HK1237884B - An ergonomic head mounted display device and optical system - Google Patents

An ergonomic head mounted display device and optical system Download PDF

Info

Publication number
HK1237884B
HK1237884B HK17111790.0A HK17111790A HK1237884B HK 1237884 B HK1237884 B HK 1237884B HK 17111790 A HK17111790 A HK 17111790A HK 1237884 B HK1237884 B HK 1237884B
Authority
HK
Hong Kong
Prior art keywords
waveguide
prism
physical
pupil
refractive
Prior art date
Application number
HK17111790.0A
Other languages
Chinese (zh)
Other versions
HK1237884A1 (en
Inventor
Chunyu Gao
Hong Hua
Yuxiang LIN
Original Assignee
Magic Leap, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magic Leap, Inc. filed Critical Magic Leap, Inc.
Publication of HK1237884A1 publication Critical patent/HK1237884A1/en
Publication of HK1237884B publication Critical patent/HK1237884B/en

Links

Description

人体工程学头戴式显示设备和光学系统Ergonomic head-mounted display device and optical system

本申请是申请日为2011年12月22日、申请号为201180068447.7、发明名称为“人体工程学头戴式显示设备和光学系统”的申请的分案申请。This application is a divisional application of the application with application date of December 22, 2011, application number 201180068447.7, and invention name “Ergonomic head-mounted display device and optical system”.

交叉引用Cross-references

本申请要求在2010年12月24日提交的序列号为61/427,162的美国临时申请的优先权,该申请的全文通过全部引用并入于此。This application claims priority to U.S. Provisional Application Serial No. 61/427,162, filed December 24, 2010, which is hereby incorporated by reference in its entirety.

技术领域Technical Field

本发明一般地涉及光学透视头戴式显示(OST-HMD)设备。更具体地说,本发明涉及符合人体工程学设计的自由形状(freeform)光学系统,该系统在具有眼镜形状外观和宽广透视视场(FOV)的光学透视HMD中用作光学观察设备。The present invention generally relates to optical see-through head-mounted display (OST-HMD) devices. More specifically, the present invention relates to an ergonomically designed freeform optical system for use as an optical viewing device in an optical see-through HMD having a glasses-like appearance and a wide see-through field of view (FOV).

背景技术Background Art

长期的应用证明头戴式显示器(HMD)对于跨科学可视化、医学和军事训练、工程设计和原型设计、远程操作和远程呈现、以及个人娱乐系统等领域的许多应用而言极为重要。在混合和增强现实系统中,光学透视HMD是将计算机生成的虚拟场景与真实世界场景视图(view)进行组合的基本方式之一。一般而言,通过光学组合器,OST-HMD在光学上将计算机生成的图像覆盖在真实世界视图上,同时保持直接、品质降级最小的真实世界视图。OST-HMD在创建移动显示解决方案方面具有巨大潜力,移动显示解决方案可提供比诸如智能手机和PDA之类的其它流行移动平台更吸引人的图像质量和屏幕大小。Long-term applications have proven that head-mounted displays (HMDs) are extremely important for many applications across scientific visualization, medical and military training, engineering design and prototyping, remote operation and telepresence, and personal entertainment systems. In mixed and augmented reality systems, optical see-through HMDs are one of the basic ways to combine computer-generated virtual scenes with real-world scene views. Generally speaking, through an optical combiner, an OST-HMD optically overlays computer-generated images on a real-world view while maintaining a direct, minimally degraded real-world view. OST-HMDs have great potential in creating mobile display solutions that can provide more attractive image quality and screen size than other popular mobile platforms such as smartphones and PDAs.

另一方面,尽管HMD设计在过去十几年内取得了非常重要的发展,但是始终存在许多技术与可用性方面的障碍,从而阻止这项技术被要求较高的应用和日常使用广泛接受。HMD的其中一个主要障碍是具有笨拙的头盔形式因素,这样阻止了许多要求较高的应用和新兴的应用接收此技术。所应用的现有光学设计方法几乎没有一种能够创建可用作眼镜式近眼显示器的真正便携、紧凑和轻型的非侵入式HMD设计。太大的重量导致疲劳和不适,并被视为基于HMD应用的主要障碍。此外,提供阻挡最小、品质降级程度最低的宽广透视FOV的能力对于执行日常工作而言至关重要。近几年来,自由形状表面已被引入HMD系统设计[编号为5,699,194、5,701,202、5,706,136的美国专利。D.Cheng,et al.,“Design of anoptical see-through head-mounted display with low f-number and large field ofview using a freeform prism”,Applied Optics,48(14),2009],旨在减小系统重量并创建轻型HMD。但是在当今的市场上,仍然没有能够同时满足人体工程学需求和性能需求的解决方案。我们的工作目标在于开发具有眼镜形式因素和宽广透视FOV的解决方案,同时保持卓越的性能。On the other hand, despite significant advancements in HMD design over the past decade, numerous technical and usability barriers remain, preventing widespread adoption of this technology for demanding applications and everyday use. One of the primary obstacles to HMDs is the unwieldy helmet form factor, which has prevented many demanding and emerging applications from adopting this technology. Few existing optical design approaches have been able to create truly portable, compact, lightweight, and non-invasive HMD designs that can function as eyeglass-style near-eye displays. Excessive weight causes fatigue and discomfort and is considered a major obstacle to HMD-based applications. Furthermore, the ability to provide a wide, see-through field of view with minimal obstruction and quality degradation is crucial for performing everyday tasks. In recent years, freeform surfaces have been introduced into HMD system design [U.S. Patents 5,699,194, 5,701,202, and 5,706,136]. D. Cheng, et al., “Design of an optical see-through head-mounted display with low f-number and large field of view using a freeform prism,” Applied Optics, 48(14), 2009, aims to reduce system weight and create a lightweight HMD. However, in today's market, there is still no solution that can meet both ergonomic and performance requirements. Our work aims to develop a solution with a glasses form factor and a wide see-through FOV while maintaining excellent performance.

发明内容Summary of the Invention

本发明涉及一种具有眼镜外观和自由形状光学系统的人体工程学光学透视头戴式显示(OST-HMD)设备,所述自由形状光学系统在此类显示设备中用作光学观察设备。一般而言,OST-HMD中的光学观察设备由用于观察显示的虚拟显示图像的光路和用于直接观察真实世界场景的透视路径组成。在本发明中,所述虚拟图像路径包括用于提供显示内容的微型图像显示单元和用户观察放大的显示内容图像时所用的符合人体工程学形状设计的显示观察光学器件。所述显示观察光学器件包括包含多个自由形状折射和反射表面的光导设备(下文中称为自由形状波导棱镜)。所述显示观察光学器件还可以包括额外的耦合光学器件以准确地将来自所述图像显示设备的光入射到所述波导棱镜。所述自由形状表面和所述耦合光学器件的位置和形状被设计为使得观察者能够看到清晰、放大的显示内容图像。所述头戴式显示设备的透视路径由波导棱镜和附着在所述棱镜外表面的自由形状透视补偿透镜组成。包含多个自由形状折射表面的透视补偿透镜允许准确地观察跨极宽广透视视场的周围环境。所述波导棱镜和所述透视补偿透镜被适当地设计为在人体工程学上适合人的头部的人体工程学因素,从而实现具有眼镜形状外观、宽广透视视场、以及卓越光学性能的轻型、紧凑的包覆型(wrap-around)透视显示系统设计。The present invention relates to an ergonomic optical see-through head-mounted display (OST-HMD) device having the appearance of glasses and a freeform optical system, wherein the freeform optical system serves as an optical observation device in such a display device. Generally speaking, the optical observation device in an OST-HMD consists of an optical path for observing a displayed virtual display image and a see-through path for directly observing a real-world scene. In the present invention, the virtual image path includes a micro-image display unit for providing display content and an ergonomically designed display observation optical device for a user to observe a magnified display content image. The display observation optical device includes a light guide device (hereinafter referred to as a freeform waveguide prism) comprising multiple freeform refractive and reflective surfaces. The display observation optical device may also include additional coupling optical devices to accurately direct light from the image display device into the waveguide prism. The position and shape of the freeform surfaces and the coupling optical device are designed to enable the observer to see a clear, magnified display content image. The see-through path of the head-mounted display device consists of a waveguide prism and a freeform perspective compensation lens attached to the outer surface of the prism. A perspective compensation lens comprising multiple free-form refractive surfaces allows accurate viewing of the surrounding environment across an extremely wide see-through field of view. The waveguide prism and the perspective compensation lens are appropriately designed to ergonomically fit the ergonomic factors of the human head, thereby achieving a lightweight, compact wrap-around see-through display system design with a glasses-like appearance, a wide see-through field of view, and excellent optical performance.

在一方面,本发明提供各种在人体工程学头戴式显示设备中用作光学观察设备的自由形状光学系统的实施例。本发明中的自由形状光学系统被优化以提供具有符合人体工程学形状设计的观察光学器件,所述观察光学器件适合人的头部的人体工程学因素,从而允许它们罩住人脸并提供眼镜式外观替代现有技术中的HMD设计中的头盔式外观。本发明还提供透视功能,允许用户通过观察光学器件观察周围环境以及图像显示设备上的显示内容。本发明提供透视FOV,该FOV比虚拟视图的FOV大得多。In one aspect, the present invention provides various embodiments of freeform optical systems for use as optical viewing devices in ergonomic head-mounted display devices. The freeform optical systems of the present invention are optimized to provide viewing optics with an ergonomically designed shape that conforms to the ergonomics of the human head, allowing them to cover the face and provide a glasses-like appearance instead of the helmet-like appearance of prior art HMD designs. The present invention also provides a see-through function, allowing the user to observe the surrounding environment and the displayed content on the image display device through the viewing optics. The present invention provides a see-through field of view (FOV) that is significantly larger than the FOV of the virtual view.

在本发明中,OST-HMD设备的虚拟图像路径包括用于提供显示内容的微型图像显示单元和和用户观察放大的显示内容图像时所用的符合人体工程学形状设计的显示观察光学器件。所述显示观察光学器件包括包含多个自由形状折射和反射表面的自由形状波导棱镜,并且还可以包括额外的耦合光学器件。所述波导棱镜充当放大微型图像显示设备上的图像的近眼观察光学器件。从所述图像显示单元射出的光线通过所述棱镜的第一折射表面射入所述波导棱镜。所述光线可以从所述显示设备直接或通过一组耦合透镜入射到所述棱镜。入射的光线经多次反射(通常为3次或更多次)通过所述波导棱镜进行传播,然后经所述棱镜的所述第二折射表面耦合出所述棱镜。出射的光线继续传播并到达所述系统的出射光瞳,其中用户可以利用他/她的眼睛观察虚拟内容。当光通过所述波导棱镜传播时,如果满足反射表面上的全内反射(TIR)条件,则通过反射导致的光损失最小。因此,所有反射最好满足TIR条件,但不是严格要求。但是,另外高度希望在某些反射表面上妥协TIR条件来实现薄波导棱镜设计。对于位于设备的指定透视FOV内的不满足TIR条件的反射表面,在这些表面上施加半透明涂层(coating)以便确保来自微型显示单元的足够光线到达出射光瞳并产生明亮的图像,同时便利光学透视功能。对于位于所述设备的透视FOV之外的反射表面,如果不满足TIR条件,则可以在所述表面上施加高反射镜面涂层以最小化光损失。在本发明中,所述微型图像显示单元可以是可充当图像源的任何类型的自发光或发光像素阵列,其包括但不限于硅基液晶(LCoS)显示设备、液晶显示(LCD)面板、有机发光显示器(OLED)、铁电性硅基液晶(FLCoS)设备、数字微镜设备(DMD),或根据上述或其它类型的微型显示设备构建的微型投射仪。In the present invention, the virtual image path of an OST-HMD device includes a micro-image display unit for providing display content and ergonomically designed display viewing optics for a user to observe the magnified display content image. The display viewing optics include a free-form waveguide prism containing multiple free-form refractive and reflective surfaces and may also include additional coupling optics. The waveguide prism acts as near-eye viewing optics to magnify the image on the micro-image display device. Light emitted from the image display unit enters the waveguide prism through the prism's first refractive surface. The light can be incident on the prism directly from the display device or through a set of coupling lenses. The incident light propagates through the waveguide prism through multiple reflections (typically three or more) and then couples out of the prism through the prism's second refractive surface. The exiting light continues to propagate and reaches the system's exit pupil, where the user can observe the virtual content with their eyes. As light propagates through the waveguide prism, light loss due to reflection is minimized if the total internal reflection (TIR) condition on the reflective surface is met. Therefore, it is best that all reflections meet the TIR condition, but it is not a strict requirement. However, it is also highly desirable to compromise the TIR condition on certain reflective surfaces to achieve a thin waveguide prism design. For reflective surfaces that do not meet the TIR condition and are located within the specified perspective FOV of the device, a translucent coating is applied to these surfaces to ensure that enough light from the micro display unit reaches the exit pupil and produces a bright image, while facilitating the optical see-through function. For reflective surfaces located outside the perspective FOV of the device, if the TIR condition is not met, a highly reflective mirror coating can be applied to the surface to minimize light loss. In the present invention, the micro image display unit can be any type of self-luminous or luminescent pixel array that can act as an image source, including but not limited to a silicon-based liquid crystal (LCoS) display device, a liquid crystal display (LCD) panel, an organic light emitting display (OLED), a ferroelectric silicon-based liquid crystal (FLCoS) device, a digital micromirror device (DMD), or a micro projector constructed according to the above or other types of micro display devices.

