HRP20000063A2 - Method for reducing nitrous oxide in gases and corresponding catalysts - Google Patents
Method for reducing nitrous oxide in gases and corresponding catalysts Download PDFInfo
- Publication number
- HRP20000063A2 HRP20000063A2 HR20000063A HRP20000063A HRP20000063A2 HR P20000063 A2 HRP20000063 A2 HR P20000063A2 HR 20000063 A HR20000063 A HR 20000063A HR P20000063 A HRP20000063 A HR P20000063A HR P20000063 A2 HRP20000063 A2 HR P20000063A2
- Authority
- HR
- Croatia
- Prior art keywords
- zirconium
- catalyst
- gases
- impregnated
- aluminate
- Prior art date
Links
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 title claims description 89
- 239000001272 nitrous oxide Substances 0.000 title claims description 38
- 239000003054 catalyst Substances 0.000 title claims description 26
- 239000007789 gas Substances 0.000 title claims description 25
- 238000000034 method Methods 0.000 title claims description 11
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 19
- 229910052726 zirconium Inorganic materials 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 17
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 12
- 150000003754 zirconium Chemical class 0.000 claims description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 150000004645 aluminates Chemical class 0.000 claims description 8
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 6
- 229910017604 nitric acid Inorganic materials 0.000 claims description 6
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 229910021529 ammonia Inorganic materials 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 230000003647 oxidation Effects 0.000 claims description 4
- 238000007254 oxidation reaction Methods 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 150000002894 organic compounds Chemical class 0.000 claims description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 14
- 229960001730 nitrous oxide Drugs 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000010457 zeolite Substances 0.000 description 4
- 229910021536 Zeolite Inorganic materials 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 229910052878 cordierite Inorganic materials 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- CMOAHYOGLLEOGO-UHFFFAOYSA-N oxozirconium;dihydrochloride Chemical compound Cl.Cl.[Zr]=O CMOAHYOGLLEOGO-UHFFFAOYSA-N 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical group [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000003870 refractory metal Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- OCKGFTQIICXDQW-ZEQRLZLVSA-N 5-[(1r)-1-hydroxy-2-[4-[(2r)-2-hydroxy-2-(4-methyl-1-oxo-3h-2-benzofuran-5-yl)ethyl]piperazin-1-yl]ethyl]-4-methyl-3h-2-benzofuran-1-one Chemical compound C1=C2C(=O)OCC2=C(C)C([C@@H](O)CN2CCN(CC2)C[C@H](O)C2=CC=C3C(=O)OCC3=C2C)=C1 OCKGFTQIICXDQW-ZEQRLZLVSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 229910006213 ZrOCl2 Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical class [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910001657 ferrierite group Inorganic materials 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000012812 general test Methods 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical class [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910003158 γ-Al2O3 Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/066—Zirconium or hafnium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8621—Removing nitrogen compounds
- B01D53/8625—Nitrogen oxides
- B01D53/8628—Processes characterised by a specific catalyst
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/02—Preparation of nitrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/20—Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
- C01B21/24—Nitric oxide (NO)
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/20—Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
- C01B21/24—Nitric oxide (NO)
- C01B21/26—Preparation by catalytic or non-catalytic oxidation of ammonia
- C01B21/265—Preparation by catalytic or non-catalytic oxidation of ammonia characterised by the catalyst
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/10—Capture or disposal of greenhouse gases of nitrous oxide (N2O)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Description
Sadašnji izum se odnosi na postupke za tretiranje plinova s ciljem uklanjanja didušikovog oksida iz njih prije nego se isprazne u atmosferu. The present invention relates to processes for treating gases with the aim of removing nitrous oxide from them before they are discharged into the atmosphere.
Izum se nalazi unutar općenitog područja smanjenja razine plinova s učinkom staklenika kod otpadnih industrijskih plinova koji se prazne u atmosferi. Sada se spoznao značajan doprinos didušikovog oksida (N2O) u povećanju učinka staklenika, čije opasnosti vode klimatskim promjenama s nenadziranim učinkom, i također njegovo moguće učešće u razbijanju ozonskog sloja. Njegovo uklanjanje stoga postaje glavna briga javnih i industrijskih autoriteta. The invention is within the general field of reducing the level of greenhouse gases in waste industrial gases discharged into the atmosphere. It is now recognized the significant contribution of nitrous oxide (N2O) in increasing the greenhouse effect, the dangers of which lead to climate change with an uncontrolled effect, and also its possible participation in the destruction of the ozone layer. Its removal therefore becomes the main concern of public and industrial authorities.
