10% SiO2) je provedena kod brzine 122 g/L strukture. The catalyst used in this case is cordierite in a honeycomb structure with 620,000 cells per square meter (produced in Coming), covered with zirconium oxide bonded to silica gel. The deposition (ZrO2 in the form of a powder of 2 μm + 10% SiO2) was carried out at a rate of 122 g/L of the structure.

Dobiveni rezultati su dani niže: The obtained results are given below:

[image] [image]

Gusta potpora, čak i u otvorenom obliku saća, kada je jednostavno prekrivena s cirkonijevim oksidom ne nudi praktičke kapacitete za smanjenje didušičnog oksida. A dense support, even in open honeycomb form, when simply covered with zirconium oxide offers no practical capacity to reduce nitrous oxide.

Claims (8)

1. Postupak za smanjenje razine didušičnog oksida N2O u plinovima, koji osim N2O, sadržavaju dušikov oksid NO i vodu, koji se sastoji iz prolaska tih plinova kroz katalizatorsku podlogu koja se sastoji iz refraktomih oksida odabranih iz skupine koja se sastoji od aluminata i cirkonija kod temperatura između 800 i 900°C, naznačen time, što je katalizator u obliku aluminatnih ili cirkonijevih zrnaca s intergranularnom poroznošću impregniran s cirkonijevom soli.1. A process for reducing the level of nitrous oxide N2O in gases, which, in addition to N2O, contain nitrogen oxide NO and water, which consists of passing these gases through a catalyst substrate consisting of refractory oxides selected from the group consisting of aluminate and zirconium at temperature between 800 and 900°C, indicated by the fact that the catalyst in the form of aluminate or zirconium grains with intergranular porosity is impregnated with zirconium salt. 2. Postupak prema zahtjevu 1, naznačen time, što je katalizator granulirani aluminat impregniran s cirkonijevom soli.2. The method according to claim 1, characterized in that the catalyst is granular aluminate impregnated with zirconium salt. 3. Postupak prema zahtjevu 1, naznačen time, što je katalizator granulirani cirkonij impregniran s cirkonijevom soli.3. The method according to claim 1, characterized in that the catalyst is granular zirconium impregnated with zirconium salt. 4. Postupak prema bilo kojem od zahtjeva 1 do 3, naznačen time, što su aluminatna ili cirkonijeva zrnca s intergranularnom poroznošću impregnirana s cirkonijevom soli kod omjera od 0,2 do 5%-tnog cirkonija težinski relativno prema zrncima.4. The method according to any one of claims 1 to 3, characterized in that aluminate or zirconium grains with intergranular porosity are impregnated with zirconium salt at a ratio of 0.2 to 5% zirconium by weight relative to the grains. 5. Katalizator, naznačen time, što se sastoji od agregata cirkonija s intergranularnom poroznosti impregniranog s cirkonijevom soli.5. Catalyst, characterized by the fact that it consists of zirconium aggregates with intergranular porosity impregnated with zirconium salt. 6. Katalizator prema zahtjevu 5, naznačen time, što cirkonij predstavlja 0,2 do 5% cirkonija težinski relativno prema agregatu.6. Catalyst according to claim 5, characterized in that zirconium represents 0.2 to 5% of zirconium by weight relative to the aggregate. 7. Primjena postupka prema zahtjevima 1 do 4, naznačena time, što smanjuje N2O u plinovima nastalim oksidacijom amonijaka na platinskim trakama u pogonima za proizvodnju dušične kiseline.7. Application of the process according to claims 1 to 4, indicated by the fact that it reduces N2O in the gases produced by the oxidation of ammonia on platinum strips in nitric acid production facilities. 8. Primjena postupka prema zahtjevima 1 do 4, naznačena time, što smanjuje N2O u plinovima nastalim oksidacijom dušika organskih spojeva, u sustavu opremljenom s napravom za njihovo grijanje do temperature od 800 do 900°C s ciljem počinjanja reakcije s kojom se N2O raspada.8. Application of the procedure according to claims 1 to 4, indicated by the fact that it reduces N2O in gases created by nitrogen oxidation of organic compounds, in a system equipped with a device for heating them to a temperature of 800 to 900°C with the aim of starting the reaction with which N2O decomposes.
HR20000063A 1998-06-05 2000-02-03 Method for reducing nitrous oxide in gases and corresponding catalysts HRP20000063A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9807101A FR2779360B1 (en) 1998-06-05 1998-06-05 PROCESS FOR THE ABATEMENT OF NITROGEN PROTOXIDE IN GASES AND CORRESPONDING CATALYSTS
PCT/FR1999/001271 WO1999064139A1 (en) 1998-06-05 1999-05-31 Method for reducing nitrous oxide in gases and corresponding catalysts

Publications (1)

Publication Number Publication Date
HRP20000063A2 true HRP20000063A2 (en) 2001-12-31

Family

ID=9527067

Family Applications (1)

Application Number Title Priority Date Filing Date
HR20000063A HRP20000063A2 (en) 1998-06-05 2000-02-03 Method for reducing nitrous oxide in gases and corresponding catalysts

Country Status (14)