在本发明中,所述头戴式显示设备的透视路径由所述自由形状波导棱镜和自由形状透视补偿透镜组成。所述补偿透镜附着在所述波导棱镜的所述物理外表面上,以便抵消所述棱镜造成的光线偏移和失真并且保持清晰的真实世界场景透视视图。包含多个(通常2个或更多个)自由形状折射表面的所述补偿透镜允许准确地观察跨极大视场的周围环境。当所述透镜与所述棱镜组合时,所述补偿透镜的表面被优化以最小化引入到来自真实世界场景的光线的偏移和失真,如果所述波导棱镜的附着表面上的反射在虚拟图像显示路径中满足TIR条件,则有必要在所述波导棱镜与所述补偿透镜之间保持小气隙。In the present invention, the perspective path of the head-mounted display device consists of the free-form waveguide prism and a free-form perspective compensation lens. The compensation lens is attached to the physical outer surface of the waveguide prism to offset the light deviation and distortion caused by the prism and maintain a clear perspective view of the real-world scene. The compensation lens, which contains multiple (typically 2 or more) free-form refractive surfaces, allows accurate observation of the surrounding environment across a very large field of view. When the lens is combined with the prism, the surface of the compensation lens is optimized to minimize the deviation and distortion introduced to the light from the real-world scene. If the reflection on the attached surface of the waveguide prism meets the TIR condition in the virtual image display path, it is necessary to maintain a small air gap between the waveguide prism and the compensation lens.

在本发明中,使用多次反射延长光路长度,以使所述波导棱镜的宽度与普通人头部的宽度密切匹配。长光路允许便利将所述波导棱镜设计为符合人体工程学形状,同时允许保持大透视FOV。所述棱镜的长光路还允许将所述图像显示单元移到显示架侧,这样降低所述HMD系统的前端重量,并且提高所述系统的人体工程学适合度。此外,所述波导棱镜的所述形状(以及作为整体的所述光学观察设备)可被设计为接近人的头部的自然曲线以实现最佳的人体工程学适合度。例如,在某些实施例中,所述棱镜形状被弯曲为接近一副8基弯眼镜的曲率,并且在某些其它实施例中,所述棱镜形状近似地遵循一副4基弯眼镜的形状因素。而且,专门控制所述波导棱镜和所述补偿透镜的总厚度以实现薄光学器件外形(通常小于30mm)。总之,专门控制的棱镜形状、长光路,以及光学厚度可实现包覆型光学透视HMD设计,该设计在人体工程学上与人的头部适合并且具有吸引人的眼镜式外观。In the present invention, multiple reflections are used to extend the optical path length so that the width of the waveguide prism closely matches the width of an average human head. The long optical path facilitates the design of the waveguide prism into an ergonomic shape while maintaining a large perspective FOV. The long optical path of the prism also allows the image display unit to be moved to the side of the display frame, which reduces the front-end weight of the HMD system and improves the ergonomic fit of the system. In addition, the shape of the waveguide prism (and the optical observation device as a whole) can be designed to approximate the natural curve of the human head for optimal ergonomic fit. For example, in some embodiments, the prism shape is curved to approximate the curvature of a pair of 8-base curved glasses, and in some other embodiments, the prism shape approximately follows the form factor of a pair of 4-base curved glasses. Moreover, the combined thickness of the waveguide prism and the compensation lens is specifically controlled to achieve a thin optical device profile (typically less than 30 mm). In summary, the specially controlled prism shape, long optical path, and optical thickness enable a wraparound optical see-through HMD design that ergonomically fits the human head and has an attractive glasses-like appearance.

本发明的另一主要方面是能够提供极大的透视视场,通常比虚拟显示的FOV大得多。在本发明中,此功能通过多种机制实现,例如,将所述图像显示设备移到头部的侧面以扩展所述波导棱镜的清晰光学孔径,专门控制所述波导棱镜和所述补偿透镜上的所述自由形状表面以校正光线偏移和失真,并确保跨大FOV的高透视性能。在本发明的某些实施例中,所述透视FOV在水平方向上展开120度,在垂直方面上展开80度。本发明的所述透视FOV可扩展为与人眼的视场匹配。Another key aspect of the present invention is the ability to provide an extremely large see-through field of view, typically much larger than the FOV of a virtual display. In the present invention, this functionality is achieved through a variety of mechanisms, such as moving the image display device to the side of the head to expand the clear optical aperture of the waveguide prism, specifically controlling the free-form surfaces on the waveguide prism and the compensating lens to correct for light deviation and distortion, and ensuring high see-through performance across a large FOV. In certain embodiments of the present invention, the see-through FOV extends 120 degrees horizontally and 80 degrees vertically. The see-through FOV of the present invention can be expanded to match the field of view of the human eye.

由于与人的头部的宽度或曲率匹配、以及实现大透视FOV需要长光路,因此来自所述图像显示设备的相同点的光线在所述波导棱镜内交叉至少一次,这表示在所述波导内部形成所述虚拟显示的中间图像,尽管光线交叉点可能未很好地形成。Since a long optical path is required to match the width or curvature of a person's head and to achieve a large perspective FOV, light rays from the same point of the image display device cross at least once within the waveguide prism, which means that an intermediate image of the virtual display is formed inside the waveguide, although the light intersection point may not be well formed.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1是本发明的典型实施例的概念图。FIG1 is a conceptual diagram of an exemplary embodiment of the present invention.

图2a图解说明本发明的设计在YZ平面的截面视图内的一组主要结构限制。FIG. 2 a illustrates a set of key structural constraints of the design of the present invention in a cross-sectional view in the YZ plane.

图2b图解说明本发明的设计在XZ平面的截面视图内的其它结构限制。FIG. 2 b illustrates further structural limitations of the design of the present invention in a cross-sectional view in the XZ plane.

图3以3D视图图解说明参考表面230。FIG. 3 illustrates the reference surface 230 in a 3D view.

图4示出本发明的波导棱镜的5次反射优选实施例,该波导棱镜具有接近8基弯(base curve)的包覆型外观的内表面。FIG. 4 shows a preferred embodiment of a waveguide prism with five reflections according to the present invention, wherein the waveguide prism has an inner surface with a wrap-around appearance close to eight base curves.

图5示出本发明的波导棱镜的另一5次反射优选实施例,该波导棱镜具有接近8基弯的包覆型外观的内表面。FIG5 shows another preferred embodiment of the waveguide prism of the present invention with five reflections, wherein the waveguide prism has an inner surface with a cladding-type appearance close to eight base bends.

图6示出本发明的波导棱镜的另一5次反射优选实施例,该波导棱镜具有位于太阳穴侧的平坦内弧。FIG. 6 shows another preferred embodiment of a waveguide prism of the present invention with five reflections, wherein the waveguide prism has a flat inner arc on the temple side.

图7示出本发明的波导棱镜的另一5次反射优选实施例,该波导棱镜具有类似于图6中的上一实施例的形状。FIG. 7 shows another preferred embodiment of a waveguide prism of the present invention with five reflections, which has a shape similar to the previous embodiment in FIG. 6 .

图8示出本发明的波导棱镜的另一5次反射优选实施例,该波导棱镜具有接近8基弯的包覆型外观的内表面,并且该实施例基于反射型微型显示器。FIG8 shows another preferred embodiment of the waveguide prism of the present invention with five reflections, which has an inner surface with a wraparound appearance close to eight base bends and is based on a reflective microdisplay.

图9示出与图8中的上一实施例类似的本发明的另一优选实施例,但是该波导棱镜具有接近4基弯的内表面。FIG9 shows another preferred embodiment of the present invention that is similar to the previous embodiment in FIG8 , but the waveguide prism has an inner surface that is close to 4 base bends.

图10示出本发明的波导棱镜的3次反射优选实施例,该波导棱镜具有接近8基弯的包覆型外观的内表面。FIG10 shows a preferred embodiment of a three-reflection waveguide prism according to the present invention, wherein the waveguide prism has an inner surface with a cladding-type appearance close to 8 base bends.

图11示出图8所示的实施例5的注释和元件定义。FIG. 11 shows annotations and component definitions of the fifth embodiment shown in FIG. 8 .

图12-12b在图12中示出实施例5的针对红色波长(625nm)的选定场的MTF曲线,在图12a中示出实施例5的针对绿色波长(525nm)的选定场的MTF曲线,在图12b中示出实施例5的针对蓝色波长(465nm)的选定场的MTF曲线。Figures 12-12b show the MTF curves of the selected field of Example 5 for the red wavelength (625nm) in Figure 12, the MTF curve of the selected field of Example 5 for the green wavelength (525nm) in Figure 12a, and the MTF curve of the selected field of Example 5 for the blue wavelength (465nm) in Figure 12b.

图13示出图9所示的实施例6的注释和元件定义。FIG. 13 shows annotations and component definitions of the sixth embodiment shown in FIG. 9 .

图14-14b在图14中示出实施例6的针对红色波长(625nm)的选定场的MTF曲线,在图14a中示出实施例6的针对绿色波长(525nm)的选定场的MTF曲线,在图14b中示出实施例6的针对蓝色波长(465nm)的选定场的MTF曲线。Figures 14-14b show the MTF curves of the selected field for the red wavelength (625nm) of Example 6 in Figure 14, the MTF curve of the selected field for the green wavelength (525nm) of Example 6 in Figure 14a, and the MTF curve of the selected field for the blue wavelength (465nm) of Example 6 in Figure 14b.

图15示出实施例6的透视路径的光线跟踪实例。FIG. 15 shows an example of ray tracing of a perspective path in the sixth embodiment.

图16示出根据本发明的实施例6的具有4基弯外观的示例性OST-HMD设计。FIG. 16 shows an exemplary OST-HMD design with a 4-base bend appearance according to Example 6 of the present invention.

图17示出图10所示的实施例7的注释和元件定义。FIG. 17 shows annotations and component definitions of Example 7 shown in FIG. 10 .

图18-18b在图18中示出实施例7的针对红色波长(625nm)的选定场的MTF曲线,在图18a中示出实施例7的针对绿色波长(525nm)的选定场的MTF曲线,在图18b中示出实施例7的针对蓝色波长(465nm)的选定场的MTF曲线。Figures 18-18b show the MTF curves of the selected field of Example 7 for the red wavelength (625nm) in Figure 18, the MTF curve of the selected field of Example 7 for the green wavelength (525nm) in Figure 18a, and the MTF curve of the selected field of Example 7 for the blue wavelength (465nm) in Figure 18b.

图19示出图10所示的实施例7的补偿透镜的注释和元件定义。FIG. 19 shows annotations and element definitions of the compensation lens of Example 7 shown in FIG. 10 .

图20示出图10所示的实施例7的透视路径的光线跟踪实例。FIG. 20 shows an example of ray tracing of the perspective path of Example 7 shown in FIG. 10 .

图21-21b示出图10所示的实施例7的透视路径的选定场的多色MTF曲线。21-21 b show multi-color MTF curves of selected fields of the perspective path of Example 7 shown in FIG. 10 .

图22示出本发明的实施例7的未修整的3D模型。FIG. 22 shows an unmodified 3D model of Example 7 of the present invention.

图23示出根据本发明的实施例7的具有8基弯的包覆型外观的示例性OST-HMD设计。FIG. 23 shows an exemplary OST-HMD design having an 8-base bend wraparound appearance according to Example 7 of the present invention.

图24示出定义自由形状表面形状的数学方程式。FIG. 24 shows the mathematical equations that define the shape of a free-form surface.

图25示出图8和图11所示的波导的实施例5的表面的参数。FIG. 25 shows parameters of the surface of Example 5 of the waveguide shown in FIG. 8 and FIG. 11 .

图26示出图8和图11所示的实施例5的耦合透镜与物镜的表面参数。FIG26 shows the surface parameters of the coupling lens and the objective lens of Example 5 shown in FIG8 and FIG11.

图27示出图8和图11所示的实施例5中的光学表面的位置和方位参数。FIG. 27 shows the position and orientation parameters of the optical surface in Example 5 shown in FIG. 8 and FIG. 11 .

图28示出图9和图13所示的实施例6的波导棱镜的表面参数。FIG28 shows the surface parameters of the waveguide prism of Example 6 shown in FIG9 and FIG13.

图29示出图9和图13所示的实施例6的耦合透镜与物镜的表面参数。FIG29 shows the surface parameters of the coupling lens and the objective lens of Example 6 shown in FIG9 and FIG13.

图30示出图9和图13所示的实施例6中的光学表面的位置和方位参数。FIG. 30 shows the position and orientation parameters of the optical surfaces in Example 6 shown in FIG. 9 and FIG. 13 .

图31示出图10所示的实施例7的波导棱镜的表面参数。FIG31 shows the surface parameters of the waveguide prism of Example 7 shown in FIG10.

图32示出图10和图17所示的实施例7的耦合透镜与物镜的表面参数。FIG32 shows the surface parameters of the coupling lens and the objective lens of Example 7 shown in FIG10 and FIG17.

图33示出图10和图17所示的实施例7中的光学表面的位置和方位参数。FIG. 33 shows the position and orientation parameters of the optical surface in Example 7 shown in FIG. 10 and FIG. 17 .

图34示出图10和图19所示的实施例7的补偿透镜的表面参数。FIG34 shows surface parameters of the compensation lens of Example 7 shown in FIG10 and FIG19.

图35示出图10和图19所示的实施例7的补偿透镜的位置和方位参数。FIG35 shows the position and orientation parameters of the compensation lens of Example 7 shown in FIG10 and FIG19.

具体实施方式DETAILED DESCRIPTION

将参考附图全面地描述根据本发明的实施例。给出所述描述是为了提供对本发明的理解。但是很明显,可以在没有这些细节的情况下实践本发明。此外,本发明可以通过各种形式实现。但是,下面描述的本发明的实施例不应被视为限制为此处列出的实施例。而是,这些实施例、附图和实例旨在作为示例,为了避免混淆本发明。Embodiments according to the present invention will be described more fully with reference to the accompanying drawings. This description is provided to provide an understanding of the present invention. However, it will be apparent that the present invention can be practiced without these details. Furthermore, the present invention can be implemented in various forms. However, the embodiments of the present invention described below should not be construed as limited to the embodiments listed herein. Rather, these embodiments, drawings, and examples are intended to be illustrative and to avoid obscuring the present invention.

