HK1220512B - System and method for controlling an equipment related to image capture - Google Patents

System and method for controlling an equipment related to image capture Download PDF

Info

Publication number
HK1220512B
HK1220512B HK16108525.9A HK16108525A HK1220512B HK 1220512 B HK1220512 B HK 1220512B HK 16108525 A HK16108525 A HK 16108525A HK 1220512 B HK1220512 B HK 1220512B
Authority
HK
Hong Kong
Prior art keywords
node
data
camera
sensing device
determining
Prior art date
Application number
HK16108525.9A
Other languages
Chinese (zh)
Other versions
HK1220512A1 (en
Inventor
Antony FISHER
Michael Macdonald
Julian Taylor
Jeffrey Levy
Original Assignee
安德拉运动技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安德拉运动技术股份有限公司 filed Critical 安德拉运动技术股份有限公司
Priority claimed from PCT/CA2014/050346 external-priority patent/WO2014161092A1/en
Publication of HK1220512A1 publication Critical patent/HK1220512A1/en
Publication of HK1220512B publication Critical patent/HK1220512B/en

Links

Description

用于控制与图像捕捉有关的设备的系统和方法System and method for controlling devices related to image capture

技术领域Technical Field

本发明涉及在摄像机使用环境中的运动跟踪的领域。更具体地,本发明涉及用于控制摄像机或有关的设备的布景的系统和方法。The present invention relates to the field of motion tracking in camera environments. More particularly, the present invention relates to systems and methods for controlling the scenery of cameras or related equipment.

背景技术Background Art

在摄像机环境(例如电影、电视、实况转播的娱乐节目、体育赛事)中,存在操作摄像机、照明和声音的功能的多种设备。这些功能的控制和相互关系确定了观众感受到的最终图像和声音的质量。这样的一个功能是摄像机对焦。“对焦”或“调焦(rack focusing)”是指对应于移动对象相距焦平面的物理距离而改变镜头的焦距设置的动作。例如,如果一演员在一个镜头(shot)中从相距焦平面8米移动到相距焦平面3米,调焦者(focus puller)将在拍摄中精确地对应于演员的变化的位置而改变在镜头上的距离设置。此外,如由构图的特定美学要求指示的,调焦者可以在所述帧中将焦距从一个对象移到另一个。In a camera environment (e.g., film, television, live entertainment, sporting events), there are a variety of devices that operate the functions of the camera, lighting, and sound. The control and interrelationship of these functions determine the quality of the final image and sound perceived by the audience. One such function is camera focus. "Focus" or "rack focusing" refers to the act of changing the focal length setting of a lens in response to the physical distance of a moving object from the focal plane. For example, if an actor moves from 8 meters to 3 meters from the focal plane in one shot, the focus puller will change the distance setting on the lens in the shot to precisely correspond to the actor's changed position. In addition, the focus puller may move the focus from one object to another within the frame as dictated by the specific aesthetic requirements of the composition.

调整所述焦距的该过程通过“第一助理摄像机(First Assistant Camera)”(第一AC)或“调焦者(Focus Puller)”手动地进行。This process of adjusting the focus is performed manually by the "First Assistant Camera" (first AC) or "Focus Puller".

取决于给定的镜头的参数,通常有很小的误差的空间。如此,调焦者在电影制作的领域中的作用极其地重要;在大多数情况中,由于无法在后期制作中修复这种误差,“软的”图像通常被认为是不能用的。人们还必须考虑到演员可能不能在其后的拍摄中复制他的或她的表演,因此调焦者被期望来完美地进行每个拍摄。由于这些因素,一些制作人员认为调焦者在布景上具有最艰难的工作。Depending on the parameters of a given lens, there's often very little room for error. As such, the role of the focus puller in filmmaking is extremely important; in most cases, since such errors can't be corrected in post-production, a "soft" image is often considered unusable. One must also consider that an actor may not be able to replicate their performance in subsequent takes, so the focus puller is expected to perform perfectly on each take. Due to these factors, some production crews consider the focus puller to have the toughest job on set.

尽管调焦者可能非常熟练,当前处理由于该任务的复杂性和困难性而仍减慢了制作。Even though the focus puller may be very skilled, current processes still slow down production due to the complexity and difficulty of the task.

当前电影制作从舞台场面彩排(blocking rehearsal)开始,其中构建各种演员的位置。在彩排期间,摄像机助理在地板上在演员在运动中暂停的所有点处放置带状标记。然后演员们离开布景去做头发和化妆,并且替身演员为了照明、取景、和焦距标记设置的目的进入以在这些各种位置处替代他们。Current film productions begin with blocking rehearsals, where the positions of the various actors are established. During rehearsals, camera assistants place tape markers on the floor at all the points where the actors pause in motion. The actors then leave the set to get their hair and makeup done, and stand-ins come in to replace them at these various positions for lighting, framing, and focus mark setting purposes.

一旦由摄影导演和摄像机摄影师建立了摄像机位置,第一AC开始测量演员们的标记和摄像机的焦平面之间的各种距离。以镜头的焦距筒上的一系列油彩笔/绘图笔标记、和/或以跟焦(follow focus)装置上的标记盘来记录这些距离。使用替身,通过取景器和/或机载监视器来检查这些标记以确保准确性。如果标记被重新定位以便于提供期望的特定构图,第一AC必须相应地重新测量/重新布景其标记。此外,第一AC可以在地板上放下特定距离标记——在拍摄期间随演员在他们的标记之间移动时将参考这些特定距离标记——以便于帮助准确地将焦距调整到正确的中间的距离。Once the camera positions are established by the Director of Photography and the Camera Operator, the First AC begins measuring the various distances between the actors' marks and the focal plane of the camera. These distances are recorded with a series of crayon/drawing pen marks on the lens's focal barrel, and/or with a marking disc on the follow focus device. Using a stand-in, these marks are checked through the viewfinder and/or on the onboard monitor to ensure accuracy. If the marks are repositioned in order to provide a specific desired composition, the First AC must remeasure/reset their marks accordingly. In addition, the First AC can place specific distance markers on the floor - which will be referenced as the actors move between their marks during filming - to help accurately adjust the focus to the correct intermediate distance.

当演员们回到布景时,通常存在对摄像机的彩排,其中使得调焦者和摄像师(operator)将实践该镜头并且确保所有事物都已被适当地设好了。在拍摄期间,调焦者基于演员们或对象的对话、移动、摄像机的运动而修改焦距,并且补偿演员们错过他们的标记的偏移或者任何无法预料的移动。在障碍物阻止了调焦者看见所有他的标记的情况下,他可以请求第二AC在该拍摄期间通过双通道无线电为他召集(call)标记。在一些情况下、诸如在长镜头、宽光圈、非常近的距离或者三者的任意组合的情况下,即使对象移动几毫米也可能需要立即并且非常精确的对焦校正。When the actors return to set, there is usually a rehearsal for the camera where the focus puller and camera operator will practice the shot and make sure everything is set up properly. During the shoot, the focus puller modifies the focus based on the actors' or subject's dialogue, movement, camera motion, and compensates for drift or any unforeseen movement of the actors missing their marks. In the event that an obstruction prevents the focus puller from seeing all of his marks, he can request a second AC to call out marks for him via a two-channel radio during the shoot. In some cases, such as with long lenses, wide apertures, very close distances, or any combination of the three, even a few millimeters of subject movement may require immediate and very precise focus correction.

在拍摄之后,如果调焦者感觉他犯了错误——可能是时间误差、遗漏标记或可能使得所述拍摄的一些部分呈现出“软的”的任何其它问题,他或她将通常报告这个问题给摄像师(最有可能在取景器中注意到该错误的人)或摄影导演,并且如果还没有计划再次拍摄,则可以要求再次拍摄。After a shot, if the focus puller feels that he or she has made a mistake - perhaps a timing error, a missed mark, or any other problem that may make parts of the shot appear "soft" - he or she will usually report the problem to the camera operator (who is most likely to notice the error in the viewfinder) or the director of photography, and may request a retake if one is not already planned.

除了敏锐的视力、反应和直觉以外,调焦者的主要工具是布的或玻璃纤维卷尺、钢卷尺测量、激光测距机以及在某些情况下的提供实时距离读数的摄像机上超声波测距仪,该测距仪被安装在遮光箱或摄像机主体的侧面上。在调焦者诸如在摄影机稳定器(steadicam)或升降机镜头(crane shot)上而不能接触摄像机的安排中,他或她将使用远程的跟焦(follow focus)系统,尽管一些调焦者更喜欢在所有时间都使用远程的系统。在上述任何情况中,仍需要调焦者在拍摄的过程期间手动地调节焦距。Besides keen eyesight, reflexes, and intuition, the focus puller's primary tools are a cloth or fiberglass measuring tape, a steel measuring tape, a laser rangefinder, and in some cases an on-camera ultrasonic rangefinder that provides real-time distance readings and is mounted on the matte box or the side of the camera body. In arrangements where the focus puller cannot access the camera, such as on a steadicam or crane shot, he or she will use a remote follow focus system, although some focus pullers prefer to use a remote system at all times. In any of these situations, the focus puller is still required to manually adjust focus during the course of the shot.

当前方法是耗时的、困难的并且非常易于犯错的。由于不可用的拍摄、缓慢的布景时间和对非常有经验且高薪的调焦者的需求,这在电影的动画制作中是长久以来的技术障碍并且对导演施加了巨大的创新限制并且增加了制作成本。The current method is time-consuming, difficult, and very error-prone. This has long been a technical hurdle in feature film animation, placing significant creative constraints on directors and increasing production costs due to unavailable shoots, slow set times, and the need for very experienced and highly paid focus pullers.

申请人已知的是取决于激光、声纳和面部/物体识别跟踪的半自动的对焦系统。Known to the applicant are semi-automatic focus systems that rely on laser, sonar, and facial/object recognition tracking.

这些方法本质上是相同的方法的变型,因为它们每个都感测图像的“二维平面”,并且捕捉在该平面上的任何给定的区域或像素的深度或距离信息。对于大多数高级的系统,系统的摄影师则可以选择二维图像上的点,在此时,对于该点的距离数据将然后被输入到实时控制焦距调节的电动机。These methods are essentially variations of the same approach, as they each sense a "two-dimensional plane" of an image and capture depth or distance information for any given area or pixel on that plane. With the most advanced systems, the system's photographer can then select a point on the two-dimensional image, at which point the distance data for that point is then input into a motor that controls focus adjustment in real time.

这些已知的方法表现出一些限制。更具体地,这些系统全都是“视线”(line ofsight)。它们不能对焦到在“二维图像平面”中当前不可见的物体。激光系统需要额外的摄影师以将激光对准期望的对象。如果物体快速转弯、离开取景框或者消失在另一对象或物体后面,则面部识别系统将丢失对该物体的跟踪。These known methods exhibit several limitations. More specifically, these systems are all "line of sight." They cannot focus on objects that are not currently visible in the "two-dimensional image plane." Laser systems require an additional camera operator to aim the laser at the desired object. If an object turns quickly, leaves the frame, or disappears behind another object or objects, the facial recognition system will lose track of it.

可能更重要地,这些系统中没有一个真正能够实现最具挑战性的对焦任务所需要的极好的准确度、即当对象快速移动时具有宽光圈的长焦长度,并且在所述对象上的焦点非常特定、例如眼睛,因为对于LIDaR(光探测和测距)和激光系统两者,人类摄影师必须通过移动屏幕上的光标或者通过瞄准实际的激光来实时跟踪眼睛。还应注意的是,可能所不期望的是将激光投射到人的眼睛中。尽管面部识别系统理论上可以跟踪眼睛,但存在提供更高水平的精确性和准确度的需求。Perhaps more importantly, none of these systems can truly achieve the superb accuracy required for the most challenging focusing tasks: long focal lengths with wide apertures when the subject is moving rapidly, and the focus on a very specific subject, such as the eye, is very specific, because for both LIDaR (Light Detection and Ranging) and laser systems, the human photographer must track the eye in real time, either by moving an on-screen cursor or by aiming an actual laser. It should also be noted that projecting a laser into a person's eye may not be desirable. While facial recognition systems can theoretically track the eye, there is a need to provide a higher level of precision and accuracy.

申请人已知的是美国专利号5,930,740(MATHISEN)、8,448,056(PULSIPHER)和8,562,433(LARSEN);具有公开号2008/0312866(SHIMOMURA)、2010/0194879(PASVEER)、2013/0188067(KOIVUKANGAS)、2013/0222565(GUERIN)、2013/0229528(TAYLOR)和2013/0324254(HUANG)的美国专利申请,以及具有公开号JP 2008/011212(KONDO)的日本专利申请。The applicant is known to U.S. Patent Nos. 5,930,740 (MATHISEN), 8,448,056 (PULSIPHER) and 8,562,433 (LARSEN); U.S. patent applications having publication Nos. 2008/0312866 (SHIMOMURA), 2010/0194879 (PASVEER), 2013/0188067 (KOIVUKANGAS), 2013/0222565 (GUERIN), 2013/0229528 (TAYLOR) and 2013/0324254 (HUANG); and Japanese patent application having publication No. JP 2008/011212 (KONDO).

因此,有鉴于前述,存在对改善的系统的需求,凭借其设计和组件将能够克服一些以上讨论的现有技术的问题。Therefore, in view of the foregoing, a need exists for an improved system, which by virtue of its design and components will be able to overcome some of the above-discussed problems of the prior art.

发明内容Summary of the Invention

本发明的目的是提供一种系统,凭借其设计和组件,满足一些上述需要并且从而成为对现有技术已知的其它有关的系统和/或方法的改善。It is an object of the present invention to provide a system which, by virtue of its design and components, satisfies some of the above needs and thereby represents an improvement over other related systems and/or methods known in the prior art.

本发明的目的是提供一种用于控制与图像捕捉有关的设备的设置的系统和方法。这样的设备可以包括摄像机,并且设置可以是例如焦距设置、变焦设置、光圈设置、两眼间镜头角设置、和/或控制摇摄(pan)设置、俯仰(tilt)设置、摄像机的转动设置、和/或摄像机的位置设置、和/或照明设备设置和/或声音设备设置和/或类似者。The present invention provides a system and method for controlling settings of a device related to image capture. Such a device may include a camera, and the settings may be, for example, focus settings, zoom settings, aperture settings, interocular lens angle settings, and/or controlling pan settings, tilt settings, camera rotation settings, and/or camera position settings, and/or lighting device settings and/or sound device settings and/or the like.

根据本申请的方面,提供一种用于控制与图像捕捉有关的设备的设置的方法,包括:According to aspects of the present application, there is provided a method for controlling settings of a device related to image capture, comprising:

a)捕捉在感测装置处的位置数据和朝向数据;a) capturing position data and orientation data at a sensing device;

b)通过处理器从已经捕捉的位置数据和朝向数据确定将被所述设备处理的感兴趣的区域的位置信息;以及b) determining, by a processor, position information of an area of interest to be processed by the device from the already captured position data and orientation data; and

c)经由所述处理器的输出端口输出指向所述设备的控制信号,以便于基于所述感兴趣的区域的位置信息实时控制所述设备的设置。c) outputting a control signal directed to the device via an output port of the processor, so as to control the settings of the device in real time based on the position information of the area of interest.

“设备”可以包括图像捕捉设备,诸如捕捉物体的图像(照片或视频图像)的摄像机和/或其可以包括与图像捕捉设备协作的设备——诸如照明设备、声音捕捉设备和/或类似者。A "device" may include an image capture device, such as a camera that captures images (photographs or video images) of an object and/or it may include devices that cooperate with the image capture device - such as lighting devices, sound capture devices and/or the like.

根据本申请的另一方面,提供一种用于控制与图像捕捉有关的设备的设置的系统,包括:According to another aspect of the present application, there is provided a system for controlling settings of a device related to image capture, comprising:

-感测装置,被配置为捕捉位置数据和朝向数据;- a sensing device configured to capture position data and orientation data;

-处理器,与所述感测装置通信,所述处理器被配置为从所述位置数据和朝向数据确定将被所述设备处理的感兴趣的区域的位置信息;以及a processor in communication with the sensing means, the processor being configured to determine, from the position data and orientation data, position information of an area of interest to be processed by the device; and

-输出端口,集成在处理器中,被配置为输出指向所述设备的控制信号,以便于基于所述感兴趣的区域的位置信息实时控制所述设备的设置。- an output port, integrated in the processor, configured to output a control signal directed to the device, so as to control the settings of the device in real time based on the position information of the area of interest.

根据本申请的另一方面,提供一种非瞬时性计算机可读的贮存器,具有贮存在其上的由计算机执行的数据和指令,所述数据和指令包括:According to another aspect of the present application, a non-transitory computer-readable storage device is provided, having stored thereon data and instructions executed by a computer, the data and instructions comprising:

-代码模块,用于接收感测装置的位置数据和朝向数据;- a code module for receiving position data and orientation data of a sensing device;

-代码模块,用于从所述位置和朝向数据确定将被所述设备处理的感兴趣的区域的位置信息;以及- a code module for determining, from the position and orientation data, position information of a region of interest to be processed by the device; and

-代码模块,用于输出指向所述设备的控制信号,以便于基于所述感兴趣的区域的位置信息实时控制所述设备的设置。- A code module for outputting a control signal directed to the device so as to control the settings of the device in real time based on the position information of the area of interest.

根据本申请的另一方面,提供一种用于控制与图像捕捉有关的设备的设置的方法,包括:According to another aspect of the present application, there is provided a method for controlling settings of a device related to image capture, comprising:

a)在存储器中贮存一个或多个标识符,每个标识符与将被所述设备处理的预定的感兴趣的区域相关联,并且贮存相应的位置信息;a) storing in a memory one or more identifiers, each identifier being associated with a predetermined area of interest to be processed by the device, and storing corresponding location information;

b)在处理器处接收对所述一个或多个标识符的选择;以及b) receiving, at a processor, a selection of the one or more identifiers; and

c)经由所述处理器的输出端口输出指向所述设备的控制信号,以便于基于所述一个或多个预定的感兴趣的区域的所选择的一个的位置信息实时控制所述设备的设置。c) outputting a control signal directed to the device via an output port of the processor to facilitate real-time control of settings of the device based on the position information of the selected one of the one or more predetermined regions of interest.

根据本申请的另一方面,提供一种用于控制与图像捕捉有关的设备的设置的系统,包括:According to another aspect of the present application, there is provided a system for controlling settings of a device related to image capture, comprising:

-存储器,被配置为贮存将被所述设备处理的预定的感兴趣的区域的一个或多个标识符和相应的位置信息;- a memory configured to store one or more identifiers and corresponding position information of predetermined regions of interest to be processed by the device;

-处理器,与所述存储器通信并且被配置为接收所述一个或多个标识符的选择;以及- a processor in communication with the memory and configured to receive a selection of the one or more identifiers; and

-输出端口,与所述处理器集成,被配置为输出指向所述设备的控制信号,以便于基于所述一个或多个预定的感兴趣的区域的所选择的一个的位置信息实时控制所述设备的设置。an output port, integrated with the processor, configured to output a control signal directed to the device, so as to control settings of the device in real time based on position information of a selected one of the one or more predetermined regions of interest.

根据实施例,上述系统的组件被提供在中央装置(例如计算机)中,系统还包含一个或多个用户装置(例如计算机,其可以是具有触摸屏的平板计算机)以用于接收用户命令,所述用户装置与中央装置通信。更具体地,所述用户装置可以被配置为经由图形用户界面将一个或多个预定的感兴趣的区域呈现给用户,以及从用户接收所述一个或多个感兴趣的区域的选择,并且发送对所述一个或多个感兴趣的区域的引用(reference)到中央装置。According to an embodiment, the components of the above-described system are provided in a central device (e.g., a computer), and the system further includes one or more user devices (e.g., computers, which may be tablet computers with touch screens) for receiving user commands, wherein the user devices communicate with the central device. More specifically, the user devices may be configured to present one or more predetermined regions of interest to a user via a graphical user interface, receive a selection of the one or more regions of interest from the user, and transmit a reference to the one or more regions of interest to the central device.