Didušikov oksid, ili dinitrogen oksid, formule N2O, nastaje osobito tijekom sinteze dušične kiseline. On u načelu nastaje kod platinastih traka na kojima se amonijak oksidira s kisikom u zraku kod visoke temperature. Pored željenog nastajanja dušičnog oksida NO, koji nastaje prema reakciji Nitric oxide, or dinitrogen oxide, with the formula N2O, is formed especially during the synthesis of nitric acid. In principle, it is formed with platinum strips on which ammonia is oxidized with oxygen in the air at high temperature. In addition to the desired formation of nitrogen oxide NO, which is formed according to the reaction
4 NH3 + 5 O2 → 4 NO + 6 H2O, 4 NH3 + 5 O2 → 4 NO + 6 H2O,
didušikov oksid N2O nastaje zbog sporedne reakcije nitrous oxide N2O is formed due to a side reaction
NH3 + 3 NO → N2O + N2 + 3 H2O, NH3 + 3 NO → N2O + N2 + 3 H2O,
koji, ukoliko se ne provodi poseban tretman, prolazi kroz sustav bez pretvorbe i biva ispražnjen u atmosferu sa zaostalim plinovima. which, unless special treatment is carried out, passes through the system without conversion and is discharged into the atmosphere with residual gases.
Stanje tehnike State of the art
Različiti zeolitski katalizatori su predloženi za smanjenje didušikovog oksida, na primjerjedan temeljen na ZSM5-Cu ili ZSM5-Rh (Y. Li i J.N. Armor, Appl. Catal. B.l, 1992, 21), ili temeljen na ferierit/željezo (prema francuskoj prijavi Br. 97 16803). Međutim, niska aktivnost dobivenog katalizatora na taj način ispod 300°C i pomanjkanje stabilnosti zeolita kod povišenih temperatura, njihovu uporabu čini mogućom samo unutar relativno uskog temperaturnog raspona (350-600°C). Pored ovih zeolitskih pripravaka spomenuti su također, na način katalizatora za uništavanje N2O koji imaju aktivnost kompatibilnu s industrijskim primjenama, spojeva temeljenih na kobaltovim i niklovim oksidima koji se talože na zrncima cirkonija (US 5,314,673) ili amorfne mješavine magnezijevih i kobaltovih oksida (R.S. Drago i ostali, Appl. Catal. B. 13, 1997, 69). Međutim, kao i katalizatori temeljeni na zeolitima koji su spomenuti gore, ovi pripravci su djelotvorni samo kod umjerenih temperatura (400-600°C). Stoga se može razmatrati, u slučaju tretiranja plinova iz postrojenja za dušičnu kiselinu, njihova uporaba nizvodno od kotla za obnovu. To je međutim virtualno nemoguće, s obzirom na prevladavajuće temperaturne uvjete između platinskih traka i kotla (800-900°C), postaviti ih uzvodno od posljednjeg. Various zeolite catalysts have been proposed for the reduction of nitrous oxide, for example based on ZSM5-Cu or ZSM5-Rh (Y. Li and J.N. Armor, Appl. Catal. B.l, 1992, 21), or based on ferrierite/iron (according to the French application No. 97 16803). However, the low activity of the catalyst thus obtained below 300°C and the lack of stability of zeolites at elevated temperatures make their use possible only within a relatively narrow temperature range (350-600°C). In addition to these zeolite preparations, compounds based on cobalt and nickel oxides deposited on zirconium grains (US 5,314,673) or amorphous mixtures of magnesium and cobalt oxides (R.S. Drago and others, Appl. Catal. B. 13, 1997, 69). However, like the zeolite-based catalysts mentioned above, these preparations are only effective at moderate temperatures (400-600°C). Therefore, in the case of treating gases from nitric acid plants, their use downstream of the recovery boiler can be considered. However, it is virtually impossible, given the prevailing temperature conditions between the platinum strips and the boiler (800-900°C), to place them upstream of the latter.
Međutim, u većini postojećih postrojenja, postavljanje katalitičkog reaktora nizvodno od kotla za obnovu, uključuje poteškoće i skupe prilagodbe. Obratno, katalizator za selektivno razbijanje N2O, djelotvoran između 800°C i 900°C, u nazočnosti visokih koncentracija NO i H2O, može se vrlo dobro postaviti u prostor općenito dostupan u stvari unutar ložišta između platinskih traka i kotla, i dozvoljavat će bitno i jeftino smanjenje NaO koji se prazni iz većine postrojenja za dušičnu kiselinu koji su trenutno u uporabi. However, in most existing plants, installing a catalytic reactor downstream of a recovery boiler involves difficulties and costly adjustments. Conversely, a catalyst for the selective cracking of N2O, effective between 800°C and 900°C, in the presence of high concentrations of NO and H2O, can very well be placed in the space generally available in fact within the combustor between the platinum strips and the boiler, and will allow substantial and inexpensive reduction of NaO discharged from most nitric acid plants currently in use.