本发明涉及符合人体工程学设计的自由形状光学系统,该系统在具有眼镜式外观和宽广透视视场(FOV)的光学透视HMD中用作光学观察设备。图1所示的本发明的典型实施例是通过自由形状波导棱镜将显示的虚拟图像投射到用户的眼瞳内,从而允许用户看到覆盖在真实世界场景上的显示内容的图像显示系统,包括:The present invention relates to an ergonomically designed freeform optical system for use as an optical viewing device in an optical see-through head-mounted display (HMD) having a glasses-like appearance and a wide see-through field of view (FOV). An exemplary embodiment of the present invention, shown in FIG1 , is an image display system that projects a virtual image into the user's pupil via a freeform waveguide prism, thereby allowing the user to see the displayed content overlaid on a real-world scene. The system comprises:

a.微型图像显示单元105,其充当图像源并将光投射到波导中;a. A micro image display unit 105, which acts as an image source and projects light into the waveguide;

b.可选的耦合透镜组110,其由一个或多个透镜构成,这些透镜将来自显示单元的光导入自由形状波导棱镜100并校正光学像差;b. An optional coupling lens group 110, which consists of one or more lenses that direct light from the display unit into the free-form waveguide prism 100 and correct optical aberrations;

c.透明的自由形状光学波导棱镜100,如上所述,其接受来自图像显示单元105的光并传播所述光,直到图像被投射到用户眼瞳内;其中波导允许来自真实世界场景的光穿过并进入用户的眼瞳内;其中波导具有物理内表面115、物理边缘表面120和物理外表面125、第一折射表面130、第二折射表面135,以及多个反射表面;c. a transparent freeform optical waveguide prism 100, as described above, which receives light from the image display unit 105 and propagates the light until an image is projected into the user's pupil; wherein the waveguide allows light from a real-world scene to pass through and into the user's pupil; wherein the waveguide has a physical inner surface 115, a physical edge surface 120, and a physical outer surface 125, a first refractive surface 130, a second refractive surface 135, and a plurality of reflective surfaces;

d.安装在波导的物理外表面125上的自由形状补偿透镜160,其校正通过波导棱镜观察世界所造成的光学失真;其中补偿透镜160的物理内表面165接近波导棱镜100的物理外表面125的形状,并且在波导的物理外表面125满足TIR条件的表面上保持波导100与补偿透镜160之间的小气隙195;其中所述补偿透镜160被设计为补偿波导100所造成的光线偏移和失真效应,以使用户保持清晰的透视视场190;d. a free-form compensating lens 160 mounted on the waveguide's physical outer surface 125 to correct for optical distortion caused by viewing the world through the waveguide prism; wherein the physical inner surface 165 of the compensating lens 160 approximates the shape of the physical outer surface 125 of the waveguide prism 100 and maintains a small air gap 195 between the waveguide 100 and the compensating lens 160 at the surface of the waveguide's physical outer surface 125 that satisfies the TIR condition; wherein the compensating lens 160 is designed to compensate for the light deviation and distortion effects caused by the waveguide 100 so that the user maintains a clear see-through field of view 190;

因此,图像显示单元105可以是可充当图像源的任何类型的自发光或发光像素阵列,其中包括但不限制为硅基液晶(LCoS)显示设备、液晶显示(LCD)面板、有机发光显示器(OLED)、铁电性硅基液晶(LCoS)设备、数字微镜设备(DMD),或根据上述或其它类型的微型显示设备构建的微型投射器;Thus, the image display unit 105 may be any type of self-luminous or emissive pixel array that can serve as an image source, including but not limited to a liquid crystal on silicon (LCoS) display device, a liquid crystal display (LCD) panel, an organic light emitting display (OLED), a ferroelectric liquid crystal on silicon (LCoS) device, a digital micromirror device (DMD), or a micro-projector constructed based on these or other types of micro-display devices;

因此,图像显示单元105将光140射入到可选的耦合透镜110内,接着经过波导100,或者通过第一折射表面130直接进入到波导内;Therefore, the image display unit 105 injects light 140 into the optional coupling lens 110 and then passes through the waveguide 100 or directly into the waveguide through the first refractive surface 130;

然后,光140沿着波导循路径145而行,该路径包括从第一折射表面130到第二折射表面135的多次反射;The light 140 then follows a path 145 along the waveguide that includes multiple reflections from the first refractive surface 130 to the second refractive surface 135;

然后,沿着波导循路径145而行的光线140可以交叉并在波导100内部形成中间图像155;Then, light rays 140 following paths 145 along the waveguide may intersect and form an intermediate image 155 inside the waveguide 100;

然后,光140穿过第二折射表面135,超出该表面,用户利用他或她的瞳孔150观察图像;The light 140 then passes through the second refractive surface 135 beyond which the user observes the image with his or her pupil 150;

然后,来自真实世界场景的光198在到达瞳孔150之前穿过补偿透镜160和波导100。Light 198 from the real-world scene then passes through the compensating lens 160 and the waveguide 100 before reaching the pupil 150 .

本发明的一方面是符合人体工程学而设计形状的自由形状波导棱镜,其允许图像投射到棱镜的一个折射输入平面,该图像然后进行反射和折射,直到到达用户眼睛。波导棱镜的形状、光路长度和厚度专门进行优化,从而实现光学透视HMD的包覆型设计,该光学透视HMD与人的头部在人体工程学上适合并且具有吸引人的眼镜式外观。One aspect of the present invention is an ergonomically designed free-form waveguide prism that allows an image to be projected onto a refractive input plane of the prism, where the image is then reflected and refracted until it reaches the user's eyes. The waveguide prism's shape, optical path length, and thickness are specifically optimized to enable a wraparound design for an optical see-through HMD that ergonomically fits the human head and has an attractive, eyeglass-like appearance.

在典型实施例中,本发明的自由形状波导棱镜包括至少三个物理表面,每个物理表面包含多个被置于所述物理表面上的反射和折射光学表面,其中物理表面的内部空间由折射率(n)大于1的折射介质填充,所述物理和光学表面包括:In an exemplary embodiment, the freeform waveguide prism of the present invention comprises at least three physical surfaces, each physical surface comprising a plurality of reflective and refractive optical surfaces disposed on the physical surface, wherein the interior space of the physical surface is filled with a refractive medium having a refractive index (n) greater than 1, the physical and optical surfaces comprising:

a.朝着用户眼球设置的物理内表面115,其中包含多个适于将图像传播到用户眼球的反射和折射表面的物理内表面被限制为适合人的头部的人体工程学因素;a. a physical inner surface 115 disposed toward the user's eyeball, wherein the physical inner surface comprising a plurality of reflective and refractive surfaces adapted to transmit an image to the user's eyeball is limited to fit within the ergonomics of the human head;

b.朝着外部场景设置的物理外表面125,其中物理外表面包含多个适于将图像反射到用户眼球的反射表面,其中物理外表面在所有点上通常位于内表面的30mm内,其中物理外表面包含至少一个折射表面以允许来自外部场景的光穿过波导并到达用户眼球;b. a physical outer surface 125 positioned toward an external scene, wherein the physical outer surface comprises a plurality of reflective surfaces adapted to reflect an image toward an eye of a user, wherein the physical outer surface is generally within 30 mm of the inner surface at all points, and wherein the physical outer surface comprises at least one refractive surface to allow light from the external scene to pass through the waveguide and reach the eye of the user;

c.物理边缘表面120,其可能包含使来自图像显示单元的光进入波导的折射表面;c. Physical edge surface 120, which may include a refractive surface for allowing light from the image display unit to enter the waveguide;

d.被置于物理表面之一上的折射输入表面130,其允许来自图像显示单元的光进入波导;d. a refractive input surface 130 disposed on one of the physical surfaces, which allows light from the image display unit to enter the waveguide;

e.被置于物理内表面上的允许光离开波导的折射输出表面135,其接近用户瞳孔,其中折射表面可以被半透明涂层覆盖,也可以不被覆盖;e. A refractive output surface 135 that allows light to exit the waveguide and is positioned on a physical inner surface, close to the user's pupil, wherein the refractive surface may or may not be covered with a translucent coating;

f.被置于物理内表面和外表面上的多个反射表面,其中通过满足TIR条件,或者通过在波导表面上施加半透明的部分反射涂层来产生每次反射;f. Multiple reflective surfaces placed on the physical inner and outer surfaces, where each reflection is produced by satisfying TIR conditions or by applying a semi-transparent partially reflective coating on the waveguide surface;

因此,来自图像显示单元105的光140通过第一折射表面130进入波导;Therefore, light 140 from the image display unit 105 enters the waveguide through the first refractive surface 130;

然后,光140沿着波导循路径145而行,该路径包括从第一折射表面130到第二折射表面135在多个反射表面上的多次反射,其中通过满足全内反射条件,或者通过在表面上施加半透明涂层来产生每次反射;The light 140 then follows a path 145 along the waveguide that includes multiple reflections on multiple reflective surfaces from the first refractive surface 130 to the second refractive surface 135, where each reflection is produced by satisfying a total internal reflection condition or by applying a translucent coating on the surface;

然后,光140穿过第二折射表面135,超出该表面,所述用户利用他或她的瞳孔150观察图像;The light 140 then passes through the second refractive surface 135 beyond which the user observes the image with his or her pupil 150;

因此,来自真实世界场景的光198在被补偿透镜160折射后,在到达瞳孔150之前,通过波导100的物理外表面125以及所述波导的物理内表面115进行折射。Thus, light 198 from the real-world scene, after being refracted by the compensating lens 160 , is refracted through the physical outer surface 125 of the waveguide 100 and the physical inner surface 115 of the waveguide before reaching the pupil 150 .

在典型实施例中,波导的内表面115和外表面125被适当地设计为产生多个在不使图像失真的情况下将光导入用户瞳孔的反射。所述多次反射延长光路长度,以使波导棱镜的宽度密切适合于普通人头部的宽度。长光路长度允许将波导棱镜设计为符合人体工程学的形状。棱镜的长光路进一步允许将图像显示单元105移到显示架侧,这样减少HMD系统的前端重量并提高系统的人体工程学适合度。In an exemplary embodiment, the inner and outer surfaces 115, 125 of the waveguide are appropriately designed to produce multiple reflections that direct light into the user's pupil without distorting the image. These multiple reflections extend the optical path length, allowing the width of the waveguide prism to closely match the width of an average head. The long optical path length allows the waveguide prism to be designed with an ergonomic shape. The prism's long optical path further allows the image display unit 105 to be moved to the side of the display frame, thereby reducing the front-end weight of the HMD system and improving the system's ergonomic fit.

在典型实施例中,内表面115被限制为接近所需眼镜形状因素的预指定曲面。外表面125进一步被限制为实现薄外形,内表面与外表面之间的厚度通常不大于30mm。在本领域的一个实践中,我们将内表面与外表面之间的总厚度限制为不超过12mm。波导的内表面和外表面的参数因此被优化为使得投射图像在波导的出射点上具有最小失真。In a typical embodiment, inner surface 115 is constrained to a pre-specified curve that approximates the desired eyeglass form factor. Outer surface 125 is further constrained to achieve a thin profile, with the thickness between the inner and outer surfaces typically no greater than 30 mm. In one practice in the art, the total thickness between the inner and outer surfaces is limited to no more than 12 mm. The parameters of the inner and outer surfaces of the waveguide are thus optimized to minimize distortion of the projected image at the waveguide's exit point.

在典型实施例中,波导100的内表面115可以包含多个表面分段(surfacesegment);每个表面分段通过一个唯一的参数集进行描述。In an exemplary embodiment, the inner surface 115 of the waveguide 100 may comprise a plurality of surface segments; each surface segment is described by a unique set of parameters.

在典型实施例中,波导100的外表面125可以包含多个表面分段;每个表面分段通过一个唯一的参数集进行描述。In a typical embodiment, the outer surface 125 of the waveguide 100 may comprise a plurality of surface segments; each surface segment is described by a unique set of parameters.

在某些实施例中,可以在微型图像显示单元105与波导100的第一折射表面130之间添加耦合透镜110,从而便于将来自显示单元105的光射入到波导内。耦合透镜可用于校正波导光学像差。In some embodiments, a coupling lens 110 may be added between the micro image display unit 105 and the first refractive surface 130 of the waveguide 100 to facilitate injection of light from the display unit 105 into the waveguide. The coupling lens may be used to correct optical aberrations of the waveguide.

本发明的另一方面是物理附着在波导棱镜100上自由形状透视补偿透镜160。补偿透镜160被设计为抵消波导棱镜100所造成的光线偏移和失真并提供跨宽广视场的真实世界场景的清晰透视视图。Another aspect of the present invention is a free-form perspective compensating lens 160 physically attached to the waveguide prism 100. The compensating lens 160 is designed to counteract the light deviation and distortion caused by the waveguide prism 100 and provide a clear perspective view of the real-world scene across a wide field of view.

在典型实施例中,本发明的自由形状补偿透镜160包括多个(通常2个或更多个)自由形状折射表面,其中折射表面的内部空间由折射率(n)大于1的折射介质填充,光学表面包括:In an exemplary embodiment, the free-form compensating lens 160 of the present invention comprises a plurality of (typically two or more) free-form refractive surfaces, wherein the interior spaces of the refractive surfaces are filled with a refractive medium having a refractive index (n) greater than 1, and the optical surfaces include:

a.朝着外部场景设置的、允许来自外部场景的光198进入补偿透镜的折射外表面170,其中所述折射外表面通常是连续的单折射表面,并且在所有点上通常位于波导棱镜100的物理内表面115的30mm内;a. a refractive outer surface 170 disposed toward the external scene, allowing light 198 from the external scene to enter the compensating lens, wherein the refractive outer surface is typically a continuous single refractive surface and is typically located within 30 mm of the physical inner surface 115 of the waveguide prism 100 at all points;

b.朝着波导棱镜100的外表面125设置的折射内表面165,其允许光离开补偿透镜并进入波导棱镜100,其中包含多个折射表面的折射内表面165通常被限制为接近或适合波导棱镜100的外表面125的形状,b. a refractive inner surface 165 disposed toward the outer surface 125 of the waveguide prism 100, which allows light to exit the compensating lens and enter the waveguide prism 100, wherein the refractive inner surface 165, comprising a plurality of refractive surfaces, is generally constrained to approximate or conform to the shape of the outer surface 125 of the waveguide prism 100,

因此,来自真实世界场景的光198在到达瞳孔150之前,通过补偿透镜160的折射外表面170和折射内表面165,以及波导100的物理外表面125和物理内表面115进行折射。Thus, light 198 from the real-world scene is refracted by the refractive outer surface 170 and the refractive inner surface 165 of the compensating lens 160 , as well as the physical outer surface 125 and the physical inner surface 115 of the waveguide 100 before reaching the pupil 150 .