根据本申请的另一方面,提供一种非瞬时性计算机可读的贮存器,在其上贮存将被所述设备处理的预定的感兴趣的区域的一个或多个标识符以及相应的位置信息,所述计算机可读的贮存器还包含由处理器执行的数据和指令,所述数据和指令包括:According to another aspect of the present application, a non-transitory computer-readable storage is provided, on which one or more identifiers of predetermined regions of interest to be processed by the device and corresponding location information are stored, the computer-readable storage further comprising data and instructions executed by a processor, the data and instructions comprising:

-代码模块,用于接收所述一个或多个标识符的选择;以及- a code module for receiving a selection of said one or more identifiers; and

-代码模块,用于输出指向所述设备的控制信号,以便于基于所述一个或多个预定的感兴趣的区域的所选择的一个的位置信息实时控制所述设备的设置。- a code module for outputting a control signal directed to the device so as to control settings of the device in real time based on the position information of the selected one of the one or more predetermined regions of interest.

根据本申请的另一方面,提供一种用于控制与图像捕捉有关的设备的设置的方法,包括:According to another aspect of the present application, there is provided a method for controlling settings of a device related to image capture, comprising:

a)通过可见性独立的感测装置捕捉在感测装置处的位置数据;a) capturing position data at a sensing device by a visibility-independent sensing device;

b)通过处理器从所述位置数据确定将被所述设备处理的感兴趣的区域的位置信息;以及b) determining, by a processor, from the position data, position information of an area of interest to be processed by the device; and

c)通过所述处理器的输出端口输出指向所述设备的控制信号,以便于基于所述感兴趣的区域的位置信息实时控制所述设备的设置。c) outputting a control signal directed to the device via an output port of the processor, so as to control the settings of the device in real time based on the position information of the area of interest.

根据本申请的另一方面,提供一种用于控制与图像捕捉有关的设备的设置的系统,包括:According to another aspect of the present application, there is provided a system for controlling settings of a device related to image capture, comprising:

-可见性独立的感测装置,被配置为捕捉位置数据;- a visibility-independent sensing device configured to capture position data;

-处理器,与所述感测装置通信,所述处理器被配置为基于所述位置和朝向数据确定将被所述设备处理的感兴趣的区域的位置信息;以及a processor in communication with the sensing means, the processor being configured to determine position information of a region of interest to be processed by the device based on the position and orientation data; and

-输出端口,与所述处理器集成,被配置为输出指向所述设备的控制信号,以便于基于所述感兴趣的区域的位置信息实时控制所述设备的设置。an output port, integrated with the processor, configured to output a control signal directed to the device, so as to control settings of the device in real time based on the position information of the area of interest.

根据实施例,所述系统还包括控制器,所述控制器与所述输出端口通信并且被配置为用所述控制信号控制所述设备的设置。According to an embodiment, the system further comprises a controller in communication with the output port and configured to control a setting of the device using the control signal.

根据实施例,所述设置可以包括:摄像机的焦距设置、该摄像机的变焦设置、该摄像机的光圈设置、该摄像机的两眼间镜头角设置、该摄像机的摇摄设置、该摄像机的俯仰设置、该摄像机的转动设置、该摄像机的位置设置、照明设备控制设置和/或声音设备设置。According to an embodiment, the settings may include: a focal length setting of the camera, a zoom setting of the camera, an aperture setting of the camera, an interocular lens angle setting of the camera, a pan setting of the camera, a pitch setting of the camera, a rotation setting of the camera, a position setting of the camera, a lighting device control setting and/or a sound device setting.

根据本申请的另一方面,提供一种非瞬时性计算机可读的贮存器,在其上贮存有由计算机执行的数据和指令,具有用于从可见性独立的感测装置接收位置数据的输入端口,所述数据和指令包括:According to another aspect of the present application, there is provided a non-transitory computer-readable storage device having stored thereon data and instructions executed by a computer, the storage device having an input port for receiving position data from a visibility-independent sensing device, the data and instructions comprising:

-代码模块,用于基于所述位置数据和朝向数据确定将被所述设备处理的感兴趣的区域的位置信息;以及- a code module for determining position information of an area of interest to be processed by the device based on the position data and the orientation data; and

-代码模块,用于输出指向所述设备的控制信号,以便于基于所述感兴趣的区域的位置信息实时控制所述设备的设置。- A code module for outputting a control signal directed to the device so as to control the settings of the device in real time based on the position information of the area of interest.

根据本申请的又一方面,提供一种用于控制与图像捕捉有关的设备的设置的系统,包括:According to yet another aspect of the present application, there is provided a system for controlling settings of a device related to image capture, comprising:

a)传感器,安装在将由摄像机捕捉的物体上,适应于捕捉三维位置数据;a) a sensor, mounted on the object to be captured by the camera, adapted to capture three-dimensional position data;

b)处理器,适应于与传感器通信以用于接收位置数据并且基于所述位置数据产生控制信号;以及b) a processor adapted to communicate with the sensor for receiving position data and generating a control signal based on the position data; and

c)控制器,适应于与处理器通信,以便于响应于所述控制信号控制所述设备的设置。c) A controller adapted to communicate with the processor to control settings of the device in response to the control signal.

在特定实施例中,所述设置可以包括:焦距设置、变焦设置、光圈设置、两眼间镜头角设置、和/或控制摇摄设置、俯仰设置、摄像机的转动设置、摄像机的位置设置、照明设备设置、声音设备设置和/或其任何组合。In certain embodiments, the settings may include: focal length settings, zoom settings, aperture settings, interocular lens angle settings, and/or control pan settings, tilt settings, camera rotation settings, camera position settings, lighting equipment settings, sound equipment settings and/or any combination thereof.

在特定实施例中,由传感器装置以全部三个自由度、例如以方位、高度和转动(A、E、R)的欧拉(Eular)角捕捉朝向数据。在这样的实施例中,处理器适应于关于表示传感器装置的地点的位置和朝向数据来计算焦点或“节点”的位置。处理器从而适应于基于节点的位置产生控制信号。In certain embodiments, the sensor device captures orientation data in all three degrees of freedom, for example, in Euler angles of azimuth, altitude, and rotation (A, E, R). In such embodiments, the processor is adapted to calculate the position of a focal point or "node" relative to the position and orientation data representing the location of the sensor device. The processor is thereby adapted to generate a control signal based on the position of the node.

“焦点”或“节点”的意思是在对象上的特定的点或感兴趣的区域,而基于此来控制设备的设置(例如,对焦、变焦、光圈、照明、声音等)。该“节点”在运动跟踪系统中有时被称为“尖端偏移”,所述运动跟踪系统例如在节点与传感器不具有相同的坐标而是处于离开传感器的固定距离处的一些情况下提供位置和朝向两者。例如,节点可以对应于人的一个眼睛,而位置和朝向数据对应于传感器所处于的人头的后部。因此,可以通过从传感器的位置和朝向来计算取决于特定的人的眼睛的定位而设置摄像机的对焦、变焦、光圈、两眼间角、控制摇摄、俯仰、转动、摄像机的位置、照明设备和/或声音设备。By "focal point" or "node" is meant a specific point or area of interest on an object, based on which the settings of a device (e.g., focus, zoom, aperture, lighting, sound, etc.) are controlled. This "node" is sometimes referred to as a "tip offset" in motion tracking systems, which provide both position and orientation, for example in some cases where the node does not have the same coordinates as the sensor but is located at a fixed distance from the sensor. For example, a node may correspond to one of a person's eyes, while the position and orientation data corresponds to the back of the person's head where the sensor is located. Thus, the focus, zoom, aperture, interocular angle of a camera can be set, pan, tilt, roll, the position of the camera, lighting, and/or sound can be controlled by calculating from the position and orientation of the sensor the positioning of the eyes depending on the particular person.

在特定实施例中,所述系统还包括安装在摄像机上的传感器,即在摄像机关于要捕捉的对象而移动的情况下。In a particular embodiment, the system further comprises a sensor mounted on the camera, ie in case the camera is moved with respect to the object to be captured.

根据本申请的又一方面,提供一种用于控制与图像捕捉有关的设备的设置的方法,包括:According to yet another aspect of the present application, there is provided a method for controlling settings of a device related to image capture, comprising:

-捕捉与将由摄像机捕捉的对象有关的三维位置数据;- capturing three-dimensional position data related to the object to be captured by the camera;

-基于位置数据产生控制信号;以及- generating a control signal based on the position data; and

-响应于控制信号来控制设备的设置。- Controlling settings of the device in response to the control signal.

根据本申请的又一方面,提供一种用于控制与图像捕捉有关的设备的设置的非瞬时性处理器-可读贮存介质,所述贮存介质包含由处理器执行以进行如下的数据和指令:According to yet another aspect of the present application, a non-transitory processor-readable storage medium for controlling settings of a device related to image capture is provided, the storage medium containing data and instructions executed by a processor to:

-接收与将由摄像机捕捉的对象有关的三维位置数据;- receiving three-dimensional position data relating to an object to be captured by the camera;

-基于位置数据产生控制信号;以及- generating a control signal based on the position data; and

-发送控制信号到控制器以用于控制设备的设置。-Send control signals to the controller for controlling the settings of the device.

根据本申请的又一方面,提供一种用于控制与图像捕捉有关的设备的设置的系统,包括:According to yet another aspect of the present application, there is provided a system for controlling settings of a device related to image capture, comprising:

-要安装在要由摄像机捕捉的对象上的传感器和发送器,适应于捕捉位置和/或朝向数据;- sensors and transmitters to be mounted on the object to be captured by the camera, adapted to capture position and/or orientation data;

-处理器适应于与传感器的发送器通信以用于接收位置数据以及基于所述位置和/或朝向数据发送控制信号;以及- the processor is adapted to communicate with the transmitter of the sensor for receiving position data and for sending control signals based on said position and/or orientation data; and

-控制器,适应于与处理器通信,以便于接收控制信号并且响应于控制信号来控制设备的设置。- a controller adapted to communicate with the processor so as to receive the control signal and to control a setting of the device in response to the control signal.

根据另外的方面,提供一种与上述系统相关联的方法。According to a further aspect, a method associated with the above system is provided.

根据另外的方面,提供一种包含执行与上述系统相关联的方法的数据和指令的非瞬时性处理器-可读贮存介质。According to a further aspect, a non-transitory processor-readable storage medium containing data and instructions for executing the method associated with the above-described system is provided.

本发明的实施例的优点在于,使用具有非常具体的性质以在三维空间中创建多个预定的位置性和方向性‘节点’的运动跟踪数据,可以在多种移动和静止的摄影环境中实现改善水平的设备控制和自动化。An advantage of embodiments of the present invention is that the use of motion tracking data having very specific properties to create multiple predetermined positional and directional 'nodes' in three-dimensional space allows for improved levels of device control and automation in a variety of mobile and still photography environments.

本发明的实施例的优点在于,通过或者不通过用户交互,其允许实时地跟踪和/或从在三维空间中的多个预定的静止的或移动的点(节点)选择,并且不需要任何额外的手动干预;使用软件界面或机械表盘或其它机械的输入装置在任何时间时选择这些节点中的任何一个。在焦距控制的示例中,一旦用户选择期望的节点时,系统自动地将焦距调节到该节点,并且即使节点和摄像机在移动时保持在该节点上的焦距。它还将使能对焦于在不是当前的视场中的节点上,允许物体一旦进入构图或者从其它物体(门廊、墙壁、车辆等)后面出现就被焦点对准。An advantage of embodiments of the present invention is that they allow tracking and/or selection from a plurality of predetermined stationary or moving points (nodes) in three-dimensional space in real time, with or without user interaction, and without requiring any additional manual intervention; any of these nodes can be selected at any time using a software interface or a mechanical dial or other mechanical input device. In the example of focus control, once the user selects the desired node, the system automatically adjusts the focus to that node and maintains focus on that node even as the node and camera move. It will also enable focusing on nodes that are not in the current field of view, allowing objects to be in focus as soon as they enter the composition or appear from behind other objects (doorways, walls, vehicles, etc.).

当参照附图阅读下面的优选实施例的非限制性说明之后,本发明的目标、优点和特点将会变得更加明晰,所述说明仅为了示例的目的被给出。The objects, advantages and features of the present invention will become more apparent upon reading the following non-limiting description of preferred embodiments with reference to the accompanying drawings, which description is given for purposes of illustration only.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1A是根据本申请的实施例的用于控制摄像机设置的系统的框图。FIG. 1A is a block diagram of a system for controlling camera settings according to an embodiment of the present application.

图1B是表示根据实施例的通过图1A中所示的系统执行的方法的步骤的流程图。FIG. 1B is a flow chart illustrating steps of a method performed by the system shown in FIG. 1A , according to an embodiment.

图1C是表示根据实施例的通过图1A中所示的系统执行的方法的序列图。FIG. 1C is a sequence diagram illustrating a method performed by the system shown in FIG. 1A according to an embodiment.

图2A和2B示出了根据本发明的另一个实施例的用于同时控制多个摄像机设置和摄像机控制的系统的框图。2A and 2B illustrate block diagrams of a system for simultaneously controlling multiple camera settings and camera controls according to another embodiment of the present invention.

图3是示出根据实施例的将与图1A示出的系统一起使用的单或双挑杆源基座(boom pole source mount)的示意图。3 is a schematic diagram illustrating a single or double boom pole source mount to be used with the system shown in FIG. 1A , according to an embodiment.

图4是示出根据实施例的将与图1A示出的系统一起使用的摄像机臂源基座(camera arm source mount)的示意图。4 is a schematic diagram illustrating a camera arm source mount to be used with the system shown in FIG. 1A , according to an embodiment.

图5是示出根据实施例的将与图1A示出的系统一起使用的摄像机传感器基座的示意图,摄像机传感器基座包含棒和安装在棒的每个端部处的源外壳。5 is a schematic diagram illustrating a camera sensor base to be used with the system shown in FIG. 1A , the camera sensor base comprising a wand and a source housing mounted at each end of the wand, according to an embodiment.

图5A是图5中示出的摄像机传感器基座的源外壳的透视图。5A is a perspective view of a source housing of the camera sensor base shown in FIG. 5 .

图5B是图5中示出的棒的一部分的侧平面图,示出了棒的一个端部具有从其延伸的安装轴(shaft)。5B is a side plan view of a portion of the wand shown in FIG. 5 , showing one end of the wand having a mounting shaft extending therefrom.

图5C是在图5A中示出的源外壳的安装孔的轮廓图,该安装孔被配置为容纳图5B中示出的棒的端部。5C is an outline view of a mounting hole of the source housing shown in FIG. 5A , the mounting hole being configured to receive the end of the rod shown in FIG. 5B .

图6是示出根据实施例的将与图1A的系统一起使用的模块化源安装系统的示意图。6 is a schematic diagram illustrating a modular source installation system to be used with the system of FIG. 1A , according to an embodiment.

图7示出了在图1A示出的系统中的用户装置的图形用户界面(GUI)上显示的主页屏幕。FIG. 7 illustrates a home screen displayed on a graphical user interface (GUI) of a user device in the system illustrated in FIG. 1A .

图8示出了图7中示出的GUI的节点创建/修改窗口。FIG. 8 shows a node creation/modification window of the GUI shown in FIG. 7 .

图9示出了在图7中示出的主页屏幕的一部分,即定义各种节点的节点阵列。FIG. 9 shows a portion of the home screen shown in FIG. 7 , namely, a node array defining various nodes.

图10示出了图9中示出的节点阵列的特定的节点按钮。FIG. 10 illustrates specific node buttons of the node array shown in FIG. 9 .

图11示出了图9中示出的节点阵列的被选择的节点按钮。FIG. 11 shows a selected node button of the node array shown in FIG. 9 .

图12示出了在图7中示出的主页屏幕的一部分,即示出了定序器(sequencer)组件。FIG. 12 shows a portion of the home screen shown in FIG. 7 , namely, showing a sequencer component.

图13示出了在图7中示出的主页屏幕的另一部分,即示出了边角表盘控制界面。FIG. 13 shows another portion of the home screen shown in FIG. 7 , namely showing the corner dial control interface.

图14示出了在图7中示出的主页屏幕的又一部分,即示出了另一个边角表盘控制界面。FIG. 14 shows another portion of the home screen shown in FIG. 7 , namely showing another corner dial control interface.

图15示出了根据实施例的显示屏幕,其将被显示在图1A示出的系统的用户装置上,用于定义将被控制的摄像机。FIG. 15 illustrates a display screen that may be displayed on a user device of the system shown in FIG. 1A for defining a camera to be controlled, according to an embodiment.

图16示出了根据实施例的另一显示屏幕,其将被显示在图1A示出的系统的用户装置上,用于校准将被控制的摄像机的镜头。FIG. 16 illustrates another display screen to be displayed on a user device of the system shown in FIG. 1A for calibrating a lens of a camera to be controlled, according to an embodiment.

图17示出了根据实施例的另一显示屏幕,其将被显示在图1A示出的系统的用户装置上,用于选择传感器装置的配置。FIG. 17 illustrates another display screen that may be displayed on a user device of the system shown in FIG. 1A for selecting a configuration of a sensor device, according to an embodiment.

图18示出了根据实施例的另一显示屏幕,其将被显示在图1A示出的系统的用户装置上,用于在存储器中记录节点阵列的配置以及定序器的配置。FIG. 18 illustrates another display screen that may be displayed on a user device of the system shown in FIG. 1A for recording the configuration of a node array and the configuration of a sequencer in a memory, according to an embodiment.

图19示出了根据实施例的显示屏幕的一部分,其将被显示在图1A示出的系统的用户装置上,包含用于调节将施加到节点数据的延迟/滞后补偿的量的边角控制器。19 illustrates a portion of a display screen as would be displayed on a user device of the system shown in FIG. 1A , including corner controls for adjusting the amount of delay/lag compensation to be applied to node data, according to an embodiment.

图20示出了根据实施例的替换的控制显示屏幕,其将被显示在图1A示出的系统的用户装置上,包含与线性定序器功能有关的交互图形表示。20 illustrates an alternative control display screen that would be displayed on a user device of the system shown in FIG. 1A , including interactive graphical representations related to linear sequencer functionality, according to an embodiment.

图21示出了根据实施例的替换的控制显示屏幕,其将被显示在图1A示出的系统的用户装置上,包含与定制的定序器功能有关的交互图形表示。21 illustrates an alternative control display screen that would be displayed on a user device of the system shown in FIG. 1A , including interactive graphical representations related to customized sequencer functionality, according to an embodiment.

图22示出了根据实施例的替换的控制显示屏幕,其将被显示在图1A示出的系统的用户装置上,包含与自由定序功能有关的交互图形表示。22 illustrates an alternative control display screen that may be displayed on a user device of the system shown in FIG. 1A , including interactive graphical representations related to free sequencing functionality, according to an embodiment.

图23示出了根据实施例的另外的控制显示屏幕,其将被显示在图1A示出的系统的用户装置上,包含与自由定序功能有关的交互图形表示。23 illustrates an additional control display screen that may be displayed on a user device of the system shown in FIG. 1A , including interactive graphical representations related to free sequencing functionality, according to an embodiment.

图24示出了根据实施例的主页屏幕的一部分,其将被显示在图1A示出的系统中的用户装置的图形用户界面(GUI)上,即4-节点几何控制器特征。24 illustrates a portion of a home screen that would be displayed on a graphical user interface (GUI) of a user device in the system shown in FIG. 1A , namely a 4-node geometry controller feature, according to an embodiment.

图25示出了根据实施例的主页屏幕的一部分,其将被显示在图1A示出的系统中的用户装置的图形用户界面(GUI)上,即3-节点几何控制器特征。25 illustrates a portion of a home screen that would be displayed on a graphical user interface (GUI) of a user device in the system shown in FIG. 1A , namely a 3-node geometry controller feature, according to an embodiment.

具体实施方式DETAILED DESCRIPTION

在下面的描述中,相同的参考标号指代类似的元素。在附图中示出的或者在本说明中描述的所述实施例和/或几何的配置和尺寸仅是为了示例的目的给出的本发明的实施例。In the following description, like reference numerals refer to similar elements.The embodiments and/or geometric configurations and dimensions shown in the drawings or described in this specification are embodiments of the present invention given for illustrative purposes only.

广泛地描述,用于控制摄像机的设置的系统和方法,根据特定的实施例,使用运动捕捉或全局的(或局部的)定位系统以产生三维位置和朝向数据。该数据通过实时计算在三维空间中的位置和朝向以及包括期望的对象和所述摄像机之间的相对距离数据的其它尺度计算的软件处理。该数据然后被用于全部实时控制诸如用于操纵与摄像机有关的设备的伺服电动机的控制设备,其中所述与摄像机有关的设备诸如镜头焦距、镜头光圈、和摄像机远程头。Broadly described, systems and methods for controlling camera settings, according to certain embodiments, use motion capture or a global (or local) positioning system to generate three-dimensional position and orientation data. This data is processed by software that calculates in real time the position and orientation in three-dimensional space, as well as other metrics including relative distance data between a desired object and the camera. This data is then used to control all of the camera-related equipment, such as servo motors used to operate the servo motors, in real time, in real time.