Refraktorm oksidi su već bili korišteni za uništavanje N2O, na primjer γ-Al2O3 prah injektiran u fluidiziranu podlogu kod nekih ložišta koja rade na uljna goriva s ciljem sprječavanja spaljenim plinovima da postanu natovareni s didušikovim oksidom (JP-A-06123406). US 5.478,549 se također poziva na uporabu cirkonijevih agregata za pretvaranje N2O nastalog sagorijevanjem amonijaka na platinskim gazama. Refractory oxides have already been used to destroy N2O, for example γ-Al2O3 powder injected into the fluidized bed of some oil-fired furnaces to prevent the burnt gases from becoming laden with nitrous oxide (JP-A-06123406). US 5,478,549 also refers to the use of zirconium aggregates to convert N2O produced by the combustion of ammonia on platinum gases.
Izum Invention
Upravo je otkriveno daje uništavanje NaO vrlo bitno poboljšano kada plinovi koji ga sadržavaju prolaze preko katalizatora koji se sastoji od agregata (nakupina), koje pokazuju nezanemarivu intergranularnu poroznost, refraktornih kovinskih oksida uzetih iz skupine koja se sastoji od Al2O3 i cirkonija, kada je zadnji impregniran s cirkonijevom soli. Impregnacija aluminijeve podloge potpomognuta s cirkonijevom soli je već ranije preporučena (FR-A-2,546,769) za poboljšanje hidrotermalne otpornosti katalizatora, bez daje prepoznata mogućnost uništavanja N2O. It has just been discovered that the destruction of NaO is greatly improved when the gases containing it pass over a catalyst consisting of aggregates (clusters), which show negligible intergranular porosity, of refractory metal oxides taken from the group consisting of Al2O3 and zirconium, when the latter is impregnated with zirconium salt. Impregnation of an aluminum substrate assisted with zirconium salt has already been recommended earlier (FR-A-2,546,769) to improve the hydrothermal resistance of the catalyst, without recognizing the possibility of N2O destruction.
Način na koji ova vrsta poroznosti može biti ugrađena u refraktorno kruto tijelo je proizvoditi ga agregacijom refraktornog praha kovinskog oksida veličine čestica od nekoliko mikrometara i učvrstiti ga grijanjem kod temperatura koje ne uklanjaju ovu nakupljenu poroznost. U slučaju cirkonija, temperatura učvršćivanja treba ostati ispod temperature (1200-1500°C) koja može uzrokovati sintrovanje koje uklanja ovu poroznost. The way this type of porosity can be built into a refractory solid is to produce it by aggregating refractory metal oxide powder with a particle size of several micrometers and solidify it by heating at temperatures that do not remove this accumulated porosity. In the case of zirconia, the solidification temperature should remain below the temperature (1200-1500°C) that can cause sintering that removes this porosity.
Bitno poboljšani rezultati su dobiveni ukoliko su se koristili, kao katalizatori, refraktorni oksidi aluminija ili cirkonija s intergranularnom poroznosti, impregniranom s cirkonijevim solima. Impregnacija se može postići vrlo jednostavno s potapanjem refraktornih agregata u vodenu otopinu cirkonijeve soli, na primjer cirkonijevog oksiklorida, i sušenjem nakon cijeđenja. Količina cirkonijeve soli koja, izraženo u pojmovima cirkonija, može biti u rasponu od 0,2 do 5% težinski, je stoga stalna na neobrađenim granulama. Impregnacija refraktomih podloga bez intergranularne poroznosti, na primjer alveolarne cirkonije ili kordieritne saće, ne vode ikakvoj značajnoj aktivnosti u odnosu na N2O pod uvjetima iz izuma. Katalizatori načinjeni od impregniranih refraktornih oksida s intergranularnom poroznosti su novi proizvodi i čine predmet sadašnjeg izuma. Significantly improved results were obtained if refractory oxides of aluminum or zirconia with intergranular porosity, impregnated with zirconium salts, were used as catalysts. Impregnation can be achieved very simply by immersing the refractory aggregates in an aqueous solution of a zirconium salt, for example zirconium oxychloride, and drying after draining. The amount of zirconium salt, which, expressed in terms of zirconium, can range from 0.2 to 5% by weight, is therefore constant on untreated granules. Impregnation of refractory substrates without intergranular porosity, for example alveolar zirconia or cordierite honeycomb, does not lead to any significant activity in relation to N2O under the conditions of the invention. Catalysts made of impregnated refractory oxides with intergranular porosity are new products and form the subject of the present invention.
Izum se može primjeniti na tretiranje plinova koji nastaju oksidacijom amonijaka na platinskim trakama u postrojenjima za proizvodnju dušične kiseline. Osim N2O, nazočnog kod razina koje su općenito između 500 i 2000 ppmv, ovi plinovi sadržavaju 10 do 12% NO i više od 20% H2O. The invention can be applied to the treatment of gases produced by the oxidation of ammonia on platinum strips in plants for the production of nitric acid. Apart from N2O, present at levels generally between 500 and 2000 ppmv, these gases contain 10 to 12% NO and more than 20% H2O.