Country Link
EP (1) EP1017478A1 (en)
CN (1) CN1274297A (en)
AU (1) AU3833199A (en)
BG (1) BG104214A (en)
BR (1) BR9906483A (en)
CA (1) CA2299562A1 (en)
FR (1) FR2779360B1 (en)
HR (1) HRP20000063A2 (en)
HU (1) HUP0100827A3 (en)
IL (1) IL134307A0 (en)
PL (1) PL338216A1 (en)
TR (1) TR200000336T1 (en)
WO (1) WO1999064139A1 (en)
ZA (1) ZA200000838B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10006103A1 (en) * 2000-02-11 2001-08-16 Krupp Uhde Gmbh Catalyst for decomposing N¶2¶O, its use in nitric acid production and process for its production
US20050202966A1 (en) 2004-03-11 2005-09-15 W.C. Heraeus Gmbh Catalyst for the decomposition of N2O in the Ostwald process
DE102004024026A1 (en) 2004-03-11 2005-09-29 W.C. Heraeus Gmbh Catalyst for decomposition of nitrous oxide under conditions of Ostwald process, comprises carrier material, and coating of rhodium, rhodium oxide, or palladium-rhodium alloy
PL388518A1 (en) 2009-07-10 2011-01-17 Instytut Nawozów Sztucznych Catalyst for high-temperature decomposition of nitrous oxide
CN103586040B (en) * 2013-11-13 2017-02-08 刘崇莲 Catalyst for processing N2O and preparation technique thereof
PL237044B1 (en) 2015-03-13 2021-03-08 Inst Nowych Syntez Chemicznych Carrier catalyst for the reduction of nitrogen oxide (I) emission, preferably from the nitric acid installation and method for producing it
CN105363451B (en) * 2015-12-04 2018-01-26 中国天辰工程有限公司 One kind is used to decompose N2O effective catalyst and its preparation method and application

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2546769A1 (en) * 1983-06-03 1984-12-07 Pro Catalyse Hydrothermally stable catalyst supports based on alumina
DE3541705A1 (en) * 1985-11-26 1987-05-27 Eugen Dipl Chem Dr Phil Dumont Catalyst compositions made of metal ceramic for reducing oxides of sulphur and nitrogen in gas streams
JP3029512B2 (en) * 1992-08-28 2000-04-04 出光興産株式会社 Method for removing nitrous oxide from combustion gas
US5478549A (en) * 1994-12-15 1995-12-26 E. I. Du Pont De Nemours And Company Production of nitric oxide

Also Published As

Publication number Publication date
HUP0100827A3 (en) 2003-02-28
WO1999064139A1 (en) 1999-12-16
TR200000336T1 (en) 2000-10-23
FR2779360B1 (en) 2000-09-08
CN1274297A (en) 2000-11-22
EP1017478A1 (en) 2000-07-12
CA2299562A1 (en) 1999-12-16
PL338216A1 (en) 2000-10-09
BR9906483A (en) 2000-09-26
FR2779360A1 (en) 1999-12-10
HUP0100827A2 (en) 2001-06-28
IL134307A0 (en) 2001-04-30
ZA200000838B (en) 2000-09-13
AU3833199A (en) 1999-12-30
BG104214A (en) 2000-08-31

Similar Documents

Publication Publication Date Title
US6080281A (en) Scrubbing of contaminants from contaminated air streams with aerogel materials with optional photocatalytic destruction
JP5526410B2 (en) Method for removing nitrogen oxides in exhaust gas
EP2850294B2 (en) Method and system for the purification of exhaust gas from an internal combustion engine
JP7472014B2 (en) N2O removal from automotive exhaust for lean/rich systems
CA2696028C (en) Catalyst, production method therefor and use thereof for decomposing n2o
WO2012090922A1 (en) Catalyst for nitrogen oxide removal
PL202181B1 (en) Catalyst for decomposing n2
CA2092265A1 (en) Process for controlled n2o decomposition in an n20-containing gas stream
HRP20000063A2 (en) Method for reducing nitrous oxide in gases and corresponding catalysts
Jun et al. Effects of Ce-doping on the structure and NH3-SCR activity of Fe/Beta catalyst
US10226755B2 (en) NOx storage reduction catalyst for purifying exhaust gas and exhaust gas purification method using said catalyst
EP1390293B1 (en) Process for the preparation of ammonia oxidation
JP2006026635A (en) Method of removing nitrogen oxides contained in exhaust gas
EP0822005A2 (en) Catalyst and method for purifying exhaust gases
JPH04244218A (en) Method for purifying exhaust gas
KR101400608B1 (en) Catalyst for selective oxidation of ammonia, manufacturing method same and process for selective oxidation of ammonia using same
CZ2000427A3 (en) Process of reducing content of dinitrogen oxide in gases and catalyst for making the same
KR20240061767A (en) Cu-CHA Zeolite Catalyst
JP2004518521A (en) Apparatus and method for removing hydrogen sulfide
MXPA00001211A (en) Method for reducing nitrous oxide in gases and corresponding catalysts
JP2595370B2 (en) Purification method of exhaust gas containing nitrogen oxides
JPH06154602A (en) Catalyst for removal of nitrogen oxide
JPH0751542A (en) Purification of exhaust gas
JPH09248427A (en) Removal of nitrogen oxide
Blanco et al. The performance of a new monolithic SCR catalyst in a life test with real exhaust gases. Effect on the textural nature

Legal Events

Date Code Title Description
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
A1OB Publication of a patent application
ODRP Renewal fee for the maintenance of a patent

Payment date: 20020203

Year of fee payment: 3

ODBI Application refused