更具体地,根据特定的实施例,本公开涉及控制焦距和构图,并且包括在三维空间中产生预定的点,所述预定的点在下文中被称为“节点”。节点可以是在空间中固定的节点,即一个花瓶的花。或者它可以是移动的节点,即人或动物。如果摄像机不移动或者如果摄像机有传感器,则固定的节点不需要传感器。移动的节点如移动的摄像机需要传感器。由于运动跟踪系统本质上创建了在给定的三维空间中画出无数个限定的点的可能性,因此用该数据的界面允许大得多的复杂性并且解放有创造力的和实用性的可能性。如所定义的以及在该系统中使用的"节点"的一个重要的特征是其具有位置和朝向数据两者:这允许进行智能的操作,诸如在左和右眼之间自动地对焦——见在该文献后面的"自动分析(AutoProfiling)”。More specifically, according to certain embodiments, the present disclosure relates to controlling focus and composition, and includes generating predetermined points in three-dimensional space, which are referred to as "nodes" hereinafter. A node can be a node that is fixed in space, i.e., a vase of flowers. Or it can be a moving node, i.e., a person or an animal. A fixed node does not require a sensor if the camera does not move or if the camera has a sensor. A moving node, such as a moving camera, does require a sensor. Since the motion tracking system essentially creates the possibility of drawing an infinite number of defined points in a given three-dimensional space, interfacing with this data allows for much greater complexity and unlocks creative and practical possibilities. An important feature of a "node" as defined and used in this system is that it has both position and orientation data: this allows for intelligent operations such as automatically focusing between the left and right eye - see "AutoProfiling" later in this document.

因此当参考图1时,提供一种用于控制诸如摄像机12的与图像捕捉有关的设备112的设置的系统10。系统10包括一个或多个感测装置114,诸如传感器14,其被配置为在感测装置处捕捉位置数据和朝向数据。系统10还包括嵌入在数据处理装置28(在这里还被称为"数据处理单元")中的处理器16。处理器16与感测装置114通信,并且被配置为基于所述位置和朝向数据确定将被所述设备112处理的感兴趣的区域的位置信息x。处理器16还包括被配置为输出指向所述设备112的控制信号输出端口43,以便于基于所述感兴趣的区域的位置信息来实时控制所述设备112的设置。Thus, when referring to FIG1 , a system 10 for controlling settings of an image capture-related device 112, such as a camera 12, is provided. The system 10 includes one or more sensing devices 114, such as sensors 14, configured to capture position data and orientation data at the sensing devices. The system 10 also includes a processor 16 embedded in a data processing device 28 (also referred to herein as a "data processing unit"). The processor 16 is in communication with the sensing devices 114 and is configured to determine position information x of an area of interest to be processed by the device 112 based on the position and orientation data. The processor 16 also includes an output port 43 configured to output a control signal directed to the device 112 to facilitate real-time control of the settings of the device 112 based on the position information of the area of interest.

系统10还包括与输出端口43通信的控制器118并且被配置为用控制信号控制设备112的设置。系统10还包括存储器132,诸如RAM32,以用于贮存位置数据和朝向数据。系统10还包括设备112。根据该实施例,感测装置114是可见性独立的(visibility independent)(即非视线传感器),并且包括发送器22。系统10还包括在发送器22和处理器16之间通信的接收器26。系统10还包括用户装置40,所述用户装置40包含用户界面42,并且所述用户界面42通过无线通信网络39与数据处理装置28通信。The system 10 also includes a controller 118 in communication with the output port 43 and configured to control the settings of the device 112 using control signals. The system 10 also includes a memory 132, such as RAM 32, for storing position data and orientation data. The system 10 also includes the device 112. According to this embodiment, the sensing device 114 is a visibility independent (i.e., a non-line-of-sight sensor) and includes a transmitter 22. The system 10 also includes a receiver 26 in communication between the transmitter 22 and the processor 16. The system 10 also includes a user device 40, the user device 40 including a user interface 42, and the user interface 42 is in communication with the data processing device 28 via the wireless communication network 39.

更具体地,图1示出了用于控制摄像机12的设置的系统10。系统10包括传感器14,每个传感器被安装在要由摄像机12捕捉的物体上,并且每个传感器适应于基于每个传感器14的地点捕捉三维位置数据。系统10还包括适应于与传感器14通信以用于基于位置数据接收位置数据和发送控制信号的处理器16。系统10还包括适应于与处理器16通信的以便于响应于控制信号控制摄像机12的设置的控制器18。More specifically, FIG1 illustrates a system 10 for controlling the settings of a camera 12. The system 10 includes sensors 14, each mounted on an object to be captured by the camera 12, and each adapted to capture three-dimensional position data based on the location of each sensor 14. The system 10 also includes a processor 16 adapted to communicate with the sensors 14 for receiving position data and sending control signals based on the position data. The system 10 also includes a controller 18 adapted to communicate with the processor 16 for controlling the settings of the camera 12 in response to the control signals.

还如图1中所示,传感器14每一个被硬连线20到集线器(hub)/发送器22。集线器/发送器22经由无线射频(RF链接)通信方式24通信到通用串行总线(USB)接收器26,其又经由USB连接27连接到具有处理器16嵌入在其中的数据处理装置28。1 , the sensors 14 are each hardwired 20 to a hub/transmitter 22. The hub/transmitter 22 communicates via wireless radio frequency (RF link) communication means 24 to a universal serial bus (USB) receiver 26, which in turn connects via a USB connection 27 to a data processing device 28 having the processor 16 embedded therein.

数据处理装置28还包括电源30和DDR3随机存取存储器(RAM)32,并且嵌入闪速非易失性计算机贮存器34。数据处理装置28还包括WiFi通信模块36和ZigbeeTM无线通信模块38以用于通过无线数据网络39与用户装置40通信,其中所述用户装置40在该示例中是iPadTM,并且所述数据处理装置28包括用户界面42。应理解的是,iPadTM可以用任何其它合适的计算机装置(诸如例如AndroidTM平板计算机)替代或者组合。The data processing device 28 also includes a power supply 30 and DDR3 random access memory (RAM) 32, and embedded flash non-volatile computer storage 34. The data processing device 28 also includes a WiFi communication module 36 and a Zigbee wireless communication module 38 for communicating with a user device 40 via a wireless data network 39, wherein the user device 40 is an iPad in this example, and the data processing device 28 includes a user interface 42. It should be understood that the iPad can be replaced or combined with any other suitable computer device, such as, for example, an Android tablet computer.

控制器18通过硬线(hardwire)44连接到数据处理装置28。控制器18附接到摄像机12中的区域中,并且包括Cypress PSOCTM5LP微控制器单元(MCU)46、以及电源48。H桥50、52、54将控制器18连接到分别自动地操作摄像机12的特定的设置、即焦距、光圈和变焦的各个伺服电动机56、58、60。Controller 18 is connected to data processing device 28 via hardwire 44. Controller 18 is attached to the area within camera 12 and includes a Cypress PSOC 5LP microcontroller unit (MCU) 46, and a power supply 48. H-bridges 50, 52, 54 connect controller 18 to various servo motors 56, 58, 60 that automatically operate specific settings of camera 12, namely focus, iris, and zoom, respectively.

应理解,根据替换实施例,上述组件可以以任何合适的方式通过任何合适的通信方式互连。It will be appreciated that, according to alternative embodiments, the above-described components may be interconnected in any suitable manner and via any suitable communication means.

实际上并且例如,在图2A和2B中所示的实施例中,多个摄像机12被系统10'控制。每个摄像机12连接到“从属”数据处理装置28b,所述“从属”数据处理装置28b可经由用户装置40的相应的用户界面而操作。“从属”数据处理装置28b与“主”数据处理装置28a通信。2A and 2B , a plurality of cameras 12 are controlled by the system 10 ′. Each camera 12 is connected to a “slave” data processing device 28 b, which is operable via a corresponding user interface of a user device 40. The “slave” data processing device 28 b communicates with the “master” data processing device 28 a.

图2A和2B的剩余组件指的是图1中所示的相似组件。The remaining components of Figures 2A and 2B refer to similar components shown in Figure 1.

在图1和2中所示的实施例中,传感器系统由磁性运动跟踪系统来提供。更具体地,传感器14由感应线圈和系统10、10'提供,还包括交流电(AC)磁源产生器(见图3)。集线器22供电传感器14,翻译数据并且在射频24上发送位置数据。优选地,磁源与机载电源一起安装在定制可伸缩的杆基座上。In the embodiment shown in Figures 1 and 2, the sensor system is provided by a magnetic motion tracking system. More specifically, the sensor 14 is provided by an inductive coil and the system 10, 10' also includes an alternating current (AC) magnetic source generator (see Figure 3). The hub 22 powers the sensor 14, interprets the data, and transmits the position data over a radio frequency 24. Preferably, the magnetic source is mounted on a custom, retractable pole base along with an onboard power supply.

可选地,可以提供射频中继器以延伸从运动捕捉系统的数据传输的范围。USB RF接收器需要从传感器获得数据并且将其发送到摄像机。如果在摄像机和传感器之间的距离非常大(例如当使用2000mm或200mm的镜头以用于商用的汽车等时)则可能需要增大范围。此外可选地,可以提供USB中继器以便于延伸从运动捕捉系统的数据传输的范围。Optionally, a radio frequency repeater can be provided to extend the range of data transmission from the motion capture system. A USB RF receiver is required to obtain data from the sensor and send it to the camera. If the distance between the camera and the sensor is very large (for example, when using a 2000mm or 200mm lens for commercial vehicles, etc.), the range may need to be increased. Also optionally, a USB repeater can be provided to extend the range of data transmission from the motion capture system.

每个用户装置40、即iPadTM的用户界面42包括触摸屏,并且用户装置40适应于执行与一个或多个中央控制器28、28a、28b通信的界面软件。The user interface 42 of each user device 40 , ie, an iPad , includes a touch screen, and the user device 40 is adapted to execute interface software that communicates with one or more central controllers 28 , 28 a , 28 b .

可选地,可以提供机械的输入装置(例如焦距控制表盘或滑块)以充当模拟/数字接口以向所述软件增加额外的控制特征。例如,如在图2A和2B中所示的,用户装置40之一具有包括对焦旋钮62的用户界面42。Alternatively, a mechanical input device (e.g., a focus control dial or slider) may be provided to act as an analog/digital interface to add additional control features to the software. For example, as shown in Figures 2A and 2B, one of the user devices 40 has a user interface 42 including a focus knob 62.

中央数据处理装置28以LinuxTM操作系统操作,并且进行大部分处理以控制一个或多个伺服电动机56、58、60。The central data processing unit 28 operates with the Linux operating system and performs most of the processing to control the one or more servo motors 56 , 58 , 60 .

如之前所述的,伺服电动机56、58、60机械地调节摄像机设置,诸如例如,焦距、变焦、光圈和/或控制摇摄、俯仰、转动和/或类似者。As previously described, the servo motors 56, 58, 60 mechanically adjust camera settings such as, for example, focus, zoom, iris, and/or control pan, tilt, roll, and/or the like.

应理解的是,取决于特定的实施例,所述设置可以包括下列的任何一个或其组合:摄像机的焦距设置、该摄像机的变焦设置、该摄像机的光圈设置、该摄像机的两眼间镜头角设置、该摄像机的摇摄设置、该摄像机的俯仰设置、该摄像机的转动设置、该摄像机的位置设置、照明设备控制设置,声音设备设置以及类似者。It should be understood that, depending on the specific embodiment, the settings may include any one or a combination of the following: focal length setting of the camera, zoom setting of the camera, aperture setting of the camera, interocular lens angle setting of the camera, pan setting of the camera, tilt setting of the camera, rotation setting of the camera, position setting of the camera, lighting device control setting, sound device setting, and the like.

在本说明的上下文中,术语"处理器"指被配置为执行计算机指令的电子电路,诸如中央处理单元(CPU)、微处理器、控制器和/或类似者。根据本发明的实施例,如本领域技术人员可以理解的,可以提供多个这样的处理器。处理器例如可以被提供在一个或多个通用计算机中和/或任何其它合适的计算装置中。In the context of this specification, the term "processor" refers to an electronic circuit configured to execute computer instructions, such as a central processing unit (CPU), a microprocessor, a controller, and/or the like. According to embodiments of the present invention, as will be appreciated by those skilled in the art, a plurality of such processors may be provided. The processor may, for example, be provided in one or more general-purpose computers and/or any other suitable computing device.

仍在本说明的上下文中,术语“贮存器”指如下装置的任何计算机数据贮存装置或组装件,所述装置例如包括:暂时贮存单元,诸如随机存取存储器(RAM)或动态RAM;永久的贮存器,诸如硬盘;光贮存装置,诸如CD或DVD(可重复写入或一次写入/只读);闪速存储器;和/或类似者。如本领域技术人员可以理解的,可以提供多个这样的贮存装置。Still in the context of this specification, the term "storage" refers to any computer data storage device or assembly including, for example: a temporary storage unit such as random access memory (RAM) or dynamic RAM; a permanent storage such as a hard disk; an optical storage device such as a CD or DVD (rewritable or write-once/read-only); flash memory; and/or the like. As will be appreciated by those skilled in the art, a plurality of such storage devices may be provided.

此外,“计算机可读的贮存器”是指任何合适的非瞬时性处理器可读贮存介质或计算机产品。Furthermore, "computer-readable storage" refers to any suitable non-transitory processor-readable storage medium or computer product.

可以与上述系统10、10'使用的其它组件包括:Other components that may be used with the above-described systems 10, 10' include:

-用于源布置(source placement)的非金属杆基座的定制的模块化系统,即具有预定大小的碳纤维脚手架器械,使得当使用多于两个源时可以快速并且方便地装配。- A custom modular system of non-metallic rod bases for source placement, ie carbon fiber scaffolding apparatus with pre-defined sizes, allowing for quick and easy assembly when more than two sources are used.

-各种夹子和支架,用于将传感器和磁场源安装到摄像机、对象和物体;以及- Various clips and brackets for mounting sensors and magnetic field sources to cameras, subjects, and objects; and

-各种仪器,用于促进节点偏移和布置以及源地点的方便测量。- Various instruments to facilitate convenient measurement of node offsets and placements and source locations.

即,图3示出了根据实施例的将与系统一起使用的单或双挑杆源基座。此外,图4示出了根据实施例的将与系统一起使用的摄像机臂源基座。此外,图5示出了根据实施例的将与系统一起使用的摄像机传感器基座,其中其部分在图5A-5C中示出。此外,图6示出了根据实施例的将与系统一起使用的模块化源安装系统。Specifically, FIG3 illustrates a single or double boom source base to be used with the system, according to an embodiment. Furthermore, FIG4 illustrates a camera arm source base to be used with the system, according to an embodiment. Furthermore, FIG5 illustrates a camera sensor base to be used with the system, portions of which are shown in FIG5A-5C , according to an embodiment. Furthermore, FIG6 illustrates a modular source mounting system to be used with the system, according to an embodiment.

系统的操作System Operation

如之前所述的,本申请的实施例允许控制焦距和构图,并且涉及在三维空间中创建预定的点,在这里被称为“节点”,其具有位置和朝向数据两者。节点可以是房间中固定的节点,即一花瓶的花。或者节点可以是移动的节点,即人或动物。如果摄像机不移动或者如果摄像机具有传感器,则固定的节点不需要传感器。移动的节点如移动的摄像机需要传感器。As previously described, embodiments of the present application allow for control of focus and composition and involve creating predetermined points in three-dimensional space, referred to herein as "nodes," which have both position and orientation data. A node can be a fixed node in a room, such as a vase of flowers. Or a node can be a mobile node, such as a person or an animal. Fixed nodes do not require sensors if the camera does not move or if the camera has sensors. Mobile nodes, such as a moving camera, do require sensors.

在操作中,参照图1,传感器14产生表示其物理地点的坐标,例如笛卡尔坐标系统的X,Y,Z坐标和/或表示传感器的朝向方位、升降高度、转动(A、E、R)。例如,在传感器14被放置在由摄像机12捕捉的人头的后部上的情况下,传感器产生的信息将指示传感器的地点以及人的头部是否朝向前面、后面等。In operation, referring to Figure 1, the sensor 14 generates coordinates representing its physical location, such as X, Y, and Z coordinates of a Cartesian coordinate system and/or information representing the orientation, elevation, and rotation (A, E, and R) of the sensor. For example, if the sensor 14 is placed on the back of a person's head being captured by the camera 12, the information generated by the sensor will indicate the location of the sensor and whether the person's head is facing forward, backward, etc.

处理器16接收位置和朝向信息,并且计算“节点”的位置。例如,在传感器14被放置在人头的后部的情况中,“节点”可以对应于人的一个眼睛。因此,处理器16寻找人的眼睛关于传感器14的预定位置,并且基于接收的地点和朝向信息来计算眼睛的位置,即焦点。处理器然后计算摄像机12和焦点之间的距离。基于计算的距离,处理器16输出控制信号以便于控制摄像机12的设置。Processor 16 receives the position and orientation information and calculates the location of a "node." For example, if sensor 14 is placed at the back of a person's head, the "node" may correspond to one of the person's eyes. Therefore, processor 16 locates the predetermined position of the person's eye relative to sensor 14 and, based on the received location and orientation information, calculates the position of the eye, i.e., the focal point. The processor then calculates the distance between camera 12 and the focal point. Based on the calculated distance, processor 16 outputs a control signal to control the settings of camera 12.

因此,通过进一步参考图1A如在图1B中更好地示出,提供一种控制设备112的设置的方法200。方法200包括,通过感测装置114的方式捕捉210感测装置114的三维位置数据和朝向数据;以及在存储器132中贮存212位置数据和朝向数据。通过产生表示物理地点的坐标以及表示所述感测装置的朝向的特性的感测装置114的捕捉位置数据和朝向数据。方法200还包括通过处理器16的方式基于三维位置数据和朝向数据确定214要被所述设备处理的感兴趣的区域的位置信息,即“节点”。节点和传感器装置114通常位于不同的地点。处理器16然后确定216所述节点的位置信息,并且进一步计算218设备112和节点之间的距离。Therefore, as better illustrated in FIG. 1B with further reference to FIG. 1A , a method 200 of controlling the settings of a device 112 is provided. The method 200 comprises capturing 210, by means of the sensing device 114, three-dimensional position data and orientation data of the sensing device 114; and storing 212 the position data and orientation data in a memory 132. The captured position data and orientation data of the sensing device 114 are generated by generating coordinates representing a physical location and characteristics representing the orientation of the sensing device. The method 200 also comprises determining 214, by means of the processor 16, position information of an area of interest to be processed by the device, i.e., a "node", based on the three-dimensional position data and orientation data. The node and the sensor device 114 are typically located at different locations. The processor 16 then determines 216 the position information of the node and further calculates 218 the distance between the device 112 and the node.

方法还包括基于计算的距离经由输出端口43输出220指向设备112的控制信号。The method further comprises outputting 220 a control signal directed towards the device 112 via the output port 43 based on the calculated distance.

更具体地,从勾股定理得到“距离公式”,并且计算在三维欧几里德空间中的两点(x1,y1,z1)和(x2,y2,z2)之间的距离。一旦确定两个节点的确切位置,可以使用距离公式来计算这些节点之间的距离。对于对焦摄像机的示例,如果节点的一个在摄像机上的焦平面的中心,则镜头的外部对焦环或内部电子对焦机制可以被设置为该距离以便于对焦物体。More specifically, the "distance formula" is derived from the Pythagorean theorem and calculates the distance between two points ( x1 , y1 , z1 ) and ( x2 , y2 , z2 ) in three-dimensional Euclidean space. Once the exact locations of two nodes are determined, the distance formula can be used to calculate the distance between these nodes. For the example of focusing a camera, if one of the nodes is at the center of the focal plane on the camera, the lens's external focus ring or internal electronic focus mechanism can be set to that distance to facilitate focusing on the object.