Za pretvorbu N2O koji je sadržan u smjesi plina u dušik je rečeno da se događa prema glavnoj reakciji: The conversion of N2O contained in the gas mixture into nitrogen is said to occur according to the main reaction:
2N2O → 2N2 + O2 2N2O → 2N2 + O2
Nađeno je, međutim, da je razina NO u plinu koji je tretiran malo viša nakon što je prošao preko katalizatora iz izuma. To je pokrajnji učinak. ali vrlo vrijedan, jer on unaprjeđuje ukupno iskorištenje postrojenja glede dušične kiseline. To je bilo neočekivano. It was found, however, that the level of NO in the treated gas was slightly higher after passing over the catalyst of the invention. It's a side effect. but very valuable, because it improves the overall utilization of the plant in terms of nitric acid. That was unexpected.
Ostale primjene mogu biti vidljive iz, na primjer tretiranja plinova koji nastaju iz postupaka koji uključuju dušičnu oksidaciju organskih spojeva, osobito sintezu adipinske kiseline i glioksala. U zadnjem slučaju, odnosni plinovi su kod relativno niskih temperatura. Sustav mora biti opremljen s napravom za njihovo zagrijavanje na temperaturu dovoljno visoku za početak reakcije s kojom se N2O razbija, ekzotermičnost koje čini mogućim dalji nastavak pod uvjetima iz izuma, i napravom za uklanjanje i obnavljanje topline nastale na taj način. Other applications may be seen from, for example, the treatment of gases resulting from processes involving nitrogen oxidation of organic compounds, particularly the synthesis of adipic acid and glyoxal. In the latter case, the respective gases are at relatively low temperatures. The system must be equipped with a device for heating them to a temperature high enough to start the reaction with which N2O breaks down, exothermicity that makes further continuation under the conditions of the invention possible, and a device for removing and recovering the heat generated in this way.
PRIMJERI EXAMPLES
U slijedećim primjerima je ispitivanje katalizatora provedeno u ispitnoj jedinici s nepokretnom podlogom kroz koju prolaze reaktanti (catatest) i koja je okružena s grijaćim oklopima čija se temperatura nadzire u PID načinu (što znači "Proporcionalno integralno porijeklo"), In the following examples, the catalyst was tested in a test unit with a stationary surface through which reactants pass (catatest) and which is surrounded by heating shields whose temperature is monitored in PID mode (which means "Proportional Integral Origin"),
Ukoliko nije drugačije naznačeno, uvjeti ispitivanja su slijedeći: Unless otherwise indicated, the test conditions are as follows:
Reaktor je promjera 2,54 cm. Zapremnina primjenjenog katalizatora je 25 cm, to je 50 mm visoka podloga. The reactor is 2.54 cm in diameter. The volume of the applied catalyst is 25 cm, that is a 50 mm high substrate.
Plina za reakciju je pripravljen iz stlačenog zraka, dušika i normalnog plina, N2O u N2 kod 2%, NO u N2 kod 2%. Razina isparavanja vode je podešena uporabom zasićivača prema zakonima o tlaku plinova. Njihova smjesa je podešena kod: The reaction gas is prepared from compressed air, nitrogen and normal gas, N2O in N2 at 2%, NO in N2 at 2%. The level of water evaporation is adjusted using a saturator according to the laws of gas pressure. Their mixture is adjusted at:
NO = 1400 ppm NO = 1400 ppm
N2O = 700-1000 ppm N2O = 700-1000 ppm
O2 = 3% O2 = 3%
H2O = 15% H2O = 15%
Brzina po satu (HSV)je ustaljena kod 10.000 h-1 (brzina protoka plina od 250 L/h). Hourly rate (HSV) is fixed at 10,000 h-1 (gas flow rate of 250 L/h).
Analiza N2O je provedena uporabom infracrvenoga, a analiza NO je provedena kemijskom luminiscencijom. The analysis of N2O was carried out using infrared, and the analysis of NO was carried out by chemiluminescence.
Pojam pretvorba za didušični oksid je uporabljena za označavanje čimbenika po kojem se on uklanja iz plinova kod izlaza iz reaktora, ili sirova pretvorba, kako slijedi The term nitrous oxide conversion is used to denote the factor by which it is removed from the reactor exit gases, or crude conversion, as follows
[image] [image]
gdje N2O ulaz, odnosno N2O izlaz predstavljaju koncentracije N2O u plinu prije i nakon njegovog prolaza preko katalizatora. where N2O input and N2O output respectively represent N2O concentrations in the gas before and after its passage through the catalyst.