在典型实施例中,将补偿透镜160和波导棱镜100专门共同优化为允许正确地观察跨极宽广视场190的周围环境。当补偿透镜160与波导棱镜100组合时,补偿透镜160的内表面165和外表面170被优化以使引入到来自真实世界场景的光线的偏移和失真最小化。补偿透镜160的内表面165可以与波导棱镜100的外表面125完全相同,只是沿着z轴轻微偏移。如果波导棱镜100的附着外表面125上的反射在虚拟图像显示路径中满足TIR条件,则有必要在波导棱镜100与补偿透镜160之间保持小气隙195。如果对波导棱镜100的外表面125没有TIR要求,则可以在气隙195中填充折射率匹配粘合剂以将补偿透镜160粘合到波导100上。补偿透镜160的内表面165也可以沿着补偿透镜160的外表面170重新设计以实现更佳的透视性能。对于这种情况,波导棱镜100与补偿透镜160之间的气隙195可被限制为在沿着表面的任意点上小于6mm。对外表面170进一步进行限制以将波导棱镜100和补偿透镜160的总厚度限制为通常不超过30mm。在本领域的一个实践中,我们将棱镜和透镜的总厚度限制为不超过15mm。针对指定透视FOV 190,补偿透镜160的内表面165和外表面170应该足够大。对补偿透镜的形状和厚度专门进行优化,从而实现光学透视HMD的包覆型设计,该光学透视HMD在人体工程学上适合于人的头部并且具有吸引人的眼镜式外观。In an exemplary embodiment, the compensating lens 160 and the waveguide prism 100 are specifically co-optimized to allow accurate viewing of the surrounding environment across an extremely wide field of view 190. When the compensating lens 160 is combined with the waveguide prism 100, the inner and outer surfaces 165, 170 of the compensating lens 160 are optimized to minimize the offset and distortion introduced to light rays from the real-world scene. The inner surface 165 of the compensating lens 160 can be identical to the outer surface 125 of the waveguide prism 100, with only a slight offset along the z-axis. If reflections from the attached outer surface 125 of the waveguide prism 100 meet TIR conditions in the virtual image display path, it is necessary to maintain a small air gap 195 between the waveguide prism 100 and the compensating lens 160. If there is no TIR requirement for the outer surface 125 of the waveguide prism 100, the air gap 195 can be filled with an index-matching adhesive to bond the compensating lens 160 to the waveguide 100. The inner surface 165 of the compensating lens 160 can also be redesigned along with the outer surface 170 of the compensating lens 160 to achieve better see-through performance. For this case, the air gap 195 between the waveguide prism 100 and the compensating lens 160 can be limited to less than 6 mm at any point along the surface. The outer surface 170 is further limited to limit the total thickness of the waveguide prism 100 and the compensating lens 160 to typically no more than 30 mm. In one practice in the art, we limit the total thickness of the prism and lens to no more than 15 mm. For a given see-through FOV 190, the inner surface 165 and the outer surface 170 of the compensating lens 160 should be large enough. The shape and thickness of the compensating lens are specifically optimized to achieve a wraparound design for an optical see-through HMD that ergonomically fits on a person's head and has an attractive glasses-like appearance.

在典型实施例中,补偿透镜160和波导棱镜100上的内表面和外表面大得足以实现与人眼视场一样大的宽广透视视场190,例如,相对于视场中心,在水平方向上在太阳穴侧最高达90°,在鼻子侧最高达60°,以及在垂直方向上在上侧和在下侧最高达60°。波导棱镜100和补偿透镜160上的自由形状表面被优化为校正光线偏移和失真以确保跨大FOV的高透视性能。In an exemplary embodiment, the inner and outer surfaces on the compensating lens 160 and the waveguide prism 100 are large enough to achieve a wide see-through field of view 190 that is as large as the field of view of the human eye, for example, up to 90° temple-side, up to 60° nose-side, and up to 60° vertically superior and inferior relative to the center of the field of view. The free-form surfaces on the waveguide prism 100 and the compensating lens 160 are optimized to correct for light deviation and distortion to ensure high see-through performance across a large FOV.

上述所有表面为自由形状表面,其包括但不限于球面、非球面、变形的非球面、XYP多项式或其它类型的数学规定,该表面在如图1所示的全局坐标系的YZ平面内不对称,其中坐标系的原点位于出射光瞳150的中心处,其中Z轴175指向外部场景,Y轴180指向太阳穴侧,X轴185沿头部垂直指向。在本发明的通篇内容中,如果没有特别指示,则针对所有附图和描述使用相同的坐标系。All of the above surfaces are free-form surfaces, including but not limited to spherical surfaces, aspherical surfaces, deformed aspherical surfaces, XYP polynomials, or other types of mathematical specifications. The surfaces are asymmetric in the YZ plane of the global coordinate system shown in FIG1 , wherein the origin of the coordinate system is located at the center of the exit pupil 150, wherein the Z axis 175 points to the external scene, the Y axis 180 points to the temple side, and the X axis 185 points vertically along the head. Throughout the present invention, unless otherwise specified, the same coordinate system is used for all drawings and descriptions.

本发明的主要目标是设计在光学透视HMD中用作光学观察设备的自由形状光学系统,从而实现眼镜形状外观和宽广透视视场(FOV)。因此,设计波导棱镜需要优化每个单独表面的参数以最小化适当的光学误差函数,例如,波前误差或系统调制传递函数(MTF)。图1所示的波导棱镜包含多个自由形状表面,与传统旋转对称光学表面相比,这些表面提供更多设计自由。因此,自由形状设计方法提供设计具有更佳的光学性能和人体工程学适合度的光学观察设备的能力,同时与使用传统旋转对称光学表面的类似规范的光学观察设备相比,使用更少的表面。但是,必须对所有表面施加适当的限制,以使产生有效的波导棱镜设计,从而实现保持所需形状因素并提供大透视FOV的主要目标。A primary goal of the present invention is to design a free-form optical system for use as an optical viewing device in an optical see-through HMD, thereby achieving a glasses-shaped appearance and a wide see-through field of view (FOV). Therefore, designing a waveguide prism requires optimizing the parameters of each individual surface to minimize an appropriate optical error function, such as wavefront error or system modulation transfer function (MTF). The waveguide prism shown in Figure 1 includes multiple free-form surfaces that provide more design freedom compared to traditional rotationally symmetric optical surfaces. Therefore, the free-form design approach provides the ability to design an optical viewing device with better optical performance and ergonomic fit, while using fewer surfaces than an optical viewing device of similar specifications using traditional rotationally symmetric optical surfaces. However, appropriate constraints must be imposed on all surfaces in order to produce an efficient waveguide prism design that achieves the primary goal of maintaining the desired form factor and providing a large see-through FOV.

图2和3示出在我们的设计过程中使用的结构限制。这些控制方法将结构签名植入我们的设计中。Figures 2 and 3 illustrate the structural constraints used in our design process. These control methods embed structural signatures into our designs.

图2示出用于波导棱镜设计的一组主要结构限制。图2a和2b分别示出YZ平面和XZ平面中的截面图。在附图中,波导200的出射光瞳250与人眼的瞳孔对齐;虚线230是用于限制波导200的内表面215的形状以及微型图像显示单元205的位置的参考表面。参考表面230在3D空间中为柱面(如图3所示),接近人的头部从脸部的鼻子侧到耳朵侧的自然曲率。水平YZ平面中的参考表面230的半径可以从40mm变化为与100mm一样大,具体取决于目标用户人群的头部大小。在垂直的XZ平面中的参考表面230的半径可以是竖直或弯曲的,只要棱镜的内表面不妨碍用户脸部即可。在本领域的一个实践中,我们选择水平方向上的65mm半径,该半径类似于8基弯眼镜的半径。参考弧线的中心232通过参考尺寸Yref1 234、Zref1 236和YHIPD238定义,其中YHIPD 238是用户瞳孔间距(IPD)的一半,对于95%以上的人群,IPD通常处于40mm到80mm范围内。参考尺寸234、236和238根据特定设计目标选择。在本领域的一个实践中,尺寸234、236和238针对8基弯和64mm的IPD实例分别被选择为10mm、50mm和32mm。通过尺寸Zref2 242定义的虚线240是用于限制内表面215的形状的另一参考表面。参考表面240(可以是平面或具有所需形状的曲面)确保补偿透镜260距离用户脸部不会太远,否则会导致光学设计的外观太差。虚线290a和290b标注水平维度上从太阳穴到鼻子的指定透视FOV 290的边界,同时虚线290c和290d标注垂直维度上指定透视FOV 290的边界。Figure 2 illustrates a set of key structural constraints for waveguide prism design. Figures 2a and 2b show cross-sectional views in the YZ and XZ planes, respectively. In the figures, the exit pupil 250 of waveguide 200 is aligned with the pupil of the human eye; dashed line 230 is a reference surface used to constrain the shape of the inner surface 215 of waveguide 200 and the position of the micro-image display unit 205. Reference surface 230 is a cylindrical surface in 3D space (as shown in Figure 3), approximating the natural curvature of the human head from the nose to the ears. The radius of reference surface 230 in the horizontal YZ plane can vary from 40 mm to as large as 100 mm, depending on the head size of the target user population. The radius of reference surface 230 in the vertical XZ plane can be straight or curved, as long as the inner surface of the prism does not obstruct the user's face. In one practice in the field, a horizontal radius of 65 mm is chosen, which is similar to the radius of 8-base curved glasses. The center of the reference arc 232 is defined by reference dimensions Y ref1 234, Z ref1 236, and Y HIPD 238, where Y HIPD 238 is half the user's interpupillary distance (IPD), which typically falls between 40 mm and 80 mm for over 95% of the population. Reference dimensions 234, 236, and 238 are selected based on specific design goals. In one embodiment of the present invention, dimensions 234, 236, and 238 are selected to be 10 mm, 50 mm, and 32 mm, respectively, for an example of 8 base curves and an IPD of 64 mm. The dashed line 240, defined by dimension Z ref2 242, is another reference surface used to constrain the shape of the inner surface 215. Reference surface 240, which can be flat or curved with a desired shape, ensures that the compensation lens 260 is not positioned too far from the user's face, which would otherwise result in a poorly designed optical design. Dashed lines 290a and 290b mark the boundaries of the specified see-through FOV 290 in the horizontal dimension from temple to nose, while dashed lines 290c and 290d mark the boundaries of the specified see-through FOV 290 in the vertical dimension.

为了满足我们的人体工程学设计目标以及所需的透视FOV,对波导200的内表面215施加下面的限制:To meet our ergonomic design goals and the required see-through FOV, the following constraints are imposed on the inner surface 215 of the waveguide 200:

a.整个内表面215被限制为位于参考表面230之外以确保棱镜不会妨碍用户头部;a. The entire inner surface 215 is limited to being located outside the reference surface 230 to ensure that the prism does not obstruct the user's head;

b.内表面215可以偏离参考表面230,但是被限制为不能穿过参考表面240;b. The inner surface 215 may deviate from the reference surface 230 but is restricted from passing through the reference surface 240;

c.当有必要将来自单个表面描述的内表面215分为多个表面分段时,每个表面分段具有自己的数学公式,从而增加设计自由度,断点必须位于透视FOV 290的上边界290a之外,或者断开的分段必须邻接中间分段来保持一阶连续性。换言之,内表面215位于透视FOV290内部的表面分段215a必须是连续平滑的光学表面。表面分段215a的局部曲率半径应该不小于20mm,以使将透视失真保持在可接受的水平上。c. When it is necessary to divide the inner surface 215 from a single surface description into multiple surface segments, each surface segment has its own mathematical formula to increase design freedom. The breakpoints must be located outside the upper boundary 290a of the perspective FOV 290, or the broken segments must abut the intermediate segments to maintain first-order continuity. In other words, the surface segments 215a of the inner surface 215 located within the perspective FOV 290 must be continuous and smooth optical surfaces. The local radius of curvature of the surface segments 215a should be no less than 20 mm to maintain acceptable perspective distortion.

d.表面分段215a被限制为接近设计的曲率。内表面分段215a的形状决定波导棱镜外观,因为补偿透镜260的外表面270与内表面分段215的形状类似。在本领域的一个实践中,表面分段215a被设计为遵循位于参考表面230之外10mm的8基弯,从而实现8基弯的包覆型设计。d. Surface segment 215a is constrained to a curvature close to the design. The shape of inner surface segment 215a determines the appearance of the waveguide prism, because the outer surface 270 of compensation lens 260 is similar in shape to inner surface segment 215. In one practice in the art, surface segment 215a is designed to follow an 8-base bend located 10 mm outside reference surface 230, thereby achieving an 8-base bend wraparound design.

波导棱镜200的外表面225比内表面215具有更大的自由度。外表面根据需要被分为多个表面分段。断点可以位于透视FOV 290之内或之外。当断点位于透视FOV 290之内时,需要在两个相邻表面分段的相交线周围具有至少1mm的无光线间隙以确保两个分段之间的平滑过渡。针对指定的透视FOV 290,外表面225在X和Y方向上必须同时足够宽。外表面225与内表面215之间的最大距离通常被限制为小于30mm以确保波导棱镜不会太厚。在本领域的多个实践中,我们将最大距离限制为小于15mm。尽管希望具有较低的光损失,但外表面225上的反射不需要满足TIR条件。如果不满足TIR条件,则透视FOV 290内的表面分段需要半透明半反射涂层。对于透视FOV 290之外的表面分段,如果不满足TIR条件,则建议使用高反射镜面涂层。The outer surface 225 of the waveguide prism 200 has greater degrees of freedom than the inner surface 215. The outer surface can be divided into multiple surface segments as needed. The breakpoints can be located inside or outside the see-through FOV 290. When the breakpoints are located inside the see-through FOV 290, a clear gap of at least 1 mm is required around the intersection of two adjacent surface segments to ensure a smooth transition between the two segments. The outer surface 225 must be sufficiently wide in both the X and Y directions for the given see-through FOV 290. The maximum distance between the outer surface 225 and the inner surface 215 is typically limited to less than 30 mm to ensure the waveguide prism is not too thick. In many practical applications, the maximum distance is limited to less than 15 mm. While low light loss is desirable, reflections on the outer surface 225 do not need to meet TIR conditions. If TIR conditions are not met, surface segments within the see-through FOV 290 require a translucent, semi-reflective coating. For surface segments outside the see-through FOV 290, if TIR conditions are not met, a highly reflective mirror coating is recommended.