更具体地,在计算步骤216中的每个节点的位置信息包括节点(x1,y1,z1)的欧几里德空间坐标,并且所述计算步骤218包括:More specifically, the position information of each node in the calculation step 216 includes the Euclidean space coordinates of the node (x 1 , y 1 , z 1 ), and the calculation step 218 includes:

-接收222设备的在欧几里德空间坐标(x2,y2,z2)中的位置信息;以及- receiving 222 position information of the device in Euclidean space coordinates (x 2 , y 2 , z 2 ); and

-从下面的勾股定理计算224所述设备的位置信息和所述节点的位置信息之间的距离:- Calculate 224 the distance between the device's location information and the node's location information using the following Pythagorean theorem:

对于测量位置和朝向两者的运动跟踪传感器,向量数学可以被用于将"尖端偏移"施加到传感器的地点。例如如果演员将传感器放在他的/她的颅骨的后部,尖端偏移可以将传感器的位置投射到演员的左眼的表面,实际上在演员的眼睛上创建虚拟的传感器。对于硬性的对象/物体,施加尖端偏移允许在对象/物体的内部任何地方或者表面上定义节点。同样地,尖端偏移(节点)可以在3D空间中的任何地方创建,即它们可以存在于表示相对传感器的位置和朝向的地点坐标的物体的外部。因此,确定步骤216包括施加226从所述捕捉步骤210的感测装置114的位置数据和朝向数据的尖端偏移以便于计算所述节点的位置信息。For motion tracking sensors that measure both position and orientation, vector math can be used to apply a "tip offset" to the location of the sensor. For example, if an actor places the sensor on the back of his/her skull, the tip offset can project the location of the sensor onto the surface of the actor's left eye, in effect creating a virtual sensor on the actor's eye. For rigid objects/subjects, applying a tip offset allows nodes to be defined anywhere within or on the surface of the object/subject. Likewise, tip offsets (nodes) can be created anywhere in 3D space, i.e., they can exist outside of the object at location coordinates representing the position and orientation relative to the sensor. Thus, determining step 216 includes applying 226 the tip offset from the position data and orientation data of the sensing device 114 of capturing step 210 in order to calculate the location information of the node.

进行该尖端偏移(节点)投射的一个方法利用关于由传感器定义的轴系统的从该传感器的原点到眼睛的测量的X、Y和Z偏移。对于眼睛的示例,所述偏移可以是关于传感器的本地坐标系统的在X-方向中10cm、在Y-方向中0cm、在Z-方向中8cm。通过这些偏移,旋转矩阵和/或四元数可以被用于在运动跟踪系统的坐标系统中计算演员的眼睛的绝对位置(X,Y,Z)和朝向(偏转(yaw)、转动(roll)、俯仰(pitch))。下列等式使用标准旋转矩阵的方法以解决该尖端偏移问题(见http://www.flipcode.com/documents/matrfaq.html#Q36)。One method of performing the tip offset (nodal point) projection utilizes X, Y, and Z offsets measured from the origin of the sensor to the eye with respect to an axis system defined by the sensor. For the example of an eye, the offsets may be 10 cm in the X-direction, 0 cm in the Y-direction, and 8 cm in the Z-direction with respect to the sensor's local coordinate system. With these offsets, rotation matrices and/or quaternions can be used to calculate the absolute position (X, Y, Z) and orientation (yaw, roll, pitch) of the actor's eye in the motion tracking system's coordinate system. The following equations use the standard rotation matrix approach to solve for the tip offset problem (see http://www.flipcode.com/documents/matrfaq.html#Q36).

因此,在该实施例中,施加尖端偏移的步骤226(见图1B)包括:在由所述感测装置114定义的轴系统中,获得所述节点的相对于感测装置114的三维位置数据和朝向数据的相对坐标。在这种情况中,确定步骤216包括估计所述节点的关于所述设备112的绝对位置。Thus, in this embodiment, the step 226 of applying a tip offset (see FIG. 1B ) includes obtaining relative coordinates of the node's three-dimensional position data and orientation data relative to the sensing device 114 in an axis system defined by the sensing device 114. In this case, the step 216 of determining includes estimating the node's absolute position with respect to the apparatus 112.

所述节点的绝对位置被如下估计:The absolute position of the node is estimated as follows:

使用旋转矩阵M=X.Y.Z,其中M是最终旋转矩阵,并且X、Y、Z是单独的旋转矩阵。Use the rotation matrix M=X.Y.Z, where M is the final rotation matrix and X, Y, Z are the individual rotation matrices.

其中:in:

A、B分别是X-轴旋转轴、即转动的余弦和正弦;A and B are the X-axis rotation axes, i.e., the cosine and sine of the rotation;

C、D分别是Y-轴旋转轴、即俯仰的余弦和正弦;C and D are the cosine and sine of the Y-axis rotation, i.e., pitch;

E、F分别是Z-轴旋转轴、即摇摄的余弦和正弦;E and F are the cosine and sine of the Z-axis rotation, i.e., panning;

Xf=Xs+Xt*M(1,1)+Yt*M(2,1)+Zt*M(3,1);X f =X s +X t *M (1, 1) + Y t *M (2, 1) + Z t *M (3, 1);

Yf=Ys+Xt*M(1,2)+Yt*M(2,2)+Zt*M(3,2);Y f =Y s +X t *M (1, 2) + Y t *M (2, 2) + Z t *M (3, 2);

Zf=Zs+Xt*M(1,3)+Yt*M(2,3)+Zt*M(3,3);Z f =Z s +X t *M (1, 3) + Y t *M (2, 3) + Z t *M (3, 3);

其中:in:

Xf,Yf,Zf是所述节点的绝对(或“最终”)坐标; Xf , Yf , Zf are the absolute (or "final") coordinates of the node;

Xs,Ys,Zs是所述感测装置的中心的坐标; Xs , Ys , Zs are the coordinates of the center of the sensing device;

Xt,Yt,Zt对应于相对于所述感测装置的中心的尖端偏移的坐标; Xt , Yt , Zt correspond to the coordinates of the tip offset relative to the center of the sensing device;

M(行,列)是分别就行和列来说的所述旋转矩阵的元素,其中元素"行"表示在矩阵中的行数,并且元素"列"表示在矩阵中的列数。M(row, col) are the elements of the rotation matrix in terms of rows and columns, respectively, where the element "row" represents the number of rows in the matrix and the element "col" represents the number of columns in the matrix.

可通过其它方法促进“尖端偏移”的测量。例如,在演员的颅骨的后部存在具有可以以欧拉角或通过四元数表示的初始朝向。用户希望在演员的左眼上定义节点的传感器。另外的运动跟踪传感器可以针对演员的眼睛放置以计算X、Y和Z偏移(而不是例如试图使用卷尺)。一个解决方案是测量在该初始时间时的“尖端偏移”和朝向。给定了在位置P1处的基础传感器、以及在期望的节点P2处的传感器,“尖端偏移”、V1为P2-P1。初始朝向可以用X、Y、Z和W属性定义为四元数Q1。在任何其它时间时,将产生新的朝向,Q2。The measurement of "tip offset" can be facilitated by other methods. For example, there is an initial orientation at the back of the actor's skull that can be expressed in Euler angles or through quaternions. The user wishes to define a sensor with a node on the actor's left eye. Additional motion tracking sensors can be placed against the actor's eyes to calculate the X, Y, and Z offsets (rather than, for example, trying to use a tape measure). One solution is to measure the "tip offset" and orientation at this initial time. Given a base sensor at position P1, and a sensor at the desired node P2, the "tip offset", V1, is P2-P1. The initial orientation can be defined as a quaternion Q1 with X, Y, Z, and W attributes. At any other time, a new orientation, Q2, will be generated.

因此,在该实施例中,施加尖端偏移的步骤226包括获得已经通过位于节点的位置处的感测装置的节点的位置关于位于所述感测装置的位置的基础感测装置的位置和朝向而预先计算的尖端偏移。如上所述,所述初始朝向被定义为具有X、Y、Z和W属性的四元数Q1,所述捕捉步骤的朝向数据被定义为Q2。根据下面确定所述节点的位置信息:Thus, in this embodiment, the step 226 of applying a tip offset comprises obtaining a tip offset that has been pre-calculated by the position of the node of the sensing device at the location of the node with respect to the position and orientation of the base sensing device at the location of the sensing device. As described above, the initial orientation is defined as a quaternion Q1 having X, Y, Z and W attributes, and the orientation data of the capture step is defined as Q2. The position information of the node is determined according to the following:

Pn+(qiqn)Pi(qiqn)P n +(q i q n )P i (q i q n )

其中:in:

Pi是从在朝向q处的传感器的偏移; Pi is the offset from the sensor at orientation q;

Pn是所述传感器的当前位置; Pn is the current position of the sensor;

qi是在计算Pi的时间时的传感器的朝向;q i is the orientation of the sensor when calculating the time of Pi;

qn是所述传感器的当前朝向;以及q n is the current orientation of the sensor; and

qi和qn是单位四元数。q i and q n are unit quaternions.

可以执行各种其它手段和/或方法以便于位置和/或朝向数据进行多种高级系统功能。示例可以是使用四元数计算运动捕捉"磁场源"的相对于所述运动捕捉坐标系统的原点的位置和朝向。如果影片摄制组的成员在随机的位置和朝向处放置源,则通过在该随机的源的范围中使用运动传感器,连同来自已知的位置和朝向的传感器或源的数据、以及来自诸如激光尺测量的测量装置的数据,可以确定确切位置和朝向以及随机的源。简单的装配工具和软件可以使该示例性过程呈现非常快速和简单的执行。Various other means and/or methods can be implemented to facilitate various advanced system functions using position and/or orientation data. An example might be using quaternions to calculate the position and orientation of a motion capture "magnetic field source" relative to the origin of the motion capture coordinate system. If a member of a film crew places a source at a random position and orientation, using a motion sensor within the range of the random source, along with data from a sensor or source with a known position and orientation, and data from a measurement device such as a laser encoder, the exact position and orientation of the source and the random source can be determined. Simple assembly tools and software can make this exemplary process very quick and easy to perform.

返回参考图1A和1B中所示的实施例,方法200还包括以控制器118(其嵌入在设备112中)的方式用所述控制信号控制228设备112的设置。Referring back to the embodiment shown in FIG. 1A and FIG. 1B , the method 200 further includes controlling 228 , by way of the controller 118 (which is embedded in the device 112 ), a setting of the device 112 using the control signal.

假定节点从传感器偏移,因为所述偏移的位置随传感器旋转,所以即便传感器转动,朝向数据也有利地允许定位节点。例如,传感器可以被安装在刀的手柄上,并且焦点可以固定到刀的尖端并且无论刀如何移动和旋转都以高精度跟踪所述尖端。Given that a node is offset from the sensor, the offset position rotates with the sensor, so the heading data advantageously allows locating the node even if the sensor is rotated. For example, the sensor can be mounted on the handle of a knife, and the focus can be fixed to the tip of the knife and track the tip with high accuracy regardless of how the knife moves and rotates.

使用朝向数据的进一步优点涉及"校准偏移"功能。通过朝向数据,可以使用第二传感器即时地计算关注节点的期望的偏移位置。例如,将传感器放置在表演者的颈部的后面并且然后将第二"校准传感器"放置在表演者的眼睛上是快速并且强大的创建节点的方式。该特征将在下面进一步更好地解释。A further advantage of using heading data involves a "calibration offset" feature. Using the heading data, a second sensor can be used to instantly calculate the desired offset position of the focus node. For example, placing a sensor behind a performer's neck and then placing a second "calibration sensor" over the performer's eyes is a fast and powerful way to create a node. This feature will be further explained below.

使用朝向数据的进一步优点涉及"快速设置“功能,这是校准偏移特征的特殊情况。当摄像机和对象二者具有安装到其上的传感器、并且摄像机指向传感器位于视线之外(例如在其背面上)的对象时,快速设置功能是有益的。然后调整摄像机焦距直至所述对象的期望的部分、例如他们的眼睛被焦点对准。使用来自对象和摄像机的朝向数据两者并且然后使用由镜头指示的距离数据,还可以获得关注节点的快速的并且适当精确的设置。A further advantage of using heading data relates to a "quick setup" function, which is a special case of the calibration offset feature. The quick setup function is beneficial when both the camera and the object have sensors mounted thereon, and the camera is pointed at the object with the sensor out of sight (e.g., on its back). The camera focus is then adjusted until the desired part of the object, such as their eyes, is in focus. Using both heading data from the object and the camera, and then using the distance data indicated by the lens, a quick and reasonably accurate setup of the node of interest can also be achieved.

现在将描述根据本发明的特定实施例的各种功能性特征和方面。Various functional features and aspects according to specific embodiments of the present invention will now be described.

根据图1C中所示的实施例,通过进一步参考图1A,示出了用于控制与图像捕捉有关的设备的设置的方法300。方法300包括在存储器132中贮存314将被所述设备112处理的预定的感兴趣的区域(即"节点")的一个或多个标识符和相应的位置信息(即相对于设备的三维坐标)。位置信息由以下步骤获得:在感测装置114处捕捉310位置数据和朝向数据;以及从所述感测装置114的位置和朝向数据确定312将被所述设备112处理的感兴趣的区域的位置信息。方法300还包括在处理器16处接收316一个或多个标识符的选择。方法300还包括通过输出端口43输出318指向设备112的控制信号,以便于基于选择的感兴趣的区域的位置信息实时控制320设备112的设置。According to the embodiment shown in FIG1C , with further reference to FIG1A , a method 300 for controlling settings of a device related to image capture is shown. The method 300 includes storing 314 in the memory 132 one or more identifiers and corresponding position information (i.e., three-dimensional coordinates relative to the device) for predetermined regions of interest (i.e., "nodes") to be processed by the device 112. The position information is obtained by: capturing 310 position data and orientation data at the sensing device 114; and determining 312 position information for the regions of interest to be processed by the device 112 from the position and orientation data of the sensing device 114. The method 300 also includes receiving 316 at the processor 16 a selection of one or more identifiers. The method 300 also includes outputting 318, via the output port 43, a control signal directed to the device 112 to facilitate real-time control 320 of the settings of the device 112 based on the position information of the selected regions of interest.

节点阵列:Node array:

通过预先定义节点(静止的或移动的)可以在界面中创建期望的节点的阵列。简单地通过选择节点,镜头将即时地对焦,且/或摄像机将指向并且构图在视场中的该节点。这允许对于在现场即兴创作上,在大量的对象/物体之间极其快速的变焦以及在两个移动的对象/物体之间准确地调节,而不需要焦距表盘的手动测量或手动调节的任何动作——或在摄像机操作的情况下,对摄像机自身的任何手动调节。因此,在这种情况中,在图1C中描述的方法300的接收步骤316包括接收预定顺序的选择的节点;并且方法对所选择的每个节点重复输出步骤318,以便于根据顺序的节点选择来对多个节点依次自动地控制320设备112的设置。By pre-defining nodes (stationary or moving), an array of desired nodes can be created in the interface. Simply by selecting a node, the lens will instantly focus and/or the camera will be pointed at and framed at that node in the field of view. This allows for extremely fast zooming between a large number of subjects/objects and accurate adjustment between two moving subjects/objects for live improvisation without requiring any manual measurement or manual adjustment of the focus dial - or in the case of camera operation, any manual adjustment of the camera itself. Therefore, in this case, the receiving step 316 of the method 300 described in Figure 1C includes receiving a predetermined order of selected nodes; and the method repeats the output step 318 for each node selected, so as to automatically control 320 the settings of the device 112 for multiple nodes in sequence according to the sequential node selection.

节点定序器:Node Sequencer:

还有可能创建预定顺序的节点,这适合影片的电影制作的当前范例,其中导演提前知道对象的顺序。以此方式,通过预加载期望的节点可以通过简单地点击"下一个"按钮、或者来回转动表盘(实际的或虚拟的)简单地从一个对象/物体移位到下一个,用户不仅可以在任何期望的时刻在两个对象之前切换,还可以指令在对象之间调节焦距的速度(对焦的速度)。因此,当经由输入端口41接收用户输入命令时提示前述重复在图1C中所示的步骤318、320(参照图1A)。可替换地,基于贮存在存储器132中的规划而重复步骤318、320。It is also possible to create a pre-determined sequence of nodes, which fits the current paradigm of film production, where the director knows the order of objects in advance. In this way, by pre-loading the desired nodes, the user can simply shift from one object/object to the next by simply clicking a "next" button or turning a dial (real or virtual) back and forth. This allows the user to not only switch between two objects at any desired moment, but also to dictate the speed at which the focus is adjusted between objects (the speed of focusing). Thus, the aforementioned repetition of steps 318 and 320 shown in FIG. 1C (with reference to FIG. 1A ) is prompted upon receiving a user input command via input port 41. Alternatively, steps 318 and 320 may be repeated based on a schedule stored in memory 132.

几何滑块:Geometry Slider:

还可以在触摸屏装置上以几何的(三角形和正方形)或随机的模式(Z字形线、曲线等)布置节点(或节点阵列)的图形表示,并且通过在每个节点之间滑动手指用户将在对象之间"对焦",再次具有对对焦的速度的控制,并且再次不管对象或摄像机的运动而不需要测量或调节实际的焦距距离。A graphical representation of nodes (or an array of nodes) could also be arranged on a touch screen device in a geometric (triangles and squares) or random pattern (zigzag lines, curves, etc.), and by sliding a finger between each node the user would "focus" between objects, again with control over the speed of focusing, and again regardless of object or camera movement without the need to measure or adjust the actual focus distance.

因此,图1C中所示的方法300(参照图1A)还包括经由输入端口41通过对应于两个相邻节点之间的位移的在触摸屏上的滑动运动来接收用户输入命令,其中接收步骤316的选择包括相邻节点的标识符。方法300还包括根据所述位移关联所述相邻节点之间的中间位置,对所述中间位置的每一个重复输出步骤318。Therefore, the method 300 shown in FIG1C (with reference to FIG1A ) further includes receiving a user input command via input port 41 by a sliding motion on the touch screen corresponding to a displacement between two adjacent nodes, wherein the selection of receiving step 316 includes identifiers of the adjacent nodes. The method 300 further includes associating intermediate positions between the adjacent nodes based on the displacement, and repeating output step 318 for each of the intermediate positions.

界面模式:Interface mode:

使用节点阵列、定序器、几何滑块和硬件表盘或其它输入装置,可以在对焦的两个基础模式之间选择。Using the node array, sequencer, geometry slider, and hardware dial or other input device, you can choose between two basic modes of focus.

一个模式是"轻击以对焦",其中用户简单地轻击按钮(虚拟的或在物理输入装置上)以选择节点或在节点序列中向前移动到下一个预定的节点。在该模式中,还应注意的是可以预先确定当通过预先定义偏好(reference)或者通过调节虚拟的“速度表盘”或模拟输入装置来选择下一节点时调节焦距的速度。One mode is "tap to focus," where the user simply taps a button (virtual or on a physical input device) to select a node or move forward in a sequence of nodes to the next predetermined node. In this mode, it should also be noted that the speed at which the focus is adjusted when the next node is selected can be predetermined by pre-defining a preference or by adjusting a virtual "speed dial" or analog input device.

第二模式是“滑动以对焦”,其中用户不仅选择下一节点,而是通过使用几何滑块、虚拟的表盘或模拟输入装置能够选择下一节点并且实时实现调节焦距的速度。这仿真了当前的对焦范例,其中调焦者控制调节的速度,而不引入任何在期望的对象上失焦的风险。The second mode is "slide to focus," where the user not only selects the next node, but can select the next node and adjust the speed of focus in real time by using a geometric slider, a virtual dial, or an analog input device. This emulates the current focus paradigm, where the focuser controls the speed of adjustment without introducing any risk of losing focus on the desired object.

来自单个传感器的尖端偏移和多个节点:Tip offset and multiple nodes from a single sensor:

通过使用提供一种实时位置和朝向数据的传感器,可以使用相同的传感器创建多个节点。这通过使用X、Y、Z位置坐标以及相对的方位、高度、转动坐标输入“偏移值”而实现。因此,附接到对象的头部的后部的传感器由于其是硬性的物体可以具有与头部相关联的几个节点。眼睛、鼻尖、耳朵等使用该技术都可以从单个传感器被定义为节点。By using a sensor that provides real-time position and orientation data, multiple nodes can be created using the same sensor. This is achieved by inputting an "offset value" using X, Y, and Z position coordinates, as well as relative azimuth, altitude, and rotation coordinates. Thus, a sensor attached to the back of a subject's head can have several nodes associated with the head, as it is a rigid object. Eyes, the tip of the nose, ears, and so on can all be defined as nodes from a single sensor using this technology.