U slučaju NO je to obrnuto, njihov čimbenik povećanja koji je zabilježen (iz tog razloga je on pisan sa - znakom). Na isti način, promjene u razini NO, ili sirova pretvorba, se pišu kako slijedi In the case of NO it is the other way around, their increase factor that is recorded (for this reason it is written with a - sign). In the same way, changes in NO level, or crude conversion, are written as follows
[image] [image]
Ovo predstavljanje se uklapa u tumačenje nestanka N2O, u jednu ruku kroz postupak kojim on disocira u dušik i kisik, i u drugu ruku kroz njegovu pretvorbu u NO, ukoliko se rezultati tumače kao N2O → NO pretvorba s This presentation fits into the interpretation of the disappearance of N2O, on the one hand through the process by which it dissociates into nitrogen and oxygen, and on the other hand through its conversion into NO, if the results are interpreted as N2O → NO conversion with
[image] [image]
i kao N2O -> N2 pretvorba and as N2O -> N2 conversion
[image] [image]
Brojevi dani niže su oni dobiveni u svakom slučaju nakon što je sustav dostigao ravnotežno stanje (postignuto nakon oko 3 sata nakon promjena svakog parametra). The numbers given below are those obtained in each case after the system reached an equilibrium state (achieved after about 3 hours after each parameter change).
PRIMJER 1 EXAMPLE 1
Magnezij Magnesium
Uporabljeni katalizator je magnezij nazočan u obliku zrnaca od 0,5 - 1 mm dobivenih nakupljanjem praha magnezija s vezivom koje se sastoji silicijevog sola (sadržaj veziva izražen kao SiO2 == 10% težinski nakupine), stvaranje peleta, kalciniranje i potom ponovno razbijanje i ispitivanje na namjeravanu veličinu čestice. The catalyst used is magnesium present in the form of grains of 0.5 - 1 mm obtained by the accumulation of magnesium powder with a binder consisting of silicon salt (binder content expressed as SiO2 == 10% by weight of the aggregate), pellet formation, calcination and then re-breaking and testing to the intended particle size.
Dobiveno je slijedeće: The following was obtained:
[image] [image]
Brzine pretvorbe, i za N2O i NO, koje su uočene kod 800°C su virtualno stalne kroz neprekidno radno vrijeme koje traje 24 sata. The conversion rates, for both N2O and NO, observed at 800°C are virtually constant over a continuous 24-hour operating time.
Ovi pokusi se ponovljeni pod malo različitim uvjetima These experiments were repeated under slightly different conditions
NO = 1400 ppm NO = 1400 ppm
N2O = 700-1000 ppm N2O = 700-1000 ppm
O2 = 3% O2 = 3%
H2O = 15% HSV = 30.000 h-1 H2O = 15% HSV = 30,000 h-1
Dobiveno je slijedeće: The following was obtained:
[image] [image]
Ovo je ponavljano jedno za drugim kroz 24 sata kod HSV od 10.000 h-1. Početna pretvorba je 99% i još uvijek je kod 93-94% nakon 24 sata. This was repeated one after the other for 24 hours at an HSV of 10,000 h-1. Initial conversion is 99% and is still at 93-94% after 24 hours.
To su vrlo prednosni rezultati. Industrijska korist od magnezija je međutim smanjena s činjenicom da je nemoguće održavati sastav zrnastog tijela podvrgnutog ovoj temperaturi. Svi eksperimentalno istraženi uzorci su smanjeni na prašinu nakon ispitivanja. These are very favorable results. The industrial utility of magnesium is however reduced by the fact that it is impossible to maintain the composition of the granular body subjected to this temperature. All experimentally investigated samples were reduced to dust after testing.
PRIMJER 2 i 2A EXAMPLE 2 and 2A
Cirkonij Zirconium
Ovi primjeri čine mogućim procijeniti utjecaj čimbenika intergranularne poroznosti na djelotvornost katalizatora. These examples make it possible to evaluate the influence of the intergranular porosity factor on the effectiveness of the catalyst.
PRIMJER 2 EXAMPLE 2
Zrnca Grains
Katalizator je trgovački cirkonij (ZR-0404T 1/8 od Engelharda) u obliku peleta približno 3 cm (1/8 inča) u promjeru, specifična površina koja je između 30 i 40 m2/g i zapremnina pore je između 0,19 i 0,22 cm3/g. Uporabljen je, pod općenitim uvjetima primjera, s plinovima čije je sastav stoga podešen: The catalyst is commercial zirconia (ZR-0404T 1/8 from Engelhard) in the form of pellets approximately 3 cm (1/8 inch) in diameter, a specific surface area between 30 and 40 m 2 /g and a pore volume between 0.19 and 0, 22 cm3/year. It is used, under the general conditions of the example, with gases whose composition is therefore adjusted:
NO = 1000 ppm NO = 1000 ppm
N2O = 1000 ppm N2O = 1000 ppm
O2 = 3% O2 = 3%
H2O = 15% H2O = 15%
Slijedeće je dobiveno s HSV 10.000 h-1: The following was obtained with HSV 10,000 h-1:
[image] [image]
Slijedeće je dobiveno s HSV 30.000 h-1: The following was obtained with HSV 30,000 h-1:
[image] [image]
Ovi rezultati pokazuju potvrđenu djelotvornost granularnog cirkonija. These results demonstrate the confirmed effectiveness of granular zirconia.