除了施加到波导棱镜内表面和外表面的限制之外,波导棱镜200的宽度244(在Y方向上从眼瞳250到太阳穴侧所测量的距离)通过下边界进行限制,以使波导棱镜的宽度在太阳穴侧足以提供所需的透视FOV 290。宽度244进一步通过上边界进行限制,以确保为了实现人体工程学适合度和吸引人的外观,最终形成的波导棱镜在人的头部的太阳穴侧不会伸出太多。在本领域的一个实践中,宽度244通过在Y方向上距离出射光瞳250为50mm的上边界进行设定。In addition to the constraints imposed on the inner and outer surfaces of the waveguide prism, the width 244 of the waveguide prism 200 (the distance measured from the pupil 250 to the temple in the Y direction) is limited by a lower boundary so that the width of the waveguide prism at the temple is sufficient to provide the desired see-through FOV 290. The width 244 is further limited by an upper boundary to ensure that the resulting waveguide prism does not protrude too much at the temple of a person's head for ergonomic fit and an attractive appearance. In one practice in the art, the width 244 is set by an upper boundary of 50 mm from the exit pupil 250 in the Y direction.

波导棱镜的宽度246(在Y方向上从眼瞳250到鼻子侧所测量的距离)通过下边界进行限制,以使波导棱镜200的宽度在鼻子侧足以提供所需的透视FOV 290。宽度246进一步通过上边界进行限制,以确保最终形成的波导棱镜不会妨碍人的头部上的鼻梁。在本领域的一个实践中,宽度246通过在Y方向上距离出射光瞳250为30mm的上边界进行设定。The width 246 of the waveguide prism (measured in the Y direction from the pupil 250 to the side of the nose) is limited by a lower boundary so that the width of the waveguide prism 200 on the side of the nose is sufficient to provide the desired see-through FOV 290. The width 246 is further limited by an upper boundary to ensure that the resulting waveguide prism does not interfere with the bridge of the nose on a person's head. In one practice in the art, the width 246 is set by an upper boundary of 30 mm from the exit pupil 250 in the Y direction.

波导棱镜的高度252和254(在X方向上从眼瞳250到前额和面颊所测量的距离)通过下边界进行限制,以使波导棱镜200的高度足以在垂直方向的上方和下方提供所需的透视FOV 290。The heights 252 and 254 of the waveguide prism (measured in the X direction from the pupil 250 to the forehead and cheek) are limited by a lower boundary so that the height of the waveguide prism 200 is sufficient to provide the desired see-through FOV 290 above and below in the vertical direction.

对微型图像显示单元205施加两个位置限制:(1)显示单元的任何部分都应位于参考表面230之外;(2)显示单元不应在Y方向上距离出射光瞳250太远。Two positional constraints are imposed on the micro-image display unit 205: (1) any part of the display unit should be outside the reference surface 230; and (2) the display unit should not be too far from the exit pupil 250 in the Y direction.

补偿透镜260被设计为抵消波导棱镜200所造成的光线偏移和失真,并物理附着在波导棱镜200上。当补偿透镜260与波导棱镜200组合时,补偿透镜260的内表面265和外表面270被优化以最小化引入到来自真实世界场景的光线的偏移和失真。补偿透镜260的内表面265可以与波导棱镜200的外表面225完全相同,只是沿着z轴轻微偏移。如果波导棱镜200的所附着的外表面225上的反射在虚拟图像显示路径中满足TIR条件,则有必要在波导棱镜200与补偿透镜260之间保持小气隙295。如果对波导棱镜200的外表面225没有TIR要求,则可以在气隙295中填充折射率匹配的粘合剂以将补偿透镜粘合到波导棱镜上。补偿透镜260的内表面265也可以沿着补偿透镜260的外表面270重新设计以实现更佳的透视性能。对于这种情况,波导棱镜200与补偿透镜260之间的气隙295可被限制为在沿着表面的任意点上小于6mm。外表面进一步进行限制以将波导棱镜200和补偿透镜260的总厚度限制为通常不超过30mm。在本领域的一个实践中,我们将棱镜和透镜的总厚度限制为不超过15mm。针对指定的透视FOV 290,补偿透镜260的内表面265和外表面270应该足够大。The compensating lens 260 is designed to offset the light deviation and distortion caused by the waveguide prism 200 and is physically attached to the waveguide prism 200. When the compensating lens 260 is combined with the waveguide prism 200, the inner surface 265 and outer surface 270 of the compensating lens 260 are optimized to minimize the deviation and distortion introduced to the light from the real-world scene. The inner surface 265 of the compensating lens 260 can be identical to the outer surface 225 of the waveguide prism 200, with a slight offset along the z-axis. If the reflection from the attached outer surface 225 of the waveguide prism 200 meets the TIR condition in the virtual image display path, it is necessary to maintain a small air gap 295 between the waveguide prism 200 and the compensating lens 260. If there is no TIR requirement for the outer surface 225 of the waveguide prism 200, the air gap 295 can be filled with a refractive index matching adhesive to bond the compensating lens to the waveguide prism. The inner surface 265 of the compensating lens 260 can also be redesigned along with the outer surface 270 of the compensating lens 260 to achieve better see-through performance. For this scenario, the air gap 295 between the waveguide prism 200 and the compensating lens 260 can be limited to less than 6 mm at any point along the surface. The outer surface is further limited to limit the total thickness of the waveguide prism 200 and the compensating lens 260 to typically no more than 30 mm. In one practice in the art, we limit the total thickness of the prism and lens to no more than 15 mm. The inner surface 265 and outer surface 270 of the compensating lens 260 should be large enough for a given see-through FOV 290.

图3以3D视图示出参考表面230。图2中的参考弧线230沿X轴扫过成为柱面330。波导棱镜300的整个内表面325应该位于柱面330之外以确保棱镜不会在物理上妨碍用户脸部。圆350标注波导300的出射光瞳位置。FIG3 shows a 3D view of reference surface 230. Reference arc 230 in FIG2 sweeps along the X-axis to become cylindrical surface 330. The entire inner surface 325 of waveguide prism 300 should lie outside cylindrical surface 330 to ensure that the prism does not physically obstruct the user's face. Circle 350 marks the exit pupil location of waveguide 300.

下面的图形示出本发明的实施例实例,其具有执行上述部分或全部限制并针对不同的基弯样式导致不同的设计结构。The following figures illustrate example embodiments of the present invention that implement some or all of the above limitations and result in different design structures for different base bend styles.

图4示出本发明的波导棱镜的5次反射优选实施例,其具有接近8基弯的包覆型外观的内表面。该实施例可用于实现具有8基弯的包覆型眼镜形状因素的HMD系统。在该实施例中,波导棱镜400的物理内表面415和物理外表面425是两个连续平滑表面,每个表面通过自由形状表面参数集进行描述。波导棱镜400的折射表面430不是内表面415的一部分并通过不同的表面参数集进行描述。在该图中,光线束440a、440b和440c来自微型图像显示单元405上的三个不同像素。在显示单元405与波导棱镜400之间,使用耦合透镜410帮助校正光学像差并提高图像质量。在该实施例中,光线束440a、440b和440c通过折射表面430进入波导棱镜400,然后被外表面425和内表面415连续反射五次(R1到R5),然后通过折射表面435射出,最后到达出射光瞳450。在五次反射当中,外表面425上的反射R1和内表面415上的反射R2满足TIR条件,而内表面415上的反射R4和外表面425上的反射R3和R5不满足TIR条件。为了增加反射R3、R4和R5的反射效率,有必要同时在内表面415和外表面425上施加半透明涂层。为了针对反射R1和R2保持TIR条件,优选地使用电介质涂层。为确保8基弯的包覆型形状因素,内表面415被限制为在水平维度上接近预定义的8基弯。在波导棱镜400内部,光线束440a、440b和440c重新调焦并分别形成中间图像455a、455b和455c。FIG4 illustrates a preferred embodiment of a five-bounce waveguide prism of the present invention, having an inner surface with a nearly 8-base bend wraparound appearance. This embodiment can be used to implement an HMD system with an 8-base bend wraparound glasses form factor. In this embodiment, the physical inner surface 415 and the physical outer surface 425 of the waveguide prism 400 are two continuous smooth surfaces, each described by a freeform surface parameter set. The refractive surface 430 of the waveguide prism 400 is not part of the inner surface 415 and is described by a different surface parameter set. In this figure, light beams 440a, 440b, and 440c originate from three different pixels on a micro-image display unit 405. A coupling lens 410 is used between the display unit 405 and the waveguide prism 400 to help correct optical aberrations and improve image quality. In this embodiment, light beams 440a, 440b, and 440c enter the waveguide prism 400 through the refractive surface 430, are reflected five times (R1 to R5) by the outer surface 425 and the inner surface 415, are emitted through the refractive surface 435, and finally reach the exit pupil 450. Among the five reflections, the reflection R1 on the outer surface 425 and the reflection R2 on the inner surface 415 meet the TIR condition, while the reflection R4 on the inner surface 415 and the reflections R3 and R5 on the outer surface 425 do not meet the TIR condition. In order to increase the reflection efficiency of the reflections R3, R4, and R5, it is necessary to apply a translucent coating to both the inner surface 415 and the outer surface 425. In order to maintain the TIR condition for the reflections R1 and R2, a dielectric coating is preferably used. To ensure the 8-base bend envelope form factor, the inner surface 415 is constrained to be close to the predefined 8 base bends in the horizontal dimension. Inside waveguide prism 400, light ray bundles 440a, 440b, and 440c are refocused and form intermediate images 455a, 455b, and 455c, respectively.

图5示出本发明的波导棱镜的另一5次反射优选实施例,其中具有接近8基弯的内表面。在该实施例中,波导棱镜500的物理内表面515被分为两个表面分段515a和515b,每个表面分段是通过不同的自由形状表面参数集进行描述的平滑表面。波导棱镜500的物理外表面525是通过自由形状表面参数集进行描述的连续平滑表面。折射表面530和反射表面515a通过相同的自由形状表面参数集进行描述,因此是单个平滑表面;反射表面515b和折射表面535通过相同的自由形状表面参数集进行描述,因此是单个平滑表面。表面分段515a和515b通过表面分段515c连接。表面分段515c被设计为在表面515b与515c之间的相交处保持一阶连续性,前提是相交处位于透视FOV 590的上边界590a内。类似地,如果表面515a与515c之间的相交处位于透视FOV 590的上边界590a内,也有必要在表面515a与515c之间的相交处保持一阶连续性。在五次反射当中,反射R2、R3和R4满足TIR条件,而反射R1和R5不满足TIR条件。为了增加反射效率,在外表面525上覆盖半透明涂层。为了针对表面525上的反射R3保持反射R3的TIR条件,优选地使用电介质涂层。如果分段525a位于透视FOV 590的上边界590a之外,则可以在上表面分段525a上施加镜面涂层。在图像显示单元505与波导棱镜500的折射表面530之间,使用耦合透镜510帮助校正光学像差并提高图像质量。表面分段515b被限制为接近8基弯,而表面分段515a被限制为靠近外表面525移动,从而有利于减小波导棱镜500的整体重量。FIG5 illustrates another preferred embodiment of a waveguide prism of the present invention with five reflections, having an inner surface approaching eight base bends. In this embodiment, the physical inner surface 515 of the waveguide prism 500 is divided into two surface segments 515a and 515b, each of which is a smooth surface described by a different set of freeform surface parameters. The physical outer surface 525 of the waveguide prism 500 is a continuous smooth surface described by a set of freeform surface parameters. The refractive surface 530 and the reflective surface 515a are described by the same set of freeform surface parameters and are therefore a single smooth surface; the reflective surface 515b and the refractive surface 535 are described by the same set of freeform surface parameters and are therefore a single smooth surface. Surface segments 515a and 515b are connected by surface segment 515c. Surface segment 515c is designed to maintain first-order continuity at the intersection between surfaces 515b and 515c, provided that the intersection lies within the upper boundary 590a of the perspective FOV 590. Similarly, if the intersection between surfaces 515a and 515c is located within the upper boundary 590a of the see-through FOV 590, it is also necessary to maintain first-order continuity at the intersection between surfaces 515a and 515c. Of the five reflections, reflections R2, R3, and R4 satisfy the TIR condition, while reflections R1 and R5 do not satisfy the TIR condition. To increase reflection efficiency, a translucent coating is applied to the outer surface 525. To maintain the TIR condition for reflection R3 on surface 525, a dielectric coating is preferably used. If segment 525a is located outside the upper boundary 590a of the see-through FOV 590, a mirror coating can be applied to the upper surface segment 525a. A coupling lens 510 is used between the image display unit 505 and the refractive surface 530 of the waveguide prism 500 to help correct optical aberrations and improve image quality. Surface segment 515b is constrained to move close to the 8-base bend, while surface segment 515a is constrained to move close to the outer surface 525, thereby facilitating a reduction in the overall weight of the waveguide prism 500.