尖端偏移的精细调节:Fine adjustment of tip offset:

在难以在三维空间中测量准确的偏移的情况下,提供两个自动化技术:In situations where it is difficult to measure the exact offset in 3D space, two automated techniques are provided:

-假设传感器被放置在演员的颈部的后面并且期望的节点实际上是眼睛,第二传感器可以暂时放置在眼睛上。使用来自第二传感器的数据“尖端偏移”数据可以被自动地计算并且施加到节点。- Assuming the sensor is placed at the back of the actor's neck and the desired node is actually the eye, a second sensor can be temporarily placed over the eye. Using the data from the second sensor "tip offset" data can be automatically calculated and applied to the node.

-可以通过使对象处于到摄像机的视线中而手动地调节尖端偏移,然后调焦者可以调节焦距直到期望的节点被焦点对准(通常是眼睛)。系统能够大致校准其自己的尖端偏移,因为它知道传感器的朝向并且它将知道相对于传感器数据调节了多少焦距。- The tip offset can be adjusted manually by bringing the subject into line of sight to the camera, the focuser can then adjust the focus until the desired nodal point is in focus (usually the eye). The system is able to roughly calibrate its own tip offset because it knows the orientation of the sensor and it will know how much to adjust the focus relative to the sensor data.

自动分析(profiling):Automatic profiling:

如果用户使用藏在表演者身体上的某处的传感器将节点定义为眼睛,可以通知系统该节点实际上是“两个节点”,左眼和右眼。由于系统在所有时间都知道摄像机处于何处以及对象处于何处以及对象相对于摄像机如何朝向,它例如可以当脸的左侧朝向摄像机时对焦在左眼上、并且当脸的右侧朝向摄像机时对焦在右眼上。因此,在图1C中示出的方法300(参照图1A)还包括在步骤316处在接收的节点的选择中确定满足给定条件的节点(或者一个或多个感兴趣的区域)。从而根据满足给定条件的节点产生步骤318的信号。If the user defines a node as an eye using a sensor hidden somewhere on the performer's body, the system can be informed that the node is actually "two nodes", a left eye and a right eye. Since the system knows at all times where the camera is and where the object is and how the object is oriented relative to the camera, it can, for example, focus on the left eye when the left side of the face is facing the camera and on the right eye when the right side of the face is facing the camera. Therefore, the method 300 shown in Figure 1C (with reference to Figure 1A) also includes determining at step 316 the nodes (or one or more regions of interest) that meet the given condition among the selection of nodes received. The signal of step 318 is thereby generated based on the nodes that meet the given condition.

同样地,任何旋转的对象或物体可以具有与其相关联的几个“自动分析”节点,随着所述对象或物体转动,所述节点可以被触发。Likewise, any rotating subject or object may have several "auto-analyze" nodes associated with it that may be triggered as the subject or object turns.

变焦控制:Zoom control:

类似于对焦,位置和朝向数据也可以被用于调节变焦。例如,如果所期望的是不管对象的距离将其在画面框中保持完全一样的大小,通过输入镜头参数,系统可以随着对象或物体移动自动缩小和放大。NB:该效应有时被称为“移动变焦(Dolly Zoom)”或者“三倍反向变焦(Triple Reverse Zoom)”,并且目前需要非常稳定的摄像机运动以及多次彩排来实现。该系统使得能够在手持式镜头并且其中随机的表演者和摄像机移动中创建该效果。Similar to focus, position and orientation data can also be used to adjust zoom. For example, if the desire is to keep an object at exactly the same size within the frame regardless of its distance, by inputting lens parameters, the system can automatically zoom in and out as the object or subject moves. NB: This effect is sometimes called "Dolly Zoom" or "Triple Reverse Zoom" and currently requires very stable camera motion and multiple rehearsals to achieve. This system makes it possible to create this effect in handheld footage with random performer and camera movements.

镜像模式:Mirror Mode:

还可以延伸功能以计算如拍摄例如在镜子中的反射所需要的虚拟的距离和或角。其中在镜子中反射的摄像机和对象之间的焦距等于从摄像机到镜子的距离加上从镜子到对象的距离,通过将传感器放置在镜子和对象上(以及摄像机上,如果摄像机移动)系统可以快速地计算正确的虚拟距离以当期望时对焦反射。The functionality can also be extended to calculate virtual distances and or angles needed to capture, for example, a reflection in a mirror. Where the focal length between the camera and the object reflected in the mirror is equal to the distance from the camera to the mirror plus the distance from the mirror to the object, by placing sensors on the mirror and the object (and on the camera if the camera is moving) the system can quickly calculate the correct virtual distance to focus on the reflection when desired.

基于两个节点或两个偏移节点之间的最佳的焦平面的焦距:The focal length based on the optimal focal plane between two nodes or two offset nodes:

例如可能期望的是,对焦到每一个穿戴传感器的两个对象上。人们从而可以选择中点,使得选中的镜头将同时允许对象由于焦平面将处于每个对象的中间点而被焦点对准,并且由于焦平面将大致在景深的中点处而将允许两个对象的最佳的焦距。摄影师也可以选择两个对象之间的任何点,特别是如果他们希望确保在另一个对象离开景深的范围的情况下给予两个对象的一个优先权并且确定其被焦点对准。For example, it may be desirable to focus on two subjects per sensor. One can thus select the midpoint so that the selected lens will simultaneously allow the subjects to be in focus, as the focal plane will be midway between each subject, and will also allow for optimal focus of both subjects, as the focal plane will be approximately midway between the depth of field. The photographer can also select any point between the two subjects, particularly if they wish to ensure that one subject is prioritized and in focus if the other subject falls outside the depth of field.

用于3D制作的两眼间角调节:Interocular angle adjustment for 3D production:

一些三维摄影设置要求两眼间角的实时调节。该系统可以通过将该角栓系到选中的对象/物体使该调节自动化。Some 3D photography setups require real-time adjustment of the interocular angle. The system can automate this adjustment by tethering the angle to a selected subject/object.

光圈控制:Aperture Control:

在一些情况中,可能所期望的是“拉动光圈”以调节进入镜头的光量,例如当在单个镜头中从较亮的室外地点移动到较暗的室内时。通过将摄像机位置栓系到光圈调节,可以对预定地点的范围进行自动的光圈调节。此外,因为朝向数据可用于摄像机,可以仅基于摄像机的方向调节光圈,允许了其中布景或地点可以被点亮到多于一个“关键光”、并且光圈将总是在这些曝光值之间平滑地调节的当前不可能的场景。In some situations, it may be desirable to "pull the iris" to adjust the amount of light entering the lens, such as when moving from a brighter outdoor location to a darker indoor location in a single shot. By tying the camera position to the iris adjustment, automatic iris adjustment can be performed for a range of predetermined locations. Furthermore, because heading data is available to the camera, the iris can be adjusted based solely on the camera's orientation, allowing for currently impossible scenarios where a set or location can be lit to more than one "key light," and the iris will always adjust smoothly between these exposure values.

保存设置:Save settings:

可以使用该系统预先计划非常复杂的拍摄或场景,并且将关于“节点”和任何序列的所有所需要的数据输入到在界面软件上的文件中。对“场景”的该保存极大体改善了设置效率,并且还给予创造者计划和准备用当前计数不可能实现的高度复杂的拍摄的能力。The system can be used to pre-plan very complex shots or scenes, and all the required data about the "nodes" and any sequence can be entered into a file on the interface software. This storage of "scenes" greatly improves the efficiency of setup overall, and also gives the creator the ability to plan and prepare highly complex shots that are impossible with current technology.

距离显示:Distance display:

系统能够计算在任何时间时对象和摄像机之间的相对距离并且在任何时间时在任何期望的读数上将此显示为距离数据。例如,选择的“节点”距离数据可以总是被显示在软件界面的主控制屏幕上。此外“卫星装置”可以结合到该距离数据,并且用户可以在任何时间时选择任何节点以确定数据。The system can calculate the relative distance between an object and the camera at any given time and display this distance data on any desired reading at any given time. For example, the distance data for a selected "node" can always be displayed on the main control screen of the software interface. Furthermore, "satellites" can be associated with this distance data, and the user can select any node to determine the data at any time.

例如,调焦者可以在彩排期间对焦于演员A,但是电影摄影师可能希望知道演员B离开有多远以评估所需要的灯光水平,以构建导演所要求的景深。使用类似iPod TouchTM或智能手机的手持装置,即使当演员A被焦点对准时,电影摄影师也可以实时获取演员B的距离数据。For example, a focus puller may be focusing on actor A during rehearsal, but the cinematographer may want to know how far away actor B is to assess the lighting levels needed to create the depth of field the director desires. Using a handheld device like an iPod Touch or smartphone, the cinematographer can obtain distance data for actor B in real time, even while actor A is in focus.

多摄像机支持:Multi-camera support:

该系统允许用户设置一个或多个摄像机,而没有可限定的上限,并且将多个摄像机对准相同的物体或者将每个摄像机对准分离的物体。The system allows the user to set up one or more cameras, with no definable upper limit, and to direct multiple cameras at the same object or to direct each camera at a separate object.

其它实时数据显示:Other real-time data shows:

获取实时数据还允许其它实时计算和指标:Retrieving real-time data also allows for other real-time calculations and metrics:

-在任何给定时间时对于任何给定节点的景深。-Depth of field for any given node at any given time.

-最小焦距警告——例如:当达到预定的近距离时可以以橙色显示距离,并且当对象达到实际最小的焦距时以红色标记。- Minimum focus distance warning - for example: the distance can be displayed in orange when a predetermined close distance is reached and marked in red when the object reaches the actual minimum focus distance.

手动覆盖以及自动切换:Manual override and automatic switching:

由于任何调焦者或摄像机摄影师可能希望在任何时间时手动地控制焦距,不管系统的效率,该系统使能全时在自动和手动之间的手动或自动切换。这些是在当前系统中可用的方法:Since any focus puller or camera operator may wish to manually control focus at any time, regardless of the efficiency of the system, the system enables full-time manual or automatic switching between automatic and manual. These are the methods available in the current system:

-数字精细调节“表盘”永远对调焦者可用。简单地通过调节该精细调节,调焦者可以以任何量来改写自动焦距设置。- A digital fine adjustment "dial" is always available to the focuser. Simply by adjusting this fine adjustment, the focuser can override the automatic focus setting by any amount.

-“开拍板(slate)模式”。通过选择按钮,自动系统立即切换到全手动。- "Slate Mode". By selecting a button, the automatic system switches instantly to full manual mode.

-“自动切换”。该模式允许用户预先定义的一点,在所述点处节点、对象或物体从自动切换到手动或者相反。这可能对当其中对象长距离行进时使用非常长的镜头是有用的,且/或可以是用于避免数据中不期望的变化的方法。- "Auto Switch". This mode allows the user to pre-define a point at which a node, object, or subject switches from automatic to manual or vice versa. This may be useful for very long lenses where the subject travels long distances, and/or may be a method for avoiding undesirable changes in the data.

吊杆安装的源:Source for boom installation:

由于电影产业已经习惯于在被称为"吊杆"的长的可伸缩的杆上安装麦克风的处理,该系统的一个独特的实现方式是在吊杆上安装磁性源,然后该吊杆可以以麦克风在最近的方便的位置被放置在表演区域之上的安全相同的方式,在最近的方便的位置被放置在表演区域之上。如果对象和摄像机两者都配备有传感器,仍可以收集理想的焦距数据以用于多个节点。然而,该方法不允许摄像机操作或使用不与传感器相关联的固定的节点。Since the film industry is accustomed to mounting microphones on long, retractable poles called "booms," a unique implementation of this system is to mount a magnetic source on the boom, which can then be placed above the performance area in the same secure manner that microphones are placed at the nearest convenient location above the performance area. If both the subject and the camera are equipped with sensors, ideal focus data can still be collected for multiple nodes. However, this method does not allow for camera operation or the use of fixed nodes that are not associated with sensors.

双(和多个)源吊杆:Dual (and multiple) source booms:

将在吊杆上安装单个源的基本想法延伸,还可以安装两个源,每个在吊杆的一端,以扩大范围。同样地,其它手持的配置——三角形或正方形,例如可以扩大范围,由于所述源的相对位置可以在设置软件中预先配置,所以允许不需要设置上的校准的快速设置。Extending the basic idea of mounting a single source on a boom, it is also possible to mount two sources, one at each end of the boom, to extend the range. Similarly, other handheld configurations—a triangle or square, for example—can extend the range, and since the relative positions of the sources can be pre-configured in the setup software, this allows for quick setup without requiring on-set calibration.

摄像机安装的源:Camera installation source:

直接在摄像机上安装所述源并且使用软件将摄像机的相对位置校准到源可以操作所述系统而不需要摄像机上的传感器。这允许快速地设置"单源系统",其在最需要敏锐的对焦的邻近的范围处提供极大的准确性。Mounting the source directly on the camera and using software to calibrate the camera's relative position to the source allows the system to operate without the need for an on-camera sensor. This allows for quick setup of a "single-source system" that provides great accuracy at close ranges where sharp focus is most needed.

模块化系统:Modular system:

多个源(没有理论上的上限值)可以被布置在预定的配置中或随机地布置。预定的配置可以使能快速设置,(诸如具有10ft侧的等边三角形)并且覆盖更大的区域。随机的配置需要在软件中的一些手动设置,但是允许将由系统覆盖的形状和区域中的极大的灵活性。Multiple sources (with no theoretical upper limit) can be arranged in a predetermined configuration or randomly. Predetermined configurations can enable quick setup (such as an equilateral triangle with 10 ft sides) and cover a larger area. Random configurations require some manual setup in the software, but allow for great flexibility in the shapes and areas to be covered by the system.

静止的磁性源(或光学传感器)校准:Stationary magnetic source (or optical sensor) calibration:

由于系统使用多个磁性源,(或在红外线的情况下,多个摄像机)并且每一个源的X,Y,Z和A,E,R需要被输入到所述系统中,所以在系统中包括用于输入该数据的简单界面。Since the system uses multiple magnetic sources, (or in the case of infrared, multiple cameras) and the X,Y,Z and A,E,R of each source needs to be entered into the system, a simple interface for entering this data is included in the system.

预测性(或卡尔曼)滤波:Predictive (or Kalman) filtering:

由于任何自动化的系统实时查看数据,其总是回顾过去。尽管该系统将极其地快速,但即使一百万分之一秒的滞后在极其充满挑战的情况下(即在低亮度中具有迅速地移动的对象的非常长的镜头)可能具有可以可见的效果。当前电影制作人和电影摄影师避开这些充满挑战的情况并且事实上为了克服它们而花费大量的金钱,特别是在租借非常昂贵的照明套件以维持5.6的平均F/分档位(stop)。通过将预测性算法增加到系统可以通过补偿在焦点位置的任何延迟而非常容易的克服数据中的任何轻微的滞后,其中所述补偿在焦点位置中的任何延迟通过以相对于对象朝向或远离摄像机的运动的速度的固定比例调节焦点位置。通过增加该特征,即使在最具挑战性的情况下甚至是获得焦距是相对简单的。Since any automated system is viewing data in real time, it is always looking back. While the system will be extremely fast, even a lag of one millionth of a second can have a visible effect in extremely challenging situations (i.e., very long shots with rapidly moving subjects in low light). Currently, filmmakers and cinematographers avoid these challenging situations and, in fact, spend a great deal of money trying to overcome them, especially in renting very expensive lighting kits to maintain an average F/stop of 5.6. By adding a predictive algorithm to the system, any slight lag in the data can be easily overcome by compensating for any delay in focus position by adjusting the focus position at a fixed ratio relative to the speed of the subject's motion toward or away from the camera. By adding this feature, even achieving focus in even the most challenging situations is relatively simple.

如在该系统中的所有特征一样,可以通过使用者增加所期望的一样多的或者一样少的自动化来校准。例如,非常激进的设置将即使在非常迅速地移动的物体上也创建紧密的对焦。相对不激进的设置将创建更加自然的延迟,其对一些创造性的目标可能更加适合。As with all features in this system, the user can adjust the automation as much or as little as desired. For example, a very aggressive setting will create tight focus even on very fast-moving objects. A less aggressive setting will create a more natural delay, which may be more suitable for some creative goals.

数据记录:Data Records:

如之前所述,在该系统中的位置和朝向数据可以实时地被记录(即贮存在存储器132中——见图1A)并且在之后在其它后期制作方案中使用。As previously mentioned, position and orientation data in the system can be recorded in real time (ie, stored in memory 132 - see FIG. 1A ) and later used in other post-production scenarios.

增强的摄像机控制:Enhanced camera controls:

使用位置和朝向数据可以完整地自动化摄像机的操作以及移动摄影车和/或摄影升降机转臂或摄影升降车的移动。但是,摄像机摄影师和电影摄影师希望对最终构图的微妙之处具有全部的控制。该系统的一个特征是要完整地自动化摄像机控制的复杂工作,并且允许摄影师通过具有触摸屏功能的视频重放屏幕简单地移动他的手指来调节构图。例如,自动化的系统可能将表演者保持在画面框的正中心,但是摄影师希望将表演者置于画面框的左侧。通过简单地将手指从在视频图像上的任何点拖到左侧,系统将补偿和调节表演者在画面框中的位置到期望的构图。以此方式,构图迅速地移动的物体将像构图静止的物体一样简单。该相同的调节可以通过操纵杆控制来实现,其当前被用于标准的远程摄像机操作并且这还将是对当前技术的很大改善。然而触摸屏拖动特征更加直观并且不需要训练。Using position and orientation data, camera operation and the movement of dollies and/or camera crane jibs or carts can be fully automated. However, camera operators and cinematographers desire complete control over the subtleties of the final composition. A unique feature of this system is that it completely automates the complexities of camera control while allowing the operator to adjust the composition simply by moving his finger through a touchscreen-enabled video playback screen. For example, an automated system might keep a performer in the exact center of the frame, but the operator wishes to position the performer to the left of the frame. By simply dragging a finger from any point on the video image to the left, the system will compensate and adjust the performer's position within the frame to the desired composition. In this way, framing rapidly moving objects is as simple as framing stationary ones. This same adjustment can be accomplished using joystick control, currently used for standard remote camera operation and a significant improvement over current technology. However, the touchscreen drag feature is more intuitive and requires no training.

红外LED:Infrared LED:

上述系统使用AC磁运动捕捉系统。但是,可以应用于较大的工作室配置的同样可行的替代是使用红外LED运动跟踪系统以捕捉相同的数据。虽然红外对传感器摄像机是视线的,但是其不需要在摄像机和对象之间的视线。可以在衣服、头发和对摄像机不可见的其他物体中隐藏小型的红外LED。还可以创建具有红外图案缝进其中的"智能织物",其可以提供相同的数据。The system described above uses an AC magnetic motion capture system. However, an equally viable alternative, applicable to larger studio configurations, is to use an infrared LED motion tracking system to capture the same data. While infrared is line-of-sight to the sensor camera, it does not require line-of-sight between the camera and the subject. Small infrared LEDs can be hidden in clothing, hair, and other objects that are invisible to the camera. It is also possible to create "smart fabrics" with infrared patterns sewn into them that can provide the same data.

差分全球(和本地)定位系统:Differential Global (and Local) Positioning Systems:

差分GPS提供操作该系统所需的数据的几乎所有的相对位置。通过加速处理时间、"拴系(tether)"和增加额外的传感能力来增强GPS以提供朝向数据将使得该系统在世界上几乎任何室外地点处功能完整。室内的工作室应用可以通过开发并使用"本地定位系统"来增强,所述"本地定位系统"以与差分GPS相同的原理但是以小得多的规模操作,并且由于"卫星"可以是静止的,还可以实现大得多的准确性。Differential GPS provides nearly all the relative position data needed to operate the system. Augmenting GPS to provide heading data by speeding up processing time, "tethering," and adding additional sensing capabilities will make the system fully functional in virtually any outdoor location in the world. Indoor studio applications can be enhanced by developing and using a "local positioning system" that operates on the same principles as differential GPS but on a much smaller scale and can achieve much greater accuracy because the "satellites" can be stationary.

照明和其它设备控制:Lighting and other equipment control:

一旦节点被限定,可以使得数据可用于需要精确的指定、跟随或锁定目标的以及诸如光束的宽度等等的其它定性调节的任何数量的辅助的控制系统。Once the nodes are defined, the data can be made available to any number of auxiliary control systems requiring precise designation, following or locking onto targets, as well as other qualitative adjustments such as beam width and the like.