Primjer 2A Example 2A
Alveolarni cirkonij Alveolar zirconium
Katalizator uporabljen ovdje je alveolarni cirkonij koji sadržava 94,2% ZrO2, 2,9% CaO i 0.425% MgO. Ovaj oblik je dobiven impregniranjem poliuretanske pjene s cirkonijem, kalciniranjem polueretanske potpore i sintrovanjem cirkonijeve strukture. Uporabljenje u obliku od 1 cm promjera i 2 cm visine. The catalyst used here is alveolar zirconium containing 94.2% ZrO2, 2.9% CaO and 0.425% MgO. This form was obtained by impregnating polyurethane foam with zirconium, calcining the semi-erethane support and sintering the zirconium structure. Use in the form of 1 cm in diameter and 2 cm in height.
Slijedeće je dobiveno s HSV 10.000 h-1 : The following was obtained with HSV 10,000 h-1 :
[image] [image]
Ova alveolarna tvar, bez mikropora, ima prednost u selektivnosti, ali s vrlo malom razinom aktivnosti za smanjenje didušičnog oksida, i stoga bez praktičke koristi. This alveolar substance, without micropores, has the advantage of selectivity, but with a very low level of nitric oxide-reducing activity, and therefore of no practical use.
PRIMJER 3 EXAMPLE 3
Aluminat Aluminate
Katalizator uporabljen u ovom slučaju je aluminat s 93,5% Al2O3, u zrnima 2-5 mm promjera, čija poroznost je oko 0,42 cm3/g za pore manje od 8 μm, i specifične površine od 280-360 m2/g (Procatalyse A.A. 2-5 Grade P alumina). The catalyst used in this case is aluminate with 93.5% Al2O3, in grains 2-5 mm in diameter, whose porosity is about 0.42 cm3/g for pores less than 8 μm, and specific surface area of 280-360 m2/g ( Procatalyse AA 2-5 Grade P alumina).
Dobiveni rezultati su dani niže: The obtained results are given below:
[image] [image]
Brzine pretvorbe za N2O i NO su stabilne, ali umjerene u radnom vremenu. The conversion rates for N2O and NO are stable but moderate over time.
PRIMJER 4 prema izumu EXAMPLE 4 according to the invention
cirkonijem obrađen aluminat zirconium treated aluminate
Katalizator uporabljen u ovom slučaju je aluminat P stupnja kao u Primjeru 3, ali promijenjen na slijedeći način: 100 cm3 zrnaca je prekriveno s vodenom otopinom cirkonijevog oksiklorida ZrOCl2. 8H2O kod gustoće 0,2 mola/litri. Sustav je ostavljen bez miješanja kod 60°C kroz 3 sata. Nakon hlađenja, zrnca su povraćena filtriranjem na lijevku za filtriranje, isprana vrlo nježno s demineraliziranom vodom i sušeni u sobnoj peći kod 100°C. Sadržaj cirkonija u zrncima tretiranim na ovaj načinje 0,61%, izmjereno s ICP (plazmina lampa). The catalyst used in this case is P grade aluminate as in Example 3, but changed as follows: 100 cm3 of grains are covered with an aqueous solution of zirconium oxychloride ZrOCl2. 8H2O at a density of 0.2 mol/liter. The system was left without stirring at 60°C for 3 hours. After cooling, the beads were recovered by filtration on a filter funnel, washed very gently with demineralized water and dried in a room oven at 100°C. The zirconium content in grains treated in this way is 0.61%, measured with ICP (plasma lamp).
Pod općenitim uvjetima ispitivanja opisanih gore, dobiveno je slijedeće: Under the general test conditions described above, the following was obtained:
[image] [image]
Brzine sirove pretvorbe za N2O i NO koje su opažene kod 800°C su zapaženo stabilne. U slučaju N2O se one stabiliziraju kod brzina blizu 100% i održavaju tu brzinu najmanje kroz 24 sata neprekidnog rada. The crude conversion rates for N2O and NO observed at 800°C are remarkably stable. In the case of N2O, they stabilize at speeds close to 100% and maintain that speed for at least 24 hours of continuous operation.
Povećanje koncentracije NO u dostavljenim plinovima ne utječe bitno na ukupnu pretvorbu N2O. Stoga je dobiveno slijedeće kada se NO promijenio od 1400 na 5000 ppm: An increase in the concentration of NO in the delivered gases does not significantly affect the total conversion of N2O. Therefore, the following was obtained when NO changed from 1400 to 5000 ppm:
[image] [image]
i kada je dostavljeno 8.000 ppm NO, and when 8,000 ppm NO was delivered,
[image] [image]
Radi osjetljivosti na HSV čimbenik, postupak je također proveden pod slijedećim uvjetima: Due to sensitivity to the HSV factor, the procedure was also carried out under the following conditions:
NO = 1440 ppm NO = 1440 ppm
N2O = 700-1000 ppm N2O = 700-1000 ppm
O2 = 3% O2 = 3%
H2O = 15% H2O = 15%
s ustaljenim HSV kod 50.000 h-1. with established HSV at 50,000 h-1.