图6示出本发明的波导棱镜的另一5次反射优选实施例,其具有位于太阳穴侧的平缓内弧。在该实施例中,波导棱镜600的折射表面630不是内表面615的一部分并通过不同的表面参数集进行描述,而内表面615是连续平滑表面。折射表面635与表面615共享相同的表面参数集。波导棱镜600的物理外表面625是连续平滑表面并通过自由形状表面参数集进行描述。在五次反射当中,反射R2、R3和R4满足TIR条件,而反射R1和R5不满足TIR条件。为了增加反射效率,在外表面625上覆盖半透明涂层。为了针对表面625上的反射R3保持TIR条件,优选地使用电介质涂层。如果表面分段625a位于透视FOV 690的上边界690a之外,则可以在上表面分段625a上施加镜面涂层。内表面615不被限制为任何预定的曲率,但是限制表面位置以确保棱镜距离人脸不会太远。在图像显示单元605与波导棱镜600的折射表面630之间,使用耦合透镜610帮助校正光学像差并提高图像质量。FIG6 illustrates another preferred embodiment of a waveguide prism of the present invention with five reflections, featuring a gentle inner curvature on the temple side. In this embodiment, the refractive surface 630 of the waveguide prism 600 is not part of the inner surface 615 and is described by a different surface parameter set, while the inner surface 615 is a continuous smooth surface. The refractive surface 635 shares the same surface parameter set as the surface 615. The physical outer surface 625 of the waveguide prism 600 is a continuous smooth surface and is described by a freeform surface parameter set. Of the five reflections, reflections R2, R3, and R4 satisfy the TIR condition, while reflections R1 and R5 do not. To increase reflection efficiency, a translucent coating is applied to the outer surface 625. To maintain the TIR condition for reflection R3 on the surface 625, a dielectric coating is preferably used. If the surface segment 625a is located outside the upper boundary 690a of the perspective FOV 690, a mirror coating can be applied to the upper surface segment 625a. The inner surface 615 is not restricted to any predetermined curvature, but the surface position is restricted to ensure that the prism is not too far from the face. A coupling lens 610 is used between the image display unit 605 and the refractive surface 630 of the waveguide prism 600 to help correct optical aberrations and improve image quality.

图7示出本发明的波导棱镜的另一5次反射优选实施例,其类似于图6所示的实施例。在该实施例中,波导棱镜700的折射表面730不是内表面715的一部分并通过不同的表面参数集进行描述,而内表面715是连续平滑表面。折射表面735与表面715共享相同的表面参数集。波导棱镜700的物理外表面725被分为两个分段725a和725b,每个分段是通过不同的自由形状表面参数集进行描述的平滑表面。表面分段725a和725b通过表面分段725c连接。表面分段725c被设计为在表面725b与725c之间的相交处保持一阶连续性,前提是相交处位于透视FOV 790的上边界790a内。类似地,如果表面725a与725c之间的相交处位于透视FOV790的上边界790a内,也有必要在表面725a与725c之间的相交处保持一阶连续性。此外,该实施例不需要在波导棱镜700与微型图像显示单元705之间使用耦合透镜,因为棱镜本身足以校正光学像差。FIG7 shows another preferred embodiment of a waveguide prism of the present invention with five reflections, which is similar to the embodiment shown in FIG6 . In this embodiment, the refractive surface 730 of the waveguide prism 700 is not part of the inner surface 715 and is described by a different surface parameter set, while the inner surface 715 is a continuous smooth surface. The refractive surface 735 shares the same surface parameter set as the surface 715. The physical outer surface 725 of the waveguide prism 700 is divided into two segments 725a and 725b, each of which is a smooth surface described by a different free-form surface parameter set. Surface segments 725a and 725b are connected by surface segment 725c. Surface segment 725c is designed to maintain first-order continuity at the intersection between surfaces 725b and 725c, provided that the intersection is within the upper boundary 790a of the perspective FOV 790. Similarly, it is also necessary to maintain first-order continuity at the intersection between surfaces 725a and 725c if the intersection between surfaces 725a and 725c is located within the upper boundary 790a of the perspective FOV 790. In addition, this embodiment does not require the use of a coupling lens between the waveguide prism 700 and the micro image display unit 705 because the prism itself is sufficient to correct optical aberrations.

图8示出本发明的波导棱镜的5次反射优选实施例,其具有接近8基弯的内表面,并且该实施例专门针对诸如LCoS或FLCoS型微型显示面板之类的反射型发光像素阵列而设计。在该实施例中,波导棱镜800的物理内表面815被分为两个平面分段815a和815b,每个分段是通过不同的自由形状表面参数集进行描述的平滑表面。折射表面830和反射表面815a是单个平滑表面并通过相同的平面参数集进行描述;反射表面815b和折射表面835是单个平滑表面并通过相同的平面参数集进行描述。表面分段815a和815b通过表面分段815c连接。表面分段815c被设计为在表面815b与815c之间的相交处保持一阶连续性,前提是相交处位于透视FOV 890的上边界890a内。类似地,如果表面815a与815c之间的相交处位于透视FOV 890的上边界890a内,也有必要在表面815a与815c之间的相交处保持一阶连续性。波导棱镜800的物理外表面825被分为两个分段825a和825b,每个分段是通过不同的自由形状表面参数集进行描述的平滑表面。表面分段825a和825b通过表面分段825c连接。表面分段825c被设计为在表面825b与825c之间的相交处保持一阶连续性,前提是相交处位于透视FOV 890的上边界890a内。类似地,如果表面825a与825c之间的相交处位于透视FOV 890的上边界890a内,也有必要在表面825a与825c之间的相交处保持一阶连续性。表面分段815b被限制为接近8基弯,而表面分段815a被限制为靠近外表面825a以有利于减小棱镜的整体重量。在五次反射当中,反射R2、R3和R4满足TIR条件,而反射R1和R5不满足TIR条件。因此,为了增加反射效率,需要在外表面825上覆盖半透明涂层。为了针对表面825b上的反射R3保持TIR条件,优选地使用电介质涂层。如果表面分段825a位于透视FOV 890的上边界890a之外,则可以在上表面分段825a上施加镜面涂层。在微型图像显示单元805与波导棱镜800的折射表面830之间,使用耦合透镜810帮助校正光学像差并提高图像质量。在该实施例中,微型图像显示单元805包含反射式微型显示面板805a(例如,LCoS显示面板)、物镜805b和偏振分光器805c。物镜805b用于在微型显示表面上执行光的聚焦远心(tele-centricity)。偏振分光器805c充当合束器以合并显示照明路径(未示出)和显示成像路径。偏振分光器805c还充当起偏器以及微型显示面板805a的入射和出射光的检偏器。该实施例的元件定义在图11中示出,参数在图25-27(表2-4)中给出。FIG8 illustrates a preferred embodiment of a five-reflection waveguide prism of the present invention, having an inner surface approaching eight base bends, and specifically designed for reflective light-emitting pixel arrays such as LCoS or FLCoS microdisplay panels. In this embodiment, the physical inner surface 815 of the waveguide prism 800 is divided into two planar segments 815a and 815b, each of which is a smooth surface described by a different set of freeform surface parameters. The refractive surface 830 and the reflective surface 815a are a single smooth surface described by the same set of planar parameters; the reflective surface 815b and the refractive surface 835 are a single smooth surface described by the same set of planar parameters. Surface segments 815a and 815b are connected by surface segment 815c. Surface segment 815c is designed to maintain first-order continuity at the intersection between surfaces 815b and 815c, provided that the intersection lies within the upper boundary 890a of the perspective FOV 890. Similarly, if the intersection between surfaces 815a and 815c lies within the upper boundary 890a of the perspective FOV 890, it is also necessary to maintain first-order continuity at the intersection between surfaces 815a and 815c. The physical outer surface 825 of the waveguide prism 800 is divided into two segments 825a and 825b, each of which is a smooth surface described by a different set of freeform surface parameters. Surface segments 825a and 825b are connected by surface segment 825c. Surface segment 825c is designed to maintain first-order continuity at the intersection between surfaces 825b and 825c, provided that the intersection lies within the upper boundary 890a of the perspective FOV 890. Similarly, if the intersection between surfaces 825a and 825c lies within the upper boundary 890a of the perspective FOV 890, it is also necessary to maintain first-order continuity at the intersection between surfaces 825a and 825c. Surface segment 815b is limited to near the 8-base bend, while surface segment 815a is limited to near the outer surface 825a to help reduce the overall weight of the prism. Of the five reflections, reflections R2, R3, and R4 meet the TIR condition, while reflections R1 and R5 do not. Therefore, to increase reflection efficiency, a translucent coating is required on the outer surface 825. To maintain the TIR condition for reflection R3 on surface 825b, a dielectric coating is preferably used. If surface segment 825a is located outside the upper boundary 890a of the perspective FOV 890, a mirror coating can be applied to the upper surface segment 825a. A coupling lens 810 is used between the micro-image display unit 805 and the refractive surface 830 of the waveguide prism 800 to help correct optical aberrations and improve image quality. In this embodiment, the micro-image display unit 805 includes a reflective micro-display panel 805a (e.g., an LCoS display panel), an objective lens 805b, and a polarization beam splitter 805c. Objective lens 805b is used to perform telecentric focusing of light on the micro display surface. Polarization beam splitter 805c acts as a beam combiner to merge the display illumination path (not shown) and the display imaging path. Polarization beam splitter 805c also acts as a polarizer and an analyzer for the incident and outgoing light of micro display panel 805a. The component definitions of this embodiment are shown in Figure 11, and the parameters are given in Figures 25-27 (Tables 2-4).

图9示出与图8所示的实施例类似的本发明的另一优选实施例,只是波导棱镜900的物理内表面915被优化为接近4基弯而非8基弯。在该实施例中,波导棱镜900与图8中的实施例具有类似的结构特性。但是,内表面分段915b被限制为接近4基弯。因此,该实施例可用于实现具有与一副4基弯眼镜类似的平坦外观且具有4基弯眼镜形状因素的HMD系统。与图8所示的实施例类似,该实施例专门针对诸如LCoS或FLCoS型微型显示面板之类的反射型发光像素阵列而设计。该实施例的元件定义在图13中示出,参数在图28-30(表5-7)中给出。FIG9 shows another preferred embodiment of the present invention that is similar to the embodiment shown in FIG8 , except that the physical inner surface 915 of the waveguide prism 900 is optimized to approximate 4 base curves rather than 8 base curves. In this embodiment, the waveguide prism 900 has similar structural characteristics to the embodiment in FIG8 . However, the inner surface segment 915b is limited to approximate 4 base curves. Therefore, this embodiment can be used to implement an HMD system with a flat appearance similar to a pair of 4 base curve glasses and with the form factor of 4 base curve glasses. Similar to the embodiment shown in FIG8 , this embodiment is specifically designed for reflective light-emitting pixel arrays such as LCoS or FLCoS type microdisplay panels. The component definitions of this embodiment are shown in FIG13 , and the parameters are given in FIG28-30 (Tables 5-7).

图10示出本发明的波导棱镜的3次反射优选实施例,其具有接近8基弯包覆型外观的内表面。该实施例可用于实现具有8基弯包覆型形状因素的HMD系统。在该实施例中,波导棱镜1000的物理内表面1015和物理外表面1025是两个连续平滑表面,每个表面通过自由形状表面参数集进行描述。波导棱镜1000的折射表面1030不是内表面1015的一部分并通过不同的表面参数集进行描述。微型图像显示单元1005包含微型显示面板1005a和用于在微型显示表面上实现光的聚焦远心的物镜1005b。微型显示面板1005a可以是反射型微型显示器(例如,LCoS、FLCoS或DMD面板)或透射型微型显示器(例如,LCD面板)或自发光型微型显示器(例如,OLED面板)。在反射型微型显示面板的实例中,在物镜1005b之后需要安装分光器(未示出)以引入照明路径(未示出)。在图像显示单元1005与波导棱镜1000之间,使用耦合透镜1010帮助校正光学像差并提高图像质量。在该设计实例中,来自微型显示器1005a上的三个不同像素的光线束1040a、1040b和1040c通过折射表面1030进入波导棱镜1000,被内表面1015和外表面1025反射三次,然后通过折射表面1035射出,最后到达出射光瞳1050。在该实例中,在三次反射当中,反射R1和反射R2满足TIR条件,而外表面1025上的反射R3不满足TIR条件。为了增加反射R3的反射效率,有必要在外表面1025上施加半透明涂层。为了针对反射R1保持TIR条件,优选地使用电介质涂层。为确保8基弯的眼镜形状因素,内表面1015被限制为接近预定义的8基弯。在波导棱镜1000内部,光线束1040a、1040b和1040c重新调焦并分别形成中间图像1055a、1055b和1055c。该实施例的元件定义在图17中示出,参数在图31-33(表8-10)中给出。FIG10 shows a preferred embodiment of a three-reflection waveguide prism of the present invention, which has an inner surface close to an 8-base bend wrap-around appearance. This embodiment can be used to implement an HMD system with an 8-base bend wrap-around form factor. In this embodiment, the physical inner surface 1015 and the physical outer surface 1025 of the waveguide prism 1000 are two continuous smooth surfaces, each of which is described by a free-form surface parameter set. The refractive surface 1030 of the waveguide prism 1000 is not part of the inner surface 1015 and is described by a different surface parameter set. The micro-image display unit 1005 includes a micro-display panel 1005a and an objective lens 1005b for achieving telecentric focusing of light on the micro-display surface. The micro-display panel 1005a can be a reflective micro-display (e.g., an LCoS, FLCoS, or DMD panel) or a transmissive micro-display (e.g., an LCD panel) or a self-luminous micro-display (e.g., an OLED panel). In the example of a reflective microdisplay panel, a beam splitter (not shown) needs to be installed after the objective lens 1005b to introduce an illumination path (not shown). A coupling lens 1010 is used between the image display unit 1005 and the waveguide prism 1000 to help correct optical aberrations and improve image quality. In this design example, light beams 1040a, 1040b, and 1040c from three different pixels on the microdisplay 1005a enter the waveguide prism 1000 through the refractive surface 1030, are reflected three times by the inner surface 1015 and the outer surface 1025, then exit through the refractive surface 1035 and finally reach the exit pupil 1050. In this example, among the three reflections, reflection R1 and reflection R2 meet the TIR condition, while reflection R3 on the outer surface 1025 does not meet the TIR condition. In order to increase the reflection efficiency of reflection R3, it is necessary to apply a translucent coating on the outer surface 1025. In order to maintain the TIR condition for reflection R1, a dielectric coating is preferably used. To ensure an 8-base bend eyeglass form factor, the inner surface 1015 is constrained to approximate the predefined 8-base bend. Inside the waveguide prism 1000, the light bundles 1040a, 1040b, and 1040c are refocused and form intermediate images 1055a, 1055b, and 1055c, respectively. The component definitions for this embodiment are shown in FIG17 , and the parameters are given in FIG31-33 (Tables 8-10).