体育训练:Physical training:

将该系统适应于体育训练是相对简单的事。例如,将网球机器拴系到知道运动员的确切的位置的软件界面,可以将机器编程到总是向运动员的弱点(反手拍)打球和/或创建具有以任何速度或角度发球的机器的能力的更具挑战性的虚拟的对手。Adapting this system to sports training is a relatively simple matter. For example, by tethering a tennis machine to a software interface that knows the player's exact position, the machine can be programmed to always hit the ball to the player's weak spot (backhand) and/or create a more challenging virtual opponent with the machine's ability to serve at any speed or angle.

用于视力削弱的环境的应用:Applications for visually impaired environments:

系统的另一应用可以用于低亮度情况或用于视觉上削弱的人们。例如,环境可以被映射为节点并且视觉削弱的人可以接收关于他们的位置和朝向以及在房间中的物体和人员的位置和朝向的各种类型的反馈。另一个示例是在低亮度情况中——诸如极度的暗房,其中任何人不能看见他的或她的环境。Another application of the system can be used in low-light situations or for visually impaired people. For example, the environment can be mapped as nodes and the visually impaired person can receive various types of feedback about their position and orientation as well as the position and orientation of objects and people in the room. Another example is in low-light situations—such as an extremely dark room—where a person cannot see their surroundings.

现在参考图7到25,将描述图形用户界面(GUI)64的组件。通过用于装置40的用户界面装置42显示GUI 64,以便允许用户操作系统10(见图1、2A和2B)。7 to 25, there will be described components of a graphical user interface (GUI) 64. The GUI 64 is displayed by the user interface device 42 for the device 40 to allow a user to operate the system 10 (see Figs. 1, 2A and 2B).

图7示出了GUI 64的主页屏幕66。FIG. 7 shows a home screen 66 of the GUI 64 .

图8示出了节点创建/修改窗口68。FIG8 shows a node create/modify window 68 .

图9示出了图7的主页屏幕66的一部分,即节点阵列70,其中用户在阵列70中创建了各种节点72。FIG9 shows a portion of the home screen 66 of FIG7 , namely a node array 70 , in which a user has created various nodes 72 in the array 70 .

图10示出了图9的节点阵列70的一部分,并且更具体地,节点72的示例。FIG10 illustrates a portion of node array 70 of FIG9 , and more specifically, an example of node 72 .

图11示出了图9的节点阵列70的另一部分,并且更具体地,被高亮的节点72表示通过轻击所述节点而已被用户选择。节点可以向用户指示各种信息(例如其是否与传感器相关联、传感器是否在线等等)。Figure 11 shows another portion of the node array 70 of Figure 9, and more specifically, the highlighted node 72 indicates that it has been selected by the user by tapping the node. A node can indicate various information to the user (such as whether it is associated with a sensor, whether the sensor is online, etc.).

图12示出了图7的主页屏幕66的一部分,即定序器74。用户已经以指定的顺序向定序器74记录了各种节点。Figure 12 shows a portion of the home screen 66 of Figure 7, namely the sequencer 74. The user has recorded various nodes into the sequencer 74 in a specified order.

图13示出了图7的主页屏幕66的另一部分,即例示出边角表盘控制界面76。在该实施例中,表盘被用于精细调节镜头的焦距距离。Figure 13 shows another portion of the home screen 66 of Figure 7, illustrating the corner dial control interface 76. In this embodiment, the dial is used to fine-tune the focal length distance of the lens.

图14示出了图7的主页屏幕66的又一部分,即例示出另一个边角表盘控制界面78。在该实施例中,表盘被用于控制镜头将焦点从一个节点拉到另一个的速度。Figure 14 shows yet another portion of the home screen 66 of Figure 7, illustrating another corner dial control interface 78. In this embodiment, the dial is used to control the speed at which the lens pulls focus from one node to another.

图15示出了用于限定摄像机的GUI 64的窗口80。FIG. 15 shows a window 80 of the GUI 64 for defining a camera.

图16示出了用于校准镜头并且选择哪一个镜头在摄像机上的GUI 64的窗口82。FIG. 16 shows a window 82 of the GUI 64 for calibrating the lenses and selecting which lens is on the camera.

图17示出了用于选择运动跟踪系统的设置的GUI 64的窗口84。FIG. 17 shows a window 84 of the GUI 64 for selecting settings for the motion tracking system.

图18示出了用于在存储器中保存应用的当前状态的GUI 64的窗口86,包括节点阵列70和定序器74。FIG. 18 shows a window 86 of the GUI 64 for saving the current state of the application in memory, including the node array 70 and the sequencer 74 .

图19示出了GUI窗口64的一部分,包括允许用户调节系统施加到节点数据的延迟/滞后补偿的量的边角控制器88。FIG19 shows a portion of the GUI window 64, including a corner control 88 that allows the user to adjust the amount of delay/lag compensation that the system applies to the nodal data.

图20示出了对GUI 64(“完整功能几何线性”)的替代控制窗口90,其允许定序器功能的交互式图形表示。用户可以简单地通过将手指从一个点(每一个点表示一节点)滑动到下一个来对焦(或进行其他自动调节)。用户从一个点到另一个点移动手指的速度控制将要进行的焦距(或其它)调节的速度。FIG20 shows an alternative control window 90 to the GUI 64 ("Full Function Geometry") that allows for an interactive graphical representation of the sequencer's functionality. The user can focus (or make other automatic adjustments) simply by sliding a finger from one point (each point representing a node) to the next. The speed at which the user moves their finger from one point to another controls the speed at which focus (or other) adjustments are made.

图21示出了对GUI 64("完整功能几何线性")的替代控制窗口92,其允许定序器功能的交互式图形表示。用户可以确定在屏幕上的点的确切的数量和位置(每一个点表示一节点)并且然后简单地通过从一个节点到下一个滑动手指来对焦(或进行其他自动调节)。用户从一个点到另一个点移动手指的速度控制将要进行的焦距(或其它)调节的速度。FIG21 shows an alternative control window 92 to the GUI 64 ("Full Function Geometry") that allows for an interactive graphical representation of the sequencer's functionality. The user can determine the exact number and location of points on the screen (each point representing a node) and then focus (or make other automatic adjustments) simply by sliding a finger from one node to the next. The speed at which the user moves their finger from one point to another controls the speed at which focus (or other) adjustments are made.

图22示出了对GUI 64的替代控制窗94(“完整功能的几何6节点”),其允许在任何6个点之间的交互式调节,每一个点表示一节点。该配置的优点是不需要预定的顺序。用户从一个点到另一个点移动手指的速度控制将要进行的焦距(或其它)调节的速度。FIG22 shows an alternative control window 94 to the GUI 64 ("Fully Functional Geometry 6-Node") that allows interactive adjustment between any six points, each representing a node. This configuration has the advantage that no predetermined sequence is required. The speed at which the user moves their finger from one point to another controls the speed at which focus (or other) adjustments will be made.

图23示出了对GUI 64的替代控制窗96("完整功能的几何5节点"),其允许在任何5个点之间的交互式调节,每一个点表示一节点。该配置的优点是不需要预定的顺序。用户从一个点到另一个点移动手指的速度控制将要进行的焦距(或其它)调节的速度。FIG23 shows an alternative control window 96 ("Fully Functional Geometry 5-Node") to the GUI 64 that allows interactive adjustment between any five points, each representing a node. This configuration has the advantage that no predetermined sequence is required. The speed at which the user moves their finger from one point to another controls the speed at which focus (or other) adjustments are made.

图24示出了在具有多个功能的GUI 64上的主控制窗口中的图19的边角控制器88的细节98(“边角几何4节点”)。该功能示出了当使用四个节点时其可以如何被用作容易控制的图形表示。其允许在四个点之间的交互式调节。该配置的优点是不需要预定的顺序并且可以容易地通过右(或左)拇指在主GUI 64窗口中操作。用户从一个点到另一个点移动手指的速度控制将要进行的焦距(或其它)调节的速度。FIG24 shows a detail 98 of the corner controller 88 of FIG19 in a main control window on a GUI 64 having multiple functions ("Corner Geometry 4 Nodes"). This function shows how it can be used as a graphical representation for easy control when using four nodes. It allows interactive adjustment between four points. The advantage of this configuration is that no predetermined sequence is required and it can be easily operated by the right (or left) thumb in the main GUI 64 window. The speed at which the user moves his finger from one point to another controls the speed at which the focus (or other) adjustment will be made.

图25示出了在具有多个功能的GUI 64上的主控制窗口中的边角控制器88的细节100("边角几何3节点")。该功能示出了当使用三个节点时其可以如何被用作容易控制的图形表示。其允许在三个点之间的交互式调节。该配置的优点是不需要预定的顺序并且可以容易地通过右(或左)拇指在主GUI 64窗口中操作。用户从一个点到另一个点移动手指的速度控制将要进行的焦距(或其它)调节的速度。FIG25 shows a detail 100 of the corner controller 88 in the main control window of the GUI 64 having multiple functions ("Corner Geometry 3 Nodes"). This function shows how it can be used as a graphical representation for easy control when using three nodes. It allows interactive adjustment between three points. The advantage of this configuration is that it does not require a predetermined sequence and can be easily operated by the right (or left) thumb in the main GUI 64 window. The speed at which the user moves the finger from one point to another controls the speed at which the focus (or other) adjustment will be made.

下面的列表提供根据本发明的实施例的额外的特征、组件、用途等:The following list provides additional features, components, uses, etc. according to embodiments of the present invention:

-该系统的数据流和特征有助于在后期制作中使用。所有数据和视频反馈可以被贮存并且被立即重放(例如对于在影片设置上的每一个‘拍摄’)和/或被贮存以用于后期制作(例如被用于CGI)。这包括摄像机运动/朝向、节点运动/朝向和设备控制。The data flow and features of the system facilitate use in post-production. All data and video feeds can be stored and instantly replayed (e.g. for each 'take' on a film set) and/or stored for use in post-production (e.g. for CGI). This includes camera movement/orientation, node movement/orientation, and device control.

-该系统的数据流和特征有助于在虚拟的和增强现实的环境中使用。所有数据和视频反馈可以被传输、贮存以及立即重放。- The system's data flow and features facilitate its use in virtual and augmented reality environments. All data and video feeds can be transmitted, stored, and replayed instantly.

-该系统的数据流和特征有助于各种硬件的互操作。例如,光圈和灯光调节可以彼此链接并且预先编程使得随着光圈被调节为改变景深,灯光可以自动同时变暗或变亮,因此观众感受景深的改变而不会感受到灯光的改变。这种互操作性涉及所有设备而无限制。The system's data flows and features facilitate interoperability across a wide range of hardware. For example, aperture and lighting adjustments can be linked and pre-programmed so that as the aperture is adjusted to change depth of field, the lights automatically dim or brighten simultaneously, allowing the audience to perceive the change in depth of field without experiencing a change in lighting. This interoperability extends across all devices, without limitation.

-根据实施例的所述系统设计有助于运行应用程序的并且控制所有设备类型的多摄影师界面装置(例如iPads、iPhone、ipod touch)的互操作。与该互操作性一起,每一个界面装置可以与对方发送和接收数据。例如,如果摄影师轻击节点以将他的或她的摄像机对焦在一个物体上,该对焦决定可以立即被表示在控制另一个摄像机的另一个对焦者的装置上,并且也在包括导演和制作人的各种其它工作人员的装置上。The system design according to an embodiment facilitates interoperability of multiple camera interface devices (e.g., iPads, iPhones, iPod touches) running applications and controlling all device types. Along with this interoperability, each interface device can send and receive data with the other. For example, if a camera operator taps a node to focus their camera on an object, that focus decision can be immediately reflected on the device of the other focus operator controlling another camera, as well as on the devices of various other crew members, including the director and producer.

-根据实施例的所述系统设计适用于极其地灵活的多摄像机功能。在对焦的示例中,一个iPad可以控制多个摄像机,并且多个iPad可以同时控制多个摄像机。一个iPad可以通过轻击节点同时控制多个摄像机,或摄像机可以选择单独控制。节点阵列的第二复制还可以暂时替换定序器图形以用于同时地控制一个或多个次级摄像机到永久性节点阵列。所述应用的视频反馈部分可以被制成切换为分屏(例如用于2个摄像机的分屏,或用于4个摄像机的四分屏)以便于监控所有的对焦活动。- The system design according to an embodiment is suitable for extremely flexible multi-camera functionality. In the example of focusing, one iPad can control multiple cameras, and multiple iPads can control multiple cameras simultaneously. One iPad can control multiple cameras simultaneously by tapping on a node, or cameras can be selected for individual control. A second copy of the node array can also temporarily replace the sequencer graphic for simultaneously controlling one or more secondary cameras to the permanent node array. The video feedback portion of the application can be made to switch to a split screen (for example, a split screen for 2 cameras, or a quad split screen for 4 cameras) to facilitate monitoring of all focusing activity.

-高级硬件和软件设计致力于将系统的延迟最小化到毫秒级别(例如中断、多核心、多线程软件等等)。- Advanced hardware and software design aims to minimize system latency to milliseconds (e.g., interrupts, multiple cores, multi-threaded software, etc.).

-由于系统的低的延迟和响应能力,一功能可以允许摄影师实际地减慢自动对焦的响应能力以不会看起来过于“机器人化”。Due to the system's low latency and responsiveness, a feature allows photographers to actually slow down the autofocus's responsiveness so it doesn't look too "robotic."

-机械的输入装置(例如附接至iPad的数字跟随焦距表盘)可以链接到软件的图形用户界面(例如定序器)的任何元件。- A mechanical input device (such as a digital follow focus dial attached to an iPad) can be linked to any element of the software's graphical user interface (such as a sequencer).

-可以通过在屏幕表面上的电荷创建纹理、凹槽等等的感觉的‘可延展的’触摸屏有助于该系统。例如,在‘几何滑块’功能中的图形的线和节点可以变为凹槽以用于改善的操作性,包括限制摄影师对查看触摸屏的依赖。A 'stretchable' touchscreen that can create the feel of texture, grooves, etc. through electrical charges on the screen surface could aid in this system. For example, the lines and nodes of a graph in a 'geometry slider' function could become grooves for improved operability, including limiting the photographer's reliance on looking at the touchscreen.

-对内置的视频反馈显示的记录和回放对于调焦员、摄影导演、导演等等都极其地有用。例如调焦员可以评估在最后一个‘拍摄'或在‘镜头’的最后或者在当天的最后的对焦的质量。- Recording and playback of the built-in video feedback display is extremely useful for focus pullers, DOPs, directors, etc. For example, a focus puller can assess the quality of focus at the end of the last 'take' or 'take' or at the end of the day.

-触摸视频反馈的区域可以选择节点以用于对焦和/或控制其它设备功能,诸如远程头部指定、照明等等。- Touching an area of the video feedback allows you to select a node for focus and/or control other device functions such as remote head pointing, lighting, etc.

-传感器和发送器可以被放置在自由物体的内部。例如,传感器和发送器可以以不影响球的质量或重心的方式被放置在定制的篮球中,以便于在篮球比赛期间对焦于所述球。- Sensors and transmitters can be placed inside free-standing objects. For example, sensors and transmitters can be placed inside a custom basketball in a way that does not affect the ball's mass or center of gravity, making it easier to focus on the ball during a basketball game.

-与保存应用的状态的‘场景保存’功能一起,节点管理器可以允许摄影师保存相似的节点组(例如汽车的所有部件可以被定义为节点并且在未来任何时间时重新加载以重复使用相同的汽车或促进用于新汽车的节点创建)。- Together with the 'scene save' feature that saves the state of the application, the node manager can allow photographers to save similar groups of nodes (e.g. all parts of a car can be defined as nodes and reloaded at any time in the future to reuse the same car or facilitate the creation of nodes for a new car).

-设备控制事项可以基于节点的坐标位置被触发(硬件和/或软件触发)。- Device control events can be triggered based on the node's coordinate position (hardware and/or software triggering).

-节点数据的许多‘智能’使用是可能的。例如,当节点接近或进入摄像机的视场(画面框)时,一指示可以警告摄影师。在该示例中,节点可以被预先编程为当其进入画面框时自动地进入对焦。Many 'intelligent' uses of node data are possible. For example, an indication could alert the camera operator when a node approaches or enters the camera's field of view (frame). In this example, the node could be pre-programmed to automatically come into focus when it enters the frame.

-运动跟踪数据流可以使用许多数学方法过滤。例如,在数据流中的噪声可被量化以确定数据何时变为可疑的或不可用的。该数据可以反馈到‘手动覆盖以及自动切换’软件功能中。许多过滤器还可以应用到数据流以控制减震的水平等等。The motion tracking data stream can be filtered using a variety of mathematical methods. For example, the noise in the data stream can be quantified to determine when the data becomes suspect or unusable. This data can be fed into the "manual override and automatic switching" software functions. A variety of filters can also be applied to the data stream to control the level of vibration reduction, etc.

-当节点定序器是‘中立’的时,2(线)、3(三角形)或4(正方形)几何节点都被设置为绿色。这样当定序器被放为‘正向’或‘反向’时,下一个节点将在2、3或4组之外,并且在序列中的下一个逻辑节点将变为唯一的绿色节点。- When the node sequencer is 'neutral', 2 (line), 3 (triangle) or 4 (square) geometry nodes are all set to green. This way when the sequencer is set to 'forward' or 'reverse', the next node will be outside the 2, 3 or 4 group, and the next logical node in the sequence will become the only green node.

-软件功能可以允许摄影师通过从摄像机观察节点,并且然后操纵所述焦距精细调节功能直至节点被精准地对焦,而快速校正在节点的尖端偏移中的轻微的误差。此时,摄影师可以触发系统自动地重新计算节点的尖端偏移(通过四元数计算)。A software feature can allow the photographer to quickly correct slight errors in the tip offset of the node by observing the node from the camera and then manipulating the focus fine adjustment function until the node is accurately focused. At this point, the photographer can trigger the system to automatically recalculate the tip offset of the node (via quaternion calculations).

-预录制的运动跟踪数据(例如地震运动)可以被反馈到系统中以移动摄像机和设备以便模拟所述预录制的运动。该技术可以提高观众的‘自然的体验’(例如地震运动、在不平地形中的车辆等等)。- Pre-recorded motion tracking data (e.g. earthquake motion) can be fed into the system to move the camera and equipment to simulate the pre-recorded motion. This technology can enhance the audience's "natural experience" (e.g. earthquake motion, vehicles on uneven terrain, etc.).

-特定的(和艰难的)预定义的设备动作可被自动化和/或促进(例如使用手持式摄像机的希区柯克(Hitchcock)变焦、与空中飞人表演者同步的摄像机旋转等)。- Specific (and difficult) pre-defined device actions can be automated and/or facilitated (e.g., a Hitchcock zoom using a handheld camera, camera rotation synchronized with a trapeze artist, etc.).

-与音乐内容相关的效果是可能的包括反馈环路(例如,即时与歌曲的节拍或定位/指定与节拍有关的摄像机的对焦和散焦,包括实况演出)。- Effects related to the musical content are possible including feedback loops (e.g., focusing and defocusing in time with the beat of the song or positioning/specifying the camera in relation to the beat, including live performances).

-整个系统可以是‘可编写脚本的’使得与软件的任何用户交互可以被记录和自动化。- The entire system can be ‘scriptable’ so that any user interaction with the software can be recorded and automated.

-各种配件可用于在物体上的传感器布置。例如,传感器可以放置在带子中以放到演员上,或者可以按扣进用于容易地放置/附接的各种安装件上。- Various accessories are available for sensor placement on objects. For example, sensors can be placed in a strap to be placed on an actor, or can snap into various mounts for easy placement/attachment.

-源设置功能可包括3D模块化源建筑功能,以用于使用模块化杆连接源系统配件的设置。在该功能中摄影师可以快速建造他们手动构造的模块化设置的3D表示。由于杆的长度和源的角通过模块化源系统配件的物理设计的方式被预定义,软件可以然后即时地计算所有源的位置和朝向。The source setup feature may include a 3D modular source building function for setups that use modular poles to connect source system accessories. This feature allows photographers to quickly build a 3D representation of their manually constructed modular setup. Because the pole lengths and source angles are predefined by the physical design of the modular source system accessories, the software can then instantly calculate the positions and orientations of all sources.