Dobiveno je slijedeće: The following was obtained:
[image] [image]
PRIMJER 5 EXAMPLE 5
Kordierit prekriven s cirkonijevom soli (primjer koji se računa) Cordierite covered with zirconium salt (an example that counts)
Katalizator uporabljen u ovom slučaju je kordierit u saćastoj strukturi s 620.000 stanica na četvorni metar (proizvedeno u Comingu), prekriven s cirkonijevim oksidom vezanim na silikagel. Naslaga (ZrO2 u obliku praha od 2 μm + 10% SiO2) je provedena kod brzine 122 g/L strukture. The catalyst used in this case is cordierite in a honeycomb structure with 620,000 cells per square meter (produced in Coming), covered with zirconium oxide bonded to silica gel. The deposition (ZrO2 in the form of a powder of 2 μm + 10% SiO2) was carried out at a rate of 122 g/L of the structure.
Dobiveni rezultati su dani niže: The obtained results are given below:
[image] [image]
Gusta potpora, čak i u otvorenom obliku saća, kada je jednostavno prekrivena s cirkonijevim oksidom ne nudi praktičke kapacitete za smanjenje didušičnog oksida. A dense support, even in open honeycomb form, when simply covered with zirconium oxide offers no practical capacity to reduce nitrous oxide.
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9807101A FR2779360B1 (en) | 1998-06-05 | 1998-06-05 | PROCESS FOR THE ABATEMENT OF NITROGEN PROTOXIDE IN GASES AND CORRESPONDING CATALYSTS |
PCT/FR1999/001271 WO1999064139A1 (en) | 1998-06-05 | 1999-05-31 | Method for reducing nitrous oxide in gases and corresponding catalysts |
Publications (1)
Publication Number | Publication Date |
---|---|
HRP20000063A2 true HRP20000063A2 (en) | 2001-12-31 |
Family
ID=9527067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
HR20000063A HRP20000063A2 (en) | 1998-06-05 | 2000-02-03 | Method for reducing nitrous oxide in gases and corresponding catalysts |
Country Status (14)
Country | Link |
---|---|
EP (1) | EP1017478A1 (en) |
CN (1) | CN1274297A (en) |
AU (1) | AU3833199A (en) |
BG (1) | BG104214A (en) |
BR (1) | BR9906483A (en) |
CA (1) | CA2299562A1 (en) |
FR (1) | FR2779360B1 (en) |
HR (1) | HRP20000063A2 (en) |
HU (1) | HUP0100827A3 (en) |
IL (1) | IL134307A0 (en) |
PL (1) | PL338216A1 (en) |
TR (1) | TR200000336T1 (en) |
WO (1) | WO1999064139A1 (en) |
ZA (1) | ZA200000838B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10006103A1 (en) * | 2000-02-11 | 2001-08-16 | Krupp Uhde Gmbh | Catalyst for decomposing N¶2¶O, its use in nitric acid production and process for its production |
US20050202966A1 (en) | 2004-03-11 | 2005-09-15 | W.C. Heraeus Gmbh | Catalyst for the decomposition of N2O in the Ostwald process |
DE102004024026A1 (en) | 2004-03-11 | 2005-09-29 | W.C. Heraeus Gmbh | Catalyst for decomposition of nitrous oxide under conditions of Ostwald process, comprises carrier material, and coating of rhodium, rhodium oxide, or palladium-rhodium alloy |
PL388518A1 (en) | 2009-07-10 | 2011-01-17 | Instytut Nawozów Sztucznych | Catalyst for high-temperature decomposition of nitrous oxide |
CN103586040B (en) * | 2013-11-13 | 2017-02-08 | 刘崇莲 | Catalyst for processing N2O and preparation technique thereof |
PL237044B1 (en) | 2015-03-13 | 2021-03-08 | Inst Nowych Syntez Chemicznych | Carrier catalyst for the reduction of nitrogen oxide (I) emission, preferably from the nitric acid installation and method for producing it |
CN105363451B (en) * | 2015-12-04 | 2018-01-26 | 中国天辰工程有限公司 | One kind is used to decompose N2O effective catalyst and its preparation method and application |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2546769A1 (en) * | 1983-06-03 | 1984-12-07 | Pro Catalyse | Hydrothermally stable catalyst supports based on alumina |
DE3541705A1 (en) * | 1985-11-26 | 1987-05-27 | Eugen Dipl Chem Dr Phil Dumont | Catalyst compositions made of metal ceramic for reducing oxides of sulphur and nitrogen in gas streams |
JP3029512B2 (en) * | 1992-08-28 | 2000-04-04 | 出光興産株式会社 | Method for removing nitrous oxide from combustion gas |
US5478549A (en) * | 1994-12-15 | 1995-12-26 | E. I. Du Pont De Nemours And Company | Production of nitric oxide |
-
1998