在其它实施例中,图像显示单元可以朝着内表面、外表面或边缘表面设置,具体取决于透镜形状、反射次数和所需眼镜形状因素。在具体实施例中,对于8基弯的眼镜形状因素,图像显示装置通常朝着波导的边缘表面设置,而对于4基弯的眼镜形状因素,图像显示装置通常朝着内表面设置。In other embodiments, the image display unit can be positioned toward the inner surface, outer surface, or edge surface, depending on the lens shape, number of reflections, and desired eyeglass form factor. In a specific embodiment, for an 8-base bend eyeglass form factor, the image display device is typically positioned toward the edge surface of the waveguide, while for a 4-base bend eyeglass form factor, the image display device is typically positioned toward the inner surface.

虽然此处描述了所设计的8基弯和4基弯的眼镜,但是可以使用本发明的概念设计其它任何眼镜形状,例如工业标准眼镜形状因素,其中包括但不限于2基弯(2-base)、3基弯、4基弯、5基弯、6基弯、7基弯、8基弯和9基弯。Although 8-base and 4-base eyeglass designs are described herein, any other eyeglass shape may be designed using the concepts of the present invention, such as industry standard eyeglass form factors including, but not limited to, 2-base, 3-base, 4-base, 5-base, 6-base, 7-base, 8-base, and 9-base.

本发明的一个特征是延长的光路长度要求将表面设计为,使得光线束通过棱镜重新聚焦在中间点上。该对光的重新聚焦在通过棱镜的半路产生中间图像,因此,光线在出射折射表面上稍微偏离,这样做的优点是:当虚拟图像路径的视场在OST-HMD中增大时,波导的总厚度不会迅速增加。A feature of the present invention is that the extended optical path length requires that the surfaces be designed so that the light bundle is refocused at an intermediate point through the prism. This refocusing of the light creates an intermediate image halfway through the prism, so the light rays are slightly deflected at the exiting refractive surface. This has the advantage that the overall thickness of the waveguide does not increase rapidly as the field of view of the virtual image path increases in an OST-HMD.

根据本发明提供了七个实施例(图4-10)。在下文中,提供实施例5-7的数值数据(图8-10)。在实施例中采用三类自由形状表面,并且每种表面类型的数学方程式在图24(表1)中列出。图24(表1)中的方程式通过局部坐标系给出,其原点为表面顶点。表面的位置和方位或者在全局坐标系中直接定义,或者通过参考坐标系定义。如图1的详细说明中描述的那样,全局坐标位于出射光瞳的中心上,其中x轴指向纸张内部,y轴指向上方,z轴指向外部场景。According to the present invention, seven embodiments are provided (Figures 4-10). Hereinafter, numerical data (Figures 8-10) of embodiments 5-7 are provided. Three types of free-form surfaces are used in the embodiments, and the mathematical equations for each type of surface are listed in Figure 24 (Table 1). The equations in Figure 24 (Table 1) are given by a local coordinate system, with its origin being the surface vertex. The position and orientation of the surface are either directly defined in a global coordinate system or defined by a reference coordinate system. As described in the detailed description of Figure 1, the global coordinates are located at the center of the exit pupil, with the x-axis pointing to the inside of the paper, the y-axis pointing upward, and the z-axis pointing to the external scene.

实施例5的数值数据(在图8中描述)Numerical data of Example 5 (depicted in FIG8 )

图11示出实施例5(图8)的注释和元件定义。该实施例针对0.37”反射型显示器(例如,LCoS或FLCoS)设计,从而产生在Y方向上为26.5°,在X轴方向上为15°,以及在对角线方向上为30°的虚拟FOV。系统焦数(F/number)为2。图25(表2)列出波导棱镜800的表面参数,图26(表3)列出耦合透镜810和物镜805b的表面参数。所有光学表面的位置和方位以及每个光学元件的光学材料在图27(表4)中列出。FIG11 shows the annotations and component definitions for Example 5 ( FIG8 ). This embodiment is designed for a 0.37” reflective display (e.g., LCoS or FLCoS), resulting in a virtual FOV of 26.5° in the Y direction, 15° in the X direction, and 30° in the diagonal direction. The system focal number (F/number) is 2. FIG25 (Table 2) lists the surface parameters of the waveguide prism 800, and FIG26 (Table 3) lists the surface parameters of the coupling lens 810 and the objective lens 805b. The positions and orientations of all optical surfaces and the optical materials of each optical element are listed in FIG27 (Table 4).

针对红色(625nm)、绿色(525nm)和蓝色(465nm)波长的选定场的MTF曲线在图12-12b中示出。针对居中的3mm瞳孔以80周期(cycle)/mm的截止空间频率评估MTF性能,所述截止空间频率对应于6.25μm的等价像素大小。MTF curves for selected fields of red (625 nm), green (525 nm), and blue (465 nm) wavelengths are shown in Figures 12-12b. The MTF performance was evaluated for a centered 3 mm pupil with a cutoff spatial frequency of 80 cycles/mm, which corresponds to an equivalent pixel size of 6.25 μm.

实施例6的数值数据(在图8中描述)Numerical data of Example 6 (depicted in FIG8 )

图13示出实施例6(图9)的注释和元件定义。该实施例针对0.37”反射型显示器(例如,LCoS或FLCoS)设计,从而产生在Y方向上为26.5°,在X轴方向上为15°,以及在对角线方向上为30°的虚拟FOV。系统焦数为2。图28(表5)列出波导棱镜900的表面参数,图29(表6)列出耦合透镜910和物镜905b的表面参数。所有光学表面的位置和方位以及每个光学元件的光学材料在图30(表7)中列出。FIG13 shows the annotations and component definitions for Example 6 ( FIG9 ). This embodiment is designed for a 0.37” reflective display (e.g., LCoS or FLCoS), resulting in a virtual FOV of 26.5° in the Y direction, 15° in the X direction, and 30° in the diagonal direction. The system focal length is 2. FIG28 (Table 5) lists the surface parameters of the waveguide prism 900, and FIG29 (Table 6) lists the surface parameters of the coupling lens 910 and the objective lens 905b. The positions and orientations of all optical surfaces and the optical materials of each optical component are listed in FIG30 (Table 7).

针对红色(625nm)、绿色(525nm)和蓝色(465nm)波长的选定场的MTF曲线在图14-14b中示出。针对居中的3mm瞳孔以80周期/mm的截止空间频率评估MTF性能,所述截止空间频率对应于6.25μm的等价像素大小。MTF curves for selected fields of red (625 nm), green (525 nm), and blue (465 nm) wavelengths are shown in Figures 14-14b. The MTF performance was evaluated for a centered 3 mm pupil with a cutoff spatial frequency of 80 cycles/mm, which corresponds to an equivalent pixel size of 6.25 μm.

图15示出实施例6的透视路径的光线跟踪实例。总校正透视FOV在水平方向上为75°,在垂直方向上为70°。Figure 15 shows an example of ray tracing of the perspective path of Example 6. The total corrected perspective FOV is 75° horizontally and 70° vertically.

图16示出根据本发明的实施例6的具有4基弯外观的示例性OST-HMD设计。OST-HMD设备包含实施例6的一对光学部件,眼镜架1602和电子单元1604。每个光学部件包含自由波导棱镜1600、补偿透镜1660、耦合透镜1610、分光器1605c和物镜1605b,以及微型显示面板1605a。位于眼镜架1602的两个眼镜腿内的电子单元1604可用于集成必要的电子器件,其包括但不限于微型显示单元和显示照明单元的电路板、图像视频接收处理单元、音频输入输出单元、图形处理单元、定位单元、无线通信单元和计算处理单元等。该实施例的指定透视FOV 1690在水平维度上在太阳穴侧为45°,在鼻子侧为30°,以及在垂直维度上为±35°(未示出)。FIG16 illustrates an exemplary OST-HMD design with a four-base bend design according to Example 6 of the present invention. The OST-HMD device comprises a pair of optical components of Example 6: a spectacle frame 1602 and an electronics unit 1604. Each optical component comprises a free-waveguide prism 1600, a compensation lens 1660, a coupling lens 1610, a beam splitter 1605c, an objective lens 1605b, and a microdisplay panel 1605a. The electronics unit 1604, located within the temples of the spectacle frame 1602, can be used to integrate necessary electronic components, including but not limited to circuit boards for the microdisplay unit and display lighting unit, an image and video receiving and processing unit, an audio input and output unit, a graphics processing unit, a positioning unit, a wireless communication unit, and a computational processing unit. The specified see-through FOV 1690 of this embodiment is 45° on the temple side, 30° on the nose side in the horizontal dimension, and ±35° in the vertical dimension (not shown).

实施例7的数值数据(在图10中描述)Numerical data of Example 7 (depicted in FIG10 )

图17示出实施例7(图10)的注释和元件定义。该实施例针对0.37”反射型显示器(例如,LCoS或FLCoS)设计,从而产生在Y方向上为26.5°,在X轴方向上为15°,以及在对角线方向上为30°的虚拟FOV。系统焦数为2。图31(表8)列出波导棱镜1000的表面参数,图32(表9)列出耦合透镜1010和物镜1005b的表面参数。所有光学表面的位置和方位以及每个光学元件的光学材料在图33(表10)中列出。FIG17 shows the annotations and component definitions for Example 7 ( FIG10 ). This embodiment is designed for a 0.37” reflective display (e.g., LCoS or FLCoS), resulting in a virtual FOV of 26.5° in the Y direction, 15° in the X direction, and 30° in the diagonal direction. The system focal length is 2. FIG31 (Table 8) lists the surface parameters of the waveguide prism 1000, and FIG32 (Table 9) lists the surface parameters of the coupling lens 1010 and the objective lens 1005b. The positions and orientations of all optical surfaces and the optical materials of each optical component are listed in FIG33 (Table 10).

针对红色(625nm)、绿色(525nm)和蓝色(465nm)波长的选定场的MTF曲线在图18-18b中示出。针对居中的3mm瞳孔以80周期/mm的截止空间频率评估MTF性能,所述截止空间频率对应于6.25μm的等价像素大小。MTF curves for selected fields of red (625 nm), green (525 nm), and blue (465 nm) wavelengths are shown in Figures 18-18b. The MTF performance was evaluated for a centered 3 mm pupil with a cutoff spatial frequency of 80 cycles/mm, which corresponds to an equivalent pixel size of 6.25 μm.

图19示出实施例7(图10)的补偿透镜的注释和元件定义。FIG. 19 shows annotations and element definitions of the compensation lens of Example 7 ( FIG. 10 ).

图20示出实施例6的透视路径的光线跟踪实例。总校正透视FOV在水平方向上为80°,在垂直方向上为70°。Figure 20 shows an example of ray tracing of the perspective path of Example 6. The total corrected perspective FOV is 80° horizontally and 70° vertically.

透视路径的具有可变衍射极限的选定场的多色MTF曲线在图21-21b中示出。针对居中的3mm瞳孔以60周期/mm的截止空间频率评估MTF性能。Polychromatic MTF curves for selected fields with variable diffraction limits for the perspective path are shown in Figures 21-21b. The MTF performance was evaluated for a centered 3 mm pupil with a cutoff spatial frequency of 60 cycles/mm.

图22示出实施例7的未修整的3D模型。该模型包含波导棱镜、补偿透镜、耦合透镜和物镜。该模型还包括分光器空间从而为插入分光器提供空间,以引入反射型微型显示器的照明路径。该模型进一步包括微型显示器的防护玻璃。FIG22 shows an unmodified 3D model of Example 7. The model includes a waveguide prism, a compensation lens, a coupling lens, and an objective lens. The model also includes a beam splitter space to provide space for inserting a beam splitter to introduce the illumination path of the reflective microdisplay. The model further includes a cover glass for the microdisplay.

图23示出根据本发明的实施例7的具有8基弯外观的示例性OST-HMD设计。OST-HMD设备包含实施例7的一对光学部件,眼镜架2302和电子单元2304。每个光学部件包含自由波导棱镜2300、补偿透镜2360、耦合透镜2310、物镜2305b、以及微型显示面板2305a。位于眼镜架2302的两个眼镜腿内的电子单元2304可用于集成必要的电子器件,其包括但不限于微型显示单元和显示照明单元的电路板、图像视频接收处理单元、音频输入输出单元、图形处理单元、定位单元、无线通信单元和计算处理单元等。该实施例的指定透视FOV 2390在水平维度上在太阳穴侧为65°,在鼻子侧为35°,以及在垂直维度上为±35°(未示出)。FIG23 illustrates an exemplary OST-HMD design with an 8-base bend design according to Example 7 of the present invention. The OST-HMD device comprises a pair of optical components of Example 7: a spectacle frame 2302 and an electronics unit 2304. Each optical component comprises a free-waveguide prism 2300, a compensation lens 2360, a coupling lens 2310, an objective lens 2305b, and a microdisplay panel 2305a. The electronics unit 2304, located within the temples of the spectacle frame 2302, can be used to integrate necessary electronic components, including but not limited to circuit boards for the microdisplay unit and display lighting unit, an image and video receiving and processing unit, an audio input and output unit, a graphics processing unit, a positioning unit, a wireless communication unit, and a computational processing unit. The specified see-through FOV 2390 of this embodiment is 65° on the temple side, 35° on the nose side in the horizontal dimension, and ±35° in the vertical dimension (not shown).

通过上述描述,除了此处描述的内容之外,本发明的各种修改对于本领域的技术人员而言也是显而易见。这些修改也旨在位于所附权利要求的范围之内。本申请中引用的每个参考文献通过全部引用的方式并入于此。From the foregoing description, various modifications of the present invention, in addition to those described herein, will be apparent to those skilled in the art. Such modifications are also intended to be within the scope of the appended claims. Each reference cited in this application is hereby incorporated by reference in its entirety.