-对于模块化源系统,连接杆可以在设置之后被拿走而不移动所述源。这允许快速的、非拴系的源布置而不需要测量源位置或朝向,如在iPad应用的3D模块化源建筑功能中计算的。- For modular source systems, the connecting rod can be removed after setup without moving the source. This allows for rapid, untethered source placement without the need to measure source position or orientation, as calculated in the iPad app's 3D modular source building function.

-与镜头圈的伺服电动机控制一起,可以访问某些摄像机镜头的内部电子器件以直接控制焦距、光圈、变焦,移除伺服电动机的要求。- Together with servo motor control of the lens iris, it is possible to access the internal electronics of some camera lenses to directly control focus, iris, and zoom, removing the requirement for servo motors.

-系统软件允许对运动跟踪系统的配置的全面控制。- System software allows full control over the configuration of the motion tracking system.

-一配件是将装配到摄像机的镜头基座上的传感器校准‘主体帽’工具以用于精确的测量。这将允许焦平面中心的非常精确的测量,因为所述中心使得摄像机数据“节点化”,所以所述中心对视觉效应工作是重要的。- One accessory is a sensor calibration 'body cap' tool that will fit onto the lens mount of the camera for precise measurement. This will allow very accurate measurement of the centre of the focal plane, which is important for visual effects work as it 'nodes' the camera data.

本发明的实施例是有利的在于,使用三维位置和朝向数据的实时流调节镜头功能、构图、摄像机定位、照明和声音极大地促进并扩大了对电影制作人和动画和/或静止图像内容设计人来说可用的功能。Embodiments of the present invention are advantageous in that using a real-time stream of three-dimensional position and orientation data to adjust shot function, composition, camera positioning, lighting, and sound greatly facilitates and expands the functionality available to filmmakers and animation and/or still image content designers.

根据本发明的实施例,在电影的控制的上下文中的节点的使用展现许多优点,包括:According to embodiments of the present invention, the use of nodes in the context of movie control exhibits many advantages, including:

1)节点系统允许预先定义多个移动节点(几乎所有其它摄像机/对焦系统不能,但是Pictorvision Eclipse使用GPS以用于粗应用http://www.pictorvision.com/aerial-products/eclipse/)。1) The node system allows for pre-definition of multiple mobile nodes (almost all other camera/focus systems cannot, but Pictorvision Eclipse uses GPS for coarse applications http://www.pictorvision.com/aerial-products/eclipse/).

2)节点系统允许对多个移动节点的真正的自动跟踪(可能所有其它摄像机/对焦系统不能;一些通过使人进行跟踪而进行尝试Pictorvision Eclipse可能仅具有一个移动节点;用于照明的“真正的自动追踪器”的一示例可能是:http:/www.tfwm.com/news-0310precision)。2) The node system allows true auto-tracking of multiple mobile nodes (which perhaps all other camera/focus systems cannot; some try by having people do the tracking; the Pictorvision Eclipse may only have one mobile node; an example of a "true auto-tracker" for lighting might be: http://www.tfwm.com/news-0310precision).

3)节点系统提供三维的位置数据(相对于远没有用的距离,不同于几乎所有其它系统)。3) The nodal system provides three-dimensional position data (versus distance which is far less useful, unlike almost all other systems).

4)所使用的节点的特征是位置和朝向,允许在对象/物体上定义而不是一般的‘区域’(不同可能所有其它摄像机/焦距系统;如果没有此,其它系统不能再物体的任意地方施加偏移以定义节点,如对焦于眼睛)。4) The nodes used are characterized by position and orientation, allowing them to be defined on subjects/objects rather than general 'regions' (unlike probably all other camera/focus systems; without this, other systems cannot apply offsets to define nodes arbitrarily somewhere on the object, such as focusing on the eyes).

5)位置和朝向允许尝试控制对象/物体的角,例如当他们的头部对于摄像机处于某些角度时,从演员的右眼切换到他们的左眼(没有其它系统可以实现此)。5) Position and orientation allows attempts to control the angles of subjects/objects, such as switching from an actor's right eye to their left eye when their head is at certain angles to the camera (no other system can do this).

6)节点系统提供极高的准确性(在许多情况中小于1cm),不同于可能所有其它自动跟踪系统(由于朝向和偏移提供提升的控制/对焦水平)。6) The nodal system provides extremely high accuracy (less than 1 cm in many cases), unlike likely all other automatic tracking systems (due to the increased level of control/focus provided by heading and offset).

7)节点系统还提供极高的频率(120Hz),不同于可能所有其它自动跟踪系统(例如gps系统,积极的面部检测倾向于不具备此)。7) The nodal system also offers extremely high frequencies (120Hz), unlike probably all other automatic tracking systems (eg gps systems, active face detection tend not to have this).

8)节点系统还提供低延迟(10ms)。该延迟水平对于大多数情况不会妨碍‘影片的’控制(再次,许多系统缺乏此)。8) The node system also provides low latency (10ms). This level of latency does not hinder 'cinematic' control in most situations (again, many systems lack this).

9)节点系统提供预测性/校正性功能,相当降低延迟。9) The node system provides predictive/corrective functions, which significantly reduces latency.

10)节点系统不需要‘视线’的要求,即节点使用放置在演员/物体上的传感器,因此激光或声音也不会从演员上弹开。面部识别明显也需要视线。在该方面的传感器的另外的益处是恒定的节点数据。例如,如果演员从树丛后面跳出来,相对于需要对演员的新的出现反应的视线系统,他/她已经‘立即地’被对焦。10) Node systems don't require 'line of sight'; that is, nodes use sensors placed on actors/objects, so lasers or sounds won't bounce off actors. Facial recognition obviously requires line of sight as well. Another benefit of sensors in this area is constant node data. For example, if an actor pops out from behind a bush, he or she is already 'instantly' in focus, compared to a line-of-sight system that needs to react to the actor's new appearance.

11)节点系统继续在移动的环境中运作。例如,如果源安装到手持摄像机系统(或与源吊杆配件使用),不论他/她走到何处,系统继续在摄像机摄影师的附近运作。类似地,系统工作在移动的车辆中,例如在移动的火车上。11) The nodal system continues to operate in mobile environments. For example, if the source is mounted to a handheld camera system (or used with a source boom accessory), the system continues to operate near the camera operator no matter where he/she moves. Similarly, the system operates in a moving vehicle, such as on a moving train.

12)此外,节点系统是便携式系统。12) Furthermore, the node system is a portable system.

上述实施例在各个方面仅被认为是示意性的而不是限制性的,并且本申请意欲覆盖对本领域技术人员来说显而易见的任何修改或变化。当然,如对本领域技术人员来说显而易见的,可以对上述实施例作出多种其它修改而不脱离本发明的范围。The above-described embodiments are intended to be illustrative and not restrictive in all respects, and this application is intended to cover any modification or variation that would be apparent to those skilled in the art. Of course, as would be apparent to those skilled in the art, various other modifications may be made to the above-described embodiments without departing from the scope of the present invention.

Claims (38)