- 1998-06-05 FR FR9807101A patent/FR2779360B1/en not_active Expired - Fee Related
-
1999
- 1999-05-31 AU AU38331/99A patent/AU3833199A/en not_active Abandoned
- 1999-05-31 CA CA002299562A patent/CA2299562A1/en not_active Abandoned
- 1999-05-31 HU HU0100827A patent/HUP0100827A3/en unknown
- 1999-05-31 WO PCT/FR1999/001271 patent/WO1999064139A1/en not_active Application Discontinuation
- 1999-05-31 CN CN99801299A patent/CN1274297A/en active Pending
- 1999-05-31 BR BR9906483-9A patent/BR9906483A/en not_active Application Discontinuation
- 1999-05-31 EP EP99920945A patent/EP1017478A1/en not_active Withdrawn
- 1999-05-31 IL IL13430799A patent/IL134307A0/en unknown
- 1999-05-31 TR TR2000/00336T patent/TR200000336T1/en unknown
- 1999-05-31 PL PL99338216A patent/PL338216A1/en not_active Application Discontinuation
-
2000
- 2000-02-03 HR HR20000063A patent/HRP20000063A2/en not_active Application Discontinuation
- 2000-02-21 ZA ZA200000838A patent/ZA200000838B/en unknown
- 2000-03-02 BG BG104214A patent/BG104214A/en unknown
Also Published As
Publication number | Publication date |
---|---|
HUP0100827A3 (en) | 2003-02-28 |
WO1999064139A1 (en) | 1999-12-16 |
TR200000336T1 (en) | 2000-10-23 |
FR2779360B1 (en) | 2000-09-08 |
CN1274297A (en) | 2000-11-22 |
EP1017478A1 (en) | 2000-07-12 |
CA2299562A1 (en) | 1999-12-16 |
PL338216A1 (en) | 2000-10-09 |
BR9906483A (en) | 2000-09-26 |
FR2779360A1 (en) | 1999-12-10 |
HUP0100827A2 (en) | 2001-06-28 |
IL134307A0 (en) | 2001-04-30 |
ZA200000838B (en) | 2000-09-13 |
AU3833199A (en) | 1999-12-30 |
BG104214A (en) | 2000-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6080281A (en) | Scrubbing of contaminants from contaminated air streams with aerogel materials with optional photocatalytic destruction | |
JP5526410B2 (en) | Method for removing nitrogen oxides in exhaust gas | |
EP2850294B2 (en) | Method and system for the purification of exhaust gas from an internal combustion engine | |
JP7472014B2 (en) | N2O removal from automotive exhaust for lean/rich systems | |
CA2696028C (en) | Catalyst, production method therefor and use thereof for decomposing n2o | |
WO2012090922A1 (en) | Catalyst for nitrogen oxide removal | |
PL202181B1 (en) | Catalyst for decomposing n2 | |
CA2092265A1 (en) | Process for controlled n2o decomposition in an n20-containing gas stream | |
HRP20000063A2 (en) | Method for reducing nitrous oxide in gases and corresponding catalysts | |
Jun et al. | Effects of Ce-doping on the structure and NH3-SCR activity of Fe/Beta catalyst | |
US10226755B2 (en) | NOx storage reduction catalyst for purifying exhaust gas and exhaust gas purification method using said catalyst | |
EP1390293B1 (en) | Process for the preparation of ammonia oxidation | |
JP2006026635A (en) | Method of removing nitrogen oxides contained in exhaust gas | |
EP0822005A2 (en) | Catalyst and method for purifying exhaust gases | |
JPH04244218A (en) | Method for purifying exhaust gas | |
KR101400608B1 (en) | Catalyst for selective oxidation of ammonia, manufacturing method same and process for selective oxidation of ammonia using same | |
CZ2000427A3 (en) | Process of reducing content of dinitrogen oxide in gases and catalyst for making the same | |
KR20240061767A (en) | Cu-CHA Zeolite Catalyst | |
JP2004518521A (en) | Apparatus and method for removing hydrogen sulfide | |
MXPA00001211A (en) | Method for reducing nitrous oxide in gases and corresponding catalysts | |
JP2595370B2 (en) | Purification method of exhaust gas containing nitrogen oxides | |
JPH06154602A (en) | Catalyst for removal of nitrogen oxide | |
JPH0751542A (en) | Purification of exhaust gas | |
JPH09248427A (en) | Removal of nitrogen oxide | |
Blanco et al. | The performance of a new monolithic SCR catalyst in a life test with real exhaust gases. Effect on the textural nature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AIPI | Request for the grant of a patent on the basis of a substantive examination of a patent application | ||
A1OB | Publication of a patent application | ||
ODRP | Renewal fee for the maintenance of a patent |
Payment date: 20020203 Year of fee payment: 3 |
|
ODBI | Application refused |