尽管已经示出和描述了本发明的优选实施例,但是本领域的技术人员很容易理解,可以对这些优选实施例做出不超出所附权利要求范围的修改。因此,本发明的范围仅由下面的权利要求限定。While the preferred embodiments of the present invention have been shown and described, it will be readily apparent to those skilled in the art that modifications may be made to the preferred embodiments without departing from the scope of the appended claims. Accordingly, the scope of the present invention is limited solely by the following claims.

下面的权利要求中列出的参考标号只是为了便于审查本专利申请,并且是实施例性的,并非旨在以任何方式将权利要求的范围限制为在附图中具有对应附图标记的特定特征。The reference numerals listed in the following claims are merely for facilitating the examination of this patent application and are exemplary and are not intended in any way to limit the scope of the claims to the specific features having the corresponding reference numerals in the drawings.

Claims (12)

1.一种自由形状波导棱镜,包括至少三个物理表面,每个物理表面包含设置于其上的多个反射和折射自由形状光学表面,其中由所述物理表面限定的内部空间由折射率(n)大于1的折射介质填充,其中所述多个反射和折射表面折叠和延长光路长度,以使所述波导能够适合眼镜形状,这使得图像显示单元能被置于头部的侧面,并实现相对于正前方在太阳穴方向最高达90°、相对于正前方在鼻子方向最高达60°、以及相对于正前方在上方和下方最高达60°的宽广透视视场,其中在适合眼镜形状因素和最大厚度的限制条件下设计其内表面和外表面,以使所述多个自由形状反射和折射光学表面在不产生图像失真的情况下将光导向用户的瞳孔,所述物理和光学表面包括:1. A free-form waveguide prism comprising at least three physical surfaces, each physical surface including a plurality of reflective and refractive free-form optical surfaces disposed thereon, wherein an internal space defined by said physical surfaces is filled with a refractive medium having a refractive index (n) greater than 1, wherein said plurality of reflective and refractive surfaces fold and extend the optical path length to allow the waveguide to conform to the shape of eyeglasses, enabling an image display unit to be positioned to the side of the head and achieving a wide field of view of up to 90° relative to the front in the temple direction, up to 60° relative to the front in the nose direction, and up to 60° relative to the front above and below, wherein its inner and outer surfaces are designed under constraints of eyeglass shape factors and maximum thickness to direct light to the user's pupil without causing image distortion, said physical and optical surfaces comprising: a.朝着所述用户瞳孔设置的物理内表面(115),其中所述物理内表面被限制为接近眼镜形状因素的预指定曲面,其中所述内表面被配置为以最小失真度将图像反射到所述用户的眼球;a. A physical inner surface (115) positioned toward the user's pupil, wherein the physical inner surface is constrained to be a pre-specified surface approximating the shape factor of the eyeglasses, wherein the inner surface is configured to reflect an image to the user's eyeball with minimal distortion; b.朝着外部场景设置的物理外表面(125),其中所述物理外表面被配置为以最小失真度将图像反射到所述用户的瞳孔,其中所述物理外表面在所有点上位于所述内表面的最大距离内,其中所述物理外表面包含至少一个折射表面以允许来自所述外部场景的光穿过所述波导并到达所述用户的眼球;b. A physical outer surface (125) facing an external scene, wherein the physical outer surface is configured to reflect an image to the user's pupil with minimal distortion, wherein the physical outer surface is located within the maximum distance of the inner surface at all points, wherein the physical outer surface includes at least one refractive surface to allow light from the external scene to pass through the waveguide and reach the user's eyeball. c.物理边缘表面(120),其包含使来自图像显示单元的光进入所述波导的折射表面;c. Physical edge surface (120) comprising a refractive surface that allows light from the image display unit to enter the waveguide; d.被设置于所述物理表面之一上的折射入射表面(130),其允许来自图像显示单元的光进入所述波导;d. A refractive incident surface (130) disposed on one of the physical surfaces, which allows light from the image display unit to enter the waveguide; e.被设置于所述物理内表面上、接近所述用户的瞳孔且允许光离开所述波导的折射出射表面(135);以及e. A refractive exit surface (135) disposed on the physical inner surface, close to the user's pupil, and allowing light to exit the waveguide; and f.被设置于所述物理内表面和外表面上的为三个或更多个的多个自由形状反射表面,其中通过满足全内反射条件,或者通过在所述波导的所述表面上施加半透明的部分反射涂层来产生每次反射;其中这些反射被优化以最小失真度沿着所述波导的内部引导所述光,其中多次反射延长所述光路长度,以使所述波导实现宽广透视视场、以及适合与人的头部相称的尺寸;因此,来自图像显示单元(105)的光(140)通过所述折射入射表面(130)进入所述波导;f. Three or more free-form reflective surfaces are disposed on the physical inner and outer surfaces, wherein each reflection is generated by satisfying a total internal reflection condition or by applying a semi-transparent partially reflective coating to the surface of the waveguide; wherein these reflections are optimized to guide the light along the interior of the waveguide with minimal distortion, wherein multiple reflections extend the optical path length to enable the waveguide to achieve a wide field of view and a size suitable for human head size; thus, light (140) from the image display unit (105) enters the waveguide through the refractive incident surface (130); g.第一参考表面(230),其接近普通人头部的形状,其中所述内表面被限制为位于所述第一参考表面之外,通过Yref1、Zref1以及YHIPD定义所述第一参考表面,其中Yref1是所述头部的中线与所述第一参考表面的中心之间在Y方向上的距离,Zref1是所述瞳孔与所述第一参考表面的中心之间在Z方向上的距离,以及YHIPD是从所述瞳孔到所述头部的中点在Y方向上的距离;g. A first reference surface (230) that approximates the shape of a normal person's head, wherein the inner surface is constrained to be located outside the first reference surface, the first reference surface being defined by Y ref1 , Z ref1 and Y HIPD , wherein Y ref1 is the distance in the Y direction between the midline of the head and the center of the first reference surface, Z ref1 is the distance in the Z direction between the pupil and the center of the first reference surface, and Y HIPD is the distance in the Y direction from the pupil to the midpoint of the head; h.第二参考表面(240),其限制所述波导从用户的脸部向外投射的程度,其中所述内表面被限制为位于所述第二参考表面之内;h. A second reference surface (240) that limits the extent to which the waveguide projects outward from the user's face, wherein the inner surface is constrained to be located within the second reference surface; i.所述物理内表面(115)与物理外表面(125)之间的最大距离;i. The maximum distance between the physical inner surface (115) and the physical outer surface (125); j.所述波导在水平维度上从瞳孔到太阳穴的宽度(244)的上下限,以使所述波导到达所述头部的侧面并且足够宽以产生通过其上边界(290a)设定的指定透视视场;j. The upper and lower limits of the width (244) of the waveguide in the horizontal dimension from the pupil to the temple, so that the waveguide reaches the side of the head and is wide enough to produce a specified perspective field of view set through its upper boundary (290a). k.所述波导在所述水平维度上从瞳孔到鼻子方向的宽度(246)的上下限,以使所述波导足够宽以产生通过其下边界(290b)设定的指定透视视场,但是不与鼻梁抵触;k. The upper and lower limits of the width (246) of the waveguide in the horizontal dimension from the pupil to the nose, so that the waveguide is wide enough to produce a specified perspective field of view set through its lower boundary (290b), but without interfering with the bridge of the nose; l.在垂直维度上所述波导从瞳孔开始的高度的下限,以使所述波导足够宽以产生通过其上边界(290c)或下边界(290d)设定的指定透视视场;l. A lower limit of the height of the waveguide in the vertical dimension, starting from the pupil, so that the waveguide is wide enough to produce a specified perspective field of view defined by its upper boundary (290c) or lower boundary (290d). m.表面分段(215a),其中所述内表面被限制为适合眼镜形状因素,其中所述表面分段的宽度以投射在所述内表面上的所述指定透视视场在水平方向上的上边界(290a)和下边界(290b)为界,并且所述表面分段的高度以投射在所述内表面上的所述指定透视视场在垂直方向上的上边界(290c)和下边界(290d)为界,其中所述表面分段的局部曲率半径以取决于眼镜形状因素的范围为界;m. Surface segment (215a), wherein the inner surface is constrained to fit the eyeglass shape factor, wherein the width of the surface segment is bounded by the upper boundary (290a) and lower boundary (290b) of the specified perspective field of view projected on the inner surface in the horizontal direction, and the height of the surface segment is bounded by the upper boundary (290c) and lower boundary (290d) of the specified perspective field of view projected on the inner surface in the vertical direction, wherein the local radius of curvature of the surface segment is bounded by a range depending on the eyeglass shape factor; 然后,光(140)沿着所述波导循路径(145)而行,该路径包括在从所述折射入射表面(130)到所述折射出射表面(135)的所述多个反射表面上的所述多次反射,其中通过满足全内反射条件,或者通过在所述表面上施加的半透明涂层来产生每次反射;Then, the light (140) travels along the waveguide path (145), which includes multiple reflections on the plurality of reflective surfaces from the refracting incident surface (130) to the refracting exit surface (135), wherein each reflection is generated by satisfying the total internal reflection condition or by a translucent coating applied to the surface. 然后,光(140)穿过所述折射出射表面(135),超出该表面,所述用户利用所述瞳孔(150)观察所述图像;Then, light (140) passes through the refracting exit surface (135) and extends beyond the surface, allowing the user to observe the image through the pupil (150); 然后,来自所述外部场景的光(198)在到达所述瞳孔(150)之前,通过所述波导的所述物理外表面(125)以及所述波导的所述物理内表面(115)进行折射,其中通过所述波导的所述透视视场在太阳穴方向上最高达90°,在鼻子方向上最高达60°,在正前方的上方和下方最高达60°,Then, the light (198) from the external scene is refracted by the physical outer surface (125) and the physical inner surface (115) of the waveguide before reaching the pupil (150), wherein the perspective field of view through the waveguide reaches a maximum of 90° in the direction of the temple, a maximum of 60° in the direction of the nose, and a maximum of 60° above and below directly in front. 因此,所述波导的内表面和外表面的形状在这些限制内被优化以最小化从所述波导的入射点到所述波导的出射点的光学失真。Therefore, the shapes of the inner and outer surfaces of the waveguide are optimized within these constraints to minimize optical distortion from the incident point to the exit point of the waveguide. 2.根据权利要求1的自由形状波导棱镜,其中Yref1处于0到40mm之间。2. The free-form waveguide prism according to claim 1, wherein Y ref1 is between 0 and 40 mm. 3.根据权利要求1的自由形状波导棱镜,其中Zref1处于30到90mm之间。3. The free-form waveguide prism according to claim 1, wherein Z ref1 is between 30 and 90 mm. 4.根据权利要求1的自由形状波导棱镜,其中YHIPD处于20到40mm之间。4. The freeform waveguide prism of claim 1, wherein the Y HIPD is between 20 and 40 mm. 5.根据权利要求1的自由形状波导棱镜,其中所述第一参考表面的曲率半径在水平维度上处于40到100mm之间。5. The freeform waveguide prism of claim 1, wherein the radius of curvature of the first reference surface is between 40 and 100 mm in the horizontal dimension. 6.根据权利要求1的自由形状波导棱镜,其中通过参考尺寸Zref2定义所述第二参考表面,其中Zref2是所述瞳孔与所述第二参考表面之间的距离。6. The free-form waveguide prism of claim 1, wherein the second reference surface is defined by a reference dimension Z ref2 , wherein Z ref2 is the distance between the pupil and the second reference surface. 7.根据权利要求6的自由形状波导棱镜,其中Zref2小于40mm。7. The free-form waveguide prism according to claim 6, wherein Z ref2 is less than 40 mm. 8.根据权利要求1的自由形状波导棱镜,其中所述物理内表面与所述物理外表面之间的最大距离小于40mm。8. The free-form waveguide prism of claim 1, wherein the maximum distance between the physical inner surface and the physical outer surface is less than 40 mm. 9.根据权利要求1的自由形状波导棱镜,其中所述棱镜从所述瞳孔朝着太阳穴方向上的宽度(244)的上限为80mm。9. The freeform waveguide prism of claim 1, wherein the upper limit of the width (244) of the prism in the direction from the pupil toward the temple is 80 mm. 10.根据权利要求1的自由形状波导棱镜,其中所述棱镜从所述瞳孔朝着太阳穴方向上的宽度(244)的下限为15mm。10. The free-form waveguide prism of claim 1, wherein the lower limit of the width (244) of the prism in the direction from the pupil toward the temple is 15 mm. 11.根据权利要求1的自由形状波导棱镜,其中所述棱镜从瞳孔朝着鼻子方向上的宽度(246)的上限为40mm。11. The freeform waveguide prism of claim 1, wherein the upper limit of the width (246) of the prism from the pupil toward the nose is 40 mm. 12.根据权利要求1的自由形状波导棱镜,其中所述棱镜从所述瞳孔朝着鼻子方向上的宽度(246)的下限为8mm。12. The free-form waveguide prism of claim 1, wherein the lower limit of the width (246) of the prism from the pupil toward the nose is 8 mm.
HK17111790.0A 2010-12-24 2017-11-14 An ergonomic head mounted display device and optical system HK1237884B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US61/427,162 2010-12-24

Publications (2)

Publication Number Publication Date
HK1237884A1 HK1237884A1 (en) 2018-04-20
HK1237884B true HK1237884B (en) 2021-01-15

Family

ID=

Similar Documents

Publication Publication Date Title
JP7377773B2 (en) Ergonomic head-mounted display devices and optical systems
US9740006B2 (en) Ergonomic head mounted display device and optical system
TWI576610B (en) Compact architecture for near-to-eye display system
Zhuang et al. A compact and lightweight off-axis lightguide prism in near to eye display
HK1237884B (en) An ergonomic head mounted display device and optical system
HK1237884A1 (en) An ergonomic head mounted display device and optical system
TWI866709B (en) Near-eye display device