1.一种用于控制与图像捕捉有关的设备的设置的方法,包括:1. A method for controlling settings of a device related to image capture, comprising: a)在感测装置处捕捉三维位置数据和朝向数据;a) capturing three-dimensional position data and orientation data at a sensing device; b)通过处理器从已经捕捉的位置数据和朝向数据确定将被所述设备处理的感兴趣的区域的位置信息;以及b) determining, by a processor, position information of an area of interest to be processed by the device from the already captured position data and orientation data; and c)经由所述处理器的输出端口输出指向所述设备的控制信号,以便于基于所述感兴趣的区域的位置信息来实时控制所述设备的设置,c) outputting a control signal directed to the device via an output port of the processor so as to control the settings of the device in real time based on the position information of the area of interest, 其中所述确定步骤(b)的感兴趣的区域包括一个或多个节点,所述确定步骤(b)包含,对于每个节点:Wherein the region of interest in the determining step (b) includes one or more nodes, the determining step (b) comprises, for each node: i)确定所述节点的位置信息;以及i) determining the location information of the node; and ii)计算所述设备和所述节点之间的距离,ii) calculating the distance between the device and the node, 其中所述计算步骤(b)(i)包括施加从所述捕捉步骤(a)的感测装置的位置数据和朝向数据的尖端偏移,以便于计算所述节点的位置信息,wherein said calculating step (b)(i) comprises applying the position data and the tip offset of the orientation data from the sensing device of said capturing step (a) so as to calculate the position information of said node, 其中所述施加尖端偏移包括:wherein applying the tip deflection comprises: -在由所述感测装置定义的轴系统中,获得所述节点相对于所述感测装置的位置数据和朝向数据的相对坐标;以及- obtaining relative coordinates of the position data and orientation data of the node relative to the sensing device in an axis system defined by the sensing device; and 其中所述确定步骤(b)(i)还包括估计所述节点关于所述设备的绝对位置。Wherein said determining step (b)(i) further comprises estimating an absolute position of said node relative to said device. 2.根据权利要求1所述的方法,还包括:2. The method according to claim 1, further comprising: d)通过控制器用所述控制信号控制所述设备的设置。d) controlling, by a controller, the settings of the device using the control signal. 3.根据权利要求1所述的方法,还包括:3. The method according to claim 1, further comprising: -在存储器中贮存所述位置数据和朝向数据。- Storing said position data and orientation data in a memory. 4.根据权利要求1所述的方法,其中所述设置包括如下的至少一个:摄像机的焦距设置、该摄像机的变焦设置、该摄像机的光圈设置、该摄像机的两眼间镜头角设置、该摄像机的摇摄设置、该摄像机的俯仰设置、该摄像机的转动设置、该摄像机的位置设置、该摄像机的位置设置、照明设备控制设置和声音设备设置。4. The method according to claim 1, wherein the settings include at least one of the following: a focal length setting of a camera, a zoom setting of the camera, an aperture setting of the camera, an interocular lens angle setting of the camera, a pan setting of the camera, a tilt setting of the camera, a rotation setting of the camera, a position setting of the camera, a position setting of the camera, a lighting device control setting, and a sound device setting. 5.根据权利要求1所述的方法,其中所述捕捉包括产生表示物理地点的坐标以及表示所述感测装置的朝向的特性。5 . The method of claim 1 , wherein the capturing comprises generating coordinates representing a physical location and a characteristic representing an orientation of the sensing device. 6.根据权利要求1所述的方法,其中基于在步骤(b)处计算的距离产生所述输出步骤(c)的控制信号。6. The method of claim 1, wherein the control signal of outputting step (c) is generated based on the distance calculated at step (b). 7.根据权利要求6所述的方法,其中在确定步骤(b)(i)中的每个节点的位置信息包括节点(x1,y1,z1)的欧几里德空间坐标,并且7. The method according to claim 6, wherein the position information of each node in determining step (b)(i) comprises the Euclidean space coordinates of the node ( x1 , y1 , z1 ), and 其中所述计算步骤(b)(ii)包括:wherein the calculating step (b)(ii) comprises: -接收在欧几里德空间坐标(x2,y2,z2)中的所述设备的位置信息;以及- receiving position information of said device in Euclidean space coordinates (x 2 , y 2 , z 2 ); and -从下面的勾股定理计算所述设备的位置信息和所述节点的位置信息之间的距离:- Calculate the distance between the device's location information and the node's location information using the following Pythagorean theorem: 8.根据权利要求6所述的方法,其中所述节点的绝对位置被如下估计:8. The method of claim 6, wherein the absolute position of the node is estimated as follows: 其中:in: 旋转矩阵M=X.Y.Z,其中M是最终旋转;Rotation matrix M = X.Y.Z, where M is the final rotation; 矩阵,并且X、Y、Z是单独的旋转矩阵;Matrix, and X, Y, Z are separate rotation matrices; A、B分别是X-轴旋转轴、即转动的余弦和正弦;A and B are the X-axis rotation axes, i.e., the cosine and sine of the rotation; C、D分别是Y-轴旋转轴、即俯仰的余弦和正弦;C and D are the cosine and sine of the Y-axis rotation, i.e., pitch; E、F分别是Z-轴旋转轴、即摇摄的余弦和正弦;E and F are the cosine and sine of the Z-axis rotation, i.e., panning; Xf=Xs+Xt*M(1,1)+Yt*M(2,1)+Zt*M(3,1);X f =X s +X t *M (1, 1) + Y t *M (2, 1) + Z t *M (3, 1); Yf=Ys+Xt*M(1,2)+Yt*M(2,2)+Zt*M(3,2);Y f =Y s +X t *M (1, 2) + Y t *M (2, 2) + Z t *M (3, 2); Zf=Zs+Xt*M(1,3)+Yt*M(2,3)+Zt*M(3,3);Z f =Z s +X t *M (1, 3) + Y t *M (2, 3) + Z t *M (3, 3); 其中:in: Xf,Yf,Zf是所述节点的绝对坐标; Xf , Yf , Zf are the absolute coordinates of the node; Xs,Ys,Zs是所述感测装置的中心的坐标; Xs , Ys , Zs are the coordinates of the center of the sensing device; Xt,Yt,Zt对应于相对于所述感测装置的中心的尖端偏移的坐标; Xt , Yt , Zt correspond to the coordinates of the tip offset relative to the center of the sensing device; M(行,列)是分别就行和列来说的所述旋转矩阵的元素。M(row, column) are the elements of the rotation matrix in terms of rows and columns respectively. 9.根据权利要求6所述的方法,其中所述节点的绝对位置被如下估计:9. The method of claim 6, wherein the absolute position of the node is estimated as follows: 其中:in: 旋转矩阵M=X.Y.Z,其中M是最终旋转;Rotation matrix M = X.Y.Z, where M is the final rotation; 矩阵,并且X、Y、Z是单独的旋转矩阵;Matrix, and X, Y, Z are separate rotation matrices; A、B分别是X-轴旋转轴、即转动的余弦和正弦;A and B are the X-axis rotation axes, i.e., the cosine and sine of the rotation; C、D分别是Y-轴旋转轴、即俯仰的余弦和正弦;C and D are the cosine and sine of the Y-axis rotation, i.e., pitch; E、F分别是Z-轴旋转轴、即摇摄的余弦和正弦;E and F are the cosine and sine of the Z-axis rotation, i.e., panning; Xf=Xs+Xt*M(1,1)+Yt*M(2,1)+Zt*M(3,1);X f =X s +X t *M (1, 1) + Y t *M (2, 1) + Z t *M (3, 1); Yf=Ys+Xt*M(1,2)+Yt*M(2,2)+Zt*M(3,2);Y f =Y s +X t *M (1, 2) + Y t *M (2, 2) + Z t *M (3, 2); Zf=Zs+Xt*M(1,3)+Yt*M(2,3)+Zt*M(3,3);Z f =Z s +X t *M (1, 3) + Y t *M (2, 3) + Z t *M (3, 3); 其中:in: Xf,Yf,Zf是所述节点的最终坐标; Xf , Yf , Zf are the final coordinates of the node; Xs,Ys,Zs是所述感测装置的中心的坐标; Xs , Ys , Zs are the coordinates of the center of the sensing device; Xt,Yt,Zt对应于相对于所述感测装置的中心的尖端偏移的坐标; Xt , Yt , Zt correspond to the coordinates of the tip offset relative to the center of the sensing device; M(行,列)是分别就行和列来说的所述旋转矩阵的元素。M(row, column) are the elements of the rotation matrix in terms of rows and columns respectively. 10.根据权利要求6所述的方法,其中所述施加尖端偏移包括获得通过测量位于节点的位置处的节点感测装置的位置关于位于所述感测装置的位置处的基础感测装置的位置和朝向而已经预先计算的尖端偏移。10. The method of claim 6, wherein applying the tip offset comprises obtaining a tip offset that has been pre-calculated by measuring the position of a node sensing device at the location of the node relative to the position and orientation of a base sensing device at the location of the sensing device. 11.根据权利要求10所述的方法,其中定义初始朝向为具有X、Y、Z和W属性的四元数Q1,所述捕捉步骤的朝向数据被定义为Q2,并且其中根据以下来确定所述节点的位置信息:11. The method according to claim 10, wherein the initial orientation is defined as a quaternion Q1 having X, Y, Z and W attributes, the orientation data of the capturing step is defined as Q2 , and wherein the position information of the node is determined according to: Pn+(qiqn)Pi(qiqn)P n +(q i q n )P i (q i q n ) 其中:in: Pi是从处于朝向q的传感器的偏移; Pi is the offset from the sensor in orientation q; Pn是所述传感器的当前位置; Pn is the current position of the sensor; qi是在计算Pi的时间时的传感器的朝向;q i is the orientation of the sensor when calculating the time of Pi; qn是所述传感器的当前朝向;以及q n is the current orientation of the sensor; and qi和qn是单位四元数。q i and q n are unit quaternions. 12.根据权利要求1到11的任一项所述的方法,其中所述感兴趣的区域和所述感测装置位于不同的地点。12. The method according to any one of claims 1 to 11, wherein the region of interest and the sensing device are located at different locations. 13.一种用于控制与图像捕捉有关的设备的设置的系统,包括:13. A system for controlling settings of a device related to image capture, comprising: -感测装置,被配置为捕捉位置数据和朝向数据;- a sensing device configured to capture position data and orientation data; -处理器,与所述感测装置通信,所述处理器被配置为从所述位置数据和朝向数据确定将被所述设备处理的感兴趣的区域的位置信息;以及a processor in communication with the sensing means, the processor being configured to determine, from the position data and orientation data, position information of an area of interest to be processed by the device; and -输出端口,与所述处理器集成,被配置为输出指向所述设备的控制信号,以便于基于所述感兴趣的区域的位置信息来实时控制所述设备的设置,- an output port, integrated with the processor, configured to output a control signal directed to the device, so as to control the settings of the device in real time based on the position information of the area of interest, 其中所述感兴趣的区域包括一个或多个节点,所述处理器还被配置为,对于每个节点:Wherein the area of interest includes one or more nodes, the processor is further configured to, for each node: i)确定所述节点的位置信息;以及i) determining the location information of the node; and ii)计算所述设备和所述节点之间的距离,ii) calculating the distance between the device and the node, 其中确定所述节点的位置信息包括施加从所述感测装置的位置数据和朝向数据的尖端偏移,以便于计算所述节点的位置信息,wherein determining the position information of the node comprises applying a tip offset to the position data and orientation data from the sensing device to facilitate calculating the position information of the node, 其中所述施加尖端偏移包括:wherein applying the tip deflection comprises: -在由所述感测装置定义的轴系统中,获得所述节点相对于所述感测装置的位置数据和朝向数据的相对坐标;以及- obtaining relative coordinates of the position data and orientation data of the node relative to the sensing device in an axis system defined by the sensing device; and 其中确定所述节点的位置信息还包括估计所述节点关于所述设备的绝对位置。Determining the location information of the node further comprises estimating the absolute location of the node relative to the device. 14.根据权利要求13所述的系统,还包括:14. The system of claim 13, further comprising: -控制器,与所述输出端口通信并且被配置为用所述控制信号控制所述设备的设置。- a controller in communication with the output port and configured to control a setting of the device using the control signal. 15.根据权利要求13所述的系统,还包括:15. The system of claim 13, further comprising: -存储器,用于贮存所述位置数据和朝向数据。- a memory for storing the position data and the orientation data. 16.根据权利要求13所述的系统,还包含所述设备,其中所述设置包括如下的至少一个:摄像机的焦距设置、该摄像机的变焦设置、该摄像机的光圈设置、该摄像机的两眼间镜头角设置、该摄像机的摇摄设置、该摄像机的俯仰设置、该摄像机的转动设置、该摄像机的位置设置、照明设备控制设置以及声音设备设置。16. The system according to claim 13 further comprises the device, wherein the setting includes at least one of the following: a focal length setting of the camera, a zoom setting of the camera, an aperture setting of the camera, an interocular lens angle setting of the camera, a pan setting of the camera, a tilt setting of the camera, a rotation setting of the camera, a position setting of the camera, a lighting device control setting, and a sound device setting. 17.根据权利要求13到16的任一项所述的系统,其中所述感测装置是可见性独立的感测装置。17. The system according to any one of claims 13 to 16, wherein the sensing device is a visibility independent sensing device. 18.根据权利要求13所述的系统,其中所述感测装置包括发送器,所述系统还包括在所述发送器和所述处理器之间通信的接收器。18. The system of claim 13, wherein the sensing device comprises a transmitter, the system further comprising a receiver in communication between the transmitter and the processor. 19.根据权利要求13所述的系统,还包含嵌入所述处理器的数据处理单元以及与所述数据处理单元通信的用户装置,所述用户装置包含用户界面。19. The system according to claim 13, further comprising a data processing unit embedded in the processor and a user device in communication with the data processing unit, the user device comprising a user interface. 20.根据权利要求19所述的系统,其中所述用户装置经由无线通信网络与所述数据处理单元通信。20. The system of claim 19, wherein the user device communicates with the data processing unit via a wireless communication network. 21.一种用于控制与图像捕捉有关的设备的设置的装置,包括:21. An apparatus for controlling settings of a device related to image capture, comprising: 处理器;processor; 存储器,耦合于所述处理器,贮存数据和指令,用于当由所述处理器执行时进行如下步骤:A memory, coupled to the processor, stores data and instructions for performing the following steps when executed by the processor: -接收感测装置的位置数据和朝向数据;- receiving position data and orientation data of the sensing device; -从所述位置数据和朝向数据确定将被所述设备处理的感兴趣的区域的位置信息;以及- determining position information of an area of interest to be processed by the device from the position data and the orientation data; and -输出指向所述设备的控制信号,以便于基于所述感兴趣的区域的位置信息来实时控制所述设备的设置,- outputting a control signal directed to the device so as to control the settings of the device in real time based on the position information of the area of interest, 其中所述感兴趣的区域包括一个或多个节点,所述确定位置信息还包括,对于每个节点:The area of interest includes one or more nodes, and determining the location information further includes, for each node: i)确定所述节点的位置信息;以及i) determining the location information of the node; and ii)计算所述设备和所述节点之间的距离,ii) calculating the distance between the device and the node, 其中确定所述节点的位置信息包括施加从所述感测装置的位置数据和朝向数据的尖端偏移,以便于计算所述节点的位置信息,wherein determining the position information of the node comprises applying a tip offset to the position data and orientation data from the sensing device to facilitate calculating the position information of the node, 其中所述施加尖端偏移包括:wherein applying the tip deflection comprises: -在由所述感测装置定义的轴系统中,获得所述节点相对于所述感测装置的位置数据和朝向数据的相对坐标;以及- obtaining relative coordinates of the position data and orientation data of the node relative to the sensing device in an axis system defined by the sensing device; and 其中确定所述节点的位置信息还包括估计所述节点关于所述设备的绝对位置。Determining the location information of the node further comprises estimating the absolute location of the node relative to the device. 22.一种用于控制与图像捕捉有关的设备的设置的方法,包括:22. A method for controlling settings of a device related to image capture, comprising: a)在存储器中贮存一个或多个标识符,每个标识符与将被所述设备处理的一个或多个预定的感兴趣的区域相关联,并且贮存相应的位置信息;a) storing in a memory one or more identifiers, each identifier being associated with one or more predetermined regions of interest to be processed by the device, and storing corresponding location information; b)在处理器处接收对所述一个或多个标识符的选择;以及b) receiving, at a processor, a selection of the one or more identifiers; and c)经由所述处理器的输出端口输出指向所述设备的控制信号,以便于基于所述一个或多个预定的感兴趣的区域的所选择的一个的位置信息来实时控制所述设备的设置,c) outputting a control signal directed to the device via an output port of the processor so as to control settings of the device in real time based on the position information of the selected one of the one or more predetermined areas of interest, 其中所述预定的感兴趣的区域的每一个对应于节点,并且所述位置信息通过如下步骤来确定,对于每个节点:Each of the predetermined areas of interest corresponds to a node, and the location information is determined by the following steps, for each node: i)确定所述节点的位置信息;以及i) determining the location information of the node; and ii)计算所述设备和所述节点之间的距离,ii) calculating the distance between the device and the node, 其中确定所述节点的位置信息包括施加从捕捉所述位置信息的感测装置的位置数据和朝向数据的尖端偏移,以便于计算所述节点的位置信息,wherein determining the position information of the node comprises applying position data and a tip offset to the position data from a sensing device capturing the position information to facilitate calculating the position information of the node, 其中所述施加尖端偏移包括:wherein applying the tip deflection comprises: -在由所述感测装置定义的轴系统中,获得所述节点相对于所述感测装置的位置数据和朝向数据的相对坐标;以及- obtaining relative coordinates of the position data and orientation data of the node relative to the sensing device in an axis system defined by the sensing device; and 其中确定所述节点的位置信息还包括估计所述节点关于所述设备的绝对位置。Determining the location information of the node further comprises estimating the absolute location of the node relative to the device. 23.根据权利要求22所述的方法,还包括:23. The method according to claim 22, further comprising: d)通过控制器用所述控制信号控制所述设备的设置。d) controlling, by a controller, the settings of the device using the control signal. 24.根据权利要求22所述的方法,其中在步骤(a)中贮存的所述位置信息通过以下步骤获得:24. The method according to claim 22, wherein the position information stored in step (a) is obtained by: -在感测装置处捕捉位置数据和朝向数据;以及- capturing position data and orientation data at the sensing device; and -通过处理器从所述感测装置的位置和朝向数据确定将被所述设备处理的感兴趣的区域的位置信息。- determining, by a processor, position information of a region of interest to be processed by the device from the position and orientation data of the sensing means. 25.根据权利要求24所述的方法,其中所述相应的位置信息包括相对于设备的三维坐标。The method of claim 24 , wherein the corresponding position information comprises three-dimensional coordinates relative to the device. 26.根据权利要求25所述的方法,其中接收步骤(b)包括26. The method of claim 25, wherein the receiving step (b) comprises -接收节点的预定顺序的选择;- selection of a predetermined order of receiving nodes; 所述方法还包含根据顺序的节点选择对每个选择的节点重复所述输出步骤(c)以便于顺序地对多个节点自动地控制所述设备的设置。The method further comprises repeating the outputting step (c) for each selected node according to the sequential node selection so as to automatically control the settings of the device for the plurality of nodes sequentially. 27.根据权利要求26所述的方法,其中重复步骤(c)基于贮存在存储器中的预定规划来执行。27. The method of claim 26, wherein repeating step (c) is performed based on a predetermined schedule stored in a memory. 28.根据权利要求26所述的方法,其中重复步骤(c)当经由输入端口接收用户输入命令时被激励。28. The method of claim 26, wherein repeating step (c) is activated upon receiving a user input command via the input port. 29.根据权利要求25所述的方法,还包含经由输入端口接收对应于两个相邻节点之间的位移的用户输入命令,其中所述接收步骤(a)的选择包括所述相邻节点的标识符,所述方法还包括:29. The method of claim 25, further comprising receiving a user input command corresponding to a displacement between two adjacent nodes via an input port, wherein the selection of step (a) includes identifiers of the adjacent nodes, the method further comprising: -根据所述位移来关联所述相邻节点之间的中间位置;以及- associating intermediate positions between said adjacent nodes according to said displacement; and 其中对所述中间位置的每一个重复所述输出步骤(c)。The outputting step (c) is repeated for each of the intermediate positions. 30.根据权利要求29所述的方法,其中所述用户输入通过滑动运动经由触摸屏输入。30. The method of claim 29, wherein the user input is input via a touch screen by a sliding motion. 31.根据权利要求22到30的任一项所述的方法,还包括:31. The method according to any one of claims 22 to 30, further comprising: -从所述接收步骤(b)的选择,确定满足给定条件的一个或多个感兴趣的区域;以及- determining one or more regions of interest satisfying given conditions from the selections received in step (b); and 其中根据满足所述给定条件的一个或多个感兴趣的区域产生步骤(c)的控制信号。The control signal of step (c) is generated according to one or more regions of interest that meet the given condition. 32.一种用于控制与图像捕捉有关的设备的设置的系统,包括:32. A system for controlling settings of a device related to image capture, comprising: -存储器,被配置为贮存将被所述设备处理的一个或多个预定的感兴趣的区域的一个或多个标识符和相应的位置信息;- a memory configured to store one or more identifiers and corresponding position information of one or more predetermined regions of interest to be processed by the device; -处理器,与所述存储器通信并且被配置为接收对所述一个或多个标识符的选择;以及- a processor in communication with the memory and configured to receive a selection of the one or more identifiers; and -输出端口,与所述处理器集成,被配置为输出指向所述设备的控制信号,以便于基于所述一个或多个预定的感兴趣的区域的所选择的一个的位置信息来实时控制所述设备的设置,an output port, integrated with the processor, configured to output a control signal directed to the device so as to control settings of the device in real time based on position information of a selected one of the one or more predetermined regions of interest, 其中所述预定的感兴趣的区域的每一个对应于节点,并且所述处理器还被配置为,对于每个节点:Each of the predetermined regions of interest corresponds to a node, and the processor is further configured to, for each node: i)确定所述节点的位置信息;以及i) determining the location information of the node; and ii)计算所述设备和所述节点之间的距离,ii) calculating the distance between the device and the node, 其中确定所述节点的位置信息包括施加从捕捉所述位置信息的感测装置的位置数据和朝向数据的尖端偏移,以便于计算所述节点的位置信息,wherein determining the position information of the node comprises applying position data and a tip offset to the position data from a sensing device capturing the position information to facilitate calculating the position information of the node, 其中所述施加尖端偏移包括:wherein applying the tip deflection comprises: -在由所述感测装置定义的轴系统中,获得所述节点相对于所述感测装置的位置数据和朝向数据的相对坐标;以及- obtaining relative coordinates of the position data and orientation data of the node relative to the sensing device in an axis system defined by the sensing device; and 其中确定所述节点的位置信息还包括估计所述节点关于所述设备的绝对位置。Determining the location information of the node further comprises estimating the absolute location of the node relative to the device. 33.一种用于控制与图像捕捉有关的设备的设置的装置,包括:33. An apparatus for controlling settings of a device related to image capture, comprising: 处理器;processor; 存储器,耦合于所述处理器,在其上贮存将被与图像捕捉有关的设备处理的一个或多个预定的感兴趣的区域的一个或多个标识符以及相应的位置信息,所述存储器还贮存用于由所述处理器执行的数据和指令,以执行如下步骤:a memory, coupled to the processor, storing thereon one or more identifiers of one or more predetermined regions of interest to be processed by a device associated with image capture and corresponding location information, the memory further storing data and instructions for execution by the processor to perform the following steps: -接收对所述一个或多个标识符的选择;以及- receiving a selection of said one or more identifiers; and -输出指向所述设备的控制信号,以便于基于所述一个或多个预定的感兴趣的区域的所选择的一个的位置信息来实时控制所述设备的设置,- outputting a control signal directed to the device so as to control settings of the device in real time based on the position information of the selected one of the one or more predetermined areas of interest, 其中所述预定的感兴趣的区域的每一个对应于节点,并且所述步骤还包括,对于每个节点:Each of the predetermined regions of interest corresponds to a node, and the steps further include, for each node: i)确定所述节点的位置信息;以及i) determining the location information of the node; and ii)计算所述设备和所述节点之间的距离,ii) calculating the distance between the device and the node, 其中确定所述节点的位置信息包括施加从捕捉所述位置信息的感测装置的位置数据和朝向数据的尖端偏移,以便于计算所述节点的位置信息,wherein determining the position information of the node comprises applying position data and a tip offset to the position data from a sensing device capturing the position information to facilitate calculating the position information of the node, 其中所述施加尖端偏移包括:wherein applying the tip deflection comprises: -在由所述感测装置定义的轴系统中,获得所述节点相对于所述感测装置的位置数据和朝向数据的相对坐标;以及- obtaining relative coordinates of the position data and orientation data of the node relative to the sensing device in an axis system defined by the sensing device; and 其中确定所述节点的位置信息还包括估计所述节点关于所述设备的绝对位置。Determining the location information of the node further comprises estimating the absolute location of the node relative to the device. 34.一种用于控制与图像捕捉有关的设备的设置的方法,包括:34. A method for controlling settings of a device related to image capture, comprising: a)通过可见性独立的感测装置在所述感测装置处捕捉位置数据;a) capturing position data at said sensing device by a visibility-independent sensing device; b)通过处理器从所述位置数据确定将被所述设备处理的感兴趣的区域的位置信息;以及b) determining, by a processor, from the position data, position information of an area of interest to be processed by the device; and c)通过所述处理器的输出端口输出指向所述设备的控制信号,以便于基于所述感兴趣的区域的位置信息来实时控制所述设备的设置,c) outputting a control signal directed to the device via an output port of the processor so as to control the settings of the device in real time based on the position information of the area of interest, 其中所述确定步骤(b)的感兴趣的区域包括一个或多个节点,所述确定步骤(b)包含,对于每个节点:Wherein the region of interest in the determining step (b) includes one or more nodes, the determining step (b) comprises, for each node: i)确定所述节点的位置信息;以及i) determining the location information of the node; and ii)计算所述设备和所述节点之间的距离,ii) calculating the distance between the device and the node, 其中所述计算步骤(b)(i)包括施加从所述捕捉步骤(a)的感测装置的位置数据和朝向数据的尖端偏移,以便于计算所述节点的位置信息,wherein said calculating step (b)(i) comprises applying the position data and the tip offset of the orientation data from the sensing device of said capturing step (a) so as to calculate the position information of said node, 其中所述施加尖端偏移包括:wherein applying the tip deflection comprises: -在由所述感测装置定义的轴系统中,获得所述节点相对于所述感测装置的位置数据和朝向数据的相对坐标;以及- obtaining relative coordinates of the position data and orientation data of the node relative to the sensing device in an axis system defined by the sensing device; and 其中所述确定步骤(b)(i)还包括估计所述节点关于所述设备的绝对位置。Wherein said determining step (b)(i) further comprises estimating an absolute position of said node relative to said device. 35.一种用于控制与图像捕捉有关的设备的设置的系统,包括:35. A system for controlling settings of a device related to image capture, comprising: -可见性独立的感测装置,被配置为捕捉位置数据;- a visibility-independent sensing device configured to capture position data; -处理器,与所述感测装置通信,所述处理器被配置为基于所述位置和朝向数据确定将被所述设备处理的感兴趣的区域的位置信息;以及a processor in communication with the sensing means, the processor being configured to determine position information of a region of interest to be processed by the device based on the position and orientation data; and -输出端口,与所述处理器集成,被配置为输出指向所述设备的控制信号,以便于基于所述感兴趣的区域的位置信息来实时控制所述设备的设置,- an output port, integrated with the processor, configured to output a control signal directed to the device, so as to control the settings of the device in real time based on the position information of the area of interest, 其中所述感兴趣的区域包括一个或多个节点,所述处理器还被配置为,对于每个节点:Wherein the area of interest includes one or more nodes, the processor is further configured to, for each node: i)确定所述节点的位置信息;以及i) determining the location information of the node; and ii)计算所述设备和所述节点之间的距离,ii) calculating the distance between the device and the node, 其中所述确定所述节点的位置信息包括施加从所述感测装置的位置数据和朝向数据的尖端偏移,以便于计算所述节点的位置信息,wherein said determining the position information of the node comprises applying a tip offset to position data and orientation data from the sensing device to facilitate calculating the position information of the node, 其中所述施加尖端偏移包括:wherein applying the tip deflection comprises: -在由所述感测装置定义的轴系统中,获得所述节点相对于所述感测装置的位置数据和朝向数据的相对坐标;以及- obtaining relative coordinates of the position data and orientation data of the node relative to the sensing device in an axis system defined by the sensing device; and 其中所述确定所述节点的位置信息还包括估计所述节点关于所述设备的绝对位置。Wherein determining the location information of the node further comprises estimating the absolute location of the node relative to the device. 36.根据权利要求35所述的系统,还包括:36. The system of claim 35, further comprising: -控制器,与所述输出端口通信并且被配置为用所述控制信号控制所述设备的设置。- a controller in communication with the output port and configured to control a setting of the device using the control signal. 37.根据权利要求35或36所述的系统,还包含所述设备,其中所述设置包括如下的至少一个:摄像机的焦距设置、该摄像机的变焦设置、该摄像机的光圈设置、该摄像机的两眼间镜头角设置、该摄像机的摇摄设置、该摄像机的俯仰设置、该摄像机的转动设置、该摄像机的位置设置、照明设备控制设置以及声音设备设置。37. The system according to claim 35 or 36 further comprises the device, wherein the settings include at least one of the following: a focal length setting of the camera, a zoom setting of the camera, an aperture setting of the camera, an interocular lens angle setting of the camera, a pan setting of the camera, a tilt setting of the camera, a rotation setting of the camera, a position setting of the camera, a lighting device control setting, and a sound device setting. 38.一种用于控制与图像捕捉有关的设备的设置的装置,包括:38. An apparatus for controlling settings of a device related to image capture, comprising: 处理器;processor; 存储器,耦合于所述处理器,存储数据和指令,用于由所述处理器执行以进行如下步骤:A memory, coupled to the processor, stores data and instructions for execution by the processor to perform the following steps: -从可见性独立的感测装置接收位置数据;- receiving position data from a visibility-independent sensing device; -基于所述位置数据和朝向数据确定将被所述设备处理的感兴趣的区域的位置信息;以及- determining position information of an area of interest to be processed by the device based on the position data and the orientation data; and -输出指向所述设备的控制信号,以便于基于所述感兴趣的区域的位置信息来实时控制所述设备的设置,- outputting a control signal directed to the device so as to control the settings of the device in real time based on the position information of the area of interest, 其中所述感兴趣的区域包括一个或多个节点,所述处理器还被配置为,对于每个节点:Wherein the area of interest includes one or more nodes, the processor is further configured to, for each node: i)确定所述节点的位置信息;以及i) determining the location information of the node; and ii)计算所述设备和所述节点之间的距离,ii) calculating the distance between the device and the node, 其中所述确定所述节点的位置信息包括施加从所述感测装置的位置数据和朝向数据的尖端偏移,以便于计算所述节点的位置信息,wherein said determining the position information of the node comprises applying a tip offset to position data and orientation data from the sensing device to facilitate calculating the position information of the node, 其中所述施加尖端偏移包括:wherein applying the tip deflection comprises: -在由所述感测装置定义的轴系统中,获得所述节点相对于所述感测装置的位置数据和朝向数据的相对坐标;以及- obtaining relative coordinates of the position data and orientation data of the node relative to the sensing device in an axis system defined by the sensing device; and 其中所述确定所述节点的位置信息还包括估计所述节点关于所述设备的绝对位置。Wherein determining the location information of the node further comprises estimating the absolute location of the node relative to the device.
HK16108525.9A 2013-04-05 2014-04-04 System and method for controlling an equipment related to image capture HK1220512B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361808987P 2013-04-05 2013-04-05
US61/808,987 2013-04-05
PCT/CA2014/050346 WO2014161092A1 (en) 2013-04-05 2014-04-04 System and method for controlling an equipment related to image capture

Publications (2)

Publication Number Publication Date
HK1220512A1 HK1220512A1 (en) 2017-05-05
HK1220512B true HK1220512B (en) 2020-04-17

Family

ID=

Similar Documents

Publication Publication Date Title
US10306134B2 (en) System and method for controlling an equipment related to image capture
US10317775B2 (en) System and techniques for image capture
CN111447340B (en) Mixed reality virtual preview shooting system
US10245731B2 (en) Programming of a robotic arm using a motion capture system
US9479703B2 (en) Automatic object viewing methods and apparatus
US9781354B2 (en) Controlling a virtual camera
US9160899B1 (en) Feedback and manual remote control system and method for automatic video recording
US7027083B2 (en) System and method for servoing on a moving fixation point within a dynamic scene
US11776577B2 (en) Camera tracking system for live compositing
US20120287159A1 (en) Viewing of real-time, computer-generated environments
JP2020042665A (en) Information processing apparatus, control method thereof, and program
US20150109457A1 (en) Multiple means of framing a subject
US20160344946A1 (en) Screen System
JP5547670B2 (en) How to operate the TV monitor screen of a numerical control device with a TV camera
HK1220512B (en) System and method for controlling an equipment related to image capture
JP2015126402A (en) Robot camera control device, program for the same, and multi-viewpoint robot camera system
JP6073114B2 (en) Robot camera control device, program thereof, and multi-viewpoint robot camera system
JP7720535B2 (en) Photographing system, photographing device, and photographing control method
WO2018115571A1 (en) An apparatus and associated methods for virtual reality scene capture
WO2022109774A1 (en) Camera control method, device, and system
KR20230033367A (en) Method and apparatus for tracking target using gimbal camera
KR20230033368A (en) Method and apparatus for tracking target based on path
WO2016048258A2 (en) A planar motion camera movement control system improvement